WorldWideScience

Sample records for autotrophic nitrifying bioreactor

  1. The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures

    DEFF Research Database (Denmark)

    Harper, W.F.; Terada, Akihiko; Poly, F.

    2009-01-01

    Addition of hydroxylamine (NH2OH) to autotrophic biomass in nitrifying bioreactors affected the activity, physical structure, and microbial ecology of nitrifying aggregates. When NH2OH is added to nitrifying cultures in 6-h batch experiments, the initial NH3-N uptake rates were physiologically...... accelerated by a factor of 1.4-13. NH2OH addition caused a 20-40% decrease in the median aggregate size, broadened the shape of the aggregate size distribution by up to 230%, and caused some of the microcolonies to appear slightly more dispersed. Longer term NH2OH addition in fed batch bioreactors decreased...

  2. A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal.

    Science.gov (United States)

    Courtens, Emilie Np; Spieck, Eva; Vilchez-Vargas, Ramiro; Bodé, Samuel; Boeckx, Pascal; Schouten, Stefan; Jauregui, Ruy; Pieper, Dietmar H; Vlaeminck, Siegfried E; Boon, Nico

    2016-09-01

    The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of (13)C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.

  3. Activated sludge filterability improvement by nitrifying bacteria abundance regulation in an adsorption membrane bioreactor (Ad-MBR).

    Science.gov (United States)

    Sun, Fei-Yun; Lv, Xiao-Mei; Li, Ji; Peng, Zhong-Yi; Li, Pu; Shao, Ming-Fei

    2014-10-01

    Autotrophic nitrifying bacteria have its intrinsic properties including low EPS production, dense colonial structure and slow-growth rate, favoring the sludge filterability improvement. An adsorption-MBR (Ad-MBR) was developed to enrich nitrifier abundance in the MBR chamber by inlet C/N regulation, and its possible positive effect on sludge filterability and underlying mechanisms were investigated. By DNA extraction, PCR amplification and Illumina high-throughput pyrosequencing, the abundance of nitrifying bacteria was accurately quantified. More than 8.29% nitrifier abundance was achieved in Ad-MBR sludge, which was above three times of that in conventional MBR. Regulated C/N ratio and thereafter nitrifier abundance enrichment improved sludge filterability by altering sludge mixture and its supernatant properties, reflected by a good sludge settleability, a low supernatant viscosity and turbidity, a low supernatant organic substances concentration, and a small amount of strong hydrophobic fractional components, thus to profoundly improve sludge filterability and decelerate membrane fouling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Nitrifying Community Analysis in a Single Submerged Attached-Growth Bioreactor for Treatment of High-Ammonia Waste Stream

    DEFF Research Database (Denmark)

    Gu, April Z.; Pedros, Philip B; Kristiansen, Anja

    2007-01-01

    This study investigated the nitrifying community structure in a single-stage submerged attached-growth bioreactor (SAGB) that successfully achieved stable nitrogen removal over nitrite of a high-strength ammonia wastewater. The reactor was operated with intermittent aeration and external carbon...

  5. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Rodelas, Belén; Abbas, Ben A; Martinez-Toledo, Maria Victoria; van Loosdrecht, Mark C M; Osorio, F; Gonzalez-Lopez, Jesus

    2015-01-01

    Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing) of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON) and three full-scale bioreactors (anammox, CANON, and DEMON), was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature). The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C) and hence a range of annealing temperatures of 44-49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  6. Nitrous oxides reduction pathways induced during nitrified leachate recirculation in bioreactor landfill; Voies de reduction des oxydes d'azote lors de leur injection dans un massif de dechets menagers et assimiles: contribution a l'etude de la recirculation de lixiviat nitrifie dans une installation de stockage de dechets menagers et assimiles bioactive

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V

    2005-12-15

    Nitrified leachate recirculation in bioreactor landfill has been proposed to avoid ammonium accumulation. We worked on the identification of nitrous oxides reduction pathways induced when nitrified leachate is recirculated during waste degradation. Batch reactors (1.1 liter, 40 g of reconstituted Municipal Solid Waste, MSW) were operated at 35 deg C and saturated with leachate. Injections of 250 mg N-NO{sub x}.10{sup -1} were performed during different phases of waste biodegradation. Nitrate reduction during acido-genic and active methanogenic phases, with an easily available carbon source in leachate, was mainly attributed to heterotrophic denitrification. However, H{sub 2}S concentration up to 0.7 % in the biogas (corresponding to 0.5 mmol of free H{sub 2}S per liter of leachate) led to prevalent DNRA (Dissimilatory Nitrate Reduction to Ammonium) over denitrification. This reaction hindered the release of nitrogen outside of the system. This observation was confirmed with experiments performed with {sup 15}N enriched nitrate. During late methanogenic phase, without any available carbon source in leachate, nitrate was reduced by autotrophic denitrification with sulfide as an electron donor. No free metal was detected in the leachate. N{sub 2}O transient accumulation was detected during both DNRA and autotrophic denitrification. A second set of experiments was conducted in a MSW pilot scale column (0.2 m{sup 3}, 80 kg of reconstituted waste) in methanogenic phase. 113 % and 203 % of nitrate were converted into N{sub 2} when a synthetic KNO{sub 3} solution (280 mg N.day{sup -1} during 77 days) or nitrified leachate (61 mg N.day{sup -1} during 54 days) were respectively injected into the system. The downward movement of a denitrification front passing through the waste mass was followed using 3 redox probes inserted at different levels of the pilot. Even if N{sub 2}O was never detected, a small production of this gas could not be totally excluded. It was established

  7. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez-Martinez

    2015-01-01

    Full Text Available Identification of anaerobic ammonium oxidizing (anammox bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON and three full-scale bioreactors (anammox, CANON, and DEMON, was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature. The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  8. Incidence of plant cover over the autotrophic nitrifying bacteria population in a fragment of Andean forest

    International Nuclear Information System (INIS)

    Gonzalez, Xiomara; Gonzalez, L; Varela, A; Ahumada, J A

    1999-01-01

    It was determined the incidence of plant cover (forest vs. pasture), on the autotrophy nitrifying bacteria, through the effect of biotic factors (radical exudate) and abiotic factors (temperature, ph and humidity), in a high mountain cloud forest fragment. The site of study was located near La Mesa (Cundinamarca) municipality. The temperature of soil was measured in situ, and soil samples were collected and carried to the laboratory for pH and humidity percentage measurements. Serial soil dilution method was used for plating samples on a selective culture medium with ammonium sulphate as nitrogen source, in order to estimate the autotrophic nitrifying bacteria population levels. Grown colonies were examined macro and microscopically. The quantity of nitrates produced by bacteria cultured in vitro was determined spectra-photometrical. In relation to the abiotic factors, there was no significant differences of pH between both plant covers, but there were significant for soil humidity and temperature (p<0.05). There were highly significant differences with respect to the bacteria population levels (p<0.0001) and with respect to nitrate production. This suggests a higher bacterial activity in the under forest cover. The radical exudate from both types of plant cover reduced the viability of bacteria in vitro, from 1:1 to 1:30 exudate bacteria proportions. In the soils physical and chemical analysis, it was found a higher P and Al concentrations, and a higher CIC and organic matter content under the forest cover. It is suggested the importance of this functional group in this ecosystem

  9. Nitrous oxides reduction pathways induced during nitrified leachate recirculation in bioreactor landfill; Voies de reduction des oxydes d'azote lors de leur injection dans un massif de dechets menagers et assimiles: contribution a l'etude de la recirculation de lixiviat nitrifie dans une installation de stockage de dechets menagers et assimiles bioactive

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V.

    2005-12-15

    Nitrified leachate recirculation in bioreactor landfill has been proposed to avoid ammonium accumulation. We worked on the identification of nitrous oxides reduction pathways induced when nitrified leachate is recirculated during waste degradation. Batch reactors (1.1 liter, 40 g of reconstituted Municipal Solid Waste, MSW) were operated at 35 deg C and saturated with leachate. Injections of 250 mg N-NO{sub x}.10{sup -1} were performed during different phases of waste biodegradation. Nitrate reduction during acido-genic and active methanogenic phases, with an easily available carbon source in leachate, was mainly attributed to heterotrophic denitrification. However, H{sub 2}S concentration up to 0.7 % in the biogas (corresponding to 0.5 mmol of free H{sub 2}S per liter of leachate) led to prevalent DNRA (Dissimilatory Nitrate Reduction to Ammonium) over denitrification. This reaction hindered the release of nitrogen outside of the system. This observation was confirmed with experiments performed with {sup 15}N enriched nitrate. During late methanogenic phase, without any available carbon source in leachate, nitrate was reduced by autotrophic denitrification with sulfide as an electron donor. No free metal was detected in the leachate. N{sub 2}O transient accumulation was detected during both DNRA and autotrophic denitrification. A second set of experiments was conducted in a MSW pilot scale column (0.2 m{sup 3}, 80 kg of reconstituted waste) in methanogenic phase. 113 % and 203 % of nitrate were converted into N{sub 2} when a synthetic KNO{sub 3} solution (280 mg N.day{sup -1} during 77 days) or nitrified leachate (61 mg N.day{sup -1} during 54 days) were respectively injected into the system. The downward movement of a denitrification front passing through the waste mass was followed using 3 redox probes inserted at different levels of the pilot. Even if N{sub 2}O was never detected, a small production of this gas could not be totally excluded. It was established

  10. Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses

    DEFF Research Database (Denmark)

    Matsumoto, S.; Katoku, M.; Saeki, G.

    2010-01-01

    of these groups also became evident from a 16S rRNA clone library. Microprofiles of NH4+, NO2-, NO3- and O-2 concentrations measured with microelectrodes showed good agreement with the spatial organization of nitrifying bacteria. One- and two-dimensional numerical biofilm models were constructed to explain......This study evaluates the community structure in nitrifying granules (average diameter of 1600 mu m) produced in an aerobic reactor fed with ammonia as the sole energy source by a multivalent approach combining molecular techniques, microelectrode measurements and mathematical modelling...... the observed granule development as a result of the multiple bacteria-substrate interactions. The interaction between nitrifying and heterotrophic bacteria was evaluated by assuming three types of heterotrophic bacterial growth on soluble microbial products from nitrifying bacteria. The models described well...

  11. Autotrophic denitrification of synthetic nitrate-contaminated groundwater in up-flow fixed-bed bioreactor by pumice as porous media

    Directory of Open Access Journals (Sweden)

    Masoud Tourang1

    2018-05-01

    Full Text Available Background: Background: Increasing nitrate concentrations in groundwater resources is considered a common environmental and public health problem worldwide. In this research, an autotrophic up-flow bioreactor with pumice as media was used to study the effects of the sulfur-to-nitrogen (S/N ratio and empty bed contact time (EBCT on nitrate removal efficiency and byproducts. Methods: Experiments were carried out in a 3.47 L up-flow, fixed-bed reactor with 3 sampling ports. To evaluate the overall impact of S/N ratio and EBCT on the performance of the bioreactor, several phases with different S/N ratios and EBCTs were applied. Results: At a constant S/N ratio of 3.85 g/g, as EBCT decreased from 24 hours to 2 hours, the nitrate removal efficiency decreased from 98% to 64%. On the other hand, at the desired EBCT of 4 hr, as S/N ratio decreased from 3.85 to 1.51 g/g, nitrate removal efficiency was reduced from 85% to 32%. Changing the EBCT and S/N ratio also affected the effluent nitrite and sulfate concentrations as byproducts. At the S/N ratio of 3.85 g/g and EBCT of 24 hours, effluent nitrite and sulfate concentrations were 0.1 mg NO2--N/L and 463 mg SO4 2-/L, respectively. Decreasing the S/N ratio to 1.51 g/g and the EBCT to 4 hours caused drastic changes in effluent nitrite and sulfate concentrations. Conclusion: The results indicated that the autotrophic denitrification with thiosulfate as electron donor and pumice as media was feasible and applicable for nitrate contaminated groundwater.

  12. Osmotic stress on nitrification in an airlift bioreactor

    International Nuclear Information System (INIS)

    Jin Rencun; Zheng Ping; Mahmood, Qaisar; Hu Baolan

    2007-01-01

    The effect of osmotic pressure on nitrification was studied in a lab-scale internal-loop airlift-nitrifying reactor. The reactor slowly adapted to the escalating osmotic pressure during 270 days operation. The conditions were reversed to the initial stage upon full inhibition of the process. Keeping influent ammonium concentration constant at 420 mg N L -1 and hydraulic retention time at 20.7 h, with gradual increase in osmotic pressure from 4.3 to 18.8 x 10 5 Pa by adding sodium sulphate, the ammonium removal efficiencies of the nitrifying bioreactor were maintained at 93-100%. Further increase in osmotic pressure up to 19.2 x 10 5 Pa resulted in drop of the ammonium conversion to 69.2%. The osmotic pressure caused abrupt inhibition of nitrification without any alarm and the critical osmotic pressure value causing inhibition remained between 18.8 and 19.2 x 10 5 Pa. Nitrite oxidizers were found more sensitive to osmotic stress as compared with ammonia oxidizers, leading to nitrite accumulation up to 61.7% in the reactor. The performance of bioreactor recovered gradually upon lowering the osmotic pressure. Scanning and transmission electron microscopy indicated that osmotic stress resulted in simplification of the nitrifying bacterial populations in the activated sludge as the cellular size reduced; the inner membrane became thinner and some unknown inclusions appeared within the cells. The microbial morphology and cellular structure restored upon relieving the osmotic pressure. Addition of potassium relieved the effect of osmotic pressure upon nitrification. Results demonstrate that the nitrifying reactor possesses the potential to treat ammonium-rich brines after acclimatization

  13. Model-based optimization biofilm based systems performing autotrophic nitrogen removal using the comprehensive NDHA model

    DEFF Research Database (Denmark)

    Valverde Pérez, Borja; Ma, Yunjie; Morset, Martin

    Completely autotrophic nitrogen removal (CANR) can be obtained in single stage biofilm-based bioreactors. However, their environmental footprint is compromised due to elevated N2O emissions. We developed novel spatially explicit biochemical process model of biofilm based CANR systems that predicts...

  14. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification

    DEFF Research Database (Denmark)

    Lackner, Susanne; Holmberg, Maria; Terada, Akihiko

    2009-01-01

    Polypropylene (PP) membranes and polyethylene (PE) surfaces were modified to enhance formation and shear resistance of nitrifying biofilms for wastewater treatment applications. A combination of plasma polymerization and wet chemistry was employed to ultimately introduce poly(ethyleneglycol) (PEG......) chains with two different functional groups (-PEG-NH2 and -PEG-CH3). Biofilm growth experiments using a mixed nitrifying bacterial culture revealed that the specific combination of PEG chains with amino groups resulted in most biofilm formation on both PP and PE samples. Detachment experiments showed...... structure might be possible explanations of the superiority of the -PEG-NH2 modification. The success of the-PEG-NH2 modification was independent of the original surface and might, therefore, be used in wastewater treatment bioreactors to improve reactor performance by making biofilm formation more stable...

  15. A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes.

    Science.gov (United States)

    Santos, C A; Ferreira, M E; da Silva, T Lopes; Gouveia, L; Novais, J M; Reis, A

    2011-08-01

    This paper describes the association of two bioreactors: one photoautotrophic and the other heterotrophic, connected by the gas phase and allowing an exchange of O(2) and CO(2) gases between them, benefiting from a symbiotic effect. The association of two bioreactors was proposed with the aim of improving the microalgae oil productivity for biodiesel production. The outlet gas flow from the autotrophic (O(2) enriched) bioreactor was used as the inlet gas flow for the heterotrophic bioreactor. In parallel, the outlet gas flow from another heterotrophic (CO(2) enriched) bioreactor was used as the inlet gas flow for the autotrophic bioreactor. Aside from using the air supplied from the auto- and hetero-trophic bioreactors as controls, one mixotrophic bioreactor was also studied and used as a model, for its claimed advantage of CO(2) and organic carbon being simultaneously assimilated. The microalga Chlorella protothecoides was chosen as a model due to its ability to grow under different nutritional modes (auto, hetero, and mixotrophic), and its ability to attain a high biomass productivity and lipid content, suitable for biodiesel production. The comparison between heterotrophic, autotrophic, and mixotrophic Chlorella protothecoides growth for lipid production revealed that heterotrophic growth achieved the highest biomass productivity and lipid content (>22%), and furthermore showed that these lipids had the most suitable fatty acid profile in order to produce high quality biodiesel. Both associations showed a higher biomass productivity (10-20%), when comparing the two separately operated bioreactors (controls) which occurred on the fourth day. A more remarkable result would have been seen if in actuality the two bioreactors had been inter-connected in a closed loop. The biomass productivity gain would have been 30% and the lipid productivity gain would have been 100%, as seen by comparing the productivities of the symbiotic assemblage with the sum of the two

  16. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics.

    Science.gov (United States)

    Saijai, Sakuntala; Ando, Akinori; Inukai, Ryuya; Shinohara, Makoto; Ogawa, Jun

    2016-06-27

    Nitrifying microbial consortia were enriched from bark compost in a water system by regulating the amounts of organic nitrogen compounds and by controlling the aeration conditions with addition of CaCO 3 for maintaining suitable pH. Repeated enrichment showed reproducible mineralization of organic nitrogen via the conversion of ammonium ions ([Formula: see text]) and nitrite ions ([Formula: see text]) into nitrate ions ([Formula: see text]). The change in microbial composition during the enrichment was investigated by PCR-DGGE analysis with a focus on prokaryote, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and eukaryote cell types. The microbial transition had a simple profile and showed clear relation to nitrogen ions transition. Nitrosomonas and Nitrobacter were mainly detected during [Formula: see text] and [Formula: see text] oxidation, respectively. These results revealing representative microorganisms acting in each ammonification and nitrification stages will be valuable for the development of artificial simple microbial consortia for organic hydroponics that consisted of identified heterotrophs and autotrophic nitrifying bacteria.

  17. Biotic manganese oxidation coupled with methane oxidation using a continuous-flow bioreactor system under marine conditions.

    Science.gov (United States)

    Kato, Shingo; Miyazaki, Masayuki; Kikuchi, Sakiko; Kashiwabara, Teruhiko; Saito, Yumi; Tasumi, Eiji; Suzuki, Katsuhiko; Takai, Ken; Cao, Linh Thi Thuy; Ohashi, Akiyoshi; Imachi, Hiroyuki

    2017-10-01

    Biogenic manganese oxides (BioMnOx) can be applied for the effective removal and recovery of trace metals from wastewater because of their high adsorption capacity. Although a freshwater continuous-flow system for a nitrifier-based Mn-oxidizing microbial community for producing BioMnOx has been developed so far, a seawater continuous-flow bioreactor system for BioMnOx production has not been established. Here, we report BioMnOx production by a methanotroph-based microbial community by using a continuous-flow bioreactor system. The bioreactor system was operated using a deep-sea sediment sample as the inoculum with methane as the energy source for over 2 years. The BioMnOx production became evident after 370 days of reactor operation. The maximum Mn oxidation rate was 11.4 mg L -1 day -1 . An X-ray diffraction analysis showed that the accumulated BioMnOx was birnessite. 16S rRNA gene-based clone analyses indicated that methanotrophic bacterial members were relatively abundant in the system; however, none of the known Mn-oxidizing bacteria were detected. A continuous-flow bioreactor system coupled with nitrification was also run in parallel for 636 days, but no BioMnOx production was observed in this bioreactor system. The comparative experiments indicated that the methanotroph-based microbial community, rather than the nitrifier-based community, was effective for BioMnOx production under the marine environmental conditions.

  18. A fuzzy-logic based diagnosis and control of a reactor performing complete autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2013-01-01

    Diagnosis and control modules based on fuzzy set theory were tested for novel bioreactor monitoring and control. Two independent modules were used jointly to carry out first the diagnosis of the state of the system and then use transfer this information to control the reactor. The separation in d...... autotrophic nitrogen removal process. The whole module is evaluated by dynamic simulation....

  19. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin

    2012-09-01

    This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge

    International Nuclear Information System (INIS)

    Jin Rencun; Zheng Ping; Mahmood, Qaisar; Zhang Lei

    2008-01-01

    Since nitrification is the rate-limiting step in the biological nitrogen removal from wastewater, many studies have been conducted on the immobilization of nitrifying bacteria. A laboratory-scale investigation was carried out to scrutinize the effectiveness of activated carbon carrier addition for granulation of nitrifying sludge in a continuous-flow airlift bioreactor and to study the hydrodynamics of the reactor with carrier-induced granules. The results showed that the granular sludge began to appear and matured 60 and 108 days, respectively, after addition of carriers, while no granule was observed in the absence of carriers in the control test. The mature granules had a diameter of 0.5-5 mm (1.6 mm in average), settling velocity 22.3-55.8 m h -1 and specific gravity of 1.086. The relationship between the two important hydrodynamic coefficients, i.e. gas holdup and liquid circulation velocity, and the superficial gas velocity were established by a simple model and were confirmed experimentally. The model also could predict the critical superficial gas velocity for liquid circulation and that for granules circulation, with respective values of 1.017 and 2.662 cm min -1 , accurately

  2. Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Jin Rencun [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Department of Environmental Science, Hangzhou Normal University, Hangzhou 310036 (China); Zheng Ping [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)], E-mail: pzheng@zju.edu.cn; Mahmood, Qaisar; Zhang Lei [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

    2008-09-15

    Since nitrification is the rate-limiting step in the biological nitrogen removal from wastewater, many studies have been conducted on the immobilization of nitrifying bacteria. A laboratory-scale investigation was carried out to scrutinize the effectiveness of activated carbon carrier addition for granulation of nitrifying sludge in a continuous-flow airlift bioreactor and to study the hydrodynamics of the reactor with carrier-induced granules. The results showed that the granular sludge began to appear and matured 60 and 108 days, respectively, after addition of carriers, while no granule was observed in the absence of carriers in the control test. The mature granules had a diameter of 0.5-5 mm (1.6 mm in average), settling velocity 22.3-55.8 m h{sup -1} and specific gravity of 1.086. The relationship between the two important hydrodynamic coefficients, i.e. gas holdup and liquid circulation velocity, and the superficial gas velocity were established by a simple model and were confirmed experimentally. The model also could predict the critical superficial gas velocity for liquid circulation and that for granules circulation, with respective values of 1.017 and 2.662 cm min{sup -1}, accurately.

  3. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance and bacterial community structure.

    Science.gov (United States)

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Qu, Jiuhui

    2015-03-01

    This paper investigates a novel sulfur-oxidizing autotrophic denitrifying anaerobic fluidized bed membrane bioreactor (AnFB-MBR) that has the potential to overcome the limitations of conventional sulfur-oxidizing autotrophic denitrification systems. The AnFB-MBR produced consistent high-quality product water when fed by a synthetic groundwater with NO3 (-)-N ranging 25-80 mg/L and operated at hydraulic retention times of 0.5-5.0 h. A nitrate removal rate of up to 4.0 g NO3 (-)-N/Lreactord was attained by the bioreactor, which exceeded any reported removal capacity. The flux of AnFB-MBR was maintained in the range of 1.5-15 L m(-2) h(-1). Successful membrane cleaning was practiced with cleaning cycles of 35-81 days, which had no obvious effect on the AnFB-MBR performance. The (15) N-tracer analyses elucidated that nitrogen was converted into (15) N2-N and (15) N-biomass accounting for 88.1-93.1 % and 6.4-11.6 % of the total nitrogen produced, respectively. Only 0.3-0.5 % of removed nitrogen was in form of (15)N2O-N in sulfur-oxidizing autotrophic denitrification process, reducing potential risks of a significant amount of N2O emissions. The sulfur-oxidizing autotrophic denitrifying bacterial consortium was composed mainly of bacteria from Proteobacteria, Chlorobi, and Chloroflexi phyla, with genera Thiobacillus, Sulfurimonas, and Ignavibacteriales dominating the consortium. The pyrosequencing assays also suggested that the stable microbial communities corresponded to the elevated performance of the AnFB-MBR. Overall, this research described relatively high nitrate removal, acceptable flux, indicating future potential for the technology in practice.

  4. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment.

    Science.gov (United States)

    Chiemchaisri, C; Yamamoto, K

    2005-01-01

    Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.

  5. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors.

    Science.gov (United States)

    Su, Qingxian; Ma, Chun; Domingo-Félez, Carlos; Kiil, Anne Sofie; Thamdrup, Bo; Jensen, Marlene Mark; Smets, Barth F

    2017-10-15

    Nitrous oxide (N 2 O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N 2 O production were quantified in two lab-scale sequencing batch reactors operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N 2 O production was low (∼2% of the oxidized ammonium). Net N 2 O production rates transiently increased with a rise in pH after each feeding, suggesting a potential effect of pH on N 2 O production. In situ application of 15 N labeled substrates revealed nitrifier denitrification as the dominant pathway of N 2 O production. Our study highlights operational conditions that minimize N 2 O emission from two-stage autotrophic nitrogen removal systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of a microbiological ammonium to nitrate recycling bioreactor for space capsules

    International Nuclear Information System (INIS)

    Pycke, B.

    2009-01-01

    Since 1988, the Expertise group of Molecular and Cellular Biology (MCB) is an important partner in the development of the Micro-Ecological Life Support System Alternative (MELiSSA). The MELiSSA was designed to allow a small crew to survive on an Antarctic, lunar or Mars outpost, and is a joint research project currently fostered by the European Space Agency, ESA. The MELiSSA functions through a series of five interconnected compartments, of which four are microbial bioreactors and was engineered to degrade organic waste, regenerate the outpost's atmosphere and water, and provide the crew with an additional vegetarian diet. The bioreactor of the third compartment provides the edible cyanobacteria and plants of the fourth compartment with nitrate instead of ammonium as a source of nitrogen. The two bacteria responsible for the biological transformation of ammonium to nitrate (nitrification) are Nitrosomonas europaea and Nitrobacter winogradskyi. Since all MELiSSA-reactors are to be relied on for a period of several years, reactor operation is to be studied exhaustively to allow optimal process- and reactor performance. Therefore, a pilot reactor for the third compartment was engineered and constructed at the Universitat Autonoma de Barcelona (UAB), where the pilot plant of the MELiSSA is installed. The reactor was able to perform nitrification with high efficiency for the entire trial period of nearly five years and was the subject of this study. Collaboration between the unit of MCB and researchers at Universitat Autonoma de Barcelona (UAB) allowed the development and validation of a mathematical model for the third compartment of the MELiSSA. A mathematical model will allow optimizing reactor operation and reactor performance even further. A Real-Time Quantitative Polymerase Chain Reaction (Q-PCR) was developed at MCB that allowed the quantitative assessment of the relative distribution of the two autotrophic nitrifying bacterial species along the reactor's packed

  7. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water.

    Science.gov (United States)

    Smith, Richard L; Buckwalter, Seanne P; Repert, Deborah A; Miller, Daniel N

    2005-05-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  8. Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate.

    Science.gov (United States)

    Peng, Wei; Pivato, Alberto; Lavagnolo, Maria Cristina; Raga, Roberto

    2018-04-01

    Anaerobic digestion of organics is one of the most used solution to gain renewable energy from waste and the final product, the digestate, still rich in putrescible components and nutrients, is mainly considered for reutilization (in land use) as a bio-fertilizer or a compost after its treatment. Alternative approaches are recommended in situations where conventional digestate management practices are not suitable. Aim of this study was to develop an alternative option to use digestate to enhance nitrified leachate treatment through a digestate layer in a landfill bioreactor. Two identical landfill columns (Ra and Rb) filled with the same solid digestate were set and nitrified leachate was used as influent. Ra ceased after 75 day's operation to get solid samples and calculate the C/N mass balance while Rb was operated for 132 days. Every two or three days, effluent from the columns were discarded and the columns were refilled with nitrified leachate (average N-NO 3 - concentration = 1,438 mg-N/L). N-NO 3 - removal efficiency of 94.7% and N-NO 3 - removal capacity of 19.2 mg N-NO 3 - /gTS-digestate were achieved after 75 days operation in Ra. Prolonging the operation to 132 days in Rb, N-NO 3 - removal efficiency and N-NO 3 - removal capacity were 72.5% and 33.1 mg N-NO 3 - /gTS-digestate, respectively. The experimental analysis of the process suggested that 85.4% of nitrate removal could be attributed to denitrification while the contribution percentage of adsorption was 14.6%. These results suggest that those solid digestates not for agricultural or land use, could be used in landfill bioreactors to remove the nitrogen from old landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    International Nuclear Information System (INIS)

    He Ruo; Shen Dongsheng

    2006-01-01

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10 6 and 10 8 cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO 3 - -N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH 4 + -N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system

  10. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB......, respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across...... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  11. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways.

    Science.gov (United States)

    Ni, Bing-Jie; Peng, Lai; Law, Yingyu; Guo, Jianhua; Yuan, Zhiguo

    2014-04-01

    Autotrophic ammonia oxidizing bacteria (AOB) have been recognized as a major contributor to N2O production in wastewater treatment systems. However, so far N2O models have been proposed based on a single N2O production pathway by AOB, and there is still a lack of effective approach for the integration of these models. In this work, an integrated mathematical model that considers multiple production pathways is developed to describe N2O production by AOB. The pathways considered include the nitrifier denitrification pathway (N2O as the final product of AOB denitrification with NO2(-) as the terminal electron acceptor) and the hydroxylamine (NH2OH) pathway (N2O as a byproduct of incomplete oxidation of NH2OH to NO2(-)). In this model, the oxidation and reduction processes are modeled separately, with intracellular electron carriers introduced to link the two types of processes. The model is calibrated and validated using experimental data obtained with two independent nitrifying cultures. The model satisfactorily describes the N2O data from both systems. The model also predicts shifts of the dominating pathway at various dissolved oxygen (DO) and nitrite levels, consistent with previous hypotheses. This unified model is expected to enhance our ability to predict N2O production by AOB in wastewater treatment systems under varying operational conditions.

  12. Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum.

    Science.gov (United States)

    Mayer, Alexander; Weuster-Botz, Dirk

    2017-12-01

    Acetogenesis with CO2:H2 or CO via the reductive acetyl-CoA pathway does not provide any net ATP formation in homoacetogenic bacteria. Autotrophic energy conservation is coupled to the generation of chemiosmotic H+ or Na+ gradients across the cytoplasm membrane using either a ferredoxin:NAD+ oxidoreductase (Rnf), a ferredoxin:H+ oxidoreductase (Ech) or substrate-level phosphorylation via cytochromes. The first isolated acetogenic bacterium Clostridium aceticum shows both cytochromes and Rnf complex, putting it into an outstanding position. Autotrophic batch processes with continuous gas supply were performed in fully controlled stirred-tank bioreactors to elucidate energy metabolism of C. aceticum. Varying the initial Na+ concentration in the medium showed sodium-dependent growth of C. aceticum with a growth optimum between 60 and 90 mM Na+. The addition of the Na+-selective ionophore ETH2120 or the protonophore CCCP or the H+/cation-antiporter monensin revealed that an H+ gradient is used as primary energy conservation mechanism, which strengthens the exceptional position of C. aceticum as acetogenic bacterium showing an H+-dependent energy conservation mechanism as well as Na+-dependent growth. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  14. 454-Pyrosequencing analysis of bacterial communities from autotrophic nitrogen removal bioreactors utilizing universal primers : Effect of annealing temperature

    NARCIS (Netherlands)

    Gonzalez-Martinez, A.; Rodriguez-Sanchez, A.; Rodelas, B.; Abbas, B.A.; Martinez-Toledo, M.V.; Van Loosdrecht, M.C.M.; Osorio, F.; Gonzalez-Lopez, J.

    2015-01-01

    Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S

  15. Influence oFe3+ Ions on Nitrate Removal by Autotrophic Denitrification Using Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Z. Blažková

    2017-07-01

    Full Text Available he sulphur-based autotrophic denitrification process utilizing Thiobacillus denitrificans was studied experimentally as an alternative method of removing nitrates from industrial wastewater. The objective of the work was to examine the effect of ferric iron addition to the reaction mixture and determine optimal dosage for specific conditions. All experiments were carried out in anoxic batch bioreactor, and elemental sulphur was used as an electron donor. Compared to the control operation without ferric iron addition, significant increases in nitrates removal were demonstrated for the concentration of ferric iron equal to 0.1 mg L–1. However, under these conditions, increased nitrite content was detected in the reaction mixture which exceeds the limits for drinking water.

  16. Effects of porous carrier size on biofilm development, microbial distribution and nitrogen removal in microaerobic bioreactors

    KAUST Repository

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-01-01

    In this study, effects of porous carrier’s size (polyurethane-based) on microbial characteristics were systematically investigated in addition to nitrogen removal performance in six microaerobic bioreactors. Among different sized carriers (50, 30, 20, 15,10, 5 mm), 15 mm carrier showed highest nitrogen removal (98%) due to optimal micro-environments created for aerobic nitrifiers in outer layer (0∼7 mm), nitrifiers and denitrifiers in middle layer (7∼10 mm) and anaerobic denitrifiers in inner layer (10∼15 mm). Candidatus brocadia, a dominant anammox bacteria, was solely concentrated close to centroid (0∼70 μm) and strongly co-aggregated with other bacterial communities in the middle layer of the carrier. Contrarily, carriers with a smaller (<15 mm) or larger size (>15 mm) either destroy the effective zone for anaerobic denitrifiers or damage the microaerobic environments due to poor mass transfer. This study is of particular use for optimal design of carriers in enhancing simultaneous nitrification-denitrification in microaerobic wastewater treatment processes.

  17. Effects of porous carrier size on biofilm development, microbial distribution and nitrogen removal in microaerobic bioreactors

    KAUST Repository

    Ahmad, Muhammad

    2017-03-15

    In this study, effects of porous carrier’s size (polyurethane-based) on microbial characteristics were systematically investigated in addition to nitrogen removal performance in six microaerobic bioreactors. Among different sized carriers (50, 30, 20, 15,10, 5 mm), 15 mm carrier showed highest nitrogen removal (98%) due to optimal micro-environments created for aerobic nitrifiers in outer layer (0∼7 mm), nitrifiers and denitrifiers in middle layer (7∼10 mm) and anaerobic denitrifiers in inner layer (10∼15 mm). Candidatus brocadia, a dominant anammox bacteria, was solely concentrated close to centroid (0∼70 μm) and strongly co-aggregated with other bacterial communities in the middle layer of the carrier. Contrarily, carriers with a smaller (<15 mm) or larger size (>15 mm) either destroy the effective zone for anaerobic denitrifiers or damage the microaerobic environments due to poor mass transfer. This study is of particular use for optimal design of carriers in enhancing simultaneous nitrification-denitrification in microaerobic wastewater treatment processes.

  18. Monochloramine Cometabolism by Nitrifying Biofilm Relevant ...

    Science.gov (United States)

    Recently, biological monochloramine removal (i.e., cometabolism) by a pure culture ammonia–oxidizing bacteria, Nitrosomonas europaea, and a nitrifying mixed–culture have been shown to increase monochloramine demand. Although important, these previous suspended culture batch kinetic experiments were not representative of drinking water distribution systems where bacteria grow predominantly as biofilm attached to pipe walls or sediments and physiological differences may exist between suspension and biofilm growth. Therefore, the current research was an important next step in extending the previous results to investigate monochloramine cometabolism by biofilm grown in annular reactors under drinking water relevant conditions. Estimated monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (25–40% of the observed monochloramine loss). These results demonstrated that monochloramine cometabolism occurred in drinking water relevant nitrifying biofilm; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in distribution systems. Investigate whether or not nitrifying biofilm can biologically transform monochloramine under drinking water relevant conditions.

  19. p-Cresol mineralization by a nitrifying consortium

    International Nuclear Information System (INIS)

    Silva-Luna, C. D.; Gomez, J.; Houbron, E.; Cuervo Lopez, F. M.; Texier, A. C.

    2009-01-01

    Nitrification and denitrification processes are considered economically feasible technologies for nitrogen removal from wastewater. Knowledge of the toxic or inhibitory effects of cresols on the nitrifying respiratory process is still insufficient. The aim of this study was to evaluate the kinetic behavior and oxidizing ability of a nitrifying consortium exposed to p-cresol in batch cultures. Biotransformation of p-cresol was investigated by identifying the different intermediates formed. (Author)

  20. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    Science.gov (United States)

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles. Copyright © 2015 Elsevier Ltd. All

  1. Hybrid Nitrous Oxide Production from a Partial Nitrifying Bioreactor: Hydroxylamine Interactions with Nitrite.

    Science.gov (United States)

    Terada, Akihiko; Sugawara, Sho; Hojo, Keisuke; Takeuchi, Yuki; Riya, Shohei; Harper, Willie F; Yamamoto, Tomoko; Kuroiwa, Megumi; Isobe, Kazuo; Katsuyama, Chie; Suwa, Yuichi; Koba, Keisuke; Hosomi, Masaaki

    2017-03-07

    The goal of this study was to elucidate the mechanisms of nitrous oxide (N 2 O) production from a bioreactor for partial nitrification (PN). Ammonia-oxidizing bacteria (AOB) enriched from a sequencing batch reactor (SBR) were subjected to N 2 O production pathway tests. The N 2 O pathway test was initiated by supplying an inorganic medium to ensure an initial NH 4 + -N concentration of 160 mg-N/L, followed by 15 NO 2 - (20 mg-N/L) and dual 15 NH 2 OH (each 17 mg-N/L) spikings to quantify isotopologs of gaseous N 2 O ( 44 N 2 O, 45 N 2 O, and 46 N 2 O). N 2 O production was boosted by 15 NH 2 OH spiking, causing exponential increases in mRNA transcription levels of AOB functional genes encoding hydroxylamine oxidoreductase (haoA), nitrite reductase (nirK), and nitric oxide reductase (norB) genes. Predominant production of 45 N 2 O among N 2 O isotopologs (46% of total produced N 2 O) indicated that coupling of 15 NH 2 OH with 14 NO 2 - produced N 2 O via N-nitrosation hybrid reaction as a predominant pathway. Abiotic hybrid N 2 O production was also observed in the absence of the AOB-enriched biomass, indicating multiple pathways for N 2 O production in a PN bioreactor. The additional N 2 O pathway test, where 15 NH 4 + was spiked into 400 mg-N/L of NO 2 - concentration, confirmed that the hybrid N 2 O production was a dominant pathway, accounting for approximately 51% of the total N 2 O production.

  2. Nitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrification

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Laanbroek, H.J.; Oenema, O.

    2004-01-01

    Nitrifier denitrification is the reduction of NO2- to N2 by nitrifiers. It leads to the production of the greenhouse gas nitrous oxide (N2O) as an intermediate and possible end product. It is not known how important nitrifier denitrification is for the production of N2O in soils. We explored N2O

  3. Treatment of Nitrate-contaminated Drinking Water Using Autotrophic Denitrification in a Hydrogenised Biofilter

    Directory of Open Access Journals (Sweden)

    Ramazan Vagheei

    2010-03-01

    Full Text Available In this research, a system was designed and constructed that included an efficient, economically feasible method for adjustable, in-situ generation of hydrogen and carbon dioxide coupled with a packed bed bioreactor. The system was subsequently tested for its ability to remove nitrate from drinking water. The major objective was to develop an economical technology with a high selectivity for nitrate ions but causing minimum changes in other drinking water quality parameters. Hydrogen (as the electron donor and carbon dioxide (as the carbon source for autotrophic denitrifier bacteria were generated in a cost-effective way by applying a very low DC voltage (5-10 volts in an electrochemical reactor using methanol electrolysis. The gases were injected into a denitrification bioreactor inoculated with denitrifier bacteria which are naturally present in water. Finally, the system was put to a pilot operation to remove nitrate from a nitrate-contaminated well (a typical contamination range of 120 mg/L as NO3- in Tehran aquifer for a period of 160 days. The results showed that the system was capable of achieving a nitrate removal efficiency of 95% with an HRT of 2-5 hr while its power consumption was minimal and only required the two harmless gases, hydrogen and carbon dioxide, to be injected without any chemical additions.

  4. Enhanced transformation of tetrabromobisphenol a by nitrifiers in nitrifying activated sludge.

    Science.gov (United States)

    Li, Fangjie; Jiang, Bingqi; Nastold, Peter; Kolvenbach, Boris Alexander; Chen, Jianqiu; Wang, Lianhong; Guo, Hongyan; Corvini, Philippe François-Xavier; Ji, Rong

    2015-04-07

    The fate of the most commonly used brominated flame retardant, tetrabromobisphenol A (TBBPA), in wastewater treatment plants is obscure. Using a (14)C-tracer, we studied TBBPA transformation in nitrifying activated sludge (NAS). During the 31-day incubation, TBBPA transformation (half-life 10.3 days) was accompanied by mineralization (17% of initial TBBPA). Twelve metabolites, including those with single benzene ring, O-methyl TBBPA ether, and nitro compounds, were identified. When allylthiourea was added to the sludge to completely inhibit nitrification, TBBPA transformation was significantly reduced (half-life 28.9 days), formation of the polar and single-ring metabolites stopped, but O-methylation was not significantly affected. Abiotic experiments confirmed the generation of mono- and dinitro-brominated forms of bisphenol A in NAS by the abiotic nitration of TBBPA by nitrite, a product of ammonia-oxidizing microorganisms (AOMs). Three biotic (type II ipso-substitution, oxidative skeletal cleavage, and O-methylation) and one abiotic (nitro-debromination) pathways were proposed for TBBPA transformation in NAS. Apart from O-methylation, AOMs were involved in three other pathways. Our results are the first to provide information about the complex metabolism of TBBPA in NAS, and they are consistent with a determining role for nitrifiers in TBBPA degradation by initiating its cleavage into single-ring metabolites that are substrates for the growth of heterotrophic bacteria.

  5. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    OpenAIRE

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a g...

  6. In Situ Identification and Stratification of Monochloramine Inhibition Effects on Nitrifying Biofilms as Determined by the Use of Microelectrodes

    Science.gov (United States)

    The nitrifying biofilm grown in an annular biofilm reactor and the microbial deactivation achieved after monochloramine treatment were investigated using microelectrodes. The nitrifying biofilm ammonium microprofile was measured and the effect of monochloramine on nitrifying bio...

  7. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Angenent, Largus T.; Zhang, Tian

    2017-01-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron-transfer mechan......Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron......; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies....

  8. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    Science.gov (United States)

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.

  9. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  10. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.

    Science.gov (United States)

    Kocamemi, B Alpaslan; Ceçen, F

    2010-01-01

    In the present study, cometabolic TCE degradation was evaluated using NH(4)-N as the growth-substrate. At initial TCE concentrations up to 845 microg/L, TCE degradation followed first-order kinetics. The increase in ammonium utilization rate favored the degradation of TCE. This ensured that biological transformation of TCE in nitrifying systems is accomplished through a cometabolic pathway by the catalysis of non-specific ammonia oxygenase enzyme of nitrifiers. The transformation yield (T(y)) of TCE, the amount of TCE degraded per unit mass of NH(4)-N, strongly depended on the initial NH(4)-N and TCE concentrations. In order to allow a rough estimation of TCE removal and nitrification at different influent TCE and NH(4)-N concentrations, a linear relationship was developed between 1/T(y) and the initial NH(4)-N/TCE ratio. The estimated T(y) values lead to the conclusion that nitrifying systems are promising candidates for biological removal of TCE through cometabolism.

  11. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H 13 CO 3 - and H 12 CO 3 - as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H 13 CO 3 - , demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the 13 C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unravelled with genome-resolved metagenomics.

    Science.gov (United States)

    Kantor, Rose S; van Zyl, A Wynand; van Hille, Robert P; Thomas, Brian C; Harrison, Susan T L; Banfield, Jillian F

    2015-12-01

    Gold ore processing uses cyanide (CN(-) ), which often results in large volumes of thiocyanate- (SCN(-) ) contaminated wastewater requiring treatment. Microbial communities can degrade SCN(-) and CN(-) , but little is known about their membership and metabolic potential. Microbial-based remediation strategies will benefit from an ecological understanding of organisms involved in the breakdown of SCN(-) and CN(-) into sulfur, carbon and nitrogen compounds. We performed metagenomic analysis of samples from two laboratory-scale bioreactors used to study SCN(-) and CN(-) degradation. Community analysis revealed the dominance of Thiobacillus spp., whose genomes harbour a previously unreported operon for SCN(-) degradation. Genome-based metabolic predictions suggest that a large portion of each bioreactor community is autotrophic, relying not on molasses in reactor feed but using energy gained from oxidation of sulfur compounds produced during SCN(-) degradation. Heterotrophs, including a bacterium from a previously uncharacterized phylum, compose a smaller portion of the reactor community. Predation by phage and eukaryotes is predicted to affect community dynamics. Genes for ammonium oxidation and denitrification were detected, indicating the potential for nitrogen removal, as required for complete remediation of wastewater. These findings suggest optimization strategies for reactor design, such as improved aerobic/anaerobic partitioning and elimination of organic carbon from reactor feed. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Monochloramine Cometabolism by Nitrifying Biofilm Relevant to Drinking Water

    Science.gov (United States)

    Recently, biological monochloramine removal (i.e., cometabolism) by a pure culture ammonia–oxidizing bacteria, Nitrosomonas europaea, and a nitrifying mixed–culture have been shown to increase monochloramine demand. Although important, these previous suspended culture batch kine...

  14. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore...... the interaction between species via exchange of soluble microbial products (SMP). We show that multiple parameter sets are able to describe the findings of experimental studies, and that heterotrophs growing on autotrophically produced SMP may pursue either r- or K-strategies to sustain themselves when SMP...... is their only substrate. We also show that heterotrophs can colonize some distance from the autotrophs and still be sustained by autotrophically produced SMP. This work defines the feasible range of parameters for utilization of SMP by heterotrophs and the nature of the interactions between autotrophs...

  15. Integrating anammox with the autotrophic denitrification process via electrochemistry technology.

    Science.gov (United States)

    Qiao, Sen; Yin, Xin; Zhou, Jiti; Wei, Li'e; Zhong, Jiayou

    2018-03-01

    In this study, an autotrophic denitrification process was successfully coupled with anammox to remove the nitrate by-product via electrochemical technology. When the voltage applied to the combined electrode reactor was 1.5 V, the electrode reaction removed nitrate by using the autotrophic denitrification biomass without affecting the anammox biomass. The nitrogen removal efficiency of the combined electrode reactor reached 99.1% without detectable nitrate at an influent NO 2 - -N/NH 4 + -N ratio of 1.5. On day 223, using the model calculations based on reaction equations, 19.7% of total nitrogen was removed via the autotrophic denitrification process, while the majority of nitrogen removal (approximately 79.4%) was attributed to the anammox reaction. Small variations of the population numbers and community structure of artificial bacteria according to electron microscopy predicted that the anammox and autotrophic denitrifying biomasses could coexist in the electrode reactor. Then, 16S rRNA analysis determined that the anammox biomass group was always dominant in mixed flora during continuous cultivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing

    2012-05-01

    Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m 2, compared to 90.7% and 945 ± 42 mW/m 2 with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m 2). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration. © 2012 Elsevier Ltd.

  17. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    Science.gov (United States)

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  18. Long Term Performance of an Arsenite-Oxidizing-Chlorate-Reducing Microbial Consortium in an Upflow Anaerobic Sludge Bed (UASB) Bioreactor

    Science.gov (United States)

    Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A.

    2011-01-01

    A chlorate (ClO3−) reducing microbial consortium oxidized arsenite (As(III)) to arsenate (As(V)) in an upflow anaerobic sludge-bed bioreactor over 550 d operation. As(III) was converted with high conversion efficiencies (>98%) at volumetric loadings ranging from 0.45 to 1.92 mmol As/(Lreactor d). The oxidation of As(III) was linked to the complete reduction of ClO3− to Cl− and H2O, as demonstrated by a molar ratio of approximately 3.0 mol As(III) oxidized per mole of Cl− formed and by the greatly lowered ClO3−-reducing capacity without As(III) feeding. An autotrophic enrichment culture was established from the bioreactor biofilm. A 16S rRNA gene clone library indicated that the culture was dominated by Dechloromonas, and Stenotrophomonas as well as genera within the family Comamonadaceae. The results indicate that the oxidation of As(III) to less mobile As(V) utilizing ClO3− as a terminal electron acceptor provides a sustainable bioremediation strategy for arsenic contamination in anaerobic environments. PMID:21333531

  19. An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc

    2018-01-01

    Adaptive laboratory evolution (ALE) is an approach enabling the development of novel characteristics in microbial strains via the application of a constant selection pressure. This method is also an efficient tool to acquire insights on molecular mechanisms responsible for specific phenotypes. ALE...... autotrophically and reducing CO2 into acetate more efficiently. Strains developed via this ALE method were also used to gain knowledge on the autotrophic metabolism of S. ovata as well as other acetogenic bacteria....

  20. Lipid-based liquid biofuels from autotrophic microalgae: energetic and environmental performance

    NARCIS (Netherlands)

    Reijnders, L.

    2013-01-01

    Commercial cultivation of autotrophic microalgae for food production dates back to the 1950s. Autotrophic microalgae have also been proposed as a source for lipid-based liquid biofuels. As yet, there is no commercial production of such biofuels and estimated near-term prices are far in excess of

  1. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    Science.gov (United States)

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  2. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis

    International Nuclear Information System (INIS)

    Shieh, J.; Whitman, W.B.

    1988-01-01

    To detect autotrophic CO 2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotropically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO 2 fixation was pulled in the direction of lactate synthesis, CO 2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO 2 and H 2 , but H 2 + CO 2 -independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min -1 mg of protein -1 . When BES was added, the rate of lactate synthesis increased to 2.1 nmol min -1 mg of protein -1 . Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14 CO 2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14 CH 2 O was specifically incorporated into the C-3 of lactate, and 14 CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO 2 assimilation

  3. Pyruvic oxime nitrification and copper and nickel resistance by a Cupriavidus pauculus, an active heterotrophic nitrifier-denitrifier.

    Science.gov (United States)

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3-C(NOH)-COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu(2+) and Ni(2+) and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu(2+) or 0.5 mM Ni(2+) was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu(2+) or 0.5 mM Ni(2+). The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  4. Effects of Pesticide Application on the Growth of Soil Nitrifying ...

    African Journals Online (AJOL)

    ADOWIE PERE

    shows that the bacteria could survive and grow at lower pesticide concentrations but were completely ... soil bacteria before application. .... capacities to degrade or utilize pesticides as carbon ... effects of plastic composted soil on nitrifying.

  5. Comparison of nitrifier activity versus growth in the scheldt estuary - a turbid, tidal estuary in northern Europe

    NARCIS (Netherlands)

    Andersson, M.G.I.; Brion, N.; Middelburg, J.J.

    2006-01-01

    Nitrifier activity and growth were measured in the Scheldt estuary over a salinity gradient. Measurements were made during all 4 seasons using 15N enriched ammonium and 14C labeled carbon incorporation. Established conversion ratios are often used to convert the growth of nitrifiers (measured as the

  6. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    Science.gov (United States)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  7. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    Directory of Open Access Journals (Sweden)

    Miguel Ramirez

    2014-01-01

    Full Text Available Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2 and nitrous oxide (N2O while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1 was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.

  8. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.

    Science.gov (United States)

    Guo, Guangxia; Kong, Weidong; Liu, Jinbo; Zhao, Jingxue; Du, Haodong; Zhang, Xianzhou; Xia, Pinhua

    2015-10-01

    Soil microbial autotrophs play a significant role in CO2 fixation in terrestrial ecosystem, particularly in vegetation-constrained ecosystems with environmental stresses, such as the Tibetan Plateau characterized by low temperature and high UV. However, soil microbial autotrophic communities and their driving factors remain less appreciated. We investigated the structure and shift of microbial autotrophic communities and their driving factors along an elevation gradient (4400-5100 m above sea level) in alpine grassland soils on the Tibetan Plateau. The autotrophic microbial communities were characterized by quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), and cloning/sequencing of cbbL genes, encoding the large subunit for the CO2 fixation protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). High cbbL gene abundance and high RubisCO enzyme activity were observed and both significantly increased with increasing elevations. Path analysis identified that soil RubisCO enzyme causally originated from microbial autotrophs, and its activity was indirectly driven by soil water content, temperature, and NH4 (+) content. Soil autotrophic microbial community structure dramatically shifted along the elevation and was jointly driven by soil temperature, water content, nutrients, and plant types. The autotrophic microbial communities were dominated by bacterial autotrophs, which were affiliated with Rhizobiales, Burkholderiales, and Actinomycetales. These autotrophs have been well documented to degrade organic matters; thus, metabolic versatility could be a key strategy for microbial autotrophs to survive in the harsh environments. Our results demonstrated high abundance of microbial autotrophs and high CO2 fixation potential in alpine grassland soils and provided a novel model to identify dominant drivers of soil microbial communities and their ecological functions.

  9. Biological deammonification of livestock effluents after anaerobic digestion using specialized bacterial cultures

    Science.gov (United States)

    We investigated a deammonification process for the removal of ammonia from anaerobi digestion (AD) effluents. This process is autotrophic and removes N without carbon. Instant deammonification reaction was obtained by mixing a high performance nitrifying sludge (HPNS) (NRRL B-50298) with anammox slu...

  10. Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates

    NARCIS (Netherlands)

    Beer, de D.; Heuvel, van den J.C.; Ottengraf, S.P.P.

    1993-01-01

    Microelectrodes for ammonium, oxygen, nitrate, and pH were used to study nitrifying aggregates grown in a fluidized-bed reactor. Local reactant fluxes and distribution of microbial activity could be detd. from the microprofiles. The interfacial fluxes of the reactants closely reflected the

  11. A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors.

    Science.gov (United States)

    Bellucci, Micol; Ofiţeru, Irina D; Beneduce, Luciano; Graham, David W; Head, Ian M; Curtis, Thomas P

    2015-05-01

    The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the 'paradox of enrichment' which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Dynamics of autotrophic marine planktonic thaumarchaeota in the East China Sea.

    Directory of Open Access Journals (Sweden)

    Anyi Hu

    Full Text Available The ubiquitous and abundant distribution of ammonia-oxidizing Thaumarchaeota in marine environments is now well documented, and their crucial role in the global nitrogen cycle has been highlighted. However, the potential contribution of Thaumarchaeota in the carbon cycle remains poorly understood. Here we present for the first time a seasonal investigation on the shelf region (bathymetry≤200 m of the East China Sea (ECS involving analysis of both thaumarchaeal 16S rRNA and autotrophy-related genes (acetyl-CoA carboxylase gene, accA. Quantitative PCR results clearly showed a higher abundance of thaumarchaeal 16S and accA genes in late-autumn (November than summer (August, whereas the diversity and community structure of autotrophic Thaumarchaeota showed no statistically significant difference between different seasons as revealed by thaumarchaeal accA gene clone libraries. Phylogenetic analysis indicated that shallow ecotypes dominated the autotrophic Thaumarchaeota in the ECS shelf (86.3% of total sequences, while a novel non-marine thaumarchaeal accA lineage was identified in the Changjiang estuary in summer (when freshwater plumes become larger but not in autumn, implying that Changjiang freshwater discharge played a certain role in transporting terrestrial microorganisms to the ECS. Multivariate statistical analysis indicated that the biogeography of the autotrophic Thaumarchaeota in the shelf water of the ECS was influenced by complex hydrographic conditions. However, an in silico comparative analysis suggested that the diversity and abundance of the autotrophic Thaumarchaeota might be biased by the 'universal' thaumarchaeal accA gene primers Cren529F/Cren981R since this primer set is likely to miss some members within particular phylogenetic groups. Collectively, this study improved our understanding of the biogeographic patterns of the autotrophic Thaumarchaeota in temperate coastal waters, and suggested that new accA primers with

  13. Dynamics of autotrophic marine planktonic thaumarchaeota in the East China Sea.

    Science.gov (United States)

    Hu, Anyi; Yang, Zao; Yu, Chang-Ping; Jiao, Nianzhi

    2013-01-01

    The ubiquitous and abundant distribution of ammonia-oxidizing Thaumarchaeota in marine environments is now well documented, and their crucial role in the global nitrogen cycle has been highlighted. However, the potential contribution of Thaumarchaeota in the carbon cycle remains poorly understood. Here we present for the first time a seasonal investigation on the shelf region (bathymetry≤200 m) of the East China Sea (ECS) involving analysis of both thaumarchaeal 16S rRNA and autotrophy-related genes (acetyl-CoA carboxylase gene, accA). Quantitative PCR results clearly showed a higher abundance of thaumarchaeal 16S and accA genes in late-autumn (November) than summer (August), whereas the diversity and community structure of autotrophic Thaumarchaeota showed no statistically significant difference between different seasons as revealed by thaumarchaeal accA gene clone libraries. Phylogenetic analysis indicated that shallow ecotypes dominated the autotrophic Thaumarchaeota in the ECS shelf (86.3% of total sequences), while a novel non-marine thaumarchaeal accA lineage was identified in the Changjiang estuary in summer (when freshwater plumes become larger) but not in autumn, implying that Changjiang freshwater discharge played a certain role in transporting terrestrial microorganisms to the ECS. Multivariate statistical analysis indicated that the biogeography of the autotrophic Thaumarchaeota in the shelf water of the ECS was influenced by complex hydrographic conditions. However, an in silico comparative analysis suggested that the diversity and abundance of the autotrophic Thaumarchaeota might be biased by the 'universal' thaumarchaeal accA gene primers Cren529F/Cren981R since this primer set is likely to miss some members within particular phylogenetic groups. Collectively, this study improved our understanding of the biogeographic patterns of the autotrophic Thaumarchaeota in temperate coastal waters, and suggested that new accA primers with improved coverage

  14. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.

    Science.gov (United States)

    Shrout, Joshua D; Scheetz, Todd E; Casavant, Thomas L; Parkin, Gene F

    2005-04-01

    Recent studies have shown that perchlorate (ClO(4) (-)) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.

  15. MELiSSA third compartment: Nitrosomonas europaea and Nitrobacter winogradskyi axenic cultures in bioreactors

    Science.gov (United States)

    Cruvellier, Nelly; Lasseur, Christophe; Poughon, Laurent; Creuly, Catherine; Dussap, Gilles

    Nitrogen is a key element for the life and its balance on Earth is regulated by the nitrogen cycle. This loop includes several steps among which nitrification that permits the transformation of the ammonium into nitrate. The MELiSSA loop is an artificial ecosystem designed for life support systems (LSS). It is based on the carbon and nitrogen cycles and the recycling of the non-edible part of the higher plants and the waste produced by the crew. In this order, all the wastes are collected in the first compartment to degrade them into organic acids and CO2. These compounds are joining the second compartment which is a photoheterotrophic compartment where at the outlet an organic-free medium containing ammonium is produced. This solution will be the substrate of the third compartment where nitrification is done. This compartment has to oxidize the ammonium into nitrate, and this biological reaction needs two steps. In the MELiSSA loop, the nitrification is carried out by two bacteria: Nitrosomonas europaea ATCC® 19718™ which is oxidizing ammonia into nitrite and Nitrobacter winogradskyi ATCC® 25391™ which is producing nitrate from nitrite in the third compartment. These two bacteria are growing in axenic conditions on a fixed bed bioreactor filled with Biostyr® beads. The nitrogen compounds are controlled by Ionic Chromatography and colorimetric titration for each sample. The work presented here deals with the culture of both bacteria in pure cultures and mixed cultures in stirred and aerated bioreactors of different volumes. The first aim of our work is the characterization of the bacteria growth in bioreactors and in the nitrifying fixed-bed column. The experimental results confirm that the growth is slow; the maximal growth rate in suspended cultures is 0.054h-1 for Nitrosomonas europaea and 0.022h-1 for Nitrobacter winogradskyi. Mixed cultures are difficult to control and operate but one could be done for more than 500 hours. The characterization of the

  16. Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater

    DEFF Research Database (Denmark)

    Albers, Christian Nyrop; Ellegaard-Jensen, Lea; Hansen, Lars Hestbjerg

    2018-01-01

    . It is shown that nitrifying communities could be enriched by microbiomes from well-functioning rapid sand filters in waterworks and that the enriched nitrifying consortium could be used to inoculate fresh filters, significantly shortening the time taken for the nitrification process to start. The key...

  17. Compared microbiology of granular sludge under autotrophic, mixotrophic and heterotrophic denitrification conditions.

    Science.gov (United States)

    Fernández, N; Sierra-Alvarez, R; Amils, R; Field, J A; Sanz, J L

    2009-01-01

    Water contamination by nitrate is a wideworld extended phenomena. Biological autotrophic denitrification has a real potential to face this problem and presents less drawbacks than the most extended heterotrophic denitrification. Three bench-scale UASB reactors were operated under autotrophic (R1, H2S as electron donor), mixotrophic (R2, H2S plus p-cresol as electron donors) and heterotrophic (R3, p-cresol as electron donor) conditions using nitrate as terminal electron acceptor. 16S rDNA genetic libraries were built up to compare their microbial biodiversity. Six different bacteria phyla and three archaeal classes were observed. Proteobacteria was the main phyla in all reactors standing out the presence of denitrifiers. Microorganisms similar to Thiobacillus denitrificans and Acidovorax sp. performed the autotrophic denitification. These OTUs were displaced by chemoheterotrophic denitrifiers, especially by Limnobacter-like and Ottowia-like OTUs. Other phyla were Bacteroidetes, Chloroflexi, Firmicutes and Actinobacteria that--as well as Archaea members--were implicated in the degradation of organic matter, as substrate added as coming from endogenous sludge decay under autotrophic conditions. Archaea diversity remained low in all the reactors being Methanosaeta concilii the most abundant one.

  18. Autotrophic stoichiometry emerging from optimality and variable co-limitation

    Directory of Open Access Journals (Sweden)

    Kai W Wirtz

    2016-11-01

    Full Text Available Autotrophic organisms reveal an astounding flexibility in their elemental stoichiometry, with potentially major implications on biogeochemical cycles and ecological functioning. Notwithstanding, stoichiometric regulation and co-limitation by multiple resources in autotrophs revt were in the past often described by heuristic formulations.In this study, we present a mechanistic model of autotroph growth, which features two major improvements over the existing schemes. First, we introduce the concept of metabolic network independence that defines the degree of phase-locking between accessory machines. Network independence is in particular suggested to be proportional to protein synthesis capability as quantified by variable intracellular N:C. Consequently, the degree of co-limitation becomes variable, contrasting with the dichotomous debate on the use of Liebig's law or the product rule, standing for constantly low and high co-limitation, respectively. Second, we resolve dynamic protein partitioning to light harvesting, carboxylation processes, and to an arbitrary number of nutrient acquisition machineries, as well as instantaneous activity regulation of nutrient uptake. For all regulatory processes we assume growth rate optimality, here extended by an explicit consideration of indirect feed-back effects.The combination of network independence and optimal regulation displays unprecedented skill in reproducing rich stoichiometric patterns collected from a large number of published chemostat experiments. This high skill indicates (1 that the current paradigm of fixed co-limitation is a critical short-coming of conventional models, and (2 that stoichiometric flexibility in autotrophs possibly reflects an optimality strategy. Numerical experiments furthermore show that regulatory mechanisms homogenize the effect of multiple stressors. Extended optimality alleviates the effect of the most limiting resource(s while down-regulating machineries for the

  19. Transcriptional and physiological responses of nitrifying bacteria to heavy metal inhibition

    Science.gov (United States)

    Heavy metals have been shown to inhibit nitrification, a key process in the removal of nitrogen in wastewater treatment plants. In the present study, the effects of nickel, zinc, lead and cadmium on nitrifying enrichment cultures were studied in batch reactors. The transcriptiona...

  20. laboratory study of the effect of temperature changes on mixing and ...

    African Journals Online (AJOL)

    at about 5‰, the autotrophic- nitrifying bac- teria practically cease functioning. At 2‰, even the chemo-heterotrophic bacteria acting on carbonaceous material become essentially dormant. As temperature rises, the rate of reac- tion also increases. In order to have a reasonable methane production rate, the temperature ...

  1. Redox stratified biofilms to support completely autotrophic nitrogen removal: Principles and results

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    liquid. If operated properly, MABRs yield compact and homogeneous redox-stratified biofilms capable of hosting side-by-side aerobic and anaerobic microbial communities. We have recently demonstrated that completely autotrophic nitrogen removal is feasible in MABRs at nitrogen removal rates as high as 5......After 10 years of pilot and full-scale studies, completely autotrophic nitrogen via coupled aerobic and anaerobic ammonium oxidation is now firmly established in the wastewater treatment community. The reasons for the popularization of the technology are numerous, but the most attractive....... The continuous and sustained inoculation of metabolically active anaerobic oxidizing bacteria from a biofilm reactor placed in the recirculation line of our MABRs showed to shorten considerably the onset of autotrophic nitrogen removal. However, the main hurdle keeping MABRs from attaining high removal...

  2. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J.

    2004-01-01

    Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N2O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C2H2) and large partial pressures of oxygen (O2) are used to distinguish between these sources. C2H2 inhibits

  3. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    Science.gov (United States)

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  4. Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study.

    Science.gov (United States)

    Sabba, Fabrizio; Picioreanu, Cristian; Pérez, Julio; Nerenberg, Robert

    2015-02-03

    Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms.

  5. Freshwater autotrophic picoplankton: a review

    Directory of Open Access Journals (Sweden)

    John G. STOCKNER

    2002-02-01

    Full Text Available Autotrophic picoplankton (APP are distributed worldwide and are ubiquitous in all types of lakes of varying trophic state. APP are major players in carbon production in all aquatic ecosystems, including extreme environments such as cold ice-covered and/or warm tropical lakes and thermal springs. They often form the base of complex microbial food webs, becoming prey for a multitude of protozoan and micro-invertebrate grazers, that effectively channel APP carbon to higher trophic levels including fish. In this review we examine the existing literature on freshwater autotrophic picoplankton, setting recent findings and current ecological issues within an historic framework, and include a description of the occurrence and distribution of both single-cell and colonial APP (picocyanobacteria in different types of lakes. In this review we place considerable emphasis on methodology and ecology, including sampling, counting, preservation, molecular techniques, measurement of photosynthesis, and include extensive comment on their important role in microbial food webs. The model outlined by Stockner of an increase of APP abundance and biomass and a decrease of its relative importance with the increase of phosphorus concentration in lakes has been widely accepted, and only recently confirmed in marine and freshwater ecosystems. Nevertheless the relationship which drives the APP presence and importance in lakes of differing trophic status appears with considerable variation so we must conclude that the success of APP in oligotrophic lakes worldwide is not a certainty but highly probable.

  6. Competition between autotrophic and heterotrophic microbial plankton for inorganic nutrients induced by variability in estuarine biophysicochemical conditions

    Science.gov (United States)

    Williams, A.; Quigg, A.

    2016-02-01

    Competition for inorganic nutrients between autotrophic and heterotrophic fractions of microbial plankton (0.2-20μm) was investigated at two stations in a sub-tropical estuary, Galveston Bay, Texas. Competition potential between these groups is enhanced because individuals are similar in size, reducing variability among their nutrient uptake efficiencies. Further, in estuaries, allochthonous supplements to autochthonous carbon may satisfy heterotrophic requirements, allowing alternative factors to limit abundance. The relative abundance of autotrophs and heterotrophs stained with SYBR Green I and enumerated on a Beckman Coulter Gallios flow cytometer were evaluated monthly during a year-long study. Shifts in the relative in situ abundance were significantly related to temperature, dissolved inorganic nitrogen (DIN), phosphorous (Pi), and total organic carbon (TOC) concentrations revealing opposing gradients of limitation by different abiotic factors. In corresponding in vitro nutrient enrichment bioassays the relative contribution of autotrophic or heterotrophic microbial plankton to significant enrichment responses varied. Only during macro- (>20μm) phytoplankton blooms do autotrophic microbial plankton respond to nutrient enrichment. Contrastingly, the heterotrophic microbial plankton responded to nutrient enrichment primarily when temperature limitation was alleviated. Therefore, the potential for autotrophic and heterotrophic microbial plankton competition for limiting nutrients is highest when autotrophic microbial plankton are also competing with larger phytoplankton during bloom events. Based on this evidence, we hypothesize that the autotrophic microbial fraction has a competitive advantage over the heterotrophs for inorganic nutrients in Galveston Bay. The observed microbial competition during estuarine phytoplankton blooms may have important consequences on biogeochemical processes including carbon and nutrient cycling.

  7. A deep-sea bacterium with unique nitrifying property

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    assay (chemical assay). Bianchi et al . 10 had shown that the a c tivity determined by chemical assay was comparable to 15 N method. For the present study we used only the chemical assay. The activity in terms of ammonia and nitrite conversion... s tributed in the marine environment, the number of nitrif i ers mediating this process has rarely been deter - mined. N i trification is generally carried out by known nitrifiers which either oxidize ammonia to nit rite (Phase I) or nitrite to nitrate...

  8. The role of nitrifier denitrification in the production of nitrous oxide revisited

    NARCIS (Netherlands)

    Wrage-Mönnig, Nicole; Horn, Marcus A.; Well, Reinhard; Müller, Christoph; Velthof, Gerard; Oenema, Oene

    2018-01-01

    Nitrifier denitrification is the reduction of nitrite (NO2 −) by ammonia-oxidizing bacteria. This process may account for up to 100% of nitrous oxide (N2O) emissions from ammonium (NH4 +) in soils and is more significant than classical denitrification under some conditions. Investigations of

  9. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing

    Directory of Open Access Journals (Sweden)

    Christine eSharp

    2012-08-01

    Full Text Available Genomic analysis of the methanotrophic verrucomicrobium Methylacidiphilum infernorum strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo, ‘universal’ pmoA polymerase chain reaction (PCR primers do not target these bacteria. Unlike proteobacterial methanotrophs, Methylacidiphilum fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as 13CH4-stable isotope probing (SIP and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic verrucomicrobia in the environment by labelling with 13CO2 and 13CH4, individually and in combination. Testing the protocol in M. infernorum strain V4 resulted in assimilation of 13CO2 but not 13CH4, verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs via 13CO2-SIP, a quantitative PCR (qPCR assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with 13CH4 + 12CO2 caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labelling with 13CO2 in combination with 12CH4 or 13CH4 induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs in other ecosystems.

  10. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing.

    Science.gov (United States)

    Sharp, Christine E; Stott, Matthew B; Dunfield, Peter F

    2012-01-01

    Genomic analysis of the methanotrophic verrucomicrobium "Methylacidiphilum infernorum" strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo), "universal" pmoA polymerase chain reaction (PCR) primers do not target these bacteria. Unlike proteobacterial methanotrophs, "Methylacidiphilum" fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as (13)CH(4)-stable isotope probing (SIP) and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic Verrucomicrobia in the environment by labeling with (13)CO(2) and (13)CH(4), individually and in combination. Testing the protocol in "M. infernorum" strain V4 resulted in assimilation of (13)CO(2) but not (13)CH(4), verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs) via (13)CO(2)-SIP, a quantitative PCR (qPCR) assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with (13)CH(4) + (12)CO(2) caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labeling with (13)CO(2) in combination with (12)CH(4) or (13)CH(4) induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs

  11. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  12. Estimating autotrophic respiration in streams using daily metabolism data

    Science.gov (United States)

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  13. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    Science.gov (United States)

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580 (Japan); Hiraishi, A. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan and Electronics-inspired Interdisciplinary Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580 (Japan)

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  15. N2O production dynamics in nitrifying/denitrifying activated sludge under defined environmental conditions

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Jensen, Marlene Mark; Petersen, Morten S.

    contributor to global warming and the destruction of the ozone layer. The present study makes use of unique datasets collected during controlled batch tests with activated sludge biomass to test and calibrate a pseudo-mechanistic model that predicts N2O production by nitrifying and heterotrophic bacteria....... The proposed model described successfully the observed N2O production dynamics and confirmed that the availability of ammonia, low dissolved oxygen and nitrite accumulation were the main factors triggering N2O production. Nitrifier-denitrification was proposed as the main pathway catalyzing the conversion...... that a minor portion of the N2O produced was actually released to the gas phase. This work represents a step further in the use and calibration of process models to control and understand better N2O production and emissions during conventional wastewater treatment....

  16. Clostridium difficile is an autotrophic bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Michael Köpke

    Full Text Available During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.

  17. Impact of seasonal changes in nutrient loading on distribution and activity of nitrifiers in a tropical estuary

    Science.gov (United States)

    Vipindas, P. V.; Anas, Abdulaziz; Jayalakshmy, K. V.; Lallu, K. R.; Benny, P. Y.; Shanta, Nair

    2018-02-01

    Estuaries are ecologically important environments, which function as the reception point of nitrogenous inputs of terrestrial and anthropogenic origin. In the present study, we discuss the influence of nutrient characteristics on the distribution and activity of nitrifiers in the water column of Cochin Estuary (CE), a tropical estuary along the southeast Arabian Sea (SEAS). Nitrifying bacteria (i.e. Ammonia- (AOB) and nitrite- (NOB) -oxidizing bacteria), which were enumerated using fluorescent in situ hybridization (FISH), showed marked seasonality while maintaining the abundance within an order of 107 cells L-1. Denaturing Gradient Gel Electrophoresis (DGGE) analysis of AOB exhibited spatio-temporal adaptability without much variation. Nitrification rate in the CE ranged from 2.25 to 426.17 nmol N L-1 h-1 and it was 10-40 fold higher during the pre-monsoon compared with the monsoon. We attributed this increase to high nutrient availability during pre-monsoon due to low flushing rate of the estuary. The study shows that the distribution and activities of nitrifiers in the CE are modulated by the changes in nutrient concentration imparted by the monsoon-driven seasonal variation in river-water discharge and flushing.

  18. Separating Autotrophic and Heterotrophic Respiration in Streams and the Importance for Carbon Cycling: a Preliminary Study

    Science.gov (United States)

    Bozeman, M.; Raymond, P.

    2005-05-01

    Autotrophic and heterotrophic organisms confer different effects on nutrient cycling, especially on carbon (C). In stream ecosystems, net ecosystem production determines the amount and form of C exported; however any transformation due to different respiratory (R) mechanisms are not separated. These mechanisms highly influence the form and lability of the C transported. To understand the current state of knowledge and estimate the importance of autotrophic versus heterotrophic R, we obtained a range of respiratory rates from the literature and modeled effects of different balances of rates on bulk dissolved inorganic and organic C chemistry. Preliminary results show that a wide range of estimates of autotrophic R exist and that these can effect bulk properties of exported C. While specific effects are highly dependent upon physical structure of the study watershed, we offer that separating R mechanisms provides further insight into ecosystem C cycling. We also propose a method to measure autotrophic and heterotrophic R at the ecosystem scale and obtain watershed-level estimates of the importance of these processes on C cycling.

  19. Micro-electrolysis/retinervus luffae-based simultaneous autotrophic and heterotrophic denitrification for low C/N wastewater treatment.

    Science.gov (United States)

    Li, Jinlong; Li, Desheng; Cui, Yuwei; Xing, Wei; Deng, Shihai

    2017-07-01

    Nitrogen bioremediation in organic insufficient wastewater generally requires an extra carbon source. In this study, nitrate-contaminated wastewater was treated effectively through simultaneous autotrophic and heterotrophic denitrification based on micro-electrolysis carriers (MECs) and retinervus luffae fructus (RLF), respectively. The average nitrate and total nitrogen removal rates reached 96.3 and 94.0% in the MECs/RLF-based autotrophic and heterotrophic denitrification (MRAHD) system without ammonia and nitrite accumulation. The performance of MRAHD was better than that of MEC-based autotrophic denitrification for the wastewater treatment with low carbon nitrogen (COD/N) ratio. Real-time quantitative polymerase chain reaction (qPCR) revealed that the relative abundance of nirS-type denitrifiers attached to MECs (4.9%) and RLF (5.0%) was similar. Illumina sequencing suggested that the dominant genera were Thiobacillus (7.0%) and Denitratisoma (5.7%), which attached to MECs and RLF, respectively. Sulfuritalea was discovered as the dominant genus in the middle of the reactor. The synergistic interaction between autotrophic and heterotrophic denitrifiers played a vital role in the mixotrophic substrate environment.

  20. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions.

    Science.gov (United States)

    Suarez, Sonia; Lema, Juan M; Omil, Francisco

    2010-05-01

    The contribution of volatilization, sorption and transformation to the removal of 16 Pharmaceutical and Personal Care Products (PPCPs) in two lab-scale conventional activated sludge reactors, working under nitrifying (aerobic) and denitrifying (anoxic) conditions for more than 1.5 years, have been assessed. Pseudo-first order biological degradation rate constants (k(biol)) were calculated for the selected compounds in both reactors. Faster degradation kinetics were measured in the nitrifying reactor compared to the denitrifying system for the majority of PPCPs. Compounds could be classified according to their k(biol) into very highly (k(biol)>5Lg(SS)(-1)d(-1)), highly (1fragrances (HHCB, AHTN and ADBI) were transformed to a large extent under aerobic (>75%) and anoxic (>65%) conditions, whereas naproxen (NPX), ethinylestradiol (EE2), roxithromycin (ROX) and erythromycin (ERY) were only significantly transformed in the aerobic reactor (>80%). The anti-depressant citalopram (CTL) was moderately biotransformed under both, aerobic and anoxic conditions (>60% and >40%, respectively). Some compounds, as carbamazepine (CBZ), diazepam (DZP), sulfamethoxazole (SMX) and trimethoprim (TMP), manifested high resistance to biological transformation. Solids Retention Time (SRT(aerobic) >50d and 20d and <20d) had a slightly positive effect on the removal of FLX, NPX, CTL, EE2 and natural estrogens (increase in removal efficiencies <10%). Removal of diclofenac (DCF) in the aerobic reactor was positively affected by the development of nitrifying biomass and increased from 0% up to 74%. Similarly, efficient anoxic transformation of ibuprofen (75%) was observed after an adaptation period of 340d. Temperature (16-26 degrees C) only had a slight effect on the removal of CTL which increased in 4%.

  1. Biofilm formation and microbial community analysis of the simulated river bioreactor for contaminated source water remediation.

    Science.gov (United States)

    Xu, Xiang-Yang; Feng, Li-Juan; Zhu, Liang; Xu, Jing; Ding, Wei; Qi, Han-Ying

    2012-06-01

    The start-up pattern of biofilm remediation system affects the biofilm characteristics and operating performances. The objective of this study was to evaluate the performances of the contaminated source water remediation systems with different start-up patterns in view of the pollutants removal performances and microbial community succession. The operating performances of four lab-scale simulated river biofilm reactors were examined which employed different start-up methods (natural enrichment and artificial enhancement via discharging sediment with influent velocity gradient increase) and different bio-fillers (Elastic filler and AquaMats® ecobase). At the same time, the microbial communities of the bioreactors in different phases were analyzed by polymerase chain reaction, denaturing gradient gel electrophoresis, and sequencing. The pollutants removal performances became stable in the four reactors after 2 months' operation, with ammonia nitrogen and permanganate index (COD(Mn)) removal efficiencies of 84.41-94.21% and 69.66-76.60%, respectively. The biomass of mature biofilm was higher in the bioreactors by artificial enhancement than that by natural enrichment. Microbial community analysis indicated that elastic filler could enrich mature biofilm faster than AquaMats®. The heterotrophic bacteria diversity of biofilm decreased by artificial enhancement, which favored the ammonia-oxidizing bacteria (AOB) developing on the bio-fillers. Furthermore, Nitrosomonas- and Nitrosospira-like AOB coexisted in the biofilm, and Pseudomonas sp., Sphaerotilus sp., Janthinobacterium sp., Corynebacterium aurimucosum were dominant in the oligotrophic niche. Artificial enhancement via the combination of sediment discharging and influent velocity gradient increasing could enhance the biofilm formation and autotrophic AOB enrichment in oligotrophic niche.

  2. Draft Genome Sequence of an Active Heterotrophic Nitrifier-Denitrifier, Cupriavidus pauculus UM1

    OpenAIRE

    Putonti, Catherine; Polley, Nathaniel; Castignetti, Domenic

    2018-01-01

    ABSTRACT Here, we present the draft genome sequence of Cupriavidus pauculus UM1, a metal-resistant heterotrophic nitrifier-denitrifier capable of synthesizing nitrite from pyruvic oxime. The size of the genome is 7,402,815 bp with a GC content of 64.8%. This draft assembly consists of 38 scaffolds.

  3. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study of nitrifying sequencing batch reactor in presence of m-Cresol

    International Nuclear Information System (INIS)

    Gonzalez-Alvarez, E.; Steed, E.; Ben-youssef, C.; Zepeda, A.

    2009-01-01

    The process of the nitrification has been studied scantly in presence of phenolic compounds such as m-cresol. the aim of this study was evaluate the tolerance of a nitrifying SBR (Sequencing Batch Reactor) to m-cresol and the ability of the sludge to consume this phenolic compound. Nitrification is the process of oxidation of ammonia to nitrite and nitrate by lithoautotrophic ammonia-and nitrite-oxidizing bacteria. (Author)

  5. Symbiotic relationship analysis of predominant bacteria in a lab-scale anammox UASB bioreactor.

    Science.gov (United States)

    Wang, Yujia; Hu, Xiaomin; Jiang, Binhui; Song, Zhenhui; Ma, Yongguang

    2016-04-01

    In order to provide the comprehensive insight into the key microbial groups in anaerobic ammonium oxidation (anammox) process, high-throughput sequencing analysis has been used for the investigation of the bacterial communities of a lab-scale upflow anaerobic sludge bed (UASB) anammox bioreactor. Results revealed that 109 operational taxonomic units (OTUs; out of 14,820 reads) were identified and a domination of anammox bacteria of Candidatus Kuenenia stuttgartiensis (OTU474, 35.42 %), along with heterotrophs of Limnobacter sp. MED105 (OTU951, 14.98 %), Anerolinea thermophila UNI-1 (OTU465 and OTU833, 6.60 and 3.93 %), Azoarcus sp. B72 (OTU26, 9.47 %), and Ignavibacterium sp. JCM 16511 (OTU459, 8.33 %) were detected. Metabolic pathway analysis showed that Candidatus K. stuttgartiensis encountered gene defect in synthesizing a series of metabolic cofactors for growth, implying that K. stuttgartiensis is auxotrophic. Coincidentally, the other dominant species severally showed complete metabolic pathways with full set gene encoding to corresponding cofactors presented in the surrounding environment. Furthermore, it was likely that the survival of heterotrophs in the autotrophic system indicates the existence of a symbiotic and mutual relationship in anammox system.

  6. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    Science.gov (United States)

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Soil C and N statuses determine the effect of maize inoculation by plant growth-promoting rhizobacteria on nitrifying and denitrifying communities.

    Science.gov (United States)

    Florio, Alessandro; Pommier, Thomas; Gervaix, Jonathan; Bérard, Annette; Le Roux, Xavier

    2017-08-21

    Maize inoculation by Azospirillum stimulates root growth, along with soil nitrogen (N) uptake and root carbon (C) exudation, thus increasing N use efficiency. However, inoculation effects on soil N-cycling microbial communities have been overlooked. We hypothesized that inoculation would (i) increase roots-nitrifiers competition for ammonium, and thus decrease nitrifier abundance; and (ii) increase roots-denitrifiers competition for nitrate and C supply to denitrifiers by root exudation, and thus limit or benefit denitrifiers depending on the resource (N or C) mostly limiting these microorganisms. We quantified (de)nitrifiers abundance and activity in the rhizosphere of inoculated and non-inoculated maize on 4 sites over 2 years, and ancillary soil variables. Inoculation effects on nitrification and nitrifiers (AOA, AOB) were not consistent between the three sampling dates. Inoculation influenced denitrifiers abundance (nirK, nirS) differently among sites. In sites with high C limitation for denitrifiers (i.e. limitation of denitrification by C > 66%), inoculation increased nirS-denitrifier abundance (up to 56%) and gross N 2 O production (up to 84%), likely due to increased root C exudation. Conversely, in sites with low C limitation (<47%), inoculation decreased nirS-denitrifier abundance (down to -23%) and gross N 2 O production (down to -18%) likely due to an increased roots-denitrifiers competition for nitrate.

  8. Autotrophic and heterotrophic activity in Arctic first-year sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in plastic bags with subsequent melting and measurements of changes in total O2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period was followed...

  9. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    International Nuclear Information System (INIS)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-01-01

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at −1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process

  10. Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules.

    Science.gov (United States)

    Ishii, Satoshi; Song, Yanjun; Rathnayake, Lashitha; Tumendelger, Azzaya; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi

    2014-10-01

    The identification of the key nitrous oxide (N2O) production pathways is important to establish a strategy to mitigate N2O emission. In this study, we combined real-time gas-monitoring analysis, (15)N stable isotope analysis, denitrification functional gene transcriptome analysis and microscale N2O concentration measurements to identify the main N2O producers in a partial nitrification (PN) aerobic granule reactor, which was fed with ammonium and acetate. Our results suggest that heterotrophic denitrification was the main contributor to N2O production in our PN aerobic granule reactor. The heterotrophic denitrifiers were probably related to Rhodocyclales bacteria, although different types of bacteria were active in the initial and latter stages of the PN reaction cycles, most likely in response to the presence of acetate. Hydroxylamine oxidation and nitrifier denitrification occurred, but their contribution to N2O emission was relatively small (20-30%) compared with heterotrophic denitrification. Our approach can be useful to quantitatively examine the relative contributions of the three pathways (hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification) to N2O emission in mixed microbial populations. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Distribution of baroduric, psychrotrophic and culturable nitrifying and denitrifying bacteria in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; PradeepRam, A.S.; Nair, S.; Nath, B.N.; Chandramohan, D.

    The abundance of baroduric, culturable nitrifying and denitrifying bacteria in the deep-sea cores of Central Indian Basin (CIB) at ca 5000 m depth was investigated. Analysis of 8 cores, sampled between 10 degrees 00 minutes S and 75 degrees 55...

  12. Bioreactor design and optimization – a future perspective

    DEFF Research Database (Denmark)

    Gernaey, Krist

    2011-01-01

    Bioreactor design and optimisation are essential in translating the experience gained from lab or pilot scale experiments to efficient production processes in industrial scale bioreactors. This article gives a future perspective on bioreactor design and optimisation, where it is foreseen...

  13. Bioreactor design for tendon/ligament engineering.

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H

    2013-04-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.

  14. Draft Genome Sequence of an Active Heterotrophic Nitrifier-Denitrifier, Cupriavidus pauculus UM1.

    Science.gov (United States)

    Putonti, Catherine; Polley, Nathaniel; Castignetti, Domenic

    2018-02-08

    Here, we present the draft genome sequence of Cupriavidus pauculus UM1, a metal-resistant heterotrophic nitrifier-denitrifier capable of synthesizing nitrite from pyruvic oxime. The size of the genome is 7,402,815 bp with a GC content of 64.8%. This draft assembly consists of 38 scaffolds. Copyright © 2018 Putonti et al.

  15. Designing electrical stimulated bioreactors for nerve tissue engineering

    Science.gov (United States)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  16. Bioreactor technology for herbal plants

    International Nuclear Information System (INIS)

    Sobri Hussein; Rusli Ibrahim; Abdul Rahim Harun; Azhar Mohamad; Hawa Abdul Aziz; Wan Nazirah Wan Ali

    2010-01-01

    Plants have been an important source of medicine for thousands of years and herbs are hot currency in the world today. During the last decade, popularity of alternative medicine increased significantly worldwide with noticeable trend. This in turn accelerated the global trade of herbal raw materials and herbal products and created greater scope for Asian countries that possess the major supply of herbal raw materials within their highly diversified tropical rain forest. As such, advanced bioreactor culture system possesses a great potential for large scale production than the traditional tissue culture system. Bioreactor cultures have many advantages over conventional cultures. Plant cells in bioreactors can grow fast and vigorously in shorter period as the culture conditions in bioreactor such as temperature, pH, concentrations of dissolved oxygen, carbon dioxide and nutrients can be optimised by on-line manipulation. Nutrient uptake can also be enhanced by continuous medium circulation, which ultimately increased cell proliferation rate. Consequently, production period and cost are substantially reduced, product quality is controlled and standardized as well as free of pesticide contamination and production of raw material can be conducted all year round. Taking all these into consideration, current research efforts were focused on varying several parameters such as inoculation density, air flow, medium formulation, PGRs etc. for increased production of cell and organ cultures of high market demand herbal and medicinal plants, particularly Eurycoma longifolia, Panax ginseng and Labisia pumila. At present, the production of cell and organ culture of these medicinal plants have also been applied in airlift bioreactor with different working volumes. It is hope that the investment of research efforts into this advanced bioreactor technology will open up a bright future for the modernization of agriculture and commercialisation of natural product. (author)

  17. Process technology of luwak coffee through bioreactor utilization

    Science.gov (United States)

    Hadipernata, M.; Nugraha, S.

    2018-01-01

    Indonesia has an advantage in producing exotic coffee that is Luwak coffee. Luwak coffee is produced from the fermentation process in digestion of civet. Luwak coffee production is still limited due to the difficulty level in the use of civet animals as the only medium of Luwak coffee making. The research was conducted by developing technology of luwak coffee production through bioreactor utilization and addition the bacteria isolate from gastric of civet. The process conditions in the bioreactor which include temperature, pH, and bacteria isolate of civet are adjusted to the process that occurs in civet digestion, including peristaltic movement on the stomach and small intestine of the civet will be replaced by the use of propellers that rotate on the bioreactor. The result of research showed that proximat analysis data of artificial/bioreactor luwak coffee did not significant different with original luwak coffee. However, the original luwak coffee has higher content of caffeine compared to bioreactor luwak coffee. Based on the cuping test the bioreactor luwak coffee has a value of 84.375, while the original luwak coffee is 84.875. As the result, bioreactor luwak coffee has excellent taste that similiar with original luwak coffee taste.

  18. Performance of an autotrophic nitrogen removing reactor: Diagnosis through fuzzy logic

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Mutlu, Ayten Gizem

    Autotrophic nitrogen removal through nitritation-anammox in one stage SBRs is an energy and cost efficient alternative to conventional treatment methods. Intensification of an already complex biological system challenges our ability to observe, understand, diagnose, and control the system. A fuzzy...

  19. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    Science.gov (United States)

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (permafrost ecosystems. © 2015 John Wiley & Sons Ltd.

  20. Schisandra lignans production regulated by different bioreactor type.

    Science.gov (United States)

    Szopa, Agnieszka; Kokotkiewicz, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2017-04-10

    Schisandra chinensis (Chinese magnolia vine) is a rich source of therapeutically relevant dibenzocyclooctadiene lignans with anticancer, immunostimulant and hepatoprotective activities. In this work, shoot cultures of S. chinensis were grown in different types of bioreactors with the aim to select a system suitable for the large scale in vitro production of schisandra lignans. The cultures were maintained in Murashige-Skoog (MS) medium supplemented with 3mg/l 6-benzylaminopurine (BA) and 1mg/l 1-naphthaleneacetic acid (NAA). Five bioreactors differing with respect to cultivation mode were tested: two liquid-phase systems (baloon-type bioreactor and bubble-column bioreactor with biomass immobilization), the gas-phase spray bioreactor and two commercially available temporary immersion systems: RITA ® and Plantform. The experiments were run for 30 and 60 days in batch mode. The harvested shoots were evaluated for growth and lignan content determined by LC-DAD and LC-DAD-ESI-MS. Of the tested bioreactors, temporary immersion systems provided the best results with respect to biomass production and lignan accumulation: RITA ® bioreactor yielded 17.86g/l (dry weight) during 60 day growth period whereas shoots grown for 30 days in Plantform bioreactor contained the highest amount of lignans (546.98mg/100g dry weight), with schisandrin, deoxyschisandrin and gomisin A as the major constituents (118.59, 77.66 and 67.86mg/100g dry weight, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  2. Membrane bioreactors for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  3. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  4. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    of the current status of metabolic engineering of chemolithoautotrophs is carried out in order to identify the challenges and likely routes to overcome them. This is presented in Chapter 3 of this dissertation. The initial metabolic engineering and bioreactor studies was carried out using a number of gene-constructs on R. capsulatus and R. eutropha. The gene-constructs consisted of Plac promoter followed by the triterpene synthase genes (SS or BS) and other upstream genes. A comparison of the production of triterpenes were done in the different growth modes that R. capsulatus was capable of growing---aerobic heterotrophic, anaerobic photoheterotrophic and aerobic chemoautotrophic. Autotrophic productivity could likely be improved much further by increasing the available mass-transfer of the reactor. These efforts are presented in Chapter 4 of this dissertation. (Abstract shortened by UMI.).

  5. Application of semifluidized bed bioreactor as novel bioreactor ...

    African Journals Online (AJOL)

    The conventional bioreactors such as pond digester, anaerobic filtration, up-flow anaerobic sludge blanket (UASB), up-flow anaerobic sludge fixed-film (UASFF), continuous stirred tank reactor (CSTR), anaerobic contact digestion and fluidized bed, used over the past decades are largely operated anaerobically. They have ...

  6. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability.

    Science.gov (United States)

    Zhu, Xia; Burger, Martin; Doane, Timothy A; Horwath, William R

    2013-04-16

    The continuous increase of nitrous oxide (N2O) abundance in the atmosphere is a global concern. Multiple pathways of N2O production occur in soil, but their significance and dependence on oxygen (O2) availability and nitrogen (N) fertilizer source are poorly understood. We examined N2O and nitric oxide (NO) production under 21%, 3%, 1%, 0.5%, and 0% (vol/vol) O2 concentrations following urea or ammonium sulfate [(NH4)2SO4] additions in loam, clay loam, and sandy loam soils that also contained ample nitrate. The contribution of the ammonia (NH3) oxidation pathways (nitrifier nitrification, nitrifier denitrification, and nitrification-coupled denitrification) and heterotrophic denitrification (HD) to N2O production was determined in 36-h incubations in microcosms by (15)N-(18)O isotope and NH3 oxidation inhibition (by 0.01% acetylene) methods. Nitrous oxide and NO production via NH3 oxidation pathways increased as O2 concentrations decreased from 21% to 0.5%. At low (0.5% and 3%) O2 concentrations, nitrifier denitrification contributed between 34% and 66%, and HD between 34% and 50% of total N2O production. Heterotrophic denitrification was responsible for all N2O production at 0% O2. Nitrifier denitrification was the main source of N2O production from ammonical fertilizer under low O2 concentrations with urea producing more N2O than (NH4)2SO4 additions. These findings challenge established thought attributing N2O emissions from soils with high water content to HD due to presumably low O2 availability. Our results imply that management practices that increase soil aeration, e.g., reducing compaction and enhancing soil structure, together with careful selection of fertilizer sources and/or nitrification inhibitors, could decrease N2O production in agricultural soils.

  7. Autotrophic nitrogen removal from low strength waste water at low temperature

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now,

  8. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Project XL Bioreactor Landfill... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Design Criteria § 258.41 Project XL Bioreactor Landfill Projects. (a) Buncombe County, North Carolina Project XL Bioreactor Landfill Requirements...

  9. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  10. Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes.

    Science.gov (United States)

    Moreno-Medina, C U; Poggi-Varaldo, Hector M; Breton-Deval, L; Rinderknecht-Seijas, N

    2017-11-01

    The present work evaluated the effects of (i) feeding a water contaminated with 80 mg/L PCE to bioreactors seeded with inoculum not acclimated to PCE, (ii) coupling ZVI side filters to bioreactors, and (iii) working in different biological regimes, i.e., simultaneous methanogenic aeration and simultaneous methanogenic-denitrifying regimes, on fluidized bed bioreactor performance. Simultaneous electron acceptors refer to the simultaneous presence of two compounds operating as final electron acceptors in the biological respiratory chain (e.g., use of either O 2 or NO 3 - in combination with a methanogenic environment) in a bioreactor or environmental niche. Four lab-scale, mesophilic, fluidized bed bioreactors (bioreactors) were implemented. Two bioreactors were operated as simultaneous methanogenic-denitrifying (MD) units, whereas the other two were operated in partially aerated methanogenic (PAM) mode. In the first period, all bioreactors received a wastewater with 1 g chemical oxygen demand of methanol per liter (COD-methanol/L). In a second period, all the bioreactors received the wastewater plus 80 mg perchloroethylene (PCE)/L; at the start of period 2, one MD and one PAM were coupled to side sand-zero valent iron filters (ZVI). All bioreactors were inoculated with a microbial consortium not acclimated to PCE. In this work, the performance of the full period 1 and the first 60 days of period 2 is reported and discussed. The COD removal efficiency and the nitrate removal efficiency of the bioreactors essentially did not change between period 1 and period 2, i.e., upon PCE addition. On the contrary, specific methanogenic activity in PAM bioreactors (both with and without coupled ZVI filter) significantly decreased. This was consistent with a sharp fall of methane productivity in those bioreactors in period 2. During period 2, PCE removals in the range 86 to 97 % were generally observed; the highest removal corresponded to PAM bioreactors along with the

  11. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems

    KAUST Repository

    Zaybak, Zehra

    2013-12-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34±4mA/m2. Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs. © 2013 Elsevier B.V.

  12. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems

    KAUST Repository

    Zaybak, Zehra; Pisciotta, John M.; Tokash, Justin C.; Logan, Bruce E.

    2013-01-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34±4mA/m2. Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs. © 2013 Elsevier B.V.

  13. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review

    Science.gov (United States)

    Tripathi, Durgesh K.; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K.; Mishra, Rohit K.; Upadhyay, R. G.; Dubey, Nawal K.; Lee, Yonghoon; Chauhan, Devendra K.

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today’s technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. PMID:28184215

  14. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating

  15. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing; Saito, Tomonori; Regan, John M.

    2012-01-01

    biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode

  16. Operation of a fluidized-bed bioreactor for denitrification

    International Nuclear Information System (INIS)

    Hancher, C.W.; Taylor, P.A.; Napier, J.M.

    1978-01-01

    Two denitrification fluidized-bed bioreactors of the same length (i.e., 5 m) but with different inside diameters (i.e., 5 and 10 cm) have been operated on feed ranging in nitrate concentration from 200 to 2000 g/m 3 ; thus far, good agreement has been obtained. Two 10-cm-ID bioreactors operating in series have also been tested; the results are in accordance with predicted results based on the performance of a 5-cm-ID bioreactor. The overall denitrification rate in the dual 10-cm-ID bioreactor system was found to be 23 kg N(NO 3 - )/day-m 3 using feed with a nitrate concentration of 1800 g/m 3 . Data obtained in operating-temperature tests indicate that the maximum denitrification rate is achieved between 22 and 30 0 C. These data will form the basis of the design of our mobile pilot plant which consists of dual 20-cm-ID by 7.3-m-long bioreactors

  17. Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate.

    Science.gov (United States)

    Shi, Xiuzhen; Hu, Hang-Wei; Zhu-Barker, Xia; Hayden, Helen; Wang, Juntao; Suter, Helen; Chen, Deli; He, Ji-Zheng

    2017-12-01

    Soil ecosystem represents the largest contributor to global nitrous oxide (N 2 O) production, which is regulated by a wide variety of microbial communities in multiple biological pathways. A mechanistic understanding of these N 2 O production biological pathways in complex soil environment is essential for improving model performance and developing innovative mitigation strategies. Here, combined approaches of the 15 N- 18 O labelling technique, transcriptome analysis, and Illumina MiSeq sequencing were used to identify the relative contributions of four N 2 O pathways including nitrification, nitrifier-induced denitrification (nitrifier denitrification and nitrification-coupled denitrification) and heterotrophic denitrification in six soils (alkaline vs. acid soils). In alkaline soils, nitrification and nitrifier-induced denitrification were the dominant pathways of N 2 O production, and application of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) significantly reduced the N 2 O production from these pathways; this is probably due to the observed reduction in the expression of the amoA gene in ammonia-oxidizing bacteria (AOB) in the DMPP-amended treatments. In acid soils, however, heterotrophic denitrification was the main source for N 2 O production, and was not impacted by the application of DMPP. Our results provide robust evidence that the nitrification inhibitor DMPP can inhibit the N 2 O production from nitrifier-induced denitrification, a potential significant source of N 2 O production in agricultural soils. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Scale-up of bioreactors: The concept of bioreactor number and its relation to the physiology of industrial microorganisms at different scales

    Energy Technology Data Exchange (ETDEWEB)

    De Ford, D

    1988-01-01

    The objective of this research is to provide a novel approach to the problem of scale-up of fermentations. The work subscribes the idea that two regions appear in bioreactors as the volume increases. The first is where high oxygen transfer occurs and the second is where low oxygen transfer occurs. It is assumed that organisms grown in a stirred tank fermenter travel in a cyclical manner through these two regions. A dimensionless factor is developed, the bioreactor number. Using this number the performance of any stirred tank fermenter can be described as a function of its geometry, operating conditions and physical properties of media. A mathematical model for the prediction of the physiological response of aerobic micro-organisms (specific growth rate, final cell concentration and product synthesis) as a function of the bioreactor number is also developed. It was adjusted by using the results of fermentations performed in a specially designed experimental rig allowing the simulation of fermenters with various bioreactor numbers. If the bioreactor and physiological models are linked it is possible to predict how micro-organisms respond when geometry, operating conditions or media properties are changed in a bioreactor. This approach is a tool for decision making in the design and operation of fermenters.

  19. Comparison of membrane bioreactor technology and conventional ...

    African Journals Online (AJOL)

    The purpose of this paper was to review the use of membrane bioreactor technology as an alternative for treating the discharged effluent from a bleached kraft mill by comparing and contrasting membrane bioreactors with conventional activated sludge systems for wastewater treatment. There are many water shortage ...

  20. An innovative membrane bioreactor for methane biohydroxylation.

    Science.gov (United States)

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...

  2. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent red sea brine pools

    KAUST Repository

    Wang, Yong

    2013-04-29

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.

  3. Bioreactor Design for Tendon/Ligament Engineering

    OpenAIRE

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake; Smith, David W.; Lloyd, David G.; Zheng, Ming H.

    2012-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a s...

  4. Biodegradation of phenolic waste liquors in stirred-tank, packed-bed, and fluidized-bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, D W; Hancher, G W; Chilcote, D D; Scott, C D

    1978-11-01

    The biological degradation of phenolic scrub liquors similar to those that arise in coal conversion processes was studied for symbiotic bacterial populations contained in a continuously stirred tank bioreactor, a three-phase packed-bed bioreactor, and a three-phase, fluidized-bed bioreactor. The conversions of phenol compounds were comparable in the three-phase, packed-bed bioreactor and the continuously stirred tank bioreactor; however, the packed-bed bioreactor degradation rates were as much as twice those in the continuously stirred tank bioreactor, and packed-bed bioreactor retention times were as low as one- tenth those of the continuously stirred tank bioreactors (minimum time was 12 hours).

  5. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    NARCIS (Netherlands)

    Kester, R.A.; Boer, W. de; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of

  6. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    NARCIS (Netherlands)

    Kester, R.A.; De Boer, W.; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of nitrous

  7. Heterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle

    Directory of Open Access Journals (Sweden)

    W. Koeve

    2010-08-01

    Full Text Available The conversion of fixed nitrogen to N2 in suboxic waters is estimated to contribute roughly a third to total oceanic losses of fixed nitrogen and is hence understood to be of major importance to global oceanic production and, therefore, to the role of the ocean as a sink of atmospheric CO2. At present heterotrophic denitrification and autotrophic anammox are considered the dominant sinks of fixed nitrogen. Recently, it has been suggested that the trophic nature of pelagic N2-production may have additional, "collateral" effects on the carbon cycle, where heterotrophic denitrification provides a shallow source of CO2 and autotrophic anammox a shallow sink. Here, we analyse the stoichiometries of nitrogen and associated carbon conversions in marine oxygen minimum zones (OMZ focusing on heterotrophic denitrification, autotrophic anammox, and dissimilatory nitrate reduction to nitrite and ammonium in order to test this hypothesis quantitatively. For open ocean OMZs the combined effects of these processes turn out to be clearly heterotrophic, even with high shares of the autotrophic anammox reaction in total N2-production and including various combinations of dissimilatory processes which provide the substrates to anammox. In such systems, the degree of heterotrophy (ΔCO2:ΔN2, varying between 1.7 and 6.5, is a function of the efficiency of nitrogen conversion. On the contrary, in systems like the Black Sea, where suboxic N-conversions are supported by diffusive fluxes of NH4+ originating from neighbouring waters with sulphate reduction, much lower values of ΔCO2:ΔN2 can be found. However, accounting for concomitant diffusive fluxes of CO2, the ratio approaches higher values similar to those computed for open ocean OMZs. Based on this analysis, we question the significance of collateral effects concerning the trophic

  8. THE CALVIN CYCLE ENZYME PHOSPHOGLYCERATE KINASE OF XANTHOBACTER-FLAVUS REQUIRED FOR AUTOTROPHIC CO2 FIXATION IS NOT ENCODED BY THE CBB OPERON

    NARCIS (Netherlands)

    MEIJER, WG

    1994-01-01

    During autotrophic growth of Xanthobacter flavus, energy derived from the oxidation of hydrogen methanol or formate is used to drive the assimilation of CO2 via the Calvin cycle. The genes encoding the Calvin cycle enzymes are organized in the cbb operon, which is expressed only during autotrophic

  9. Modelling across bioreactor scales: methods, challenges and limitations

    DEFF Research Database (Denmark)

    Gernaey, Krist

    that it is challenging and expensive to acquire experimental data of good quality that can be used for characterizing gradients occurring inside a large industrial scale bioreactor. But which model building methods are available? And how can one ensure that the parameters in such a model are properly estimated? And what......Scale-up and scale-down of bioreactors are very important in industrial biotechnology, especially with the currently available knowledge on the occurrence of gradients in industrial-scale bioreactors. Moreover, it becomes increasingly appealing to model such industrial scale systems, considering...

  10. Endogenous influences on anammox and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) and dynamic operating strategy.

    Science.gov (United States)

    Sun, Xinbo; Du, Lingfeng; Hou, Yuqian; Cheng, Shaoju; Zhang, Xuxiang; Liu, Bo

    2018-02-21

    The anaerobic ammonia oxidation (anammox) and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) was initiated in an expanded granular sludge bed (EGSB) reactor for nitrogen removal from high-strength wastewater. Owing to cooperation between anammox and partial sulfocompound-oxidation autotrophic denitrification coupling system (PSAD), the highest nitrogen removal efficiency (NRE) of 98.1% ± 0.4% achieved at the optimal influent conditions of conversion efficiency of ammonium (CEA) of 55% and S 2 O 3 2- -S/NO 3 - -N (S/N) of 1.4 mol mol -1 . The activity of the short-cut sulfocompound-oxidizing autotrophic denitrification (SSAD) was also regulated to cope with dynamic CEA in the influent by changing the S/N, which was demonstrated to be effective in alleviating nitrite accumulation when the CEA was between 57% and 61%. Both the anammox and SAD bacteria enriched in the reactor after long-term incubation. Candidatus Brocadia and Candidatus Jettenia might be potentially contributing the most to anammox, while the Thiobacillus was the dominant taxa related to SAD. Copyright © 2018. Published by Elsevier Ltd.

  11. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    Science.gov (United States)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  12. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina -like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm

    DEFF Research Database (Denmark)

    Foesel, Bärbel U.; Gieseke, Armin; Schwermer, Carsten

    2008-01-01

    Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a re......Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated...

  13. Nitrifying bacterial biomass and nitrification activity evaluated by FISH and an automatic on-line instrument at full-scale Fusina (Venice, Italy) WWTP.

    Science.gov (United States)

    Badoer, S; Miana, P; Della Sala, S; Marchiori, G; Tandoi, V; Di Pippo, F

    2015-12-01

    In this study, monthly variations in biomass of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were analysed over a 1-year period by fluorescence in situ hybridization (FISH) at the full-scale Fusina WWTP. The nitrification capacity of the plant was also monitored using periodic respirometric batch tests and by an automated on-line titrimetric instrument (TITrimetric Automated ANalyser). The percentage of nitrifying bacteria in the plant was the highest in summer and was in the range of 10-15 % of the active biomass. The maximum nitrosation rate varied in the range 2.0-4.0 mg NH4 g(-1) VSS h(-1) (0.048-0.096 kg TKN kg(-1) VSS day(-1)): values obtained by laboratory measurements and the on-line instrument were similar and significantly correlated. The activity measurements provided a valuable tool for estimating the maximum total Kjeldahl nitrogen (TKN) loading possible at the plant and provided an early warning of whether the TKN was approaching its limiting value. The FISH analysis permitted determination of the nitrifying biomass present. The main operational parameter affecting both the population dynamics and the maximum nitrosation activity was mixed liquor volatile suspended solids (MLVSS) concentration and was negatively correlated with ammonia-oxidizing bacteria (AOB) (p = 0.029) and (NOB) (p = 0.01) abundances and positively correlated with maximum nitrosation rates (p = 0.035). Increases in concentrations led to decreases in nitrifying bacteria abundance, but their nitrosation activity was higher. These results demonstrate the importance of MLVSS concentration as key factor in the development and activity of nitrifying communities in wastewater treatment plants (WWTPs). Operational data on VSS and sludge volume index (SVI) values are also presented on 11-year basis observations.

  14. Simultaneous biological nutrient removal: evaluation of autotrophic denitrification, heterotrophic nitrification, and biological phosphorus removal in full-scale systems.

    Science.gov (United States)

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F; Cowan, Robert A

    2003-01-01

    Simultaneous biological nutrient removal (SBNR) is the biological removal of nitrogen and phosphorus in excess of that required for biomass synthesis in a biological wastewater treatment system without defined anaerobic or anoxic zones. Evidence is growing that significant SBNR can occur in many systems, including the aerobic zone of systems already configured for biological nutrient removal. Although SBNR systems offer several potential advantages, they cannot be fully realized until the mechanisms responsible for SBNR are better understood. Consequently, a research program was initiated with the basic hypothesis that three mechanisms might be responsible for SBNR: the reactor macroenvironment, the floc microenvironment, and novel microorganisms. Previously, the nutrient removal capabilities of seven full-scale, staged, closed-loop bioreactors known as Orbal oxidation ditches were evaluated. Chemical analysis and microbiological observations suggested that SBNR occurred in these systems. Three of these plants were further examined in this research to evaluate the importance of novel microorganisms, especially for nitrogen removal. A screening tool was developed to determine the relative significance of the activities of microorganisms capable of autotrophic denitrification and heterotrophic nitrification-aerobic denitrification in biological nutrient removal systems. The results indicated that novel microorganisms were not substantial contributors to SBNR in the plants studied. Phosphorus metabolism (anaerobic release, aerobic uptake) was also tested in one of the plants. Activity within the mixed liquor that was consistent with current theories for phosphorus-accumulating organisms (PAOs) was observed. Along with other observations, this suggests the presence of PAOs in the facilities studied.

  15. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    Science.gov (United States)

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Does universal 16S rRNA gene amplicon sequencing of environmental communities provide an accurate description of nitrifying guilds?

    DEFF Research Database (Denmark)

    Diwan, Vaibhav; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    2018-01-01

    amplicon sequencing and from guild targeted approaches. The universal amplicon sequencing provided 1) accurate estimates of nitrifier composition, 2) clustering of the samples based on these compositions consistent with sample origin, 3) estimates of the relative abundance of the guilds correlated...

  17. Modeling of a membrane bioreactor for production of biodiesel

    International Nuclear Information System (INIS)

    Solano, Paola Andrea; Moncada, Jorge Andres; Cardona, Carlos Ariel; Ruiz, Orlando Simon

    2008-01-01

    Through the use of an enzymatic catalyst lipase, produced by Candida Antarctica a membrane bioreactor was modeled and simulated to obtain biodiesel from palm oil and ethanol. A conversion of 0.97 was reached for a residence time of 10.64 min. The membrane bioreactor was compared to a CSTR reactor, where a conversion of 0.76 was obtained. It was concluded that the membrane bioreactor is a better way of producing biodiesel than the CSTR

  18. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  19. Application of toxicity monitor using nitrifying bacteria biosensor to sewerage systems.

    Science.gov (United States)

    Inui, T; Tanaka, Y; Okayas, Y; Tanaka, H

    2002-01-01

    Toxic substances may be included in wastewater influent and can damage biological processing of wastewater treatment, therefore continuous toxic-monitoring of wastewater influent is needed. This paper describes the potential toxic-monitoring applications of the toxicity monitor using a nitrifying bacteria biosensor to sewerage systems. The results of sensitivity tests show that aspects of wastewater do not affect the sensor sensitivity and confirm that the sensor can be applied to wastewater monitoring as it is. The monitor with a prototype of filtration system installed in a wastewater treatment plant is able to operate continuously for one month at least after the modification of filtration system and the optimization of operation conditions.

  20. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna

    2015-01-01

    , and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results...... to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol...

  1. Incremental design of control system of SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON-Anammox reactor sequence. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine...

  2. Cascades of bioreactors

    NARCIS (Netherlands)

    Gooijer, de C.D.

    1995-01-01

    In this thesis a common phenomenon in bioprocess engineering is described : the execution of a certain bioprocess in more than one bioreactor. Chapter 1, a review, classifies bioprocesses by means of a number of characteristics :
    i) processes with a variable

  3. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  4. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major...

  5. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  6. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  7. Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms.

    Science.gov (United States)

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2014-09-15

    The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Aeration control by monitoring the microbiological activity using fuzzy logic diagnosis and control. Application to a complete autotrophic nitrogen removal reactor

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine

    2015-01-01

    Complete Autotrophic Nitrogen Removal (CANR) is a novel process where ammonia is converted to nitrogen gas by different microbial groups. The performance of the process can be compromised by an unbalanced activity of the biomass caused by disturbances or non-optimal operational conditions...... microbial groups on the other hand, the diagnosis provides information on: nitritation, nitratation, anaerobic ammonium oxidation and overall autotrophic nitrogen removal. These four results give insight into the state of the process and are used as inputs for the controller that manipulates the aeration...... to the reactor.The diagnosis tool was first evaluated using 100 days of real process operation data obtained from a lab-scale single-stage autotrophic nitrogen removing reactor. This evaluation revealed that the fuzzy logic diagnosis is able to provide a realistic description of the microbiological state...

  9. Immobilized yeast in bioreactor for alcohol fermentation

    International Nuclear Information System (INIS)

    Handy, M.K.; Kim, K.

    1986-01-01

    Mutant of Saccharomyces cerevisiae was developed using a Co-60 source. Cells were immobilized onto sterile, channeled alumina beads and packed into bioreactor column under controlled temperature. Feedstocks containing substrate and nutrients were fed into the bioreactor at specific rates. Beads with greatest porosity and surface area produced the most ethanol. Factors affecting ethanol productivity included: temperature, pH, flow rate, nutrients and substrate in the feedstock

  10. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands.

    Directory of Open Access Journals (Sweden)

    Xavier Le Roux

    Full Text Available Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number - namely richness, presence of particular plant functional groups, or particular combinations of these and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively, the abundance of nitrifiers (bacterial and archaeal amoA gene number and denitrifiers (nirK, nirS and nosZ gene number, and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species, though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification

  11. Construction of a Simple Multipurpose Airlift Bioreactor and its ...

    African Journals Online (AJOL)

    BSN

    The aim of the present research is to develop a simple airlift bioreactor which can be operated even ... compression metal. The bioreactor is mixed ... the method developed by (Bailey and Olis, .... (Ed) Concise Encyclopedia of Bio-resources.

  12. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors

    NARCIS (Netherlands)

    Bassin, J.P.; Kleerebezem, R.; Muyzer, G.; Rosado, A.S.; Van Loosdrecht, M.C.M.; Dezotti, M.

    2011-01-01

    The effect of salinity on the activity of nitrifying bacteria, floc characteristics, and microbial community structure accessed by fluorescent in situ hybridization and polymerase chain reaction–denaturing gradient gel electrophoresis techniques was investigated. Two sequencing batch reactors (SRB1

  13. Scale up of diesel oil biodegradation in a baffled roller bioreactor.

    Science.gov (United States)

    Nikakhtari, Hossein; Song, Wanning; Kumar, Pardeep; Nemati, Mehdi; Hill, Gordon A

    2010-05-01

    Diesel oil is a suitable substance to represent petroleum contamination from accidental spills in operating and transportation facilities. Using a microbial culture enriched from a petroleum contaminated soil, biodegradation of diesel oil was carried out in 2.2, 55, and 220 L roller baffled bioreactors. The effects of bioreactor rotation speed (from 5 to 45 rpm) and liquid loading (from 18% to 73% of total volume) on the biodegradation of diesel oil were studied. In the small scale bioreactor (2.2L), the maximum rotation speed of 45 rpm resulted in the highest biodegradation rate with a first order biodegradation kinetic constant of 0.095 d(-1). In the larger scale bioreactors, rotation speed did not affect the biodegradation rate. Liquid loadings higher than 64% resulted in reduced biodegradation rates in the small scale bioreactor; however, in the larger roller bioreactors liquid loading did not affect the biodegradation rate. Biodegradation of diesel oil at 5 rpm and 73% loading is recommended for operating large scale roller baffled bioreactors. Under these conditions, high diesel oil concentrations up to 50 gL(-1) can be bioremediated at a rate of 1.61 gL(-1)d(-1). Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil.

    Science.gov (United States)

    Wu, Xiaohong; Ge, Tida; Yan, Wende; Zhou, Juan; Wei, Xiaomeng; Chen, Liang; Chen, Xiangbi; Nannipieri, Paolo; Wu, Jinshui

    2017-12-01

    In this study, we assessed the interactive effects of phosphorus (P) application and irrigation methods on the abundances of marker genes (cbbL, cbbM, accA and aclB) of CO2-fixing autotrophs. We conducted rice-microcosm experiments using a P-limited paddy soil, with and without the addition of P fertiliser (P-treated-pot (P) versus control pot (CK)), and using two irrigation methods, namely alternate wetting and drying (AWD) and continuous flooding (CF). The abundances of bacterial 16S rRNA, archaeal 16S rRNA, cbbL, cbbM, accA and aclB genes in the rhizosphere soil (RS) and bulk soil (BS) were quantified. The application of P significantly altered the soil properties and stimulated the abundances of Bacteria, Archaea and CO2-fixation genes under CF treatment, but negatively influenced the abundances of Bacteria and marker genes of CO2-fixing autotrophs in BS soils under AWD treatment. The response of CO2-fixing autotrophs to P fertiliser depended on the irrigation management method. The redundancy analysis revealed that 54% of the variation in the functional marker gene abundances could be explained by the irrigation method, P fertiliser and the Olsen-P content; however, the rhizosphere effect did not have any significant influence. P fertiliser application under CF was more beneficial in improving the abundance of CO2-fixing autotrophs compared to the AWD treatment; thus, it is an ideal irrigation management method to increase soil carbon fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  16. Plantform Bioreactor for Mass Micropropagation of Date Palm.

    Science.gov (United States)

    Almusawi, Abdulminam H A; Sayegh, Abdullah J; Alshanaw, Ansam M S; Griffis, John L

    2017-01-01

    A novel protocol for the commercial production of date palm through micropropagation is presented. This protocol includes the use of a semisolid medium alternation or in combination with a temporary immersion system (TIS, Plantform bioreactor) in date palm micropropagation. The use of the Plantform bioreactor for date palm results in an improved multiplication rate, reduced micropropagation time, and improved weaning success. It also reduces the cost of saleable units and thus improves economic return for commercial micropropagation. The use of the Plantform bioreactor successfully addresses other hindrances that can occur during the scale-up of date palm micropropagation, including asynchrony of somatic embryos, limited maturation of somatic embryos, and highly variable germination frequencies of embryos.

  17. Pharmaceutical proteins produced in plant bioreactor in recent years ...

    African Journals Online (AJOL)

    Plant bioreactor, also called molecular farming, has enormous potential to produce recombinant proteins infinitely. Products expressed in plants have natural physico-chemical properties and bioactivities. Plant bioreactor could be a safe, economic and convenient production system, and can been widely applied in ...

  18. A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment.

    Science.gov (United States)

    Kong, Zhe; Feng, Chuanping; Chen, Nan; Tong, Shuang; Zhang, Baogang; Hao, Chunbo; Chen, Kun

    2014-05-01

    To enhance the denitrification performance of soil infiltration, a soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment was developed, and the SISSAD performance was evaluated using synthetic domestic wastewater in this study. The aerobic respiration and nitrification were mainly taken place in the upper aerobic stage (AES), removed 88.44% COD and 89.99% NH4(+)-N. Moreover, autotrophic denitrification occurred in the bottom anaerobic stage (ANS), using the CO2 produced from AES as inorganic carbon source. Results demonstrated that the SISSAD showed a remarkable performance on COD removal efficiency of 95.09%, 84.86% for NO3(-)-N, 95.25% for NH4(+)-N and 93.15% for TP. This research revealed the developed system exhibits a promising application prospect for domestic wastewater in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Species Coexistence in Nitrifying Chemostats: A Model of Microbial Interactions

    Directory of Open Access Journals (Sweden)

    Maxime Dumont

    2016-12-01

    Full Text Available In a previous study, the two nitrifying functions (ammonia oxidizing bacteria (AOB or nitrite-oxidizing bacteria (NOB of a nitrification reactor—operated continuously over 525 days with varying inputs—were assigned using a mathematical modeling approach together with the monitoring of bacterial phylotypes. Based on these theoretical identifications, we develop here a chemostat model that does not explicitly include only the resources’ dynamics (different forms of soluble nitrogen but also explicitly takes into account microbial inter- and intra-species interactions for the four dominant phylotypes detected in the chemostat. A comparison of the models obtained with and without interactions has shown that such interactions permit the coexistence of two competing ammonium-oxidizing bacteria and two competing nitrite-oxidizing bacteria in competition for ammonium and nitrite, respectively. These interactions are analyzed and discussed.

  20. Staying alive! Sensors used for monitoring cell health in bioreactors.

    Science.gov (United States)

    O'Mara, P; Farrell, A; Bones, J; Twomey, K

    2018-01-01

    Current and next generation sensors such as pH, dissolved oxygen (dO) and temperature sensors that will help drive the use of single-use bioreactors in industry are reviewed. The current trend in bioreactor use is shifting from the traditional fixed bioreactors to the use of single-use bioreactors (SUBs). However as the shift in paradigm occurs there is now a greater need for sensor technology to play 'catch up' with the innovation of bioreactor technology. Many of the sensors still in use today rely on technology created in the 1960's such as the Clark-type dissolved oxygen sensor or glass pH electrodes. This is due to the strict requirements of sensors to monitor bioprocesses resulting in the use of traditional well understood methods, making it difficult to incorporate new sensor technology into industry. A number of advances in sensor technology have been achieved in recent years, a few of these advances and future research will also be discussed in this review. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Regulation of carbon dioxide fixation in facultatively autotrophic bacteria. A phisiological and genetical study.

    NARCIS (Netherlands)

    Meijer, Wilhelmus Gerhardus

    1990-01-01

    Autotrophic bactcria are capable of CO2 fixation via the Calvin cycle, emplofng energy derived from the oxidation of anorganic substrates (e.g. Hz), simple organic substrates (one-carbon compounds, e.g. methanol, formate), or from light. Ribulose-1,5-bisphospbate carboxylase/oxygenase (RuBisC/O),

  2. Combined removal of sulfur compounds and nitrate by autotrophic denitrication in bioaugmented activated sludge system

    NARCIS (Netherlands)

    Manconi, I.; Carucci, A.; Lens, P.N.L.

    2007-01-01

    An autotrophic denitrification process using reduced sulfur compounds (thiosulfate and sulfide) as electron donor in an activated sludge system is proposed as an efficient and cost effective alternative to conventional heterotrophic denitrification for inorganic (or with low C/N ratio) wastewaters

  3. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  4. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Isern, Nancy G.; Romine, Margaret F.; Riha, Krystin M.; Inskeep, William P.; Kreuzer, Helen W.

    2016-03-19

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonesis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with 13C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  5. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    Science.gov (United States)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  6. Functional study on two artificial liver bioreactors with collagen gel

    Directory of Open Access Journals (Sweden)

    XU Bing

    2014-10-01

    Full Text Available ObjectiveTo improve the hollow fiber bioreactor of artificial liver. MethodsRat hepatocytes mixed with collagen solution were injected into the external cavity of a hollow fiber reactor to construct a bioreactor of hepatocytes suspended in collagen gel (group Ⅰ. Other rat hepatocytes suspended in solution were injected into the external cavity of a hollow fiber reactor with a layer of collagen on the wall of the external cavity to construct a bioreactor of collagen layer and hepatocytes (group Ⅱ. For each group, the culture solution circulated through the internal cavity of the hollow fiber bioreactor; the bioreactor was put in a culture box for 9 d, and the culture solution in the internal cavity was exchanged for new one every 24 h; the concentrations of albumin (Alb, urea, and lactate dehydrogenase (LDH in the culture solution samples were measured to examine the hepatocyte function of the bioreactor. Statistical analysis was performed using SPSS 130. Continuous data were expressed as mean±SD, and comparison between groups was made by paired t test. ResultsFor groups Ⅰ and Ⅱ, Alb levels reached peak values on day 3 of culture (1.41±0.08 g/L and 0.65±0.05 g/L; from day 3 to 9, group I had a significantly higher Alb level than group Ⅱ (t>7.572, P<0.01. For groups Ⅰ and Ⅱ, urea levels reached peak values on days 3 and 5 of culture (1.73±0.14 mmol/L and 1.56±0.18 mmol/L; from days 5 to 9, group I had a significantly higher urea level than group Ⅱ (t>8.418, P<0.01. For groups Ⅰ and Ⅱ, LDH levels reached peak values on day 9 of culture (32.03±9.13 U/L and 70.17±25.28 U/L; from days 1 to 9, group I had a significantly lower LDH level than group Ⅱ(t>5.633, P<0.01. Therefore, the bioreactor of hepatocytes suspended in collagen gel (group Ⅰ showed a better hepatocyte function and less hepatic enzyme leakage compared with the bioreactor of collagen layer and hepatocytes (group Ⅱ. Conclusion

  7. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...... a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under...... continuous aeration, could remove more than 5.5 g N/m2/day (at loads up to 8 g N/m2/day) by controlled variation of sequential aeration regimes. Daily averaged ratios of the surficial loads of O2 (oxygen) to NH4+ (ammonium) (LO2/LNH4) were close to 1.73 at this optimum. Real-time quantitative PCR based on 16...

  8. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  9. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yingxin [School of Water Resources and Environment, China University of Geosciences, Beijing 100083 (China); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan); Feng, Chuanping, E-mail: fengchuangping@gmail.com [School of Water Resources and Environment, China University of Geosciences, Beijing 100083 (China); Wang, Qinghong; Yang, Yingnan; Zhang, Zhenya; Sugiura, Norio [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan)

    2011-09-15

    Highlights: {yields} Intensified biofilm-electrode reactor using cooperative denitrification is developed. {yields} IBER combines heterotrophic and autotrophic denitrification. {yields} CO{sub 2} formed by heterotrophic denitrification is used by autotrophic bacteria. {yields} Optimum running conditions are C/N = 0.75, HRT = 8 h, and I = 40 mA. {yields} A novel degradation mechanism for cooperating denitrification process is proposed. - Abstract: An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO{sub 3}{sup -}N50 mg L{sup -1}) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8 h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO{sub 3}{sup -}N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO{sub 2} produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate.

  10. Disposable bioreactors: maturation into pharmaceutical glycoprotein manufacturing.

    Science.gov (United States)

    Brecht, René

    2009-01-01

    Modern biopharmaceutical development is characterised by deep understanding of the structure activity relationship of biological drugs. Therefore, the production process has to be tailored more to the product requirements than to the existing equipment in a certain facility. In addition, the major challenges for the industry are to lower the high production costs of biologics and to shorten the overall development time. The flexibility for providing different modes of operation using disposable bioreactors in the same facility can fulfil these demands and support tailor-made processes.Over the last 10 years, a huge and still increasing number of disposable bioreactors have entered the market. Bioreactor volumes of up to 2,000 L can be handled by using disposable bag systems. Each individual technology has been made available for different purposes up to the GMP compliant production of therapeutic drugs, even for market supply. This chapter summarises disposable technology development over the last decade by comparing the different technologies and showing trends and concepts for the future.

  11. Hydraulic Behavior in The Downflow Hanging Sponge Bioreactor

    Directory of Open Access Journals (Sweden)

    Izarul Machdar

    2016-12-01

    Full Text Available Performance efficiency in a Downflow Hanging Sponge (DHS bioreactor is associated with the amount of time that a wastewater remains in the bioreactor. The bioreactor is considered as a plug flow reactor and its hydraulic residence time (HRT depends on the void volume of packing material and the flow rate. In this study, hydraulic behavior of DHS bioreactor was investigated by using tracer method. Two types of sponge module covers, cylindrical plastic frame (module-1 and plastic hair roller (module-2, were investigated and compared. A concentrated NaCl solution used as an inert tracer and input as a pulse at the inlet of DHS bioreactor. Analysis of the residence time distribution (RTD curves provided interpretation of the index distribution or holdup water (active volume, the degree of short-circuiting, number of tanks in series (the plug flow characteristic, and the dispersion number. It was found that the actual HRT was primarily shorter than theoretical HRT of each test. Holdup water of the DHS bioreactor ranged from 60% to 97% and 36% to 60% of module-1 and module-2, respectively. Eventhough module-1 has higher effective volume than module-2, result showed that the dispersion numbers of the two modules were not significant difference. Furthermore, N-values were found larger at a higher flow rate. It was concluded that a DHS bioreactor design should incorporated a combination of water distributor system, higher loading rate at startup process to generate a hydraulic behavior closer to an ideal plug flow.ABSTRAKEfisiensi unjuk kerja bioreactor Downflow Hanging Sponge (DHS berkaitan dengan lamanya waktu tinggal limbah berada di dalam bioreaktor tersebut. Bioreaktor DHS dianggap sebagai seuatu reaktor aliran sumbat (plug flow dimana waktu tinggal hidraulik (HRT tergantung pada volume pori material isian dan laju alir. Dua jenis modul digunakan dalam penelitian ini, yang diberi nama dengan module-1 dan module-2 untuk melihat pengaruh jenis modul

  12. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2012-01-31

    OBJECTIVE: To design and construct a urinary bladder bioreactor for urologic tissue-engineering purposes and to compare the viability and proliferative activity of cell-seeded extracellular matrix scaffolds cultured in the bioreactor with conventional static growth conditions. MATERIALS AND METHODS: A urinary bladder bioreactor was designed and constructed to replicate physiologic bladder dynamics. The bioreactor mimicked the filling pressures of the human bladder by way of a cyclical low-delivery pressure regulator. In addition, cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds in the bioreactor and in static growth conditions for 5 consecutive days. The attachment, viability, and proliferative potential were assessed and compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4\\

  13. Biological reduction of nitrate wastewater using fluidized-bed bioreactors

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Hancher, C.W.; Patton, B.D.; Kowalchuk, M.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt % NO 3 - and as large as 2000 m 3 /d, in the nuclear fuel cycle as well as in many commercial processes such as fertilizer production, paper manufacturing, and metal finishing. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The major strain of denitrification bacteria is Pseudomonas which was derived from garden soil. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25 to 0.50-mm-diam coal particles, which are fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . A description is given of the results of two biodenitrification R and D pilot plant programs based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 gN(NO 3 - )/d per liter of empty bioreactor volume. The first of these pilot plant programs consisted of two 0.2-m-diam bioreactors, each with a height of 6.3 m and a volume of 208 liters, operating in series. The second pilot plant was used to determine the diameter dependence of the reactors by using a 0.5-m-diam reactor with a height of 6.3 m and a volume of 1200 liters. These pilot plants operated for a period of six months and two months respectively, while using both a synthetic waste and the actual waste from a gaseous diffusion plant operated by Goodyear Atomic Corporation

  14. Efficient Total Nitrogen Removal in an Ammonia Gas Biofilter through High-Rate OLAND

    DEFF Research Database (Denmark)

    De Clippeleir, Haydée; Courtens, Emilie; Mosquera, Mariela

    2012-01-01

    Ammonia gas is conventionally treated in nitrifying biofilters; however, addition of organic carbon to perform post-denitrification is required to obtain total nitrogen removal. Oxygen-limited autotrophic nitrification/denitrification (OLAND), applied in full-scale for wastewater treatment, can...... offer a cost-effective alternative for gas treatment. In this study, the OLAND application thus was broadened toward ammonia loaded gaseous streams. A down flow, oxygen-saturated biofilter (height of 1.5 m; diameter of 0.11 m) was fed with an ammonia gas stream (248 ± 10 ppmv) at a loading rate of 0...... at water flow rates of 1.3 ± 0.4 m3 m–2 biofilter section d–1. Profile measurements revealed that 91% of the total nitrogen activity was taking place in the top 36% of the filter. This study demonstrated for the first time highly effective and sustainable autotrophic ammonia removal in a gas biofilter...

  15. Effect of communities of ammonia-oxidizing bacteria on degradation of 17-alpha-ethynylestradiol by nitrifying activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Limpiyakorn, T.; Sermwaraphan, P.; Kurisu, F.

    2009-07-01

    An endocrine disrupting compound, 17-alpha-ethynylestradiol (EE2), is a synthetic estrogen used as a key ingredient in oral contraceptives pill. this persistent organic pollutant, no biodegradable by most microorganisms, is discharged via municipal waste streams to natural receiving waters. Recently, it was found that ammonia-oxidizing bacteria (AOB) in nitrifying activated sludge (NAS) enriched with high ammonium loads can degrade EE2 via co-metabolism during ammonia oxidation. (Author)

  16. Production of NO and N(inf2)O by Pure Cultures of Nitrifying and Denitrifying Bacteria during Changes in Aeration

    NARCIS (Netherlands)

    Kester, R.A.; De Boer, W.; Laanbroek, H.J.

    1997-01-01

    Peak emissions of NO and N2O are often observed after wetting of soil, The reactions to sudden changes in the aeration of cultures of nitrifying and denitrifying bacteria with respect to NO and N2O emissions were compared to obtain more information about the microbiological aspects of peak

  17. Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana

    DEFF Research Database (Denmark)

    van Wagenen, Jonathan Myerson; De Francisci, Davide; Angelidaki, Irini

    2015-01-01

    In addition to providing cheap or free mineral nutrients, wastewaters may contain organic carbon compounds that could increase productivity of algal cultures. This study defined a strategy for the addition of organic carbon to photobioreactors in order to improve their productivity compared...... for acetate addition. Acetate was added during the light period for the mixotrophic strategy and during the dark one for the cyclic autotrophic/heterotrophic strategy. Autotrophic productivity of up to 0.99 g L−1 day−1 was obtained using the optimal tested dilution rate of 0.031 h−1. The highest mixotrophic...... productivity was 1.04 g L−1 day−1. When a constant dilution rate was applied throughout the day, cyclic heterotrophy/autotrophy (1.2 g L−1 day−1) showed higher productivity than during mixotrophic growth, while using only half as much acetate. By diluting and adding acetate only during the eight dark hours...

  18. Freshwater mineral nitrogen and essential elements in autotrophs in James Ross Island, West Antarctica

    Directory of Open Access Journals (Sweden)

    Coufalík Pavel

    2016-12-01

    Full Text Available The lakes and watercourses are habitats for various communities of cyanobacteria and algae, which are among the few primary producers in Antarctica. The amount of nutrients in the mineral-poor Antarctic environment is a limiting factor for the growth of freshwater autotrophs in most cases. In this study, the main aim was to assess the availability of mineral nitrogen for microorganisms in cyanobacterial mats in James Ross Island. The nitrate and ammonium ions in water environment were determined as well as the contents of major elements (C, N, P, S, Na, K, Ca, Mg, Al, Fe, Mn in cyanobacterial mats. The molar ratios of C:N, C:P and N:P in mats were in focus. The growth of freshwater autotrophs seems not to be limited by the level of nitrogen, according to the content of available mineral nitrogen in water and the biogeochemical stoichiometry of C:N:P. The source of nutrients in the Ulu Peninsula is not obvious. The nitrogen fixation could enhance the nitrogen content in mats, which was observed in some samples containing the Nostoc sp.

  19. Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual-isotope labelling method

    NARCIS (Netherlands)

    Kool, D.M.; Wrage, N.; Zechmeister-Boltenstern, S.; Pfeffer, M.; Brus, D.J.; Oenema, O.; Groenigen, van J.W.

    2010-01-01

    Nitrifier denitrification (i.e. nitrite reduction by ammonia oxidizers) is one of the biochemical pathways of nitrous oxide (N2O) production. It is increasingly suggested that this pathway may contribute substantially to N2O production in soil, the major source of this greenhouse gas. However,

  20. Hydrogel/poly-dimethylsiloxane hybrid bioreactor facilitating 3D cell culturing

    NARCIS (Netherlands)

    Schurink, B.; Luttge, R.

    2013-01-01

    The authors present a hydrogel/poly-dimethylsiloxane (PDMS) hybrid bioreactor. The bioreactor enables a low shear stress 3D culture by integrating a hydrogel as a barrier into a PDMS casing. The use of PDMS allows the reversible adhesion of the device to a commercially available microelectrode

  1. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater.

    Science.gov (United States)

    Cui, You-Wei; Zhang, Hong-Yu; Ding, Jie-Ran; Peng, Yong-Zhen

    2016-04-25

    With annual increases in the generation and use of saline wastewater, the need to avoid environmental problems such as eutrophication is critical. A previous study identified ways to start up a halophilic sludge domesticated from estuarine sediments to remove nitrogen from wastewater with a salinity of 30 g/L. This investigation expands that work to explore the impact of salinity on nitrogen removal. This study demonstrated that the mixed halophilic consortia removed nitrogen from wastewater with a salinity of 30-85 g/L. A kinetic analysis showed that halophilic nitrifiers selected based on hypersalinity were characterized by low Ks, μmax and specific ammonium oxidization rates. This explains the decrease in ammonium removal efficiency in the high salinity operational phases. Salinity inhibited ammonia oxidizing bacteria (AOB) activity, as well as the number of dominant AOB, but did not significantly affect the AOB dominant species. Three most dominant AOB lineages in the halophilic sludge were Nitrosomonas marina, Nitrosomonas europaea, and Nitrosococcus mobilis. Nitrosomonas europaea and Nitrosococcus mobilis were mainly affected by salinity, while nitrite accumulation and ammonia loading played the key role in determining the abundance of Nitrosococcus mobilis and Nitrosococcus europaea. The study contributes insights about shifts in halophilic nitrifying bacterial populations.

  2. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due...... of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0–10 cm layer...... ranged up to 1.59 ± 0.16 μg gdw−1 d−1. We inferred that the negative δ13C shift was caused by the activity of autotrophic microorganisms using the Calvin–Benson–Bassham (CBB) cycle, as indicated from quantification of cbbL/cbbM marker genes encoding for RubisCO by quantitative polymerase chain reaction...

  3. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  4. Review of nonconventional bioreactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  5. The Role of Bioreactors in Ligament and Tendon Tissue Engineering.

    Science.gov (United States)

    Mace, James; Wheelton, Andy; Khan, Wasim S; Anand, Sanj

    2016-01-01

    Bioreactors are pivotal to the emerging field of tissue engineering. The formation of neotissue from pluripotent cell lineages potentially offers a source of tissue for clinical use without the significant donor site morbidity associated with many contemporary surgical reconstructive procedures. Modern bioreactor design is becoming increasingly complex to provide a both an expandable source of readily available pluripotent cells and to facilitate their controlled differentiation into a clinically applicable ligament or tendon like neotissue. This review presents the need for such a method, challenges in the processes to engineer neotissue and the current designs and results of modern bioreactors in the pursuit of engineered tendon and ligament.

  6. Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor

    Science.gov (United States)

    Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng

    2017-12-01

    Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.

  7. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

    Science.gov (United States)

    Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T

    2013-08-01

    Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered

  8. Effects of long-term elevated CO2 on N2-fixing, denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun-Qiang; HAN Shi-Jie; REN Fei-Rong; ZHOU Yu-Mei; ZHANG Yan

    2008-01-01

    A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province,northeastern China (42o24'N,128o06'E,and 738 m elevation).A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999.Changpai Scotch pine (Pinus sylvestris var.sylvestriformis seeds were sowed in May,1999 and CO2 fumigation treatments began after seeds germination.In each year,the exposure started at the end of April and stopped at the end of October.Soil samples were collected in June and August 2006 and in June 2007,and soil nitrifying,denitrifying and N2-fixing enzyme activities were measured.Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006,by 30.9% in August 2006 and by 11.3% in June 2007.Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P < 0.012) and August 2006 (P < 0.005) samplings in our study; no significant difference was detected in June 2007,and no significant changes in N2-fixing enzyme activity were found.This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities.

  9. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  10. Forecasting the settlement of a bioreactor landfill based on gas pressure changes.

    Science.gov (United States)

    Qiu, Gang; Li, Liang; Sun, Hongjun

    2013-10-01

    In order to study the influence of settlement under gas pressure in bioreactor landfill, the landfill is simplified as a one-way gas seepage field, combining Darcy's Law, the gas equation of state, and the principle of effective stress and fluid dynamics of porous media theory. First assume that the bioreactor landfill leachate is fully recharged on the basis of gas mass conservation, then according to the changes in gas pressure (inside the landfill and surrounding atmosphere) during the gas leakage time and settlement in the landfill, establish a numerical model of bioreactor landfill settlement under the action of the gas pressure, and use the finite difference method to solve it. Through a case study, the model's improved prediction of the settlement of bioreactor landfill is demonstrated.

  11. Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Dufva, Martin; Bruus, Henrik

    2011-01-01

    In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved...... by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained...... and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e. g., cell culturing and analysis and in feeding bio-arrays....

  12. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  13. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  14. Bioreactors as Engineering Support to Treat Cardiac Muscle and Vascular Disease

    Directory of Open Access Journals (Sweden)

    Diana Massai

    2013-01-01

    Full Text Available Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements.

  15. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems

    NARCIS (Netherlands)

    Hicks Pries, C.E.; van Logtestijn, R.S.P; Schuur, E.A.G.; Natali, S.M.; Cornelissen, J.H.C.; Aerts, R.; Dorrepaal, E.

    2015-01-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change

  16. Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner.

    Science.gov (United States)

    Kino-Oka, Masahiro; Ogawa, Natsuki; Umegaki, Ryota; Taya, Masahito

    2005-01-01

    A novel bioreactor system was designed to perform a series of batchwise cultures of anchorage-dependent cells by means of automated operations of medium change and passage for cell transfer. The experimental data on contamination frequency ensured the biological cleanliness in the bioreactor system, which facilitated the operations in a closed environment, as compared with that in flask culture system with manual handlings. In addition, the tools for growth prediction (based on growth kinetics) and real-time growth monitoring by measurement of medium components (based on small-volume analyzing machinery) were installed into the bioreactor system to schedule the operations of medium change and passage and to confirm that culture proceeds as scheduled, respectively. The successive culture of anchorage-dependent cells was conducted with the bioreactor running in an automated way. The automated bioreactor gave a successful culture performance with fair accordance to preset scheduling based on the information in the latest subculture, realizing 79- fold cell expansion for 169 h. In addition, the correlation factor between experimental data and scheduled values through the bioreactor performance was 0.998. It was concluded that the proposed bioreactor with the integration of the prediction and monitoring tools could offer a feasible system for the manufacturing process of cultured tissue products.

  17. Commissioning of Research Bioreactor made in Korea with Malaysian Environment Adaptation

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim; Mohd Azmi Sidid Omar

    2011-01-01

    Bioreactor is equipment used by researcher in Agrotechnology and Biosciences department (BAB) as a scientific approach to get a scale up of product. Headed by one of the senior researcher in the department, an effort has been made to upscale the project by using MTDC fund. The technology platform has been acquired from South Korea. Some modification has to be made to cater for the need of a research bioreactor to be established for Nuclear Malaysia Agency. This research bioreactor is to emulate a tissue culture product in a bigger scale bio processing, pharmaceutical biotechnology and industrial production. (author)

  18. Quantitative analysis of microbial biomass yield in aerobic bioreactor.

    Science.gov (United States)

    Watanabe, Osamu; Isoda, Satoru

    2013-12-01

    We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  19. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering.

    Science.gov (United States)

    Wei, Xin; Li, Dao-bing; Xu, Feng; Wang, Yan; Zhu, Yu-chun; Li, Hong; Wang, Kun-jie

    2011-02-01

    Bioreactors are pivotal tools for generating mechanical stimulation in functional tissue engineering study. This study aimed to create a bioreactor that can simulate urinary bladder mechanical properties, and to investigate the effects of a mechanically stimulated culture on urothelial cells and bladder smooth muscle cells. We designed a bioreactor to simulate the mechanical properties of bladder. A pressure-record system was used to evaluate the mechanical properties of the bioreactor by measuring the pressure in culture chambers. To test the biocompatibility of the bioreactor, viabilities of urothelial cells and smooth muscle cells cultured in the bioreactor under static and mechanically changed conditions were measured after 7-day culture. To evaluate the effect of mechanical stimulations on the vital cells, urethral cells and smooth muscle cells were cultured in the simulated mechanical conditions. After that, the viability and the distribution pattern of the cells were observed and compared with cells cultured in non-mechanical stimulated condition. The bioreactor system successfully generated waveforms similar to the intended programmed model while maintaining a cell-seeded elastic membrane between the chambers. There were no differences between viabilities of urothelial cells ((91.90 ± 1.22)% vs. (93.14 ± 1.78)%, P > 0.05) and bladder smooth muscle cells ((93.41 ± 1.49)% vs. (92.61 ± 1.34)%, P > 0.05). The viability of cells and tissue structure observation after cultured in simulated condition showed that mechanical stimulation was the only factor affected cells in the bioreactor and improved the arrangement of cells on silastic membrane. This bioreactor can effectively simulate the physiological and mechanical properties of the bladder. Mechanical stimulation is the only factor that affected the viability of cells cultured in the bioreactor. The bioreactor can change the growth behavior of urothelial cells and bladder smooth muscle cells, resulting in

  20. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    OpenAIRE

    Kester, R.A.; Boer, W. de; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of nitrous oxide production at oxic conditions, but strongly enhanced the nitrous oxide production at oxygen-poor and anoxic conditions. Inhibition of nitrification by short exposure (1 to 24 h) to high conce...

  1. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  2. Autotrophic and heterotrophic bacterial diversity from Yucca Mountain

    International Nuclear Information System (INIS)

    Khalil, M.; Haldeman, D.L.; Igbinovia, A.; Castro, P.

    1996-01-01

    A basic understanding of the types and functions of microbiota present within the deep subsurface of Yucca Mountain will be important in terms of modeling the long term stability of a nuclear waste repository. Microorganisms can degrade building materials used in tunnel construction such as concrete and steel. For example, high concentrations of nitrifying bacteria, may cause corrosion of concrete due to the release of nitric acid. Likewise, sulfur-oxidizing and iron-oxidizing bacteria have been implicated in microbially influenced corrosion (MIC), and may contribute to the degradation of waste packages. In addition, the metabolic activities of microbiota may alter the geochemistry of surrounding environments, which may in turn influence the permeability of subsurface strata and the fate of radioactive compounds. Microorganisms that play roles in these processes have diverse methods of obtaining the energy required for growth and metabolism and have been recovered from a wide range of environments, including the deep subsurface. The purpose of this research was to determine if these bacterial groups, important to the long-term success of a high-level nuclear waste repository, were indigenous to Yucca Mountain

  3. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  4. Thinking beyond the Bioreactor Box: Incorporating Stream Ecology into Edge-of-Field Nitrate Management.

    Science.gov (United States)

    Goeller, Brandon C; Febria, Catherine M; Harding, Jon S; McIntosh, Angus R

    2016-05-01

    Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Autotrophic and heterotrophic activity in Arctic first-year sea-ice: Seasonal study from Marlene Bight, SW Greenland

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in situ in plastic bags with subsequent melting and measurements of changes in total O-2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period...

  6. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  7. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering

    NARCIS (Netherlands)

    Spitters, Tim; Leijten, Jeroen Christianus Hermanus; Deus, F.D.; Costa, I.B.F.; van Apeldoorn, Aart A.; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2013-01-01

    In cartilage tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor, which combines mechanical stimulation with a two compartment

  8. Simulation of three-phase fluidized bioreactors for denitrification

    International Nuclear Information System (INIS)

    Hamza, A.V.; Dolan, J.F.; Wong, E.W.

    1981-03-01

    Fluidized-bed bioreactors were developed and operated at three scales (diameters of 0.1, 0.2, and 0.5 m) by the Chemical Technology Division. The performance of these reactors in denitrification was simulated using the following modified form of Monod kinetics to describe the reaction kinetics: rate = V/sub max/ (NO 3 - /K/sub s/ + NO 3 - ) (% biomass). In the fluids-movement portion of the simulation the tanks-in-series approximation to backmixing was used. This approach yielded a V/sub max/ of 3.5 g/m 3 -min (% biomass) and a K/sub s/ of 163 g/m 3 for the 0.5-m bioreactor. Values of V/sub max/ and K/sub s/ were also determined for data derived from the 0.1-m bioreactor, but inadequate RTD data reduced the confidence level in these results. A complication in denitrification is the multi-step nature of the reduction from nitrate to nitrite to hyponitrite and finally to nitrogen. An experimental study of the effect of biomass loading upon denitrification was begun. It is recommended that the experimental work be continued

  9. HYDROGEN KINETICS LIMITATION OF AN AUTOTROPHIC SULPHATE REDUCTION REACTOR

    Directory of Open Access Journals (Sweden)

    CÉSAR SÁEZ-NAVARRETE

    2012-01-01

    Full Text Available El uso de sustratos inorgánicos podría reducir los costos y simplificar la operación de sistemas de tratamiento de aguas que utilizan bacterias reductoras de sulfato. Sin embargo, el uso de H2 como sustrato energético y la bioproducción de H2S podrían provocar limitaciones cinéticas. El objetivo de este estudio fue evaluar las condiciones en las que la capacidad de transferencia de masa de un bioreactor de reducción de sulfato, limita su cinética de reducción. La cinética del reactor fue obtenida monitoreando la presión del sistema en condiciones de no limitación por sulfato. Se concluyó que el diseño del bioreactor debería basarse en sus propiedades de transferencia. La tasa de consumo de H2 alcanzó un máximo de 10-4 M/min, para una tasa de reducción de sulfato de 3.4 g·L-1·d-1. Para evitar limitación por H2 se requirió un kLa de 1.48 min-1 a 1.2·109 cells/L (1.23·10-9 L·min-1·cell-1, valor relevante para propósitos de escalamiento.

  10. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2014-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O...... production by both heterotrophic and autotrophic denitrification. In addition, mass transfer equations are implemented to characterize the dynamics of N2O in the water and the gas phases.The biochemical model is simulated and validated for two hydraulic patterns: (1) a sequencing batch reactor; and, (2...

  11. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  12. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  13. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.

    Science.gov (United States)

    Yan, Yuanwei; Song, Liqing; Tsai, Ang-Chen; Ma, Teng; Li, Yan

    2016-01-01

    Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases.

  14. Introducing Textiles as Material of Construction of Ethanol Bioreactors

    Directory of Open Access Journals (Sweden)

    Osagie A. Osadolor

    2014-11-01

    Full Text Available The conventional materials for constructing bioreactors for ethanol production are stainless and cladded carbon steel because of the corrosive behaviour of the fermenting media. As an alternative and cheaper material of construction, a novel textile bioreactor was developed and examined. The textile, coated with several layers to withstand the pressure, resist the chemicals inside the reactor and to be gas-proof was welded to form a 30 L lab reactor. The reactor had excellent performance for fermentative production of bioethanol from sugar using baker’s yeast. Experiments with temperature and mixing as process parameters were performed. No bacterial contamination was observed. Bioethanol was produced for all conditions considered with the optimum fermentation time of 15 h and ethanol yield of 0.48 g/g sucrose. The need for mixing and temperature control can be eliminated. Using a textile bioreactor at room temperature of 22 °C without mixing required 2.5 times longer retention time to produce bioethanol than at 30 °C with mixing. This will reduce the fermentation investment cost by 26% for an ethanol plant with capacity of 100,000 m3 ethanol/y. Also, replacing one 1300 m3 stainless steel reactor with 1300 m3 of the textile bioreactor in this plant will reduce the fermentation investment cost by 19%.

  15. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...... conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Two controlled structures are obtained and benchmarked by their capacity to reject the disturbances before the Anammox reactor....

  16. Anaerobic digestion of citrus waste using two-stage membrane bioreactor

    Science.gov (United States)

    Millati, Ria; Lukitawesa; Dwi Permanasari, Ervina; Wulan Sari, Kartika; Nur Cahyanto, Muhammad; Niklasson, Claes; Taherzadeh, Mohammad J.

    2018-03-01

    Anaerobic digestion is a promising method to treat citrus waste. However, the presence of limonene in citrus waste inhibits anaerobic digestion process. Limonene is an antimicrobial compound and could inhibit methane forming bacteria that takes a longer time to recover than the injured acid forming bacteria. Hence, volatile fatty acids will be accumulated and methane production will be decreased. One way to solve this problem is by conducting anaerobic digestion process into two stages. The first step is aimed for hydrolysis, acidogenesis, and acetogenesis reactions and the second stage is aimed for methanogenesis reaction. The separation of the system would further allow each stage in their optimum conditions making the process more stable. In this research, anaerobic digestion was carried out in batch operations using 120 ml-glass bottle bioreactors in 2 stages. The first stage was performed in free-cells bioreactor, whereas the second stage was performed in both bioreactor of free cells and membrane bioreactor. In the first stage, the reactor was set into ‘anaerobic’ and ‘semi-aerobic’ conditions to examine the effect of oxygen on facultative anaerobic bacteria in acid production. In the second stage, the protection of membrane towards the cells against limonene was tested. For the first stage, the basal medium was prepared with 1.5 g VS of inoculum and 4.5 g VS of citrus waste. The digestion process was carried out at 55°C for four days. For the second stage, the membrane bioreactor was prepared with 3 g of cells that were encased and sealed in a 3×6 cm2 polyvinylidene fluoride membrane. The medium contained 40 ml basal medium and 10 ml liquid from the first stage. The bioreactors were incubated at 55°C for 2 days under anaerobic condition. The results from the first stage showed that the maximum total sugar under ‘anaerobic’ and ‘semi-aerobic’ conditions was 294.3 g/l and 244.7 g/l, respectively. The corresponding values for total volatile

  17. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system

    International Nuclear Information System (INIS)

    Johnson, D. Barrie; Hallberg, Kevin B.

    2005-01-01

    The compost bioreactor ('anaerobic cell') components of three composite passive remediation systems constructed to treat acid mine drainage (AMD) at the former Wheal Jane tin mine, Cornwall, UK were studied over a period of 16 months. While there was some amelioration of the preprocessed AMD in each of the three compost bioreactors, as evidenced by pH increase and decrease in metal concentrations, only one of the cells showed effective removal of the two dominant heavy metals (iron and zinc) present. With two of the compost bioreactors, concentrations of soluble (ferrous) iron draining the cells were significantly greater than those entering the reactors, indicating that there was net mobilisation (by reductive dissolution) of colloidal and/or solid-phase ferric iron compounds within the cells. Soluble sulfide was also detected in waters draining all three compost bioreactors which was rapidly oxidised, in contrast to ferrous iron. Oxidation and hydrolysis of iron, together with sulfide oxidation, resulted in reacidification of processed AMD downstream of the compost bioreactors in two of the passive treatment systems. The dominant cultivatable microorganism in waters draining the compost bioreactors was identified, via analysis of its 16S rRNA gene, as a Thiomonas sp. and was capable of accelerating the dissimilatory oxidation of both ferrous iron and reduced sulfur compounds. Sulfate-reducing bacteria (SRB) were also detected, although only in the bioreactor that was performing well were these present in significant numbers. This particular compost bioreactor had been shut down for 10 months prior to the monitoring period due to operational problems. This unforeseen event appears to have allowed more successful development of AMD-tolerant and other microbial populations with critical roles in AMD bioremediation, including neutrophilic SRB (nSRB), in this compost bioreactor than in the other two, where the throughput of AMD was not interrupted. This study has

  18. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.

    Science.gov (United States)

    Johnson, D Barrie; Hallberg, Kevin B

    2005-02-01

    The compost bioreactor ("anaerobic cell") components of three composite passive remediation systems constructed to treat acid mine drainage (AMD) at the former Wheal Jane tin mine, Cornwall, UK were studied over a period of 16 months. While there was some amelioration of the preprocessed AMD in each of the three compost bioreactors, as evidenced by pH increase and decrease in metal concentrations, only one of the cells showed effective removal of the two dominant heavy metals (iron and zinc) present. With two of the compost bioreactors, concentrations of soluble (ferrous) iron draining the cells were significantly greater than those entering the reactors, indicating that there was net mobilisation (by reductive dissolution) of colloidal and/or solid-phase ferric iron compounds within the cells. Soluble sulfide was also detected in waters draining all three compost bioreactors which was rapidly oxidised, in contrast to ferrous iron. Oxidation and hydrolysis of iron, together with sulfide oxidation, resulted in reacidification of processed AMD downstream of the compost bioreactors in two of the passive treatment systems. The dominant cultivatable microorganism in waters draining the compost bioreactors was identified, via analysis of its 16S rRNA gene, as a Thiomonas sp. and was capable of accelerating the dissimilatory oxidation of both ferrous iron and reduced sulfur compounds. Sulfate-reducing bacteria (SRB) were also detected, although only in the bioreactor that was performing well were these present in significant numbers. This particular compost bioreactor had been shut down for 10 months prior to the monitoring period due to operational problems. This unforeseen event appears to have allowed more successful development of AMD-tolerant and other microbial populations with critical roles in AMD bioremediation, including neutrophilic SRB (nSRB), in this compost bioreactor than in the other two, where the throughput of AMD was not interrupted. This study has

  19. An evaluation of different bioreactor configurations for continuous bio-ethanol production

    International Nuclear Information System (INIS)

    Ntihuga, Jean Nepomuscene; Senn, Thomas; Gschwind, Peter; Kohlus, Reinhard

    2013-01-01

    Highlights: • Two bioreactor configurations were constructed and compared. • Continuous bioethanol production was performed in both bioreactors. • Plate heat exchanger bioreactor was the best for solid mash fermentation. • Operational power costs of both bioreactors were different in small scale levels. • Further study needed for both bioreactors with optimized parameters. - Abstract: In this preliminary investigation, a so-called Blenke cascade and plate heat exchanger bioreactor configuration were compared in terms of mixing characteristics, contamination free process, operational power costs and overall performance. At room temperature, fermentation was initially started as batch run and switched to continuous operation, when the residual sugars within the reactor were detected to be C ⩽ 1% (g/L). Samples from both configurations were taken and analyzed for ethanol and residual sugar content, as well as for any infection of the fermentation and lactic acid content, respectively. Mixing characteristics were studied by the residence time distribution method. Both geometries behaved as a finite number n of continuous stirred tanks in series, behaving as a plug flow with superimposed axial dispersion. The number of tanks in series n obtained in the plate heat exchanger configuration was 1.5–3 times larger than those in the Blenke cascade. The average ethanol productivity was Q p = 3.07 (g/L h) and Q p = 2.31 (g/L h) for cascade and plate exchanger configuration, respectively. The analysis of operational power costs indicates relevant differences between the two reactors at laboratory scale; however, systems with different types of pumps and viscosities are compared. From an industrial scale point of view, specific operational costs decrease with scale-up, as no mechanical mixing is needed in the fermenters

  20. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.

    Science.gov (United States)

    Costa, Pedro F; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Gomes, Manuela E; Reis, Rui L; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-09-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

  1. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow

    International Nuclear Information System (INIS)

    Costa, Pedro F; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-01-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications. (paper)

  2. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  3. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  4. An operational protocol for facilitating start-up of single-stage autotrophic nitrogen-removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, Ayten Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2013-01-01

    Start-up and operation of single-stage nitritation–anammox sequencing batch reactors (SBRs) for completely autotrophic nitrogen removal can be challenging and far from trivial. In this study, a step-wise procedure is developed based on stoichiometric analysis of the process performance from...

  5. Woodchip bioreactors effectively treat aquaculture effluent

    Science.gov (United States)

    Nutrients, in particular nitrogen and phosphorus, can create eutrophication problems in any watershed. Preventing water quality impairment requires controlling nutrients from both point-source and non-point source discharges. Woodchip bioreactors are one relatively new approach that can be utilized ...

  6. Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12 °C temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kruglova, Antonina; Ahlgren, Pia; Korhonen, Nasti; Rantanen, Pirjo; Mikola, Anna; Vahala, Riku

    2014-11-15

    Pharmaceuticals constitute a well-known group of emerging contaminants with an increasing significance in water pollution. This study focuses on three pharmaceuticals extensively used in Finland and which can be found in environmental waters: ibuprofen, diclofenac and carbamazepine. Biodegradation experiments were conducted in a full-scale Wastewater Treatment Plant (WWTP) and in laboratory-scale Sequencing Batch Reactors (SBRs). The SBRs were operated at 12 °C, with a sludge retention time (SRT) 10–12 d and organic loading rates (OLRs) of 0.17, 0.27 and 0.33 kg BOD{sub 7} m{sup -3}d{sup -1}. Ibuprofen was found to biodegrade up to 99%. The biodegradation rate constants (k{sub biol}) for ibuprofen were calculated for full-scale and laboratory processes as well as under different laboratory conditions and found to differ from 0.9 up to 5.0 l g{sub SS}{sup −1} d{sup −1}. Diclofenac demonstrated an unexpected immediate drop of concentration in three SBRs and partial recovery of the initial concentration in one of the reactors. High fluctuating in diclofenac concentration was presumably caused by removal of this compound under different concentrations of nitrites during development of nitrifying activated sludge. Carbamazepine showed no biodegradation in all the experiments. - Highlights: • The biodegradation of three pharmaceuticals examined under 12 °C conditions. • k{sub biol} constants for ibuprofen proposed for full-scale and laboratory-scale processes. • Influence of OLR on ibuprofen biodegradation was studied. • Removal followed by recovery of diclofenac detected in nitrifying activated sludge.

  7. Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12 °C temperature conditions

    International Nuclear Information System (INIS)

    Kruglova, Antonina; Ahlgren, Pia; Korhonen, Nasti; Rantanen, Pirjo; Mikola, Anna; Vahala, Riku

    2014-01-01

    Pharmaceuticals constitute a well-known group of emerging contaminants with an increasing significance in water pollution. This study focuses on three pharmaceuticals extensively used in Finland and which can be found in environmental waters: ibuprofen, diclofenac and carbamazepine. Biodegradation experiments were conducted in a full-scale Wastewater Treatment Plant (WWTP) and in laboratory-scale Sequencing Batch Reactors (SBRs). The SBRs were operated at 12 °C, with a sludge retention time (SRT) 10–12 d and organic loading rates (OLRs) of 0.17, 0.27 and 0.33 kg BOD 7 m -3 d -1 . Ibuprofen was found to biodegrade up to 99%. The biodegradation rate constants (k biol ) for ibuprofen were calculated for full-scale and laboratory processes as well as under different laboratory conditions and found to differ from 0.9 up to 5.0 l g SS −1 d −1 . Diclofenac demonstrated an unexpected immediate drop of concentration in three SBRs and partial recovery of the initial concentration in one of the reactors. High fluctuating in diclofenac concentration was presumably caused by removal of this compound under different concentrations of nitrites during development of nitrifying activated sludge. Carbamazepine showed no biodegradation in all the experiments. - Highlights: • The biodegradation of three pharmaceuticals examined under 12 °C conditions. • k biol constants for ibuprofen proposed for full-scale and laboratory-scale processes. • Influence of OLR on ibuprofen biodegradation was studied. • Removal followed by recovery of diclofenac detected in nitrifying activated sludge

  8. Evaluation of Productivity of Zymotis Solid-State Bioreactor Based on Total Reactor Volume

    Directory of Open Access Journals (Sweden)

    Oscar F. von Meien

    2002-01-01

    Full Text Available In this work a method of analyzing the performance of solid-state fermentation bioreactors is described. The method is used to investigate the optimal value for the spacing between the cooling plates of the Zymotis bioreactor, using simulated fermentation data supplied by a mathematical model. The Zymotis bioreactor has good potential for those solid-state fermentation processes in which the substrate bed must remain static. The current work addresses two design parameters introduced by the presence of the internal heat transfer plates: the width of the heat transfer plate, which is governed by the amount of heat to be removed and the pressure drop of the cooling water, and the spacing between these heat transfer plates. In order to analyze the performance of the bioreactor a productivity term is introduced that takes into account the volume occupied within the bioreactor by the heat transfer plates. As part of this analysis, it is shown that, for logistic growth kinetics, the time at which the biomass reaches 90 % of its maximum possible value is a good estimate of the optimum harvesting time for maximizing productivity. Application of the productivity analysis to the simulated fermentation results suggests that, with typical fast growing fungi ( = 0.324 h–1, the optimal spacing between heat transfer plates is of the order of 6 cm. The general applicability of this approach to evaluate the productivity of solid-state bioreactors is demonstrated.

  9. An operation protocol for facilitating start-up of single-stage autotrophic nitrogen removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2012-01-01

    Start-up and operation of single-stage nitritation/anammox reactor employing complete autotrophic nitrogen can be difficult. Keeping the performance criteria and monitoring the microbial community composition may not be easy or fast enough to take action on time. In this study, a control strategy...

  10. Ultra-micro aqua bioreactor systems for modifying edible oils and fats; Shokuyo yushi kaishitsuyo chobisuikei bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Kurashige, J. [Ajinomoto Co. Inc., Tokyo (Japan)

    1995-10-20

    Practical solvent-free bioreactor systems using immobilized lipases have been constructed to convert palm oil to high quality foodstuff oil without quality deterioration through hydrolysis of triglycerides in oil. To avoid hydrolysis, moisture level of substrate oil has to be maintained at less than the solubility level of water in oil, which we call ultra-micro aqueous level. On the other hand, lipase is well known to manifest its activities mostly at the interface between oil and water phases. To make lipase manifest its activities at the ultra-micro aqueous oil phase, the novel bioreactor systems with the new immobilizing method of lipase together with activator on-to hydrophylic carriers, and without a drying procedure have been developed. These biochemical accomplishments show high promises for efficient convention of edible fats and oils to highly valuable foodstuff, which can not be attained by means of chemical or physical methods. 29 refs., 9 figs., 4 tabs.

  11. BIOREACTOR WITH LID FOR EASY ACCESS TO INCUBATION CAVITY

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible.......There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible....

  12. Efficacy of Bioremediation of Agricultural Runoff Using Bacterial Communities in Woodchip Bioreactors.

    Science.gov (United States)

    Mortensen, Z. H.; Leandro, M.; Silveus, J. M.

    2016-12-01

    California's agricultural sector is fundamental in the State's economic growth and is responsible for supplying a large portion of the country's produce. In order to meet the market's demand for crop production the region's agrarian landscape requires an abundance of nutrient rich irrigation. The resultant agricultural effluent is a source of increased nutrient content in California's watershed and groundwater systems, promoting eutrophication and contributing to negative impacts on local ecosystems and human health. Previous studies have examined the denitrification potential of woodchip bioreactors. However, research has been deficient regarding specific variables that may affect the remediation process. To evaluate the efficacy of woodchip bioreactors in remediating waters containing high nitrate concentrations, denitrification rates were examined and parameters such as temperature, laminar flow, and hydraulic residence times were measured to identify potential methods for increasing denitrification efficiency. By measuring the rate of denitrification in a controlled environment where potentially confounding factors can be manipulated, physical components affecting the efficiency of woodchip bioreactors were examined to assess effects. Our research suggests the implementation of woodchip bioreactors to treat agricultural runoff would significantly reduce the concentration of nitrate in agricultural effluent and contribute to the mitigation of negative impacts associated with agricultural irrigation. Future research should focus on the ability of woodchip bioreactors to successfully remediate other agricultural pollutants, such as phosphates and pesticides, to optimize the efficiency of the bioremediation process.

  13. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  14. Industrialization of a perfusion bioreactor: Prime example of a non-straightforward process.

    Science.gov (United States)

    Talò, G; Turrisi, C; Arrigoni, C; Recordati, C; Gerges, I; Tamplenizza, M; Cappelluti, A; Riboldi, S A; Moretti, M

    2018-02-01

    Bioreactors are essential enabling technologies for the translation of advanced therapies medicinal products from the research field towards a successful clinical application. In order to speed up the translation and the spread of novel tissue engineering products into the clinical routine, tissue engineering bioreactors should evolve from laboratory prototypes towards industrialized products. In this work, we thus challenged the industrialization process of a novel technological platform, based on an established research prototype of perfusion bioreactor, following a GMP-driven approach. We describe how the combination of scientific background, intellectual property, start-up factory environment, wise industrial advice in the biomedical field, design, and regulatory consultancy allowed us to turn a previously validated prototype technology into an industrial product suitable for serial production with improved replicability and user-friendliness. The solutions implemented enhanced aesthetics, ergonomics, handling, and safety of the bioreactor, and they allowed compliance with the fundamental requirements in terms of traceability, reproducibility, efficiency, and safety of the manufacturing process of advanced therapies medicinal products. The result is an automated incubator-compatible device, housing 12 disposable independent perfusion chambers for seeding and culture of any perfusable tissue. We validated the cell seeding process of the industrialized bioreactor by means of the Design of Experiment approach, whilst the effectiveness of perfusion culture was evaluated in the context of bone tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review

    OpenAIRE

    Ensano, Benny M. B.; Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo; de Luna, Mark D. G.; Ballesteros, Florencio C.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  16. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    OpenAIRE

    Benny Marie B. Ensano; Laura Borea; Vincenzo Naddeo; Vincenzo Belgiorno; Mark Daniel G. de Luna; Mark Daniel G. de Luna; Florencio C. Ballesteros, Jr.; Florencio C. Ballesteros, Jr.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  17. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  18. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  19. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  20. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  1. Production of betalaines by Myrtillocactus cell cultures. Passage from heterotrophic state to autotrophic state with Asparagus cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Bulard, C; Mary, J; Chaumont, D; Gudin, C

    1982-11-01

    Myrtillocactus tissue cultures are grown from the epicotyl of young plantlets. With an appropriate growing medium it is possible, after transfer of fragments of these cultures to a liquid environment, to obtain dissociation and proliferation of cells. The production of betalaic pigments is induced in solid surroundings by adjustement of the growing medium composition and can be maintained in a liquid environment. The multiplication of pigmented cells in suspension may thus be obtained. The conversion of Asparagus cell suspensions from the heterotrophic state (use of lactose as source of carbon) to the autotrophic state (carbon supplied by CO/sub 2/) is obtained by a gradual reduction in the sugar concentration of the medium combined with a rise in the CO/sub 2/ content of the gas mixture atmosphere injected into the cultivator. The passage to the autotrophic state of a Myrtillocactus suspension would enable the production conditions of a metabolite (Betalaine) to be studied by micro-algae culture techniques.

  2. Selection of controlled variables in bioprocesses. Application to a SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    Selecting the right controlled variables in a bioprocess is challenging since the objectives of the process (yields, product or substrate concentration) are difficult to relate with a given actuator. We apply here process control tools that can be used to assist in the selection of controlled var...... variables to the case of the SHARON-Anammox process for autotrophic nitrogen removal....

  3. Analysis of the efficiency of recombinant Escherichia coli strain cultivation in a gas-vortex bioreactor.

    Science.gov (United States)

    Savelyeva, Anna V; Nemudraya, Anna A; Podgornyi, Vladimir F; Laburkina, Nadezhda V; Ramazanov, Yuriy A; Repkov, Andrey P; Kuligina, Elena V; Richter, Vladimir A

    2017-09-01

    The levels of aeration and mass transfer are critical parameters required for an efficient aerobic bioprocess, and directly depend on the design features of exploited bioreactors. A novel apparatus, using gas vortex for aeration and mass transfer processes, was constructed in the Center of Vortex Technologies (Novosibirsk, Russia). In this paper, we compared the efficiency of recombinant Escherichia coli strain cultivation using novel gas-vortex technology with conventional bioprocess technologies such as shake flasks and bioreactors with mechanical stirrers. We demonstrated that the system of aeration and agitation used in gas-vortex bioreactors provides 3.6 times higher volumetric oxygen transfer coefficient in comparison with mechanical bioreactor. The use of gas-vortex bioreactor for recombinant E. coli strain cultivation allows to increase the efficiency of target protein expression at 2.2 times for BL21(DE3)/pFK2 strain and at 3.5 times for auxotrophic C600/pRT strain (in comparison with stirred bioreactor). © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  4. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  5. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation.

    Science.gov (United States)

    Di Trapani, Daniele; Di Bella, Gaetano; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2014-06-01

    Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the pore fouling tendency in the membrane module of MB-MBR system. On the contrary, the MBR pilot, even showing a lower irreversible cake deposition, was characterized by a higher pore fouling tendency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Membrane bioreactors for enzymatic hydrolysis of lactose; Idrolisi enzimatica del lattosio con bioreattori a membrana

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M; Pilloton, R [ENEA, Casaccia (Italy). Area Energia e Innovazione; Pontecorvo, M; Mignogna, G; Fortunato, A; Beone, F

    1993-03-01

    Bioreactor systems obtained by cell or enzyme immobilization offer many advantages compared with native enzyme, intact cell systems or other biocatalysts. Thus, many attempts have been made to design and use new types of bioreactor systems in order to improve performance, enhance productivity and reduce environmental impacts. Membrane bioreactors, obtained by physical immobilization of biocatalysts, in polymeric membrane support, offer such practical advantages as: a continuous separation and transformation process with low product inhibition and suitable hydraulic configuration (backflushing recycling, ultrafiltrating). Specific membrane modules (Amicon VitaFiber), for bioreactor applications are being commercialized. Beta-galctosidase enzyme has successfully been immobilized in a hollow fiber and in ceramic modules to hydrolyze lactose in waste whey. This technical report presents the general properties and performances (permeability, washing procedures, hydraulic configurations, physical and chemical properties) of both, polymeric and ceramic supports, enzyme kinetics, physical and covalent immobilization, mathematical model of the bioreactor and on-line process monitoring.

  7. Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2017-09-01

    Full Text Available Sulfate-rich mine water must be treated before it is released into natural water bodies. We tested ethanol as substrate in bioreactors designed for biological sulfate removal from mine water containing up to 9 g L−1 sulfate, using granular sludge from an industrial waste water treatment plant as inoculum. The pH, redox potential, and sulfate and sulfide concentrations were measured twice a week over a maximum of 171 days. The microbial communities in the bioreactors were characterized by qPCR and high throughput amplicon sequencing. The pH in the bioreactors fluctuated between 5.0 and 7.7 with the highest amount of up to 50% sulfate removed measured around pH 6. Dissimilatory sulfate reducing bacteria (SRB constituted only between 1% and 15% of the bacterial communities. Predicted bacterial metagenomes indicated a high prevalence of assimilatory sulfate reduction proceeding to formation of l-cystein and acetate, assimilatory and dissimilatory nitrate reduction, denitrification, and oxidation of ethanol to acetaldehyde with further conversion to ethanolamine, but not to acetate. Despite efforts to maintain optimal conditions for biological sulfate reduction in the bioreactors, only a small part of the microorganisms were SRB. The microbial communities were highly diverse, containing bacteria, archaea, and fungi, all of which affected the overall microbial processes in the bioreactors. While it is important to monitor specific physicochemical parameters in bioreactors, molecular assessment of the microbial communities may serve as a tool to identify biological factors affecting bioreactor functions and to optimize physicochemical attributes for ideal bioreactor performance.

  8. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  9. Construction and characterization of a novel vocal fold bioreactor.

    Science.gov (United States)

    Zerdoum, Aidan B; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-08-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.

  10. Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions

    Directory of Open Access Journals (Sweden)

    Nora Freyer

    2018-03-01

    Full Text Available The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP (p < 0.05 and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP (p < 0.0001, indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP (p < 0.05, suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.

  11. Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions.

    Science.gov (United States)

    Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Gerstmann, Florian; Storch, Lisa; Damm, Georg; Seehofer, Daniel; Foster Harris, Jennifer; Iyer, Rashi; Schubert, Frank; Zeilinger, Katrin

    2018-03-15

    The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP ( p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP ( p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP ( p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.

  12. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreactor for cartilage tissue engineering.

    Science.gov (United States)

    Cinbiz, Mahmut N; Tığli, R Seda; Beşkardeş, Işil Gerçek; Gümüşderelioğlu, Menemşe; Colak, Uner

    2010-11-01

    In this study, computational fluid dynamics (CFD) analysis of a rotating-wall perfused-vessel (RWPV) bioreactor is performed to characterize the complex hydrodynamic environment for the simulation of cartilage development in RWPV bioreactor in the presence of tissue-engineered cartilage constructs, i.e., cell-chitosan scaffolds. Shear stress exerted on chitosan scaffolds in bioreactor was calculated for different rotational velocities in the range of 33-38 rpm. According to the calculations, the lateral and lower surfaces were exposed to 0.07926-0.11069 dyne/cm(2) and 0.05974-0.08345 dyne/cm(2), respectively, while upper surfaces of constructs were exposed to 0.09196-0.12847 dyne/cm(2). Results validate adequate hydrodynamic environment for scaffolds in RWPV bioreactor for cartilage tissue development which concludes the suitability of operational conditions of RWPV bioreactor. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. A review of some parameters involved in fluidized bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.C. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia); Raper, J.A. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia)

    1996-02-01

    Three-phase fluidized bed bioreactors have advantages over conventional chemical reaction systems. There is a lack of agreement over most major operational conditions, and a wide range of design variables are open to question. A large body of recent work in the field has been reviewed, with a degree of historical comparison and discussion. It has been found that aspects of fluidized bed biofilm reactors of vital importance include: choice of solid media, gas and liquid loadings, bacterial type and reactor mechanical design. A large proportion of the work in the field of three-phase fluidization is non-biologically specific, or not tested on a bacterially inoculated system. The majority of three-phase fluidized bed bioreactor work is in the field of water treatment. Although this work has highlighted the potential for use of bio-fluidized beds for this application, there are still specific problems hinderin the large scale industrial acceptance of three-phase fluidized bed bioreactors. (orig.)

  14. Membrane bioreactors' potential for ethanol and biogas production: a review.

    Science.gov (United States)

    Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J

    2013-01-01

    Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.

  15. Biogas Production from Citrus Waste by Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2014-08-01

    Full Text Available Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR, the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor.

  16. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    Science.gov (United States)

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  17. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    Science.gov (United States)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  18. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration.

    Science.gov (United States)

    Colon, G; Sager, J C

    2001-01-01

    The CELSS resource recovery system, which is a waste-processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass, by means of culture of rumen bacteria, generates organic compounds such as volatile fatty acids (VFA) (acetic, propionic, butyric) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure-driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments was carried out using a 10,000 molecular weight cutoff (MWCO) tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as: the permeate flux, VFA and nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicated that the permeate flux, VFA, and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 and 1.0 m/s, applied pressure when these are lower than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 and 34,880 mg/L. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrane surface. It was also found that the

  19. Aujeszky's disease virus production in disposable bioreactor

    Indian Academy of Sciences (India)

    Madhu

    1Laboratory for Cell Culture Technology and Biotransformations, 2Laboratory for ... A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring ... consisted of 95% of air + 5% of CO2 using gas mixing module.

  20. CULTIVATION OF HUMAN LIVER CELLS AND ADIPOSE-DERIVED MESENCHYMAL STROMAL CELLS IN PERFUSION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    Yu. В. Basok

    2018-01-01

    Full Text Available Aim: to show the progress of the experiment of cultivation of human liver cells and adipose-derived mesenchymal stromal cells in perfusion bioreactor.Materials and methods. The cultivation of a cell-engineered construct, consisting of a biopolymer microstructured collagen-containing hydrogel, human liver cells, adipose-derived mesenchymal stromal cells, and William’s E Medium, was performed in a perfusion bioreactor.Results. On the 7th day large cells with hepatocyte morphology – of a polygonal shape and a centrally located round nucleus, – were present in the culture chambers of the bioreactor. The metabolic activity of hepatocytes in cell-engineered constructs was confi rmed by the presence of urea in the culture medium on the seventh day of cultivation in the bioreactor and by the resorption of a biopolymer microstructured collagen-containing hydrogel.

  1. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates

    DEFF Research Database (Denmark)

    Chen, Z-W; Liu, Y-Y; Wu, J-F

    2007-01-01

    The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial......) of bacteria and archaea were 4.59 x 10(9) and 6.68 x 10(5), respectively. Bacterial strains representing Acidithiobacillus, Leptospirillum, and Sulfobacillus were isolated from the bioreactors. To study sulfur oxidation in the reactors, pairs of new PCR primers were designed for the detection of sulfur...... oxygenase reductase (SOR) genes. Three sor-like genes, namely, sor (Fx), sor (SA), and sor (SB) were identified from metagenomic DNAs of the bioreactors. The sor (Fx) is an inactivated SOR gene and is identical to the pseudo-SOR gene of Ferroplasma acidarmanus. The sor (SA) and sor (SB) showed...

  2. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    Science.gov (United States)

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  4. Wastewater treatments by membrane bioreactors (MBR); Bioreactores de membrana (MBR) para la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Guardino Ferre, R.

    2001-07-01

    Wastewater treatments by membrane bioreactors (MBR), are a good alternative of treatment to the conventional processes when wish to obtain very high quality of the treated water or to try high load contaminants in low flow. Simultaneously, the article explains the significant reduction of the wastewater treatment plant space, eliminating the secondary septic tank. (Author) 7 refs.

  5. Modeling of Pharmaceutical Biotransformation by Enriched Nitrifying Culture under Different Metabolic Conditions

    DEFF Research Database (Denmark)

    Xu, Yifeng; Chen, Xueming; Yuan, Zhiguo

    2018-01-01

    Pharmaceutical removal could be significantly enhanced through cometabolism during nitrification processes. To date, pharmaceutical biotransformation models have not considered the formation of transformation products associated with the metabolic type of microorganisms. Here we report a comprehe......Pharmaceutical removal could be significantly enhanced through cometabolism during nitrification processes. To date, pharmaceutical biotransformation models have not considered the formation of transformation products associated with the metabolic type of microorganisms. Here we report...... a comprehensive model to describe and evaluate the biodegradation of pharmaceuticals and the formation of their biotransformation products by enriched nitrifying cultures. The biotransformation of parent compounds was linked to the microbial processes via cometabolism induced by ammonium-oxidizing bacteria (AOB......) growth, metabolism by AOB, cometabolism by heterotrophs (HET) growth, and metabolism by HET in the model framework. The model was calibrated and validated using experimental data from pharmaceutical biodegradation experiments at realistic levels, taking two pharmaceuticals as examples, i.e., atenolol...

  6. Differentiation of cartilaginous anlage in entire embryonic mouse limbs cultured in a rotating bioreactor.

    Science.gov (United States)

    Duke, P.; Oakley, C.; Montufar-Solis, D.

    The embryonic mammalian limb is sensitive both in vivo and in vitro to changes in gravitational force. Hypergravity of centrifugation and microgravity of space decreased size of elements due to precocious or delayed chondrogenesis respectively. In recapitulating spaceflight experiments, premetatarsals were cultured in suspension in a low stress, low sheer rotating bioreactor, and found to be shorter than those cultured in standard culture dishes, and cartilage development was delayed. This study only measured length of the metatarsals, and did not account for possible changes in width and/or in form of the skeletal elements. Shorter cartilage elements in limbbuds cultured in the bioreactor may be due to the ability of the system to reproduce a more in vivo 3D shape than traditional organ cultures. Tissues subjected to traditional organ cultures become flattened by their own weight, attachment to the filter, and restrictions imposed by nutrient diffusion. The purpose of the current experiment was to determine if entire limb buds could be successfully cultured in the bioreactor, and to compare the effects on 3D shape with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were placed either in the bioreactor, in Trowell culture, or fixed as controls. Limbbuds were cultured for six days, fixed, and processed either as whole mounts or embedded for histology. Qualitative analysis revealed that the Trowell culture specimens were flattened, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections of limbbuds from both types of cultures had excellent cartilage differentiation, with apparently more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Morphometric quantitation of the cartilaginous elements for comparisons of the two culture systems was complicated due to some limb buds fusing together during culture. This problem was especially noticeable in the younger limbs, and

  7. Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors.

    Science.gov (United States)

    De Jesus, Maria; Wurm, Florian M

    2011-06-01

    Mammalian cells in bioreactors as production host are the focus of this review. We wish to briefly describe today's technical status and to highlight emerging trends in the manufacture of recombinant therapeutic proteins, focusing on Chinese hamster ovary (CHO) cells. CHO cells are the manufacturing host system of choice for more than 70% of protein pharmaceuticals on the market [21]. The current global capacity to grow mammalian cells in bioreactors stands at about 0.5 million liters, whereby the largest vessels can have a working volume of about 20,000l. We are focusing in this article on the upstream part of protein manufacturing. Over the past 25 years, volumetric yields for recombinant cell lines have increased about 20-fold mainly as the result of improvements in media and bioprocess design. Future yield increases are expected to come from improved gene delivery methods, from improved, possibly genetically modified host systems, and from further improved bioprocesses in bioreactors. Other emerging trends in protein manufacturing that are discussed include the use of disposal bioreactors and transient gene expression. We specifically highlight here current research in our own laboratories. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Membrane filtration device for studying compression of fouling layers in membrane bioreactors.

    Directory of Open Access Journals (Sweden)

    Mads Koustrup Jørgensen

    Full Text Available A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology's ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation.

  9. Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Jamaleddine, E. [McGill Univ., Montreal, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Composting is once again gaining interest among ecological engineers in view of greener industrial and residential activities. Uniform composting is needed to ensure decomposition and to keep the whole system at the same composting stage. A homogeneous temperature must be maintained throughout the media. A bioreactor design consisting of a heater core made of copper tubing was designed and tested. Two four-inch holes were made at the top and bottom of the barrel to allow air to flow through the system and promote aerobic composting. Once composting began and temperature increased, the water began to flow through the copper piping and the core heat was distributed throughout the medium. Three thermocouples were inserted at different heights on a 200 litre plastic barrel fitted with the aforementioned apparatus. Temperature variations were found to be considerably lower when the apparatus was operated with the heat redistribution system, enabling uniform composting, accelerating the process and reducing the risks of pathogenic or other contaminants remaining active in the barrels.

  10. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  11. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL

    Institute of Scientific and Technical Information of China (English)

    TAYLOR Shauna M; HE Yiliang; ZHAO Bin; HUANG Jue

    2009-01-01

    Bacterium Providencia rettgeri YL was found to exhibit an unusual ability to heterotrophically nitrify and aerobically denitrify various concentrations of ammonium (NH4+-N). In order to further analyze its removal ability, several experiments were conducted to identify the growth and ammonium removal response in different carbon to nitrogen (C/N) mass ratios, shaking speeds, temperatures, ammonium concentrations and to qualitatively verify the production of nitrogen gas using gas chromatography techniques. Results showed that under optimum conditions (C/N 10, 30℃, 120 r/min), YL can significantly remove low and high concentrations of ammonium within 12 to 48 h of growth. The nitrification products hydroxylamine (NH2OH), nitrite (NO2-) and nitrate (NO3-) as well as the denitrification product, nitrogen gas (N2), were detected under completely aerobic conditions.

  12. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation.

    Science.gov (United States)

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin

    2016-04-01

    Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics.

  13. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.

    Science.gov (United States)

    Hallberg, Kevin B; Johnson, D Barrie

    2005-02-01

    Mine drainage waters vary considerably in the range and concentration of heavy metals they contain. Besides iron, manganese is frequently present at elevated concentrations in waters draining both coal and metal mines. Passive treatment systems (aerobic wetlands and compost bioreactors) are designed to remove iron by biologically induced oxidation/precipitation. Manganese, however, is problematic as it does not readily form sulfidic minerals and requires elevated pH (>8) for abiotic oxidation of Mn (II) to insoluble Mn (IV). As a result, manganese removal in passive remediation systems is often less effective than removal of iron. This was found to be the case at the pilot passive treatment plant (PPTP) constructed to treat water draining the former Wheal Jane tin mine in Cornwall, UK, where effective removal of manganese occurred only in one of the three rock filter components of the composite systems over a 1-year period of monitoring. Water in the two rock filter systems where manganese removal was relatively poor was generally system. These differences in water chemistry and manganese removal were due to variable performances in the compost bioreactors that feed the rock filter units in the composite passive systems at Wheal Jane. An alternative approach for removing soluble manganese from mine waters, using fixed bed bioreactors, was developed. Ferromanganese nodules (about 2 cm diameter), collected from an abandoned mine adit in north Wales, were used to inoculate the bioreactors (working volume ca. 700 ml). Following colonization by manganese-oxidizing microbes, the aerated bioreactor catalysed the removal of soluble manganese, via oxidation of Mn (II) and precipitation of the resultant Mn (IV) in the bioreactor, in synthetic media and mine water from the Wheal Jane PPTP. Such an approach has potential application for removing soluble Mn from mine streams and other Mn-contaminated water courses.

  14. Dissipation of atrazine, enrofloxacin, and sulfamethazine in wood chip bioreactors and impact on denitrification

    Science.gov (United States)

    Wood chip bioreactors are receiving increasing attention as a means of reducing nitrate in subsurface tile drainage systems. Agrochemicals in tile drainage water entering wood chip bioreactors can be retained or degraded and may impact denitrification. The degradation of 5 mg L-1 atrazine, enrofloxa...

  15. Sequential dark-photo fermentation and autotrophic microalgal growth for high-yield and CO{sub 2}-free biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Chen, Chun-Yen [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Lee, Chi-Mei [Department of Environmental Engineering, National Chung Hsing University, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Center for Biosciences and Biotechnology, National Cheng Kung University, Tainan (China)

    2010-10-15

    Dark fermentation, photo fermentation, and autotrophic microalgae cultivation were integrated to establish a high-yield and CO{sub 2}-free biohydrogen production system by using different feedstock. Among the four carbon sources examined, sucrose was the most effective for the sequential dark (with Clostridium butyricum CGS5) and photo (with Rhodopseudomonas palutris WP3-5) fermentation process. The sequential dark-photo fermentation was stably operated for nearly 80 days, giving a maximum H{sub 2} yield of 11.61 mol H{sub 2}/mol sucrose and a H{sub 2} production rate of 673.93 ml/h/l. The biogas produced from the sequential dark-photo fermentation (containing ca. 40.0% CO{sub 2}) was directly fed into a microalga culture (Chlorella vulgaris C-C) cultivated at 30 C under 60 {mu}mol/m{sup 2}/s illumination. The CO{sub 2} produced from the fermentation processes was completely consumed during the autotrophic growth of C. vulgaris C-C, resulting in a microalgal biomass concentration of 1999 mg/l composed mainly of 48.0% protein, 23.0% carbohydrate and 12.3% lipid. (author)

  16. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor.

    Science.gov (United States)

    Cho, Sunja; Fujii, Naoki; Lee, Taeho; Okabe, Satoshi

    2011-01-01

    Up-flow oxygen-controlled biofilm reactors equipped with a non-woven fabric support were used as a single reactor system for autotrophic nitrogen removal based on a combined partial nitrification and anaerobic ammonium oxidation (anammox) reaction. The up-flow biofilm reactors were initiated as either a partial nitrifying reactor or an anammox reactor, respectively, and simultaneous partial nitrification and anammox was established by careful control of the aeration rate. The combined partial nitrification and anammox reaction was successfully developed in both biofilm reactors without additional biomass inoculation. The reactor initiated as the anammox reactor gave a slightly higher and more stable mean nitrogen removal rate of 0.35 (±0.19) kg-N m(-3) d(-1) than the reactor initiated as the partial nitrifying reactor (0.23 (±0.16) kg-N m(-3) d(-1)). FISH analysis revealed that the biofilm in the reactor started as the anammox reactor were composed of anammox bacteria located in inner anoxic layers that were surrounded by surface aerobic AOB layers, whereas AOB and anammox bacteria were mixed without a distinguishable niche in the biofilm in the reactor started as the partial nitrifying reactor. However, it was difficult to efficiently maintain the stable partial nitrification owing to inefficient aeration in the reactor, which is a key to development of the combined partial nitrification and anammox reaction in a single biofilm reactor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep

    DEFF Research Database (Denmark)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming

    2012-01-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model.......To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model....

  18. Unraveling the Long-Term Effects of Cr(VI on the Performance and Microbial Community of Nitrifying Activated Sludge System

    Directory of Open Access Journals (Sweden)

    Xingang Wang

    2017-11-01

    Full Text Available The long-term effects of different influent Cr(VI concentrations (0–0.5 mg L−1 on the nitrification activities and microbial community structures of nitrifying activated sludge system were investigated in this study. Results showed that the performance of ammonia oxidation was significantly inhibited, and the effluent concentration of ammonia nitrogen (NH4+-N increased markedly when the influent Cr(VI loading was equal or greater than 0.2 mg L−1. The specific oxygen utilization rate (SOUR, specific ammonium oxidation rate (SAOR, and specific nitrite oxidation rate (SNOR of the system decreased from 53.24, 6.31, and 7.33 mg N g−1 VSS h−1 to 18.17, 1.68, and 2.88 mg N g−1 VSS h−1, respectively, with an increase of Cr(VI concentration from 0 to 0.5 mg L−1. The protein/polysaccharide (PN/PS ratio increased with the increasing Cr(VI concentration, indicating that excessive PN secreted by microorganisms was conducive to resisting the toxicity of Cr(VI. High-throughput sequencing revealed that the relative abundance of ammonia-oxidizing bacteria (Nitrospira and nitrite-oxidizing bacteria (Nitrosomonas and Nitrosospira all decreased with the increasing Cr(VI concentration, and ammonia-oxidizing bacteria were more sensitive to heavy metal toxicity than nitrite-oxidizing bacteria. The activities of nitrifying activated sludge system could not be completely recovered after a 30-d recovery process.

  19. Use of G3-DHS Bioreactor for Secondary Treatment of Septic Tank Desludging Wastewater

    Directory of Open Access Journals (Sweden)

    Izarul Machdar

    2016-01-01

    Full Text Available Study was done for the use of the third-generation of downflow hanging sponge (G3-DHS bioreactor for secondary treatment of septic tank desludging wastewater. The main objective of this study was to evaluate the prospective system of G3-DHS bioreactor to be applied in Indonesia. During experiment, the G3-DHS bioreactor kept a relatively high dissolved oxygen concentration under natural aeration. At a relatively short hydraulic retention (HRT of 3 h, the G3-DHS bioreactor could remove up to 21% (SD 15% of total COD, 21% (SD = 7% of filtered-COD, 58% (SD = 24% of unfiltered-BOD, and 33% (SD = 24% of ammonium removal. The final effluent had an unfiltered-BOD of only 46 mg.L-1 (SD = 20 mg.L-1 that it was below the Indonesian standard (unfiltered-BOD = 100 mg.L-1 for thresholds of domestic wastewater treatment plants effluent.

  20. Mechanobiologic Research in a Microgravity Environment Bioreactor

    Science.gov (United States)

    Guidi, A.; Dubini, G.; Tominetti, F.; Raimondi, M.

    A current problem in tissue culturing technology is the unavailability of an effective Bioreactor for the in vitro cultivation of cells and explants. It has, in fact, proved extremely difficult to promote the high-density three-dimensional in vitro growth of human tissues that have been removed from the body and deprived of their normal in vivo vascular sources of nutrients and gas exchange. A variety of tissue explants can be maintained for a short period of time on a supportive collagen matrix surrounded by culture medium. But this system provides only limited mass transfer of nutrients and wastes through the tissue, and gravity-induced sedimentation prevents complete three- dimensional cell-cell and cell-matrix interactions. Several devices presently on the market have been used with only limited success since each has limitations, which restrict usefulness and versatility. Further, no Bioreactor or culture vessel is known that will allow for unimpeded growth of three dimensional cellular aggregates or tissue. Extensive research on the effect of mechanical stimuli on cell metabolism suggests that tissues may respond to mechanical stimulation via loading-induced flow of the interstitial fluids. During the culture, cells are subject to a flow of culture medium. Flow properties such as flow field, flow regime (e.g. turbulent or laminar), flow pattern (e.g. circular), entity and distribution of the shear stress acting on the cells greatly influence fundamental aspects of cell function, such as regulation and gene expression. This has been demonstrated for endothelial cells and significant research efforts are underway to elucidate these mechanisms in various other biological systems. Local fluid dynamics is also responsible of the mass transfer of nutrients and catabolites as well as oxygenation through the tissue. Most of the attempts to culture tissue-engineered constructs in vitro have utilized either stationary cultures or systems generating relatively small

  1. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters : The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor,

  2. Osmotic membrane bioreactor for phenol biodegradation under continuous operation

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, Prashant; Loh, Kai-Chee, E-mail: chelohkc@nus.edu.sg

    2016-03-15

    Highlights: • Osmotic membrane bioreactor was used for phenol biodegradation in continuous mode. • Extractant impregnated membranes were used to alleviate substrate inhibition. • Phenol removal was achieved through both biodegradation and membrane rejection. • Phenol concentrations up to 2500 mg/L were treated at HRT varying in 2.8–14 h. • A biofilm removal strategy was formulated to improve bioreactor sustainability. - Abstract: Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600–2000 mg/L, and also at spiked concentrations of 2500 mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5–6 days at removal rates varying between 2000 and 5500 mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2–7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4 h. A washing cycle, comprising 1 h osmotic backwashing using 0.5 M NaCl and 2 h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500 cm{sup −1}, 1450–1450 cm{sup −1} and 1200–1000 cm{sup −1}, indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater.

  3. A CFD model for determining mixing and mass transfer in a high power agitated bioreactor

    DEFF Research Database (Denmark)

    Bach, Christian; Albæk, Mads O.; Stocks, Stuart M.

    performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was found to be most efficiently described by using the k-ε model with regards...... simulations, and the overall mass transfer coefficient was found to be in accordance with experimental data. This work illustrates the possibility of predicting the hydrodynamic performance of an agitated bioreactor using validated CFD models. These models can be applied in the testing of new bioreactor...

  4. Validation of computational non-Newtonian fluid model for membrane bioreactor

    DEFF Research Database (Denmark)

    Sørensen, Lasse; Bentzen, Thomas Ruby; Skov, Kristian

    2015-01-01

    Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool for optimiz......Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool...

  5. Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds.

    Science.gov (United States)

    Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H

    1998-03-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.

  6. Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes.

    Science.gov (United States)

    Lü, Shuanghong; Liu, Sheng; He, Wenjun; Duan, Cuimi; Li, Yanmin; Liu, Zhiqiang; Zhang, Ye; Hao, Tong; Wang, Yanmeng; Li, Dexue; Wang, Changyong; Gao, Shaorong

    2008-09-01

    Autogenic embryonic stem cells established from somatic cell nuclear transfer (SCNT) embryos have been proposed as unlimited cell sources for cell transplantation-based treatment of many genetic and degenerative diseases, which can eliminate the immune rejection that occurs after transplantation. In the present study, pluripotent nuclear transfer ES (NTES) cell lines were successfully established from different strains of mice. One NTES cell line, NT1, with capacity of germline transmission, was used to investigate in vitro differentiation into cardiomyocytes. To optimize differentiation conditions for mass production of embryoid bodies (NTEBs) from NTES cells, a slow-turning lateral vessel (STLV) rotating bioreactor was used for culturing the NTES cells to produce NTEBs compared with a conventional static cultivation method. Our results demonstrated that the NTEBs formed in STLV bioreactor were more uniform in size, and no large necrotic centers with most of the cells in NTEBs were viable. Differentiation of the NTEBs formed in both the STLV bioreactor and static culture into cardiomyocytes was induced by ascorbic acid, and the results demonstrated that STLV-produced NTEBs differentiated into cardiomyocytes more efficiently. Taken together, our results suggested that STLV bioreactor provided a more ideal culture condition, which can facilitate the formation of better quality NTEBs and differentiation into cardiomyocytes more efficiently in vitro.

  7. Solvent Fermentation From Palm Oil Mill Effluent Using Clostridium acetobutylicum In Oscillatory Flow Bioreactor

    International Nuclear Information System (INIS)

    Takriff, M.S.; Masngut, N.; Kadhum, A.A.H.; Kalil, M.S.; Mohammad, A.W.

    2009-01-01

    Acetone-butanol-ethanol (ABE) fermentation from Palm Oil Mill Effluent (POME) by C. acetobutylicum NCIMB 13357 in an oscillatory flow bioreactor was investigated. Experimental works were conducted in a U-shaped stainless steel oscillatory flow bioreactor at oscillation frequency between 0.45-0.78 Hz and a constant amplitude of 12.5 mm. Fermentations were carried out for 72 hr at 35 degree Celsius using palm oil mill effluent and reinforced clostridia medium as a growth medium in batch culture. Result of this investigation showed that POME is a viable media for ABE fermentation and oscillatory flow bioreactor has an excellent potential as an alternative fermentation device. (author)

  8. The Effect of Aluminium on Antibacterial Properties and the Content of Some Fatty Acids in Microalgae, Chlorella vulgaris Beijernick, under Heterotrophic and Autotrophic Conditions

    Directory of Open Access Journals (Sweden)

    Hossein Abbaspour

    2017-01-01

    Full Text Available Microalgae are a group of organisms, which have a significant potential for industrial applications. These algae contain large amounts of lipids compounds that are beneficial to health, have antibacterial properties, and their extracted oil can be used for biofuel. In this study, microalgae Chlorella vulgaris Beijernick was grown in the culture medium BG-11 containing aluminium (AlCl3 under autotrophic and heterotrophic conditions. In each case, survival and growth, dry weight, internal aluminium content of the sample, antibacterial properties, the content of fatty acids accumulated in the algae and secreted into the culture medium in the logarithmic growth phase were studied. Aluminium significantly increased (P < .05 growth and dry weight in autotrophic treatment compared to the heterotrophic one. Most antibacterial properties were observed in methanol extracts of heterotrophic treatments containing 0.05% glucose. Aluminium also decreased fatty acids accumulation in the algae and increased fatty acids excretion into the culture medium in heterotrophic treatment compared to the autotrophic treatment. Survival of the sample was maintained in heterotrophic conditions and showed growth without lag phase, which is indicative of rapid acclimation of organisms in heterotrophic conditions. It seems that the mentioned characteristics make the single-celled green algae Chlorella vulgaris more efficient in different ways.

  9. Comparative analysis of top-lit bubble column and gas-lift bioreactors for microalgae-sourced biodiesel production

    International Nuclear Information System (INIS)

    Seyed Hosseini, Nekoo; Shang, Helen; Ross, Gregory M.; Scott, John Ashley

    2016-01-01

    Highlights: • Top-lit gas-lift and bubble columns were studied as deep algal cultivation tank. • A theoretical energy requirement analysis and a hydrodynamic model were developed. • Areal productivities of both bioreactors were notably higher than traditional raceways. • A gas-lift reactor sparged with 6% carbon dioxide achieved the highest lipid production. • Hydrodynamic and light stresses increased the lipid content suitable for biodiesel. - Abstract: The development of top-lit one-meter deep bioreactors operated as either a gas-lift or bubble column system using air and carbon dioxide enriched air was studied. The goal was high productivity cultivation of algae with elevated lipid levels suitable for conversion into biodiesel. A theoretical energy requirement analysis and a hydrodynamic model were developed to predict liquid circulation velocities in the gas-lift bioreactor, which agreed well with experimental measurements. The influence of operational parameters such as design of bioreactor, gas flow rates and carbon dioxide concentration on the growth and lipid volumetric production of Scenedesmus dimorphus was evaluated using factorial design. While biomass productivity was 12% higher in the bubble column bioreactor (68.2 g_d_w m"−"2 day"−"1), maximum lipid volumetric production (0.19 g_L_i_p_i_d L"−"1) was found in a gas-lift bioreactor sparged with 6% carbon dioxide due to hydrodynamic and light stresses.

  10. Biological reduction of nitrates in wastewaters from nuclear processing using a fluidized-bed bioreactor

    International Nuclear Information System (INIS)

    Pitt, W.W.; Hancher, C.W.; Patton, B.D.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt.% NO 3 - and as large as 2000 m 3 /day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecologically sound and cost-effective method of treating wastewaters containing nitrates. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The denitrification bacteria are a mixed culture derived from garden soil; the major strain is Pseudomonas. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25- to 0.50-mm-diam coal fluidization particles, which are then fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . This paper describes the results of a biodenitrification R and D program based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 g N(NO 3 - ) per day per liter of empty bioreactor volume. 4 figures, 7 tables

  11. Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki

    2013-12-01

    Nitrification is an important biological function of granular activated carbon (GAC) used in advanced drinking water purification processes. Newly discovered ammonia-oxidizing archaea (AOA) have challenged the traditional understanding of ammonia oxidation, which considered ammonia-oxidizing bacteria (AOB) as the sole ammonia-oxidizers. Previous studies demonstrated the predominance of AOA on GAC, but the contributions of AOA and AOB to ammonia oxidation remain unclear. In the present study, DNA-stable isotope probing (DNA-SIP) was used to investigate the autotrophic growth of AOA and AOB associated with GAC at two different ammonium concentrations (0.14 mg N/L and 1.4 mg N/L). GAC samples collected from three full-scale drinking water purification plants in Tokyo, Japan, had different abundance of AOA and AOB. These samples were fed continuously with ammonium and (13)C-bicarbonate for 14 days. The DNA-SIP analysis demonstrated that only AOA assimilated (13)C-bicarbonate at low ammonium concentration, whereas AOA and AOB exhibited autotrophic growth at high ammonium concentration. This indicates that a lower ammonium concentration is preferable for AOA growth. Since AOA could not grow without ammonium, their autotrophic growth was coupled with ammonia oxidation. Overall, our results point towards an important role of AOA in nitrification in GAC filters treating low concentration of ammonium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor

    NARCIS (Netherlands)

    van Keulen, G; Girbal, L; van den Bergh, E.R E; Dijkhuizen, L.; Meijer, W.G

    Autotrophic growth of Xanthobacter flavus is dependent on the fixation of carbon dioxide via the Calvin cycle and on the oxidation of simple organic and inorganic compounds to provide the cell with energy. Maximal induction of the cbb and gap-pgk operons encoding enzymes of the Calvin cycle occurs

  13. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI)

    Science.gov (United States)

    Subbarao, G. V.; Sahrawat, K. L.; Nakahara, K.; Rao, I. M.; Ishitani, M.; Hash, C. T.; Kishii, M.; Bonnett, D. G.; Berry, W. L.; Lata, J. C.

    2013-01-01

    Background Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. Scope In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4+)-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and

  14. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI).

    Science.gov (United States)

    Subbarao, G V; Sahrawat, K L; Nakahara, K; Rao, I M; Ishitani, M; Hash, C T; Kishii, M; Bonnett, D G; Berry, W L; Lata, J C

    2013-07-01

    Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed 'biological nitrification inhibition' (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4(+))-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and environmental perspective, the

  15. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    Lee, Y. H.; Lee, S.

    2009-01-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  16. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.

    Science.gov (United States)

    Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R

    2015-07-01

    The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design

    Directory of Open Access Journals (Sweden)

    Clare Selden

    2018-04-01

    Full Text Available Micro and small bioreactors are well described for use in bioprocess development in pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use of bioreactors to understand normal and pathophysiology by definition must be very different, and the constraints of the physiological environment influence such bioreactor design. This review considers the key elements necessary to enable bioreactors to address three main areas associated with biological systems. All entail recreation of the in vivo cell niche as faithfully as possible, so that they may be used to study molecular and cellular changes in normal physiology, with a view to creating tissue-engineered grafts for clinical use; understanding the pathophysiology of disease at the molecular level; defining possible therapeutic targets; and enabling appropriate pharmaceutical testing on a truly representative organoid, thus enabling better drug design, and simultaneously creating the potential to reduce the numbers of animals in research. The premise explored is that not only cellular signalling cues, but also mechano-transduction from mechanical cues, play an important role.

  18. Characterization and Application of a Disposable Rotating Bed Bioreactor for Mesenchymal Stem Cell Expansion.

    Science.gov (United States)

    Neumann, Anne; Lavrentieva, Antonina; Heilkenbrinker, Alexandra; Loenne, Maren; Kasper, Cornelia

    2014-11-27

    Recruitment of mesenchymal stromal cells (MSC) into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use) disposable bioreactors. In this study, umbilical cord-derived MSC (UC-MSC) were expanded in a disposable Z 2000 H bioreactor under dynamic conditions. Z was characterized regarding residence time and mixing in order to evaluate the optimal bioreactor settings, enabling optimal mass transfer in the absence of shear stress, allowing an reproducible expansion of MSC, while maintaining their stemness properties. Culture of the UC-MSC in disposable Z 2000 H bioreactor resulted in a reproducible 8-fold increase of cell numbers after 5 days. Cells were shown to maintain specific MSC surface marker expression as well as trilineage differentiation potential and lack stress-induced premature senescence.

  19. Characterization and Application of a Disposable Rotating Bed Bioreactor for Mesenchymal Stem Cell Expansion

    Directory of Open Access Journals (Sweden)

    Anne Neumann

    2014-11-01

    Full Text Available Recruitment of mesenchymal stromal cells (MSC into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use disposable bioreactors. In this study, umbilical cord-derived MSC (UC-MSC were expanded in a disposable Z 2000 H bioreactor under dynamic conditions. Z was characterized regarding residence time and mixing in order to evaluate the optimal bioreactor settings, enabling optimal mass transfer in the absence of shear stress, allowing an reproducible expansion of MSC, while maintaining their stemness properties. Culture of the UC-MSC in disposable Z 2000 H bioreactor resulted in a reproducible 8-fold increase of cell numbers after 5 days. Cells were shown to maintain specific MSC surface marker expression as well as trilineage differentiation potential and lack stress-induced premature senescence.

  20. Optimization of biological sulfide removal in a CSTR bioreactor.

    Science.gov (United States)

    Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza

    2012-08-01

    In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.

  1. Preparation of kombucha from winter savory (Satureja Montana L. in the laboratory bioreactor

    Directory of Open Access Journals (Sweden)

    Cvetković Dragoljub D.

    2005-01-01

    Full Text Available The possibility of obtaining kombucha from winter savory tea has been tested in the laboratory bioreactor by applying starter cultures and traditional way of inoculation. On the basis of the obtained results, it can be concluded that applying the inoculating method with the beverage from the previous process of biotransformation yielded kombucha beverage (capacity 15 I from winter savory tea in the laboratory bioreactor. The application of defined starter culture from the isolate of yeast and acetic acid bacteria of local tea in the glass jar (capacity 5 I gave 3 litres of kombucha beverage, which is acceptable according to the basic parameters and sensory characteristics. However, the application of the same starter culture in the laboratory bioreactor did not result in synchronized activity of yeast and bacteria.

  2. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

  3. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    Science.gov (United States)

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO2 for environmental remediation.

    Science.gov (United States)

    Jabeen, Gugan; Farooq, Robina

    2016-09-01

    Bio-electrochemical synthesis (BES) is a technique in which electro-autotrophic bacteria such as Clostridium ljungdahlii utilize electric currents as an electron source from the cathode to reduce CO2 to extracellular, multicarbon, exquisite products through autotrophic conversion. The BES of volatile fatty acids and alcohols directly from CO2 is a sustainable alternative for non-renewable, petroleum-based polymer production. This conversion of CO2 implies reduction of greenhouse gas emissions. The synthesis of heptanoic acid, heptanol, hexanoic acid and hexanol, for the first time, by Clostridium ljungdahlii was a remarkable achievement of BES. In our study, these microorganisms were cultivated on the cathode of a bio-electrochemical cell at -400 mV by a DC power supply at 37 degree Centrigrade, pH 6.8, and was studied for both batch and continuous systems. Pre-enrichment of bio-cathode enhanced the electroactivity of cells and resulted in maximizing extracellular products in less time. The main aim of the research was to investigate the impact of low-cost substrate CO2, and the longer cathode recovery range was due to bacterial reduction of CO2 to multicarbon chemical commodities with electrons driven from the cathode. Reactor design was simplified for cost-effectiveness and to enhance energy efficiencies. The Columbic recovery of ethanoic acid, ethanol, ethyl butyrate, hexanoic acid, heptanoic acid and hexanol being in excess of 80 percent proved that BES was a remarkable technology.

  5. Targeting Autotrophic and Lithotrophic Microorganisms from Fumarolic Ice Caves of Mt. Erebus, Antarctica

    Science.gov (United States)

    Anitori, R.; Davis, R.; Connell, L.; Kelley, M.; Staudigel, H.; Tebo, B. M.

    2011-12-01

    Terrestrial and aquatic volcanic oligotrophic environments can host microorganisms that obtain their energy from reduced inorganic chemicals present in volcanic rocks and soils. We sampled basaltic rock from terrestrial Dark Oligotrophic Volcanic Ecosystems (DOVEs) located in two fumarole ice caves, Warren and Warren West, located near the summit of Mt. Erebus, Antarctica. For reference, we sampled a similar cave, Harry's Dream, which receives continuous light during the Austral summer. We report here culturing data for bacterial and eukaryotic microbes from rocky soils in these caves when targeting lithotrophic organisms using media containing reduced inorganic compounds (Mn2+, Fe2+, NH4+). In addition, to test for the possible presence of inorganic carbon fixation, we screened samples for the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) gene. Culturing of soil samples on media targeting both autotrophs and heterotrophs yielded a diverse collection of generally slow-growing colonies of bacteria (majority), fungi and non-fungal eukaryotes. Manganese(II)-oxidizing colonies were identified in Warren and Harry's Dream, and these exhibited two colony morphotypes upon subculturing. Sequencing of the PCR amplified 16S rRNA gene identified a bacterium distantly related to Pseudonocardia sp., a genus with known manganese oxidizers. Other bacteria enriched included members of the Actinobacteria, Alphaproteobacteria and Betaproteobacteria. There was a low diversity in cultured eukaryotes representing several potential undescribed species (Geomyces sp., Penicillium sp.) and isolates that may represent alternate, previously undescribed habitats and forms (Psilolechia leprosa, Alternaria alternata). One Warren isolate was a 99% 16S rRNA match to the N2 fixer Bradyrhizobium sp.; when inoculated into liquid medium specific for N2 fixers, growth was maintained upon subculture. Putative iron oxidizers were also enriched from the two DOVE caves, using slush agar iron

  6. Nitrification in trickling filters applied to the post-treatment of effluents from UASB reactor: correlation between ammonia removal and the relative abundance of nitrifying bacteria

    International Nuclear Information System (INIS)

    Missagia, B. S.; Almeida, P. G. S. de; Silva, S. Q.; Chernicharo, C. A. L.

    2009-01-01

    The number and physiological activity of nitrifying bacteria in wastewater treatment reactors are considered the ratelimiting parameters for the bioconversion of nitrogen in sewage. Since the presence of ammonia and nitrite oxidizers can be correlated with their activity. In situ probe counts can be correlated with the nitrification rates in order to compare the efficiency of different media types. (Author)

  7. Nitrification in trickling filters applied to the post-treatment of effluents from UASB reactor: correlation between ammonia removal and the relative abundance of nitrifying bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Missagia, B. S.; Almeida, P. G. S. de; Silva, S. Q.; Chernicharo, C. A. L.

    2009-07-01

    The number and physiological activity of nitrifying bacteria in wastewater treatment reactors are considered the ratelimiting parameters for the bioconversion of nitrogen in sewage. Since the presence of ammonia and nitrite oxidizers can be correlated with their activity. In situ probe counts can be correlated with the nitrification rates in order to compare the efficiency of different media types. (Author)

  8. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.

    Science.gov (United States)

    Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh

    2012-04-01

    Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.

  9. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor

    International Nuclear Information System (INIS)

    Fouchard, S.

    2006-04-01

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  10. Effects of process operating conditions on the autotrophic denitrification of nitrate-contaminated groundwater using bioelectrochemical systems.

    Science.gov (United States)

    Cecconet, D; Devecseri, M; Callegari, A; Capodaglio, A G

    2018-02-01

    Nitrates have been detected in groundwater worldwide, and their presence can lead to serious groundwater use limitations, especially because of potential health problems. Amongst different options for their removal, bioelectrochemical systems (BESs) have achieved promising results; in particular, attention has raised on BES-driven autotrophic denitrification processes. In this work, the performance of a microbial electrolysis cell (MEC) for groundwater autotrophic denitrification, is assessed in different conditions of nitrate load, hydraulic retention time (HRT) and process configuration. The system obtained almost complete nitrate removal under all conditions, while nitrite accumulation was recorded at nitrate loads higher than 100mgNO 3 - L -1 . The MEC system achieved, in different tests, a maximum nitrate removal rate of 62.15±3.04gNO 3 - -Nm -3 d -1 , while the highest TN removal rate observed was 35.37±1.18gTNm -3 d -1 . Characteristic of this process is a particularly low (in comparison with other reported works) energy consumption: 3.17·10 -3 ±2.26·10 -3 kWh/gNO 3 - N removed and 7.52·10 -2 ±3.58·10 -2 kWhm -3 treated. The anolyte configuration in closed loop allowed the process to use less clean water, while guaranteeing identical performances as in other conventional configurations. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering

    Science.gov (United States)

    Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327

  12. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.

    Science.gov (United States)

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Anisi, Fatemeh; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  13. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater.

    Science.gov (United States)

    Rondon, Hector; El-Cheikh, William; Boluarte, Ida Alicia Rodriguez; Chang, Chia-Yuan; Bagshaw, Steve; Farago, Leanne; Jegatheesan, Veeriah; Shu, Li

    2015-05-01

    An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Differentiation of cartilaginous anlagen in entire embryonic mouse limbs cultured in a rotating bioreactor

    Science.gov (United States)

    Montufar-Solis, D.; Oakley, C. R.; Jefferson, Y.; Duke, P. J.

    2003-10-01

    Mechanisms involved in development of the embryonic limb have remained the same throughout eons of genetic and environmental evolution under Earth gravity (lg). During the spaceflight era it has been of interest to explore the ancient theory that form of the skeleton develops in response to gravity, and that changes in gravitational forces can change the developmental pattern of the limb. This has been shown in vivo and in vitro, allowing the hypergravity of centrifugation and microgravity of space to be used as tools to increase our knowledge of limb development. In recapitulations of spaceflight experiments, premetatarsals were cultured in suspension in a bioreactor, and found to be shorter and less differentiated than those cultured in standard culture dishes. This study only measured length of the metatarsals, and did not account for possible changes due to the skeletal elements having a more in vivo 3D shape while in suspension vs. flattened tissues compressed by their own weight. A culture system with an outcome closer to in vivo and that supports growth of younger limb buds than traditional systems will allow studies of early Hox gene expression, and contribute to the understanding of very early stages of development. The purpose of the current experiment was to determine if entire limb buds could be cultured in the bioreactor, and to compare the growth and differentiation with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were cultured for six days, either in the bioreactor or in center-well organ culture dishes, fixed, and embedded for histology. E13 specimens grown in culture dishes were flat, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections showed excellent cartilage differentiation in both culture systems, with more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Younger limb buds fused together during culture, so an additional set of El 1

  15. Evaluation of Hollow Fiber And Miniperm Bioreactors as An Alternative to Murine Ascites for Small Scale Monoclonal Antibody Production

    International Nuclear Information System (INIS)

    Abedalla, O. M.

    2007-01-01

    The objective of this study was to compare monoclonal antibody production in hollow fiber, miniPERM bioreactor systems and murine ascites to determine the feasibility of the bioreactor system as a potential alternative to the use of mice. One hybridoma cell line was grown in hollow fiber, miniPERM bioreactor systems and in groups of 5 mice. Mice were primed with 0.5 ml pristane intraperitoneally 14 days prior to inoculation of 1X10 7 hybridoma cells. Each mouse was tapped a maximum of three times for collection of ascites. Bioreactors were harvested three times weekly for 30 days and were monitored by cell counts, cell viability and media consumption. Time and materials logs were maintained. The total quantity of monoclonal antibody produced in 5 mice versus the total production for the two different bioreactors (hollow fiber and miniPERM) in 30 days was as follows: cell line 2AC10E6C7 produce 158 mg vs.97.5 mg; vs 21.54 mg respectively. Mean monoclonal antibody concentration ranged from 4.07 to 8.37 mg/ml in murine ascites, from 0.71 to 3.8 mg/ml in hollow fiber bioreactor system, and from 0.035 to 1.06 in miniPERM. Although time and material costs were generally greater for the bioreactors, these results suggest that hollow fiber and miniPERM bioreactor systems merit further investigations as potentially viable in vitro alternatives to the use of mice for small scale (< 1 g) monoclonal antibody production.

  16. Periodic harvesting of embryonic stem cells from a hollow-fiber membrane based four-compartment bioreactor.

    Science.gov (United States)

    Knöspel, Fanny; Freyer, Nora; Stecklum, Maria; Gerlach, Jörg C; Zeilinger, Katrin

    2016-01-01

    Different types of stem cells have been investigated for applications in drug screening and toxicity testing. In order to provide sufficient numbers of cells for such in vitro applications a scale-up of stem cell culture is necessary. Bioreactors for dynamic three-dimensional (3D) culture of growing cells offer the option for culturing large amounts of stem cells at high densities in a closed system. We describe a method for periodic harvesting of pluripotent stem cells (PSC) during expansion in a perfused 3D hollow-fiber membrane bioreactor, using mouse embryonic stem cells (mESC) as a model cell line. A number of 100 × 10(6) mESC were seeded in bioreactors in the presence of mouse embryonic fibroblasts (MEF) as feeder cells. Over a cultivation interval of nine days cells were harvested by trypsin perfusion and mechanical agitation every second to third culture day. A mean of 380 × 10(6) mESC could be removed with every harvest. Subsequent to harvesting, cells continued growing in the bioreactor, as determined by increasing glucose consumption and lactate production. Immunocytochemical staining and mRNA expression analysis of markers for pluripotency and the three germ layers showed a similar expression of most markers in the harvested cells and in mESC control cultures. In conclusion, successful expansion and harvesting of viable mESC from bioreactor cultures with preservation of sterility was shown. The present study is the first one showing the feasibility of periodic harvesting of adherent cells from a continuously perfused four-compartment bioreactor including further cultivation of remaining cells. © 2015 American Institute of Chemical Engineers.

  17. MODULAR FIELD-BIOREACTOR FOR ACID MINE DRAINAGE TREATMENT

    Science.gov (United States)

    The presentation focuses on the improvements to engineered features of a passive technology that has been used for remediation of acid rock drainage (ARD). This passive remedial technology, a sulfate-reducing bacteria (SRB) bioreactor, takes advantage of the ability of SRB that,...

  18. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    Science.gov (United States)

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  19. Cost effective dry anaerobic digestion in textile bioreactors: Experimental and economic evaluation.

    Science.gov (United States)

    Patinvoh, Regina J; Osadolor, Osagie A; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-12-01

    The aim of this work was to study dry anaerobic digestion (dry-AD) of manure bedded with straw using textile-based bioreactor in repeated batches. The 90-L reactor filled with the feedstocks (22-30% total solid) and inoculum without any further treatment, while the biogas produced were collected and analyzed. The digestate residue was also analyzed to check its suitability as bio-fertilizer. Methane yield after acclimatization increased from 183 to 290NmlCH 4 /gVS, degradation time decreased from 136 to 92days and the digestate composition point to suitable bio-fertilizer. The results then used to carry out economical evaluation, which shows dry-AD in textile bioreactors is a profitable method of handling the waste with maximum payback period of 5years, net present value from $7,000 to $9,800,000 (small to large bioreactors) with internal rate of return from 56.6 to 19.3%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity

    Science.gov (United States)

    Abuabdou, Salahaldin M. A.; Bashir, Mohammed J. K.; Aun, Ng Choon; Sethupathi, Sumathi

    2018-04-01

    Sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). The resulted landfill leachate is a highly contaminated liquid. Even small quantities of this high-strength leachate can cause serious damage to surface and ground water receptors. Thus, these leachates must be appropriately treated before being discharged into the environment. In the last years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for leachate treatment due to the significant advantages. In the last decade, many studies have been conducted in which various types of anaerobic reactors were used in combination with membranes. This paper is a review of the potential of anaerobic membrane bioreactor technology for municipal landfill leachate treatment. A critical review in AnMBR performance interesting landfill leachate in lab scale is also done. In addition, the review discusses the impact of the various factors on both biological and filtration performances of anaerobic membrane bioreactors.

  1. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with ......The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon...... and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ =0.1 h−1); slower growth was observed on succinate and acetic...... acid (μ =0.01 h−1). Standard conditions for growth of theMSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ =0.1 h−1 on traditional mineral salt medium to μ =0.18 h−1 on the optimized mineral salt...

  2. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  3. Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiemin [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Xuemei; Li, Yuguang [101 Institute, Ministry of Civil Affairs, Beijing 100070 (China); Xing, Jianmin, E-mail: jmxing@ipe.ac.cn [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190 (China)

    2015-09-15

    Highlights: • Bacterial communities of haloalkaliphilic bioreactors were investigated. • MiSeq was first used in analysis of communities of haloalkaliphilic bioreactors. • Electron donors had significant effect on bacterial communities. - Abstract: Biological technology used to treat flue gas is useful to replace conventional treatment, but there is sulfide inhibition. However, no sulfide toxicity effect was observed in haloalkaliphilic bioreactors. The performance of the ethanol-fed bioreactor was better than that of lactate-, glucose-, and formate-fed bioreactor, respectively. To support this result strongly, Illumina MiSeq paired-end sequencing of 16S rRNA gene was applied to investigate the bacterial communities. A total of 389,971 effective sequences were obtained and all of them were assigned to 10,220 operational taxonomic units (OTUs) at a 97% similarity. Bacterial communities in the glucose-fed bioreactor showed the greatest richness and evenness. The highest relative abundance of sulfate-reducing bacteria (SRB) was found in the ethanol-fed bioreactor, which can explain why the performance of the ethanol-fed bioreactor was the best. Different types of SRB, sulfur-oxidizing bacteria, and sulfur-reducing bacteria were detected, indicating that sulfur may be cycled among these microorganisms. Because high-throughput 16S rRNA gene paired-end sequencing has improved resolution of bacterial community analysis, many rare microorganisms were detected, such as Halanaerobium, Halothiobacillus, Desulfonatronum, Syntrophobacter, and Fusibacter. 16S rRNA gene sequencing of these bacteria would provide more functional and phylogenetic information about the bacterial communities.

  4. Towards a continuous two-phase partitioning bioreactor for xenobiotic removal

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, M.Concetta, E-mail: tomei@irsa.cnr.it [Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome (Italy); Mosca Angelucci, Domenica [Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome (Italy); Daugulis, Andrew J. [Department of Chemical Engineering, Queen’s University, Kingston, Ontario K7 L 3N6 (Canada)

    2016-11-05

    Highlights: • A prototype of a continuous two-phase partitioning bioreactor was investigated. • The bioreactor contained coiled tubing of a selected extruded polymer, Hytrel 8206. • Mass transfer and removal of a xenobiotic, 4-cholorophenol, were investigated. • Removal efficiencies in the tubing wastewater stream were always ≥ 96%. • Presence of polymer tubing buffered increasing in organic load to the hybrid system. - Abstract: The removal of a xenobiotic (4-chlorophenol) from contaminated water was investigated in a simulated continuous two-phase partitioning bioreactor (C-TPPB), fitted with coiled tubing comprised of a specifically-selected extruded polymer, Hytrel 8206. Wastewater flowed inside the tubing, the pollutant diffused through the tubing wall, and was removed in the aqueous bioreactor phase at typical biological removal rates in the C-TTPB simulated by varying aqueous phase throughput to the reactor. Operating over a range of influent substrate concentrations (500–1500 mg L{sup −1}) and hydraulic retention times in the tubing (4–8 h), overall mass transfer coefficients were 1.7–3.5 × 10{sup −7} m s{sup −1}, with the highest value corresponding to the highest tubing flow rate. Corresponding mass transfer rates are of the same order as biological removal rates, and thus do not limit the removal process. The C-TPPB showed good performance over all organic and hydraulic loading ranges, with removal efficiencies of 4CP in the tubing wastewater stream always ≥96%. Additionally, the presence of the Hytrel tubing was able to buffer increases in organic loading to the hybrid system, enhancing overall process stability. Biological testing of the C-TPPB confirmed the abiotic test results demonstrating even higher 4-chlorophenol removal efficiency (∼99%) in the tubing stream.

  5. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan, E-mail: erkansahinkaya@yahoo.com [Department of Bioengineering, Istanbul Medeniyet University, Goeztepe, Istanbul (Turkey); Kilic, Adem [Department of Environmental Engineering, Harran University, Osmanbey Campus, 63000 Sanliurfa (Turkey); Altun, Muslum [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Komnitsas, Kostas [Department of Mineral Resources Engineering, Technical University of Crete, 73100 Chania (Greece); Lens, Piet N.L. [Unesco-IHE Institute for Water Education, Westvest 7, Delft 2611 AX (Netherlands)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Elemental sulfur can be used as electron acceptor for sulfide production. Black-Right-Pointing-Pointer Biogenically produced sulfide reduces Cr(VI) to the much less toxic and immobile form of Cr(III). Black-Right-Pointing-Pointer Sulfur packed bioreactor is efficient for Cr(VI) containing wastewater treatment. Black-Right-Pointing-Pointer Reduced form of chromium precipitates in the bioreactor. - Abstract: The most commonly used approach for the detoxification of hazardous industrial effluents and wastewaters containing Cr(VI) is its reduction to the much less toxic and immobile form of Cr(III). This study investigates the cleanup of Cr(VI) containing wastewaters using elemental sulfur as electron acceptor, for the production of hydrogen sulfide that induces Cr(VI) reduction. An elemental sulfur reducing packed-bed bioreactor was operated at 28-30 Degree-Sign C for more than 250 days under varying influent Cr(VI) concentrations (5.0-50.0 mg/L) and hydraulic retention times (HRTs, 0.36-1.0 day). Ethanol or acetate (1000 mg/L COD) was used as carbon source and electron donor. The degree of COD oxidation varied between 30% and 85%, depending on the operating conditions and the type of organic carbon source. The oxidation of organic matter was coupled with the production of hydrogen sulfide, which reached a maximum concentration of 750 mg/L. The biologically produced hydrogen sulfide reduced Cr(VI) chemically to Cr(III) that precipitated in the reactor. Reduction of Cr(VI) and removal efficiency of total chromium always exceeded 97% and 85%, respectively, implying that the reduced chromium was retained in the bioreactor. This study showed that sulfur can be used as an electron acceptor to produce hydrogen sulfide that induces efficient reduction and immobilization of Cr(VI), thus enabling decontamination of Cr(VI) polluted wastewaters.

  6. Bacterial study of the anaerobic bioreactor for distillery effluent

    International Nuclear Information System (INIS)

    Shah, F. A.; Pathan, M. I.

    2006-01-01

    This study relates with anaerobic bioreactors of Habib Sugar Mills, Nawabshah. Bacterial growth was studied through microscope along with its effect on the production of methane gas (Biogas) at all HRTs (Hydraulic Retention Times) between 15 and 28 days. The bacterium has the efficiency to convert 12% glucose within 24 hours to final product and cell mass. The acetogenic organisms also show their maximum growth on glucose in BGP-1 and BPG-2 at both the corks, where as Methanogenic organisms have shown their zero shown their zero growth on glucose. The efforts have been taken to determine the methanogenic, acetogenic and syntrophomonas sp. data of anaerobic bioreactors of BGP (Biogas Plant) I and II, when these samples were cultured on acetate, methanol, formate, butyrate, propionate and glucose. (author)

  7. Application of a membrane bioreactor for winery wastewater treatment.

    Science.gov (United States)

    Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F

    2010-01-01

    Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.

  8. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment.

  9. Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor.

    Science.gov (United States)

    Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae

    2007-06-01

    A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.

  10. Removal of Cr, Mn, and Co from textile wastewater by horizontal rotating tubular bioreactor.

    Science.gov (United States)

    Zeiner, Michaela; Rezić, Tonci; Santek, Bozidar; Rezić, Iva; Hann, Stephan; Stingeder, Gerhard

    2012-10-02

    Environmental pollution by industrial wastewaters polluted with toxic heavy metals is of great concern. Various guidelines regulate the quality of water released from industrial plants and of surface waters. In wastewater treatment, bioreactors with microbial biofilms are widely used. A horizontal rotating tubular bioreactor (HRTB) is a combination of a thin layer and a biodisc reactor with an interior divided by O-ring shaped partition walls as carriers for microbial biomass. Using a biofilm of heavy metal resistant bacteria in combination with this special design provides various advantages for wastewater treatment proven in a pilot study. In the presented study, the applicability of HRTB for removing metals commonly present in textile wastewaters (chromium, manganese, cobalt) was investigated. Artificial wastewaters with a load of 125 mg/L of each metal underwent the bioreactor treatment. Different process parameters (inflow rate, rotation speed) were applied for optimizing the removal efficiency. Samples were drawn along the bioreactor length for monitoring the metal contents on site by UV-vis spectrometry. The metal uptake of the biomass was determined by ICP-MS after acidic microwave assisted digestion. The maximum removal rates obtained for chromium, manganese, and cobalt were: 100%, 94%, and 69%, respectively.

  11. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars.

    Science.gov (United States)

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-09-09

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2(T) M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth's subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  12. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    Directory of Open Access Journals (Sweden)

    Viktoria Shcherbakova

    2015-09-01

    Full Text Available The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  13. Fluid bed porosity equation for an inverse fluidized bed bioreactor with particles growing biofilm

    International Nuclear Information System (INIS)

    Campos-Diaz, K. E.; Limas-Ballesteros, R.

    2009-01-01

    Fluid Bed Bioreactor performance is strongly affected by bed void fraction or bed porosity fluctuations. Particle size enlargement due to biofilm growth is an important factor that is involved in these variations and until now there are no mathematical equations that consider biofilm growth. In this work a mathematical equation is proposed to calculate bed void fraction in an inverse fluid bed bioreactor. (Author)

  14. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through...

  15. Antioxidant compounds in Salvia officinalis L. shoot and hairy root cultures in the nutrient sprinkle bioreactor

    Directory of Open Access Journals (Sweden)

    Izabela Grzegorczyk

    2011-01-01

    Full Text Available The study focused on the production of compounds with antioxidant activity in hairy root and shoot cultures of Salvia officinalis grown in laboratory-scale sprinkle nutrient bioreactors. HPLC analysis showed that production of rosmarinic acid in transformed roots (34.65 ±1.07 mg l-1 was higher that in shoot culture (26.24 ±0.48 mg l-1. In the latter diterpenoids: carnosic acid (1.74 ±0.02 mg l-1 and carnosol (1.34 ±0.01 mg l-1 were also found. Biomass accumulation after a growth period in the bioreactor was also studied. An 18-fold increase in hairy root biomass was recorded after 40 days of culture. In sage shoot culture, biomass increased 43 times after 21 days of bioreactor run. The current operating conditions of the bioreactor were not suitable for the propagation of Salvia officinalis mainly due to the hyperhydricity problem of leaves and stems.

  16. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor.

    Science.gov (United States)

    Zhang, Wenjie; Liu, Xiaoning; Wang, Dunqiu; Jin, Yue

    2017-11-01

    Membrane fouling is a problem in full-scale membrane bioreactors. In this study, bamboo charcoal (BC) was evaluated for its efficacy in alleviating membrane fouling in flat-sheet membrane bioreactors treating municipal wastewater. The results showed that BC addition markedly improved treatment performance based on COD, NH 4 + -N, total nitrogen, and total phosphorus levels. Adding BC slowed the increase in the trans-membrane pressure rate and resulted in lower levels of soluble microbial products and extracellular polymeric substances detected in the flat-sheet membrane bioreactor. BC has a porous structure, and a large quantity of biomass was detected using scanning electron microscopy. The microbial community analysis results indicated that BC increased the microbial diversity and Aminomonas, Anaerofustis, uncultured Anaerolineaceae, Anaerolinea, and Anaerotruncus were found in higher abundances in the reactor with BC. BC addition is an effective method for reducing membrane fouling, and can be applied to full-scale flat-sheet membrane bioreactors to improve their function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of hollow fiber and mini perm bioreactors as an alternative to murine ascites for small scale monoclonal antibody production

    International Nuclear Information System (INIS)

    Abdalla, O. M.

    2006-12-01

    The objective of this study was to compare monoclonal antibody production in hollow fiber, mini perm bioreactor systems and murine ascites to determine the feasibility of the bioreactor system as a potential alternative to the use of mice. One hybridoma cell line was grown in hollow fiber, mini perm bioreactor systems and in groups of 5 mice. Mice were primed with 0.5 ml pristane intraperitoneally 14 days prior to inoculation of 1x10 7 hybridoma cells. Each mouse was tapped a maximum of three times for collection of ascites. Bioreactors were harvested three times weekly for 30 days and were monitored by cell counts, cell viability and media consumption. Time and materials logs were maintained. The total quantity of monoclonal antibody produced in 5 mice versus the total production for the two different bioreactors (hollow fiber and mini perm) in 30 days was as follows: cell line 2AC10E6C7 produce 158 mg vs.97.5 mg, vs 21.54 mg respectively. Mean monoclonal antibody concentration ranged from 4.07 to 8.37 mg/ml in murine ascites, from 0.71 to 3.8 mg/ml in hollow fiber bioreactor system, and from 0.035 to 1.06 in mini perm. Although time and material costs were generally greater for the bioreactors, these results suggest that hollow fiber and mini perm bioreactor systems merit further investigations as potentially viable in vitro alternatives to the use of mice for small scale (<1mg) monoclonal antibody production.(Author)

  18. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor

    OpenAIRE

    Głuszcz, Paweł; Petera, Jerzy; Ledakowicz, Stanisław

    2010-01-01

    The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic me...

  19. Development and application of a milliliter-scale bioreactor for continuous microbial cultivations

    DEFF Research Database (Denmark)

    Bolic, Andrijana

    measurementwhere light was sent through the MSBR bottom and sample to a mirror-like surface in the MSBR and returned back to a fiber bundle. Aerobic and anaerobic batch cultivations were performed with Saccharomyces cerevisiae and Lactobacillus paracasei, respectively. A high evaporation rate was experienced...... bioreactor functionality usually comes in regular lab size, which then transforms a smallscale bioreactor platform to a regular size experimental set up. To address this issue, effort was placed in developing 2 push/pull pumps that were able to deliver gas and medium ina controlled manner as a part...

  20. Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD

    DEFF Research Database (Denmark)

    Bach, Christian; Yang, Jifeng; Larsson, Hilde Kristina

    2017-01-01

    Knowledge and prediction of mixing and mass transfer in agitated bioreactors is fundamental for process development and scale up. In particular key process parameters such as mixing time and volumetric mass transfer coefficient are essential for bioprocess development. In this work the mixing...... and mass transfer performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was predicted using a standard RANS k-ε model. Mixing time...... transfer coefficients were in accordance with the experimental data. This work illustrates the possibility of predicting the two phase fluid dynamic performance of an agitated pilot scale bioreactor using validated CFD models. These models can be applied to illustrate the effect of changing the physical...

  1. In Vivo-Like Culture Conditions in a Bioreactor Facilitate Improved Tissue Quality in Corneal Storage.

    Science.gov (United States)

    Schmid, Richard; Tarau, Ioana-Sandra; Rossi, Angela; Leonhardt, Stefan; Schwarz, Thomas; Schuerlein, Sebastian; Lotz, Christian; Hansmann, Jan

    2018-01-01

    The cornea is the most-transplanted tissue worldwide. However, the availability and quality of grafts are limited due to the current methods of corneal storage. In this study, a dynamic bioreactor system is employed to enable the control of intraocular pressure and the culture at the air-liquid interface. Thereby, in vivo-like storage conditions are achieved. Different media combinations for endothelium and epithelium are tested in standard and dynamic conditions to enhance the viability of the tissue. In contrast to culture conditions used in eye banks, the combination of the bioreactor and biochrom medium 1 allows to preserve the corneal endothelium and the epithelium. Assessment of transparency, swelling, and the trans-epithelial-electrical-resistance (TEER) strengthens the impact of the in vivo-like tissue culture. For example, compared to corneas stored under static conditions, significantly lower optical densities and significantly higher TEER values were measured (p-value <0.05). Furthermore, healing of epithelial defects is enabled in the bioreactor, characterized by re-epithelialization and initiated stromal regeneration. Based on the obtained results, an easy-to-use 3D-printed bioreactor composed of only two parts was derived to translate the technology from the laboratory to the eye banks. This optimized bioreactor facilitates noninvasive microscopic monitoring. The improved storage conditions ameliorate the quality of corneal grafts and the storage time in the eye banks to increase availability and reduce re-grafting. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Modelling and characterization of an airlift-loop bioreactor

    NARCIS (Netherlands)

    Verlaan, P.

    1987-01-01

    An airlift-loop reactor is a bioreactor for aerobic biotechnological processes. The special feature of the ALR is the recirculation of the liquid through a downcomer connecting the top and the bottom of the main bubbling section. Due to the high circulation-flow rate, efficient mixing and

  3. Engineering stem cell niches in bioreactors

    OpenAIRE

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “ni...

  4. Nonlinear adaptive optimization of biomass productivity in continuous bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Sauvaire, P; Mellichamp, D A; Agrawal, P [California Univ., Santa Barbara, CA (United States). Dept. of Chemical and Nuclear Engineering

    1991-11-01

    A novel on-line adaptive optimization algorithm is developed and applied to continuous biological reactors. The algorithm makes use of a simple nonlinear estimation model that relates either the cell-mass productivity or the cell-mass concentration to the dilution rate. On-line estimation is used to recursively identify the parameters in the nonlinear process model and to periodically calculate and steer the bioreactor to the dilution rate that yields optimum cell-mass productivity. Thus, the algorithm does not require an accurate process model, locates the optimum dilution rate online, and maintains the bioreactors at this optimum condition at all times. The features of the proposed new algorithm are compared with those of other adaptive optimization techniques presented in the literature. A detailed simulation study using three different microbial system models was conducted to illustrate the performance of the optimization algorithms. (orig.).

  5. Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression.

    Science.gov (United States)

    Ravichandran, Akhilandeshwari; Wen, Feng; Lim, Jing; Chong, Mark Seow Khoon; Chan, Jerry K Y; Teoh, Swee-Hin

    2018-04-01

    Cells respond to physiological mechanical stresses especially during early fetal development. Adopting a biomimetic approach, it is necessary to develop bioreactor systems to explore the effects of physiologically relevant mechanical strains and shear stresses for functional tissue growth and development. This study introduces a multimodal bioreactor system that allows application of cyclic compressive strains on premature bone grafts that are cultured under biaxial rotation (chamber rotation about 2 axes) conditions for bone tissue engineering. The bioreactor is integrated with sensors for dissolved oxygen levels and pH that allow real-time, non-invasive monitoring of the culture parameters. Mesenchymal stem cells-seeded polycaprolactone-β-tricalcium phosphate scaffolds were cultured in this bioreactor over 2 weeks in 4 different modes-static, cyclic compression, biaxial rotation, and multimodal (combination of cyclic compression and biaxial rotation). The multimodal culture resulted in 1.8-fold higher cellular proliferation in comparison with the static controls within the first week. Two weeks of culture in the multimodal bioreactor utilizing the combined effects of optimal fluid flow conditions and cyclic compression led to the upregulation of osteogenic genes alkaline phosphatase (3.2-fold), osteonectin (2.4-fold), osteocalcin (10-fold), and collagen type 1 α1 (2-fold) in comparison with static cultures. We report for the first time, the independent and combined effects of mechanical stimulation and biaxial rotation for bone tissue engineering using a bioreactor platform with non-invasive sensing modalities. The demonstrated results show leaning towards the futuristic vision of using a physiologically relevant bioreactor system for generation of autologous bone grafts for clinical implantation. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Microbial diversity and autotrophic activity in Kamchatka hot springs.

    Science.gov (United States)

    Merkel, Alexander Yu; Pimenov, Nikolay V; Rusanov, Igor I; Slobodkin, Alexander I; Slobodkina, Galina B; Tarnovetckii, Ivan Yu; Frolov, Evgeny N; Dubin, Arseny V; Perevalova, Anna A; Bonch-Osmolovskaya, Elizaveta A

    2017-03-01

    Microbial communities of Kamchatka Peninsula terrestrial hot springs were studied using molecular, radioisotopic and cultural approaches. Analysis of 16S rRNA gene fragments performed by means of high-throughput sequencing revealed that aerobic autotrophic sulfur-oxidizing bacteria of the genus Sulfurihydrogenibium (phylum Aquificae) dominated in a majority of streamers. Another widely distributed and abundant group was that of anaerobic bacteria of the genus Caldimicrobium (phylum Thermodesulfobacteria). Archaea of the genus Vulcanisaeta were abundant in a high-temperature, slightly acidic hot spring, where they were accompanied by numerous Nanoarchaeota, while the domination of uncultured Thermoplasmataceae A10 was characteristic for moderately thermophilic acidic habitats. The highest rates of inorganic carbon assimilation determined by the in situ incubation of samples in the presence of 14 C-labeled bicarbonate were found in oxygen-dependent streamers; in two sediment samples taken from the hottest springs this process, though much weaker, was found to be not dependent on oxygen. The isolation of anaerobic lithoautotrophic prokaryotes from Kamchatka hot springs revealed a wide distribution of the ability for sulfur disproportionation, a new lithoautotrophic process capable to fuel autonomous anaerobic ecosystems.

  7. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut

  8. Thermophillic Sidestream Anaerobic Membrane Bioreactors: The Shear Rate Dilemma

    NARCIS (Netherlands)

    Jeison, D.A.; Telkamp, P.; Lier, van J.B.

    2009-01-01

    Anaerobic biomass retention under thermophilic conditions has proven difficult. Membrane filtration can be used as alternative way to achieve high sludge concentrations. This research studied the feasibility of anaerobic membrane bioreactors (AnMBRs) under thermophilic conditions. A sidestream MBR

  9. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    OpenAIRE

    Gonzalez-Toril , E.; Amils , R.; J. Delmas , Robert; Petit , Jean-Robert; Komarek , J.; Elster , J.

    2009-01-01

    Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas), in a minimal mineral (oligotrophic) media. Molecular analysis of more than 200 16S rRNA gene sequences showed...

  10. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  11. Nitrate-Mediated Microbially Enhanced Oil Recovery (N-MEOR) from model upflow bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Voordouw, Gerrit

    2017-02-15

    Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N 2 -CO 2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Full-scale demonstration of treatment of mechanically separated organic residue in a bioreactor at VAM in Wijster

    NARCIS (Netherlands)

    Oonk, H.; Woelders, H.

    1999-01-01

    At the VAM waste treatment company in Wijster a demonstration is in progress of bioreactor technology for the treatment of mechanically separated organic residue (MSOR) of a waste separation plant. This bioreactor is an in situ fermentation cell in which physical, chemical and biological processes

  13. A Novel bioreactor with mechanical stimulation for skeletal tissue engineering

    Directory of Open Access Journals (Sweden)

    M. Petrović

    2009-01-01

    Full Text Available The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain. The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10–100 m/s provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.

  14. A novel control strategy for single-stage autotrophic nitrogen removal in SBR

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2015-01-01

    A novel feedforward–feedback control strategy was developed for complete autotrophic nitrogen removal in a sequencing batch reactor. The aim of the control system was to carry out the regulation of the process while keeping the system close to the optimal operation. The controller was designed...... based on a process model and then tested experimentally. The resulting batch-to-batch control strategy had the total nitrogen removal efficiency as controlled variable and the setting of the aeration mass flow controller as manipulated variable. Compared to manual operation mode (constant air supply......), the controller resulted in a significant performance improvement: removal efficiency was kept at a stable high level in the presence of influent ammonium concentration disturbances, and the absolute deviation on removal efficiency was reduced by 40%. The successful validation of the controller in a lab...

  15. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  16. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    Science.gov (United States)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;pdetergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a function of groundwater temperature for all treatments

  17. Shell of Planet Earth – Global Batch Bioreactor.

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Šolcová, Olga; Kaštánek, P.

    2017-01-01

    Roč. 40, č. 11 (2017), s. 1959-1965 ISSN 0930-7516 R&D Projects: GA TA ČR TE01020080 Institutional support: RVO:67985858 Keywords : critical raw materials * global batch bioreactor * planet earth Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.051, year: 2016

  18. Comparison between a conventional membrane bioreactor (C-MBR and a biofilm membrane bioreactor (BF-MBR for domestic wastewater treatment

    Directory of Open Access Journals (Sweden)

    E. L. Subtil

    2014-09-01

    Full Text Available In this paper, the influence of biofilm carriers in a MBR on the performance of organic matter and nitrogen removal and the influence on membrane fouling were evaluated. The configurations studied included a Conventional Membrane Bioreactor (C-MBR and a Biofilm Membrane Bioreactor (BF-MBR operated in parallel, both fed with domestic wastewater. Regarding organic matter removal, no statistically significant differences were observed between C-MBR and BF-MBR, producing an effluent with a Soluble COD concentration of 27 ± 9.0 mgO2/L and 26 ±1.0 mgO2/L and BOD concentration of 6.0 ± 2.5 mgO2/L and 6.2 ± 2.1 mgO2/L, respectively. On the other hand, the BF-MBR produced a permeate with lower ammonia and total nitrogen concentrations, which resulted in a removal efficiency of 98% and 73%, respectively. It was also observed that the fouling rate was about 35% higher in the C-MBR than that for the BF-MBR, which also presented a reduction of total membrane resistance, about 29%, and increased operational cycle length around 7 days, compared to C-MBR.

  19. Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors

    Directory of Open Access Journals (Sweden)

    Mariana Manzoni Maroneze

    2014-12-01

    Full Text Available Microalgal heterotrophic bioreactors are a potential technological development that can convert organic matter, nitrogen and phosphorus of wastewaters into a biomass suitable for energy production. The aim of this work was to evaluate the performance of microalgal heterotrophic bioreactors in the secondary treatment of cattle-slaughterhouse wastewater and the reuse of microalgal sludge for biodiesel production. The experiments were performed in a bubble column bioreactor using the microalgae Phormidium sp. Heterotrophic microalgal bioreactors removed 90 % of the chemical oxygen demand, 57 % of total nitrogen and 52 % of total phosphorus. Substantial microalgal sludge is produced in the process (substrate yield coefficient of 0.43 mg sludge mg chemical oxygen demand−¹, resulting in a biomass with high potential for producing biodiesel (ester content of more than 99 %, cetane number of 55, iodine value of 73.5 g iodine 100 g−¹, unsaturation degree of ~75 % and a cold filter plugging point of 5 ºC.

  20. Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor.

    Science.gov (United States)

    Liu, Chunshuang; Li, Wenfei; Li, Xuechen; Zhao, Dongfeng; Ma, Bin; Wang, Yongqiang; Liu, Fang; Lee, Duu-Jong

    2017-11-01

    The nitrite accumulation in handling nitrate and sulfide-laden wastewater in a continuous-flow upflow anaerobic sludge blanket reactor was studied. At sulfide/nitrate-nitrogen ratio of 1:0.76 and loading rates of 1.2kg-Sm -3 d -1 and 0.4kg-Nm -3 d -1 , the elemental sulfur and nitrite accumulation rates peaked at 90% and 70%, respectively, with Acrobacter, Azoarcus and Thauera presenting the functional strains in the studied reactor. The accumulated nitrite was proposed a promising feedstock for anaerobic ammonia oxidation process. An integrated partial autotrophic denitrification-anaerobic ammonia oxidation-aeration process for handling the ammonia and sulfide-laden wastewaters is proposed for further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...... (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  2. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  3. Feed and organic matter

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang

    2011-01-01

    impact on the receiving water body by reducing dissolved oxygen concentrations and increasing sedimentation. Within aquaculture systems, a high organic load may affect fish health and performance directly (e.g., gill disease) as well as indirectly (proliferation of pathogenic bacteria and parasites......, reduction of dissolved oxygen concentrations, etc.). In recirculating aquaculture systems (RAS), a high organic load caused by limited water exchange may affect biofilter performance by favouring heterotrophic bacteria at the expense of autotrophic, nitrifying bacteria. Organic waste in RAS primarily...... originates from undigested feed, but also metabolic losses, mucus, dead tissue, feed waste and intake water may contribute. The nutrient composition of the feed affects the quantity and composition of the organic (undigested) waste, and including for example plant protein ingredients may affect...

  4. Effect of different leachate/acetate ratios in a submerged anaerobic membrane bioreactor (SAnMBR)

    Energy Technology Data Exchange (ETDEWEB)

    Taskan, Ergin [Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazig (Turkey); Hasar, Halil [Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazig (Turkey); National Research Center on Membrane Technologies, Maslak, Istanbul (Turkey)

    2012-05-15

    Leachate treatment using a membrane bioreactor is an effective method. This study presents a configuration including an anaerobic bioreactor and a membrane module, called submerged anaerobic membrane bioreactor (SAnMBR), for treating influent with leachate/acetate rations (L/A), that were kept to be 10, 25, 50, 75, and 100% at a constant SRT (100 days). COD removal decreased from 85 to 75% when the L/A ratio increased from 10 to 100. To prevent membrane fouling, a SAnMBR was operated in the case of circulation of mixed liquor under continuous and intermittent suction. The average fluxes were 2.60 and 0.40 L/m{sup 2} h at the periods of intermittent and continuous suction, respectively. The methane production varied between 0.25 and 0.32 L CH{sub 4}/g COD{sub removed}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Increasing tetracycline concentrations on the performance and communities of mixed microalgae-bacteria photo-bioreactors

    KAUST Repository

    Xiong, Yanghui

    2017-12-11

    This study investigated the impact of varying concentrations of tetracycline on the performance of mixed microalgae-bacteria photo-bioreactors. Photo-bioreactors were assessed for their ability to remove carbon dioxide (CO2) from the biogas of anaerobic membrane bioreactor (anMBR), and nutrients from the anaerobic effluent. The varying concentrations of tetracycline had no impact on the removal of CO2 from biogas. 29% v/v of CO2 was completely removed to generate >20% v/v of oxygen (O2) in all reactors. Removal of nutrients and biomass was not affected at low concentrations of tetracycline (≤150μg/L), but 20mg/L of tetracycline lowered the biomass generation and removal efficiencies of phosphate. Conversely, high chlorophyll a and b content was observed at 20mg/L of tetracycline. High tetracycline level had no impact on the diversity of 18S rRNA gene-based microalgal communities but adversely affected the 16S rRNA gene-based microbial communities. Specifically, both Proteobacteria and Bacteroidetes phyla decreased in relative abundance but not phylum Chloroplast. Additionally, both nitrogen-fixing (e.g. Flavobacterium, unclassified Burkholderiales and unclassified Rhizobiaceae) and denitrifying groups (e.g. Hydrogenophaga spp.) were significantly reduced in relative abundance at high tetracycline concentration. Phosphate-accumulating microorganisms, Acinetobacter spp. and Pseudomonas spp. were similarly reduced upon exposure to high tetracycline concentration. Unclassified Comamonadaceae, however, increased in relative abundance, which correlated with an increase in the abundance of tetracycline resistance genes associated with efflux pump mechanism. Overall, the findings demonstrate that antibiotic concentrations in municipal wastewaters will not significantly affect the removal of nutrients by the mixed microalgae-bacteria photo-bioreactors. However, utilizing such photo-bioreactors as a polishing step for anMBRs that treat wastewaters with high tetracycline

  6. JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr

    Science.gov (United States)

    1991-01-01

    JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.

  7. Towards a Tissue-Engineered Ligament: Design and Preliminary Evaluation of a Dedicated Multi-Chamber Tension-Torsion Bioreactor

    Directory of Open Access Journals (Sweden)

    Cédric P. Laurent

    2014-02-01

    Full Text Available Tissue engineering may constitute a promising alternative to current strategies in ligament repair, providing that suitable scaffolds and culture conditions are proposed. The objective of the present contribution is to present the design and instrumentation of a novel multi-chamber tension-torsion bioreactor dedicated to ligament tissue engineering. A preliminary biological evaluation of a new braided scaffold within this bioreactor under dynamic loading is reported, starting with the development of a dedicated seeding protocol validated from static cultures. The results of these preliminary biological characterizations confirm that the present combination of scaffold, seeding protocol and bioreactor may enable us to head towards a suitable ligament tissue-engineered construct.

  8. Effects of Bubble-Mediated Processes on Nitrous Oxide Dynamics in Denitrifying Bioreactors

    Science.gov (United States)

    McGuire, P. M.; Falk, L. M.; Reid, M. C.

    2017-12-01

    To mitigate groundwater and surface water impacts of reactive nitrogen (N), agricultural and stormwater management practices can employ denitrifying bioreactors (DNBs) as low-cost solutions for enhancing N removal. Due to the variable nature of hydrologic events, DNBs experience dynamic flows which can impact physical and biological processes within the reactors and affect performance. A particular concern is incomplete denitrification, which can release the potent greenhouse gas nitrous oxide (N2O) to the atmosphere. This study aims to provide insight into the effects of varying hydrologic conditions upon the operation of DNBs by disentangling abiotic and biotic controls on denitrification and N2O dynamics within a laboratory-scale bioreactor. We hypothesize that under transient hydrologic flows, rising water levels lead to air entrapment and bubble formation within the DNB porous media. Mass transfer of oxygen (O2) between trapped gas and liquid phases creates aerobic microenvironments that can inhibit N2O reductase (NosZ) enzymes and lead to N2O accumulation. These bubbles also retard N2O transport and make N2O unavailable for biological reduction, further enhancing atmospheric fluxes when water levels fall. The laboratory-scale DNB permits measurements of longitudinal and vertical profiles of dissolved constituents as well as trace gas concentrations in the reactor headspace. We describe a set of experiments quantifying denitrification pathway biokinetics under steady-state and transient hydrologic conditions and evaluate the role of bubble-mediated processes in enhancing N2O accumulation and fluxes. We use sulfur hexafluoride and helium as dissolved gas tracers to examine the impact of bubble entrapment upon retarded gas transport and enhanced trace gas fluxes. A planar optode sensor within the bioreactor provides near-continuous 2-D profiles of dissolved O2 within the bioreactor and allows for identification of aerobic microenvironments. We use qPCR to

  9. The Influence of Bioreactor Geometry and the Mechanical Environment on Engineered Tissues

    KAUST Repository

    Osborne, J. M.; O’ Dea, R. D.; Whiteley, J. P.; Byrne, H. M.; Waters, S. L.

    2010-01-01

    A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O'Dea et al. "A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor," Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10 -2 and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit. Copyright © 2010 by ASME.

  10. The Influence of Bioreactor Geometry and the Mechanical Environment on Engineered Tissues

    KAUST Repository

    Osborne, J. M.

    2010-01-01

    A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O\\'Dea et al. "A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor," Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10 -2 and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit. Copyright © 2010 by ASME.

  11. Optimization of Wastewater of Batik Buaran Pekalongan by Using Photocatalytic Membrane Bioreactor

    Science.gov (United States)

    Arifan, Fahmi; Nugraheni, FS; Lianandaya, Niken Elsa

    2018-02-01

    The purpose of this study is to determine the final COD concentration reduction by changing COD and MLSS concentration on the performance of submerged membrane bioreactor (MBRs) as a waste treatment of Batik in Buaran Pekalongan. The method is covers the process of seeding, the acclimatization process and the main process. Description of the process that we take an active mud from IPLT Buaran Pekalongan, then we analyze the sludge MLSS, MLVSS, COD, BOD, and TSS. After that we enter the active sludge in the bath nursery that has been given aerator (a tool for aeration) and made provision in the form of NPK nutrients and glucose at a ratio of 1:10. Activated sludge from the acclimatization process is inserted into the MBRs (membrane bioreactor submerged) that is equipped with an aerator. Then prepare influent(waste to be lowered concentration of COD). How, liquid waste of Batik Pekalongan Buaran COD diluted concentration of 10,000 mg / l and 15,000 mg / l, and then inserted in influent tub. After that liquid waste of Batik Buaran Pekalongan influent flowed into Photocatalytic Membrane Bioreactor, of MPB effluent flowed into the tub (result).

  12. Membrane bioreactor biomass characteristics and microbial yield at ...

    African Journals Online (AJOL)

    In this study, a laboratory-scale MBR and SBR were operated in parallel and at very low MCRTs (3 d, 2 d, 1 d and 0.5 d) to assess the relative bioreactor performance, biomass characteristics, and microbial yield. This study confirmed that the MBR maintains higher solids levels and better overall effluent quality than ...

  13. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.

    Science.gov (United States)

    Wang, Jia; Huang, Qifei; Li, Ting; Xin, Baoping; Chen, Shi; Guo, Xingming; Liu, Changhao; Li, Yuping

    2015-08-15

    A few studies have focused on release of valuable/toxic metals from Pb/Zn smelting slag by heterotrophic bioleaching using expensive yeast extract as an energy source. The high leaching cost greatly limits the practical potential of the method. In this work, autotrophic bioleaching using cheap sulfur or/and pyrite as energy matter was firstly applied to tackle the smelting slag and the bioleaching mechanisms were explained. The results indicated autotrophic bioleaching can solubilize valuable/toxic metals from slag, yielding maximum extraction efficiencies of 90% for Zn, 86% for Cd and 71% for In, although the extraction efficiencies of Pb, As and Ag were poor. The bioleaching performance of Zn, Cd and Pb was independent of leaching system, and leaching mechanism was acid dissolution. A maximum efficiency of 25% for As was achieved by acid dissolution in sulfursulfur oxidizing bacteria (S-SOB), but the formation of FeAsO4 reduced extraction efficiency in mixed energy source - mixed culture (MS-MC). Combined works of acid dissolution and Fe(3+) oxidation in MS-MC was responsible for the highest extraction efficiency of 71% for In. Ag was present in the slag as refractory AgPb4(AsO4)3 and AgFe2S3, so extraction did not occur. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Genetic Algorithmic Optimization of PHB Production by a Mixed Culture in an Optimally Dispersed Fed-batch Bioreactor

    Directory of Open Access Journals (Sweden)

    Pratap R. Patnaik

    2009-10-01

    Full Text Available Poly-β-hydroxybutyrate (PHB is an energy-storage polymer whose properties are similar to those of chemical polymers such as polyethylene and polypropylene. Moreover, PHB is biodegradable, absorbed by human tissues and less energy-consuming than synthetic polymers. Although Ralstonia eutropha is widely used to synthesize PHB, it is inefficient in utilizing glucose and similar sugars. Therefore a co-culture of R. eutropha and Lactobacillus delbrueckii is preferred since the latter can convert glucose to lactate, which R. eutropha can metabolize easily. Tohyama et al. [24] maximized PHB production in a well-mixed fed-batch bioreactor with glucose and (NH42SO4 as the primary substrates. Since production-scale bioreactors often deviate from ideal laboratory-scale reactors, a large bioreactor was simulated by means of a dispersion model with the kinetics determined by Tohyama et al. [24] and dispersion set at an optimum Peclet number of 20 [32]. The time-dependent feed rates of the two substrates were determined through a genetic algorithm (GA to maximize PHB production. This bioreactor produced 22.2% more PHB per liter and 12.8% more cell mass than achieved by Tohyama et al. [24]. These results, and similar observations with other fermentations, indicate the feasibility of enhancing the efficiency of large nonideal bioreactors through GA optimizations.

  15. Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose-peptone and starch-peptone

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiue-Lin; Chao, Yu-Chieh; Wang, Yu-Hsuan; Hsiao, Chia-Jung; Bai, Ming-Der [Department of Environmental Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Whang, Liang-Ming; Wang, Yung-Fu; Cheng, Sheng-Shung [Department of Environmental Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Sustainable Environment Research Center (SERC), National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Tseng, I.-Cheng [Sustainable Environment Research Center (SERC), National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Department of Life Science, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China)

    2010-01-15

    This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose-peptone (GP) and starch-peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to be 1247 and 412 mmol-H{sub 2}/L/d at HRT of 2 and 3 h, respectively. At HRT > 8 h, hydrogen consumption due to peptone fermentation could occur and thus reduced hydrogen yield from carbohydrate fermentation. Results of cloning/sequencing and denaturant gradient gel electrophoresis (DGGE) indicated that Clostridium sporogenes and Clostridium celerecrescens were dominant hydrogen-producing bacteria in the GP-fed bioreactor, presumably due to their capability on protein hydrolysis. In the SP-fed bioreactor, Lactobacillus plantarum, Propionispira arboris, and Clostridium butyricum were found to be dominant populations, but the presence of P. arboris at HRT > 3 h might be responsible for a lower hydrogen yield from starch fermentation. As a result, optimizing HRT operation for bioreactors was considered an important asset in order to minimize hydrogen-consuming activities and thus maximize net hydrogen production. The limitation of simple parameters such as butyrate to acetate ratio (B/A ratio) in predicting hydrogen production was recognized in this study for bioreactors fed with multiple substrates. It is suggested that microbial ecology analysis, in addition to chemical analysis, should be performed when complex substrates and mixed cultures are used in hydrogen-producing bioreactors. (author)

  16. Bioreactors based on immobilized fungi: bioremediation under non-sterile conditions

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Kateřina; Novotný, Čeněk

    2018-01-01

    Roč. 102, č. 1 (2018), s. 39-46 ISSN 0175-7598 Institutional support: RVO:61388971 Keywords : Waste effluents * Bioremediation * White-rot fungal bioreactors Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.420, year: 2016

  17. Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.

    Science.gov (United States)

    Bekir Ersu, Cagatayhan; Ong, Say Kee; Arslankaya, Ertan; Brown, Patrick

    2008-03-01

    A 12-L lab-scale membrane bioreactor (MBR), consisting of an anaerobic and anoxic compartment followed by an oxic plate-frame membrane compartment, was evaluated for carbonaceous and nutrient removals by varying the recirculation of mixed liquor and permeate. The hydraulic retention times (HRTs) for the anaerobic, anoxic, and oxic compartments were 2, 2, and 8h, respectively. The solids residence time (SRT) for the oxic compartment was 25 days. Five different recirculation configurations were tested by recirculating mixed liquor and/or permeate recirculation equal to the influent flow rate (identified as 100%) into different locations of the anaerobic and anoxic compartments. Of the five configurations, the configuration with 100% mixed liquor recirculation to the anaerobic compartment and 100% permeate recirculation to the anoxic compartment gave the highest percentage removal with an average 92.3+/-0.5% soluble chemical oxygen demand (sCOD), 75.6+/-0.4% total nitrogen (TN), and 62.4+/-1.3% total phosphorus (TP) removal. When the mixed liquor and permeate recirculation rates were varied for the same configuration, the highest TP removal was obtained for 300% mixed liquor recirculation and 100% permeate recirculation (300%/100%) with a TP removal of 88.1+/-1.3% while the highest TN removal (90.3+/-0.3%) was obtained for 200%/300% recirculation. TN and TP concentrations as low as 4.2+/-0.1 and 1.4+/-0.2mg/L respectively were obtained. Mass loading rates were generally low in the range of 0.11-0.22kgCOD/kgMLSS/d due to high biomass concentrations within the oxic reactor (approx. 8000mg/L). The BioWin model was calibrated against one set of the experimental data and was found to predict the experimental data of effluent TN, TP, and NO(3)(-)-N but over-predicted sCOD and NH(3)-N for various recirculation rates. The anoxic heterotrophic yield for the calibrated model was 0.2kg biomass COD/kg COD utilized while the maximum growth rates were found to be 0.45day(-1) for mu(max-autotroph

  18. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply.

    Science.gov (United States)

    Schmidt, Radomir; Klemme, David A; Scow, Kate; Hristova, Krassimira

    2012-03-30

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, Escherichia coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Design and Validation of a Cyclic Strain Bioreactor to Condition Spatially-Selective Scaffolds in Dual Strain Regimes

    Directory of Open Access Journals (Sweden)

    J. Matthew Goodhart

    2014-03-01

    Full Text Available The objective of this study was to design and validate a unique bioreactor design for applying spatially selective, linear, cyclic strain to degradable and non-degradable polymeric fabric scaffolds. This system uses a novel three-clamp design to apply cyclic strain via a computer controlled linear actuator to a specified zone of a scaffold while isolating the remainder of the scaffold from strain. Image analysis of polyethylene terephthalate (PET woven scaffolds subjected to a 3% mechanical stretch demonstrated that the stretched portion of the scaffold experienced 2.97% ± 0.13% strain (mean ± standard deviation while the unstretched portion experienced 0.02% ± 0.18% strain. NIH-3T3 fibroblast cells were cultured on the PET scaffolds and half of each scaffold was stretched 5% at 0.5 Hz for one hour per day for 14 days in the bioreactor. Cells were checked for viability and proliferation at the end of the 14 day period and levels of glycosaminoglycan (GAG and collagen (hydroxyproline were measured as indicators of extracellular matrix production. Scaffolds in the bioreactor showed a seven-fold increase in cell number over scaffolds cultured statically in tissue culture plastic petri dishes (control. Bioreactor scaffolds showed a lower concentration of GAG deposition per cell as compared to the control scaffolds largely due to the great increase in cell number. A 75% increase in hydroxyproline concentration per cell was seen in the bioreactor stretched scaffolds as compared to the control scaffolds. Surprisingly, little differences were experienced between the stretched and unstretched portions of the scaffolds for this study. This was largely attributed to the conditioned and shared media effect. Results indicate that the bioreactor system is capable of applying spatially-selective, linear, cyclic strain to cells growing on polymeric fabric scaffolds and evaluating the cellular and matrix responses to the applied strains.

  20. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Abzazou, Tarik; Araujo, Rosa M.; Auset, María; Salvadó, Humbert

    2016-01-01

    A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L"−"1), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH_4"+ removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. - Highlights: • Partial nitrification process in a MBBR fed with ammonium-rich liquor was achieved. • The operational key parameters were the HRT and temperature. • DAPI and FISH were useful to monitoring microbial composition of MBBR pilot plant. • The AOB were the dominant nitrifying bacteria, presenting 11.3% of total bacteria. • A significant correlation (R = 0.68) between AOB and ammonia removal was found.

  1. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Abzazou, Tarik, E-mail: tabzazou@ub.edu [Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain); Araujo, Rosa M., E-mail: raraujo@ub.edu [Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain); Auset, María, E-mail: maria.auset.vallejo@acciona.com [ACCIONA AGUA, S.A., Av de les Garrigues 22, El Prat de Llobregat, 08820 Barcelona (Spain); Salvadó, Humbert, E-mail: hsalvado@ub.edu [Department of Animal Biology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain)

    2016-01-15

    A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L{sup −1}), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH{sub 4}{sup +} removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. - Highlights: • Partial nitrification process in a MBBR fed with ammonium-rich liquor was achieved. • The operational key parameters were the HRT and temperature. • DAPI and FISH were useful to monitoring microbial composition of MBBR pilot plant. • The AOB were the dominant nitrifying bacteria, presenting 11.3% of total bacteria. • A significant correlation (R = 0.68) between AOB and ammonia removal was found.

  2. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    NARCIS (Netherlands)

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site

  3. Enhancing inhibited fermentations through a dynamic electro-membrane bioreactor

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Garde, Arvid; Rype, Jens-Ulrik

    produced in the bioreactor) with hydroxide ions, which maintained a pH close to optimal growing conditions. The ion-exchange was in turn regulated by a PID control unit, which adjusted the electrical current output between the REED electrodes to match the growing production speed of lactic acid, which...

  4. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    Science.gov (United States)

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  5. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    Science.gov (United States)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  6. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    International Nuclear Information System (INIS)

    Podwin, Agnieszka; Dziuban, Jan A

    2017-01-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO 2 —a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells. (paper)

  7. Bio-layer management in anaerobic membrane bioreactors for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.; Lier, van J.B.

    2006-01-01

    Membrane separation technology represents an alternative way to achieve biomass retention in anaerobic bioreactors for wastewater treatment. Due to high biomass concentrations of anaerobic reactors, cake formation is likely to represent a major cause of flux decline. In the presented research,

  8. EXPERIMENTAL STUDY ON THE GAS-LIQUID FLOW IN THE MEMBRANE MICROPORE AERATION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    DONG LIU

    2008-12-01

    Full Text Available Particle Image Velocimetry (PIV has been developed to measure the typical two-phase flow of various work conditions in Membrane Micropore Aeration Bioreactor (MMAB. The fluid phase is separated out using image processing techniques, which provides accurate measurements for the Bioreactor’s flow field, and makes it possible for quantitative analysis of the momentum exchange, heat exchange and the process of micro-admixture. The experimental method PIV used in this paper can preferably measure the complex flow in the reactor and initiates a new approach for the bioreactor design which mainly depends on experience at present.

  9. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  10. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  11. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.

    Science.gov (United States)

    Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2015-01-01

    High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.

  12. Integrated sensor array for on-line monitoring micro bioreactors

    NARCIS (Netherlands)

    Krommenhoek, E.E.

    2007-01-01

    The “Fed��?batch on a chip��?��?project, which was carried out in close cooperation with the Technical University of Delft, aims to miniaturize and parallelize micro bioreactors suitable for on-line screening of micro-organisms. This thesis describes an electrochemical sensor array which has been

  13. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis.

    Science.gov (United States)

    Liu, Wan-Ling; Yang, Ni-Shin; Chen, Ya-Ting; Lirio, Stephen; Wu, Cheng-You; Lin, Chia-Her; Huang, Hsi-Ya

    2015-01-02

    A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase-supported metal-organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    Directory of Open Access Journals (Sweden)

    Nora Freyer

    2016-08-01

    Full Text Available The hepatic differentiation of human induced pluripotent stem cells (hiPSC holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3. Differentiation into definitive endoderm (DE was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP, a marker for DE, was significantly (p < 0.05 higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH. CYP2B6 activities were significantly (p < 0.05 higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18, and hepatocyte nuclear factor 4-alpha (HNF4A at the end of the differentiation process. In addition, cytokeratin 19 (CK19 staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  15. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    Science.gov (United States)

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment

    International Nuclear Information System (INIS)

    Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ngo, Huu Hao; Guo, Wenshan; Hao, Chan Wen; Lin, Po-Hsun

    2015-01-01

    This study aims to develop a new osmotic membrane bioreactor by combining a moving bed biofilm reactor (MBBR) with forward osmosis membrane bioreactor (FOMBR) to treat wastewater. Ethylenediaminetetraacetic acid disodium salt coupled with polyethylene glycol tert-octylphenyl ether was used as an innovative draw solution in this membrane hybrid system (MBBR–OsMBR) for minimizing the reverse salt flux and maintaining a healthy environment for the microorganism community. The results showed that the hybrid system achieved a stable water flux of 6.94 L/m 2 h and low salt accumulation in the bioreactor for 68 days of operation. At a filling rate of 40% (by volume of the bioreactor) of the polyethylene balls used as carriers, NH 4 + -N and PO 4 3− -P were almost removed (> 99%) while producing relatively low NO 3 − -N and NO 2 − -N in the effluent (e.g. < 0.56 and 0.96 mg/L, respectively). Furthermore, from analysis based on scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence emission–excitation matrix spectrophotometry, there was a thin gel-like fouling layer on the FO membrane, which composed of bacteria as well as biopolymers and protein-like substances. Nonetheless, the formation of these fouling layers of the FO membrane in MBBR–OsMBR was reversible and removed by a physical cleaning technique. - Highlights: • A novel osmotic membrane bioreactor (MBBR–OsMBR) using a novel draw solution (DS) was developed. • The MBBR–OsMBR system successfully reduced membrane fouling. • EDTA sodium coupled with Triton X-100 as novel DS resulted in low salt accumulation. • Nitrification and denitrification were well performed in a biocarrier. • The MBBR–OsMBR could remarkably remove phosphorus

  17. Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Nguyen Cong [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Chen, Shiao-Shing, E-mail: f10919@ntut.edu.tw [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Nguyen, Hau Thi [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Ngo, Huu Hao, E-mail: h.ngo@uts.edu.au [School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007 (Australia); Guo, Wenshan [School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007 (Australia); Hao, Chan Wen [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Lin, Po-Hsun [New Materials Research and Development Dept., China Steel Corporation, Taiwan, ROC (China)

    2015-06-15

    This study aims to develop a new osmotic membrane bioreactor by combining a moving bed biofilm reactor (MBBR) with forward osmosis membrane bioreactor (FOMBR) to treat wastewater. Ethylenediaminetetraacetic acid disodium salt coupled with polyethylene glycol tert-octylphenyl ether was used as an innovative draw solution in this membrane hybrid system (MBBR–OsMBR) for minimizing the reverse salt flux and maintaining a healthy environment for the microorganism community. The results showed that the hybrid system achieved a stable water flux of 6.94 L/m{sup 2} h and low salt accumulation in the bioreactor for 68 days of operation. At a filling rate of 40% (by volume of the bioreactor) of the polyethylene balls used as carriers, NH{sub 4}{sup +}-N and PO{sub 4}{sup 3−}-P were almost removed (> 99%) while producing relatively low NO{sub 3}{sup −}-N and NO{sub 2}{sup −}-N in the effluent (e.g. < 0.56 and 0.96 mg/L, respectively). Furthermore, from analysis based on scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence emission–excitation matrix spectrophotometry, there was a thin gel-like fouling layer on the FO membrane, which composed of bacteria as well as biopolymers and protein-like substances. Nonetheless, the formation of these fouling layers of the FO membrane in MBBR–OsMBR was reversible and removed by a physical cleaning technique. - Highlights: • A novel osmotic membrane bioreactor (MBBR–OsMBR) using a novel draw solution (DS) was developed. • The MBBR–OsMBR system successfully reduced membrane fouling. • EDTA sodium coupled with Triton X-100 as novel DS resulted in low salt accumulation. • Nitrification and denitrification were well performed in a biocarrier. • The MBBR–OsMBR could remarkably remove phosphorus.

  18. Recycle bioreactor for bioethanol production from wheat starch. 1. Cold enzyme hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, X.; Hill, G.A.; MacDonald, D.G. [Department of Chemical Engineering, Saskatchewan (Canada)

    2001-06-01

    A 5 L membrane bioreactor system has been designed and operated at low temperature to hydrolyze starch granules directly to sugars using barley {alpha}-amylase. The system includes a temperature and pH controlled, well-mixed bioreactor; microfilters to separate and recycle granules; and ultrafilters to separate and recycle enzyme molecules. Operation in batch mode demonstrated similar kinetics and low productivity observed earlier in shake flasks, whereas continuous flow operation was not successful due to enzyme inhibition and degradation. Sequential batch mode operation, involving filtration after each batch hydrolysis, produced optimum productivity measured at 0.16 grams of starch granules hydrolyzed per gram of enzyme per hour for more than 100 hours of operation. (author)

  19. Critical Review of Membrane Bioreactor Models

    DEFF Research Database (Denmark)

    Naessens, W.; Maere, T.; Ratkovich, Nicolas Rios

    2012-01-01

    Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical...... modelling. In this paper, the vast literature on hydrodynamic and integrated modelling in MBR is critically reviewed. Hydrodynamic models are used at different scales and focus mainly on fouling and only little on system design/optimisation. Integrated models also focus on fouling although the ones...

  20. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.

    Science.gov (United States)

    Khan, Aasma A; Surrao, Denver C

    2012-05-01

    In cartilage tissue engineering an optimized culture system, maintaining an appropriate extracellular environment (e.g., pH of media), can increase cell proliferation and extracellular matrix (ECM) accumulation. We have previously reported on a continuous-flow bioreactor that improves tissue growth by supplying the cells with a near infinite supply of medium. Previous studies have observed that acidic environments reduce ECM synthesis and chondrocyte proliferation. Hence, in this study we investigated the combined effects of a continuous culture system (bioreactor) together with additional buffering agents (e.g., sodium bicarbonate [NaHCO₃]) on cartilaginous tissue growth in vitro. Isolated bovine chondrocytes were grown in three-dimensional cultures, either in static conditions or in a continuous-flow bioreactor, in media with or without NaHCO₃. Tissue constructs cultivated in the bioreactor with NaHCO₃-supplemented media were characterized with significantly increased (p<0.05) ECM accumulation (glycosaminoglycans a 98-fold increase; collagen a 25-fold increase) and a 13-fold increase in cell proliferation, in comparison with static cultures. Additionally, constructs grown in the bioreactor with NaHCO₃-supplemented media were significantly thicker than all other constructs (p<0.05). Further, the chondrocytes from the primary construct expanded and synthesized ECM, forming a secondary construct without a separate expansion phase, with a diameter and thickness of 4 mm and 0.72 mm respectively. Tissue outgrowth was negligible in all other culturing conditions. Thus this study demonstrates the advantage of employing a continuous flow bioreactor coupled with NaHCO₃ supplemented media for articular cartilage tissue engineering.

  1. Production of diosgenin from Dioscorea zingiberensis with mixed culture in a new tray bioreactor

    Directory of Open Access Journals (Sweden)

    Yutong Cheng

    2016-01-01

    Full Text Available A new tray bioreactor was developed for the production of diosgenin from Dioscorea zingiberensis with Trichoderma reesei and Aspergillus fumigatus. The influence of initial moisture content, temperature, tray bed depth and mixing times was investigated. The best fermentation condition is initial moisture content of 75%, bioreactor temperature of 35°C, solid bed depth of 1.5 cm and three mixings carrying out on the first, third and fifth day. Under the optimized fermentation conditions, after 144 h incubation, maximum diogenin concentration of 68.2 μmol/g was detected.

  2. Bioreactor production of recombinant herpes simplex virus vectors.

    Science.gov (United States)

    Knop, David R; Harrell, Heather

    2007-01-01

    Serotypical application of herpes simplex virus (HSV) vectors to gene therapy (type 1) and prophylactic vaccines (types 1 and 2) has garnered substantial clinical interest recently. HSV vectors and amplicons have also been employed as helper virus constructs for manufacture of the dependovirus adeno-associated virus (AAV). Large quantities of infectious HSV stocks are requisite for these therapeutic applications, requiring a scalable vector manufacturing and processing platform comprised of unit operations which accommodate the fragility of HSV. In this study, production of a replication deficient rHSV-1 vector bearing the rep and cap genes of AAV-2 (denoted rHSV-rep2/cap2) was investigated. Adaptation of rHSV production from T225 flasks to a packed bed, fed-batch bioreactor permitted an 1100-fold increment in total vector production without a decrease in specific vector yield (pfu/cell). The fed-batch bioreactor system afforded a rHSV-rep2/cap2 vector recovery of 2.8 x 10(12) pfu. The recovered vector was concentrated by tangential flow filtration (TFF), permitting vector stocks to be formulated at greater than 1.5 x 10(9) pfu/mL.

  3. Glyco-engineering for biopharmaceutical production in moss bioreactors

    Directory of Open Access Journals (Sweden)

    Eva L. Decker

    2014-07-01

    Full Text Available The production of recombinant biopharmaceuticals (pharmaceutical proteins is a strongly growing area in the pharmaceutical industry. While most products to date are produced in mammalian cell cultures, namely CHO cells, plant-based production systems gained increasing acceptance over the last years. Different plant systems have been established which are suitable for standardization and precise control of cultivation conditions, thus meeting the criteria for pharmaceutical production.The majority of biopharmaceuticals comprise glycoproteins. Therefore, differences in protein glycosylation between humans and plants have to be taken into account and plant-specific glycosylation has to be eliminated to avoid adverse effects on quality, safety and efficacy of the products.The basal land plant Physcomitrella patens (moss has been employed for the recombinant production of high-value therapeutic target proteins (e.g., Vascular Endothelial Growth Factor, Complement Factor H, monoclonal antibodies, Erythropoietin. Being genetically excellently characterized and exceptionally amenable for precise gene targeting via homologous recombination, essential steps for the optimization of moss as a bioreactor for the production of recombinant proteins have been undertaken.Here, we discuss the glyco-engineering approaches to avoid non-human N- and O-glycosylation on target proteins produced in moss bioreactors.

  4. New bioreactor vessel for tissue engineering of human nasal septal chondrocytes

    Directory of Open Access Journals (Sweden)

    Princz Sascha

    2016-09-01

    Full Text Available Cultivation of human nasal septal chondrocytes in a self-established automated bioreactor system with a new designed reactor glass vessel and the results of a computational fluid dynamics model are presented. The first results show the effect of a homogeneous fluidic condition of the continuous medium flow and the resulting stresses on the scaffolds’ surface and their influence on the migration of the cells into the scaffold matrix under these conditions. For this purpose computational models, generated with the computational fluid dynamics software STAR-CCM+, and the results of alcian blue staining for newly synthesized sulphated glycosaminoglycans have been compared during cultivation in the new and a first version of the glass reactor vessel with inhomogeneous fluidic conditions, with the same automated bioreactor system and under similar cultivation conditions.

  5. Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies.

    Science.gov (United States)

    Dowd, J E; Weber, I; Rodriguez, B; Piret, J M; Kwok, K E

    1999-05-20

    The selection of medium feed rates for perfusion bioreactors represents a challenge for process optimization, particularly in bioreactors that are sampled infrequently. When the present and immediate future of a bioprocess can be adequately described, predictive control can minimize deviations from set points in a manner that can maximize process consistency. Predictive control of perfusion hollow-fiber bioreactors was investigated in a series of hybridoma cell cultures that compared operator control to computer estimation of feed rates. Adaptive software routines were developed to estimate the current and predict the future glucose uptake and lactate production of the bioprocess at each sampling interval. The current and future glucose uptake rates were used to select the perfusion feed rate in a designed response to deviations from the set point values. The routines presented a graphical user interface through which the operator was able to view the up-to-date culture performance and assess the model description of the immediate future culture performance. In addition, fewer samples were taken in the computer-estimated cultures, reducing labor and analytical expense. The use of these predictive controller routines and the graphical user interface decreased the glucose and lactate concentration variances up to sevenfold, and antibody yields increased by 10% to 43%. Copyright 1999 John Wiley & Sons, Inc.

  6. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System.

    Science.gov (United States)

    Knöspel, Fanny; Jacobs, Frank; Freyer, Nora; Damm, Georg; De Bondt, An; van den Wyngaert, Ilse; Snoeys, Jan; Monshouwer, Mario; Richter, Marco; Strahl, Nadja; Seehofer, Daniel; Zeilinger, Katrin

    2016-04-16

    Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  7. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System

    Directory of Open Access Journals (Sweden)

    Fanny Knöspel

    2016-04-01

    Full Text Available Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR, while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  8. Mathematical modeling of wastewater decolorization in a trickle-bed bioreactor.

    Science.gov (United States)

    Skybová, T; Přibyl, M; Pocedič, J; Hasal, P

    2012-02-20

    This work focuses on mathematical modeling of removal of organic dyes from textile industry waste waters by a white-rot fungus Irpex lacteus in a trickle-bed bioreactor. We developed a mathematical model of biomass and decolorization process dynamics. The model comprises mass balances of glucose and the dye in a fungal biofilm and a liquid film. The biofilm is modeled using a spatially two-dimensional domain. The liquid film is considered as homogeneous in the direction normal to the biofilm surface. The biomass growth, decay and the erosion of the biofilm are taken into account. Using experimental data, we identified values of key model parameters: the dye degradation rate constant, biofilm corrugation factor and liquid velocity. Considering the dye degradation rate constant 1×10⁻⁵ kg m⁻³ s⁻¹, we found optimal values of the corrugation factor 0.853 and 0.59 and values of the liquid velocity 5.23×10⁻³ m s⁻¹ and 6.2×10⁻³ m s⁻¹ at initial dye concentrations 0.09433 kg m⁻³ and 0.05284 kg m⁻³, respectively. A good agreement between the simulated and experimental data using estimated values of the model parameters was achieved. The model can be used to simulate the performance of laboratory scale trickle-bed bioreactor operated in a batch regime or to estimate values of principal parameters of the bioreactor system. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery

    Science.gov (United States)

    This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and...

  10. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep.

    Science.gov (United States)

    Ding, Ming; Henriksen, Susan S; Martinetti, Roberta; Overgaard, Søren

    2017-11-01

    Early fixation of total joint arthroplasties is crucial for ensuring implant survival. An alternative bone graft material in revision surgery is needed to replace the current gold standard, allograft, seeing that the latter is associated with several disadvantages. The incubation of such a construct in a perfusion bioreactor has been shown to produce viable bone graft materials. This study aimed at producing larger amounts of viable bone graft material (hydroxyapatite 70% and β-tricalcium-phosphate 30%) in a novel perfusion bioreactor. The abilities of the bioreactor-activated graft material to induce early implant fixation were tested in a bilateral implant defect model in sheep, with allograft as the control group. Defects were bilaterally created in the distal femurs of the animals, and titanium implants were inserted. The concentric gaps around the implants were randomly filled with either allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while no significant differences between groups were found regarding early implant fixation. The microarchitecture of the bone formed by the synthetic graft materials resembled that of allograft. Histomorphometry revealed that allograft induced significantly more bone and less fibrous tissue (p formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2465-2476, 2017. © 2016 Wiley Periodicals, Inc.

  11. CONSTRUCTION OF MODULAR FIELD-BIOREACTOR FOR ACID MINE DRAINAGE TREATMENT

    Science.gov (United States)

    The paper focuses on the improvements to engineered features of a passive technology that has been used for remediation of acid rock drainage (ARD). This passive remedial technology, a sulfate-reducing bacteria (SRB) bioreactor, takes advantage of the ability of SRB that, if sup...

  12. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE - TECHNOLOGY CAPSULE

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  13. A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation.

    Science.gov (United States)

    Hülsmann, Jörn; Aubin, Hug; Kranz, Alexander; Godehardt, Erhardt; Munakata, Hiroshi; Kamiya, Hiroyuki; Barth, Mareike; Lichtenberg, Artur; Akhyari, Payam

    2013-09-01

    In the last decade, cardiovascular tissue engineering has made great progress developing new strategies for regenerative medicine applications. However, while tissue engineered heart valves are already entering the clinical routine, tissue engineered myocardial substitutes are still restrained to experimental approaches. In contrast to the heart valves, tissue engineered myocardium cannot be repopulated in vivo because of its biological complexity, requiring elaborate cultivation conditions ex vivo. Although new promising approaches-like the whole-heart decellularization concept-have entered the myocardial tissue engineering field, bioreactor technology needed for the generation of functional myocardial tissue still lags behind in the sense of user-friendly, flexible and low cost systems. Here, we present a novel customizable modular bioreactor system that can be used for whole-heart cultivation. Out of a commercially obtainable original equipment manufacturer platform we constructed a modular bioreactor system specifically aimed at the cultivation of decellularized whole-hearts through perfusion and controlled 3D biomechanical stimulation with a simple but highly flexible operation platform based on LabVIEW. The modular setup not only allows a wide range of variance regarding medium conditioning under controlled 3D myocardial stretching but can also easily be upgraded for e.g. electrophysiological monitoring or stimulation, allowing for a tailor-made low-cost myocardial bioreactor system.

  14. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    Science.gov (United States)

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

  15. Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles; Graves, Duane

    2015-01-01

    Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.

  16. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor

    Directory of Open Access Journals (Sweden)

    Daniel Joe Dailin

    2016-07-01

    Full Text Available Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L−1, respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L−1 concomitant with kefiran production of 1.91 g L−1.

  17. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor.

    Science.gov (United States)

    Dailin, Daniel Joe; Elsayed, Elsayed Ahmed; Othman, Nor Zalina; Malek, Roslinda; Phin, Hiew Siaw; Aziz, Ramlan; Wadaan, Mohamad; El Enshasy, Hesham Ali

    2016-07-01

    Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L(-1), respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L(-1) concomitant with kefiran production of 1.91 g L(-1).

  18. L-Tryptophan depletion bioreactor, a possible cancer therapy

    Directory of Open Access Journals (Sweden)

    Rolf Bambauer

    2015-04-01

    Full Text Available The cancer therapeutic strategies knownto date are not adequate for all cancer patients. Most of them are followed by a high rate of side effects and complications. The L-tryptophan depletion bioreactor is described as a possible new method of cancer therapy. L-tryptophan is an essential amino acid which has been recognized as an important cancer nutrient and its removal can lead to destruction of the tumour. Normal human cells or tumor cells cannot synthesize L-tryptophan and therefore tumor resistance is unlikely to develop. L-tryptophan is also a constituent for different bio-molecules such as Serotonin, Melatonin, and is needed for other synthesis processes in the cell growth. L-tryptophan degrading enzymes with 3 iso-enzymes called tryptophan side chain oxydase (TSO I, II, III were isolated. The 3 iso-enzymes can be differentiated by tryptic digestion. They have different molecular weights with different effectivenesses. All the TSO enzymes have heme that can catalyze essentially similar reactions involving L-tryptophan as a substrate. The most effective TSO is the type TSO III. A column which contained TSO as a bioreactor was integrated in a plasmapheresis unit and tested it in different animals. In sheep and rabbits L-tryptophan depletion in plasma was shown at 95% and 100% rates respectively by a single pass through the bioreactor. The results in immune supprimized rats with tumors were impressive, too. In 20 different tumor cell lines there were different efficacies. Brest cancer and medulloblastoma showed the greatest efficacy of L-tryptophan degrading. The gene technology of TSO production from Pseudomonas is associated with formation of endotoxins. This disadvantage can be prevented by different washing procedures or by using fungal sources for the TSO production. TSO III is developed to treat cancer diseases successfully, and has low side effects. A combination of L-tryptophan depletion with all available cancer therapies is

  19. Regulation of Autotrophic and Heterotrophic Metabolism in Pseudomonas oxalaticus OX1. Growth on Fructose and on Mixtures of Fructose and Formate in Batch and Continuous Cultures

    NARCIS (Netherlands)

    Dijkhuizen, L.; Harder, W.

    1984-01-01

    In Pseudomonas oxalaticus the synthesis of enzymes involved in autotrophic CO2 fixation via the Calvin cycle is regulated by repression/derepression. During growth of the organism on fructose alone, the synthesis of ribulosebisphosphate carboxylase (RuBPCase) remained fully repressed, both in batch

  20. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth.

    Science.gov (United States)

    Huang, Menglu; Wang, Zhen; Qi, Ran

    2017-06-01

    This study was conducted to explore enhancement of the complete autotrophic nitrogen removal over nitrite (CANON) process in a modified single-stage subsurface vertical flow constructed wetland (VSSF) with saturated zone, and nitrogen transformation pathways in the VSSF treating digested swine wastewater were investigated at four different saturated zone depths (SZDs). SZD significantly affected nitrogen transformation pathways in the VSSF throughout the experiment. As the SZD was 45cm, the CANON process was enhanced most effectively in the system owing to the notable enhancement of anammox. Correspondingly, the VSSF had the best TN removal performance [(76.74±7.30)%] and lower N 2 O emission flux [(3.50±0.22)mg·(m 2 ·h) - 1 ]. It could be concluded that autotrophic nitrogen removal via CANON process could become a primary route for nitrogen removal in the VSSF with optimized microenvironment that developed as a result of the appropriate SZD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  2. Thiosulphate conversion in a methane and acetate fed membrane bioreactor

    NARCIS (Netherlands)

    Suarez Zuluaga, D.A.; Timmers, P.H.A.; Plugge, C.M.; Stams, A.J.M.; Buisman, C.J.N.; Weijma, J.

    2016-01-01

    The use of methane and acetate as electron donors for biological reduction of thiosulphate in a 5-L laboratory membrane bioreactor was studied and compared to disproportionation of thiosulphate as competing biological reaction. The reactor was operated for 454 days in semi-batch mode; 30 % of its

  3. MTBE BIODEGRADATION IN A GRAVITY FLOW, HIGH-BIOMASS RETAINING BIOREACTOR

    Science.gov (United States)

    The aerobic biodegradation of methyl tert-butyl ether (MtBE), a widely used fuel oxygenate, was investigated using a pilot-scale biomass-retaining bioreactor called a Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d on Ci...

  4. Solid substrate fermentation of lignite by the coal-solubilizing mould, Trichoderma atroviride, in a new type of bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Holker, U.; Hofer, M. [University of Bonn, Bonn (Germany)

    2002-07-01

    Trichoderma atroviride CBS 349 is able to solubilize lignite. The mould was cultured under non-sterile conditions in a new type of bioreactor for solid substrate fermentation. German lignite (lithotype A, Bergheim) was used as complex solid substrate. Over 40 days 140 g of 1.5 kg lignite held in a 25 1-bioreactor was solubilized by the fungus.

  5. Impact of Furfural on Rapid Ethanol Production Using a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Mohammad J. Taherzadeh

    2013-03-01

    Full Text Available A membrane bioreactor was developed to counteract the inhibition effect of furfural in ethanol production. Furfural, a major inhibitor in lignocellulosic hydrolyzates, is a highly toxic substance which is formed from pentose sugars released during the acidic degradation of lignocellulosic materials. Continuous cultivations with complete cell retention were performed at a high dilution rate of 0.5 h−1. Furfural was added directly into the bioreactor by pulse injection or by addition into the feed medium to obtain furfural concentrations ranging from 0.1 to 21.8 g L−1. At all pulse injections of furfural, the yeast was able to convert the furfural very rapidly by in situ detoxification. When injecting 21.8 g L−1 furfural to the cultivation, the yeast converted it by a specific conversion rate of 0.35 g g−1 h−1. At high cell density, Saccharomyces cerevisiae could tolerate very high furfural levels without major changes in the ethanol production. During the continuous cultures when up to 17.0 g L−1 furfural was added to the inlet medium, the yeast successfully produced ethanol, whereas an increase of furfural to 18.6 and 20.6 g L−1 resulted in a rapidly decreasing ethanol production and accumulation of sugars in the permeate. This study show that continuous ethanol fermentations by total cell retention in a membrane bioreactor has a high furfural tolerance and can conduct rapid in situ detoxification of medium containing high furfural concentrations.

  6. Tubular bioreactor and its application; Tubular bioreactor to sono tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, I.; Nagamune, T. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yuki, K. [Nikka Whisky Distilling Co. Ltd. Tokyo (Japan); Inaba, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1994-09-05

    The loop type tubular bioreactor (TBR) was developed where biocatalysts are trapped in the reactor by membrane module. A UF membrane or MF membrane and crossflow filtration were adopted for the membrane module, and the reactor loop was composed of four membrane modules. The reactor was operated at 2-4 m/s in membrane surface velocity and 300-400 kPa in filtration pressure. As the result of the high-density culture of lactic acid bacteria and yeast, a biomass concentration was more than 10 times that in batch culture, suggesting the remarkable enhancement of a production efficiency. As the result of the continuous fermentation of cider, the fast fermentation more than 60 times that in conventional ones was obtained together with the same quality as conventional ones. Such a fast fermentation was probably achieved by yeast suspended in the fermenter of TBR, by yeast hardly affected physico-chemically as compared with immobilized reactors, and by small effect of mass transfer on reaction systems. 4 refs., 6 figs.

  7. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  9. Micro propagation of Stevia rebaudiana Bertoni through temporary immersion bioreactor system

    International Nuclear Information System (INIS)

    Norazlina Noordin; Rusli Ibrahim; Nur Hidayah Sajahan; Siti Maryam Mohd Nahar; Siti Hajar Mohd Nahar

    2012-01-01

    Stevia rebaudiana Bertoni is a perennial herb that belongs to the family of Asteraceae. It is a natural sweetener plant known as sweet leaf, which is estimated to be 300 times sweeter than cane sugar. In this study, micro propagation of this natural herb via temporary immersion bioreactor system was successfully conducted. Shoot tips and nodal segment were used as explants to induce multiply shoots. It was found that shoot tips on MS medium supplemented with 1 mg/l Kinetin showed the highest shoot multiplication after 3 weeks of culture. Shoot elongation and rooting was successfully optimized in MS basal medium 2 weeks later. Mass propagation of stevia shoots were carried out in temporary immersion bioreactor and this system showed promising potential as an alternative approach for rapid and continuous production of in vitro stevia plantlets. (author)

  10. Structural analysis of a fibrocement anaerobic bioreactor for finite elements method

    International Nuclear Information System (INIS)

    Guardia-Puebla, Yans; Pacheco-GamboaI, Raúl; Ramos-Botello, Yoan; Palma-Ramírez, Leonardo; Rodríguez-Pérez, Suyén

    2015-01-01

    The paper consist on asses the mechanical resistant of the fibrocement tanks as a proposal of an anaerobic system of low cost for biogas production. For the design was used the finite elements method (FEM), which it is fundamental tool to carried out the structural analysis of the resistant to the traction of the anaerobic bioreactor. With this new system, a suitable option to spread, of sustainable and economic means, the biogas production on rural zones. For the design was used fibrocement tanks of 1900 L, and pipes and accessories plastics, achieving a maximum volume of cumulative biogas of 1,12 m"3.The fibrocement tank was not accomplished with the necessary specifications to achieve the design aim; for that reason, a new dimensional design was developed to guarantee the traction resistant as anaerobic bioreactors. (author)

  11. Microbial population analysis of nutrient removal-related organisms in membrane bioreactors

    NARCIS (Netherlands)

    Silva, A.F.; Carvalho, G.; Oehmen, A.; Lousada-Ferreira, M.; Van Nieuwenhuijzen, A.; Reis, M.A.M.; Crespo, M.T.B.

    2012-01-01

    Membrane bioreactors (MBR) are an important and increasingly implemented wastewater treatment technology, which are operated at low food to microorganism ratios (F/M) and retain slow-growing organisms. Enhanced biological phosphorus removal (EBPR)-related organisms grow slower than ordinary

  12. Bioreactor engineering of stem cell environments.

    Science.gov (United States)

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-11-15

    Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Khondee, Nichakorn; Tathong, Sitti [International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok (Thailand); Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Pinyakong, Onruthai [Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok (Thailand); Powtongsook, Sorawit [Center of Excellence for Marine Biotechnology (c/o Department of Marine Science, Chulalongkorn University), National Center for Genetic Engineering and Biotechnology, Pathum Thani (Thailand); Chatchupong, Thawach; Ruangchainikom, Chalermchai [Environmental Research and Management Department, PTT Research and Technology Institute, Ayutthaya (Thailand); Luepromchai, Ekawan, E-mail: ekawan.l@chula.ac.th [Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok (Thailand)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Sphingobium sp. P2 effectively degraded various lubricant samples. Black-Right-Pointing-Pointer Efficiency of Sphingobium sp. P2 increased after immobilization on chitosan. Black-Right-Pointing-Pointer High removal efficiency was due to both sorption and degradation processes. Black-Right-Pointing-Pointer The immobilized bacteria (4 g L{sup -1}) were applied in internal loop airlift bioreactor. Black-Right-Pointing-Pointer The bioreactor continuously removed lubricant from emulsified wastewater. - Abstract: An internal loop airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 was applied for the removal of automotive lubricants from emulsified wastewater. The chitosan-immobilized bacteria had higher lubricant removal efficiency than free and killed-immobilized cells because they were able to sorp and degrade the lubricants simultaneously. In a semi-continuous batch experiment, the immobilized bacteria were able to remove 80-90% of the 200 mg L{sup -1} total petroleum hydrocarbons (TPH) from both synthetic and carwash wastewater. The internal loop airlift bioreactor, containing 4 g L{sup -1} immobilized bacteria, was later designed and operated at 2.0 h HRT (hydraulic retention time) for over 70 days. At a steady state, the reactor continuously removed 85 {+-} 5% TPH and 73 {+-} 11% chemical oxygen demand (COD) from the carwash wastewater with 25-200 mg L{sup -1} amended lubricant. The internal loop airlift reactor's simple operation and high stability demonstrate its high potential for use in treating lubricants in emulsified wastewater from carwashes and other industries.

  14. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater

    International Nuclear Information System (INIS)

    Khondee, Nichakorn; Tathong, Sitti; Pinyakong, Onruthai; Powtongsook, Sorawit; Chatchupong, Thawach; Ruangchainikom, Chalermchai; Luepromchai, Ekawan

    2012-01-01

    Highlights: ► Sphingobium sp. P2 effectively degraded various lubricant samples. ► Efficiency of Sphingobium sp. P2 increased after immobilization on chitosan. ► High removal efficiency was due to both sorption and degradation processes. ► The immobilized bacteria (4 g L −1 ) were applied in internal loop airlift bioreactor. ► The bioreactor continuously removed lubricant from emulsified wastewater. - Abstract: An internal loop airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 was applied for the removal of automotive lubricants from emulsified wastewater. The chitosan-immobilized bacteria had higher lubricant removal efficiency than free and killed-immobilized cells because they were able to sorp and degrade the lubricants simultaneously. In a semi-continuous batch experiment, the immobilized bacteria were able to remove 80–90% of the 200 mg L −1 total petroleum hydrocarbons (TPH) from both synthetic and carwash wastewater. The internal loop airlift bioreactor, containing 4 g L −1 immobilized bacteria, was later designed and operated at 2.0 h HRT (hydraulic retention time) for over 70 days. At a steady state, the reactor continuously removed 85 ± 5% TPH and 73 ± 11% chemical oxygen demand (COD) from the carwash wastewater with 25–200 mg L −1 amended lubricant. The internal loop airlift reactor's simple operation and high stability demonstrate its high potential for use in treating lubricants in emulsified wastewater from carwashes and other industries.

  15. Anaerobic expanded granular sludge bed (EGSB) reactor for the removal of sulphide by autotrophic denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Dinamarca, Carlos [Department of Process, Energy and Environment, Faculty of Technology, Telemark University College Kjolnes ring 56, 3918 Porsgrunn (Norway)

    2013-07-01

    The Removal efficiency, load and N/S molar ratio, of an EGSB reactor for autotrophic sulphide denitrification operated for 96 days, were studied. The reactor was operated at high inlet sulphide concentrations between 0.25 to 3.00 g HS--S/L equivalents to loads between 5 to 250 g HS--S/m3-h. Sulphide removals higher than 99 % were achieved. At a N/S molar ratio of 0.3 and 12 hours HRT the process was stable even during transition periods of influent sulphide concentration and pH (9.0-12.1). At N/S molar ratio of 1.3, granules lost some of their sedimentation properties and appeared to disintegrate. On average 94 ± 4 % of the equivalent inlet sulphur ended as elemental sulphur.

  16. Plastic carrier polishing chamber reduces pollution swapping from denitrifying woodchip bioreactors

    Science.gov (United States)

    Denitrifying bioreactors with solid organic carbon sources (i.e., “woodchip bioreactors”) have proven to be relatively simple and cost effective treatment systems for nitrate-laden agricultural and aquacultural waters and wastewaters. However, because this technology is still relatively new, design ...

  17. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale.

    Science.gov (United States)

    Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen

    2013-12-02

    Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

  18. Determination of the kinetic and stoichiometric constant in a conventional bioreactor of activated sludge, to scale

    International Nuclear Information System (INIS)

    Rodriguez Chaparro, Tatiana; Perez Navarrete, Eddie Albert; Vivas Mora, Eneydi

    2003-01-01

    The activated sludge process is the one of the most efficient process, when it comes to removal of organic matter. Implementing in the lab is quite easy, economic technically feasible, and simultaneously offers the possibility of using the results obtained in the lab to be applied in field by determining the kinetic and stoichiometric constants. The activated sludge system was designed, built and operated in the water quality lab, at the Military University in Bogota, Colombia. The bioreactor has an aeration chamber, a sedimentation tank and a feeding source with wastewater taken from a meat packing plant in Bogota. The research was carried out for 3 months, in two stages as follows: in the first stage and in order to obtain a high concentration of biomass the acclimatizing process was carried out. This step allows the bioreactor to run in a continuous flow. In the second stage, the bioreactor was taken in to operation and fed with the acclimated sludge at different sludge ages. This would allow us to determine the kinetics, and the stoichiometric constants. The bioreactor was run with a hydraulic retention time of 8 hours and for different sludge ages (5, 10, and 15 days). The system was monitored with a daily grab samples, and pH, temperature as well as the DBO 5 and suspended volatile solids were terminated

  19. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor.

    Science.gov (United States)

    Sun, Weimin; Xiao, Enzong; Kalin, Margarete; Krumins, Valdis; Dong, Yiran; Ning, Zengping; Liu, Tong; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Mao, Jianzhong; Xiao, Tangfu

    2016-08-01

    An on-site field-scale bioreactor for passive treatment of antimony (Sb) contamination was installed downstream of an active Sb mine in Southwest China, and operated for one year (including a six month monitoring period). This bioreactor consisted of five treatment units, including one pre-aerobic cell, two aerobic cells, and two microaerobic cells. With the aerobic cells inoculated with indigenous mine water microflora, the bioreactor removed more than 90% of total soluble Sb and 80% of soluble antimonite (Sb(III)). An increase in pH and decrease of oxidation-reduction potential (Eh) was also observed along the flow direction. High-throughput sequencing of the small subunit ribosomal RNA (SSU rRNA) gene variable (V4) region revealed that taxonomically diverse microbial communities developed in the bioreactor. Metal (loid)-oxidizing bacteria including Ferrovum, Thiomonas, Gallionella, and Leptospirillum, were highly enriched in the bioreactor cells where the highest total Sb and Sb(III) removal occurred. Canonical correspondence analysis (CCA) indicated that a suite of in situ physicochemical parameters including pH and Eh were substantially correlated with the overall microbial communities. Based on an UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis), the microbial composition of each cell was distinct, indicating these in situ physicochemical parameters had an effect in shaping the indigenous microbial communities. Overall, this study was the first to employ a field-scale bioreactor to treat Sb-rich mine water onsite and, moreover, the findings suggest the feasibility of the bioreactor in removing elevated Sb from mine waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Farm Deployable Microbial Bioreactor for Fuel Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict [Auburn Univ., Montgomery AL (United States)

    2016-03-30

    Research was conducted to develop a farm and field deployable microbial bioreactor for bioethanol production from biomass. Experiments were conducted to select the most efficient microorganisms for conversion of plant fiber to sugars for fermentation to ethanol. Mixtures of biomass and surface soil samples were collected from selected sites in Alabama black belt counties (Macon, Sumter, Choctaw, Dallas, Montgomery, Lowndes) and other areas within the state of Alabama. Experiments were conducted to determine the effects of culture parameters on key biomass saccharifying enzymes (cellulase, beta-glucosidase, xylanase and beta-xylosidase). A wide-scale sampling of locally-grown fruits in Central Alabama was embarked to isolate potential xylose fermenting microorganisms. Yeast isolates were evaluated for xylose fermentation. Selected microorganisms were characterized by DNA based methods. Factors affecting enzyme production and biomass saccharification were examined and optimized in the laboratory. Methods of biomass pretreatment were compared. Co-production of amylolytic enzymes with celluloytic-xylanolytic enzymes was evaluated; and co-saccharification of a combination of biomass, and starch-rich materials was examined. Simultaneous saccharification and fermentation with and without pre-saccharifcation was studied. Whole culture broth and filtered culture broth simultaneous saccahrifcation and fermentation were compared. A bioreactor system was designed and constructed to employ laboratory results for scale up of biomass saccharification.

  1. Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles : a case study related to the microbial desulfurization of coal

    NARCIS (Netherlands)

    Boogerd, F C; Bos, P; Kuenen, J.G.; Heijnen, J.; van der Lans, R G

    Mass transfers of O(2), CO(2), and water vapor are among the key processes in the aerobic, autotrophic cultivation of moderate and extreme thermophiles. The dynamics and kinetics of these processes are, in addition to the obvious microbial kinetics, of crucial importance for the industrial

  2. Application of a stir-tank bioreactor for perfusion culture and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-18

    Jan 18, 2010 ... The bioreactor we used could be an efficient cell culture system and demonstrates industrial potential. ... overcoming the harmful effects of browning have no conclusive .... solvent under reduced pressure, the ethanol extract liquids was re- ... was detected in the exhaust medium with a perfusion rate of more ...

  3. Molecular microbial and chemical investigation of the bioremediation of two-phase olive mill waste using laboratory-scale bioreactors.

    Science.gov (United States)

    Morillo, J A; Aguilera, M; Antízar-Ladislao, B; Fuentes, S; Ramos-Cormenzana, A; Russell, N J; Monteoliva-Sánchez, M

    2008-05-01

    Two-phase olive mill waste (TPOMW) is a semisolid effluent that is rich in contaminating polyphenols and is produced in large amounts by the industry of olive oil production. Laboratory-scale bioreactors were used to investigate the biodegradation of TPOMW by its indigenous microbiota. The effect of nutrient addition (inorganic N and P) and aeration of the bioreactors was studied. Microbial changes were investigated by PCR-temperature time gradient electrophoresis (TTGE) and following the dynamics of polar lipid fatty acids (PLFA). The greatest decrease in the polyphenolic and organic matter contents of bioreactors was concomitant with an increase in the PLFA fungal/bacterial ratio. Amplicon sequences of nuclear ribosomal internal transcribed spacer region (ITS) and 16S rDNA allowed identification of fungal and bacterial types, respectively, by comparative DNA sequence analyses. Predominant fungi identified included members of the genera Penicillium, Candida, Geotrichum, Pichia, Cladosporium, and Aschochyta. A total of 14 bacterial genera were detected, with a dominance of organisms that have previously been associated with plant material. Overall, this work highlights that indigenous microbiota within the bioreactors through stimulation of the fungal fraction, is able to degrade the polyphenolic content without the inoculation of specific microorganisms.

  4. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Ma, Chun; Domingo-Felez, Carlos

    2017-01-01

    Nitrous oxide (N2O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N2O production were quantified in two lab-scale sequencing batch reactors...... to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N2O production was low (∼2% of the oxidized ammonium). Net N2O production rates transiently increased with a rise in pH after each feeding, suggesting...... operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient...

  5. Nitrate removal from aquaculture effluents using woodchip bioreactors improved by adding sulfur granules and crushed seashells

    DEFF Research Database (Denmark)

    von Ahnen, Mathis; Pedersen, Per Bovbjerg; Dalsgaard, Johanne

    2018-01-01

    This study examined the effects on nitrate removal when adding sulfur granules and crushed seashells to a woodchip bioreactor treating aquaculture effluents. Using a central composite design, the two components were added at three levels (0.000, 0.125 and 0.250 m3/m3 bioreactor volume) to 13......, the inclusion of crushed seashells together with sulfur granules helped to maintain the pH above 7.4 and prevent a production (i.e., release) of nitrite. According to the modeled response surfaces, a sulfur granule:crushed seashell:woodchip mixture ratio containing about 0.2 m3 sulfur granules and 0.1 m3...... crushed seashells per m3 reactor volume would give the best results with respect to high N removal and minimal nitrite release. In conclusion, the study showed that N removal in woodchip bioreactors may be improved by adding sulfur granules and seashells, contributing to the optimization of woodchip...

  6. Multi-objective optimization of an industrial penicillin V bioreactor train using non-dominated sorting genetic algorithm.

    Science.gov (United States)

    Lee, Fook Choon; Rangaiah, Gade Pandu; Ray, Ajay Kumar

    2007-10-15

    Bulk of the penicillin produced is used as raw material for semi-synthetic penicillin (such as amoxicillin and ampicillin) and semi-synthetic cephalosporins (such as cephalexin and cefadroxil). In the present paper, an industrial penicillin V bioreactor train is optimized for multiple objectives simultaneously. An industrial train, comprising a bank of identical bioreactors, is run semi-continuously in a synchronous fashion. The fermentation taking place in a bioreactor is modeled using a morphologically structured mechanism. For multi-objective optimization for two and three objectives, the elitist non-dominated sorting genetic algorithm (NSGA-II) is chosen. Instead of a single optimum as in the traditional optimization, a wide range of optimal design and operating conditions depicting trade-offs of key performance indicators such as batch cycle time, yield, profit and penicillin concentration, is successfully obtained. The effects of design and operating variables on the optimal solutions are discussed in detail. Copyright 2007 Wiley Periodicals, Inc.

  7. Anaerobic treatment of agro-industrial wastewaters for COD removal in expanded granular sludge bed bioreactor

    Directory of Open Access Journals (Sweden)

    Abumalé Cruz-Salomón

    2017-12-01

    Full Text Available Untreated agro-industrial wastewaters are undesirable in the aquatic environment due to the presence of high organic matter contents. However, they may constitute a large potential for biogas production. The present investigation is focused on three laboratory-scale anaerobic expanded granular sludge bed (EGSB bioreactors, continuously operated for 60 d under mesophilic condition with the aim of exploring the feasibility of treating three most significant agro-industrial wastewaters in Chiapas, Mexico (i.e., cheese whey, vinasse, and coffee-processing wastewater. The EGSB bioreactors were operated with a hydraulic retention time (HRT of 6 d under stable conditions (i.e., buffer index (BI of 0.31, 0.34, and 0.03, generating a maximum chemical oxygen demand (COD removal efficiency of 91, 74, and 96% with an average methane production of 340, 245, and 300 mL/g COD∙d for cheese whey, vinasse, and coffee-processing wastewater, respectively. According to the obtained results, the EGSB bioreactors could be a sustainable alternative to simultaneously solve the environmental problems and to produce bioenergy.

  8. Heat and Mass Transfer Remote Control in Bioreactors of Technological Lines

    Directory of Open Access Journals (Sweden)

    Viktorija M. Mel’nick

    2017-10-01

    Full Text Available Background. The main problems that arise when using equipment for cultivation are to ensure the heat and mass transfer processes in devices, presence of turbulent and stagnant zones, high-energy consumption, low heat transfer coefficients when working with viscous fluids. Objective. The aim of the paper is the experimental determination of the remote control heat transfer advantages in production line bioreactors using ultrasonic beam compared to contact methods. Methods. An experimental study of the heat and mass transfer process in a bioreactor on the stand with UZP-6-1 immersion unit of the ultrasonic radiator with radiation frequency 42 kHz is carried out. Results. Sound waves emitted into a liquid form a concentration zone of passable sound energy in the confocal vessel form of a cylindrical surface and force the liquid to move along the inner surface of the glass along the ascending cylindrical spiral, forming a motive flow throughout the volume, causing peripheral layers of liquid and bottom layers to move in a horizontal and vertical planes, without leaving stagnant zones. The closer to the coincidence angle is the directed ultrasonic beam the greater is the effectiveness of the driving flow. Conclusions. The use of sound waves allows obtaining a high-quality product in technological lines based on bioreactors with minimal risk for the technological process. Radiation parameters and working volume physic-mechanical properties change allow fully using the properties of resonant manifestations of the sound wave influence on the working liquid with minimal costs.

  9. Oxygen transfer in slurry bioreactors.

    Science.gov (United States)

    Kawase, Y; Moo-Young, M

    1991-04-25

    The oxygen transfer in bioreactors with slurries having a yield stress was investigated. The volumetric mass transfer coefficients in a 40-L bubble column with simulated fermentation broths, the Theological properties of which were represented by the Casson model, were measured. Experimental data were compared with a theoretical correlation developed on the basis of a combination of Higbie's penetration theory and Kolmogoroff's theory of isotropic turbulence. Comparisons between the proposed correlation and data for the simulated broths show good agreement. The mass transfer data for actual mycelial fermentation broths reported previously by the authors were re-examined. Their Theological data was correlated by the Bingham plastic model. The oxygen transfer rate data in the mycelial fermentation broths fit the predictions of the proposed theoretical correlation.

  10. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry

    DEFF Research Database (Denmark)

    Andersen, Martin; Kristensen, Gert Holm; Brynjolf, M.

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (

  11. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.

    Science.gov (United States)

    Xing, Wei; Li, Desheng; Li, Jinlong; Hu, Qianyi; Deng, Shihai

    2016-07-01

    A process combining micro-electrolysis and autotrophic denitrification (CEAD) with iron-carbon micro-electrolysis carriers was developed for nitrate removal. The process was performed using organic-free influent with a NO3(-)-N concentration of 40.0±3.0mg/L and provided an average nitrate removal efficiency of 95% in stable stages. The total nitrogen removal efficiency reached 75%, with 21% of NO3(-)-N converted into NH4(+)-N. The corresponding hydraulic retention time was 8-10h, and the optimal pH ranged from 8.5 to 9.5. Microbial analysis with high-throughput sequencing revealed that dominant microorganisms in the reactor belonged to the classes of β-, γ-, and α-Proteobacteria. The abundance of the genera Thermomonas significantly increased during the operation, comprising 21.4% and 24.1% in sludge attached to the carriers in the middle and at the bottom of the reactor, respectively. The developed CEAD achieved efficient nitrate removal from water without organics, which is suitable for practical application. Copyright © 2016. Published by Elsevier Ltd.

  12. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Snoek Henriksen, Susan; Martinetti, Roberta

    2017-01-01

    allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while......, bone formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016....

  13. Factors impacting biotransformation kinetics of trace organic compounds in lab-scale activated sludge systems performing nitrification and denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lijuan; Aga, Diana [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Chandran, Kartik [Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027 (United States); Khunjar, Wendell O., E-mail: wkhunjar@hazenandsawyer.com [Hazen and Sawyer P.C., Fairfax, VA 22030 (United States)

    2015-01-23

    Highlights: • We examined TOrC biotransformation kinetics in nitrifying and denitrifying reators. • TOrC biotransformation was linked to heterotrophic and autotrophic activity. • TOrC biotransformation rates were not sensitive to the initial TOrC concentration. • Readily biodegradable organic matter suppressed TOrC biotransformation rates. - Abstract: To predict TOrC fate in biological activated sludge systems, there is a need to accurately determine TOrC biodegradation kinetics in mixed microbial cultures. Short-term batch tests with salicylic acid, 17α-ethinylestradiol, nonylphenol, trimethoprim and carbamazepine were conducted with lab-scale activated sludge cultures in which the initial TOrC concentration (1 mg/L and 0.0005 mg/L) and readily biodegradable substrate concentrations were varied. The results indicate that pseudo-first order kinetic estimates of TOrC are not sensitive (p > 0.05) to the initial TOrC concentration as long as the initial TOrC concentration (S{sub 0}) to biomass (X{sub 0}) ratio (on COD basis) is below 2 × 10{sup −3}. The presence of readily biodegradable organic matter suppresses TOrC biotransformation rates under nitrifying and denitrifying conditions, and this impact can be adequately described using a reversible non-competitive inhibition equation. These results demonstrate the importance of closely mimicking parent reactor conditions in batch testing because biotransformation parameters are impacted by in-situ carbon loading and redox conditions.

  14. Factors impacting biotransformation kinetics of trace organic compounds in lab-scale activated sludge systems performing nitrification and denitrification

    International Nuclear Information System (INIS)

    Su, Lijuan; Aga, Diana; Chandran, Kartik; Khunjar, Wendell O.

    2015-01-01

    Highlights: • We examined TOrC biotransformation kinetics in nitrifying and denitrifying reators. • TOrC biotransformation was linked to heterotrophic and autotrophic activity. • TOrC biotransformation rates were not sensitive to the initial TOrC concentration. • Readily biodegradable organic matter suppressed TOrC biotransformation rates. - Abstract: To predict TOrC fate in biological activated sludge systems, there is a need to accurately determine TOrC biodegradation kinetics in mixed microbial cultures. Short-term batch tests with salicylic acid, 17α-ethinylestradiol, nonylphenol, trimethoprim and carbamazepine were conducted with lab-scale activated sludge cultures in which the initial TOrC concentration (1 mg/L and 0.0005 mg/L) and readily biodegradable substrate concentrations were varied. The results indicate that pseudo-first order kinetic estimates of TOrC are not sensitive (p > 0.05) to the initial TOrC concentration as long as the initial TOrC concentration (S 0 ) to biomass (X 0 ) ratio (on COD basis) is below 2 × 10 −3 . The presence of readily biodegradable organic matter suppresses TOrC biotransformation rates under nitrifying and denitrifying conditions, and this impact can be adequately described using a reversible non-competitive inhibition equation. These results demonstrate the importance of closely mimicking parent reactor conditions in batch testing because biotransformation parameters are impacted by in-situ carbon loading and redox conditions

  15. Fate of NDMA precursors through an MBR-NF pilot plant for urban wastewater reclamation and the effect of changing aeration conditions.

    Science.gov (United States)

    Mamo, Julian; Insa, Sara; Monclús, Hèctor; Rodríguez-Roda, Ignasi; Comas, Joaquim; Barceló, Damià; Farré, Maria José

    2016-10-01

    The removal of N-nitrosodimethylamine (NDMA) formation potential through a membrane bioreactor (MBR) coupled to a nanofiltration (NF) pilot plant that treats urban wastewater is investigated. The results are compared to the fate of the individual NDMA precursors detected: azithromycin, citalopram, erythromycin, clarithromycin, ranitidine, venlafaxine and its metabolite o-desmethylvenlafaxine. Specifically, the effect of dissolved oxygen in the aerobic chamber of the MBR pilot plant on the removal of NDMA formation potential (FP) and individual precursors is studied. During normal aerobic operation, implying a fully nitrifying system, the MBR was able to reduce NDMA precursors above 94%, however this removal percentage was reduced to values as low as 72% when changing the conditions to minimize nitrification. Removal decreased also for azithromycin (68-59%), citalopram (31-17%), venlafaxine (35-15%) and erythromycin (61-16%) on average during nitrifying versus non-nitrifying conditions. The removal of clarithromycin, o-desmethylvenlafaxine and ranitidine could not be correlated with the nitrification inhibition, as it varied greatly during the experiment time. The MBR pilot plant is coupled to a nanofiltration (NF) system and the results on the rejection of both, NDMA FP and individual precursors, through this system was above 90%. Finally, results obtained for the MBR pilot plant are compared to the percentage of removal by a conventional full scale biological wastewater treatment plant (WWTP) fed with the same influent. During aerobic operation, the removal of NDMA FP by the MBR pilot plant was similar to the full scale WWTP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    Science.gov (United States)

    2012-05-23

    of the solids placed in the bioreactor and, generate a biogas • What do you get? • Biogas that can be...contains methane = fuel source • Biogas measured by flow meter • Biogas generated was correlated to mass of volatile solids destroyed • Biogas ...to enhance operation and biogas production Applicability to larger scale Verification of power generation using a microturbine Refinement of

  17. The kinetics of crossflow dynamic membrane bioreactor | Li | Water SA

    African Journals Online (AJOL)

    Crossflow dynamic membrane bioreactor (CDMBR) kinetics was investigated by treating caprolactam wastewater over a period of 180 d. The removal efficiencies of organic substances and nitrogen averaged over 99% and 80%, respectively. The observed sludge yield was only 0.14 g SS·g-1 COD·d-1 at an SRT of 30 d ...

  18. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria

    Science.gov (United States)

    Miller, Daniel N.; Smith, Richard L.

    2009-01-01

    Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O 2 (> 300 µM) and NH 4+ (51-800 µM). The second site was 2.5 km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O 2, NH 4+, and NO 3- (0-300, 0-500, and 100-200 µM with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350 g - 1 and 33 to 35,000 g - 1 , respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH 4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.

  19. Development of novel control strategies for single-stage autotrophic nitrogen removal: A process oriented approach

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist

    2014-01-01

    operation and rejection of disturbances. Three novel control strategies were developed, evaluated, and benchmarked against each other: a feedforward control (control structure 1 – CS#1), a rule-based feedback control (CS#2), and a feedforward–feedback controller, in which the feedback loop updates the set......The autotrophic nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remain a challenging issue. In this contribution, a process oriented approach was used to develop, evaluate and benchmark novel control strategies to ensure stable...... point of the feedforward loop (CS#3). The CS#1 gave the best performance against disturbances in the ammonium concentration, whereas the CS#2 provided the best performance against disturbances in the organic carbon concentration and dynamic influent conditions. The CS#3 rejected both disturbances...

  20. Arsenic removal in a sulfidogenic fixed-bed column bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Muslum, E-mail: muslumaltun@hotmail.com [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Sahinkaya, Erkan [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Durukan, Ilknur; Bektas, Sema [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Komnitsas, Kostas [Technical University of Crete, Department of Mineral Resources Engineering, Chania (Greece)

    2014-03-01

    Highlights: • Sulfidogenic treatment of As-containing AMD was investigated. • High rate simultaneous removal of As and Fe was achieved. • As was removed without adding alkalinity or adjusting pH. • As and Fe removal mechanisms were elucidated. - Abstract: In the present study, the bioremoval of arsenic from synthetic acidic wastewater containing arsenate (As{sup 5+}) (0.5–20 mg/L), ferrous iron (Fe{sup 2+}) (100–200 mg/L) and sulfate (2000 mg/L) was investigated in an ethanol fed (780–1560 mg/L chemical oxygen demand (COD)) anaerobic up-flow fixed bed column bioreactor at constant hydraulic retention time (HRT) of 9.6 h. Arsenic removal efficiency was low and averaged 8% in case iron was not supplemented to the synthetic wastewater. Neutral to slightly alkaline pH and high sulfide concentration in the bioreactor retarded the precipitation of arsenic. Addition of 100 mg/L Fe{sup 2+} increased arsenic removal efficiency to 63%. Further increase of influent Fe{sup 2+} concentration to 200 mg/L improved arsenic removal to 85%. Decrease of influent COD concentration to its half, 780 mg/L, resulted in further increase of As removal to 96% when Fe{sup 2+} and As{sup 5+} concentrations remained at 200 mg/L and 20 mg/L, respectively. As a result of the sulfidogenic activity in the bioreactor the effluent pH and alkalinity concentration averaged 7.4 ± 0.2 and 1736 ± 239 mg CaCO{sub 3}/L respectively. Electron flow from ethanol to sulfate averaged 72 ± 10%. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the nature of the precipitate generated by sulfate reducing bacteria (SRB) activity. Precipitation of arsenic in the form of As{sub 2}S{sub 3} (orpiment) and co-precipitation with ferrous sulfide (FeS), pyrite (FeS{sub 2}) or arsenopyrite (FeAsS) were the main arsenic removal mechanisms.

  1. Membrane bioreactor technology: A novel approach to the treatment of compost leachate

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kayleigh; Ghoshdastidar, Avik J.; Hanmore, Jillian [Department of Chemistry, Acadia University, Wolfville, NS, Canada B4P 2R6 (Canada); Frazee, James [E and Q Consulting and Associates Limited, Wolfville, NS, Canada B4P 2R1 (Canada); Tong, Anthony Z., E-mail: anthony.tong@acadiau.ca [Department of Chemistry, Acadia University, Wolfville, NS, Canada B4P 2R6 (Canada)

    2013-11-15

    Highlights: • First membrane bioreactor treatment method for compost leachate. • No chemical additive or UV radiation source in this new biological method. • Removal rates of more than 99% for organics and ammonium were achieved. • Heavy metals were reduced by at least 82.7% except copper. - Abstract: Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.

  2. PERFORMANCE OF NEWLY CONFIGURED SUBMERGED MEMBRANE BIOREACTOR FOR AEROBIC INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    I Gede Wenten

    2012-02-01

    Full Text Available The application of membrane to replace secondary clarifier of conventional activated sludge, known as membrane bioreactor, has led to a small footprint size of treatment with excellent effluent quality. The use of MBR eliminates almost all disadvantages encountered in conventional wastewater treatment plant such as low biomass concentration and washout of fine suspended solids. However, fouling remains as a main drawback. To minimize membrane fouling, a new configuration of submerged membrane bioreactor for aerobic industrial wastewater treatment has been developed. For the new configuration, a bed of porous particle is applied to cover the submerged ends-free mounted ultrafiltration membrane. Membrane performance was assessed based on flux productivity and selectivity. By using tapioca wastewater containing high organic matter as feed solution, reasonably high and stable fluxes around 11 l/m2.h were achieved with COD removal efficiency of more than 99%. The fouling analysis also shows that the newly configured ends-free membrane bioreactor exhibits lower irreversible resistance compared with the submerged one. In addition, the performance of pilot scale system, using a membrane module  with 10 m2 effective area and reactor tank with 120 L volume, was also assessed. The flux achieved from the pilot scale system around 8 l/m2.h with COD removal of more than 99%. Hence, this study has demonstrated the feasibility of the newly configured submerged ends-free MBR at larger scale.

  3. Membrane bioreactor technology: A novel approach to the treatment of compost leachate

    International Nuclear Information System (INIS)

    Brown, Kayleigh; Ghoshdastidar, Avik J.; Hanmore, Jillian; Frazee, James; Tong, Anthony Z.

    2013-01-01

    Highlights: • First membrane bioreactor treatment method for compost leachate. • No chemical additive or UV radiation source in this new biological method. • Removal rates of more than 99% for organics and ammonium were achieved. • Heavy metals were reduced by at least 82.7% except copper. - Abstract: Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate

  4. Evaluation of the growth environment of a hydrostatic force bioreactor for preconditioning of tissue-engineered constructs.

    Science.gov (United States)

    Reinwald, Yvonne; Leonard, Katherine H L; Henstock, James R; Whiteley, Jonathan P; Osborne, James M; Waters, Sarah L; Levesque, Philippe; El Haj, Alicia J

    2015-01-01

    Bioreactors have been widely acknowledged as valuable tools to provide a growth environment for engineering tissues and to investigate the effect of physical forces on cells and cell-scaffold constructs. However, evaluation of the bioreactor environment during culture is critical to defining outcomes. In this study, the performance of a hydrostatic force bioreactor was examined by experimental measurements of changes in dissolved oxygen (O2), carbon dioxide (CO2), and pH after mechanical stimulation and the determination of physical forces (pressure and stress) in the bioreactor through mathematical modeling and numerical simulation. To determine the effect of hydrostatic pressure on bone formation, chick femur skeletal cell-seeded hydrogels were subjected to cyclic hydrostatic pressure at 0-270 kPa and 1 Hz for 1 h daily (5 days per week) over a period of 14 days. At the start of mechanical stimulation, dissolved O2 and CO2 in the medium increased and the pH of the medium decreased, but remained within human physiological ranges. Changes in physiological parameters (O2, CO2, and pH) were reversible when medium samples were placed in a standard cell culture incubator. In addition, computational modeling showed that the distribution and magnitude of physical forces depends on the shape and position of the cell-hydrogel constructs in the tissue culture format. Finally, hydrostatic pressure was seen to enhance mineralization of chick femur skeletal cell-seeded hydrogels.

  5. Microbial Bioreactor Development in the ALS NSCORT

    Science.gov (United States)

    Mitchell, Cary; Whitaker, Dawn; Banks, M. Katherine; Heber, Albert J.; Turco, Ronald F.; Nies, Loring F.; Alleman, James E.; Sharvelle, Sybil E.; Li, Congna; Heller, Megan

    The NASA Specialized Center of Research and Training in Advanced Life Support (the ALS NSCORT), a partnership of Alabama A & M, Howard, and Purdue Universities, was established by NASA in 2002 to develop technologies that will reduce the Equivalent System Mass (ESM) of regenerative processes within future space life-support systems. A key focus area of NSCORT research has been the development of efficient microbial bioreactors for treatment of human, crop, and food-process wastes while enabling resource recovery. The approach emphasizes optimizing the energy-saving advantages of hydrolytic enzymes for biomass degradation, with focus on treatment of solid wastes including crop residue, paper, food, and human metabolic wastes, treatment of greywater, cabin air, off-gases from other treatment systems, and habitat condensate. This summary includes important findings from those projects, status of technology development, and recommendations for next steps. The Plant-based Anaerobic-Aerobic Bioreactor-Linked Operation (PAABLO) system was developed to reduce crop residue while generating energy and/or food. Plant residues initially were added directly to the bioreactor, and recalcitrant residue was used as a substrate for growing plants or mushrooms. Subsequently, crop residue was first pretreated with fungi to hydrolyze polymers recalcitrant to bacteria, and leachate from the fungal beds was directed to the anaerobic digester. Exoenzymes from the fungi pre-soften fibrous plant materials, improving recovery of materials that are more easily biodegraded to methane that can be used for energy reclamation. An Autothermal Thermophilic Aerobic Digestion (ATAD) system was developed for biodegradable solid wastes. Objectives were to increase water and nutrient recovery, reduce waste volume, and inactivate pathogens. Operational parameters of the reactor were optimized for degradation and resource recovery while minimizing system requirements and footprint. The start-up behavior

  6. Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.

    Science.gov (United States)

    Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri

    2010-06-01

    In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    International Nuclear Information System (INIS)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-01-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. The current project status and preliminary monitoring results are summarized in this report

  8. Impact of scaffold micro and macro architecture on Schwann cell proliferation under dynamic conditions in a rotating wall vessel bioreactor

    International Nuclear Information System (INIS)

    Valmikinathan, Chandra M.; Hoffman, John; Yu, Xiaojun

    2011-01-01

    Over the last decade tissue engineering has emerged as a powerful alternative to regenerate lost tissues owing to trauma or tumor. Evidence shows that Schwann cell containing scaffolds have improved performance in vivo as compared to scaffolds that depend on cellularization post implantation. However, owing to limited supply of cells from the patients themselves, several approaches have been taken to enhance cell proliferation rates to produce complete and uniform cellularization of scaffolds. The most common approach is the application of a bioreactor to enhance cell proliferation rate and therefore reduce the time needed to obtain sufficiently significant number of glial cells, prior to implantation. In this study, we show the application of a rotating wall bioreactor system for studying Schwann cell proliferation on nanofibrous spiral shaped scaffolds, prepared by solvent casting and salt leaching techniques. The scaffolds were fabricated from polycaprolactone (PCL), which has ideal mechanical properties and upon degradation does not produce acidic byproducts. The spiral scaffolds were coated with aligned or random nanofibers, produced by electrospinning, to provide a substrate that mimics the native extracellular matrix and the essential contact guidance cues. At the 4 day time point, an enhanced rate of cell proliferation was observed on the open structured nanofibrous spiral scaffolds in a rotating wall bioreactor, as compared to static culture conditions. However, the cell proliferation rate on the other contemporary scaffolds architectures such as the tubular and cylindrical scaffolds show reduced cell proliferation in the bioreactor as compared to static conditions, at the same time point. Moreover, the rotating wall bioreactor does not alter the orientation or the phenotype of the Schwann cells on the aligned nanofiber containing scaffolds, wherein, the cells remain aligned along the length of the scaffolds. Therefore, these open structured spiral

  9. Removal of pollutants from pulp and paper mill effluent by anaerobic and aerobic treatment in pilot scale bioreactor

    DEFF Research Database (Denmark)

    Singh, P.; Katiyar, D.; Gupta, M.

    2011-01-01

    Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced. The anaerobic......Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced....... The anaerobically treated effluent was then treated in a bioreactor in the presence of a fungal strain (Aspergillus fumigatus) or a bacterial strain (Pseudomonas ovalis). The results of this study indicated a reduction in colour (76% and 56%), lignin (78% and 68%), COD (85% and 78%) and AOX (70% and 82...

  10. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment.

    Science.gov (United States)

    Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J

    2014-01-01

    An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.

  11. Control of an air pressure actuated disposable bioreactor for cultivating heart valves

    NARCIS (Netherlands)

    Beelen, M.J.; Neerincx, P.E.; Molengraft, van de M.J.G.

    2011-01-01

    A disposable injection molded bioreactor for growing tissue-engineered heart valves is controlled to mimic the physiological heart cycle. Tissue-engineered heart valves, cultured from human stem cells, are a possible alternative for replacing failing aortic heart valves, where nowadays biological

  12. USE OF MEMBRANE BIOREACTOR FOR BIODEGRADATION OF MTBE IN CONTAMINATED WATER1

    Science.gov (United States)

    An ultrafiltration membrane bioreactor was evaluated for biodegradation of methyl tert-butyl ether (MTBE) in contaminated water. The system was fed 5 mg/L MTBE in granular activated carbon (GAC) treated Cincinnati tap water containing ample buffer and nutrients. Within 120...

  13. Operational experience with a seasonally operated full-scale membrane bioreactor plant

    Czech Academy of Sciences Publication Activity Database

    Gómez, M.; Dvořák, L.; Růžičková, I.; Holba, Marek; Wanner, J.

    2012-01-01

    Roč. 121, OCT 2012 (2012), s. 241-247 ISSN 0960-8524 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : full-scale membrane bioreactor * soluble microbibal products * nutrient removal * fouling * microbiological effluent quality Subject RIV: EF - Botanics Impact factor: 4.750, year: 2012

  14. Temporal variations in metabolic and autotrophic indices for Acropora digitifera and Acropora spicifera--implications for monitoring projects.

    Science.gov (United States)

    Hinrichs, Saskia; Patten, Nicole L; Waite, Anya M

    2013-01-01

    Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal). We compared metabolic indices (RNA/DNA ratio, protein concentration) and autotrophic indices (Chlorophyll a (Chl a), zooxanthellae density, effective quantum yield (yield) and relative electron transport rate (rETR)) for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia) in August 2010 (austral winter) and February 2011 (austral summer). Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal) and short-term (diel) coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time-lag effect has

  15. Determination of external and internal mass transfer limitation in nitrifying microbial aggregates.

    Science.gov (United States)

    Wilén, Britt-Marie; Gapes, Daniel; Keller, Jürg

    2004-05-20

    In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. Copyright 2004 Wiley Periodicals, Inc.

  16. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.

    Science.gov (United States)

    Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian

    2017-06-01

    Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO 2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10 6  cells mL -1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide

  17. Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181.

    Science.gov (United States)

    Miranda, Rita de Cássia M de; Gomes, Edelvio de Barros; Pereira, Nei; Marin-Morales, Maria Aparecida; Machado, Katia Maria Gomes; Gusmão, Norma Buarque de

    2013-08-01

    Investigations on biodegradation of textile effluent by filamentous fungi strains Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181 were performed in static bioreactors under aerated and non-aerated conditions. Spectrophotometric, HPLC/UV and LC-MS/MS analysis were performed as for to confirm, respectively, decolourisation, biodegradation and identity of compounds in the effluent. Enzymatic assays revealed higher production of enzymes laccase (Lac), lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) by P. chrysosporium URM 6181 in aerated bioreactor (2020; 39 and 392 U/l, respectively). Both strains decolourised completely the effluent after ten days and biodegradation of the most predominant indigo dye was superior in aerated bioreactor (96%). Effluent treated by P. chrysosporium URM 6181 accumulated a mutagenic metabolite derived from indigo. The C. lunata URM 6179 strain, showed to be more successful for assure the environmental quality of treated effluent. These systems were found very effective for efficient fungal treatment of textile effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Experimental and modelling studies on a laboratory scale anaerobic bioreactor treating mechanically biologically treated municipal solid waste.

    Science.gov (United States)

    Lakshmikanthan, P; Sughosh, P; White, James; Sivakumar Babu, G L

    2017-07-01

    The performance of an anaerobic bioreactor in treating mechanically biologically treated municipal solid waste was investigated using experimental and modelling techniques. The key parameters measured during the experimental test period included the gas yield, leachate generation and settlement under applied load. Modelling of the anaerobic bioreactor was carried out using the University of Southampton landfill degradation and transport model. The model was used to simulate the actual gas production and settlement. A sensitivity analysis showed that the most influential model parameters are the monod growth rate and moisture. In this case, pH had no effect on the total gas production and waste settlement, and only a small variation in the gas production was observed when the heat transfer coefficient of waste was varied from 20 to 100 kJ/(m d K) -1 . The anaerobic bioreactor contained 1.9 kg (dry) of mechanically biologically treated waste producing 10 L of landfill gas over 125 days.

  19. Impact of operating conditions on performance of a novel gas double-dynamic solid-state fermentation bioreactor (GDSFB).

    Science.gov (United States)

    Chen, Hongzhang; Li, Yanjun; Xu, Fujian

    2013-11-01

    A self-designed novel solid-state fermentation (SSF) bioreactor named "gas double-dynamic solid-state fermentation bioreactor (GDSFB)" showed great success in processes for the production of several valuable products. For the present study, a simple GDSFB (2 L in volume) was designed to investigate the impact of exhaust time on SSF performance. Both air pressure and vent aperture significantly influenced the exhaust time. The production of cellulase by Penicillium decumbens JUA10 was studied in this bioreactor. When the vent aperture was maintained at 0.2 cm, the highest FPA activity of 17.2 IU/g dry solid-state medium was obtained at an air pressure of 0.2 MPa (gauge pressure). When the air pressure was maintained at 0.2 MPa, a vent aperture of 0.3 cm gave the highest FPA activity of 18.0 IU/g dry solid-state medium. Further analysis revealed that the exhaust time was a crucial indicator of good performance in GDSFB.

  20. Numerical Simulation of Mixing in a Micro-well Scale Bioreactor by Computational Fluid Dynamics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The introduction of the multi-well plate miniaturisation technology with its associated automated dispensers, readers and integrated systems coupled with advances in life sciences has a propelling effect on the rate at which new potential drug molecules are discovered. The translation of these discoveries to real outcome now demands parallel approaches which allow large numbers of process options to be rapidly assessed. The engineering challenges in achieving this provide the motivation for the proposed work. In this work we used computational fluid dynamics(CFD) analysis to study flow conditions in a gas-liquid contactor which has the potential to be used as a fermenter on a multi-well format. The bioreactor had a working volume of 6.5 mL with the major dimensions equal to those of a single well of a 24-well plate. The 6.5 mL bioreactor was mechanically agitated and aerated by a single sparger placed beneath the bottom impeller. Detailed numerical procedure for solving the governing flow equations is given. The CFD results are combined with population balance equations to establish the size of the bubbles and their distribution in the bioreactor, Power curves with and without aeration are provided based on the simulated results.