WorldWideScience

Sample records for autotrophic feiii oxide

  1. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    Science.gov (United States)

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary

  2. Biokinetic characterization of the acceleration phase in autotrophic ammonia oxidation.

    Science.gov (United States)

    Chandran, Kartik; Smets, Barth F

    2008-08-01

    Batch autotrophic ammonia oxidation tracked through oxygen uptake measurements displays a preliminary acceleration phase. Failure to recognize the acceleration phase and fitting batch ammonia oxidation profiles with standard Monod-type mathematical models can result in meaningless kinetic parameter estimates. The objectives of this study were to examine the factors controlling the acceleration phase and to derive and test empirical and metabolic models for its description. Because of possible sustained reducing power limitation during batch ammonia oxidation, the extent of the acceleration phase (1) increased with increasing initial ammonia concentration, (2) did not systematically vary with initial biomass concentrations, and (3) increased in response to starvation. Concurrent hydroxylamine oxidation significantly reduced the acceleration phase potentially by relieving reducing power limitation. A nonlinear empirical model described the acceleration phase more accurately than a linear empirical model. The metabolic model also captured experimental trends exceedingly well, but required determination of additional parameters and variables.

  3. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms

    Science.gov (United States)

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1996-01-01

    Fe(III) chelated to such compounds as EDTA, N-methyliminodiacetie acid, ethanol diglycine, humic acids, and phosphates stimulated benzene oxidation coupled to Fe(III) reduction in anaerobic sediments from a petroleum- contaminated aquifer as effectively as or more effectively than nitrilotriacetic acid did in a previously demonstrated stimulation experiment. These results indicate that many forms of chelated Fe(III) might be applicable to aquifer remediation.

  4. Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction

    Science.gov (United States)

    Lovley, D.R.; Woodward, J.C.

    1996-01-01

    The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.

  5. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge.

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Liu, Heng-Wei; Wu, Chuan; Bi, Wei; Yuan, Yi; Liu, Xin

    2018-02-01

    In recent years, there have been a number of reports on the phenomenon in which ferric iron (Fe(III)) is reduced to ferrous iron [Fe(II)] in anaerobic environments, accompanied by simultaneous oxidation of ammonia to NO 2 - , NO 3 - , or N 2. However, studies on the relevant reaction characteristics and mechanisms are rare. Recently, in research on the effect of Fe(III) on the activity of Anammox sludge, excess ammonia oxidization has also been found. Hence, in the present study, Fe(III) was used to serve as the electron acceptor instead of NO 2 - , and the feasibility and characteristics of Anammox coupled to Fe(III) reduction (termed Feammox) were investigated. After 160days of cultivation, the conversion rate of ammonia in the reactor was above 80%, accompanied by the production of a large amount of NO 3 - and a small amount of NO 2 - . The total nitrogen removal rate was up to 71.8%. Furthermore, quantities of Fe(II) were detected in the sludge fluorescence in situ hybridization (FISH) and denaturated gradient gel electrophoresis (DGGE) analyses further revealed that in the sludge, some Anammox bacteria were retained, and some microbes were enriched during the acclimatization process. We thus deduced that in Anammox sludge, Fe(III) reduction takes place together with ammonia oxidation to NO 2 - and NO 3 - along with the Anammox process. Copyright © 2017. Published by Elsevier B.V.

  6. Electrochemistry of carbonaceous materials; 1. Oxidation of Sardinian coal by Fe(III) ions

    Energy Technology Data Exchange (ETDEWEB)

    Tomat, R.; Salmaso, R.; Zecchin, S. (CNR-Instituto di Polarografia ed Elettrochimica Preparativa, Padova (Italy))

    1992-04-01

    Oxidation of subbitiminous coal (Sulcis basin, Sardinia, Italy) by Fe(III) ions in aqueous H{sub 2}SO{sub 4} solution was investigated over a wide temperature range (20-80{degree}C). Experimental results are in accord with a reaction scheme involving a reversible complex between coal particles and Fe(III) ions as a first step in the oxidation process. At low coal concentration, the reaction rate follows first-order kinetics in both coal and ferric ions (overall second order), while at sufficiently high coal concentration, the reaction rate is consistent with first-order kinetics in Fe(III) concentration, appearing to be independent of coal concentration. The kinetic results obtained give preliminary information on the advantageous use of the Fe(III)/slurried coal reaction system to depolarize the anodic compartment of an electrolysis cell, for the production of H{sub 2}. 11 refs., 5 figs.

  7. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species

    Science.gov (United States)

    Eitel, Eryn M.; Taillefert, Martial

    2017-10-01

    Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.

  8. The life cycle of iron Fe(III) oxide: impact of fungi and bacteria

    Science.gov (United States)

    Bonneville, Steeve

    2014-05-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral

  9. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [Univ. of Massachusetts, Amherst, MA (United States)

    2015-03-09

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) to insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated

  10. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    Science.gov (United States)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a

  11. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal.

    Science.gov (United States)

    Liu, Sitong; Yang, Fenglin; Gong, Zheng; Meng, Fangang; Chen, Huihui; Xue, Yuan; Furukawa, Kenji

    2008-10-01

    The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.

  12. Reduction of Fe(III) oxides by phylogenetically and physiologically diverse thermophilic methanogens.

    Science.gov (United States)

    Yamada, Chihaya; Kato, Souichiro; Kimura, Satoshi; Ishii, Masaharu; Igarashi, Yasuo

    2014-09-01

    Three thermophilic methanogens (Methanothermobacter thermautotrophicus, Methanosaeta thermophila, and Methanosarcina thermophila) were investigated for their ability to reduce poorly crystalline Fe(III) oxides (ferrihydrite) and the inhibitory effects of ferrihydrite on their methanogenesis. This study demonstrated that Fe(II) generation from ferrihydrite occurs in the cultures of the three thermophilic methanogens only when H2 was supplied as the source of reducing equivalents, even in the cultures of Mst. thermophila that do not grow on and produce CH4 from H2/CO2. While supplementation of ferrihydrite resulted in complete inhibition or suppression of methanogenesis by the thermophilic methanogens, ferrihydrite reduction by the methanogens at least partially alleviates the inhibitory effects. Microscopic and crystallographic analyses on the ferrihydrite-reducing Msr. thermophila cultures exhibited generation of magnetite on its cell surfaces through partial reduction of ferrihydrite. These findings suggest that at least certain thermophilic methanogens have the ability to extracellularly transfer electrons to insoluble Fe(III) compounds, affecting their methanogenic activities, which would in turn have significant impacts on materials and energy cycles in thermophilic anoxic environments. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001; FINAL

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2001-01-01

    Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction

  14. Photocatalytic reduction of nitrogen to ammonia with coprecipitated Fe(III) and Ti(IV) hydrous oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tennakone, K.; Fernando, C.A.N.; Damayanthi, M.W.P.; Silva, L.H.K.; Wijeratne, W.; Wickramanayake, S.; Punchihewa, S.; Illeperuma, O.A.

    1988-01-01

    An aqueous suspension of coprecipitated hydrous oxides of Fe(III) and Ti(IV) is found to photocatalyse reduction of molecular nitrogen to ammonia with visible light. The activity of the complex catalyst is higher than that of pure hydrous ferric oxide which also catalyses the above reaction. It is suggested that hydrous TiO/sub 2/ acts as the hole transfer agent so that water oxidation takes place at the TiO/sub 2/ sites and nitrogen reduction at ferric oxide sites.

  15. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance and bacterial community structure.

    Science.gov (United States)

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Qu, Jiuhui

    2015-03-01

    This paper investigates a novel sulfur-oxidizing autotrophic denitrifying anaerobic fluidized bed membrane bioreactor (AnFB-MBR) that has the potential to overcome the limitations of conventional sulfur-oxidizing autotrophic denitrification systems. The AnFB-MBR produced consistent high-quality product water when fed by a synthetic groundwater with NO3 (-)-N ranging 25-80 mg/L and operated at hydraulic retention times of 0.5-5.0 h. A nitrate removal rate of up to 4.0 g NO3 (-)-N/Lreactord was attained by the bioreactor, which exceeded any reported removal capacity. The flux of AnFB-MBR was maintained in the range of 1.5-15 L m(-2) h(-1). Successful membrane cleaning was practiced with cleaning cycles of 35-81 days, which had no obvious effect on the AnFB-MBR performance. The (15) N-tracer analyses elucidated that nitrogen was converted into (15) N2-N and (15) N-biomass accounting for 88.1-93.1 % and 6.4-11.6 % of the total nitrogen produced, respectively. Only 0.3-0.5 % of removed nitrogen was in form of (15)N2O-N in sulfur-oxidizing autotrophic denitrification process, reducing potential risks of a significant amount of N2O emissions. The sulfur-oxidizing autotrophic denitrifying bacterial consortium was composed mainly of bacteria from Proteobacteria, Chlorobi, and Chloroflexi phyla, with genera Thiobacillus, Sulfurimonas, and Ignavibacteriales dominating the consortium. The pyrosequencing assays also suggested that the stable microbial communities corresponded to the elevated performance of the AnFB-MBR. Overall, this research described relatively high nitrate removal, acceptable flux, indicating future potential for the technology in practice.

  16. Microbial Reduction of Fe(III) in Acidic Sediments: Isolation of Acidiphilium cryptum JF-5 Capable of Coupling the Reduction of Fe(III) to the Oxidation of Glucose

    Science.gov (United States)

    Küsel, Kirsten; Dorsch, Tanja; Acker, Georg; Stackebrandt, Erko

    1999-01-01

    To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12°C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H2 was consumed by acidic sediments and yielded additional amounts of Fe(II) in a ratio of approximately 1:2. In contrast, supplemental lactate did not stimulate the formation of Fe(II). Supplemental acetate was not consumed and inhibited the formation of Fe(II). Most-probable-number estimates demonstrated that glucose-utilizing acidophilic Fe(III)-reducing bacteria approximated to 1% of the total direct counts of 4′,6-diamidino-2-phenylindole-stained bacteria. From the highest growth-positive dilution of the most-probable-number series at pH 2.3 supplemented with glucose, an isolate, JF-5, that could dissimilate Fe(III) was obtained. JF-5 was an acidophilic, gram-negative, facultative anaerobe that completely oxidized the following substrates via the dissimilation of Fe(III): glucose, fructose, xylose, ethanol, glycerol, malate, glutamate, fumarate, citrate, succinate, and H2. Growth and the reduction of Fe(III) did not occur in the presence of acetate. Cells of JF-5 grown under Fe(III)-reducing conditions formed blebs, i.e., protrusions that were still in contact with the cytoplasmic membrane. Analysis of the 16S rRNA gene sequence of JF-5 demonstrated that it was closely related to an Australian isolate of Acidiphilium cryptum (99.6% sequence similarity), an organism not previously shown to couple the complete oxidation of sugars to the reduction of Fe(III). These collective results indicate that the in situ reduction of Fe(III) in acidic sediments can be mediated by heterotrophic Acidiphilium

  17. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    Science.gov (United States)

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Sensor for the Determination of Lindane Using PANI/Zn, Fe(III Oxides and Nylon 6,6/MWCNT/Zn, Fe(III Oxides Nanofibers Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Omolola E. Fayemi

    2016-01-01

    Full Text Available A simple reproducible and environmentally friendly PANI/Zn, Fe(III and Nylon 6,6/MWCNT/Zn, Fe(III oxides nanofibers modified glassy carbon electrode was prepared and used for the electrochemical reduction of lindane. The modified electrodes offer a high sensing current for lindane. The modified electrodes were highly stable with respect to time, so that the single electrode can be used for the multiple analysis of the lindane sample. Cyclic voltammetry and square wave voltammetry were used as the sensing techniques. The dynamic range for the lindane determination was between 9.9 × 10−12 mol/L and 5 × 10−6 mol/L with detection limits of 51 and 32 nM for Nylon 6,6/MWCNT/ZnO and Nylon 6,6/MWCNT/Fe3O4 sensors, respectively. The LoD value reveals that the best electrode is Nylon 6,6/MWCNT/Fe3O4. The analytical utility of the proposed method was checked with drinking water samples.

  19. Interactions between archaeal ammonia oxidizers, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grasslands soils

    NARCIS (Netherlands)

    Daebeler, A.; Bodelier, P.L.E.; Yan, Z; Hefting, Mariet|info:eu-repo/dai/nl/256197628; Laanbroek, Riks|info:eu-repo/dai/nl/070378282

    2014-01-01

    Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium

  20. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation

    Science.gov (United States)

    Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil

    2014-01-01

    Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575T under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575T grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575T are dominant under anoxic conditions. Furthermore, strain DSM 6575T forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575T, and could contribute to biogeochemical cycles of Fe and N in the environment. PMID:24965827

  1. [Abundance and Community Composition of Ammonia-Oxidizing Archaea in Two Completely Autotrophic Nitrogen Removal over Nitrite Systems].

    Science.gov (United States)

    Gao, Jing-feng; Li, Ting; Zhang, Shu-jun; Fan, Xiao-yan; Pan, Kai-ling; Ma, Qian; Yuan, Ya-lin

    2015-08-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which was thought to be only performed by ammonia-oxidizing bacteria (AOB). In recent years, ammonia-oxidizing archaea (AOA) was also confirmed to take part in ammonia oxidation. The diversity and abundance of AOA have been investigated in various environments, however, little is known regarding the AOA in the completely autotrophic nitrogen removal over nitrite (CANON) wastewater treatment process. In this study, the abundance and diversity of AOA were investigated in the biofilm and flocculent activated sludge collected in a lab-scale (L) CANON system and a pilot-scale (P) CANON systems, respectively. The quantitative real time PCR (qPCR) was applied to investigate the abundance of AOA and the diversity of AOA was determined by polymerase chain reaction (PCR), cloning and sequencing. The qPCR results showed that the average abundance of AOA amoA gene of L and P was 2.42 x 10(6) copies x g(-1) dry sludge and 6.51 x 10(6) copies x g(-1) dry sludge, respectively. The abundance of AOA in biofilm was 10.1-14.1 times higher than that in flocculent activated sludge. For P system, the abundance of AOA in flocculent activated sludge was 1.8 times higher than that in biofilm. The results indicated that the abundance of AOA might be affected by different sludge morphology. The diversity of AOA in P system was extremely limited, only one OTU was observed, which was classified into Nitrosopumilus subcluster 5.2. The diversity of AOA in L system was higher, eight OTUs were observed, which were classified into five genera: Nitrososphaera subcluster 9, subcluster 8.1, subcluster 4.1, subcluster 1.1 and Nitrosopumilus subcluster 5.2. The diversity and abundance of AOA were different in CANON systems with different sludge morphology. AOA may play an important role in ammonia oxidation in CANON system.

  2. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials.

    Science.gov (United States)

    Liu, Haizhou; Bruton, Thomas A; Doyle, Fiona M; Sedlak, David L

    2014-09-02

    Persulfate (S2O8(2-)) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4(•-)) and hydroxyl radical (HO(•)) over time scales of several weeks at rates that were 2-20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants.

  3. Simultaneous Oxidation and Sequestration of As(III) from Water by Using Redox Polymer-Based Fe(III) Oxide Nanocomposite.

    Science.gov (United States)

    Zhang, Xiaolin; Wu, Mengfei; Dong, Hao; Li, Hongchao; Pan, Bingcai

    2017-06-06

    Water decontamination from As(III) is an urgent but still challenging task. Herein, we fabricated a bifunctional nanocomposite HFO@PS-Cl for highly efficient removal of As(III), with active chlorine covalently binding spherical polystyrene host for in situ oxidation of As(III) to As(V), and Fe(III) hydroxide (HFO) nanoparticles (NPs) embedded inside for specific As(V) removal. HFO@PS-Cl could work effectively in a wide pH range (5-9), and other substances like sulfate, chloride, bicarbonate, silicate, and humic acid exert insignificant effect on As(III) removal. As(III) sequestration is realized via two pathways, that is, oxidation to As(V) by the active chlorine followed by specific As(V) adsorption onto HFO NPs, and As(III) adsorption onto HFO NPs followed by oxidation to As(V). The exhausted HFO@PS-Cl could be refreshed for cyclic runs with insignificant capacity loss by the combined regeneration strategy, that is, alkaline solution to rinse the adsorbed As(V) and NaClO solution to renew the host oxidation capability. In addition, fixed-bed experiments demonstrated that the HFO@PS-Cl column could generate >1760 bed volume (BV) effluent from a synthetic As(III)-containing groundwater to meet the drinking water standard (nanocomposites, HFO@PS-N and HFO@D201 could only generate 450 and 600 BV effluents under otherwise identical conditions.

  4. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria.

    Science.gov (United States)

    Matassa, Silvio; Verstraete, Willy; Pikaar, Ilje; Boon, Nico

    2016-09-15

    Domestic used water treatment systems are currently predominantly based on conventional resource inefficient treatment processes. While resource recovery is gaining momentum it lacks high value end-products which can be efficiently marketed. Microbial protein production offers a valid and promising alternative by upgrading low value recovered resources into high quality feed and also food. In the present study, we evaluated the potential of hydrogen-oxidizing bacteria to upgrade ammonium and carbon dioxide under autotrophic growth conditions. The enrichment of a generic microbial community and the implementation of different culture conditions (sequenced batch resp. continuous reactor) revealed surprising features. At low selection pressure (i.e. under sequenced batch culture at high solid retention time), a very diverse microbiome with an important presence of predatory Bdellovibrio spp. was observed. The microbial culture which evolved under high rate selection pressure (i.e. dilution rate D = 0.1 h(-1)) under continuous reactor conditions was dominated by Sulfuricurvum spp. and a highly stable and efficient process in terms of N and C uptake, biomass yield and volumetric productivity was attained. Under continuous culture conditions the maximum yield obtained was 0.29 g cell dry weight per gram chemical oxygen demand equivalent of hydrogen, whereas the maximum volumetric loading rate peaked 0.41 g cell dry weight per litre per hour at a protein content of 71%. Finally, the microbial protein produced was of high nutritive quality in terms of essential amino acids content and can be a suitable substitute for conventional feed sources such as fishmeal or soybean meal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria.

    Science.gov (United States)

    Park, Byoung-Joon; Park, Soo-Je; Yoon, Dae-No; Schouten, Stefan; Sinninghe Damsté, Jaap S; Rhee, Sung-Keun

    2010-11-01

    The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and "Candidatus Nitrosopumilus maritimus" (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [(13)C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments.

  7. Zeolite-Y entrapped Ru(III and Fe(III complexes as heterogeneous catalysts for catalytic oxidation of cyclohexane reaction

    Directory of Open Access Journals (Sweden)

    Chetan K. Modi

    2017-02-01

    Full Text Available Catalysis is probably one of the greatest contributions of chemistry to both economic growth and environmental protection. Herein we report the catalytic behavior of zeolite-Y entrapped Ru(III and Fe(III complexes with general formulae [M(VTCH2·2H2O]+-Y and [M(VFCH2·2H2O]+-Y [where, VTCH = vanillin thiophene-2-carboxylic hydrazone and VFCH = vanillin furoic-2-carboxylic hydrazone] over the oxidation of cyclohexane forming cyclohexanone and cyclohexanol. The samples were corroborated by various physico-chemical techniques. These zeolite-Y based complexes are stable and recyclable under current reaction conditions. Amongst them, [Ru(VTCH2⋅2H2O]+-Y showed higher catalytic activity (41.1% with cyclohexanone (84.6% selectivity.

  8. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies

    Directory of Open Access Journals (Sweden)

    Hirotsugu eFujitani

    2015-10-01

    Full Text Available Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representative of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member’s ecophysiology in a variety of habitats.

  9. Dissimilatory Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Lovley, D R

    1991-06-01

    The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.

  10. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea)

    OpenAIRE

    Yakimov, Michail M.; La Cono, Violetta; Smedile, Francesco; DeLuca, Thomas H.; Juarez, Silvia; Ciordia, Sergio; Fernandez, Marisol; Albar, Juan Pablo; Ferrer, Manuel; Golyshin, Peter N.; Giuliano, Laura

    2011-01-01

    Mesophilic Crenarchaeota have recently been thought to be significant contributors to nitrogen (N) and carbon (C) cycling. In this study, we examined the vertical distribution of ammonia-oxidizing Crenarchaeota at offshore site in Southern Tyrrhenian Sea. The median value of the crenachaeal cell to amoA gene ratio was close to one suggesting that virtually all deep-sea Crenarchaeota possess the capacity to oxidize ammonia. Crenarchaea-specific genes, nirK and ureC, for nitrite reductase and u...

  11. [Thiobacillus sajanensis sp. nov., a new obligately autotrophic sulfur-oxidizing bacterium isolated from Khoito-Gol hydrogen-sulfide springs, Buryatia].

    Science.gov (United States)

    Dul'tseva, N M; Turova, T P; Spiridonova, E M; Kolganova, T V; Osipov, G A; Gorlenko, V M

    2006-01-01

    Four strains of rod-shaped gram-negative sulfur-oxidizing bacteria were isolated from Khoito-Gol hydrogen-sulfide springs in the eastern Sayan Mountains (Buryatia). The cells of the new isolates were motile by means of a single polar flagellum. The strains were obligately chemolithoautotrophic aerobes that oxidized thiosulfate (with the production of sulfur and sulfates) and hydrogen sulfide. They grew in a pH range of 6.8-9.5, with an optimum at pH 9.3 and in a temperature range of 5-39 degrees C, with an optimum at 28-32 degrees C. The cells contained ubiquinone Q-8. The DNA G+C content of the new strains was 62.3-64.2 mol %. According to the results of analysis of their 16S rRNA genes, the isolates belong to the genus Thiobacillus within the subclass Betaproteobacteria. However, the similarity level of nucleotide sequences of the 16S rRNA genes was insufficient to assign the isolates to known species of this genus. The affiliation to the genus Thiobacillus was confirmed by DNA-DNA hybridization of the isolates with the type strain of the type species of the genus Thiobacillus, T. thioparus DSM 505T (= ATCC 8158T). Despite the phenotypic similarity, the hybridization level was as low as 21-29%. In addition, considerable differences were revealed in the structure of the genes encoding RuBPC, the key enzyme of autotrophic CO2 assimilation, between the known Thiobacillus species and the new isolates. Based on molecular-biological features and certain phenotypic distinctions, the new isolates were assigned to a new Thiobacillus species, T. sajanensis sp. nov., with the type strain 4HGT (= VKM B-2365T).

  12. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.

    Science.gov (United States)

    Liu, Haizhou; Bruton, Thomas A; Li, Wei; Buren, Jean Van; Prasse, Carsten; Doyle, Fiona M; Sedlak, David L

    2016-01-19

    Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,β-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.

  13. Reductive immobilization of U(VI) in Fe(III) oxide-reducing subsurface sediments: Analysis of coupled microbial-geochemical processes in experimental reactive transport systems. Final Scientific/Technical Report-EMSP 73914

    International Nuclear Information System (INIS)

    Eric E. Roden Matilde M. Urrutia Mark O. Barnett Clifford R. Lange

    2005-01-01

    The purpose of this research was to provide information to DOE on microbiological and geochemical processes underlying the potential use of dissimilatory metal-reducing bacteria (DMRB) to create subsurface redox barriers for immobilization of uranium and other redox-sensitive metal/radionuclide contaminants that were released to the environment in large quantities during Cold War nuclear weapons manufacturing operations. Several fundamental scientific questions were addressed in order to understand and predict how such treatment procedures would function under in situ conditions in the subsurface. These questions revolved the coupled microbial-geochemical phenomena which are likely to occur within a redox barrier treatment zone, and on the dynamic interactions between hydrologic flux and biogeochemical process rates. First, we assembled a robust conceptual understanding and numerical framework for modeling the kinetics of microbial Fe(III) oxide reduction and associated DMRB growth in sediments. Development of this framework is a critical prerequisite for predicting the potential effectiveness of DMRB-promoted subsurface bioremediation, since Fe(III) oxides are expected to be the primary source of electron-accepting capacity for growth and maintenance of DMRB in subsurface environments. We also defined in detail the kinetics of microbial (enzymatic) versus abiotic, ferrous iron-promoted reduction of U(VI) in the presence and absence of synthetic and natural Fe(III) oxide materials. The results of these studies suggest that (i) the efficiency of dissolved U(VI) scavenging may be influenced by the kinetics of enzymatic U(VI) reduction in systems with relative short fluid residence times; (2) association of U(VI) with diverse surface sites in natural soils and sediments has the potential to limit the rate and extent of microbial U(VI) reduction, and in turn modulate the effectiveness of in situ U(VI) bioremediation; and (3) abiotic, ferrous iron (Fe(II)) drive n U

  14. Comparative Study of Catalytic Oxidation of Ethanol to Acetaldehyde Using Fe(III Dispersed on Sb2O5 Grafted on SiO2 and on Untreated SiO2 Surfaces

    Directory of Open Access Journals (Sweden)

    Benvenutti Edilson V.

    1998-01-01

    Full Text Available Fe(III was supported on Sb(V oxide grafted on the silica gel surface and directly on the silica gel surface using ion-exchange and impregnation processes producing Fe/Sb/SiO2 and Fe/SiO2, respectively. The catalytic conversion of ethanol to acetaldehyde was much more efficient using Fe/Sb/SiO2 than Fe/SiO2 as catalyst. This higher efficiency of the former catalyst takes into account two aspects: a the new phase FeSbO4 formed when Fe/Sb/SiO2 is heat treated and, b it is higher dispersion on the matrix.

  15. Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Mazumdar, A.; Goldberg, T.; Strauss, H.

    We have evaluated the relative importance of Fe sup(3+) to dissolved oxygen in pyrite oxidation, and its implications for measuring an accurate sulfur isotope composition (delta Sup(34) S) in trace sulfates extracted from sedimentary rocks. Results...

  16. The Oxidation of Fe(II) in Acidic Sulfate Solutions with Air at Elevated Pressures : Part 2. Influence of H2SO4 and Fe(III)

    NARCIS (Netherlands)

    Wermink, Wouter N.; Versteeg, Geert F.

    2017-01-01

    The oxidation of ferrous ions in acidic sulfate solutions at elevated air pressures was investigated. The effect of the Fe2+ concentration, Fe3+ concentration H2SO4 concentration, and partial oxygen pressure on the reaction rate were determined at three different temperatures, that is, T = 90, 70,

  17. Freshwater autotrophic picoplankton: a review

    Directory of Open Access Journals (Sweden)

    John G. STOCKNER

    2002-02-01

    Full Text Available Autotrophic picoplankton (APP are distributed worldwide and are ubiquitous in all types of lakes of varying trophic state. APP are major players in carbon production in all aquatic ecosystems, including extreme environments such as cold ice-covered and/or warm tropical lakes and thermal springs. They often form the base of complex microbial food webs, becoming prey for a multitude of protozoan and micro-invertebrate grazers, that effectively channel APP carbon to higher trophic levels including fish. In this review we examine the existing literature on freshwater autotrophic picoplankton, setting recent findings and current ecological issues within an historic framework, and include a description of the occurrence and distribution of both single-cell and colonial APP (picocyanobacteria in different types of lakes. In this review we place considerable emphasis on methodology and ecology, including sampling, counting, preservation, molecular techniques, measurement of photosynthesis, and include extensive comment on their important role in microbial food webs. The model outlined by Stockner of an increase of APP abundance and biomass and a decrease of its relative importance with the increase of phosphorus concentration in lakes has been widely accepted, and only recently confirmed in marine and freshwater ecosystems. Nevertheless the relationship which drives the APP presence and importance in lakes of differing trophic status appears with considerable variation so we must conclude that the success of APP in oligotrophic lakes worldwide is not a certainty but highly probable.

  18. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.

    Science.gov (United States)

    Nordhoff, M; Tominski, C; Halama, M; Byrne, J M; Obst, M; Kleindienst, S; Behrens, S; Kappler, A

    2017-07-01

    Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans ) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers ( Nocardioides and Rhodanobacter ) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate

  19. Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26.

    Science.gov (United States)

    Andres, Jérémy; Arsène-Ploetze, Florence; Barbe, Valérie; Brochier-Armanet, Céline; Cleiss-Arnold, Jessica; Coppée, Jean-Yves; Dillies, Marie-Agnès; Geist, Lucie; Joublin, Aurélie; Koechler, Sandrine; Lassalle, Florent; Marchal, Marie; Médigue, Claudine; Muller, Daniel; Nesme, Xavier; Plewniak, Frédéric; Proux, Caroline; Ramírez-Bahena, Martha Helena; Schenowitz, Chantal; Sismeiro, Odile; Vallenet, David; Santini, Joanne M; Bertin, Philippe N

    2013-01-01

    Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions.

  20. Dissimilatory Reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas Isolates

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William Aaron; Apel, William Arnold; Peyton, B. M.; Petersen, J. N.; Sani, R.

    2002-10-01

    The reduction of Cr(VI), Fe(III), and U(VI) was studied using three recently isolated environmental Cellulomonas sp. (WS01, WS18, and ES5) and a known Cellulomonas strain (Cellulomonas flavigena ATCC 482) under anaerobic, non-growth conditions. In all cases, these cultures were observed to reduce Cr(VI), Fe(III), and U(VI). In 100 h, with lactate as electron donor, the Cellulomonas isolates (500 mg/l total cell protein) reduced nitrilotriacetic acid chelated Fe(III) [Fe(III)-NTA] from 5 mM to less than 2.2 mM, Cr(VI) from 0.2 mM to less than 0.001 mM, and U(VI) from 0.2 mM to less than 0.12 mM. All Cellulomonas isolates also reduced Cr(VI), Fe(III), and U(VI) in the absence of lactate, while no metal reduction was observed in either the cell-free or heat-killed cell controls. This is the first report of Cellulomonas sp. reducing Fe(III) and U(VI). Further, this is the first report of Cellulomonas spp. coupling the oxidation of lactate, or other unknown electron donors in the absence of lactate, to the reduction of Cr(VI), Fe(III), and U(VI).

  1. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates.

    Science.gov (United States)

    Sani, R K; Peyton, B M; Smith, W A; Apel, W A; Petersen, J N

    2002-10-01

    The reduction of Cr(VI), Fe(III), and U(VI) was studied using three recently isolated environmental Cellulomonas sp. (WS01, WS18, and ES5) and a known Cellulomonas strain ( Cellulomonas flavigena ATCC 482) under anaerobic, non-growth conditions. In all cases, these cultures were observed to reduce Cr(VI), Fe(III), and U(VI). In 100 h, with lactate as electron donor, the Cellulomonas isolates (500 mg/l total cell protein) reduced nitrilotriacetic acid chelated Fe(III) [Fe(III)-NTA] from 5 mM to less than 2.2 mM, Cr(VI) from 0.2 mM to less than 0.001 mM, and U(VI) from 0.2 mM to less than 0.12 mM. All Cellulomonas isolates also reduced Cr(VI), Fe(III), and U(VI) in the absence of lactate, while no metal reduction was observed in either the cell-free or heat-killed cell controls. This is the first report of Cellulomonas sp. reducing Fe(III) and U(VI). Further, this is the first report of Cellulomonas spp. coupling the oxidation of lactate, or other unknown electron donors in the absence of lactate, to the reduction of Cr(VI), Fe(III), and U(VI).

  2. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major...

  3. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    and allowed anaerobic ammonium-oxidizing bacteria (AnaerAOB) to develop and be retained for > 250 days. Daily autotrophic nitrogen removal of 1.7 g N/m(2) (75% of influent N load) was achieved at an oxygen/nitrogen surface loading ratio of 2.2, with up to 85% of the influent N proceeding through Anaer...... nearest to and AnaerAOB furthest from the membrane. Despite the presence of nitrite-oxidizing bacteria, this work demonstrated that these autotrophic processes can be successfully coupled in an MABR with continuous aeration, achieving the benefits of competitive specific N removal rates...

  4. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands

    Science.gov (United States)

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1994-01-01

    Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contaminated aquifers.Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing

  5. THE CALVIN CYCLE ENZYME PHOSPHOGLYCERATE KINASE OF XANTHOBACTER-FLAVUS REQUIRED FOR AUTOTROPHIC CO2 FIXATION IS NOT ENCODED BY THE CBB OPERON

    NARCIS (Netherlands)

    MEIJER, WG

    1994-01-01

    During autotrophic growth of Xanthobacter flavus, energy derived from the oxidation of hydrogen methanol or formate is used to drive the assimilation of CO2 via the Calvin cycle. The genes encoding the Calvin cycle enzymes are organized in the cbb operon, which is expressed only during autotrophic

  6. Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers.

    Science.gov (United States)

    Lee, E Y; Cho, K S; Ryu, H W; Chang, Y K

    1999-01-01

    Fe(III) impurities, which detract refractoriness and whiteness from porcelain and pottery, could be biologically removed from low-quality clay by indigenous dissimilatory Fe(III)-reducing microorganisms. Insoluble Fe(III) in clay particles was leached out as soluble Fe(II), and the Fe(III) reduction reaction was coupled to the oxidation of sugars such as glucose, maltose and sucrose. A maximum removal of 44-45% was obtained when the relative amount of sugar was 5% (w/w; sugar/clay). By the microbial treatment, the whiteness of the clay was increased from 63.20 to 79.64, whereas the redness was clearly decreased from 13.47 to 3.55.

  7. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  8. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB...... to the membrane, while AnAOB were localized next to them in areas where no oxygen was available. NOB were detected in very low amounts. Results proved the feasibility of developing biofilm structures for high-rate completely autotrophic nitrogen removal....

  9. Stimulation of autotrophic denitrification by intrusions of the bosporus plume into the anoxic black sea.

    Science.gov (United States)

    Fuchsman, Clara A; Murray, James W; Staley, James T

    2012-01-01

    Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O(2) and [Formula: see text]) into the oxic, suboxic, and anoxic layers. Prominent oxygen intrusions caused an overlap of [Formula: see text] and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume) indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria CandidatusScalindua were present. These results provide evidence for a modified ecosystem with different N(2) production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139) was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N(2) production pathway in the central Black Sea as well.

  10. Stimulation of autotrophic denitrification by intrusions of the Bosporus Plume into the anoxic Black Sea

    Directory of Open Access Journals (Sweden)

    Clara A. Fuchsman

    2012-07-01

    Full Text Available Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O2 and NO3- into the oxic, suboxic and anoxic layers. Prominent oxygen intrusions caused an overlap of NOx- and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria Candidatus Scalindua were present. These results provide evidence for a modified ecosystem with different N2 production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139 was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N2 production pathway in the central Black Sea as well.

  11. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...... a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under......, by applying periodic aeration to MABRs, one-stage autotrophic N removal biofilm reactors can be easily obtained, displaying very competitive removal rates, and negligible N2O emissions....

  12. Clostridium difficile is an autotrophic bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Michael Köpke

    Full Text Available During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.

  13. Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal.

    Science.gov (United States)

    Kleinert, Susanne; Muehe, Eva M; Posth, Nicole R; Dippon, Urs; Daus, Birgit; Kappler, Andreas

    2011-09-01

    Millions of people worldwide are affected by As (arsenic) contaminated groundwater. Fe(III) (oxy)hydroxides sorb As efficiently and are therefore used in water purification filters. Commercial filters containing abiogenic Fe(III) (oxy)hydroxides (GEH) showed varying As removal, and it was unclear whether Fe(II)-oxidizing bacteria influenced filter efficiency. We found up to 10(7) Fe(II)-oxidizing bacteria/g dry-weight in GEH-filters and determined the performance of filter material in the presence and absence of Fe(II)-oxidizing bacteria. GEH-material sorbed 1.7 mmol As(V)/g Fe and was ~8 times more efficient than biogenic Fe(III) minerals that sorbed only 208.3 μmol As(V)/g Fe. This was also ~5 times more efficient than a 10:1-mixture of GEH-material and biogenic Fe(III) minerals that bound 322.6 μmol As(V)/g Fe. Coprecipitation of As(V) with biogenic Fe(III) minerals removed 343.0 μmol As(V)/g Fe, while As removal by coprecipitation with biogenic minerals in the presence of GEH-material was slightly less efficient as GEH-material only and yielded 1.5 mmol As(V)/g Fe. The present study thus suggests that the formation of biogenic Fe(III) minerals lowers rather than increases As removal efficiency of the filters probably due to the repulsion of the negatively charged arsenate by the negatively charged biogenic minerals. For this reason we recommend excluding microorganisms from filters (e.g., by activated carbon filters) to maintain their high As removal capacity.

  14. Engineering the Autotroph Methanococcus maripaludis for Geraniol Production.

    Science.gov (United States)

    Lyu, Zhe; Jain, Rachit; Smith, Peyton; Fetchko, Travis; Yan, Yajun; Whitman, William B

    2016-07-15

    The rapid autotrophic growth of the methanogenic archaeon Methanococcus maripaludis on H2 and CO2 makes it an attractive microbial chassis to inexpensively produce biochemicals. To explore this potential, a synthetic gene encoding geraniol synthase (GES) derived from Ocimum basilicum was cloned into a M. maripaludis expression vector under selection for puromycin resistance. Recombinant expression of GES in M. maripaludis during autotrophic growth on H2/CO2 or formate yielded geraniol at 2.8 and 4.0 mg g(-1) of dry weight, respectively. The yield of geraniol decreased 2-3-fold when organic carbon sources were added to stimulate heterotrophic growth. In the absence of puromycin, geraniol production during autotrophic growth on formate increased to 4.6 mg g(-1) of dry weight. A conceptual model centered on the autotrophic acetyl coenzyme A biosynthetic pathway identified strategies to divert more autotrophic carbon flux to geraniol production.

  15. The effect of gamma-radiation on the growth and auxin metabolism of autotrophic and heterotrophic tobacco callus tissue

    International Nuclear Information System (INIS)

    Koeves, E.; Szabo, M.; Sirokman, F.

    1980-01-01

    Cell cultures synthesizing and not synthesizing auxin (autotroph and heterothrop, resp.) were prepared from the callus tissue of nicotiana tabacum. They were irradiated by 0.1-40 Gy 60 Co. Increasing the radiation dose the weight of the samples has decreased and the decomposition of indol-acetic acid has increased. Irradiation up to 1.0 Gy had less significant effects in the heterotrophs than in the autotrophs. It is concluded that besides the activation of indol-acetic acid oxidation, gamma-irradiation also inhibits the synthesis of auxin. (author)

  16. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    Science.gov (United States)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-01-01

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism. PMID:26530351

  17. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products.

    Science.gov (United States)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-11-04

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism.

  18. Redox stratified biofilms to support completely autotrophic nitrogen removal: Principles and results

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    liquid. If operated properly, MABRs yield compact and homogeneous redox-stratified biofilms capable of hosting side-by-side aerobic and anaerobic microbial communities. We have recently demonstrated that completely autotrophic nitrogen removal is feasible in MABRs at nitrogen removal rates as high as 5...... bacteria in compact reaction zones about 100 m thick separated by an intermediate zone with low or null metabolic activity. Both identified microbial communities showed a very low diversity and were dominated by halophilic and halotolerant Nitrosomonas sp. and Candidatus Brocadia anammoxidans....... The continuous and sustained inoculation of metabolically active anaerobic oxidizing bacteria from a biofilm reactor placed in the recirculation line of our MABRs showed to shorten considerably the onset of autotrophic nitrogen removal. However, the main hurdle keeping MABRs from attaining high removal...

  19. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent red sea brine pools

    KAUST Repository

    Wang, Yong

    2013-04-29

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.

  20. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Angenent, Largus T.; Zhang, Tian

    2017-01-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron-transfer mechan......Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron......; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies....

  1. Microbial diversity and autotrophic activity in Kamchatka hot springs.

    Science.gov (United States)

    Merkel, Alexander Yu; Pimenov, Nikolay V; Rusanov, Igor I; Slobodkin, Alexander I; Slobodkina, Galina B; Tarnovetckii, Ivan Yu; Frolov, Evgeny N; Dubin, Arseny V; Perevalova, Anna A; Bonch-Osmolovskaya, Elizaveta A

    2017-03-01

    Microbial communities of Kamchatka Peninsula terrestrial hot springs were studied using molecular, radioisotopic and cultural approaches. Analysis of 16S rRNA gene fragments performed by means of high-throughput sequencing revealed that aerobic autotrophic sulfur-oxidizing bacteria of the genus Sulfurihydrogenibium (phylum Aquificae) dominated in a majority of streamers. Another widely distributed and abundant group was that of anaerobic bacteria of the genus Caldimicrobium (phylum Thermodesulfobacteria). Archaea of the genus Vulcanisaeta were abundant in a high-temperature, slightly acidic hot spring, where they were accompanied by numerous Nanoarchaeota, while the domination of uncultured Thermoplasmataceae A10 was characteristic for moderately thermophilic acidic habitats. The highest rates of inorganic carbon assimilation determined by the in situ incubation of samples in the presence of 14 C-labeled bicarbonate were found in oxygen-dependent streamers; in two sediment samples taken from the hottest springs this process, though much weaker, was found to be not dependent on oxygen. The isolation of anaerobic lithoautotrophic prokaryotes from Kamchatka hot springs revealed a wide distribution of the ability for sulfur disproportionation, a new lithoautotrophic process capable to fuel autonomous anaerobic ecosystems.

  2. An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc

    2018-01-01

    Adaptive laboratory evolution (ALE) is an approach enabling the development of novel characteristics in microbial strains via the application of a constant selection pressure. This method is also an efficient tool to acquire insights on molecular mechanisms responsible for specific phenotypes. AL...... autotrophically and reducing CO2 into acetate more efficiently. Strains developed via this ALE method were also used to gain knowledge on the autotrophic metabolism of S. ovata as well as other acetogenic bacteria....

  3. Spectrophotometric speciation of Fe(II) and Fe(III) using hydrazone-micelle systems and flow injections

    International Nuclear Information System (INIS)

    Khojali, Inas Osman

    1999-04-01

    Two hydrazones were synthesised, namely salicylhyrazone (SH) and trihydroxyacetophenone (THAPH) were synthesised with the objective of developing a method for determining of Fe(II) and Fe(III) in the presence of each other and hence the total iron.those hydrazones were selected so as to combine the ability of phenolic compounds to complex Fe(III) ions and the complexing characteristics of hydrazones. The complexes of Fe(II) S H and Fe(III) S H as well those of Fe(II)-THAPH and Fe(III)-THAPH had shown maximum absorbance at λ=412 nm which was not not modified by presence of micelles i.e. sodium n-dodecyl sulphate (SDS) and n-hexa dodecyl pyridinium bromide. The maximum absorbance for all complexes takes place around a neutral pH. Generally, in addition, of n-hexa dodecylpyridinium bromide to fe(II)-SH and Fe(III)-SH absorbance of the complexes increases with increasing the concentration of the micelle. The effects of the addition of sodium n-dodecyle sulphate (SDS) to Fe(III)-SH is also studied. Generally, increasing the concentration of the micelle decrease the absorbance of the complexes. To study the effect of the presence of Fe(II) and Fe(III) on the determination of each other,mixtures of Fe(II)-SH and Fe(III)-SH are studied. However, the use of ascorbic acid as a reducing reagent for Fe(III) did not produce the needed results but non reducible results, which may be due to the masking effect of ascorbic acid and thus making the metal not available to the ligand. However, conversion of Fe(II) to Fe(III) prior to the determination was avoided as this requires the use of oxidant, which will oxidise the ligand as well. To establish the condition for the maximum absorbance of THAPH complexes, the effect of the base was investigated by using sodium and ammonium hydroxide. Generally, increasing the concentration of the base decreases the abosrbance. as expected, ammonium hydroxide produced positive results than sodium hydroxide. After establishing the optimum Fi

  4. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic.

    Science.gov (United States)

    Perreault, Nancy N; Greer, Charles W; Andersen, Dale T; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G

    2008-11-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO(2) uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH(4)) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy.

  5. Microbiological evidence for Fe(III) reduction on early Earth

    Science.gov (United States)

    Vargas, Madeline; Kashefi, Kazem; Blunt-Harris, Elizabeth L.; Lovley, Derek R.

    1998-09-01

    It is generally considered that sulphur reduction was one of the earliest forms of microbial respiration, because the known microorganisms that are most closely related to the last common ancestor of modern life are primarily anaerobic, sulphur-reducing hyperthermophiles. However, geochemical evidence indicates that Fe(III) is more likely than sulphur to have been the first external electron acceptor of global significance in microbial metabolism. Here we show that Archaea and Bacteria that are most closely related to the last common ancestor can reduce Fe(III) to Fe(II) and conserve energy to support growth from this respiration. Surprisingly, even Thermotoga maritima, previously considered to have only a fermentative metabolism, could grow as a respiratory organism when Fe(III) was provided as an electron acceptor. These results provide microbiological evidence that Fe(III) reduction could have been an important process on early Earth and suggest that microorganisms might contribute to Fe(III) reduction in modern hot biospheres. Furthermore, our discovery that hyperthermophiles that had previously been thought to require sulphur for cultivation can instead be grown without the production of toxic and corrosive sulphide, should aid biochemical investigations of these poorly understood organisms.

  6. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Isern, Nancy G.; Romine, Margaret F.; Riha, Krystin M.; Inskeep, William P.; Kreuzer, Helen W.

    2016-03-19

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonesis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with 13C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  7. Coordination chemistry and hydrolysis of Fe(III) in a peat humic acid studied by X-ray absorption spectroscopy

    Science.gov (United States)

    Karlsson, Torbjörn; Persson, Per

    2010-01-01

    The speciation of iron (Fe) in soils, sediments and surface waters is highly dependent on chemical interactions with natural organic matter (NOM). However, the molecular structure and hydrolysis of the Fe species formed in association with NOM is still poorly described. In this study extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the coordination chemistry and hydrolysis of Fe(III) in solution of a peat humic acid (5010-49,200 μg Fe g -1 dry weight, pH 3.0-7.2). Data were analyzed by both conventional EXAFS data fitting and by wavelet transforms in order to facilitate the identification of the nature of backscattering atoms. Our results show that Fe occurs predominantly in the oxidized form as ferric ions and that the speciation varies with pH and Fe concentration. At low Fe concentrations (5010-9920 μg g -1; pH 3.0-7.2) mononuclear Fe(III)-NOM complexes completely dominates the speciation. The determined bond distances for the Fe(III)-NOM complexes are similar to distances obtained for Fe(III) complexed by desferrioxamine B and oxalate indicating the formation of a five-membered chelate ring structure. At higher Fe concentrations (49,200 μg g -1; pH 4.2-6.9) we detect a mixture of mononuclear Fe(III)-NOM complexes and polymeric Fe(III) (hydr)oxides with an increasing amount of Fe(III) (hydr)oxides at higher pH. However, even at pH 6.9 and a Fe concentration of 49,200 μg g -1 our data indicates that a substantial amount of the total Fe (>50%) is in the form of organic complexes. Thus, in environments with significant amounts of organic matter organic Fe complexes will be of great importance for the geochemistry of Fe. Furthermore, the formation of five-membered chelate ring structures is in line with the strong complexation and limited hydrolytic polymerization of Fe(III) in our samples and also agrees with EXAFS derived structures of Fe(III) in organic soils.

  8. Particle Aggregation During Fe(III) Bioreduction in Nontronite

    Science.gov (United States)

    Jaisi, D. P.; Dong, H.; Hi, Z.; Kim, J.

    2005-12-01

    This study was performed to evaluate the rate and mechanism of particle aggregation during bacterial Fe (III) reduction in different size fractions of nontronite and to investigate the role of different factors contributing to particle aggregation. To achieve this goal, microbial Fe(III) reduction experiments were performed with lactate as an electron donor, Fe(III) in nontronite as an electron acceptor, and AQDS as an electron shuttle in bicarbonate buffer using Shewanella putrefaceins CN32. These experiments were performed with and without Na- pyrophosphate as a dispersant in four size fractions of nontronite (0.12-0.22, 0.41-0.69, 0.73-0.96 and 1.42-1.8 mm). The rate of nontronite aggregation during the Fe(III) bioreduction was measured by analyzing particle size distribution using photon correlation spectroscopy (PCS) and SEM images analysis. Similarly, the changes in particle morphology during particle aggregation were determined by analyses of SEM images. Changes in particle surface charge were measured with electrophoretic mobility analyzer. The protein and carbohydrate fraction of EPS produced by cells during Fe(III) bioreduction was measured using Bradford and phenol-sulfuric acid extraction method, respectively. In the presence of the dispersant, the extent of Fe(III) bioreduction was 11.5-12.2% within the first 56 hours of the experiment. There was no measurable particle aggregation in control experiments. The PCS measurements showed that the increase in the effective diameter (95% percentile) was by a factor of 3.1 and 1.9 for particle size of 0.12-0.22 mm and 1.42-1.80 mm, respectively. The SEM image analyses also gave the similar magnitude of increase in particle size. In the absence of the dispersant, the extent of Fe(III) bioreduction was 13.4-14.5% in 56 hours of the experiment. The rate of aggregation was higher than that in the presence of the dispersant. The increase in the effective diameter (95% percentile) was by a factor of 13.6 and 4.1 for

  9. Fe(III) fertilization mitigating net global warming potential and greenhouse gas intensity in paddy rice-wheat rotation systems in China.

    Science.gov (United States)

    Liu, Shuwei; Zhang, Ling; Liu, Qiaohui; Zou, Jianwen

    2012-05-01

    A complete accounting of net greenhouse gas balance (NGHGB) and greenhouse gas intensity (GHGI) affected by Fe(III) fertilizer application was examined in typical annual paddy rice-winter wheat rotation cropping systems in southeast China. Annual fluxes of soil carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were measured using static chamber method, and the net ecosystem exchange of CO(2) (NEE) was determined by the difference between soil CO(2) emissions (R(H)) and net primary production (NPP). Fe(III) fertilizer application significantly decreased R(H) without adverse effects on NPP of rice and winter wheat. Fe(III) fertilizer application decreased seasonal CH(4) by 27-44%, but increased annual N(2)O by 65-100%. Overall, Fe(III) fertilizer application decreased the annual NGHGB and GHGI by 35-47% and 30-36%, respectively. High grain yield and low greenhouse gas intensity can be reconciled by Fe(III) fertilizer applied at the local recommendation rate in rice-based cropping systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Impact of Fe(III)-OM complexes and Fe(III) polymerization on SOM pools reactivity under different land uses

    Science.gov (United States)

    Giannetta, B.; Plaza, C.; Zaccone, C.; Siebecker, M. G.; Rovira, P.; Vischetti, C.; Sparks, D. L.

    2017-12-01

    Soil organic matter (SOM) protection and long-term accumulation are controlled by adsorption to mineral surfaces in different ways, depending on its molecular structure and pedo-climatic conditions. Iron (Fe) oxides are known to be key regulators of the soil carbon (C) cycle, and Fe speciation in soils is highly dependent on environmental conditions and chemical interactions with SOM. However, the molecular structure and hydrolysis of Fe species formed in association with SOM is still poorly described. We hypothesize the existence of two pools of Fe which interact with SOM: mononuclear Fe(III)-SOM complexes and precipitated Fe(III) hydroxides. To verify our hypothesis, we investigated the interactions between Fe(III) and physically isolated soil fractions by means of batch experiments at pH 7. Specifically, we examined the fine silt plus clay (FSi+C) fraction, obtained by ultrasonic dispersion and wet sieving. The soil samples spanned several land uses, including coniferous forest (CFS), grassland (GS), technosols (TS) and agricultural (AS) soils. Solid phase products and supernatants were analyzed for C and Fe content. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis were also performed. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to assess the main C functional groups involved in C complexation and desorption experiments. Preliminary linear combination fitting (LCF) of Fe K-edge extended X-ray absorption fine structure (EXAFS) spectra suggested the formation of ferrihydrite-like polymeric Fe(III) oxides in reacted CFS and GS samples, with higher C and Fe concentration. Conversely, mononuclear Fe(III) OM complexes dominated the speciation for TS and AS samples, characterized by lower C and Fe concentration, inhibiting the hydrolysis and polymerization of Fe (III). This approach will help revealing the mechanisms by which SOM pools can control Fe(III) speciation, and will elucidate how both Fe

  11. Aeration control by monitoring the microbiological activity using fuzzy logic diagnosis and control. Application to a complete autotrophic nitrogen removal reactor

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine

    2015-01-01

    Complete Autotrophic Nitrogen Removal (CANR) is a novel process where ammonia is converted to nitrogen gas by different microbial groups. The performance of the process can be compromised by an unbalanced activity of the biomass caused by disturbances or non-optimal operational conditions...... microbial groups on the other hand, the diagnosis provides information on: nitritation, nitratation, anaerobic ammonium oxidation and overall autotrophic nitrogen removal. These four results give insight into the state of the process and are used as inputs for the controller that manipulates the aeration...... to the reactor.The diagnosis tool was first evaluated using 100 days of real process operation data obtained from a lab-scale single-stage autotrophic nitrogen removing reactor. This evaluation revealed that the fuzzy logic diagnosis is able to provide a realistic description of the microbiological state...

  12. Comparative effects of autotrophic and heterotrophic growth on ...

    African Journals Online (AJOL)

    Histidine, lysine and phenylalanine constituted 77 and 44% of the total content of essential amino acids in heterotrophic and autotrophic cells, respectively. Methionine concentration was low in both types of cells. Proline content and non essential amino acid in heterotrophic cells was about 2.5 times its corresponding value ...

  13. General medium for the autotrophic cultivation of acetogens.

    Science.gov (United States)

    Groher, Anna; Weuster-Botz, Dirk

    2016-10-01

    Syngas fermentation, a microbial process in which synthesis gas serves as a substrate for acetogens, has attracted increasing interest in the last few years. For the purposeful selection of acetogens for various applications, it would be useful to characterize and compare the process performances of as many autotrophic strains as possible under identical process conditions. Unfortunately, all the media compositions so far recommended for syngas fermentation differ considerably with respect to each individual strain. Therefore, a general medium for syngas fermentation was designed. The suitability of this new general-acetogen medium (GA-medium) was proven based on the autotrophic batch cultivation of Acetobacterium fimetarium, Acetobacterium wieringae, Blautia hydrogenotrophica, Clostridium magnum, Eubacterium aggregans, Sporomusa acidovorans, Sporomusa ovata and Terrisporobacter mayombei in anaerobic flasks with an initial gas phase of H2:CO2 (66:34) (P = 200 kPa). A comparison of the autotrophic batch processes with this medium revealed T. mayombei as the bacterium with the highest maximum growth rate of 5.77 day(-1) which was more than 10 times higher than the lowest identified maximum growth rate of A. fimetarium. The maximum growth rates of A. wieringae, C. magnum and S. acidovorans were all in the same order of magnitude around 1.7 day(-1). The newly designed GA-medium offers the possibility to compare autotrophic process performances of different acetogens under similar conditions absent the effects of various media compositions.

  14. Detoxification of Pesticide-Containing Wastewater with FeIII, Activated Carbon and Fenton Reagent and Its Control Using Three Standardized Bacterial Inhibition Tests

    Directory of Open Access Journals (Sweden)

    Eduard Rott

    2017-12-01

    Full Text Available Discharge of toxic industrial wastewaters into biological wastewater treatment plants may result in inhibition of activated sludge bacteria (ASB. In order to find an appropriate method of detoxification, the wastewater of a pesticide-processing plant in Vietnam was treated with three different methods (FeIII, powdered activated carbon (PAC, Fenton (FeII/H2O2 analyzing the detoxification effect with the nitrification inhibition test (NIT, respiration inhibition test (RIT and luminescent bacteria test (LBT. The heterotrophic ASB were much more resistant to the wastewater than the autotrophic nitrificants. The NIT turned out to be more suitable than the RIT since the NIT was less time-consuming and more reliable. In addition, the marine Aliivibrio fischeri were more sensitive than the nitrificants indicating that a lack of inhibition in the very practical and time-efficient LBT correlates with a lack of nitrification inhibition. With 95%, the Fenton method showed the highest efficiency regarding the chemical oxygen demand (COD removal. Although similar COD removal (60–65% was found for both the FeIII and the PAC method, the inhibitory effect of the wastewater was reduced much more strongly with PAC. Both the NIT and the LBT showed that the PAC and Fenton methods led to a similar reduction in the inhibitory effect.

  15. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1

    International Nuclear Information System (INIS)

    Fredrickson, J.K.; Kostandarithes, H.M.; Li, S.W.; Plymake, A.E.; Daly, M.J.

    2000-01-01

    Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO 2 and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH 2 DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml -1 ) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms

  16. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.

    Science.gov (United States)

    Wantawin, C; Juateea, J; Noophan, P L; Munakata-Marr, J

    2008-01-01

    Conventional nitrification-denitrification treatment is a common way to treat nitrogen in wastewater, but this process is costly for low COD/N wastewaters due to the addition of air and external carbon-source. However, ammonia may alternatively be converted to dinitrogen gas by autotrophic bacteria utilizing aerobically autotrophically produced nitrite as an electron acceptor under anoxic conditions. Lab-scale sequencing batch biofilm reactors (SBBRs) inoculated with normal nitrifying sludge were employed to study the potential of an oxygen-limited autotrophic nitrification-denitrification process initiated with typical nitrifying sludge for treating a synthetic ammonia wastewater devoid of organic carbon in one step. The ring-laced fibrous carrier (length 0.32 m, surface area 3.4 m2/m) was fixed vertically in a 3 L reactor. Two different air supply modes were applied:continuous aeration to control dissolved oxygen at 1.5 mg/L and intermittent aeration. High nitrogen removals of more than 50% were obtained in both SBBRs. At an ammonia loading of 0.882 gm N/m2-day [hydraulic retention time (HRT) of 24 hr], the SBBR continuously aerated to 1.5 mg DO/L had slightly higher nitrogen removal (64%) than the intermittently alternated SBBR (55%). The main form of residual nitrogen in the effluent was ammonia, at concentrations of 25 mg/L and 37 mg N/L in continuous and intermittent aeration SBBRs, respectively. Ammonia was completely consumed when ammonia loading was reduced to 0.441 gm N/m2-day [HRT extended to 48 hr]. The competitive use of nitrite by aerobic nitrite oxidizing bacteria (ANOB) with anaerobic ammonia-oxidizing bacteria (anammox bacteria) during the expanded aeration period under low remaining ammonia concentration resulted in higher nitrate production and lower nitrogen loss in the continuous aeration SBBR than in the intermittent aeration SBBR. The nitrogen removal efficiencies in SBBRs with continuous and alternating aerated were 80% and 86% respectively

  17. Autotrophic stoichiometry emerging from optimality and variable co-limitation

    Directory of Open Access Journals (Sweden)

    Kai W Wirtz

    2016-11-01

    Full Text Available Autotrophic organisms reveal an astounding flexibility in their elemental stoichiometry, with potentially major implications on biogeochemical cycles and ecological functioning. Notwithstanding, stoichiometric regulation and co-limitation by multiple resources in autotrophs revt were in the past often described by heuristic formulations.In this study, we present a mechanistic model of autotroph growth, which features two major improvements over the existing schemes. First, we introduce the concept of metabolic network independence that defines the degree of phase-locking between accessory machines. Network independence is in particular suggested to be proportional to protein synthesis capability as quantified by variable intracellular N:C. Consequently, the degree of co-limitation becomes variable, contrasting with the dichotomous debate on the use of Liebig's law or the product rule, standing for constantly low and high co-limitation, respectively. Second, we resolve dynamic protein partitioning to light harvesting, carboxylation processes, and to an arbitrary number of nutrient acquisition machineries, as well as instantaneous activity regulation of nutrient uptake. For all regulatory processes we assume growth rate optimality, here extended by an explicit consideration of indirect feed-back effects.The combination of network independence and optimal regulation displays unprecedented skill in reproducing rich stoichiometric patterns collected from a large number of published chemostat experiments. This high skill indicates (1 that the current paradigm of fixed co-limitation is a critical short-coming of conventional models, and (2 that stoichiometric flexibility in autotrophs possibly reflects an optimality strategy. Numerical experiments furthermore show that regulatory mechanisms homogenize the effect of multiple stressors. Extended optimality alleviates the effect of the most limiting resource(s while down-regulating machineries for the

  18. Autotrophic biorefinery: dawn of the gaseous carbon feedstock.

    Science.gov (United States)

    Butti, Sai Kishore; Mohan, S Venkata

    2017-10-02

    CO2 is a resource yet to be effectively utilized in the autotrophic biotechnology, not only to mitigate and moderate the anthropogenic influence on our climate, but also to steer CO2 sequestration for sustainable development and carbon neutral status. The atmospheric CO2 concentration has seen an exponential increase with the turn of the new millennia causing numerous environmental issues and also in a way feedstock crisis. To progressively regulate the growing CO2 concentrations and to incorporate the integration strategies to our existing CO2 capturing tools, all the influencing factors need to be collectively considered. The review article puts forth the change in perception of CO2 from which was once considered a harmful pollutant having deleterious effects to a renewable carbon source bearing the potential to replace the fossils as the carbon source through an autotrophic biorefinery. Here, we review the current methods employed for CO2 storage and capture, the need to develop sustainable methods and the ways of improving the sequestration efficiencies by various novice technologies. The review also provides an autotrophic biorefinery model with the potential to operate and produces a multitude of biobased products analogous to the petroleum refinery to establish a circular bioeconomy. Furthermore, fundamental and applied research niches that merit further research are delineated. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Characterization of an autotrophic bioreactor microbial consortium degrading thiocyanate.

    Science.gov (United States)

    Watts, Mathew Paul; Spurr, Liam Patrick; Gan, Han Ming; Moreau, John William

    2017-07-01

    Thiocyanate (SCN - ) forms as a by-product of cyanidation during gold ore processing and can be degraded by a variety of microorganisms utilizing it as an energy, nitrogen, sulphur and/or carbon source. In complex consortia inhabiting bioreactor systems, a range of metabolisms are sustained by SCN - degradation; however, despite the addition or presence of labile carbon sources in most bioreactor designs to date, autotrophic bacteria have been found to dominate key metabolic functions. In this study, we cultured an autotrophic SCN - -degrading consortium directly from gold mine tailings. In a batch-mode bioreactor experiment, this consortium degraded 22 mM SCN - , accumulating ammonium (NH 4 + ) and sulphate (SO 4 2- ) as the major end products. The consortium consisted of a diverse microbial community comprised of chemolithoautotrophic members, and despite the absence of an added organic carbon substrate, a significant population of heterotrophic bacteria. The role of eukaryotes in bioreactor systems is often poorly understood; however, we found their 18S rRNA genes to be most closely related to sequences from bacterivorous Amoebozoa. Through combined chemical and phylogenetic analyses, we were able to infer roles for key microbial consortium members during SCN - biodegradation. This study provides a basis for understanding the behaviour of a SCN - degrading bioreactor under autotrophic conditions, an anticipated approach to remediating SCN - at contemporary gold mines.

  20. [Achieve single-stage autotrophic biological nitrogen removal process by controlling the concentration of free ammonia].

    Science.gov (United States)

    Ji, Li-Li; Yang, Zhao-Hui; Xu, Zheng-Yong; Li, Xiao-Jiang; Tang, Zhi-Gang; Deng, Jiu-Hu

    2011-01-01

    Through controlling the concentration of free ammonia in the sequencing batch reactor (SBR), the single-stage autotrophic biological nitrogen removal process was achieved, including partial nitrification and anaerobic ammonium oxidation. The experiment was completed via two steps, the enrichment of nitrite bacteria and the inoculation of the mixture of anammox biomass. The operating temperature in the SBR was (31 +/- 2) degrees C. During the step of the enrichment of nitrite bacteria, pH was about 7.8. Changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N(56-446 mg x L(-1)), in order to inhibit and eliminate the nitrate bacteria. The activity tests of the sludge, 55d after enrichment, showed strong activity of aerobic ammonium oxidation [2.91 kg x (kg x d)(-1)] and low activity of nitrite oxidation [0.03 kg x(kg x d)(-1)]. During the inoculation of the mixture of anammox biomass, changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N and pH. As the inoculation of anammox biomass, abundant of bacteria and nutrient content were into the reactor and there kept high activity of aerobic ammonium oxidation [2.83 kg x (kg x d)(-1)] and a certain activity of nitrite oxidation, at the same time, the activity of anammox and heterotrophic denitrification reached 0.65 kg x (kg x d)(-1) and 0.11 kg x (kg x d)(-1), respectively.

  1. Simultaneous removal of nitrate and hydrogen sulfide by autotrophic denitrification in nitrate-contaminated water treatment.

    Science.gov (United States)

    Liu, Yongjie; Chen, Nan; Liu, Ying; Liu, Hengyuan; Feng, Chuanping; Li, Miao

    2018-02-23

    Nitrate contamination is a risk to human health and may cause eutrophication, whereas H 2 S is an undesirable constituent in biogas. In order to better understand denitrification using gaseous H 2 S as electron donor, this study investigated denitrification at different molar ratios of sulfur and nitrogen (S/N ratios) and H 2 S dosages. Although nitrate continued to decrease, a lag in sulfate generation was observed, implying the generation of sulfide oxidizing intermediates, which accumulated even though nitrate was in excess at lower S/N ratios of 0.19 and 0.38. More addition of H 2 S could result in a longer lag of sulfate generation. Before depletion of dissolved sulfide, denitrification could proceed with little nitrite accumulation. High throughout sequencing analysis identified two major genera, Thiobacillus and Sulfurimonas, that were responsible for autotrophic denitrification. The simultaneous removal of nitrate and H 2 S using a wide range of concentrations could be able to be achieved.

  2. Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite

    Science.gov (United States)

    Jaisi, Deb P.; Kukkadapu, R.K.; Eberl, D.D.; Dong, H.

    2005-01-01

    A quantitative study was performed to understand how Fe(III) site occupancy controls Fe(III) bioreduction in nontronite by Shewanella putrefaciens CN32. NAu-1 and NAu-2 were nontronites and contained Fe(III) in different structural sites with 16 and 23% total iron (w/w), respectively, with almost all iron as Fe(III). Mo??ssbauer spectroscopy showed that Fe(III) was present in the octahedral site in NAu-1 (with a small amount of goethite), but in both the tetrahedral and the octahedral sites in NAu-2. Mo??ssbauer data further showed that the octahedral Fe(III) in NAu-2 existed in at least two environments- trans (M1) and cis (M2) sites. The microbial Fe(III) reduction in NAu-1 and NAu-2 was studied in batch cultures at a nontronite concentration of 5 mg/mL in bicarbonate buffer with lactate as the electron donor. The unreduced and bioreduced nontronites were characterized by X-ray diffraction (XRD), Mo??ssbauer spectroscopy, and transmission electron microscopy (TEM). In the presence of an electron shuttle, anthraquinone-2,6-disulfonate (AQDS), the extent of bioreduction was 11%-16% for NAu-1 but 28%-32% for NAu-2. The extent of reduction in the absence of AQDS was only 5%-7% for NAu-1 but 14%-18% for NAu-2. The control experiments with heat killed cells and without cells did not show any appreciable reduction (medium without added nutrients, possibly due to presence of naturally existing nutrients in the nontronite clays. These results suggest that crystal chemical environment of Fe(III) is an important determinant in controlling the rate and extent of microbial reduction of Fe(III) in nontronite. Copyright ?? 2005 Elsevier Ltd.

  3. Reductive reactivity of iron(III) oxides in the east china sea sediments: characterization by selective extraction and kinetic dissolution.

    Science.gov (United States)

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k' (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.

  4. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars.

    Science.gov (United States)

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-09-09

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2(T) M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth's subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  5. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    Directory of Open Access Journals (Sweden)

    Viktoria Shcherbakova

    2015-09-01

    Full Text Available The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  6. STRUCTURE OF Co(III) AND Fe(III) TRANSITION METAL IONS IN ...

    African Journals Online (AJOL)

    Bulletin of the Chemical Society of Ethiopia ... The hydration structures of Co(III) and Fe(III) ions have been investigated by Metropolis Monte Carlo (MC) simulations using only ion-water pair interaction ... KEY WORDS: Metropolis Monte Carlo simulation, Hydration structure, Fe(III) and Co(III) ions, Three-body corrections

  7. Deactivation of the autotrophic sulfate assimilation pathway substantially reduces high-level β-lactam antibiotic biosynthesis and arthrospore formation in a production strain from Acremonium chrysogenum.

    Science.gov (United States)

    Terfehr, Dominik; Kück, Ulrich

    2017-06-01

    The filamentous ascomycete Acremonium chrysogenum is the only industrial producer of the β-lactam antibiotic cephalosporin C. Synthesis of all β-lactam antibiotics starts with the three amino acids l-α-aminoadipic acid, l-cysteine and l-valine condensing to form the δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine tripeptide. The availability of building blocks is essential in every biosynthetic process and is therefore one of the most important parameters required for optimal biosynthetic production. Synthesis of l-cysteine is feasible by various biosynthetic pathways in all euascomycetes, and sequencing of the Acr. chrysogenum genome has shown that a full set of sulfur-metabolizing genes is present. In principle, two pathways are effective: an autotrophic one, where the sulfur atom is taken from assimilated sulfide to synthesize either l-cysteine or l-homocysteine, and a reverse transsulfuration pathway, where l-methionine is the sulfur donor. Previous research with production strains has focused on reverse transsulfuration, and concluded that both l-methionine and reverse transsulfuration are essential for high-level cephalosporin C synthesis. Here, we conducted molecular genetic analysis with A3/2, another production strain, to investigate the autotrophic pathway. Strains lacking either cysteine synthase or homocysteine synthase, enzymes of the autotrophic pathway, are still autotrophic for sulfur. However, deletion of both genes results in sulfur amino acid auxotrophic mutants exhibiting delayed biomass production and drastically reduced cephalosporin C synthesis. Furthermore, both single- and double-deletion strains are more sensitive to oxidative stress and form fewer arthrospores. Our findings provide evidence that autotrophic sulfur assimilation is essential for growth and cephalosporin C biosynthesis in production strain A3/2 from Acr. chrysogenum.

  8. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H 13 CO 3 - and H 12 CO 3 - as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H 13 CO 3 - , demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the 13 C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Lipid-based liquid biofuels from autotrophic microalgae: energetic and environmental performance

    NARCIS (Netherlands)

    Reijnders, L.

    2013-01-01

    Commercial cultivation of autotrophic microalgae for food production dates back to the 1950s. Autotrophic microalgae have also been proposed as a source for lipid-based liquid biofuels. As yet, there is no commercial production of such biofuels and estimated near-term prices are far in excess of

  10. Autotrophic and heterotrophic activity in Arctic first-year sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in plastic bags with subsequent melting and measurements of changes in total O2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period was followed...... by an algal bloom in late March and April, leading to a net autotrophic community. During February and March, the oxygen level in the bag incubations remained constant, validating the low balanced heterotrophic and autotrophic activity. As the autotrophic activity exceeded the heterotrophic activity in late...... March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m– 2, reflecting the net result of a sea ice-related gross primary production...

  11. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore...... the interaction between species via exchange of soluble microbial products (SMP). We show that multiple parameter sets are able to describe the findings of experimental studies, and that heterotrophs growing on autotrophically produced SMP may pursue either r- or K-strategies to sustain themselves when SMP...... is their only substrate. We also show that heterotrophs can colonize some distance from the autotrophs and still be sustained by autotrophically produced SMP. This work defines the feasible range of parameters for utilization of SMP by heterotrophs and the nature of the interactions between autotrophs...

  12. Use of Fe(III) oxalate for oxidativewastewater treatment; Einsatz von Fe(III)-Oxalat zur chemisch-oxidativen Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.M.; Vogelpohl, A. [Clausthal Univ., Clausthal-Zellerfeld (Germany). Inst. fuer Thermische Verfahrenstechnik

    1998-08-01

    Iron(III)-oxalate was used as an iron catalyst for the Photo Fenton reaction. Iron(III) oxalations ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) are reduced to Fe(II) by irradiation using near UV-light ({lambda} = 300 - 400 nm) or visible light ({lambda} > 400 nm). At the same time, CO{sub 2}{sup -} or C{sub 2}O{sub 4}{sup -}-radicals originate, which cause the secondary reduction of Fe(III) to Fe(II). By means of the photolytically regenerated Fe(II) ions, hydroxyl radicals are increasingly formed, so that the degradation of organic substances is accelerated. The work aimed to assess the catalytic effect of Fe(III) oxalate for photochemical oxidation processes and to establish the parameters influencing further treatment of leachate from a municipal waste sanitary landfill by means of technical-scale experiments. (orig.) [Deutsch] In der vorliegenden Arbeit wurde Eisen(III)-Oxalat als Eisenkatalysator fuer die Photo-Fenton-Reaktion eingesetzt. Eisen(III)-Oxalationen ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) werden durch Strahlung mit nahem UV-Licht ({lambda}=300 bis 400 nm) oder mit sichtbarem Licht ({lambda}>400 nm) zu Fe(II) reduziert. Gleichzeitig entstehen CO{sub 2}{sup .-} oder C{sub 2}O{sub 4}{sup .-}-Radikale, die eine sekundaere Reduktion von Fe(III) zu Fe(II) bewirken. Mit Hilfe der photolytiisch regenerierten Fe(II)-Ionen werden vermehrt Hydroxylradikale gebildet und damit die Abbaugeschwindigkeit der organischen Substanzen beschleunigt. Ziel der hier vorgestellten Arbeit war es, die katalytische Wirkung von Fe(III)-Oxalat fuer photochemische Oxidationsverfahren abzuschaetzen und die Einflussparameter zur weitergehenden Behandlung eines Deponiesickerwassers aus Hausmuelldeponie anhand von Technikumsversuchen zu ermitteln. (orig.)

  13. Fe(III) homogeneous photocatalysis for the removal of 1,2-dichlorobenzene in aqueous solution by means UV lamp and solar light.

    Science.gov (United States)

    Andreozzi, Roberto; Canterino, Marisa; Marotta, Raffaele

    2006-12-01

    Chlorinated hydrocarbons are widely used in chemical industries as solvents and intermediates for pesticides and dyes manufacture. Their presence was documented in rivers, groundwaters and seawaters. In this work, the oxidation of 1,2-dichlorobenzene in aqueous solutions by means of Fe(III) homogeneous photocatalysis under UV lamp and sunlight irradiations is studied. The results show that the best working conditions are found for pH=3.0 and initial [Fe(III)] concentration equal to 1.0x10(-4) molL(-1) although the investigated system can be utilized even at pH close to 4.0 but with slower abatement kinetics. Some dicholoroderivatives, such as 2,3-dichlorophenol, 3,4-dichlorophenol and 2-chlorophenol, are identified as oxidation intermediates. The values of the kinetic constant for the photochemical reoxidation of Fe(II) to Fe(III) are evaluated by a mathematical model in the range 1.58-3.78 Lmol(-1)s(-1) and 0.69-0.78 Lmol(-1)s(-1) for the systems irradiated by UV lamp and sunlight, respectively.

  14. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.

    Science.gov (United States)

    Lovley, D R; Phillips, E J

    1988-06-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe(3)O(4)). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35 degrees C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO(2) was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO(3)). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.

  15. Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana

    DEFF Research Database (Denmark)

    van Wagenen, Jonathan Myerson; De Francisci, Davide; Angelidaki, Irini

    2015-01-01

    to autotrophic growth. Chlorella sorokiniana was cultivated in medium supplemented with sodium acetate in concentrations equivalent to the volatile fatty acid concentration found in anaerobic digester effluent. Flat-panel photobioreactors were operated using 16:8 light:dark cycles, with different strategies...... for acetate addition. Acetate was added during the light period for the mixotrophic strategy and during the dark one for the cyclic autotrophic/heterotrophic strategy. Autotrophic productivity of up to 0.99 g L−1 day−1 was obtained using the optimal tested dilution rate of 0.031 h−1. The highest mixotrophic...

  16. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez-Martinez

    2015-01-01

    Full Text Available Identification of anaerobic ammonium oxidizing (anammox bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON and three full-scale bioreactors (anammox, CANON, and DEMON, was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature. The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  17. Start-Up and Aeration Strategies for a Completely Autotrophic Nitrogen Removal Process in an SBR

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2017-01-01

    Full Text Available The start-up and performance of the completely autotrophic nitrogen removal via nitrite (CANON process were examined in a sequencing batch reactor (SBR with intermittent aeration. Initially, partial nitrification was established, and then the DO concentration was lowered further, surplus water in the SBR with high nitrite was replaced with tap water, and continuous aeration mode was turned into intermittent aeration mode, while the removal of total nitrogen was still weak. However, the total nitrogen (TN removal efficiency and nitrogen removal loading reached 83.07% and 0.422 kgN/(m3·d, respectively, 14 days after inoculating 0.15 g of CANON biofilm biomass into the SBR. The aggregates formed in SBR were the mixture of activated sludge and granular sludge; the volume ratio of floc and granular sludge was 7 : 3. DNA analysis showed that Planctomycetes-like anammox bacteria and Nitrosomonas-like aerobic ammonium oxidization bacteria were dominant bacteria in the reactor. The influence of aeration strategies on CANON process was investigated using batch tests. The result showed that the strategy of alternating aeration (1 h and nonaeration (1 h was optimum, which can obtain almost the same TN removal efficiency as continuous aeration while reducing the energy consumption, inhibiting the activity of NOB, and enhancing the activity of AAOB.

  18. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    Science.gov (United States)

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  19. Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production.

    Science.gov (United States)

    Subramanian, Sowmya; Barry, Amanda N; Pieris, Shayani; Sayre, Richard T

    2013-10-19

    Due to the growing need to provide alternatives to fossil fuels as efficiently, economically, and sustainably as possible there has been growing interest in improved biofuel production systems. Biofuels produced from microalgae are a particularly attractive option since microalgae have production potentials that exceed the best terrestrial crops by 2 to 10-fold. In addition, autotrophically grown microalgae can capture CO2 from point sources reducing direct atmospheric greenhouse gas emissions. The enhanced biomass production potential of algae is attributed in part to the fact that every cell is photosynthetic. Regardless, overall biological energy capture, conversion, and storage in microalgae are inefficient with less than 8% conversion of solar into chemical energy achieved. In this review, we examine the thermodynamic and kinetic constraints associated with the autotrophic conversion of inorganic carbon into storage carbohydrate and oil, the dominant energy storage products in Chlorophytic microalgae. We discuss how thermodynamic restrictions including the loss of fixed carbon during acetyl CoA synthesis reduce the efficiency of carbon accumulation in lipids. In addition, kinetic limitations, such as the coupling of proton to electron transfer during plastoquinone reduction and oxidation and the slow rates of CO2 fixation by Rubisco reduce photosynthetic efficiency. In some cases, these kinetic limitations have been overcome by massive increases in the numbers of effective catalytic sites, e.g. the high Rubisco levels (mM) in chloroplasts. But in other cases, including the slow rate of plastoquinol oxidation, there has been no compensatory increase in the abundance of catalytically limiting protein complexes. Significantly, we show that the energetic requirements for producing oil and starch relative to the recoverable energy stored in these molecules are very similar on a per carbon basis. Presently, the overall rates of starch and lipid synthesis in

  20. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency.

    Science.gov (United States)

    Yi, Y; Guerinot, M L

    1996-11-01

    Reduction of Fe(III) to Fe(II) by Fe(III) chelate reductase is thought to be an obligatory step in iron uptake as well as the primary factor in making iron available for absorption by all plants except grasses. Fe(III) chelate reductase has also been suggested to play a more general role in the regulation of cation absorption. In order to experimentally address the importance of Fe(III) chelate reductase activity in the mineral nutrition of plants, three Arabidopsis thaliana mutans (frd1-1, frd1-2 and frd1-3), that do not show induction of Fe(III) chelate reductase activity under iron-deficient growth conditions, have been isolated and characterized. These mutants are still capable of acidifying the rhizosphere under iron-deficiency and accumulate more Zn and Mn in their shoots relative to wild-type plants regardless of iron status. frd1 mutants do not translocate radiolabeled iron to the shoots when roots are presented with a tightly chelated form of Fe(III). These results: (1) confirm that iron must be reduced before it can be transported, (2) show that Fe(III) reduction can be uncoupled from proton release, the other major iron-deficiency response, and (3) demonstrate that Fe(III) chelate reductase activity per se is not necessarily responsible for accumulation of cations previously observed in pea and tomato mutants with constitutively high levels of Fe(III) chelate reductase activity.

  1. Sulfide-driven autotrophic denitrification significantly reduces N2O emissions.

    Science.gov (United States)

    Yang, Weiming; Zhao, Qing; Lu, Hui; Ding, Zhi; Meng, Liao; Chen, Guang-Hao

    2016-03-01

    The Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI) process build on anaerobic carbon conversion through biological sulfate reduction and autotrophic denitrification by using the sulfide byproduct from the previous reaction. This study confirmed extra decreases in N2O emissions from the sulfide-driven autotrophic denitrification by investigating N2O reduction, accumulation, and emission in the presence of different sulfide/nitrate (S/N) mass ratios at pH 7 in a long-term laboratory-scale granular sludge autotrophic denitrification reactor. The N2O reduction rate was linearly proportional to the sulfide concentration, which confirmed that no sulfide inhibition of N2O reductase occurred. At S/N = 5.0 g-S/g-N, this rate resulted by sulfide-driven autotrophic denitrifying granular sludge (average granule size = 701 μm) was 27.7 mg-N/g-VSS/h (i.e., 2 and 4 times greater than those at 2.5 and 0.8 g-S/g-N, respectively). Sulfide actually stimulates rather than inhibits N2O reduction no matter what granule size of sulfide-driven autotrophic denitrifying sludge engaged. The accumulations of N2O, nitrite and free nitrous acid (FNA) with average granule size 701 μm of sulfide-driven autotrophic denitrifying granular sludge engaged at S/N = 5.0 g-S/g-N were 4.7%, 11.4% and 4.2% relative to those at 3.0 g-S/g-N, respectively. The accumulation of FNA can inhibit N2O reduction and increase N2O accumulation during sulfide-driven autotrophic denitrification. In addition, the N2O gas emission level from the reactor significantly increased from 14.1 ± 0.5 ppmv (0.002% of the N load) to 3707.4 ± 36.7 ppmv (0.405% of the N load) as the S/N mass ratio in the influent decreased from 2.1 to 1.4 g-S/g-N over the course of the 120-day continuous monitoring period. Sulfide-driven autotrophic denitrification may significantly reduce greenhouse gas emissions from biological nutrient removal when sulfur conversion processes are applied

  2. Hydrogen Peroxide Cycling in High-Temperature Acidic Geothermal Springs and Potential Implications for Oxidative Stress Response

    Directory of Open Access Journals (Sweden)

    Margaux M. Meslé

    2017-05-01

    Full Text Available Hydrogen peroxide (H2O2, superoxide (O2•-, and hydroxyl radicals (OH• are produced in natural waters via ultraviolet (UV light-induced reactions between dissolved oxygen (O2 and organic carbon, and further reaction of H2O2 and Fe(II (i.e., Fenton chemistry. The temporal and spatial dynamics of H2O2 and other dissolved compounds [Fe(II, Fe(III, H2S, O2] were measured during a diel cycle (dark/light in surface waters of three acidic geothermal springs (Beowulf Spring, One Hundred Springs Plain, and Echinus Geyser Spring; pH = 3–3.5, T = 68–80°C in Norris Geyser Basin, Yellowstone National Park. In situ analyses showed that H2O2 concentrations were lowest (ca. 1 μM in geothermal source waters containing high dissolved sulfide (and where oxygen was below detection and increased by 2-fold (ca. 2–3 μM in oxygenated waters corresponding to Fe(III-oxide mat formation down the water channel. Small increases in dissolved oxygen and H2O2 were observed during peak photon flux, but not consistently across all springs sampled. Iron-oxide microbial mats were sampled for molecular analysis of ROS gene expression in two primary autotrophs of acidic Fe(III-oxide mat ecosystems: Metallosphaera yellowstonensis (Archaea and Hydrogenobaculum sp. (Bacteria. Expression (RT-qPCR assays of specific stress-response genes (e.g., superoxide dismutase, peroxidases of the primary autotrophs were used to evaluate possible changes in transcription across temporal, spatial, and/or seasonal samples. Data presented here documented the presence of H2O2 and general correlation with dissolved oxygen. Moreover, two dominant microbial populations expressed ROS response genes throughout the day, but showed less expression of key genes during peak sunlight. Oxidative stress response genes (especially external peroxidases were highly-expressed in microorganisms within Fe(III-oxide mat communities, suggesting a significant role for these proteins during survival and growth in

  3. Parallel assessment of marine autotrophic picoplankton using flow cytometry and chemotaxonomy.

    Science.gov (United States)

    Tamm, Marju; Laas, Peeter; Freiberg, Rene; Nõges, Peeter; Nõges, Tiina

    2018-06-01

    Autotrophic picoplankton (0.2-2μm) can be a significant contributor to primary production and hence play an important role in carbon flow. The phytoplankton community structure in the Baltic Sea is very region specific and the understanding of the composition and dynamics of pico-size phytoplankton is generally poor. The main objective of this study was to determine the contribution of picoeukaryotic algae and their taxonomic composition in late summer phytoplankton community of the West-Estonian Archipelago Sea. We found that about 20% of total chlorophyll a (Chl a) in this area belongs to autotrophic picoplankton. With increasing total Chl a, the Chl a of autotrophic picoplankton increased while its contribution in total Chl a decreased. Picoeukaryotes play an important role in the coastal area of the Baltic Sea where they constituted around 50% of the total autotrophic picoplankton biomass. The most abundant groups of picoeukaryotic algae were cryptophytes (16%), chlorophytes (13%) and diatoms (9%). Picocyanobacteria were clearly dominated by phycoerythrin containing Synechococcus. The parallel use of different assessment methods (CHEMTAX and flow cytometry) revealed the share of eukaryotic and prokaryotic part of autotrophic picoplankton. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pyrite oxidation at circumneutral pH

    Science.gov (United States)

    Moses, Carl O.; Herman, Janet S.

    1991-02-01

    Previous studies of pyrite oxidation kinetics have concentrated primarily on the reaction at low pH, where Fe(III) has been assumed to be the dominant oxidant. Studies at circumneutral pH, necessitated by effective pH buffering in some pyrite oxidation systems, have often implicitly assumed that the dominant oxidant must be dissolved oxygen (DO), owing to the diminished solubility of Fe(III). In fact, Fe(III)(aq) is an effective pyrite oxidant at circumneutral pH, but the reaction cannot be sustained in the absence of DO. The purpose of this experimental study was to ascertain the relative roles of Fe(III) and DO in pyrite oxidation at circumneutral pH. The rate of pyrite oxidation was first-order with respect to the ratio of surface area to solution volume. Direct determinations of both Fe(II) (aq)> and Fe(III) (aq) demonstrated a dramatic loss of Fe(II) from the solution phase in excess of the loss for which oxidation alone could account. Based on rate data, we have concluded that Fe(II) is adsorbed onto the pyrite surface. Furthermore, Fe(II) is preferred as an adsorbate to Fe(III), which we attribute to both electrostatic and acid-base selectivity. We also found that the rate of pyrite oxidation by either Fe(III) (aq) or DO is reduced in the presence of aqueous Fe(II), which leads us to conclude that, under most natural conditions, neither Fe(III) (aq) nor DO directly attacks the pyrite surface. The present evidence suggests a mechanism for pyrite oxidation that involves adsorbed Fe( II ) giving up electrons to DO and the resulting Fe(III) rapidly accepting electrons from the pyrite. The adsorbed Fe is, thus, cyclically oxidized and reduced, while it acts as a conduit for electrons traveling from pyrite to DO. Oxygen is transferred from the hydration sphere of the adsorbed Fe to pyrite S. The cycle of adsorbed Fe oxidation and reduction and the successive addition of oxygen to pyrite S continues until a stable sulfoxy species dissociates from the surface. Prior

  5. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Beliaev, A S; Saffarini, D A

    1998-12-01

    Iron and manganese oxides or oxyhydroxides are abundant transition metals, and in aquatic environments they serve as terminal electron acceptors for a large number of bacterial species. The molecular mechanisms of anaerobic metal reduction, however, are not understood. Shewanella putrefaciens is a facultative anaerobe that uses Fe(III) and Mn(IV) as terminal electron acceptors during anaerobic respiration. Transposon mutagenesis was used to generate mutants of S. putrefaciens, and one such mutant, SR-21, was analyzed in detail. Growth and enzyme assays indicated that the mutation in SR-21 resulted in loss of Fe(III) and Mn(IV) reduction but did not affect its ability to reduce other electron acceptors used by the wild type. This deficiency was due to Tn5 inactivation of an open reading frame (ORF) designated mtrB. mtrB encodes a protein of 679 amino acids and contains a signal sequence characteristic of secreted proteins. Analysis of membrane fractions of the mutant, SR-21, and wild-type cells indicated that MtrB is located on the outer membrane of S. putrefaciens. A 5.2-kb DNA fragment that contains mtrB was isolated and completely sequenced. A second ORF, designated mtrA, was found directly upstream of mtrB. The two ORFs appear to be arranged in an operon. mtrA encodes a putative 10-heme c-type cytochrome of 333 amino acids. The N-terminal sequence of MtrA contains a potential signal sequence for secretion across the cell membrane. The amino acid sequence of MtrA exhibited 34% identity to NrfB from Escherichia coli, which is involved in formate-dependent nitrite reduction. To our knowledge, this is the first report of genes encoding proteins involved in metal reduction.

  6. Mutualism between autotrophic and heterophic bacteria in leaching of low grade ores

    International Nuclear Information System (INIS)

    Khalid, Z.M.; Naeveke, R.

    1991-01-01

    During solubilization processes of low grade sulphidic ores, the auto trophic bacteria oxidize reduced sulphur compounds and ferrous iron to sulphates and ferric iron respectively. The ore leaching bio topes are not only colonized by auto trophic bacteria (Thiobacillus spp., Leptospirillum ferro oxidans and sulfolobus sp.) but the heterotrophic microorganisms, including bacteria and fungi of various species are also found in these habitats. The autotrophs, in addition to energy metabolism, also produce organic compounds which in excess amount inhibit their growth. Through the utilization of such compounds and also through the production of carbon dioxide and ammonia, these heterotorphs can help bio leaching processes. Effect of one of the heterotrophs; methylobacterium sp., a nitrogen scavenger, found in as association with the thio bacilli in one of the leaching bio tope in Germany was studied in leaching of a carbonate bearing complex (containing copper, iron, zinc and lead) sulphidic ore, in shake flask studies. T. ferro oxidans (Strain F-40) reported to be non nitrogen fixer and strain F-41, a nitrogen fixing thiobacillus were studied for leachability behaviour alone and in combination with T. thio oxidans (lacking nitrogen fixing ability) using media with and without added ammonium nitrogen. In addition the effect of methylobacterium sp. (alt-25) was also tested with the afore mentioned combinations. Nitrogen fixation by T. ferro oxidans did not suffice the nitrogen requirement and the leaching system in laboratory needed addition of nitrogen. The heterotrophic nitrogen scavenger also did not have a positive influence in nitrogen limited system. In case where ammonium nitrogen was also provided in the media, this heterotroph had a negative in own growth and leaving lesser amount available for thio bacilli. This high amount of acid is a limiting factor in bio leaching of high carbonate uranium ores. Uranium ore ecosystems have also been found to contain

  7. Combining polyethylenimine and Fe(III) for mediating pDNA transfection.

    Science.gov (United States)

    Jorge, Andreia F; Röder, Ruth; Kos, Petra; Dias, Rita S; Wagner, Ernst; Pais, Alberto A C C

    2015-06-01

    The potential use of Fe(III) ions in biomedical applications may predict the interest of its combination with pDNA-PEI polyplexes. The present work aims at assessing the impact of this metal on pDNA complex properties. Variations in the formation of complexes were imposed by using two types of biological buffers at different salt conditions. The incorporation of pDNA in complexes was characterised by gel electrophoresis and dynamic light scattering. Transfection efficiency and cytotoxicity were evaluated in HeLa and HUH-7 cell lines, supported by flow cytometry assays. Fe(III) enhances pDNA incorporation in the complex, irrespective of the buffer used. Transfection studies reveal that the addition of Fe(III) to complexes at low ionic strength reduces gene transfection, while those prepared under high salt content do not affect or, in a specific case, increase gene transfection up to 5 times. This increase may be a consequence of a favoured interaction of polyplexes with cell membrane and uptake. At low salt conditions, results attained with chloroquine indicate that the metal may inhibit polyplex endosomal escape. A reduction on the amount of PEI (N/P 5) formed at intermediary ionic strength, complemented by Fe(III), reduces the size of complexes while maintaining a transfection efficiency similar to that obtained to N/P 6. Fe(III) emerges as a good supporting condensing agent to modulate pDNA-PEI properties, including condensation, size and cytotoxicity, without a large penalty on gene transfection. This study highlights important aspects that govern pDNA transfection and elucidates the benefits of incorporating the versatile Fe(III) in a gene delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.

    Science.gov (United States)

    Guo, Guangxia; Kong, Weidong; Liu, Jinbo; Zhao, Jingxue; Du, Haodong; Zhang, Xianzhou; Xia, Pinhua

    2015-10-01

    Soil microbial autotrophs play a significant role in CO2 fixation in terrestrial ecosystem, particularly in vegetation-constrained ecosystems with environmental stresses, such as the Tibetan Plateau characterized by low temperature and high UV. However, soil microbial autotrophic communities and their driving factors remain less appreciated. We investigated the structure and shift of microbial autotrophic communities and their driving factors along an elevation gradient (4400-5100 m above sea level) in alpine grassland soils on the Tibetan Plateau. The autotrophic microbial communities were characterized by quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), and cloning/sequencing of cbbL genes, encoding the large subunit for the CO2 fixation protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). High cbbL gene abundance and high RubisCO enzyme activity were observed and both significantly increased with increasing elevations. Path analysis identified that soil RubisCO enzyme causally originated from microbial autotrophs, and its activity was indirectly driven by soil water content, temperature, and NH4 (+) content. Soil autotrophic microbial community structure dramatically shifted along the elevation and was jointly driven by soil temperature, water content, nutrients, and plant types. The autotrophic microbial communities were dominated by bacterial autotrophs, which were affiliated with Rhizobiales, Burkholderiales, and Actinomycetales. These autotrophs have been well documented to degrade organic matters; thus, metabolic versatility could be a key strategy for microbial autotrophs to survive in the harsh environments. Our results demonstrated high abundance of microbial autotrophs and high CO2 fixation potential in alpine grassland soils and provided a novel model to identify dominant drivers of soil microbial communities and their ecological functions.

  9. Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal

    DEFF Research Database (Denmark)

    Kleinert, Susanne; Muehe, Eva M.; Posth, Nicole R.

    2011-01-01

    Millions of people worldwide are affected by As (arsenic) contaminated groundwater. Fe(III) (oxy)hydroxides sorb As efficiently and are therefore used in water purification filters. Commercial filters containing abiogenic Fe(III) (oxy)hydroxides (GEH) showed varying As removal, and it was unclear...

  10. Kinetics of abiotic nitrous oxide production via oxidation of hydroxylamine by particulate metals in seawater

    Science.gov (United States)

    Cavazos, A. R.; Taillefert, M.; Glass, J. B.

    2016-12-01

    The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2­O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.

  11. DENITRIFIKASI LIMBAH NITRAT PADA BERBAGAI TINGKAT KEASAMAN DENGAN MEMANFAATKAN MIKROBA AUTOTROPH

    OpenAIRE

    Nugroho, Rudi

    2017-01-01

    A biological denitrification using autotrophic bacteria in batch suspension runs was investigated to clarify the effect of pH on denitrification rate. Elemental sulfur was employed as an electron donor. The culture of autotrophic bacteria was obtained from activated sludge by acclimatization. The effect of pH on denitrification rate could be expressed by bell-shape equation with optimum pH of 7,07. However at a pH range of 5,5 to 8,0, the denitrification rate significantly fastl. Therefore, t...

  12. Autotrophic and heterotrophic activity in Arctic first-year sea-ice: Seasonal study from Marlene Bight, SW Greenland

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in situ in plastic bags with subsequent melting and measurements of changes in total O-2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period...... was followed by an algal bloom in late March and April, leading to a net autotrophic community. During February and March, the oxygen level in the bag incubations remained constant, validating the low balanced heterotrophic and autotrophic activity. As the autotrophic activity exceeded the heterotrophic...... activity in late March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m(-2), reflecting the net result of a sea ice-related gross...

  13. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri

    Science.gov (United States)

    Liu, D.; Dong, Hailiang H.; Bishop, M.E.; Wang, Hongfang; Agrawal, A.; Tritschler, S.; Eberl, D.D.; Xie, S.

    2011-01-01

    Clay minerals and methanogens are ubiquitous and co-exist in anoxic environments, yet it is unclear whether methanogens are able to reduce structural Fe(III) in clay minerals. In this study, the ability of methanogen Methanosarcina barkeri to reduce structural Fe(III) in iron-rich smectite (nontronite NAu-2) and the relationship between iron reduction and methanogenesis were investigated. Bioreduction experiments were conducted in growth medium using three types of substrate: H2/CO2, methanol, and acetate. Time course methane production and hydrogen consumption were measured by gas chromatography. M. barkeri was able to reduce structural Fe(III) in NAu-2 with H2/CO2 and methanol as substrate, but not with acetate. The extent of bioreduction, as measured by the 1,10-phenanthroline method, was 7-13% with H2/CO2 as substrate, depending on nontronite concentration (5-10g/L). The extent was higher when methanol was used as a substrate, reaching 25-33%. Methanogenesis was inhibited by Fe(III) reduction in the H2/CO2 culture, but enhanced when methanol was used. High charge smectite and biogenic silica formed as a result of bioreduction. Our results suggest that methanogens may play an important role in biogeochemical cycling of iron in clay minerals and may have important implications for the global methane budget. ?? 2010 Elsevier Ltd.

  14. Fe(III) complex of biuret-amide based macrocyclic ligand as peroxidase enzyme mimic.

    Science.gov (United States)

    Panda, Chakadola; Ghosh, Munmun; Panda, Tamas; Banerjee, Rahul; Sen Gupta, Sayam

    2011-07-28

    An Fe(III) complex of a biuret-amide based macrocyclic ligand that exhibits both excellent reactivity for the activation of H(2)O(2) and high stability, especially at low pH and high ionic strength, is reported.

  15. Diversity of isolates performing Fe(III) reduction from paddy soil fed ...

    African Journals Online (AJOL)

    This study examined microbial diversity of Fe(III)-reducing bacteria isolates in paddy soils amended with ferrihydrite and different organic carbon (C) sources. Results show that Fe(III) reduction rate and Fe(II) accumulation in soil enrichments amended with glucose were the greatest followed by pyruvate, lactate, acetate and ...

  16. Simultaneous biological removal of sulfide and nitrate by autotrophic denitrification in an activated sludge system

    NARCIS (Netherlands)

    Manconi, I.; Carucci, A.; Lens, P.N.L.; Rossetti, S.

    2006-01-01

    The feasibility of an autotrophic denitrification process in an activated sludge reactor, using sulphide as the electron donor, was tested for simultaneous denitrification and sulphide removal. The reactor was operated at nitrate (N) to sulphide (S) ratios between 0.5 and 0.9 to evaluate their

  17. Autotrophic nitrogen removal from low strength waste water at low temperature

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now,

  18. Experimental effects of grazers on autotrophic species assemblages across a nitrate gradient in Florida springs

    Science.gov (United States)

    Springs face accelerated degradation of ecosystem structure, namely in the form of autotrophic species assemblage shifts from submerged vascular macrophytes to benthic filamentous algae. Increasing nitrate concentrations have been cited as a primary driver of this shift and numeric nutrient criteria...

  19. Development of novel control strategies for single-stage autotrophic nitrogen removal: A process oriented approach

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist

    2014-01-01

    The autotrophic nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remain a challenging issue. In this contribution, a process oriented approach was used to develop, evaluate and benchmark novel control strategies to ensure stable...

  20. Performance of an autotrophic nitrogen removing reactor: Diagnosis through fuzzy logic

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Mutlu, Ayten Gizem

    Autotrophic nitrogen removal through nitritation-anammox in one stage SBRs is an energy and cost efficient alternative to conventional treatment methods. Intensification of an already complex biological system challenges our ability to observe, understand, diagnose, and control the system. A fuzzy...

  1. Model-based optimization biofilm based systems performing autotrophic nitrogen removal using the comprehensive NDHA model

    DEFF Research Database (Denmark)

    Valverde Pérez, Borja; Ma, Yunjie; Morset, Martin

    Completely autotrophic nitrogen removal (CANR) can be obtained in single stage biofilm-based bioreactors. However, their environmental footprint is compromised due to elevated N2O emissions. We developed novel spatially explicit biochemical process model of biofilm based CANR systems that predicts...

  2. The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures

    DEFF Research Database (Denmark)

    Harper, W.F.; Terada, Akihiko; Poly, F.

    2009-01-01

    Addition of hydroxylamine (NH2OH) to autotrophic biomass in nitrifying bioreactors affected the activity, physical structure, and microbial ecology of nitrifying aggregates. When NH2OH is added to nitrifying cultures in 6-h batch experiments, the initial NH3-N uptake rates were physiologically...

  3. Incremental design of control system of SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON-Anammox reactor sequence. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine...

  4. A novel control strategy for single-stage autotrophic nitrogen removal in SBR

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2015-01-01

    A novel feedforward–feedback control strategy was developed for complete autotrophic nitrogen removal in a sequencing batch reactor. The aim of the control system was to carry out the regulation of the process while keeping the system close to the optimal operation. The controller was designed...

  5. A fuzzy-logic based diagnosis and control of a reactor performing complete autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2013-01-01

    Diagnosis and control modules based on fuzzy set theory were tested for novel bioreactor monitoring and control. Two independent modules were used jointly to carry out first the diagnosis of the state of the system and then use transfer this information to control the reactor. The separation in d...... autotrophic nitrogen removal process. The whole module is evaluated by dynamic simulation....

  6. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...

  7. Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction

    NARCIS (Netherlands)

    Pozo, Guillermo; Jourdin, Ludovic; Lu, Yang; Keller, Jürg; Ledezma, Pablo; Freguia, Stefano

    2016-01-01

    Recent evidence suggests that autotrophic sulfate reduction could be driven by direct and indirect electron transfer mechanisms in bioelectrochemical systems. However, much uncertainty still exists about the electron fluxes from the electrode to the final electron acceptor sulfate during

  8. Forest annual carbon cost : A global-scale analysis of autotrophic respiration

    NARCIS (Netherlands)

    Piao, Shilonog; Luyssaert, Sebastiaan; Ciais, Philippe; Janssens, Ivan A.; Chen, Anping; Chao, C. A O; Fang, Jingyun; Friedlingstein, Pierre; Yiqi, L. U O; Wang, Shaopeng

    Forest autotrophic respiration (Ra) plays an important role in the carbon balance of forest ecosystems. However, its drivers at the global scale are not well known. Based on a global forest database, we explore the relationships of annual Ra with mean annual temperature (MAT) and biotic factors

  9. Dynamics of various viral groups infecting autotrophic plankton in Lake Geneva

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Zhong, X.; Jacquet, S.

    Viral community structure and dynamics were investigated for the first time in surface waters (0–20 m) of Lake Geneva over a 5-month period between July and November 2011. Abundances of autotrophic picoplankton, heterotrophic bacteria and virus...

  10. Bacterial domination over Archaea in ammonia oxidation in a monsoon-driven tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Vipindas, P.V.; Anas, A.; Jasmin, C.; Lallu, K.R.; Fausia, K.H.; Balachandran, K.K.; Muraleedharan, K.R.; Nair, S.

    Autotrophic ammonia oxidizing microorganisms,which are responsible for the rate-limiting step of nitrification in most aquatic systems, have not been studied in tropical estuaries. Cochin estuary (CE) is one of the largest, productive, and monsoon...

  11. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    of the current status of metabolic engineering of chemolithoautotrophs is carried out in order to identify the challenges and likely routes to overcome them. This is presented in Chapter 3 of this dissertation. The initial metabolic engineering and bioreactor studies was carried out using a number of gene-constructs on R. capsulatus and R. eutropha. The gene-constructs consisted of Plac promoter followed by the triterpene synthase genes (SS or BS) and other upstream genes. A comparison of the production of triterpenes were done in the different growth modes that R. capsulatus was capable of growing---aerobic heterotrophic, anaerobic photoheterotrophic and aerobic chemoautotrophic. Autotrophic productivity could likely be improved much further by increasing the available mass-transfer of the reactor. These efforts are presented in Chapter 4 of this dissertation. (Abstract shortened by UMI.).

  12. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing

    Directory of Open Access Journals (Sweden)

    Christine eSharp

    2012-08-01

    Full Text Available Genomic analysis of the methanotrophic verrucomicrobium Methylacidiphilum infernorum strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo, ‘universal’ pmoA polymerase chain reaction (PCR primers do not target these bacteria. Unlike proteobacterial methanotrophs, Methylacidiphilum fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as 13CH4-stable isotope probing (SIP and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic verrucomicrobia in the environment by labelling with 13CO2 and 13CH4, individually and in combination. Testing the protocol in M. infernorum strain V4 resulted in assimilation of 13CO2 but not 13CH4, verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs via 13CO2-SIP, a quantitative PCR (qPCR assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with 13CH4 + 12CO2 caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labelling with 13CO2 in combination with 12CH4 or 13CH4 induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs in other ecosystems.

  13. Direct Involvement of ombB, omaB and omcB Genes in Extracellular Reduction of Fe(III by Geobacter sulfurreducens PCA

    Directory of Open Access Journals (Sweden)

    Yimo eLiu

    2015-10-01

    Full Text Available The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III-citrate and ferrihydrite [a poorly crystalline Fe(III oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS, a porin-like outer-membrane protein (OmbB/OmbC, a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC and an outer-membrane c-Cyt (OmcB/OmcC. The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III, however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which suggests that absence of any protein subunit eliminates function of OmaB/OmbB/OmcB protein complex. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.

  14. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire

    Science.gov (United States)

    Caccavo, F.; Blakemore, R.P.; Lovley, D.R.

    1992-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.

  15. Physiology of alkaliphilic sulfur-oxidizing bacteria from soda lakes

    NARCIS (Netherlands)

    Banciu, H.L.

    2004-01-01

    The inorganic sulfur oxidation by obligate haloalkaliphilic chemolithoautotrophs was only recently discovered and investigated. These autotrophic sulfur oxidizing bacteria (SOB), capable of oxidation of inorganic sulfur compounds at moderate to high salt concentration and at high pH, can be divided

  16. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  17. Anaerobic Benzene Oxidation by Geobacter Species

    Science.gov (United States)

    Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.

    2012-01-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated. PMID:23001648

  18. Autotrophic and heterotrophic bacterial diversity from Yucca Mountain

    International Nuclear Information System (INIS)

    Khalil, M.; Haldeman, D.L.; Igbinovia, A.; Castro, P.

    1996-01-01

    A basic understanding of the types and functions of microbiota present within the deep subsurface of Yucca Mountain will be important in terms of modeling the long term stability of a nuclear waste repository. Microorganisms can degrade building materials used in tunnel construction such as concrete and steel. For example, high concentrations of nitrifying bacteria, may cause corrosion of concrete due to the release of nitric acid. Likewise, sulfur-oxidizing and iron-oxidizing bacteria have been implicated in microbially influenced corrosion (MIC), and may contribute to the degradation of waste packages. In addition, the metabolic activities of microbiota may alter the geochemistry of surrounding environments, which may in turn influence the permeability of subsurface strata and the fate of radioactive compounds. Microorganisms that play roles in these processes have diverse methods of obtaining the energy required for growth and metabolism and have been recovered from a wide range of environments, including the deep subsurface. The purpose of this research was to determine if these bacterial groups, important to the long-term success of a high-level nuclear waste repository, were indigenous to Yucca Mountain

  19. Hexanuclear Fe(III) wheels functionalized by amino-acetonitrile derivatives

    Science.gov (United States)

    Kravtsov, Victor Ch.; Malaestean, Iurie; Stingach, Eugenia P.; Duca, Gheorghe G.; Macaev, Fliur Z.; van Leusen, Jan; Kögerler, Paul; Hauser, Jürg; Krämer, Karl; Decurtins, Silvio; Liu, Shi-Xia; Ghosh, Ashta C.; Garcia, Yann; Baca, Svetlana G.

    2018-04-01

    Three new hexanuclear Fe(III) coordination wheels [Fe6Cl6(L1)6]·5(MeCN) (1), [Na0.5Fe6Cl6(L1)6](N3)0.5·4.5(MeCN) (2), and [Fe6Cl6(L2)6]·2(MeCN) (3) have been synthesized with new prepared amino-acetonitrile derivatives 2-[bis(2-hydroxyethyl)amino]acetonitrile hydrochloride (H2L1) and 3-[bis(2-hydroxyethyl)amino]propanenitrile hydrochloride (H2L2). They were structurally characterized by single-crystal X-ray diffraction. Mößbauer spectroscopy and magnetic susceptibility measurements indicate dominant antiferromagnetic behavior between the Fe(III) centers.

  20. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments

    Science.gov (United States)

    Snoeyenbos-West, O.L.; Nevin, K.P.; Anderson, R.T.; Lovely, D.R.

    2000-01-01

    Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.

  1. Microbial reductive transformation of phyllosilicate Fe(III) and U(VI) in fluvial subsurface sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Fredrickson, James K; Kukkadapu, Ravi K; Boyanov, Maxim I; Kemner, Kenneth M; Lin, Xueju; Kennedy, David W; Bjornstad, Bruce N; Konopka, Allan E; Moore, Dean A; Resch, Charles T; Phillips, Jerry L

    2012-04-03

    The microbial reduction of Fe(III) and U(VI) was investigated in shallow aquifer sediments collected from subsurface flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and (57)Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in subsurface sediments incubated in sulfate-containing synthetic groundwater with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without, and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction of phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  2. Shewanella oneidensis MR-1-Induced Fe(III) Reduction Facilitates Roxarsone Transformation.

    Science.gov (United States)

    Chen, Guowei; Ke, Zhengchen; Liang, Tengfang; Liu, Li; Wang, Gang

    2016-01-01

    Although microbial activity and associated iron (oxy)hydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 -a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III), affects roxarsone transformations and biogeochemical cycling in a model aqueous system. The results showed that the MR-1 strain was able to anaerobically use roxarsone as a terminal electron acceptor and to convert it to a single product, 3-amino-4-hydroxybenzene arsonic acid (AHBAA). The presence of Fe(III) stimulated roxarsone transformation via MR-1-induced Fe(III) reduction, whereby the resulting Fe(II) acted as an efficient reductant for roxarsone transformation. In addition, the subsequent secondary Fe(III)/Fe(II) mineralization created conditions for adsorption of organoarsenic compounds to the yielded precipitates and thereby led to arsenic immobilization. The study provided direct evidence of Shewanella oneidensis MR-1-induced direct and Fe(II)-associated roxarsone transformation. Quantitative estimations revealed a candidate mechanism for the early-stage environmental dynamics of roxarsone in nature, which is essential for understanding the environmental dynamics of roxarsone and successful risk assessment.

  3. Shewanella oneidensis MR-1-Induced Fe(III Reduction Facilitates Roxarsone Transformation.

    Directory of Open Access Journals (Sweden)

    Guowei Chen

    Full Text Available Although microbial activity and associated iron (oxyhydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone, the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 -a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III, affects roxarsone transformations and biogeochemical cycling in a model aqueous system. The results showed that the MR-1 strain was able to anaerobically use roxarsone as a terminal electron acceptor and to convert it to a single product, 3-amino-4-hydroxybenzene arsonic acid (AHBAA. The presence of Fe(III stimulated roxarsone transformation via MR-1-induced Fe(III reduction, whereby the resulting Fe(II acted as an efficient reductant for roxarsone transformation. In addition, the subsequent secondary Fe(III/Fe(II mineralization created conditions for adsorption of organoarsenic compounds to the yielded precipitates and thereby led to arsenic immobilization. The study provided direct evidence of Shewanella oneidensis MR-1-induced direct and Fe(II-associated roxarsone transformation. Quantitative estimations revealed a candidate mechanism for the early-stage environmental dynamics of roxarsone in nature, which is essential for understanding the environmental dynamics of roxarsone and successful risk assessment.

  4. Effect of oyster shell medium and organic substrate on the performance of a particulate pyrite autotrophic denitrification (PPAD) process.

    Science.gov (United States)

    Tong, Shuang; Stocks, Justine L; Rodriguez-Gonzalez, Laura C; Feng, Chuanping; Ergas, Sarina J

    2017-11-01

    The use of pyrite as an electron donor for biological denitrification has the potential to reduce alkalinity consumption and sulfate by-product production compared with sulfur oxidizing denitrification. This research investigated the effects of oyster shell and organic substrate addition on the performance of a particulate pyrite autotrophic denitrification (PPAD) process. Side-by-side bench-scale studies were carried out in upflow packed bed bioreactors with pyrite and sand, with and without oyster shells as an alkalinity source. Organic carbon addition (10% by volume wastewater) was found to improve PPAD denitrification performance, possibly by promoting mixotrophic metabolism. After organic carbon addition and operation at a six-hour empty bed contact time, total inorganic nitrogen (TIN) removal reached 90% in the column with oyster shells compared with 70% without. SEM images and biofilm protein measurements indicated that oyster shells enhanced biofilm growth. The results indicate that PPAD is a promising technology for treatment of nitrified wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment.

    Science.gov (United States)

    Smetana, Sergiy; Sandmann, Michael; Rohn, Sascha; Pleissner, Daniel; Heinz, Volker

    2017-12-01

    The lack of protein sources in Europe could be reduced with onsite production of microalgae with autotrophic and heterotrophic systems, owing the confirmation of economic and environmental benefits. This study aimed at the life cycle assessment (LCA) of microalgae and cyanobacteria cultivation (Chlorella vulgaris and Arthrospira platensis) in autotrophic and heterotrophic conditions on a pilot industrial scale (in model conditions of Berlin, Germany) with further biomass processing for food and feed products. The comparison of analysis results with traditional benchmarks (protein concentrates) indicated higher environmental impact of microalgae protein powders. However high-moisture extrusion of heterotrophic cultivated C. vulgaris resulted in more environmentally sustainable product than pork and beef. Further optimization of production with Chlorella pyrenoidosa on hydrolyzed food waste could reduce environmental impact in 4.5 times and create one of the most sustainable sources of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Autotrophic potential in mesophilic heterotrophic bacterial isolates from Sino-Pacific marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Cao, W.; Das, A.; Saren, G.; Jiang, M.; Zhang, H.; Yu, X.

    fixation is the biological process through which CO2 is converted to organic compounds. Apart from the ubiquitous reductive pentose phosphate cycle, prokaryotic al- ternatives for carbon fixation also exist (Bar-Even et al., 2012). There are two widely... for numerous metabolic goals, including energy conservation and the recycling of reduced electron carriers (Bar- Even et al., 2012). Apart from autotrophs, heterotrophic bacteria are known to fix carbon by anaplerotic reactions accounting up to 8% of bac...

  7. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    Science.gov (United States)

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems. © 2015 John Wiley & Sons Ltd.

  8. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor.

    Science.gov (United States)

    Chung, Jinwook; Amin, Khurram; Kim, Seungjin; Yoon, Seungjoon; Kwon, Kiwook; Bae, Wookeun

    2014-07-01

    This study was carried out to determine the possibility of autotrophic denitritation using thiosulfate as an electron donor, compare the kinetics of autotrophic denitrification and denitritation, and to study the effects of pH and sulfur/nitrogen (S/N) ratio on the denitrification rate of nitrite. Both nitrate and nitrite were removed by autotrophic denitrification using thiosulfate as an electron donor at concentrations up to 800 mg-N/L. Denitrification required a S/N ratio of 5.1 for complete denitrification, but denitritation was complete at a S/N ratio of 2.5, which indicated an electron donor cost savings of 50%. Also, pH during denitrification decreased but increased with nitrite, implying additional alkalinity savings. Finally, the highest specific substrate utilization rate of nitrite was slightly higher than that of nitrate reduction, and biomass yield for denitrification was relatively higher than that of denitritation, showing less sludge production and resulting in lower sludge handling costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem

    Science.gov (United States)

    Fiona L. Jordan; J. Jason L. Cantera; Mark E. Fenn; Lisa Y. Stein

    2005-01-01

    Deposition rates of atmospheric nitrogenous pollutants to forests in the San Bernardino Mountains range east of Los Angeles, California, are the highest reported in North America. Acidic soils from the west end of the range are N-saturated and have elevated rates of N-mineralization, nitrification, and nitrate leaching. We assessed the impact of this heavy nitrogen...

  10. Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions.

    Science.gov (United States)

    Zhang, Weiguo; Liu, Min; Zhang, Peiliang; Yu, Fugen; Lu, Shan; Li, Pengfu; Zhou, Junying

    2014-11-01

    Only limited information is available on herbicide toxicity to algae under mixotrophic conditions. In the present study, we studied the effects of the herbicide paraquat on growth, photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions. The mean measured exposure concentrations of paraquat under mixotrophic and autotrophic conditions were in the range of 0.3-3.4 and 0.6-3.6 μM, respectively. Exposure to paraquat for 72 h under both autotrophic and mixotrophic conditions induced decreased growth and chlorophyll (Chl) content, increased superoxide dismutase and peroxidase activities, and decreased transcript abundances of three photosynthesis-related genes (light-independent protochlorophyllide reductase subunit, photosystem II protein D1, and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [rbcL]). Compared with autotrophic conditions, the inhibition percentage of growth rate under mixotrophic conditions was lower at 0.8 μM paraquat, whereas it was greater at 1.8 and 3.4 μM paraquat. With exposure to 0.8-3.4 μM paraquat, the inhibition rates of Chl a and b content under mixotrophic conditions (43.1-52.4% and 54.6-59.7%, respectively) were greater compared with autotrophic conditions, whereas the inhibition rate of rbcL gene transcription under mixotrophic conditions (35.7-44.0%) was lower. These data showed that similar to autotrophic conditions, paraquat affected the activities of antioxidant enzymes and decreased Chl synthesis and transcription of photosynthesis-related genes in C. pyrenoidosa under mixotrophic conditions, but a differential susceptibility to paraquat toxicity occurred between autotrophically versus mixotrophically grown cells.

  11. Niche differentiation between ammonia-oxidizing bacteria in aquatic environments

    NARCIS (Netherlands)

    Coci, M.

    2007-01-01

    The aim of the studies presented in this thesis was the search for niche differentiation between the ammonia-oxidizing bacteria in aquatic environments. Ammonia-oxidizing bacteria are chemolitho-autotrophic microorganisms responsible for the first, mostly rate-limiting step of the nitrification

  12. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions

    OpenAIRE

    Jeong, Jeeyon; Cohu, Christopher; Kerkeb, Loubna; Pilon, Marinus; Connolly, Erin L.; Guerinot, Mary Lou

    2008-01-01

    Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloropla...

  13. Bioavailability of Fe(III) in Natural Soils and the Impact on Mobility of Inorganic Contaminants (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Kosson, David S. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering; Cowan, Robert M. [Rutgers Univ., New Brunswick, NJ (United States). Dept. of Environmental Science; Young, Lily Y. [Rutgers Univ., New Brunswick, NJ (United States). Center for Agriculture and the Environment; Hatcherl, Eric L. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering; Scala, David J. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2005-08-02

    Inorganic contaminants, such as heavy metals and radionuclides, can adhere to insoluble Fe(III) minerals resulting in decreased mobility of these contaminants through subsurface environments. Dissimilatory Fe(III)-reducing bacteria (DIRB), by reducing insoluble Fe(III) to soluble Fe(II), may enhance contaminant mobility. The Savannah River Site, South Carolina (SRS), has been subjected to both heavy metal and radionuclide contamination. The overall objective of this project is to investigate the release of inorganic contaminants such as heavy metals and radionuclides that are bound to solid phase soil Fe complexes and to elucidate the mechanisms for mobilization of these contaminants that can be associated with microbial Fe(III) reduction. This is being accomplished by (i) using uncontaminated and contaminated soils from SRS as prototype systems, (ii) evaluating the diversity of DIRBs within the samples and isolating cultures for further study, (iii) using batch microcosms to evaluate the bioavailability of Fe(III) from pure minerals and SRS soils, (iv) developing kinetic and mass transfer models that reflect the system dynamics, and (v) carrying out soil column studies to elucidate the dynamics and interactions amongst Fe(III) reduction, remineralization and contaminant mobility.

  14. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems

    KAUST Repository

    Zaybak, Zehra

    2013-12-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34±4mA/m2. Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs. © 2013 Elsevier B.V.

  15. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...... conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Two controlled structures are obtained and benchmarked by their capacity to reject the disturbances before the Anammox reactor....

  16. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions.

    Science.gov (United States)

    Jeong, Jeeyon; Cohu, Christopher; Kerkeb, Loubna; Pilon, Marinus; Connolly, Erin L; Guerinot, Mary Lou

    2008-07-29

    Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloroplast. Chloroplasts prepared from fro7 loss-of-function mutants have 75% less Fe(III) chelate reductase activity and contain 33% less iron per microgram of chlorophyll than wild-type chloroplasts. This decreased iron content is presumably responsible for the observed defects in photosynthetic electron transport. When germinated in alkaline soil, fro7 seedlings show severe chlorosis and die without setting seed unless watered with high levels of soluble iron. Overall, our results provide molecular evidence that FRO7 plays a role in chloroplast iron acquisition and is required for efficient photosynthesis in young seedlings and for survival under iron-limiting conditions.

  17. Pu(IV) and Fe(III) accumulation ability of heavy metal-tolerant soil fungi

    International Nuclear Information System (INIS)

    Levinskaite, L.; Smirnov, A.; Luksiene, B.; Druteikiene, R.; Remeikis, V.; Baltrunas, D.

    2009-01-01

    The work was aimed at studying abilities of soil microorganisms to participate in metal/radionuclide mobility processes by accumulating them. Soil microorganisms were treated with a mixture of heavy metals (Cr(III), Ni, Fe(III), Mn(II), Cd) in order to isolate the most tolerant ones. Among more metal-tolerant microorganisms microscopic fungi dominated. Tests of fungal tolerance towards each metal showed that the most tolerant fungi to almost all metals were Aspergillus niger, Penicillium oxalicum and Paecilomyces lilacinus. Accumulation ability of metal-tolerant fungi was tested using Pu(IV) and Fe(III). Investigation of Pu accumulation by fungal biomass showed that all the fungi accumulated Pu, and among the most effective radionuclide accumulators Eupenicillium sp., Penicillium oxalicum and Aspergillus niger could be mentioned. All the fungi showed high Fe-accumulation capacity. While growing in the medium with 1 mM iron, most fungi accumulated over 90% of Fe in their biomass. Very good accumulation and growth abilities in Fe-supplemented medium were demonstrated by Paecilomyces lilacinus. (authors)

  18. Structure and dynamics of hydrated Fe(II) and Fe(III) ions. Quantum mechanical and molecular mechanical simulations

    International Nuclear Information System (INIS)

    Remsungnen, T.

    2002-11-01

    Classical molecular dynamics (MD) and combined em ab initio quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations have been performed to investigate structural, dynamical and energetical properties of Fe(II), and Fe(III) transition metal ions in aqueous solution. In the QM/MM-MD simulations the ion and its first hydration sphere were treated at the Hartree-Fock ab initio quantum mechanical level, while ab initio generated pair plus three-body potentials were employed for the remaining system. For the classical MD simulation the pair plus three-body potential were employed for all ion-water interactions. The coordination number of the first hydration shell is 100 % of 6 in both cases. The number of waters in the second hydration shell obtained from classical simulations are 13.4 and 15.1 for Fe(II) and Fe(III), respectively, while QM/MM-MD gives the values of 12.4 and 13.4 for Fe(II) and Fe(III). The energies of hydration obtained from MD and QM/MM-MD for Fe(II) are 520 and 500 kcal/mol, and for Fe(III) 1160 and 1100 kcal/mol respectively. The mean residence times of water in the second shell obtained from QM/MM-MD are 24 and 48 ps for Fe(II) and Fe(III), respectively. In contrast to the data obtained from classical MD simulation, the QM/MM-MD values are all in good agreement with the experimental data available. These investigations and results clearly indicate that many-body effects are essential for the proper description of all properties of the aqueous solution of both Fe(II) and Fe(III) ions. (author)

  19. Ammonium Oxidation Under Iron Reducing Conditions: Environmental Factors Characterization and Process Optimization

    Science.gov (United States)

    Huang, Shan; Ruiz, Melany; Jaffe, Peter

    2015-04-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and is referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. An Acidimicrobiaceae bacterium named A6, a previously unreported species in the Acidimicrobiaceae family, has been identified as being responsible for the Feammox process(1, 2) Feammox process was noted in riparian wetland soils in New Jersey(1,3), in tropical rainforest soils in Puerto Rico (4) and in paddy soils in China (5). In addition to these published locations, Feammox process was also found in samples collected from a series of local wetland-, upland-, as well as storm-water detention pond-sediments in New Jersey, river sediments from South Carolina, and forested soils near an acid mine drainage (Dabaoshan, Guangdong province) in China. Using primers acm342f - 439r (2), Acidimicrobiaceae bacterium A6 was detected in samples where Feammox was observed, after strictly anaerobic incubations. According to a canonical correspondence analysis with environmental characteristics and soil microbial communities, the species-environment relationship indicated that pH and Fe oxides content were the primary factors controlling Feammox process. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. No correlation was found between the distributions of Feammox bacteria and other NH4+ oxidation bacteria. Pure Acidimicrobiaceae bacterium A6 strain was isolated in an autotrophic medium, from an active Feammox membrane reactor (A6 was enriched to 65.8% of the total bacteria). A 13C labeled CO2 amendment was conducted, and the 13C in cells of A6 increased from 1.80% to 10.3% after 14 days incubation. In a separate

  20. OmcB, a c-Type Polyheme Cytochrome, Involved in Fe(III) Reduction in Geobacter sulfurreducens

    OpenAIRE

    Leang, Ching; Coppi, M. V.; Lovley, D. R.

    2003-01-01

    Microorganisms in the family Geobacteraceae are the predominant Fe(III)-reducing microorganisms in a variety of subsurface environments in which Fe(III) reduction is an important process, but little is known about the mechanisms for electron transport to Fe(III) in these organisms. The Geobacter sulfurreducens genome was found to contain a 10-kb chromosomal duplication consisting of two tandem three-gene clusters. The last genes of the two clusters, designated omcB and omcC, encode putative o...

  1. Freshwater mineral nitrogen and essential elements in autotrophs in James Ross Island, West Antarctica

    Directory of Open Access Journals (Sweden)

    Coufalík Pavel

    2016-12-01

    Full Text Available The lakes and watercourses are habitats for various communities of cyanobacteria and algae, which are among the few primary producers in Antarctica. The amount of nutrients in the mineral-poor Antarctic environment is a limiting factor for the growth of freshwater autotrophs in most cases. In this study, the main aim was to assess the availability of mineral nitrogen for microorganisms in cyanobacterial mats in James Ross Island. The nitrate and ammonium ions in water environment were determined as well as the contents of major elements (C, N, P, S, Na, K, Ca, Mg, Al, Fe, Mn in cyanobacterial mats. The molar ratios of C:N, C:P and N:P in mats were in focus. The growth of freshwater autotrophs seems not to be limited by the level of nitrogen, according to the content of available mineral nitrogen in water and the biogeochemical stoichiometry of C:N:P. The source of nutrients in the Ulu Peninsula is not obvious. The nitrogen fixation could enhance the nitrogen content in mats, which was observed in some samples containing the Nostoc sp.

  2. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  3. Significant difference in mycorrhizal specificity between an autotrophic and its sister mycoheterotrophic plant species of Petrosaviaceae.

    Science.gov (United States)

    Yamato, Masahide; Ogura-Tsujita, Yuki; Takahashi, Hiroshi; Yukawa, Tomohisa

    2014-11-01

    Petrosaviaceae is a monocotyledonous plant family that comprises two genera: the autotrophic Japonolirion and the mycoheterotrophic Petrosavia. Accordingly, this plant family provides an excellent system to examine specificity differences in mycobionts between autotrophic and closely related mycoheterotrophic plant species. We investigated mycobionts of Japonolirion osense, the sole species of the monotypic genus, from all known habitats of this species by molecular identification and detected 22 arbuscular mycorrhizal (AM) fungal phylotypes in Archaesporales, Diversisporales, and Glomerales. In contrast, only one AM fungal phylotype in Glomerales was predominantly detected from the mycoheterotrophic Petrosavia sakuraii in a previous study. The high mycobiont diversity in J. osense and in an outgroup plant, Miscanthus sinensis (Poaceae), indicates that fungal specificity increased during the evolution of mycohetrotrophy in Petrosaviaceae. Furthermore, some AM fungal sequences of J. osense showed >99% sequence similarity to the dominant fungal phylotype of P. sakuraii, and one of them was nested within a clade of P. sakuraii mycobionts. These results indicate that fungal partners are not necessarily shifted, but rather selected for in the course of the evolution of mycoheterotrophy. We also confirmed the Paris-type mycorrhiza in J. osense.

  4. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media

    Energy Technology Data Exchange (ETDEWEB)

    Dayananda, C.; Sarada, R.; Ravishankar, G.A. [Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore 570 020 (India); Usha Rani, M.; Shamala, T.R. [Food Microbiology Department, Central Food Technological Research Institute, Mysore 570 020 (India)

    2007-01-15

    Growth of Botryococcus braunii was studied using different autotrophic media such as bold basal medium (BBM), and bold basal with ammonium carbonate (BBMa), BG11, modified Chu 13 medium. Among the different autotrophic media used, BG11 was found to be the best medium for biomass and hydrocarbon production, although B. braunii showed appreciable level of growth and biomass production in all the tested media. The culture maintained at 16:8h light and dark cycle with 1.2+/-0.2klux light intensity at 25+/-1{sup o}C temperature was found to be the best for growth (2.0 and 2.8gL{sup -1} of biomass was produced by the B. braunii strains SAG 30.81 and LB-572, respectively) and hydrocarbon production (46% and 33%, respectively, by SAG 30.81 and LB 572 strains on dry weight basis) whereas continuous illumination with agitation at 90rpm had maximum influence for the production of exopolysaccharides. The results of the present study indicate that the organism can acclimatize to different culture conditions and to a wide range of culture media with production of more than one metabolite. (author)

  5. 2 : 2 Fe(III): ligand and "adamantane core" 4 : 2 Fe(III): ligand (hydr)oxo complexes of an acyclic ditopic ligand

    DEFF Research Database (Denmark)

    Ghiladi, Morten; Larsen, Frank B.; McKenzie, Christine J.

    2005-01-01

    crystalline platelets. The Fe4O6 core of 2 shows an adamantane-like structure: The six bridging oxygen atoms are provided by the two phenolato groups of the two bpbp(-) ligands, two bridging oxo groups and two bridging hydroxo groups. The hydroxo and oxo ligands could be distinguished on the basis of Fe - O......-ray structure of the dinuclear complex [{( Hbpbp) Fe(mu-OH)}(2)](ClO4)(4) center dot 2C(3)H(6)O ( 1 center dot 2C(3)H(6)O) shows that only one of the metal-binding cavities of each ligand is occupied by an iron( III) atom and two [Fe(Hbpbp)](3+) units are linked together by two hydroxo bridging groups to form...... a [ Fe(III) -(mu-OH)](2) rhomb structure with Fe center dot center dot center dot Fe = 3.109(1) angstrom. The non-coordinated tertiary amine of Hbpbp is protonated. Magnetic susceptibility measurements show a well-behaved weak antiferromagnetic coupling between the two Fe( III) atoms, J =- 8 cm(-1...

  6. Condutividade da Polianilina e Poliacrilonitrila Dopadas com Fe(II e Fe(III

    Directory of Open Access Journals (Sweden)

    Yonis Fornazier Filho

    2015-01-01

    Full Text Available In this work we report O estudo da interação de íons Fe(II com a polianilina foi feito através da obtenção deste polímero na forma de salthe studies on Polyaniline Emeraldine (PANI-ES and Polyacrilonitrile (PAN doped with salt of Fe (II and Fe(III. We used the techniques of conductivity measurements with aplicação de pressão.application of pressure.  The results showed that conductivity of PANI-ES increase with pressure of range of 1.73 MPa until 20.0 MPa and PAN also increase with maximum of 6.0 mPa except to samples PAN-2-TT-FeIII and PAN-2-TTAA-FeIII.

  7. Biological activity of Fe(III) aquo-complexes towards ferric chelate reductase (FCR).

    Science.gov (United States)

    Escudero, Rosa; Gómez-Gallego, Mar; Romano, Santiago; Fernández, Israel; Gutiérrez-Alonso, Ángel; Sierra, Miguel A; López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J

    2012-03-21

    In this study we have obtained experimental evidence that confirms the high activity of aquo complexes III and IV towards the enzyme FCR, responsible for the reduction of Fe(III) to Fe(II) in the process of iron acquisition by plants. The in vivo FCR assays in roots of stressed cucumber plants have shown a higher efficiency of the family of complexes III and a striking structure-activity relationship with the nature of the substituent placed in a phenyl group far away from the metal center. The results obtained in this work demonstrate that all the aquo compounds tested interact efficiently with the enzyme FCR and hence constitute a new concept of iron chelates that could be of great use in agronomy.

  8. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with α-OH

    International Nuclear Information System (INIS)

    Sun Jun; Mao, J.-D.; Gong Hui; Lan Yeqing

    2009-01-01

    The photochemical reduction of Cr(VI) by four low-molecular-weight organic acids (tartaric acid, citric acid, malic acid, and n-butyric acid) in the presence of either dissolved Fe(III) in dilute aqueous solution or adsorbed Fe(III) on clay mineral surfaces (kaolinite, montmorillonite and illite) was investigated using batch reactors at a pH range from 3.5 to 4.5 at 25 deg. C. The results indicate that Fe(III) photocatalytic reduction of Cr(VI) by organic acids with α-OH is extremely fast. During a reaction period when less than 80% initial Cr(VI) was consumed, the reaction can be described as pseudo-first-order with respect to Cr(VI) when organic acid in excess. By plotting ln[Cr(VI)] as a function of reaction time, rate constants of Cr(VI) reduction by organic acids are obtained. The rate constants involving the four acids are in the order: tartaric acid (with 2 carboxylic groups and 2 α-OH groups) > citric acid (with 3 carboxylic groups and 1 α-OH group) ∼ malic acid (with 2 carboxylic groups and 1 α-OH group) >> n-butyric acid (with 1 carboxylic group and no α-OH group). This order suggests that the number of α-OH but not the number of carboxylic groups is an important determinant of kinetics. With light, the reduction of Cr(VI) by citric acid is accelerated by clay minerals. The enhancement of Cr(VI) reduction is attributed to the catalysis of Fe(III) adsorbed on clay mineral surfaces. However, such an acceleration is markedly suppressed by introducing NaF into the reaction system since NaF forms a complex with Fe(III). It is concluded that the complex formation between Fe(III) and organic acid is a key step for the photocatalytic reduction of Cr(VI) in the presence of Fe(III) and organic acids with α-OH.

  9. An operation protocol for facilitating start-up of single-stage autotrophic nitrogen removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2012-01-01

    Start-up and operation of single-stage nitritation/anammox reactor employing complete autotrophic nitrogen can be difficult. Keeping the performance criteria and monitoring the microbial community composition may not be easy or fast enough to take action on time. In this study, a control strategy...

  10. Coniochaeta ligniaria: antifungal activity of the cryptic endophytic fungus associated with autotrophic cultures of the medicinal plant Smallanthus sonchifolius (Asteraceae)

    Science.gov (United States)

    Few studies have addressed the presence and bioactivity of endophytic fungi living in plantlets growing under in vitro conditions. We isolated a fungus UM 109 from autotrophic cultures of the medicinal plant Smallanthus sonchifolius (yacon). The species was identified as Coniochaeta ligniaria using ...

  11. Micro-electrolysis/retinervus luffae-based simultaneous autotrophic and heterotrophic denitrification for low C/N wastewater treatment.

    Science.gov (United States)

    Li, Jinlong; Li, Desheng; Cui, Yuwei; Xing, Wei; Deng, Shihai

    2017-07-01

    Nitrogen bioremediation in organic insufficient wastewater generally requires an extra carbon source. In this study, nitrate-contaminated wastewater was treated effectively through simultaneous autotrophic and heterotrophic denitrification based on micro-electrolysis carriers (MECs) and retinervus luffae fructus (RLF), respectively. The average nitrate and total nitrogen removal rates reached 96.3 and 94.0% in the MECs/RLF-based autotrophic and heterotrophic denitrification (MRAHD) system without ammonia and nitrite accumulation. The performance of MRAHD was better than that of MEC-based autotrophic denitrification for the wastewater treatment with low carbon nitrogen (COD/N) ratio. Real-time quantitative polymerase chain reaction (qPCR) revealed that the relative abundance of nirS-type denitrifiers attached to MECs (4.9%) and RLF (5.0%) was similar. Illumina sequencing suggested that the dominant genera were Thiobacillus (7.0%) and Denitratisoma (5.7%), which attached to MECs and RLF, respectively. Sulfuritalea was discovered as the dominant genus in the middle of the reactor. The synergistic interaction between autotrophic and heterotrophic denitrifiers played a vital role in the mixotrophic substrate environment.

  12. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor.

    Science.gov (United States)

    Fajardo, Carmen; Mora, Mabel; Fernández, Isaac; Mosquera-Corral, Anuska; Campos, José Luis; Méndez, Ramón

    2014-02-01

    Autotrophic denitrification is a suitable technology to simultaneously remove oxidised nitrogen compounds and reduced sulphur compounds yielding nitrogen gas, sulphur and sulphate as the main products. In this work, several batch tests were conducted to investigate the cross effect of temperature, pH and free ammonia on the autotrophic denitrification. Denitrification efficiencies above 95% were achieved at 35°C and pH 7.5-8.0 with maximum specific autotrophic denitrifying activities up to 188mgN2g(-1)VSSd(-1). Free ammonia did not show any effect on denitrification at concentrations up to 53mg NH3-NL(-1). Different sulphide concentrations were also tested with stoichiometric nitrite and nitrate concentrations. Sulphide inhibited denitrification at concentrations higher than 200mgS(2-)L(-1). A 50% inhibition was also found at nitrite concentrations above 48mg NO2(-)-NL(-1). The maximum specific activity decreased until a value of 25mgN2g(-1) VSSd(-1) at 232mg NO2(-)-NL(-1). The Haldane model was used to describe denitrification inhibition caused by nitrite. Kinetic parameters determined from the fitting of experimental data were rmax=176mgN2g(-1)VSSd(-1), Ks=10.7mg NO2(-)-NL(-1) and Ki=34.7mg NO2(-)-NL(-1). The obtained model allowed optimising an autotrophic denitrification process by avoiding situations of inhibition and thus obtaining higher denitrification efficiencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Selection of controlled variables in bioprocesses. Application to a SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    Selecting the right controlled variables in a bioprocess is challenging since the objectives of the process (yields, product or substrate concentration) are difficult to relate with a given actuator. We apply here process control tools that can be used to assist in the selection of controlled var...... variables to the case of the SHARON-Anammox process for autotrophic nitrogen removal....

  14. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems

    NARCIS (Netherlands)

    Hicks Pries, C.E.; van Logtestijn, R.S.P; Schuur, E.A.G.; Natali, S.M.; Cornelissen, J.H.C.; Aerts, R.; Dorrepaal, E.

    2015-01-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change

  15. Influence oFe3+ Ions on Nitrate Removal by Autotrophic Denitrification Using Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Z. Blažková

    2017-07-01

    Full Text Available he sulphur-based autotrophic denitrification process utilizing Thiobacillus denitrificans was studied experimentally as an alternative method of removing nitrates from industrial wastewater. The objective of the work was to examine the effect of ferric iron addition to the reaction mixture and determine optimal dosage for specific conditions. All experiments were carried out in anoxic batch bioreactor, and elemental sulphur was used as an electron donor. Compared to the control operation without ferric iron addition, significant increases in nitrates removal were demonstrated for the concentration of ferric iron equal to 0.1 mg L–1. However, under these conditions, increased nitrite content was detected in the reaction mixture which exceeds the limits for drinking water.

  16. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    Science.gov (United States)

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles. Copyright © 2015 Elsevier Ltd. All

  17. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  18. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (Box-Behnken design (BBD) and response surface methodology (RSM), the optimal amount of biomass concentration, pyrite dose, and pyrite particle size were 1,250 mg VSS L-1, 125 g L-1, and 0.815-1.015 mm, respectively. PPAD exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  19. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    International Nuclear Information System (INIS)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-01-01

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O 2 . Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  20. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  1. Residence time of carbon substrate for autotrophic respiration of a grassland ecosystem correlates with the carbohydrate status of its vegetation

    Science.gov (United States)

    Ostler, Ulrike; Lehmeier, Christoph A.; Schleip, Inga; Schnyder, Hans

    2016-04-01

    Ecosystem respiration is composed of two component fluxes: (1) autotrophic respiration, which comprises respiratory activity of plants and plant-associated microbes that feed on products of recent photosynthetic activity and (2) heterotrophic respiration of microbes that decompose organic matter. The mechanistic link between the availability of carbon (C) substrate for ecosystem respiration and its respiratory activity is not well understood, particularly in grasslands. Here, we explore, how the kinetic features of the supply system feeding autotrophic ecosystem respiration in a temperate humid pasture are related to the content of water-soluble carbohydrates and remobilizable protein (as potential respiratory substrates) in vegetation biomass. During each September 2006, May 2007 and September 2007, we continuously labeled 0.8 m2 pasture plots with 13CO2/12CO2 and observed ecosystem respiration and its tracer content every night during the 14-16 day long labeling periods. We analyzed the tracer kinetics with a pool model, which allowed us to precisely partition ecosystem respiration into its autotrophic and heterotrophic flux components. At the end of a labeling campaign, we harvested aboveground and belowground plant biomass and analyzed its non-structural C contents. Approximately half of ecosystem respiration did not release any significant amount of tracer during the labeling period and was hence characterized as heterotrophic. The other half of ecosystem respiration was autotrophic, with a mean residence time of C in the respiratory substrate pool between 2 and 6 d. Both the rate of autotrophic respiration and the turnover of its substrate supply pool were correlated with plant carbohydrate content, but not with plant protein content. These findings are in agreement with studies in controlled environments that revealed water-soluble carbohydrates as the main substrate and proteins as a marginal substrate for plant respiration under favorable growth conditions

  2. Studies on a Novel Actinobacteria Species Capable of Oxidizing Ammonium under Iron Reduction Conditions

    Science.gov (United States)

    Huanh, Shan; Ruiz-Urigüen, Melany; Jaffe, Peter R.

    2014-05-01

    Ammonium (NH4+) oxidation coupled to iron reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) was noted in a forested riparian wetland in New Jersey (1,2), and in tropical rainforest soils (3), and was coined Feammox (4). Through a 180-days anaerobic incubation of soil samples collected at the New Jersey site, and using 16S rDNA PCR-DGGE, 454-pyosequecing, and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, belonging to the phylum Actinobacteria, is responsible for this Feammox process, described previously (1,2). We have enriched these Feammox bacteria in a high efficiency Feammox membrane reactor (with 85% NH4+removal per 48h), and isolated the pure Acidimicrobiaceae bacterium A6 strain 5, in an autotrophic medium. To determine if the Feammox bacteria found in this study are common, at least at the regional scale, we analyzed a series of local wetland-, upland-, as well as storm-water detention pond-sediments. Through anaerobic incubations and molecular biology analysis, the Feammox reaction and Acidimicrobiaceae bacterium A6 were found in three of twenty soil samples collected, indicating that the Feammox pathway might be widespread in selected soil environments. Results show that soil pH and Fe(III) content are key environmental factors controlling the distributions of Feammox bacteria, which require acidic conditions and the presence of iron oxides. Results from incubation experiments conducted at different temperatures have shown that, in contrast to another anaerobic ammonium oxidation pathways (e.g., anammox), the optimal temperature of the Feammox process is ~ 20° and that the organisms are still active when the temperature is around 10°. An incubation experiment amended with acetylene gas (C2H2) as a selected inhibitor showed that in the Feammox reaction, Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+is the electron donor, which is oxidized to NO2-. After this process, NO2- is converted to

  3. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.

    Science.gov (United States)

    Liu, Min; Qiu, Xiaoqing; Miyauchi, Masahiro; Hashimoto, Kazuhito

    2013-07-10

    Photocatalytic reaction rate (R) is determined by the multiplication of light absorption capability (α) and quantum efficiency (QE); however, these two parameters generally have trade-off relations. Thus, increasing α without decreasing QE remains a challenging issue for developing efficient photocatalysts with high R. Herein, using Fe(III) ions grafted Fe(III) doped TiO2 as a model system, we present a novel method for developing visible-light photocatalysts with efficient R, utilizing the concept of energy level matching between surface-grafted Fe(III) ions as co-catalysts and bulk-doped Fe(III) ions as visible-light absorbers. Photogenerated electrons in the doped Fe(III) states under visible-light efficiently transfer to the surface grafted Fe(III) ions co-catalysts, as the doped Fe(III) ions in bulk produced energy levels below the conduction band of TiO2, which match well with the potential of Fe(3+)/Fe(2+) redox couple in the surface grafted Fe(III) ions. Electrons in the surface grafted Fe(III) ions efficiently cause multielectron reduction of adsorbed oxygen molecules to achieve high QE value. Consequently, the present Fe(III)-FexTi1-xO2 nanocomposites exhibited the highest visible-light R among the previously reported photocatalysts for decomposition of gaseous organic compounds. The high R can proceed even under commercial white-light emission diode irradiation and is very stable for long-term use, making it practically useful. Further, this efficient method could be applied in other wide-band gap semiconductors, including ZnO or SrTiO3, and may be potentially applicable for other photocatalysis systems, such as water splitting, CO2 reduction, NOx removal, and dye decomposition. Thus, this method represents a strategic approach to develop new visible-light active photocatalysts for practical uses.

  4. Green oxidation of alkenes in ionic liquid solvent by hydrogen ...

    Indian Academy of Sciences (India)

    Abstract. A series of Fe(III) Schiff base complexes immobilized on MCM-41 were prepared and character- ized by various physicochemical and spectroscopic methods. The complexes were used for oxidation of cyclo- hexene by 30% hydrogen peroxide in the presence and absence of ethylmethyl imidazolium chloride ...

  5. Low nitrous oxide production in intermittent-feed high performance nitritating reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Jensen, Malene M.; Smets, Barth F.

    Nitrous oxide (N2O) production from autotrophic nitrogen removal processes, especially nitritating systems, is of growing concern. N2O dynamics were characterized and N2O production factors were quantified in two lab-scale intermittent-feed nitritating SBRs. 93 ± 14% of the oxidized ammonium...

  6. Ammonia-oxidizing bacteria: A model for molecular microbial ecology

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Stephen, J.R.

    2001-01-01

    The eutrophication of many ecosystems in recent decades has led to an increased interest in the ecology of nitrogen transformation. Chemolitho-autotrophic ammonia-oxidizing bacteria are responsible for the rate-limiting step of nitrification in a wide variety of environments, making them important

  7. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  8. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Baker, Joel A.; Stipp, Susan Louise Svane

    2008-01-01

    In oxic oceans, most of the dissolved iron (Fe) exists as complexes with siderophore-like, strongly coordinating organic ligands. Thus, the isotope composition of the little amount of free inorganic Fe that is available for precipitation and preservation in the geological record may largely...... be controlled by isotope fractionation between the free and complexed iron.We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fedesferrioxamine B (at pH 2). The two...... differently complexed Fe(III) pools were separated by addition of Na2CO3, which led to immediate precipitation of the inorganic Fe without causing significant dissociation of Fe-desferrioxamine complexes. Experiments using enriched 57Fe tracer showed that isotopic equilibration between the 57Fe...

  9. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Baker, Joel A.; Stipp, Susan Louise Svane

    2008-01-01

    be controlled by isotope fractionation between the free and complexed iron.We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fedesferrioxamine B (at pH 2). The two......-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of a56Fesolution-solid=1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically...... and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable proportions of inorganic Fe were carried out at 25 °C. Irrespective of the proportion of inorganic Fe, equilibrium fractionation factors were within...

  10. Coordination polymers of Fe(iii) and Al(iii) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction.

    Science.gov (United States)

    Dhara, Barun; Sappati, Subrahmanyam; Singh, Santosh K; Kurungot, Sreekumar; Ghosh, Prasenjit; Ballav, Nirmalya

    2016-04-28

    Fe and Al belong to different groups in the periodic table, one from the p-block and the other from the d-block. In spite of their different groups, they have the similarity of exhibiting a stable 3+ oxidation state. Here we have prepared Fe(iii) and Al(iii) based coordination polymers in the form of metal-organic gels with the 4,4',4''-tricarboxyltriphenylamine (TCA) ligand, namely Fe-TCA and Al-TCA, and evaluated some important physicochemical properties. Specifically, the electrical conductivity, redox-activity, porosity, and electrocatalytic activity (oxygen evolution reaction) of the Fe-TCA system were noted to be remarkably higher than those of the Al-TCA system. As for the photophysical properties, almost complete quenching of the fluorescence originating from TCA was observed in case of the Fe-TCA system, whereas for the Al-TCA system a significant retention of fluorescence with red-shifted emission was observed. Quantum mechanical calculations based on density functional theory (DFT) were performed to unravel the origin of such discriminative behaviour of these coordination polymer systems.

  11. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption.

    Science.gov (United States)

    Dai, Chong; Hu, Yandi

    2015-01-06

    Fe(III) hydroxide nanoparticles are an essential carrier for aqueous heavy metals. Particularly, iron hydroxide precipitation on mineral surfaces can immobilize aqueous heavy metals. Here, we used grazing-incidence small-angle X-ray scattering (GISAXS) to quantify nucleation and growth of iron hydroxide on quartz in 0.1 mM Fe(NO3)3 solution in the presence of Na(+), Cu(2+), Pb(2+), or Cr(3+) at pH = 3.7 ± 0.1. In 30 min, the average radii of gyration (R(g)) of particles on quartz grew from around 2 to 6 nm in the presence of Na(+) and Cu(2+). Interestingly, the particle sizes remained 3.3 ± 0.3 nm in the presence of Pb(2+), and few particles formed in the presence of Cr(3+). Quartz crystal microbalance dissipation (QCM-D) measurements showed that only Cr(3+) adsorbed onto quartz, while Cu(2+) and Pb(2+) did not. Cr(3+) adsorption changed the surface charge of quartz from negative to positive, thus inhibiting the precipitation of positively charged iron hydroxide on quartz. Masses and compositions of the precipitates were also quantified. This study provided new insights on interactions among quartz, iron hydroxide, and metal ions. Such information is helpful not only for environmental remediation but also for the doping design of iron oxide catalysts.

  12. The outer membrane protein Omp35 affects the reduction of Fe(III, nitrate, and fumarate by Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Myers Charles R

    2004-06-01

    Full Text Available Abstract Background Shewanella oneidensis MR-1 uses several electron acceptors to support anaerobic respiration including insoluble species such as iron(III and manganese(IV oxides, and soluble species such as nitrate, fumarate, dimethylsulfoxide and many others. MR-1 has complex branched electron transport chains that include components in the cytoplasmic membrane, periplasm, and outer membrane (OM. Previous studies have implicated a role for anaerobically upregulated OM electron transport components in the use of insoluble electron acceptors, and have suggested that other OM components may also contribute to insoluble electron acceptor use. In this study, the role for an anaerobically upregulated 35-kDa OM protein (Omp35 in the use of anaerobic electron acceptors was explored. Results Omp35 was purified from the OM of anaerobically grown cells, the gene encoding Omp35 was identified, and an omp35 null mutant (OMP35-1 was isolated and characterized. Although OMP35-1 grew on all electron acceptors tested, a significant lag was seen when grown on fumarate, nitrate, and Fe(III. Complementation studies confirmed that the phenotype of OMP35-1 was due to the loss of Omp35. Despite its requirement for wild-type rates of electron acceptor use, analysis of Omp35 protein and predicted sequence did not identify any electron transport moieties or predicted motifs. OMP35-1 had normal levels and distribution of known electron transport components including quinones, cytochromes, and fumarate reductase. Omp35 is related to putative porins from MR-1 and S. frigidimarina as well as to the PorA porin from Neisseria meningitidis. Subcellular fraction analysis confirmed that Omp35 is an OM protein. The seven-fold anaerobic upregulation of Omp35 is mediated post-transcriptionally. Conclusion Omp35 is a putative porin in the OM of MR-1 that is markedly upregulated anaerobically by a post-transcriptional mechanism. Omp35 is required for normal rates of growth on Fe(III

  13. Fe(III INVOLVEMENT IN THE PHOTODEGRADATION OF ASPIRIN IN HOMOGENEOUS AND HETEROGENEOUS PHASE

    Directory of Open Access Journals (Sweden)

    Y MAMERI

    2014-07-01

    Full Text Available The photocatalytic degradation of Aspirin (ASP induced by Fe(III in homogeneous (ASP-Fe(III-citrate complex and heterogeneous phase (ASP-Goethite was studied in aqueous solution up on irradiation at 365nm and by solar light.  A dark investigation of system containing a mixture of aspirin and Fe (III reveals no interaction in homogeneous phase but in heterogeneous phase, the interaction observed was traduced by aspirin adsorption on Goethite in aqueous solution. Under irradiation, Fe(III-Citrate complex enhance the photooxidation of ASP; a pseudo-first order kinetic model was employed to discuss the results. Against in heterogeneous phase, kinetics is slower and the process is accelerated at acidic pH. The involvement of HO● radicals has been established because of the influence of tertiobutanol used as a scavenger. The photodegradation of ASP in the mixture ASP-Fe(III-Cit and ASP-Goethite under solar light was significantly accelerated in comparison with artificial irradiation at 365nm.

  14. A simple small size and low cost sensor based on surface plasmon resonance for selective detection of Fe(III).

    Science.gov (United States)

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-03-07

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests.

  15. Effect of metal ion Fe(III on the performance of chlorophyll as photosensitizers on dye sensitized solar cell

    Directory of Open Access Journals (Sweden)

    Harsasi Setyawati

    Full Text Available The energy crisis is a major problem facing the world today and will need a renewable energy source that is environmentally friendly; one of these is the dye sensitized solar cell (DSSC. DSSC is photochemical electric cell that can convert solar energy into electrical energy. This research aims to study the characteristics of chlorophyll compounds with the addition of metal ions Fe(III and to determine the effect of Fe(III on the performance of chlorophyll as a photosensitizer in the DSSC. The formation of complex compounds of Fe(III-chlorophyll is shown by the phenomenon of metal ligand charge transfer (MLCT at a wavelength of 263.00 nm and absorption transition d-d at 745.00 nm. Fourier transform infrared characterization of the binding of Fe-O complex compounds appears at 486.06 cm−1. The complex compound of Fe(III-chlorophyll has a magnetic moment value of 9.62 Bohr Magneton (BM. The existence of ion Fe(III in chlorophyll can improve the performance of chlorophyll as a dye sensitizer with a maximum current of 4.00 mA/cm2, maximum voltage of 0.18 volts and efficiency values of 1.35%. Keywords: Fe(III-chlorophyll, Dye sensitized solar cell, Metal ligand charge transfer, Photosensitizer

  16. Effect of nitrate enrichment and diatoms on the bioavailability of Fe(III) oxyhydroxide colloids in seawater.

    Science.gov (United States)

    Liu, Feng-Jiao; Huang, Bang-Qin; Li, Shun-Xing; Zheng, Feng-Ying; Huang, Xu-Guang

    2016-03-01

    The photoconversion of colloidal iron oxyhydroxides was a significant source of bioavailable iron in coastal systems. Diatoms dominate phytoplankton communities in coastal and upwelling regions. Diatoms are often exposed to eutrophication. We investigated the effects of different species of diatom, cell density, illumination period, and nitrate additions on the bioavailability of Fe(III) oxy-hydroxide colloids in seawaters. With the increase of illumination period from 1 to 4 h, the ratios of concentrations of total dissolved Fe (DFe) to colloidal iron oxyhydroxides and Fe(II) to DFe increased up to 24.3% and 23.9% for seawater without coastal diatoms, 45.6% and 30.2% for Skeletonema costatum, 44.3% and 29.7% for Thalassiosira weissflogii, respectively. The photochemical activity of coastal diatoms themselves (excluding the dissolved organic matter secreted by algae) on the species transformation of iron in seawater (including the light-induced dissolution of Fe(III) oxyhydroxide colloids and the photo-reduction of Fe(III) into Fe(II)) was confirmed for the first time. There was no significant difference of the ability of S. costatum and Thalassiosira weissflogii on the photoconversion of colloidal iron oxyhydroxides. The photoproduction of dissolved Fe(II) and DFe in the seawater with or without diatoms could be depressed by the nitrate addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Full scale application of the autotrophic denitrification in trickling filters for treatment of rejection water with high ammonia concentrations from sludge dewatering. Final report; Untersuchungen zur autotrophen Stickstoffentfernung aus ammoniumreichem Filtratwasser der Schlammentwaesserung mit grosstechnischer Realisierung in Tropfkoerpern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Neumueller, B.; Metzger, J.W.; Pinnekamp, J.

    2003-07-01

    At many municipal wastewater treatment plants a considerable fraction of nitrogen is recirculated from the anaerobic sludge dewatering. This amounts up to 20% of the total influent nitrogen load of the wastewater treatment plant. The separate treatment of this sludge liquor creates new capacities for the treatment plant and improves effluent quality. A new process for treatment of this sludge liquor with ammonium-nitrogen concentrations above 600 mg/l is the autotrophic denitrification after partial nitritation. At the University of Stuttgart the first semi-technical trickling filter plant was built by which autotrophic denitrification was achieved. At the wastewater treatment plant of Sindelfingen the first full-scale implementation of the autotrophic denitrification in trickling filters has been designed and built. In a first trickling filter 60% of ammonia is transformed to nitrite. The investigations showed, that a few mg/l of free ammonia in this trickling filter were sufficient to inhibit the nitratation but not the nitritation. To achieve this, operating conditions as pH and temperature are of great importance. The concentration of free ammonia should be kept constant because there is an adaption of the microorganisms to free ammonia. After a decrease of the free ammonia concentration the inhibition of the nitratation declines. By thermally killing the biomass and restarting the process, can guarantee a total inhibition of the nitratation, while the concentration of free ammonia is low. In the second, closed trickling filter (anoxic conditions) ammonium is converted autotrophically to nitrogen with nitrite as electron acceptor. It was possible to set up the anoxic ammonium oxidation in full scale without inoculating the process. The very slow growth of the anammox-bacteria leads to a long adaptation phase of the process. All operating conditions such as anoxic conditions, high temperature and a concentration of nitrite below 70 mg/l have to be observed

  18. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil.

    Science.gov (United States)

    Wu, Xiaohong; Ge, Tida; Yan, Wende; Zhou, Juan; Wei, Xiaomeng; Chen, Liang; Chen, Xiangbi; Nannipieri, Paolo; Wu, Jinshui

    2017-12-01

    In this study, we assessed the interactive effects of phosphorus (P) application and irrigation methods on the abundances of marker genes (cbbL, cbbM, accA and aclB) of CO2-fixing autotrophs. We conducted rice-microcosm experiments using a P-limited paddy soil, with and without the addition of P fertiliser (P-treated-pot (P) versus control pot (CK)), and using two irrigation methods, namely alternate wetting and drying (AWD) and continuous flooding (CF). The abundances of bacterial 16S rRNA, archaeal 16S rRNA, cbbL, cbbM, accA and aclB genes in the rhizosphere soil (RS) and bulk soil (BS) were quantified. The application of P significantly altered the soil properties and stimulated the abundances of Bacteria, Archaea and CO2-fixation genes under CF treatment, but negatively influenced the abundances of Bacteria and marker genes of CO2-fixing autotrophs in BS soils under AWD treatment. The response of CO2-fixing autotrophs to P fertiliser depended on the irrigation management method. The redundancy analysis revealed that 54% of the variation in the functional marker gene abundances could be explained by the irrigation method, P fertiliser and the Olsen-P content; however, the rhizosphere effect did not have any significant influence. P fertiliser application under CF was more beneficial in improving the abundance of CO2-fixing autotrophs compared to the AWD treatment; thus, it is an ideal irrigation management method to increase soil carbon fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Seasonal dynamics of autotrophic and heterotrophic plankton metabolism and PCO2 in a subarctic Greenland fjord

    DEFF Research Database (Denmark)

    Sejr, Mikael K.; Krause-Jensen, Dorte; Dalsgaard, Tage

    2014-01-01

    of POC. The planktonic community was net heterotrophic in the photic zone in September (NCP = −21 ± 45 mmol O2 m−2 d−1) and February (NCP = −17 mmol O2 m−2 d−1) but net autotrophic during a developing spring bloom in May (NCP = 129 ± 102 mmol O2 m−2 d−1). In September, higher temperatures, shorter day...... lengths, and lower Chl a concentrations compared with May caused increased rates of CR, lower GPP rates, and net heterotrophy in the photic zone. The GPP required to exceed CR and where NCP becomes positive was low (in May: 1.58 ± 0.48 µmol O2 L−1 d−1 and September: 3.06 ± 0.82 µmol O2 L−1 d−1...... as an important driver of surface , with high rates of autotrophy and vertical export of POC reducing surface during summer. In winter, net heterotrophy added CO2 to the water column, but this postive effect on was balanced by simultaneous cooling of the water column, which decreased because of increased...

  20. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.

    Science.gov (United States)

    Xing, Wei; Li, Desheng; Li, Jinlong; Hu, Qianyi; Deng, Shihai

    2016-07-01

    A process combining micro-electrolysis and autotrophic denitrification (CEAD) with iron-carbon micro-electrolysis carriers was developed for nitrate removal. The process was performed using organic-free influent with a NO3(-)-N concentration of 40.0±3.0mg/L and provided an average nitrate removal efficiency of 95% in stable stages. The total nitrogen removal efficiency reached 75%, with 21% of NO3(-)-N converted into NH4(+)-N. The corresponding hydraulic retention time was 8-10h, and the optimal pH ranged from 8.5 to 9.5. Microbial analysis with high-throughput sequencing revealed that dominant microorganisms in the reactor belonged to the classes of β-, γ-, and α-Proteobacteria. The abundance of the genera Thermomonas significantly increased during the operation, comprising 21.4% and 24.1% in sludge attached to the carriers in the middle and at the bottom of the reactor, respectively. The developed CEAD achieved efficient nitrate removal from water without organics, which is suitable for practical application. Copyright © 2016. Published by Elsevier Ltd.

  1. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Science.gov (United States)

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, D.R. [Wyoming Univ., Laramie, WY (United States). Dept. of Renewable Resources; Gower, S.T. [Wisconsin Univ., Madison, WI (United States). Dept. of Forest Ecology and Management

    2010-04-15

    Substantial increases in climatic temperatures may cause boreal forests to become a carbon source. An improved understanding of the effect of climatic warming on photosynthesis and autotrophic respiration is needed in order to determine the impact of temperature increases on net carbon balances. This study measured the light-saturated photosynthesis foliage respiration and stem respiration of black spruce in heated and control plots during a 3-year period at a site located in Thompson, Manitoba. Greenhouses and soil-heating cables were used to maintain air and soil temperatures at 5 degrees C above ambient air and soil temperatures. Studies were conducted to determine the influence of soil and air warming; soil-only warming; and greenhouses maintained at ambient temperatures. The study showed that treatment differences for photosynthesis, foliage respiration, and stem respiration were not significant over the 3-year period. Results suggested that black spruce may not have significant changes in photosynthesis or respiration rates in warmer climates. 38 refs., 3 tabs., 4 figs.

  3. A study of autotrophic communities in two Victoria Land lakes (Continental Antarctica using photosynthetic pigments

    Directory of Open Access Journals (Sweden)

    Roberto BARGAGLI

    2010-08-01

    Full Text Available The composition of algal pigments and extracellular polymeric substances (EPS was determined in microbial mats from two lakes in Victoria Land (Continental Antarctica with different lithology and environmental features. The aim was to expand knowledge of benthic autotrophic communities in Antarctic lacustrine ecosystems, providing reference data for future assessment of possible changes in environmental conditions and freshwater communities. The results of chemical analyses were supported by microscopy observations. Pigment profiles showed that filamentous cyanobacteria are dominant in both lakes. Samples from the water body at Edmonson Point had greater biodiversity, fewer pigments and lower EPS ratios than those from the lake at Kar Plateau. Differences in mat composition and in pigment and EPS profile between the two lakes are discussed in terms of local environmental conditions such as lithology, ice-cover and UV radiation. The present study suggests that a chemical approach could be useful in the study of benthic communities in Antarctic lakes and their variations in space and time.

  4. Comparison of heterotrophic and autotrophic denitrification processes for nitrate removal from phosphorus-limited surface water.

    Science.gov (United States)

    Wang, Zheng; He, Shengbing; Huang, Jungchen; Zhou, Weili; Chen, Wanning

    2018-03-29

    Phosphorus (P) limitation has been demonstrated for micro-polluted surface water denitrification treatment in previous study. In this paper, a lab-scale comparative study of autotrophic denitrification (ADN) and heterotrophic denitrification (HDN) in phosphorus-limited surface water was investigated, aiming to find out the optimal nitrogen/phosphorus (N/P) ratio and the mechanism of the effect of P limitation on ADN and HDN. Furthermore, the optimal denitrification process was applied to the West Lake denitrification project, aiming to improve the water quality of the West Lake from worse than grade V to grade IV (GB3838-2006). The lab-scale study showed that the lack of P indeed inhibited HDN more greatly than ADN. The optimal N/P ratio for ADN and HDN was 25 and a 0.15 mg PO 4 3- -P L -1 of microbial available phosphorus (MAP) was observed. P additions could greatly enhance the resistance of ADN and HDN to hydraulic loading shock. Besides, The P addition could effectively stimulate the HDN performance via enriching the heterotrophic denitrifiers and the denitrifying phosphate-accumulating organisms (DNPAOs). Additionally, HDN was more effective and cost-effective than ADN for treating P-limited surface water. The study of the full-scale HDBF (heterotrophic denitrification biofilter) indicated that the denitrification performance was periodically impacted by P limitation, particularly at low water temperatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa : relationship with prey fatty acid composition

    DEFF Research Database (Denmark)

    Broglio, E.; Jonasdottir, Sigrun; Calbet, A.

    2003-01-01

    ) and ingestion rates, or as the quotient: EPR/ingestion rate. The diets, offered in monoculture, were the heterotrophic ciliates Strombidium sulcatum or Mesodinium pulex, the heterotrophic dinoflagellate Gymnodinium dominans, the autotrophic cryptophyte Rhodomonas salina and the autotrophic dinoflagellate...... Gymnodinium sanguineum. The diets were also analyzed for fatty acid contents and composition, relationships with EPE and reproductive success were determined. Clear differences were found in the fatty acid contents and the composition of the different diets offered, but these differences did not correspond...

  6. Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mohan, A.P.; Jyothibabu, R.; Jagadeesan, L.; Lallu, K.R.; Karnan, C.

    showed that autotrophic picoplankton occurs abundantly in the oceanic/oligotrophic environments where they contribute more than 50% of the gross primary production (Stockner and Antia 1986; Li 1983; Li and Wood 1988). More recent research evidenced... that autotrophic picoplankton are abundant in the nutrient-rich waters such as coastal and estuarine waters as well, though their proportionate contribution to the gross primary production in such environments is lower than the large-sized phytoplankton (Philip...

  7. An environmentally friendly electro-oxidative approach to recover valuable elements from NdFeB magnet waste

    NARCIS (Netherlands)

    Venkatesan, P.; Sun, Z.; Sietsma, J.; Yang, Y.

    2018-01-01

    In this manuscript, we demonstrate a room temperature electrochemical process for efficiently recycling NdFeB magnet waste. First, the magnet waste was completely leached with HCl and then, in-situ electrochemical oxidation was performed to selectively oxidize Fe(II) in the leachate to Fe(III).

  8. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J.

    2004-01-01

    Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N2O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C2H2) and large partial pressures of oxygen (O-2) are used to distinguish between these sources. C2H2 inhibits

  9. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J.

    2004-01-01

    Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N2O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C2H2) and large partial pressures of oxygen (O2) are used to distinguish between these sources. C2H2 inhibits

  10. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas euroepaea and Nitrosospir briensis: a cautionary tale

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J.

    2004-01-01

    Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N2O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C2H2) and large partial pressures of oxygen (O2) are used to distinguish between these sources. C2H2 inhibits

  11. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation/Biobarriers - Final Report

    International Nuclear Information System (INIS)

    B.D. Wood

    2007-01-01

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role of flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and

  12. [Effect of Ferric Iron on Nitrogen Immigration and Transformation and Nitrous Oxide Emission During Simultaneous Nitrification Denitrification Process].

    Science.gov (United States)

    Li, Hao; Yan, Yu-jie; Xie, Hui-jun; Jia, Wen-lin; Hu, Zhen; Zhang, Jian

    2015-04-01

    Effect of Fe(III) concentration on nitrogen immigration and transformation and nitrous oxide emission during the simultaneous nitrification denitrification (SND) process was investigated. Higher nitrogen removal efficiency was obtained when the Fe(III) concentration was 20 mg x L(-1), while lower nitrogen removal efficiency was observed when the Fe (III) concentration turned to 60 mg x L(-1). In addition, higher Fe(III) concentration significantly enhanced the N2O emission, as well as the N2O conversion ratio. This was mainly attributed to (1) the high concentration of nitrite accumulation during the oxic stage, which was caused by lower dehydrogenase activity at high Fe(III) concentration; (2) less PHB production during the anoxic stage, which would led to shortage of carbon source for denitrification in the following oxic stage. The results also showed that Fe(III) addition could improve the TP removal efficiency. TP removal efficiency increased with increasing Fe(III) concentration, mainly because of extra chemical reaction.

  13. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Huilan; Li, Lihua; Du, Juan; Yuan, Youxi; Cheng, Xudong; Ling, Hong-Qing

    2005-09-01

    Iron chelate reductase is required for iron acquisition from soil and for metabolism in plants. In the genome of Arabidopsis thaliana there are eight genes classified into the iron chelate reductase gene family (AtFROs) based on sequence homology with AtFRO2 (a ferric chelate reductase in Arabidopsis). They are localized on chromosome 1 (three AtFROs) and chromosome 5 (five AtFROs) of Arabidopsis and show a high level of amino acid sequence similarity to each other. An assay for ferric chelate reductase activity revealed that AtFRO2, AtFRO3, AtFRO4, AtFRO5, AtFRO7 and AtFRO8 conferred significantly increased iron reduction activity compared with the control when expressed in yeast cells, indicating that the six AtFROs encode iron chelate reductases functioning in iron homeostasis in Arabidopsis. AtFRO2 displayed the highest iron reduction activity among the AtFROs investigated, further demonstrating that AtFRO2 is a major iron reductase gene in Arabidopsis. AtFRO2 and AtFRO3 were mainly expressed in roots of Arabidopsis, AtFRO5 and AtFRO6 in shoots and flowers, and AtFRO7 in cotyledons and trichomes, whereas the transcription of AtFRO8 was specific for leaf veins. Considering the tissue-specific expression profiles of AtFRO genes, we suggest that AtFRO2 and AtFRO3 are two Fe(III) chelate reductases mainly functioning in iron acquisition and metabolism in Arabidopsis roots, while AtFRO5, AtFRO6, AtFRO7 and AtFRO8 are required for iron homeostasis in different tissues of shoots.

  14. Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil

    NARCIS (Netherlands)

    Daebeler, A.; Bodelier, P.L.E.; Yan, Zheng; Hefting, M.M.; Jia, Z.; Laanbroek, H.J.

    2014-01-01

    Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium

  15. Exploratory Research - Using Volatile Organic Compounds to Separate Heterotrophic and Autotrophic Forest Soil Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott D [Mississippi State Univ., Mississippi State, MS (United States)

    2015-02-09

    The initial focus of this project was to develop a method to partition soil respiration into its components (autotrophic, heterotrophic etc.) using the fingerprint of volatile organic compounds (VOCs) from soils. We were able to identify 63 different VOCs in our study; however, due to technical difficulties we were unable to take reliable measurements in order to test our hypotheses and develop this method. In the end, we changed the objectives of the project. Our new objectives were to characterize the effects of species and soil moisture regime on the composition of soil organic matter. We utilized the soils from the greenhouse experiment we had established for the soil VOC study and determined the lignin biomarker profiles of each of the treatments. We found that moisture had a significant effect on the carbon content of the soils with the low moisture treatments having higher carbon content than the high moisture treatments. We found that the relative yield of syringyl phenols (SP), ligin (Lig), and substituted fatty acids (SFA) were elevated in deciduous planted pots and reduced in conifer planted pots relative to plant-free treatments. Our results suggest nuttall oak preserved lignin and SFA, while loblolly pine lost lignin and SFA similarly to the plant free treatments. Since we did not find that the carbon concentrations of the soils were different between the species, nuttall oak probably replaced more native soil carbon than loblolly pine. This suggests that relative to loblolly pine, nuttall oak is a priming species. Since priming may impact soil carbon pools more than temperature or moisture, determining which species are priming species may facilitate an understanding of the interaction that land use and climate change may have on soil carbon pools.

  16. Incidence of plant cover over the autotrophic nitrifying bacteria population in a fragment of Andean forest

    International Nuclear Information System (INIS)

    Gonzalez, Xiomara; Gonzalez, L; Varela, A; Ahumada, J A

    1999-01-01

    It was determined the incidence of plant cover (forest vs. pasture), on the autotrophy nitrifying bacteria, through the effect of biotic factors (radical exudate) and abiotic factors (temperature, ph and humidity), in a high mountain cloud forest fragment. The site of study was located near La Mesa (Cundinamarca) municipality. The temperature of soil was measured in situ, and soil samples were collected and carried to the laboratory for pH and humidity percentage measurements. Serial soil dilution method was used for plating samples on a selective culture medium with ammonium sulphate as nitrogen source, in order to estimate the autotrophic nitrifying bacteria population levels. Grown colonies were examined macro and microscopically. The quantity of nitrates produced by bacteria cultured in vitro was determined spectra-photometrical. In relation to the abiotic factors, there was no significant differences of pH between both plant covers, but there were significant for soil humidity and temperature (p<0.05). There were highly significant differences with respect to the bacteria population levels (p<0.0001) and with respect to nitrate production. This suggests a higher bacterial activity in the under forest cover. The radical exudate from both types of plant cover reduced the viability of bacteria in vitro, from 1:1 to 1:30 exudate bacteria proportions. In the soils physical and chemical analysis, it was found a higher P and Al concentrations, and a higher CIC and organic matter content under the forest cover. It is suggested the importance of this functional group in this ecosystem

  17. Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air-water CO2 flux

    Science.gov (United States)

    Maher, D. T.; Eyre, B. D.

    2012-03-01

    Estuaries are `hot spots' in the global carbon cycle, yet data on carbon dynamics, in particular air-sea CO2 fluxes, from autotrophic systems are rare. Estuarine carbon budgets were constructed for three geomorphically distinct warm temperate Australian estuaries over an annual cycle. All three estuaries were net autotrophic, with annual net ecosystem metabolism (NEM) ranging from 8 ± 13.4 molC m-2 yr-1 to 10 ± 14 molC m-2 yr-1. There was a net flux of CO2 from the atmosphere to the estuaries of between 0.4 ± 0.6 molC m-2 yr-1 and 2 ± 0.9 molC m-2 yr-1. Loading of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) to the estuaries varied markedly within and between the estuaries, and was directly related to freshwater inflow. While NEM was similar in all three estuaries, the ratio of benthic versus pelagic contributions to NEM differed, with NEM dominated by pelagic production in the river dominated system, benthic production dominating in the intermediate estuary, and equal contributions of benthic and pelagic production in the marine dominated lagoon. All three estuaries exported more organic carbon than was imported, fueled by additional organic carbon supplied by NEM. The estuaries essentially acted as bioreactors, transforming DIC to organic carbon. Burial of organic carbon ranged from 1.2 ± 0.3 molC m-2 yr-1 to 4.4 ± 1.2 molC m-2 yr-1 and represented up to half of NEM. The annual net uptake of atmospheric CO2 in these systems, along with previous estimates of the global estuarine CO2flux being based predominantly on heterotrophic, large river dominated estuarine systems, indicates that the global estimate of the estuarine air-water CO2flux may be over-estimated due to the lack of studies from autotrophic marine dominated estuaries.

  18. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

    Directory of Open Access Journals (Sweden)

    Jessica K Cole

    2014-04-01

    Full Text Available Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural

  19. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    Science.gov (United States)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  20. Temporal variation of autotrophic picoplankton contribution to coastal phytoplankton communities over a seasonal cycle: A case study

    Science.gov (United States)

    Koçum, Esra

    2017-04-01

    Autotrophic pico-plankton form the smallest component of phytoplankton and refers to cells smaller than 2 µM. It is phylogenetically diverse and have both prokaryotic and eukaryotic components. Prokaryotic pico-autotrophs are unicellular cyanobacteria, represented mainly by Prochlorococcus and Synechococcus genera. Pico-eukaryotes are more diverse and include members of Chlorophyta, Cryptophyta, Haptophyta and Heterokontophyta. Owing to their higher nutrient acquisition capacity, relative share of pico-plankton in autotrophic production and biomass can be significant and even dominant in oligotrophic regions such as in warm tropical waters. They also fare better than larger members of phytoplankton communities under light limitation and under increasing temperature. Recent work has shown that autotrophic pico-plankton can be a significant component of coastal phytoplankton. In view of the global warming related increase in the sea surface temperature and nutrient enrichment of coastal waters, it is necessary to understand variation in the relative share of different sized groups in phytoplankton communities of coastal ecosystems including pico-plankton biomass as it shows the potential for development of microbial food web. Here, an interpretation of temporal patterns detected in the biomass and the relative contribution of pico-sized (< 2 µm) members of phytoplankton was made using data collected from two coastal sites over a year. The findings revealed the significant spatio-temporal variation in both actual pico-plankton biomass and its relative share in phytoplankton. The average biomass values of pico-plankton were 0.23 ± 0.02 µ g chl a L-1 and 0.15 ± 0.01 µg chl a L-1 at nutrient-poor and nutrient-rich sites; respectively. The temporal pattern of change displayed by picoplankton biomass was not seasonal at nutrient rich site while at nutrient poor site it was seasonal with low values measured over winter suggesting it was the seasonal changes leading to

  1. Promotion by phosphate of Fe(III)- and Cu(II)-catalyzed autoxidation of fructose.

    Science.gov (United States)

    Lawrence, Glen D; Mavi, Ahmet; Meral, Kadem

    2008-03-17

    Although the oxidative destruction of glucose and fructose has been studied by several investigators over the past century, the mechanism by which phosphate promotes these oxidation reactions is not known. A wide range of oxidation products have been used to monitor the oxidation of sugars and free radicals have been shown to be involved. The influence of phosphate concentration on the rate of production of free radicals and several sugar oxidation products has been studied. It was found that fructose is much more susceptible to autoxidation than glucose, galactose, or sucrose. The promotion of sugar oxidation by phosphate was found to be iron dependent. Addition of the iron chelators, diethylenetriaminepentaacetic acid (DTPA) and desferrioxamine completely suppressed the oxidation reactions, even at high concentrations of phosphate. Formaldehyde was positively identified as a product of fructose oxidation by HPLC analysis of its acetylacetone adduct. A mechanism is proposed in which phosphate cleaves the oxo bridges of the iron(III)-fructose complex, based on UV spectral analysis and magnetic susceptibility measurements, and thereby catalyzes the autoxidation of fructose.

  2. Long-term Trends in Particulate Organic Carbon from a Low-Gradient Autotrophic Watershed

    Science.gov (United States)

    Fox, J.; Ford, W. I., III

    2014-12-01

    Recent insights from low-gradient streams dominated by fine surficial sediments have shown fluvial organic matter dynamics are governed by coupled hydrologic and biotic controls at event to seasonal timescales. Notwithstanding the importance of shorter timescales, quantity and quality of carbon in stream ecosystems at annual and decadal scales is of increased interest in order to understand if stream ecosystems are net stores or sinks of carbon and how stream carbon behaves under dynamic climate conditions. As part of an ongoing study in a low-gradient, agricultural watershed in the Bluegrass Region of Central Kentucky, an eight year dataset of transported particulate organic carbon (POC) was analyzed for the present study. The objective was to investigate if POC dynamics at multi-year timescales are governed by biotic or hydrologic processes. A statistical analysis using Empirical Mode Decomposition was performed on an 8 year dataset of transported sediment carbon, temperature, and log-transformed flowrates at the watershed outlet. Simulations from a previously validated, process-based, organic carbon model were utilized as further verification of drivers. Results from the analysis suggest that a 4 degree Celsius mean annual temperature shift corresponds to a 63% increase in organic carbon content at the main-stem, third order outlet and a 33% increase in organic carbon content at the main-stem inlet. Model and stable isotope results for the 8 year study support that long-term increases in organic carbon concentration are governed by biotic growth and humification of algal biomass in which increasing annual temperatures promote increased organic carbon production, relative to ecosystem respiration. This result contradicts conventional wisdom, suggesting projected warming trends will shift autotrophic freshwater systems to net heterotrophic, which has significant implications for the role of benthic stream ecosystems under changing climate conditions. Future work

  3. Forest annual carbon cost: a global-scale analysis of autotrophic respiration.

    Science.gov (United States)

    Piao, Shilong; Luyssaert, Sebastiaan; Ciais, Philippe; Janssens, Ivan A; Chen, Anping; Cao, Chao; Fang, Jingyun; Friedlingstein, Pierre; Luo, Yiqi; Wang, Shaopeng

    2010-03-01

    Forest autotrophic respiration (R(a)) plays an important role in the carbon balance of forest ecosystems. However, its drivers at the global scale are not well known. Based on a global forest database, we explore the relationships of annual R(a) with mean annual temperature (MAT) and biotic factors including net primary productivity (NPP), total biomass, stand age, mean tree height, and maximum leaf area index (LAI). The results show that the spatial patterns of forest annual R(a) at the global scale are largely controlled by temperature. R(a) is composed of growth (R(g)) and maintenance respiration (R(m)). We used a modified Arrhenius equation to express the relationship between R(a) and MAT. This relationship was calibrated with our data and shows that a 10 degrees C increase in MAT will result in an increase of annual R(m) by a factor of 1.9-2.5 (Q10). We also found that the fraction of total assimilation (gross primary production, GPP) used in R(a) is lowest in the temperate regions characterized by a MAT of approximately 11 degrees C. Although we could not confirm a relationship between the ratio of R(a) to GPP and age across all forest sites, the R(a) to GPP ratio tends to significantly increase in response to increasing age for sites with MAT between 8 degrees and 12 degrees C. At the plant scale, direct up-scaled R(a) estimates were found to increase as a power function with forest total biomass; however, the coefficient of the power function (0.2) was much smaller than that expected from previous studies (0.75 or 1). At the ecosystem scale, R(a) estimates based on both GPP - NPP and TER - R(h) (total ecosystem respiration - heterotrophic respiration) were not significantly correlated with forest total biomass (P > 0.05) with either a linear or a power function, implying that the previous individual-based metabolic theory may be not suitable for the application at ecosystem scale.

  4. The distribution of ammonia-oxidizing betaproteobacteria in stands of Black mangroves (Avicennia germinans)

    NARCIS (Netherlands)

    Laanbroek, H.J.; Keijzer, R.M.; Verhoeven, J.T.A.; Whigham, D.F.

    2012-01-01

    The distribution of species of aerobic chemolitho-autotrophic microorganisms such as ammonia-oxidizing bacteria are governed by pH, salinity, and temperature as well as the availability of oxygen, ammonium, carbon dioxide, and other inorganic elements required for growth. Impounded mangrove forests

  5. Fenton-like chemistry in water: Oxidation catalysis by Fe(III) and H2O2

    NARCIS (Netherlands)

    Ensing, B.; Buda, F.; Baerends, E.J.

    2003-01-01

    The formation of active intermediates from the Fenton-like reagent (a mixture of iron(III) ions and hydrogen peroxide) in aqueous solution has been investigated using static DFT calculations and Car-Parrinello molecular dynamics simulations. We show the spontaneous formation of the iron(III)

  6. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Huang, Liping, E-mail: lipinghuang@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Pan, Yuzhen [College of Chemistry, Dalian University of Technology, Dalian 116024 (China); Quan, Xie [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Li Puma, Gianluca, E-mail: g.lipuma@lboro.ac.uk [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2017-01-05

    Highlights: • Fe(III) shuttles electrons for enhanced reduction of Cr(VI) in MFCs. • The coulombic efficiency increases by 1.6 fold in the presence of Fe(III). • The reduction of Cr(VI) occurs via an indirect Fe(III) mediation mechanism. • Fe(III) decreases the diffusional resistances and the cathode overpotentials. - Abstract: The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO{sub 4}{sup −}) and dichromate (Cr{sub 2}O{sub 7}{sup 2−}) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  7. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva.

    Science.gov (United States)

    Hobbie, Sven N; Li, Xiangzhen; Basen, Mirko; Stingl, Ulrich; Brune, Andreas

    2012-06-01

    Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution.

    Science.gov (United States)

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1-1.5 : 1 KOH : tamarind seed charcoal ratios and 500-700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5-20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O-H, C=O, C-O, -CO3, C-H, and Si-H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m(2)/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069-0.019 mg/g.

  9. Synthetic, potentiometric and spectroscopic studies of chelation between Fe(III) and 2,5-DHBA supports salicylate-mode of siderophore binding interactions.

    Science.gov (United States)

    Porwal, Suheel K; Furia, Emilia; Harris, Michael E; Viswanathan, Rajesh; Devireddy, L

    2015-04-01

    Catecholate type enterobactin, a prototype siderophore, comprises 2,3-dihydroxybenzoic acid (2,3-DHBA) cyclically linked to serine in E. coli. The existence of iron-chelating ligands in humans is a recent discovery, however, the basic chemical interactions between 2,5-dihydroxybenzoic acid and Fe(III) ion remain poorly understood. Achieving an accurate description of the fundamental Fe(III) binding properties of 2,5-DHBA is essential for understanding its role in iron transport mechanisms. Here, we show that 2,5-DHBA binds iron in a salicylate mode via a two-step kinetic mechanism by UV spectroscopy. Complexation between Fe(III) salt and 2,5-DHBA initially occurs at 1:1 ratio (of ligand to metal) and binding resulting in higher-order complexes continues at higher concentrations. Through potentiometric measurements we quantify the distribution of Fe(III)-2,5-DHBA complexes with 1:1, 1:2 and 1:3 stoichiometry. The formation of 1:3 complexes is further supported through high-resolution mass spectrometry. Further, using kinetic and equilibrium UV spectroscopy, we report Fe(III)-2,5-DHBA complex formation at a pH range of 2.5-9.0 at 298.15K in water. Maximum complexation occurred at a pH range of 4.5-6.5 consistent with deprotonation of the carboxylic acid proton. Equilibrium measurements and stopped-flow kinetics show that complexation rate constants were independent of concentrations of 2,5-DHBA. Together the data supports a model in which the rate-determining step involves rearrangement of ligands on an initial complex formed by reversible binding between the carboxylate group of 2,5-DHBA and Fe(III). Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due...... of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0–10 cm layer...... ranged up to 1.59 ± 0.16 μg gdw−1 d−1. We inferred that the negative δ13C shift was caused by the activity of autotrophic microorganisms using the Calvin–Benson–Bassham (CBB) cycle, as indicated from quantification of cbbL/cbbM marker genes encoding for RubisCO by quantitative polymerase chain reaction...

  11. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retained in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.

  12. [Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions].

    Science.gov (United States)

    Mokrosnop, V M; Polishchuk, A V; Zolotareva, E K

    2016-01-01

    The aim of the work was to find the mode of cultivation of unicellular flagellate Euglena gracilis, favorable for the simultaneous accumulation of α-tocopherol and β-carotene. Cells were grown either in photoautotrophic or photoheterotrophic conditions in the presence of 100 mM ethanol (variant Et) or 40 mM glutamate (variant Gt), or their combination (variant EtGt). The exogenous substrates significantly stimulated light-dependent growth of E. gracilis. The largest increase of biomass was recorded on the 20th day in the variant EtGt and exceeded the autotrophic control by 7 times. The content of β-carotene and chlorophyll (Chl) per cell in mixotrophic cultures exceeded the control by 2-3 and 1.6-2 times, respectively. At the same time, α-tocopherol accumulation in autotrophic cells was greater than in the cells of mixotrophic cultures by 2-7 times. Total yield of tocopherol per unit volume of culture medium, which depended not only on its intracellular content, but also on the amount of accumulated biomass was highest in EtGt variant. A correlation between the accumulation of the antioxidants and the equilibrium concentration of oxygen in the growth medium, which depended on the intensities of photosynthesis and respiration has been analyzed.

  13. Effects of process operating conditions on the autotrophic denitrification of nitrate-contaminated groundwater using bioelectrochemical systems.

    Science.gov (United States)

    Cecconet, D; Devecseri, M; Callegari, A; Capodaglio, A G

    2018-02-01

    Nitrates have been detected in groundwater worldwide, and their presence can lead to serious groundwater use limitations, especially because of potential health problems. Amongst different options for their removal, bioelectrochemical systems (BESs) have achieved promising results; in particular, attention has raised on BES-driven autotrophic denitrification processes. In this work, the performance of a microbial electrolysis cell (MEC) for groundwater autotrophic denitrification, is assessed in different conditions of nitrate load, hydraulic retention time (HRT) and process configuration. The system obtained almost complete nitrate removal under all conditions, while nitrite accumulation was recorded at nitrate loads higher than 100mgNO 3 - L -1 . The MEC system achieved, in different tests, a maximum nitrate removal rate of 62.15±3.04gNO 3 - -Nm -3 d -1 , while the highest TN removal rate observed was 35.37±1.18gTNm -3 d -1 . Characteristic of this process is a particularly low (in comparison with other reported works) energy consumption: 3.17·10 -3 ±2.26·10 -3 kWh/gNO 3 - N removed and 7.52·10 -2 ±3.58·10 -2 kWhm -3 treated. The anolyte configuration in closed loop allowed the process to use less clean water, while guaranteeing identical performances as in other conventional configurations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source.

    Science.gov (United States)

    Jourdin, Ludovic; Freguia, Stefano; Donose, Bogdan C; Keller, Jurg

    2015-04-01

    It is still unclear whether autotrophic microbial biocathode biofilms are able to self-regenerate under purely cathodic conditions without any external electron or organic carbon sources. Here we report on the successful development and long-term operation of an autotrophic biocathode whereby an electroactive biofilm was able to grow and sustain itself with CO2 as a sole carbon source and using the cathode as electron source, with H2 as sole product. From a small inoculum of 15 mg COD (in 250 mL), containing 30.3% Archaea, the bioelectrochemical system operating at -0.5 V vs. SHE enabled an estimated biofilm growth of 300 mg as COD over a period of 276 days. A dramatic change in the microbial population was observed during this period with Archaea disappearing completely (hydrogen alone can be sustained with a cathode as the sole electron source, while avoiding the development of H2-consuming microorganisms such as methanogens and acetogens. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ferrous Iron Oxidation under Varying pO2 Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter.

    Science.gov (United States)

    Chen, Chunmei; Thompson, Aaron

    2018-01-16

    Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.

  16. Potential autotrophic metabolisms in ultra-basic reducing springs associated with present-day continental serpentinization

    Science.gov (United States)

    Morrill, P. L.; Miles, S.; Kohl, L.; Kavanagh, H.; Ziegler, S. E.; Brazelton, W. J.; Schrenk, M. O.

    2013-12-01

    Ultra-basic reducing springs at continental sites of serpentinization act as windows into the biogeochemistry of this subsurface exothermic environment rich in H2 and CH4 gases. Biogeochemical carbon transformations in these systems are of interest because serpentinization creates conditions that are amenable to abiotic and biotic reduction of carbon. However, little is known about the metabolic capabilities of the microorganisms that live in this environment. To determine the potential for autotrophic metabolisms, bicarbonate and CO substrate addition microcosm experiments were performed using water and sediment from an ultra-basic reducing spring in the Tablelands, Newfoundland, Canada, a site of present-day continental serpentinization. CO was consistently observed to be utilized in the Live but not the Killed controlled replicates amended with 10% 13C labelled CO and non-labelled (natural C isotope abundance) CO. In the Live CO microcosms with natural C isotope abundance, the residual CO became enriched in 13C (~10 ‰) consistent with a decrease in the fraction of CO remaining. In the Killed CO controlled replicates with natural C isotope abundance the CO showed little 13C enrichment (~1.3 ‰). The data from the Live CO microcosms were well described by a Rayleigh isotopic distillation model, yielding an isotopic enrichment factor for microbial CO uptake of 15.7 ×0.5 ‰ n=2. These data suggest that there was microbial CO utilization in these experiments. The sediment and water from the 13C-labelled and non-labelled, Live and Killed microcosms were extracted for phospholipid fatty acids (PLFAs) to determine changes in community composition between treatments as well as to determine the microbial uptake of CO. The difference in community composition between the Live and Killed microcosms was not readily resolvable based on PLFA distributions. Additionally, the microbial uptake of 13CO had minimal to no affect on the δ13C of the cellular biomarkers, with the

  17. Inhibition of the Fe(III)-catalyzed dopamine oxidation by ATP and its relevance to oxidative stress in Parkinson's disease.

    Science.gov (United States)

    Jiang, Dianlu; Shi, Shuyun; Zhang, Lin; Liu, Lin; Ding, Bingrong; Zhao, Bingqing; Yagnik, Gargey; Zhou, Feimeng

    2013-09-18

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic cells, which implicates a role of dopamine (DA) in the etiology of PD. A possible DA degradation pathway is the Fe(III)-catalyzed oxidation of DA by oxygen, which produces neuronal toxins as side products. We investigated how ATP, an abundant and ubiquitous molecule in cellular milieu, affects the catalytic oxidation reaction of dopamine. For the first time, a unique, highly stable DA-Fe(III)-ATP ternary complex was formed and characterized in vitro. ATP as a ligand shifts the catecholate-Fe(III) ligand metal charge transfer (LMCT) band to a longer wavelength and the redox potentials of both DA and the Fe(III) center in the ternary complex. Remarkably, the additional ligation by ATP was found to significantly reverse the catalytic effect of the Fe(III) center on the DA oxidation. The reversal is attributed to the full occupation of the Fe(III) coordination sites by ATP and DA, which blocks O2 from accessing the Fe(III) center and its further reaction with DA. The biological relevance of this complex is strongly implicated by the identification of the ternary complex in the substantia nigra of rat brain and its attenuation of cytotoxicity of the Fe(III)-DA complex. Since ATP deficiency accompanies PD and neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) induced PD, deficiency of ATP and the resultant impairment toward the inhibition of the Fe(III)-catalyzed DA oxidation may contribute to the pathogenesis of PD. Our finding provides new insight into the pathways of DA oxidation and its relationship with synaptic activity.

  18. Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group.

    Science.gov (United States)

    Qin, Chao; Kang, Fuxing; Zhang, Wei; Shou, Weijun; Hu, Xiaojie; Gao, Yanzheng

    2017-10-15

    Environmental persistence of free DNA is influenced by its complexation with other chemical species and its aggregation mechanisms. However, it is not well-known how naturally-abundant metal ions, e.g., Al(III) and Fe(III), influence DNA aggregation. This study investigated aggregation behaviors of model DNA from salmon testes as influenced by metal cations, and elucidated the predominant mechanism responsible for DNA aggregation. Compared to monovalent (K + and Na + ) and divalent (Ca 2+ and Mg 2+ ) cations, Al(III) and Fe(III) species in aqueous solution caused rapid DNA aggregations. The maximal DNA aggregation occurred at 0.05 mmol/L Al(III) or 0.075 mmol/L Fe(III), respectively. A combination of atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed that Al(III) and Fe(III) complexed with negatively charged phosphate groups to neutralize DNA charges, resulting in decreased electrostatic repulsion and subsequent DNA aggregation. Zeta potential measurements and molecular computation further support this mechanism. Furthermore, DNA aggregation was enhanced at higher temperature and near neutral pH. Therefore, DNA aggregation is collectively determined by many environmental factors such as ion species, temperature, and solution pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Transformation of hydroxycarbonate green rust into crystalline iron (hydr)oxides: Influences of reaction conditions and underlying mechanisms

    NARCIS (Netherlands)

    Wang, Xiaoming; Liu, Fan; Tan, W.; Feng, Xionghan; Koopal, L.K.

    2013-01-01

    Green rusts (GRs) are found as intermediate products between FeII hydroxides and FeIII oxyhydroxides in various anoxic environments. The transformation of hydroxycarbonate green rust GR1(CO32-) by air oxidation at different conditions and the underlying mechanisms were investigated using X-ray

  20. Adsorption of Ni(II, Cu(II and Fe(III from Aqueous Solutions Using Activated Carbon

    Directory of Open Access Journals (Sweden)

    A. Edwin Vasu

    2008-01-01

    Full Text Available An activated carbon was tested for its ability to remove transition metal ions from aqueous solutions. Physical, Chemical and liquid-phase adsorption characterizations of the carbon were done following standard procedures. Studies on the removal of Ni(II, Cu(II and Fe(III ions were attempted by varying adsorbate dose, pH of the metal ion solution and time in batch mode. The equilibrium adsorption data were fitted with Freundlich, Langmuir and Redlich-Peterson isotherms and the isotherm constants were evaluated. Time variation studies indicate that adsorptions follow pseudo-second order kinetics. pH was found to have a significant role to play in the adsorption. The processes were endothermic and the thermodynamic parameters were evaluated. Desorption studies indicate that ion-exchange mechanism is operating.

  1. A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence

    DEFF Research Database (Denmark)

    Chabera, Pavel; Liu, Yizhu; Prakash, Om

    2017-01-01

    sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(III) d(5) complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer ((LMCT)-L-2) state that is rarely seen for transition-metal...... complexes(4,16,17). The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions......Transition-metal complexes are used as photosensitizers(1), in light-emitting diodes, for biosensing and in photocatalysis(2). A key feature in these applications is excitation from the ground state to a charge-transfer state(3,4); the long charge-transfer-state lifetimes typical for complexes...

  2. Removal of azo dye C.I. acid red 14 from contaminated water using Fenton, UV/H(2)O(2), UV/H(2)O(2)/Fe(II), UV/H(2)O(2)/Fe(III) and UV/H(2)O(2)/Fe(III)/oxalate processes: a comparative study.

    Science.gov (United States)

    Daneshvar, N; Khataee, A R

    2006-01-01

    The decolorization of the solution containing a common textile and leather dye, C.I. Acid Red 14 (AR14), at pH 3 by hydrogen peroxide photolysis, Fenton, Fenton-like and photo-Fenton processes was studied. The dark and light reactions were carried out in stirred batch photoreactor equipped with an UV-C lamp (30 W) as UV light source. The experiments showed that the dye was resistant to the UV illumination, but was oxidized when one of Fe(II), Fe(III) and H(2)O(2) compounds was present. It was also found that UV light irradiation can accelerate significantly the rate of AR14 decolorization in the presence of Fe(III)/H(2)O(2) or Fe(II)/H(2)O(2), comparing to that in the dark. The effect of different system variables like initial concentration of the azo dye, effect of UV light irradiation, initial concentration of Fe(II) or Fe(III) and added oxalate ion has been investigated. The results showed that the decolorization efficiency of AR14 at the reaction time of 2 min follows the decreasing order: UV/H(2)O(2)/Fe(III)/oxalate > UV/H(2)O(2)/Fe(III) > UV/H(2)O(2)/Fe(II) > UV/H(2)O(2). Our results also showed that the UV/H(2)O(2)/Fe(III)/oxalate process was appropriate as the effective treatment method for decolorization of a real dyeing and finishing. The mechanism for each process is also discussed and linked together for understanding the observed differences in reactivity.

  3. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    Science.gov (United States)

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The formation of light absorbing insoluble organic compounds from the reaction of biomass burning precursors and Fe(III)

    Science.gov (United States)

    Lavi, Avi; Lin, Peng; Bhaduri, Bhaskar; Laskin, Alexander; Rudich, Yinon

    2017-04-01

    Dust particles and volatile organic compounds from fuel or biomass burning are two major components that affect air quality in urban polluted areas. We characterized the products from the reaction of soluble Fe(III), a reactive transition metal originating from dust particles dissolution processes, with phenolic compounds , namely, guaiacol, syringol, catechol, o- and p- cresol that are known products of incomplete fuel and biomass combustion but also from other natural sources such as humic compounds degradation. We found that under acidic conditions comparable to those expected on a dust particle surface, phenolic compounds readily react with dissolved Fe(III), leading to the formation of insoluble polymeric compounds. We characterized the insoluble products by x-ray photoelectron microscopy, UV-Vis spectroscopy, mass spectrometry, elemental analysis and thermo-gravimetric analysis. We found that the major chromophores formed are oligomers (from dimers to pentamers) of the reaction precursors that efficiently absorb light between 300nm and 500nm. High variability of the mass absorption coefficient of the reaction products was observed with catechol and guaiacol showing high absorption at the 300-500nm range that is comparable to that of brown carbon (BrC) from biomass burning studies. The studied reaction is a potential source for the in-situ production of secondary BrC material under dark conditions. Our results suggest a reaction path for the formation of bio-available iron in coastal polluted areas where dust particles mix with biomass burning pollution plumes. Such mixing can occur, for instance in the coast of West Africa or North Africa during dust and biomass burning seasons

  5. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Ma, Chun; Domingo-Felez, Carlos

    2017-01-01

    Nitrous oxide (N2O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N2O production were quantified in two lab-scale sequencing batch reactors...... a potential effect of pH on N2O production. In situ application of 15N labeled substrates revealed nitrifier denitrification as the dominant pathway of N2O production. Our study highlights operational conditions that minimize N2O emission from two-stage autotrophic nitrogen removal systems....

  6. An operational protocol for facilitating start-up of single-stage autotrophic nitrogen-removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, Ayten Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2013-01-01

    Start-up and operation of single-stage nitritation–anammox sequencing batch reactors (SBRs) for completely autotrophic nitrogen removal can be challenging and far from trivial. In this study, a step-wise procedure is developed based on stoichiometric analysis of the process performance from...

  7. Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles : a case study related to the microbial desulfurization of coal

    NARCIS (Netherlands)

    Boogerd, F C; Bos, P; Kuenen, J.G.; Heijnen, J.; van der Lans, R G

    Mass transfers of O(2), CO(2), and water vapor are among the key processes in the aerobic, autotrophic cultivation of moderate and extreme thermophiles. The dynamics and kinetics of these processes are, in addition to the obvious microbial kinetics, of crucial importance for the industrial

  8. Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments

    International Nuclear Information System (INIS)

    Lovley, D.R.; Phillips, E.J.P.

    1989-01-01

    In various sediments in which Fe(III) reduction was the terminal electron-accepting process, [ 14 C]glucose was fermented to 14 C-fatty acids in a manner similar to that observed in methanogenic sediments. These results are consistent with the hypothesis that, in Fe(III)-reducing sediments, fermentable substrates are oxidized to carbon dioxide by the combined activity of fermentative bacteria and fatty acid-oxidizing, Fe(III)-reducing bacteria

  9. The catalytic ozonization of model lignin compounds in the presence of Fe(III) ions

    Science.gov (United States)

    Ben'ko, E. M.; Mukovnya, A. V.; Lunin, V. V.

    2007-05-01

    The ozonization of several model lignin compounds (guaiacol, 2,6-dimethoxyphenol, phenol, and vanillin) was studied in acid media in the presence of iron(III) ions. It was found that Fe3+ did not influence the initial rate of the reactions between model phenols and ozone but accelerated the oxidation of intermediate ozonolysis products. The metal concentration dependences of the total ozone consumption and effective rate constants of catalytic reaction stages were determined. Data on reactions in the presence of oxalic acid as a competing chelate ligand showed that complex formation with Fe3+ was the principal factor that accelerated the ozonolysis of model phenols at the stage of the oxidation of carboxylic dibasic acids and C2 aldehydes formed as intermediate products.

  10. Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes

    Czech Academy of Sciences Publication Activity Database

    Patsula, Vitalii; Petrovský, Eduard; Kovářová, Jana; Konefal, Rafal; Horák, Daniel

    2014-01-01

    Roč. 292, č. 9 (2014), s. 2097-2110 ISSN 0303-402X R&D Projects: GA ČR GAP206/12/0381; GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 ; RVO:67985530 Keywords : superparamagnetic * nanoparticles * iron oxide Subject RIV: CD - Macromolecular Chemistry; DE - Earth Magnetism, Geodesy, Geography (GFU-E) Impact factor: 1.865, year: 2014

  11. Bacterial Electrocatalysis of K4[Fe(CN)6] Oxidation

    DEFF Research Database (Denmark)

    Zheng, Zhiyong; Xiao, Yong; Wu, Ranran

    Shewanella oneidensis MR-1 (MR-1), a model strain of electrochemically active bacteria, can transfer electrons from cell to extracellular electron acceptors including Fe(III) (hydro)oxides. It has been reported that several redox species such as cytochromes in membranes and flavins assist...... in the electron transport (ET) processes. However, the oxidization of metal compounds was barely described. Here we report electrocatalysis of K4[Fe(CN)6] oxidation by MR-1. K4[Fe(CN)6] is a redox inorganic compound and shows a reversible redox process on bare glassy carbon (GCE). This is reflected by a pair...

  12. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.

    Science.gov (United States)

    Mejia, Jacqueline; Roden, Eric E; Ginder-Vogel, Matthew

    2016-04-05

    Oscillations between reducing and oxidizing conditions are observed at the interface of anaerobic/oxic and anaerobic/anoxic environments, and are often stimulated by an alternating flux of electron donors (e.g., organic carbon) and electron acceptors (e.g., O2 and NO3(-)). In iron (Fe) rich soils and sediments, these oscillations may stimulate the growth of both Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and their metabolism may induce cycling between Fe(II) and Fe(III), promoting the transformation of Fe (hydr)oxide minerals. Here, we examine the mineralogical evolution of lepidocrocite and ferrihydrite, and the adaptation of a natural microbial community to alternating Fe-reducing (anaerobic with addition of glucose) and Fe-oxidizing (with addition of nitrate or air) conditions. The growth of FeRB (e.g., Geobacter) is stimulated under anaerobic conditions in the presence of glucose. However, the abundance of these organisms depends on the availability of Fe(III) (hydr)oxides. Redox cycling with nitrate results in decreased Fe(II) oxidation thereby decreasing the availability of Fe(III) for FeRB. Additionally, magnetite is detected as the main product of both lepidocrocite and ferrihydrite reduction. In contrast, introduction of air results in increased Fe(II) oxidation, increasing the availability of Fe(III) and the abundance of Geobacter. In the lepidocrocite reactors, Fe(II) oxidation by dissolved O2 promotes the formation of ferrihydrite and lepidocrocite, whereas in the ferrihydrite reactors we observe a decrease in magnetite stoichiometry (e.g., oxidation). Understanding Fe (hydr)oxide transformation under environmentally relevant redox cycling conditions provides insight into nutrient availability and transport, contaminant mobility, and microbial metabolism in soils and sediments.

  13. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination.

    Science.gov (United States)

    Prakash, Om; Gihring, Thomas M; Dalton, Dava D; Chin, Kuk-Jeong; Green, Stefan J; Akob, Denise M; Wanger, Greg; Kostka, Joel E

    2010-03-01

    An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32(T), was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the Geobacteraceae-specific citrate synthase (gltA) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus Geobacter and shared 92-98 % 16S rRNA gene and 75-81 % rpoB gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Geobacter uraniireducens Rf4(T), according to 16S rRNA gene sequence similarity, strain FRC-32(T) showed a DNA-DNA relatedness value of 21 %. Cells of strain FRC-32(T) were Gram-negative, non-spore-forming, curved rods, 1.0-1.5 microm long and 0.3-0.5 microm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus Geobacter. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 degrees C and pH 6.7-7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the Geobacter group, strain FRC-32(T) conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32(T) was metabolically versatile and, unlike its closest relative, G. uraniireducens, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with

  14. A novel high-throughput drip-flow system to grow autotrophic biofilms of contrasting diversities

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen

    oxidizing bacteria are cultivated on the beads using a drip-flow assembly by feeding a mineral medium containing ammonium-N as sole energy source. Biofilm thickness is controlled by setting the surficial loading rate to 0.168 g NH4- N/m2/day or 1.678 g NH4-N /m2/day, which should theoretically result....... In conclusion, we hope to demonstrate a high-replicate biofilm cultivation systems that allow us, by altering the loading rate, to engineer biofilms towards prescribed differences in composition, opening new opportunities to explore community assembly processes and their link to ecosystem function....

  15. Petrophilic, Fe(III Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2018-03-01

    Full Text Available Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h. Current generation and biodegradation capabilities of strain KVM11 were examined using an

  16. Preparation and characterisation of mixed ligand complexes of Co(III), Fe(III) and Cr(III) containing phthalimide and phenols

    International Nuclear Information System (INIS)

    Miah, M.A.J.; Islam, M.S.; Pal, S.C.; Barma, T.K.

    1996-01-01

    Some novel mixed ligand complexes of Co(III), Fe(III) and Cr(III) containing phthalimide as primary and 2-aminophenol and 3-aminophenol as secondary ligands have been synthesized and characterised on the basis of elemental analyses, conductivity and magnetic measurements and infrared and electronic spectral studies. Complexes containing 2-aminophenol are 1:1 electrolyte in N,N dimethylformamide. Spectral studies indicate that all the complexes exhibit octahedral geometry. The complexes have the general composition; K[M(pim)/sub 2/(L)/sub 2/]; where m=Co(III), Fe(III) and Cr(III), pim-anion of phthalimamide and L=anion of 2-aminophenol and 3-aminophenol. (author)

  17. An in situ spectroelectrochemical study on the orientation changes of an [FeiiiLN2O3] metallosurfactant deposited as LB Films on gold electrode surfaces.

    Science.gov (United States)

    Brand, Izabella; Juhaniewicz-Debinska, Joanna; Wickramasinghe, Lanka; Verani, Claudio N

    2018-03-28

    In this paper we analyze the changes in molecular orientation triggered by electrochemical reduction of an iron-containing surfactant in Langmuir-Blodgett films deposited onto gold electrodes. The metallosurfactant [Feiii(LN2O3)] (1) is an established molecular rectifier capable of unidirectional electron transfer between two electrodes. A gradual decrease in the activity is observed in sequential current vs. potential curves upon repeated cycles. Here we evaluate the redox response associated with the reduction of the Feiii/Feii couple in a single monolayer, as well as in a 5-layer LB film of 1. We use polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) to follow structural and orientation changes associated with such applied potential scans. We observe that the reduction of the Fe center becomes increasingly irreversible because an Fe-Ophenolate bond is cleaved. This transformation is accompanied by an almost vertical change in the orientation of metallosurfactant molecules in LB films.

  18. The Robin, Erithacus Rubecula (Passeriformes, Turdidae, As a Component of Autotrophic Consortia of Forest Cenoses, Northeast Ukraine

    Directory of Open Access Journals (Sweden)

    Chaplygina A. B.

    2016-08-01

    Full Text Available The role of the robin, Erithacus rubecula Linnaeus, 1758 as a consort of autotrophic consortia is considered. It has been found that representatives of 9 higher taxa of animals (Mammalia, Aves, Gastropoda, Insecta, Arachnida, Acarina, Malacostraca, Diplopoda, Clitellata have trophic and topical links with the robin. At the same time, the robin is a consort of determinants of autotrophic consortia, which core is represented mostly by dominating species of deciduous trees (Quercus robur Linnaeus, 1753 (24.6 %, Tilia cordata Miller, 1768 (17.5 %, Acer platanoides Linnaeus, 1753 (22.8 %, Acer campestre Linnaeus, 1753, and also by sedges (Carex sp. and grasses (Poaceae. The robin also belongs to the concentre of the second and higher orders as a component of forest biogeocenoses and forms a complex trophic system. In the diet of its nestlings, there have been found 717 objects from 32 invertebrate taxa, belonging to the phylums Arthropoda (99.2 %, 31 species and Annelida (0.8 %, 1 species. The phylum Arthropoda was represented by the most numerous class Insecta (76.9 %, in which 10 orders (Lepidoptera (46.8 % dominates and 20 families were recorded, and also by the classes Arachnida (15.0 %, Malacostraca (5.3 % and Diplopoda (1.9 %. The invertebrate species composition was dominated by representatives of a trophic group of zoophages (14 species; 43.8 %; the portion of phytophages (7 species; 21.9 %, saprophages (18.7 %, and necrophages (15.6 % was the less. The highest number of food items was represented by phytophages (N = 717; 51 %, followed by zoophages (34 %, saprophages (12 %, and necrophages (3 %. The difference among study areas according to the number of food items and the number of species in the robin nestling diet is shown. In NNP “HF”, the highest number of food items was represented by phytophages - 47 % (N = 443, whereas zoophages were the most species-rich group (43.3 %, 13 species. In NNP “H”, phytophages also prevailed in

  19. Satellite-Based Inversion and Field Validation of Autotrophic and Heterotrophic Respiration in an Alpine Meadow on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Ben Niu

    2017-06-01

    Full Text Available Alpine meadow ecosystem is among the highest soil carbon density and the most sensitive ecosystem to climate change. Partitioning autotrophic (Ra and heterotrophic components (Rm of ecosystem respiration (Re is critical to evaluating climate change effects on ecosystem carbon cycling. Here we introduce a satellite-based method, combining MODerate resolution Imaging Spectroradiometer (MODIS products, eddy covariance (EC and chamber-based Re components measurements, for estimating carbon dynamics and partitioning of Re from 2009 to 2011 in a typical alpine meadow on the Tibetan Plateau. Six satellite-based gross primary production (GPP models were employed and compared with GPP_EC, all of which appeared to well explain the temporal GPP_EC trends. However, MODIS versions 6 GPP product (GPP_MOD and GPP estimation from vegetation photosynthesis model (GPP_VPM provided the most reliable GPP estimation magnitudes with less than 10% of relative predictive error (RPE compared to GPP_EC. Thus, they together with MODIS products and GPP_EC were used to estimate Re using the satellite-based method. All satellite-based Re estimations generated an alternative estimation of Re_EC with negligible root mean square errors (RMSEs, g C m−2 day−1 either in the growing season (0.12 or not (0.08. Moreover, chamber-based Re measurements showed that autotrophic contributions to Re (Ra/Re could be effectively reflected by all these three satellite-based Re partitions. Results showed that the Ra contribution of Re were 27% (10–48%, 43% (22–59% and 56% (33–76% from 2009 to 2011, respectively, of which inter-annual variation is mainly attributed to soil water dynamics. This study showed annual temperature sensitivity of Ra (Q10,Ra with an average of 5.20 was significantly higher than that of Q10,Rm (1.50, and also the inter-annual variation of Q10,Ra (4.14–7.31 was larger than Q10,Rm (1.42–1.60. Therefore, our results suggest that the response of Ra to

  20. Temperature sensitivity of total soil respiration and its heterotrophic and autotrophic components in six vegetation types of subtropical China.

    Science.gov (United States)

    Yu, Shiqin; Chen, Yuanqi; Zhao, Jie; Fu, Shenglei; Li, Zhian; Xia, Hanping; Zhou, Lixia

    2017-12-31

    The temperature sensitivity of soil respiration (Q 10 ) is a key parameter for estimating the feedback of soil respiration to global warming. The Q 10 of total soil respiration (R t ) has been reported to have high variability at both local and global scales, and vegetation type is one of the most important drivers. However, little is known about how vegetation types affect the Q 10 of soil heterotrophic (R h ) and autotrophic (R a ) respirations, despite their contrasting roles in soil carbon sequestration and ecosystem carbon cycles. In the present study, five typical plantation forests and a naturally developed shrub and herb land in subtropical China were selected for investigation of soil respiration. Trenching was conducted to separate R h and R a in each vegetation type. The results showed that both R t and R h were significantly correlated with soil temperature in all vegetation types, whereas R a was significantly correlated with soil temperature in only four vegetation types. Moreover, on average, soil temperature explained only 15.0% of the variation in R a in the six vegetation types. These results indicate that soil temperature may be not a primary factor affecting R a . Therefore, modeling of R a based on its temperature sensitivity may not always be valid. The Q 10 of R h was significantly affected by vegetation types, which indicates that the response of the soil carbon pool to climate warming may vary with vegetation type. In contrast, differences in neither the Q 10 of R t nor that of R a among these vegetation types were significant. Additionally, variation in the Q 10 of R t among vegetation types was negatively related to fine root biomass, whereas the Q 10 of R h was mostly related to total soil nitrogen. However, the Q 10 of R a was not correlated with any of the environmental variables monitored in this study. These results emphasize the importance of independently studying the temperature sensitivity of R t and its heterotrophic and

  1. Simultaneous Spectrophotometric Determination of FeII and FeIII in Pharmaceuticals by Partial Least Squares with Chromogenic Mixed Reagents

    OpenAIRE

    Niazi, Ali

    2006-01-01

    Simultaneous determination of FeII and FeIII mixtures by spectrophotometric methods is a difficult problem in analytical chemistry because of spectral interferences. By multivariate calibration methods, such as partial least squares (PLS), it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. The method is based on developing the reaction between the analytes and 1,10 phenanthroline and 5-sulfosalicylic acid as the chromogenic rea...

  2. On-line solid-phase extraction and multisyringe flow injection analysis of Al(III) and Fe(III) in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Vanloot, Pierre; Boudenne, Jean-Luc; Coulomb, Bruno [Universite de Provence - Case 29, Laboratoire de Chimie et Environnement (FRE 2704), Marseille cedex 3 (France); Branger, Catherine; Margaillan, Andre [ISITV - Universite du Sud Toulon Var, Laboratoire de Chimie Appliquee MFS (EA 1356), La Garde du Var (France); Brach-Papa, Christophe [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Isotope Measurements Unit, Geel (Belgium)

    2007-11-15

    A new analytical method was developed for on-line monitoring of residual coagulants (aluminium and iron salts) in potable water. The determination was based on a sequential procedure coupling an extraction/enrichment step of the analytes onto a modified resin and a spectrophotometric measurement of a surfactant-sensitized binary complex formed between eluted analytes and Chrome Azurol S. The optimization of the solid phase extraction was performed using factorial design and a Doehlert matrix considering six variables: sample percolation rate, sample metal concentration, flow-through sample volume (all three directly linked to the extraction step), elution flow rate, concentration and volume of eluent (all three directly linked to the elution step). A specific reagent was elaborated for sensitive and specific spectrophotometric determination of Al(III) and Fe(III), by optimizing surfactant and ligand concentrations and buffer composition. The whole procedure was automated by a multisyringe flow injection analysis (MSFIA) system. Detection limits of 4.9 and 5.6 {mu}g L{sup -1} were obtained for Al(III) and Fe(III) determination, respectively, and the linear calibration graph up to 300 {mu}g L{sup -1} (both for Al(III) and Fe(III)) was well adapted to the monitoring of drinking water quality. The system was successfully applied to the on-site determination of Al(III) and Fe(III) at the outlet of two water treatment units during two periods of the year (winter and summer conditions). (orig.)

  3. IR, UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(II)

    Science.gov (United States)

    Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.

    2004-07-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  4. Harvesting visible light with MoO3nanorods modified by Fe(iii) nanoclusters for effective photocatalytic degradation of organic pollutants.

    Science.gov (United States)

    Alam, U; Kumar, S; Bahnemann, D; Koch, J; Tegenkamp, C; Muneer, M

    2018-02-07

    The photocatalytic performance of MoO 3 is limited due to its weak visible light absorption ability and quick recombination of charge carriers. In the present work, we report the facile synthesis of Fe(iii)-grafted MoO 3 nanorods using a hydrothermal method followed by an impregnation technique with the aim of enhancing the light harvesting ability and photocatalytic efficiency of MoO 3 . The prepared samples were characterized through the standard analytical techniques of XRD, SEM-EDS, TEM, XPS, UV-Vis-DRS, FT-IR, TG-DTA and PL spectrophotometry. XPS and TEM analyses reveal that Fe(iii) ions are successfully grafted onto the surface of the MoO 3 nanorod with intimate interfacial contact. The photocatalytic performances of the prepared samples were investigated by studying the degradation of methylene blue (MB), rhodamine B (RhB) and 4-nitrophenol (4-NP) under visible light irradiation. The surface-modified MoO 3 with Fe(iii) ions showed excellent photocatalytic activity towards the degradation of the above-mentioned pollutants, where Fe(iii) ions act as effective cocatalytic sites to produce hydroxyl radicals through multi-electron reduction of oxygen molecules. The improved photocatalytic activity could be ascribed to the effective separation of charge carriers and efficient production of hydroxyl radicals via the rapid capture of electrons by Fe(iii) through a well-known photoinduced interfacial charge transfer mechanism. Based on scavenger analysis study, a mechanism for the enhanced photocatalytic activity has been discussed and proposed. The concept of surface grafting onto large bandgap semiconductors with ubiquitous elements opens up a new avenue for the development of visible-light-responsive photocatalysts with excellent photocatalytic activity.

  5. Crystal structure of the coordination polymer [FeIII2{PtII(CN4}3

    Directory of Open Access Journals (Sweden)

    Maksym Seredyuk

    2015-01-01

    Full Text Available The title complex, poly[dodeca-μ-cyanido-diiron(IIItriplatinum(II], [FeIII2{PtII(CN4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN4]2− anions (point group symmetry 2/m bridging cationic [FeIIIPtII(CN4]+∞ layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octahedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octahedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN4]+∞ layers corresponds to the length a/2 = 8.0070 (3 Å, and the separation between two neighbouring PtII atoms of the bridging [PtII(CN4]2− groups corresponds to the length of the c axis [7.5720 (2 Å]. The structure is porous with accessible voids of 390 Å3 per unit cell.

  6. Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging

    International Nuclear Information System (INIS)

    Sivaraman, Gandhi; Sathiyaraja, Vijayaraj; Chellappa, Duraisamy

    2014-01-01

    Two rhodamine-based sensors RDI-1, RDI-2 was designed and synthesized by incorporation of the rhodamine 6G fluorophore and 2-formyl imidazole as the recognizing unit via the imine linkages. RDI-1, RDI-2 exhibits very high selectivity and an excellent sensitivity towards Fe(III) ions in aqueous buffer solution on compared with other probes. The color change from colorless to pink and turn-on fluorescence after binding with iron (III) was observed. Based on jobs plot and ESI-MS studies, the 1:1 binding mode was proposed. Live cell imaging experiments with each probe showed that these probes widely applicable to detect Fe 3+ in living cells. -- Highlights: • Two rhodamine based probes was synthesized and used to recognize iron (III). • The chemosensors can be applied to detect iron(III) ions by color and turn-on fluorescent changes. • The very low detection limit was reported. • The applicability of these probes for live cell fluorescence imaging was studied

  7. Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Gandhi; Sathiyaraja, Vijayaraj; Chellappa, Duraisamy, E-mail: dcmku123@gmail.com

    2014-01-15

    Two rhodamine-based sensors RDI-1, RDI-2 was designed and synthesized by incorporation of the rhodamine 6G fluorophore and 2-formyl imidazole as the recognizing unit via the imine linkages. RDI-1, RDI-2 exhibits very high selectivity and an excellent sensitivity towards Fe(III) ions in aqueous buffer solution on compared with other probes. The color change from colorless to pink and turn-on fluorescence after binding with iron (III) was observed. Based on jobs plot and ESI-MS studies, the 1:1 binding mode was proposed. Live cell imaging experiments with each probe showed that these probes widely applicable to detect Fe{sup 3+} in living cells. -- Highlights: • Two rhodamine based probes was synthesized and used to recognize iron (III). • The chemosensors can be applied to detect iron(III) ions by color and turn-on fluorescent changes. • The very low detection limit was reported. • The applicability of these probes for live cell fluorescence imaging was studied.

  8. Molecular structure and biological studies on Cr(III), Mn(II) and Fe(III) complexes of heterocyclic carbohydrazone ligand

    Science.gov (United States)

    Abu El-Reash, G. M.; El-Gammal, O. A.; Radwan, A. H.

    2014-03-01

    The chelating behavior of the ligand (H2APC) based on carbohydrazone core modified with pyridine end towards Cr(III), Mn(II) and Fe(III) ions have been examined. The 1H NMR and IR data for H2APC revealed the presence of two stereoisomers syn and anti in both solid state and in solution in addition to the tautomeric versatility based on the flexible nature of the hydrazone linkage leading to varied coordination modes. The spectroscopic data confirmed that the ligand behaves as a monobasic tridentate in Cr(III) and Fe(III) complexes and as neutral tetradentate in Mn(II) complex. The electronic spectra as well as the magnetic measurements confirmed the octahedral geometry for all complexes. The bond length and angles were evaluated by DFT method using material studio program for all complexes. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The antioxidant (DDPH and ABTS methods), anti-hemolytic and cytotoxic activities of the compounds have been screened. Cr(III) complex and H2APC showed the highest antioxidant activity using ABTS and DPPH methods. With respect to in vitro Ehrlich ascites assay, H2APC exhibited the potent activity followed by Fe(III) and Cr(III)complexes.

  9. The Role of Coulomb Interactions for Spin Crossover Behaviors and Crystal Structural Transformation in Novel Anionic Fe(III Complexes from a π-Extended ONO Ligand

    Directory of Open Access Journals (Sweden)

    Suguru Murata

    2016-05-01

    Full Text Available To investigate the π-extension effect on an unusual negative-charged spin crossover (SCO FeIII complex with a weak N2O4 first coordination sphere, we designed and synthesized a series of anionic FeIII complexes from a π-extended naphthalene derivative ligand. Acetonitrile-solvate tetramethylammonium (TMA salt 1 exhibited an SCO conversion, while acetone-solvate TMA salt 2 was in a high-spin state. The crystal structural analysis for 2 revealed that two-leg ladder-like cation-anion arrays derived from π-stacking interactions between π-ligands of the FeIII complex anion and Coulomb interactions were found and the solvated acetone molecules were in one-dimensional channels between the cation-anion arrays. A desolvation-induced single-crystal-to-single-crystal transformation to desolvate compound 2’ may be driven by Coulomb energy gain. Furthermore, the structural comparison between quasi-polymorphic compounds 1 and 2 revealed that the synergy between Coulomb and π-stacking interactions induces a significant distortion of coordination structure of 2.

  10. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions.

    Science.gov (United States)

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the microalgae-growth promoting bacterium Azospirillum brasilense on accumulation of total carbohydrates and starch in two species of Chlorella (Chlorella vulgaris and Chlorella sorokiniana), when the bacterium and each microalga were jointly immobilized in alginate beads was studied under autotrophic conditions for 144 h in synthetic medium. The interaction of the bacterium with the microalgae enhanced accumulation of total carbohydrate and starch. Cells of Chlorella accumulated the highest amounts of carbohydrate after incubation for 24h. Yet, this did not coincide with the highest affinity and volumetric productivity measured in these cultures. However, after incubation for 72 h, mainly in jointly immobilized treatments of both microalgae species, the cultures reached their highest total carbohydrate content (mainly as starch) and also the highest affinity and volumetric productivity. These results demonstrate the potential of A. brasilense to affect carbohydrates and starch accumulation in Chlorella spp. when both microorganisms are co-cultured, which can be an important tool for applications of microalgae. Copyright © 2012. Published by Elsevier Inc.

  11. Autotrophic growth and lipid production of Chlorella sorokiniana in lab batch and BIOCOIL photobioreactors: Experiments and modeling.

    Science.gov (United States)

    Concas, Alessandro; Malavasi, Veronica; Costelli, Cristina; Fadda, Paolo; Pisu, Massimo; Cao, Giacomo

    2016-07-01

    A novel mathematical model for the quantitative assessment of the effect of dissolved nitrogen on the autotrophic batch-growth and lipid accumulation of Chlorella sorokiniana, is proposed in this work. Model results have been validated through comparison with suitable experimental data performed in lab photobioreactors. Further experiments have been then performed using the BIOCOIL photobioreactor operated in fed-batch mode. The experimental results, which show that a maximum growth rate of 0.52day(-1) and a lipid content equal to 25%wt can be achieved with the BIOICOIL, have been successfully predicted through the proposed model. Therefore, the model might represent a first step toward the development of a tool for the scale-up and optimization of the operating conditions of BIOCOIL photobioreactors. Finally, the fatty acid methyl esters obtained by trans-esterification of lipids extracted from C. sorokiniana, have been analyzed in view of the assessment of their usability for producing biodiesel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cd and Cu accumulation, translocation and tolerance in Populus alba clone (Villafranca) in autotrophic in vitro screening.

    Science.gov (United States)

    Marzilli, Morena; Di Santo, Patrick; Palumbo, Giuseppe; Maiuro, Lucia; Paura, Bruno; Tognetti, Roberto; Cocozza, Claudia

    2018-04-01

    The present study investigated accumulation, translocation and tolerance of autotrophic Populus alba clone "Villafranca" in response to excess concentrations of cadmium (Cd) and copper (Cu) provided to the plants. For this purpose, increasing concentrations of Cd (0, 5, 50 and 250 μM) and Cu (0, 5, 50, 250 and 500 μM) were administered to the growth medium in which micropropagated poplar plantlets were exposed to metal treatments for 15 days. Filter bags, instead of the conventional in vitro screening, were applied to improve the experimental design. Results showed that Cd and Cu increased in shoots and roots at increasing metal concentration in the medium. The highest Cd content was found in leaves, while the highest Cu content was found in roots. In "Villafranca", Cu showed toxic effects on the development of the seedlings, especially at the highest concentrations, reducing plant dry mass. However, the tolerance index (Ti) indicated good tolerance in this clone under exposure to excess metal concentrations, whereas plants had higher translocation factor (Tf). We recommend in vitro selection of tolerant genotypes, aimed at providing early indication on accumulation potentiality and tolerance capability in research on plant sensitivity to excess heavy metal concentrations.

  13. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis.

    Science.gov (United States)

    Terrado, Ramon; Pasulka, Alexis L; Lie, Alle A-Y; Orphan, Victoria J; Heidelberg, Karla B; Caron, David A

    2017-09-01

    Collectively, phagotrophic algae (mixotrophs) form a functional continuum of nutritional modes between autotrophy and heterotrophy, but the specific physiological benefits of mixotrophic nutrition differ among taxa. Ochromonas spp. are ubiquitous chrysophytes that exhibit high nutritional flexibility, although most species generally fall towards the heterotrophic end of the mixotrophy spectrum. We assessed the sources of carbon and nitrogen in Ochromonas sp. strain BG-1 growing mixotrophically via short-term stable isotope probing. An axenic culture was grown in the presence of either heat-killed bacteria enriched with 15 N and 13 C, or unlabeled heat-killed bacteria and labeled inorganic substrates ( 13 C-bicarbonate and 15 N-ammonium). The alga exhibited high growth rates (up to 2 divisions per day) only until heat-killed bacteria were depleted. NanoSIMS and bulk IRMS isotope analyses revealed that Ochromonas obtained 84-99% of its carbon and 88-95% of its nitrogen from consumed bacteria. The chrysophyte assimilated inorganic 13 C-carbon and 15 N-nitrogen when bacterial abundances were very low, but autotrophic (photosynthetic) activity was insufficient to support net population growth of the alga. Our use of nanoSIMS represents its first application towards the study of a mixotrophic alga, enabling a better understanding and quantitative assessment of carbon and nutrient acquisition by this species.

  14. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Science.gov (United States)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2009-01-01

    Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas), in a minimal mineral (oligotrophic) media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the marine Antarctic soil the poorest (only one). Snow samples from Col du Midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone). The only microorganism identified in the Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  15. Autotrophic and heterotrophic metabolism of microbial planktonic communities in an oligotrophic coastal marine ecosystem: seasonal dynamics and episodic events

    Science.gov (United States)

    Bonilla-Findji, O.; Gattuso, J.-P.; Pizay, M.-D.; Weinbauer, M. G.

    2010-11-01

    A 18 month study was performed in the Bay of Villefranche to assess the episodic and seasonal variation of autotrophic and heterotrophic ecosystem processes. A typical spring bloom was encountered, where maximum of gross primary production (GPP) was followed by maxima of bacterial respiration (BR) and production (BP). The trophic balance (heterotrophy vs. autotrophy) of the system did not exhibit any seasonal trend although a strong intra-annual variability was observed. On average, the community tended to be net heterotrophic with a GPP threshold for a balanced metabolism of 1.1 μmol O2 l-1 d-1. Extended forest fires in summer 2003 and a local episodic upwelling in July 2003 likely supplied orthophosphate and nitrate into the system. These events were associated with an enhanced bacterioplankton production (up to 2.4-fold), respiration (up to 4.5-fold) and growth efficiency (up to 2.9-fold) but had no effect on GPP. A Sahara dust wet deposition event in February 2004 stimulated bacterial abundance, production and growth efficiency but not GPP. Our study suggests that short-term disturbances such as wind-driven upwelling, forest fires and Sahara dust depositions can have a significant but previously not sufficiently considered influence on phytoplankton- and bacterioplankton-mediated ecosystem functions and can modify or even mask the seasonal dynamics. The study also indicates that atmospheric deposition of nutrients and particles not only impacts phytoplankton but also bacterioplankton and could, at times, also shift systems stronger towards net heterotrophy.

  16. Contrasting effect of Saharan dust and UVR on autotrophic picoplankton in nearshore versus offshore waters of Mediterranean Sea

    Science.gov (United States)

    González-Olalla, J. M.; Medina-Sánchez, J. M.; Cabrerizo, M. J.; Villar-Argáiz, Manuel; Sánchez-Castillo, Pedro M.; Carrillo, Presentación

    2017-08-01

    Autotrophic picoplankton (APP) is responsible for the vast majority of primary production in oligotrophic marine areas, such as the Alboran Sea. The increase in atmospheric dust deposition (e.g., from Sahara Desert) associated with global warming, together with the high UV radiation (UVR) on these ecosystems, may generate effects on APP hitherto unknown. We performed an observational study across the Alboran Sea to establish which factors control the abundance and distribution of APP, and we made a microcosm experiment in two distinct areas, nearshore and offshore, to predict the joint UVR × dust impact on APP at midterm scales. Our observational study showed that temperature (T) was the main factor explaining the APP distribution whereas total dissolved nitrogen positively correlated with APP abundance. Our experimental study revealed that Saharan dust inputs reduced or inverted the UVR damage on the photosynthetic quantum yield (ΦPSII) and picoplanktonic primary production (PPP) in the nearshore area but accentuated it in the offshore. This contrasting effect is partially explained by the nonphotochemical quenching, acting as a photorepair mechanism. Picoeukaryotes reflected the observed effects on the physiological and metabolic variables, and Synechococcus was the only picoprokaryotic group that showed a positive response under UVR × dust conditions. Our study highlights a dual sensitivity of nearshore versus offshore picoplankton to dust inputs and UVR fluxes, just at the time in which these two global-change factors show their highest intensities and may recreate a potential future response of the microbial food web under global-change conditions.

  17. The Effect of Aluminium on Antibacterial Properties and the Content of Some Fatty Acids in Microalgae, Chlorella vulgaris Beijernick, under Heterotrophic and Autotrophic Conditions

    Directory of Open Access Journals (Sweden)

    Hossein Abbaspour

    2017-01-01

    Full Text Available Microalgae are a group of organisms, which have a significant potential for industrial applications. These algae contain large amounts of lipids compounds that are beneficial to health, have antibacterial properties, and their extracted oil can be used for biofuel. In this study, microalgae Chlorella vulgaris Beijernick was grown in the culture medium BG-11 containing aluminium (AlCl3 under autotrophic and heterotrophic conditions. In each case, survival and growth, dry weight, internal aluminium content of the sample, antibacterial properties, the content of fatty acids accumulated in the algae and secreted into the culture medium in the logarithmic growth phase were studied. Aluminium significantly increased (P < .05 growth and dry weight in autotrophic treatment compared to the heterotrophic one. Most antibacterial properties were observed in methanol extracts of heterotrophic treatments containing 0.05% glucose. Aluminium also decreased fatty acids accumulation in the algae and increased fatty acids excretion into the culture medium in heterotrophic treatment compared to the autotrophic treatment. Survival of the sample was maintained in heterotrophic conditions and showed growth without lag phase, which is indicative of rapid acclimation of organisms in heterotrophic conditions. It seems that the mentioned characteristics make the single-celled green algae Chlorella vulgaris more efficient in different ways.

  18. Manganese(III) binding to a pyoverdine siderophore produced by a manganese(II)-oxidizing bacterium

    Science.gov (United States)

    Parker, Dorothy L.; Sposito, Garrison; Tebo, Bradley M.

    2004-12-01

    The possible roles of siderophores (high affinity chelators of iron(III)) in the biogeochemistry of manganese remain unknown. Here we investigate the interaction of Mn(III) with a pyoverdine-type siderophore (PVD MnB1) produced by the model Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1. PVD MnB1 confirmed typical pyoverdine behavior with respect to: (a) its absorption spectrum at 350-600 nm, both in the absence and presence of Fe(III), (b) the quenching of its fluorescence by Fe(III), (c) the formation of a 1:1 complex with Fe(III), and (d) the thermodynamic stability constant of its Fe(III) complex. The Mn(III) complex of PVD MnB1 had a 1:1 Mn:pvd molar ratio, showed fluorescence quenching, and exhibited a light absorption spectrum (A max = 408-410 nm) different from that of either PVD MnB1-Fe(III) or uncomplexed PVD MnB1. Mn(III) competed strongly with Fe(III) for binding by PVD MnB1 in culture filtrates (pH 8, 4°C). Equilibration with citrate, a metal-binding ligand, did not detectably release Mn from its PVD MnB1 complex at a citrate/PVD MnB1 molar ratio of 830 (pH 8, 4°C), whereas pyrophosphate under the same conditions removed 55% of the Mn from its PVD MnB1 complex. Most of the PVD MnB1-complexed Mn was released by reaction with ascorbate, a reducing agent, or with EDTA, a ligand that is also oxidized by Mn(III). Data on the competition for binding to PVD MnB1 by Fe(III) vs. Mn(III) were used to determine a thermodynamic stability constant (nominally at 4°C) for the neutral species MnHPVD MnB1 (log K = 47.5 ± 0.5, infinite dilution reference state). This value was larger than that determined for FeHPVD MnB1 (log K = 44.6 ± 0.5). This result has important implications for the metabolism, solubility, speciation, and redox cycling of manganese, as well as for the biologic uptake of iron.

  19. The potential impact of microbial Fe(III) reduction on subsurface U(VI) mobility at a low level radioactive waste storage site

    International Nuclear Information System (INIS)

    Wilkins, M.J.; Livens, F.R.; Vaughan, D.J.; Lloyd, J.R.; Beadle, I.; Small, J.S.

    2005-01-01

    Full text of publication follows: Fe(III) oxy-hydroxides have the potential to be utilised as terminal electron acceptors by indigenous microbial communities in the British Nuclear Fuels (BNFL) low level radioactive waste storage site at Drigg (Cumbria, UK) and these organisms may have a critical control on the biogeochemical cycling of several environmentally important radionuclides. In terms of radiological impact at Drigg, uranium is the most significant contributor to radiological impact and it is strongly influenced by biogeochemical processes. In terms of mass (moles) it is also the most abundant radionuclide in the Drigg inventory. Thus, the potential biotic and abiotic effects of Fe(III) reduction on U(VI) mobility in the Drigg subsurface are of interest. Culture-dependent and molecular techniques showed that the sediments in and around the Drigg site contained a diversity of Fe(III)-reducing bacteria. A series of microcosm experiments were utilised to create environmentally relevant experimental conditions. Microcosms set up using Drigg sediment and synthetic ground water were spiked with 100 μM U(VI) and acetate as an electron donor. U(VI) concentrations in groundwater were measured using a chemical assay while total U levels were determined using ICP-MS. Fe(II) levels were determined using the ferrozine method. Sediment surface areas were measured using BET analysis. The low surface area of the sediments resulted in only a small proportion of the 100 μM U(VI) spike sorbing onto mineral surfaces. The addition of ferri-hydrite to some microcosms resulted in an immediate lowering of soluble U(VI) concentrations, suggesting that the formation of soluble U(VI) complexes were not responsible for the minimal adsorption. The presence of biogenic Fe(II) in the microcosms did not affect the soluble U(VI) concentration. Similarly, soluble U(VI) levels remained unchanged when sediments were spiked with U(VI) post-microbial Fe(III) reduction. However, a lowering in

  20. Influence of heterotrophic microbial growth on biological oxidation of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, E.A.; Silverstein, J. [University of Nevada, Reno, NV (United States). Dept. of Civil Engineering

    2002-12-15

    Experiments were carried out to examine the possibility that enhanced growth of heterotrophic (non-iron-oxidising) bacteria would inhibit pyrite oxidation by Acidithiobacillus ferroxidans by out-competing the more slowly growing autotrophs for oxygen, nutrients or even attachment sites on the mineral surface. Glucose was added to microcosms containing pyrite, acidic mineral solution and cultures of A-ferrooxidans and Acidiphilium acidophilus under various experimental conditions. Results suggest that encouraging the growth of heterotrophic microorganisms under acid mine drainage conditions may be a feasible strategy for decreasing both the rate and the extent of sulfide mineral oxidation. 43 refs., 8 figs., 3 tabs.

  1. Seasonality in autotrophic mesoplankton in a coastal upwelling-mud bank environment along the southwest coast of India and its ecological implications

    Science.gov (United States)

    Karnan, C.; Jyothibabu, R.; Manoj Kumar, T. M.; Balachandran, K. K.; Arunpandi, N.; Jagadeesan, L.

    2017-08-01

    Mesoplankton refers to both autotrophic and heterotrophic plankton with a body size between 200 - 20,000 μm. Here, we applied a FlowCAM to identify the autotrophs present in the mesoplankton size class in a coastal environment along the southwest coast of India (off Alappuzha, Kerala), which is characterized by intense coastal upwelling and mud bank formation during the Southwest Monsoon. 18 time series sampling (weekly/biweekly) sessions were carried out spanning over the Pre-Southwest Monsoon (April) to the Late-Southwest Monsoon (September) period in 2014. The study showed that during the Pre-Southwest Monsoon when nitrate level was relatively low in the study area, the mesoplankton community was entirely contributed by zooplankton, mostly consisting of copepods. During this time, the only autotrophic mesoplankton found in the water column, that too inconsistently, was Trichodesmium erythraeum. However, the entire scenario changed with the onset of the Southwest Monsoon due to hydrographical transformation and nutrient enrichment caused by the coastal upwelling. Especially during the Peak (July) and Late-Southwest Monsoon (August), the mesoplankton composition changed with a significant dominance of larger diatoms such as Fragilaria and Coscinodiscus. The autotrophic mesoplankton abundance was noticeably low during the Pre-Southwest Monsoon (av. 3145 ± 2396 individual m-3 and av. 2045 ± 1907 individual m-3 in M1 and M2, respectively), as compared to the Southwest Monsoon (av. 30436 ± 5983 individual m-3 and av. 32346 ± 11664 individual m-3 in M1 and M2, respectively). Similar was the seasonal trend in the autotrophic mesoplankton biomass, which increased from a low Pre-Southwest Monsoon value (av. 8.45 ± 7.1 mgC m-3and av. 4 ± 3.7 mgC m-3 in M1 and M2, respectively) to a significantly high value during the Southwest Monsoon (av. 117.04 ± 40.2mgC m-3 and av. 136.9 ± 68.1 mgC m-3 in M1 and M2, respectively). The FlowCAM analysis results also showed that

  2. PIGMENT CONTENT AND COMPOSITION IN AUTOTROPHIC AND HETEROTROPHIC LEAF TISSUES OF AMARANTH SPECIES A. TRICOLOR L.

    Directory of Open Access Journals (Sweden)

    M. S. Gins

    2016-01-01

    Full Text Available At present there is numerous evidence of the antioxidant positive role in the defensive reaction that is capable to protect not only plants, but also humans against oxidative stress. Plant pigments such as natural dyes from leaves, flowers and fruits are known to have high antioxidant activity. Amaranth species A. tricolor L. cultivar ‘Early Splendor’ is a convenient model for the comparative studying of the formation processes of differently colored pigment composition in leaf tissues that differs in the ability to photosynthesize. Leaves of amaranth cultivar ‘Valentina’ were as a standard. The aim of the experiment was a comparative studying of the pigments content: amaranthine, chlorophyll a and b, carotenoids in the cauline leaves of amaranth cultivars ‘Valentina’ and ‘Early Splendor’, as well as in the red and green areas of the leaves. Analysis of the aqueous extract of red Early Splendor amaranth apical leaves showed the presence of betacyanin pigment - amaranthine, in the absorption spectrum in which peak was seen in the green region at 540 nm. In addition to the antioxidant amaranthine there are  also antioxidants which might be phenolic glycosides, and ascorbic acid in the extract, the total content of which is almost twice as small as in the leaves of amaranth cauline of this cultivar. Yellow fraction was found in the ethanolic extract of red leaves. Its absorption spectrum had peaks in the blue region at 445 nm and 472 nm and a shoulder at 422 nm that indicated the presence of betaxanthin, betalamic acid or carotenoids. Water-soluble antioxidants - amaranthine and ascorbic acid were found in  auline leaves of studied species. Their content in the leaves of Valentina cultivar was higher than in the leaves of cultivar ‘Early Splendor’, and the maximum level of photosynthetic pigments was found in ‘Early Splendor’ leaves. The obtained results showed that the amaranth is a promising source of pigments with the

  3. The Iron-Deficiency Induced Phenolics Accumulation May Involve in Regulation of Fe(III) Chelate Reductase in Red Clover.

    Science.gov (United States)

    Jin, Chong Wei; He, Xiu Xia; Zheng, Shao Jian

    2007-09-01

    Although considerable researches have been conducted on the physiological responses to plant iron (Fe) deficiency stress in dicotyledonous plants, much still needs to be learned about the regulation of these processes. In the present research, red clover was used to investigate the role of root phenolics accumulation in regulating Fe-deficiency induced Fe(III) chelate reductase (FCR). The root FCR activity, IAA and phenolics accumulation, and also the phenolics secretion were greatly increased by the Fe deficiency treatment. The application of TIBA (2,3,5-triiodobenoic acid) to the stem, an IAA polar transport inhibitor, which could decrease IAA accumulation in root, significantly inhibited the FCR activity, but did not effect root phenolics accumulation and secretion, suggesting that IAA itself did not involve in root phenolics accumulation and secretion. In contrast, the Fe deficiency treatment significantly decreased the root IAA-oxidase activity. Interestingly the phenolics extracted from roots inhibited IAA-oxidase activity in vitro, and this inhibition was greater with phenolics extracted from roots of Fe deficient plants than that from Fe sufficient plants, indicating that the Fe deficiency-induced IAA-oxidase inhibition probably caused by the phenolics accumulation in Fe deficient roots. Based on these observations, we propose a model where under Fe deficiency stress in dicots, an increase in root phenolics concentrations plays a role in regulating root IAA levels through an inhibition of root IAA oxidase activity. This response, leads to, or at least partially leads to an increase in root IAA levels, which in turn help induce increased root FCR activity.

  4. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  5. A Genetic System for Clostridium ljungdahlii: a Chassis for Autotrophic Production of Biocommodities and a Model Homoacetogen

    Energy Technology Data Exchange (ETDEWEB)

    Leang, C; Ueki, T; Nevin, KP; Lovley, DR

    2013-02-04

    Methods for genetic manipulation of Clostridium ljungdahlii are of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies of C. ljungdahlii have not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation in C. ljungdahlii were identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility in C. ljungdahlii. Deletion of fliA yielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases, adhE1 and adhE2, were deleted individually or together. Deletion of adhE1, but not adhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of the adhE1-deficient strain. Expression of adhE1 in trans partially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation of C. ljungdahlii to optimize autotrophic biocommodity production.

  6. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Directory of Open Access Journals (Sweden)

    E. González-Toril

    2009-01-01

    Full Text Available Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area and the Andes (Nevado Illimani summit, Bolivia, from Antarctic aerosol (French station Dumont d'Urville and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas, in a minimal mineral (oligotrophic media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria, Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified and the marine Antarctic soil the poorest (only one. Snow samples from Col du Midi (Alps and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones. These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone. The only microorganism identified in the Antarctica soil (Brevundimonas sp. was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  7. Autotrophic and heterotrophic metabolism of microbial planktonic communities in an oligotrophic coastal marine ecosystem: seasonal dynamics and episodic events

    Directory of Open Access Journals (Sweden)

    O. Bonilla-Findji

    2010-11-01

    Full Text Available A 18 month study was performed in the Bay of Villefranche to assess the episodic and seasonal variation of autotrophic and heterotrophic ecosystem processes. A typical spring bloom was encountered, where maximum of gross primary production (GPP was followed by maxima of bacterial respiration (BR and production (BP. The trophic balance (heterotrophy vs. autotrophy of the system did not exhibit any seasonal trend although a strong intra-annual variability was observed. On average, the community tended to be net heterotrophic with a GPP threshold for a balanced metabolism of 1.1 μmol O2 l−1 d−1. Extended forest fires in summer 2003 and a local episodic upwelling in July 2003 likely supplied orthophosphate and nitrate into the system. These events were associated with an enhanced bacterioplankton production (up to 2.4-fold, respiration (up to 4.5-fold and growth efficiency (up to 2.9-fold but had no effect on GPP. A Sahara dust wet deposition event in February 2004 stimulated bacterial abundance, production and growth efficiency but not GPP. Our study suggests that short-term disturbances such as wind-driven upwelling, forest fires and Sahara dust depositions can have a significant but previously not sufficiently considered influence on phytoplankton- and bacterioplankton-mediated ecosystem functions and can modify or even mask the seasonal dynamics. The study also indicates that atmospheric deposition of nutrients and particles not only impacts phytoplankton but also bacterioplankton and could, at times, also shift systems stronger towards net heterotrophy.

  8. Size-dependent magnetic properties of iron oxide nanoparticles

    Science.gov (United States)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  9. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans

    OpenAIRE

    Yin, Huaqun; Zhang, Xian; Li, Xiaoqi; He, Zhili; Liang, Yili; Guo, Xue; Hu, Qi; Xiao, Yunhua; Cong, Jing; Ma, Liyuan; Niu, Jiaojiao; Liu, Xueduan

    2014-01-01

    Background Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing techno...

  10. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity.

    Science.gov (United States)

    Durrett, Timothy P; Connolly, Erin L; Rogers, Elizabeth E

    2006-08-01

    All plants, except for the grasses, must reduce Fe(III) to Fe(II) in order to acquire iron. In Arabidopsis, the enzyme responsible for this reductase activity in the roots is encoded by FRO2. Two Arabidopsis mutants, frd4-1 and frd4-2, were isolated in a screen for plants that do not induce Fe(III) chelate reductase activity in their roots in response to iron deficiency. frd4 mutant plants are chlorotic and grow more slowly than wild-type Col-0 plants. Additionally, frd4 chloroplasts are smaller in size and possess dramatically fewer thylakoid membranes and grana stacks when compared with wild-type chloroplasts. frd4 mutant plants express both FRO2 and IRT1 mRNA normally in their roots under iron deficiency, arguing against any defects in systemic iron-deficiency signaling. Further, transgenic frd4 plants accumulate FRO2-dHA fusion protein under iron-deficient conditions, suggesting that the frd4 mutation acts post-translationally in reducing Fe(III) chelate reductase activity. FRO2-dHA appears to localize to the plasma membrane of root epidermal cells in both Col-0 and frd4-1 transgenic plants when grown under iron-deficient conditions. Map-based cloning revealed that the frd4 mutations reside in cpFtsY, which encodes a component of one of the pathways responsible for the insertion of proteins into the thylakoid membranes of the chloroplast. The presence of cpFtsY mRNA and protein in the roots of wild-type plants suggests additional roles for this protein, in addition to its known function in targeting proteins to the thylakoid membrane in chloroplasts.

  11. Study of uranium oxidation states in geological material.

    Science.gov (United States)

    Pidchenko, I; Salminen-Paatero, S; Rothe, J; Suksi, J

    2013-10-01

    A wet chemical method to determine uranium (U) oxidation states in geological material has been developed and tested. The problem faced in oxidation state determinations with wet chemical methods is that U redox state may change when extracted from the sample material, thereby leading to erroneous results. In order to quantify and monitor U redox behavior during the acidic extraction in the procedure, an analysis of added isotopic redox tracers, (236)U(VI) and (232)U(IV), and of variations in natural uranium isotope ratio ((234)U/(238)U) of indigenous U(IV) and U(VI) fractions was performed. Two sample materials with varying redox activity, U bearing rock and U-rich clayey lignite sediment, were used for the tests. The Fe(II)/Fe(III) redox-pair of the mineral phases was postulated as a potentially disturbing redox agent. The impact of Fe(III) on U was studied by reducing Fe(III) with ascorbic acid, which was added to the extraction solution. We observed that ascorbic acid protected most of the U from oxidation. The measured (234)U/(238)U ratio in U(IV) and U(VI) fractions in the sediment samples provided a unique tool to quantify U oxidation caused by Fe(III). Annealing (sample heating) to temperatures above 500 °C was supposed to heal ionizing radiation induced defects in the material that can disturb U redox state during extraction. Good agreement between two independent methods was obtained for DL-1a material: an average 38% of U(IV) determined by redox tracer corrected wet chemistry and 45% for XANES. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Synthesis, structure and magnetic properties of a new one-dimensional iron phosphite, $[fe^{III}(1,10-phenanthroline)(HPO_{3})(H_{2}PO_{3})]$

    OpenAIRE

    Mandal, Sukhendu; Green, Mark A; Natarajan, Srinivasan

    2005-01-01

    A new iron phosphite, $[fe^{III}(1,10-phenanthroline)(HPO_{3})(H_{2}PO_{3})]$,1, has been synthesized hydrothermally from a mixture containing iron powder, phosphorous acid, 1,10-phenanthroline and water at 125 degrees C for 7 days. The structure consists of an edge-shared four-membered rings formed by the connectivity between $FeO_{4}N_{2}$ octahedra and pseudo pyramidal $HPO_{3}$ units, connected through their edges forming a one-dimensional structure. The 1,10-phenanthroline molecules and ...

  14. Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River Delta plain, Louisiana, USA

    Science.gov (United States)

    Jaisi, Deb P.; Ji, Shanshan; Dong, Hailiang; Blake, Ruth E.; Eberl, Dennis D.; Kim, Jinwook

    2008-01-01

    River-dominated delta areas are primary sites of active biogeochemical cycling, with productivity enhanced by terrestrial inputs of nutrients. Particle aggregation in these areas primarily controls the deposition of suspended particles, yet factors that control particle aggregation and resulting sedimentation in these environments are poorly understood. This study was designed to investigate the role of microbial Fe(III) reduction and solution chemistry in aggregation of suspended particles in the Mississippi Delta. Three representative sites along the salinity gradient were selected and sediments were collected from the sediment-water interface. Based on quantitative mineralogical analyses 88–89 wt.% of all minerals in the sediments are clays, mainly smectite and illite. Consumption of SO42− and the formation of H2S and pyrite during microbial Fe(III) reduction of the non-sterile sediments by Shewanella putrefaciens CN32 in artificial pore water (APW) media suggest simultaneous sulfate and Fe(III) reduction activity. The pHPZNPC of the sediments was ≤3.5 and their zeta potentials at the sediment-water interface pH (6.9–7.3) varied from −35 to −45 mV, suggesting that both edges and faces of clay particles have negative surface charge. Therefore, high concentrations of cations in pore water are expected to be a predominant factor in particle aggregation consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Experiments on aggregation of different types of sediments in the same APW composition revealed that the sediment with low zeta potential had a high rate of aggregation. Similarly, addition of external Fe(II) (i.e. not derived from sediments) was normally found to enhance particle aggregation and deposition in all sediments, probably resulting from a decrease in surface potential of particles due to specific Fe(II) sorption. Scanning and transmission electron microscopy (SEM, TEM) images showed predominant face-to-face clay aggregation in

  15. Propiedades de los iones Fe(II) y Fe(III) en disolución. Reacciones con reactivos generales y especiales. Ensayos de identificación.

    OpenAIRE

    Milla González, Miguel

    2015-01-01

    Se muestran las características analíticas de los cationes Fe(II) y Fe(III) en disolución presentando las reacciones químicas de los mismos frente a los reactivos generales y a los reactivos especiales. Estas reacciones van acompañadas de fotos que permiten apreciar los cambios de colores de las disoluciones y precipitados que aparecen en la disolución de ensayo. La descriptiva finaliza con pruebas de identificación de cada ión en ausencia de especies interferentes.

  16. Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India.

    Science.gov (United States)

    Mohan, Arya P; Jyothibabu, R; Jagadeesan, L; Lallu, K R; Karnan, C

    2016-02-01

    This study presents the response of autotrophic pico- and nanoplankton to southwest monsoon-associated hydrographical transformations in the Cochin backwaters (CBW), the largest monsoonal estuary along the west coast of India. By the onset of the southwest monsoon, the euhaline/mesohaline conditions in the downstream/upstream of CBW usually transform into oligohaline/limnohaline. The flow cytometer analysis revealed the dominance of picoeukaryotes > Synechococcus > nanoautotrophs, with Prochlorococcus either very low or entirely absent. Synechococcus abundance was high during the pre-southwest monsoon (10(6) L(-1)), which dwindled with heavy fresh water influx during the southwest monsoon (10(5) L(-1)). The drastic drop in salinity and faster flushing of the CBW during the southwest monsoon replaced the euhaline/mesohaline strain of Synechococcus with an oligohaline/limnohaline strain. Epifluorescence microscopy analyses showed that, among the two strains of Synechococcus, the phycoerythrin-rich (PE-rich) one was dominant in the mesohaline/euhaline conditions, whereas the phycocyanin-rich (PC-rich) strain dominated in oligohaline/limnohaline conditions. Although Synechococcus abundance diminished during the southwest monsoon, the total abundance of picoplankton community remained virtually unchanged in the upstream due to an increase in the abundance of picoeukaryotes. On the other hand, the autotrophic nanoplankton abundance increased from pre-monsoon levels of av. 3.8 × 10(6)-av. 9.5 × 10(6) L(-1) at the onset of the southwest monsoon. Utilizing suitable multivariate analyses, the study illustrated the differential response and niche preference of various smaller communities of autotrophs to the southwest monsoon-associated hydrographical ramifications in a large monsoonal estuary, which may be applicable to similar such estuaries situated along the Indian coastline.

  17. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    Science.gov (United States)

    Nowak, M. E.; Beulig, F.; von Fischer, J.; Muhr, J.; Küsel, K.; Trumbore, S. E.

    2015-12-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (Δ14C) and stable carbon (δ13C) isotope ratios to characterize SOM and its sources in two mofettes and compared it with respective reference soils, which were not influenced by geogenic CO2. The geogenic CO2 emitted at these sites is free of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0-10 cm layer of these soils was derived from microbially assimilated CO2. Isotope values of bulk SOM were shifted towards more positive δ13C and more negative Δ14C values in mofettes compared to reference soils, suggesting that geogenic CO2 emitted from the soil atmosphere is incorporated into SOM. To distinguish whether geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence of microbial CO2 fixation, as microbial discrimination should differ from that of plants. 13CO2-labelling experiments confirmed high activity of CO2 assimilating microbes in the top 10 cm, where δ13C values of SOM were shifted up to 2 ‰ towards more negative values. Uptake rates of microbial CO2 fixation ranged up to 1.59 ± 0.16 μg gdw-1 d-1. We inferred that the negative δ13C shift was caused by the activity of autotrophic microorganisms using the Calvin

  18. Mechanism of Selenite Removal by a Mixed Adsorbent Based on Fe–Mn Hydrous Oxides Studied Using X-ray Absorption Spectroscopy

    KAUST Repository

    Chubar, Natalia

    2014-11-18

    © 2014 American Chemical Society. Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3 2- trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  19. Electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clays. Role in U and Hg(II) transformations

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Michelle [Univ. of Iowa, Iowa City, IA (United States)

    2016-08-31

    During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations using a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.

  20. INVESTIGATION OF THE TRANSFORMATION OF URANIUM UNDER IRON-REDUCING CONDITIONS: REDUCTION OF UVI BY BIOGENIC FEII/FEIII HYDROXIDE (GREEN RUST)

    International Nuclear Information System (INIS)

    O'Loughlin, Edward J.; Scherer, Michelle M.; Kemner, Kenneth M.

    2006-01-01

    The recent identification of green rusts (GRs) as products of the reduction of FeIII oxyhydroxides by dissimilatory iron-reducing bacteria, coupled with the ability of synthetic (GR) to reduce UVI species to insoluble UO2, suggests that biogenic green rusts (BioGRs) may play an important role in the speciation (and thus mobility) of U in FeIII-reducing environments. The objective of our research was to examine the potential for BioGR to affect the speciation of U under FeIII-reducing conditions. To meet this objective, we designed and executed a hypothesis-driven experimental program to identify key factors leading to the formation of BioGRs as products of dissimilatory FeIII reduction, to determine the key factors controlling the reduction of UVI to UIV by GRs, and to identify the resulting U-bearing mineral phases. The results of this research significantly increase our understanding of the coupling of biotic and abiotic processes with respect to the speciation of U in iron-reducing environments. In particular, the reduction of UVI to UIV by BioGR with the subsequent formation of U-bearing mineral phases may be effective for immobilizing U in suboxic subsurface environments. This information has direct applications to contaminant transport modeling and bioremediation engineering for natural or enhanced in situ remediation of subsurface contamination

  1. Radiotracer study of the adsorption of Fe(III), Cr(III) and Cd(II) on natural and chemically modified Slovak zeolite

    International Nuclear Information System (INIS)

    Foeldesova, M.; Dillinger, P.; Lukac, P.

    1998-01-01

    In order to minimize the contamination of environment with metals in ionic form the more types of natural and chemically modified zeolites were examined to their uptake of Fe(III), Cr(III) and Cd(II) from water solutions by batch radio-exchange equilibration method. In this study was used zeolitic tuff from deposit Nizny Hrabovec (content of clinoptilolite 50-70%) with the grain size from 1.2 to 2.2 mm. The granules of zeolite were modified with the following NaOH solutions: ).5, 1, 2 and 4 mol.l -1 at 80 grad C for 4 hours. The sorption of Fe, Cr and Cd ions on all types of zeolites was studied by radio-exchange method and the sorption of Fe and Cr also flame atomic absorption method. From sorption curves the sorption coefficients were calculated. The results obtained in this work show that zeolites modified with NaOH solution are suitable for adsorption of Fe(III), Cr(III) and Cd(II) from underwater, waste water, feed water and coolant water from nuclear plants. The adsorbed zeolites can be solidified by conventional way

  2. A pentanuclear iron catalyst designed for water oxidation

    Science.gov (United States)

    Okamura, Masaya; Kondo, Mio; Kuga, Reiko; Kurashige, Yuki; Yanai, Takeshi; Hayami, Shinya; Praneeth, Vijayendran K. K.; Yoshida, Masaki; Yoneda, Ko; Kawata, Satoshi; Masaoka, Shigeyuki

    2016-02-01

    Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth’s crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between FeII5 and FeIII5; the FeIII5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O-O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites.

  3. Antifungal activity of extracts from endophytic fungi associated with Smallanthus maintained in vitro as autotrophic cultures and as pot plants in the greenhouse.

    Science.gov (United States)

    Rosa, Luiz H; Tabanca, Nurhayat; Techen, Natascha; Pan, Zhiqiang; Wedge, David E; Moraes, Rita M

    2012-10-01

    The endophytic fungal assemblages associated with Smallanthus sonchifolius (Poepp.) H. Rob. and Smallanthus uvedalius (L.) Mack. ex Small growing in vitro autotrophic cultures and in the greenhouse were identified and evaluated for their ability to produce bioactive compounds. A total of 25 isolates were recovered that were genetically closely related to species of the genera Bionectria , Cladosporium , Colletotrichum , Fusarium , Gibberella , Hypocrea , Lecythophora , Nigrospora , Plectosphaerella , and Trichoderma . The endophytic assemblages of S. sonchifolius presented a greater diversity than the group isolated from S. uvedalius and demonstrated the presence of dominant generalist fungi. Extracts of all fungi were screened against the fungal plant pathogens. Ten extracts (41.6%) displayed antifungal activities; some of them had a broad antifungal activity. The phylotypes Lecythophora sp. 1, Lecythophora sp. 2, and Fusarium oxysporum were isolated from in vitro autotrophic cultures and displayed antifungal activity. The presence of bioactive endophytic fungi within S. sonchifolius and S. uvedalius suggests an ecological advantage against pathogenic attacks. This study revealed reduced numbers of endophytes in association with both Smallanthus species in controlled cultivation conditions compared with the endophytic communities of hosts collected in the wild environments. Even as reduced endophytic communities, these fungi continue to provide chemical protection for the host.

  4. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth.

    Science.gov (United States)

    Huang, Menglu; Wang, Zhen; Qi, Ran

    2017-06-01

    This study was conducted to explore enhancement of the complete autotrophic nitrogen removal over nitrite (CANON) process in a modified single-stage subsurface vertical flow constructed wetland (VSSF) with saturated zone, and nitrogen transformation pathways in the VSSF treating digested swine wastewater were investigated at four different saturated zone depths (SZDs). SZD significantly affected nitrogen transformation pathways in the VSSF throughout the experiment. As the SZD was 45cm, the CANON process was enhanced most effectively in the system owing to the notable enhancement of anammox. Correspondingly, the VSSF had the best TN removal performance [(76.74±7.30)%] and lower N 2 O emission flux [(3.50±0.22)mg·(m 2 ·h) - 1 ]. It could be concluded that autotrophic nitrogen removal via CANON process could become a primary route for nitrogen removal in the VSSF with optimized microenvironment that developed as a result of the appropriate SZD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus▿†

    Science.gov (United States)

    Holmes, Dawn E.; Risso, Carla; Smith, Jessica A.; Lovley, Derek R.

    2011-01-01

    Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]benzene to [14C]carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism, and [14C]benzoate was produced from [14C]benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not upregulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- than in benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much-needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms. PMID:21742914

  6. Electrocatalytic Materials and Techniques for the Anodic Oxidation of Various Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Stephen Everett [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The focus of this thesis was first to characterize and improve the applicability of Fe(III) and Bi(V) doped PbO2 film electrodes for use in anodic O-transfer reactions of toxic and waste organic compounds, e.g. phenol, aniline, benzene, and naphthalene. Further, they investigated the use of alternative solution/electrode interfacial excitation techniques to enhance the performance of these electrodes for remediation and electrosynthetic applications. Finally, they have attempted to identify a less toxic metal oxide film that may hold promise for future studies in the electrocatalysis and photoelectrocatalysis of O-transfer reactions using metal oxide film electrodes.

  7. Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles: Iron Reduction versus Surface Catalysis.

    Science.gov (United States)

    Krumina, Lelde; Lyngsie, Gry; Tunlid, Anders; Persson, Per

    2017-08-15

    Hydroquinones are important mediators of electron transfer reactions in soils with a capability to reduce Fe(III) minerals and molecular oxygen, and thereby generating Fenton chemistry reagents. This study focused on 2,6-dimethoxy hydroquinone (2,6-DMHQ), an analogue to a common fungal metabolite, and its reaction with ferrihydrite and goethite under variable pH and oxygen concentrations. Combined wet-chemical and spectroscopic analyses showed that both minerals effectively oxidized 2,6-DMHQ in the presence of oxygen. Under anaerobic conditions the first-order oxidation rate constants decreased by one to several orders of magnitude depending on pH and mineral. Comparison between aerobic and anaerobic results showed that ferrihydrite promoted 2,6-DMHQ oxidation both via reductive dissolution and heterogeneous catalysis while goethite mainly caused catalytic oxidation. These results were in agreement with changes in the reduction potential (E H ) of the Fe(III) oxide/Fe(II) aq redox couple as a function of dissolved Fe(II) where E H of goethite was lower than ferrihydrite at any given Fe(II) concentration, which makes ferrihydrite more prone to reductive dissolution by the 2,6-DMBQ/2,6-DMHQ redox couple. This study showed that reactions between hydroquinones and iron oxides could produce favorable conditions for formation of reactive oxygen species, which are required for nonenzymatic Fenton-based decomposition of soil organic matter.

  8. A multifunctional three-fold interpenetrated coordination polymer showing excellent luminescent sensing for Cr(VI)/ Fe(III) and photocatalytic properties

    Science.gov (United States)

    Zhu, Zheng; Wang, Mei; Xu, Cun-gang; Zong, Zi-ao; Zhang, Dong-mei; Bi, Shuang-yu; Fan, Yu-hua

    2017-12-01

    A three-fold interpenetrated coordination polymer [Cd2(L)(bibp)3]n (1) (H4L = 5,5‧-(1,4-phenylenebis(methoxy))diisophthalic acid, bibp = 4,4'-bis(imidazolyl)biphenyl) has been rationally constructed, successfully solvothermally synthesized and fully characterized. Complex 1 shows a 3D three-fold interpenetrated novel topological framework with the point symbol (4. 69)2(42. 62. 7. 8), and represents a variety of potential applications. Luminescence studies demonstrate that 1 has high selectivity and sensitivity for pollutant Cr(VI) (CrO42- and Cr2O72-) anion and Fe(III) cation; Photocatalytic studies show that 1 exhibits great degradation activity of three organic dyes (methylene blue (MB), Rhodamine B (RhB) and MalachiteGreen oxalate (MGO)). Furthermore, the possible mechanisms of the luminescent quench and photocatalytic properties have been deduced.

  9. Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III)

    DEFF Research Database (Denmark)

    Vandieken, Verona; Knoblauch, Christian; Jørgensen, Bo Barker

    2006-01-01

    fermentation products such as hydrogen, formate and lactate with sulfate as the electron acceptor. Sulfate could be replaced by sulfite, thiosulfate or elemental sulfur. Poorly crystalline and soluble Fe(III) compounds were reduced in sulfate-free medium, but no growth occurred under these conditions....... In the absence of electron acceptors, fermentative growth was possible. The pH optimum for the strains was around 7.1. The DNA G+C contents were 43.3 and 42.0 mol% for strains 18T and 61T, respectively. Strains 18T, 61T and 77 were most closely related to Desulfovibrio hydrothermalis (95.0-95.7 % 16S rRNA gene...

  10. Benzene oxidation coupled to sulfate reduction

    Science.gov (United States)

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  11. Oxidation of ascorbate in raw milk induced by enzymes and transition metals.

    Science.gov (United States)

    Nielsen, J H; Hald, G; Kjeldsen, L; Andersen, H J; Østdal, H

    2001-06-01

    The effect of xanthine oxidase, lactoperoxidase, and transition metals [Fe(III), Cu(II)] on the oxidation of ascorbate in raw milk was investigated. Data clearly showed that iron(III) (200 microM) does not accelerate ascorbate oxidation in raw milk in concentrations relevant for raw milk. In contrast, addition of copper(II) (10 microM) to the raw milk accelerated oxidation of ascorbate. Furthermore, both xanthine oxidase and peroxidase activity were found to accelerate ascorbate oxidation dramatically in raw milk, indicating that xanthine oxidase and lactoperoxidase might be some of the most obvious candidates for mediation of ascorbate oxidation in raw milk. The present data are discussed in relation to using the fate of ascorbate in raw milk as an indicator of the oxidative stability of the milk.

  12. Synthesis, physicochemical characterization, DFT calculation and biological activities of Fe(III) and Co(II)-omeprazole complexes. Potential application in the Helicobacter pylori eradication

    Science.gov (United States)

    Russo, Marcos G.; Vega Hissi, Esteban G.; Rizzi, Alberto C.; Brondino, Carlos D.; Salinas Ibañez, Ángel G.; Vega, Alba E.; Silva, Humberto J.; Mercader, Roberto; Narda, Griselda E.

    2014-03-01

    The reaction between the antiulcer agent omeprazole (OMZ) with Fe(III) and Co(II) ions was studied, observing a high ability to form metal complexes. The isolated microcrystalline solid complexes were characterized by elemental analysis, X-ray powder diffraction (XRPD), Scanning Electron Microscopy (SEM), magnetic measurements, thermal study, FTIR, UV-Visible, Mössbauer, electronic paramagnetic resonance (EPR), and DFT calculations. The metal-ligand ratio for both complexes was 1:2 determined by elemental and thermal analysis. FTIR spectroscopy showed that OMZ acts as a neutral bidentate ligand through the pyridinic nitrogen of the benzimidazole ring and the oxygen atom of the sulfoxide group, forming a five-membered ring chelate. Electronic, Mössbauer, and EPR spectra together with magnetic measurements indicate a distorted octahedral geometry around the metal ions, where the coordination sphere is completed by two water molecules. SEM and XRPD were used to characterize the morphology and the crystal nature of the complexes. The most favorable conformation for the Fe(III)-OMZ and Co(II)-OMZ complexes was obtained by DFT calculations by using B3LYP/6-31G(d)&LanL2DZ//B3LYP/3-21G(d)&LanL2DZ basis set. Studies of solubility along with the antibacterial activity against Helicobacter pylori for OMZ and its Co(II) and Fe(III) complexes are also reported. Free OMZ and both metal complexes showed antibacterial activity against H. pylori. Co(II)-OMZ presented a minimal inhibitory concentration ˜32 times lower than that of OMZ and ˜65 lower than Fe(III)-OMZ, revealing its promising potential use for the treatment of gastric pathologies associated with the Gram negative bacteria. The morphological changes observed in the cell membrane of the bacteria after the incubation with the metal-complexes were also analyzed by SEM microscopy. The antimicrobial activity of the complexes was proved by the viability test.

  13. Speciative Determination of Dissolved Inorganic Fe(II, Fe(III and Total Fe in Natural Waters by Coupling Cloud Point Extraction with FAAS

    Directory of Open Access Journals (Sweden)

    Ramazan GÜRKAN

    2013-12-01

    Full Text Available A new cloud point extraction (CPE method for the preconcentration of trace iron speciation in natural waters prior to determination by flame atomic absorption spectrometry (FAAS was developed in the present study. In this method, Fe(II sensitively and selectively reacts with Calcon carboxylic acid (CCA in presence of cetylpyridinium chloride (CPC yielding a hydrophobic complex at pH 10.5, which is then entrapped in surfactant-rich phase. Total Fe was accurately and reliably determined after the reduction of Fe(III to Fe(II with sulfite. The amount of Fe(III in samples was determined from the difference between total Fe and Fe(II. CPC was used not only as an auxiliary ligand in CPE, but also as sensitivity enhancement agent in FAAS. The nonionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114 was used as an extracting agent. The analytical variables affecting CPE efficiency were investigated in detail. The preconcentration/enhancement factors of 50 and 82 respectively, were obtained for the preconcentration of Fe(II with 50 mL solution. Under the optimized conditions, the detection limit of Fe(II in linear range of 0.2-60 μg L-1 was 0.06 μg L-1. The relative standard deviation was 2.7 % (20 μg L-1, N: 5, recoveries for Fe(II were in range of 99.0-102.0% for all water samples including certified reference materials (CRMs. In order to verify its accuracy, two CRMs were analyzed and the results obtained were statistically in good agreement with the certified values.

  14. Speciative Determination of Dissolved Inorganic Fe(II), Fe(III) and Total Fe in Natural Waters by Coupling CPE with FAAS

    International Nuclear Information System (INIS)

    Gurkan, R.; Altunay, N.

    2013-01-01

    A new cloud point extraction (CPE) method for the preconcentration of trace iron speciation in natural waters prior to determination by flame atomic absorption spectrometry (FAAS) was developed in the present study. In this method, Fe(II) sensitively and selectively reacts with Calcon carboxylic acid (CCA) in presence of cetylpyridinium chloride (CPC) yielding a hydrophobic complex at pH 10.5, which is then entrapped in surfactant-rich phase. Total Fe was accurately and reliably determined after the reduction of Fe(III) to Fe(II) with sulfite. The amount of Fe(III) in samples was determined from the difference between total Fe and Fe(II). CPC was used not only as an auxiliary ligand in CPE, but also as sensitivity enhancement agent in FAAS. The nonionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114) was used as an extracting agent. The analytical variables affecting CPE efficiency were investigated in detail. The preconcentration/enhancement factors of 50 and 82 respectively, were obtained for the preconcentration of Fe(II) with 50 mL solution. Under the optimized conditions, the detection limit of Fe(II) in linear range of 0.2-60 μg L/sup -1/ was 0.06 μg L/sup -1/. The relative standard deviation was 2.7 percentage (20 μg L/sup -1/, N: 5), recoveries for Fe(II) were in range of 99.0-102.0 percentage for all water samples including certified reference materials (CRMs). In order to verify its accuracy, two CRMs were analyzed and the results obtained were statistically in good agreement with the certified values. (author)

  15. Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi in an autotrophic nitrifying biofilm reactor as depicted by molecular analyses and mathematical modelling.

    Science.gov (United States)

    Montràs, Anna; Pycke, Benny; Boon, Nico; Gòdia, Francesc; Mergeay, Max; Hendrickx, Larissa; Pérez, Julio

    2008-03-01

    The autotrophic two-species biofilm from the packed bed reactor of a life-support system, containing Nitrosomonas europaea ATCC 19718 and Nitrobacter winogradskyi ATCC 25391, was analysed after 4.8 years of continuous operation performing complete nitrification. Real-time quantitative polymerase chain reaction (Q-PCR) was used to quantify N. europaea and N. winogradskyi along the vertical axis of the reactor, revealing a spatial segregation of N. europaea and N. winogradskyi. The main parameters influencing the spatial segregation of both nitrifiers along the bed were assessed through a multi-species one-dimensional biofilm model generated with AQUASIM software. The factor that contributed the most to this distribution profile was a small deviation from the flow pattern of a perfectly mixed tank towards plug-flow. The results indicate that the model can estimate the impact of specific biofilm parameters and predict the nitrification efficiency and population dynamics of a multispecies biofilm.

  16. Synthesis, magnetism and Mössbauer studies of tetranuclear heterometallic {Fe(III)2Ln2}(Ln = Gd, Dy, Tb) complexes: evidence of slow relaxation of magnetization in the terbium analogue.

    Science.gov (United States)

    Bag, Prasenjit; Goura, Joydeb; Mereacre, Valeriu; Novitchi, Ghenadie; Powell, Annie K; Chandrasekhar, Vadapalli

    2014-11-21

    A new family of tetranuclear heterometallic assemblies, [Fe(III)2Gd2(H2L)4(η(2)-NO3)2]·2ClO4·2CH3OH·2H2O (1), [Fe(III)2Dy2(H2L)4(η(2)-NO3)2]·2ClO4·2CH3OH·2H2O (2), [Fe(III)2Tb2(H2L)4(η(2)-NO3)2]·2ClO4·2CH3OH·2H2O (3), have been synthesized employing a multi-dentate Schiff-base ligand, (E)-2,2'-(2-hydroxy-3-((2-hydroxyphenylimino)methyl)-5-methylbenzylazanediyl)-diethanol (H4L), Fe(ClO4)2·6H2O, and Ln(III) nitrate salts. These compounds have been structurally characterized by various analytical and spectroscopic techniques. The molecular structures of 1-3 have been confirmed by single crystal X-ray crystallography. All the three complexes contain two Fe(III) ions at the periphery and two Ln(III) ions in the centre. The entire assembly is held together by four doubly deprotonated [LH2](2-) ligands. All the three complexes (1-3) are dicationic in nature and possess an overall Z-type topology. Magnetic measurements reveal the presence of predominant ferromagnetic coupling for all the three compounds at low temperature. The presence of a frequency-dependent out-of-phase signal in the imaginary part of the ac susceptibility plot suggests a slow relaxation of magnetization for 3 (Fe(III)2Tb2). Furthermore, the magnetization dynamics of all the three complexes have been corroborated by Mössbauer spectroscopy.

  17. Autotrophic and heterotrophic contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in a Mediterranean dehesa

    Science.gov (United States)

    Casals, Pere; Lopez-Sangil, Luis; Carrara, Arnaud; Gimeno, Cristina; NoguéS, Salvador

    2011-09-01

    Autotrophic and heterotrophic components of soil CO2 efflux may have differential responses to environmental factors, so estimating the relative contribution of each component during summer precipitation pulses is essential to predict C balance in soils experiencing regular drought conditions. As even small summer rains induced high instantaneous soil respiration rates in Mediterranean wooded grasslands, we hypothesized that standing dead mass, surface litter, and topsoil layer could play a dominant role in the initial flush of CO2 produced immediately after soil rewetting; in contrast, soil CO2 effluxes during drought periods should be mostly derived from tree root activity. In a grazed dehesa, we simulated four summer rain events and measured soil CO2 efflux discontinuously, estimating its δ13C through a Keeling plot nonsteady state static chamber approach. In addition, we estimated litter contribution to soil CO2 efflux and extracted soil available C fractions (K2SO4-extracted C and chloroform-fumigated extracted C). The δ13C-CO2 from in-tube incubated excised tree roots and rewetted root-free soil was -25.0‰ (±0.2) and -28.4‰ (±0.2), respectively. Assuming those values as end-members' sources, the autotrophic component of soil CO2 efflux was dominant during the severe drought, whereas the heterotrophic contribution dominated from the very beginning of precipitation pulses. As standing dead mass and fresh litter contribution was low (<25%) in the first day and negligible after, we concluded that CO2 efflux after rewetting was mostly derived from microbial mineralization of available soil organic C fractions.

  18. The demonstration of a novel sulfur cycle-based wastewater treatment process: sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI®) biological nitrogen removal process.

    Science.gov (United States)

    Lu, Hui; Wu, Di; Jiang, Feng; Ekama, George A; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2012-11-01

    Saline water supply has been successfully practiced for toilet flushing in Hong Kong since 1950s, which saves 22% of freshwater in Hong Kong. In order to extend the benefits of saline water supply into saline sewage management, we have recently developed a novel biological organics and nitrogen removal process: the Sulfate reduction, Autotrophic denitrification, and Nitrification Integrated (SANI®) process. The key features of this novel process include elimination of oxygen demand in organic matter removal and production of minimal sludge. Following the success of a 500-day lab-scale trial, this study reports a pilot scale evaluation of this novel process treating 10 m(3) /day of 6-mm screened saline sewage in Hong Kong. The SANI® pilot plant consisted of a sulfate reduction up-flow sludge bed (SRUSB) reactor, an anoxic bioreactor for autotrophic denitrification and an aerobic bioreactor for nitrification. The plant was operated at a steady state for 225 days, during which the average removal efficiencies of both chemical oxygen demand (COD) and total suspended solids (TSS) at 87% and no excess sludge was purposefully withdrawn. Furthermore, a tracer test revealed 5% short circuit flow and a 34.6% dead zone in the SRUSB, indicating a good possibility to further optimize the treatment capacity of the process for full-scale application. Compared with conventional biological nitrogen removal processes, the SANI® process reduces 90% of waste sludge, which saves 35% of the energy and reduces 36% of fossil CO(2) emission. The SANI® process not only eliminates the major odor sources originating from primary treatment and subsequent sludge treatment and disposal during secondary saline sewage treatment, but also promotes saline water supply as an economic and sustainable solution for water scarcity and sewage treatment in water-scarce coastal areas. Copyright © 2012 Wiley Periodicals, Inc.

  19. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Kazuya, E-mail: kazuya.morimoto@aist.go.jp [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Tamura, Kenji [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Anraku, Sohtaro [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Sato, Tsutomu [Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Suzuki, Masaya [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Yamada, Hirohisa [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-08-15

    The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. The product derived from the synthesis employing Fe(II) was found to transition to a Zn–Fe(III) layered double hydroxides phase following oxidation process. In contrast, the product obtained with Fe(III) did not contain a layered double hydroxides phase, but rather consisted of simonkolleite and hydrous ferric oxide. It was determined that the valency of the Fe reagent used in the initial synthesis affected the generation of the layered double hydroxides phase. Fe(II) species have ionic radii and electronegativities similar to those of Zn, and therefore are more likely to form trioctahedral hydroxide layers with Zn species. - Graphical abstract: The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. - Highlights: • Iron valency affected the generation of Zn–Fe layered double hydroxides. • Zn–Fe layered double hydroxides were successfully synthesized using Fe(II). • Fe(II) species were likely to form trioctahedral hydroxide layers with Zn species.

  20. Subsurface Uranium Fate and Transport: Integrated Experiments and Modeling of Coupled Biogeochemical Mechanisms of Nanocrystalline Uraninite Oxidation by Fe(III)-(hydr)oxides - Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Brent M. [Montana State Univ., Bozeman, MT (United States); Timothy, Ginn R. [Univ. of California, Davis, CA (United States); Sani, Rajesh K. [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    2013-08-14

    Subsurface bacteria including sulfate reducing bacteria (SRB) reduce soluble U(VI) to insoluble U(IV) with subsequent precipitation of UO2. We have shown that SRB reduce U(VI) to nanometer-sized UO2 particles (1-5 nm) which are both intra- and extracellular, with UO2 inside the cell likely physically shielded from subsequent oxidation processes. We evaluated the UO2 nanoparticles produced by Desulfovibrio desulfuricans G20 under growth and non-growth conditions in the presence of lactate or pyruvate and sulfate, thiosulfate, or fumarate, using ultrafiltration and HR-TEM. Results showed that a significant mass fraction of bioreduced U (35-60%) existed as a mobile phase when the initial concentration of U(VI) was 160 µM. Further experiments with different initial U(VI) concentrations (25 - 900 M) in MTM with PIPES or bicarbonate buffers indicated that aggregation of uraninite depended on the initial concentrations of U(VI) and type of buffer. It is known that under some conditions SRB-mediated UO2 nanocrystals can be reoxidized (and thus remobilized) by Fe(III)-(hydr)oxides, common constituents of soils and sediments. To elucidate the mechanism of UO2 reoxidation by Fe(III) (hydr)oxides, we studied the impact of Fe and U chelating compounds (citrate, NTA, and EDTA) on reoxidation rates. Experiments were conducted in anaerobic batch systems in PIPES buffer. Results showed EDTA significantly accelerated UO2 reoxidation with an initial rate of 9.5 M day-1 for ferrihydrite. In all cases, bicarbonate increased the rate and extent of UO2 reoxidation with ferrihydrite. The highest rate of UO2 reoxidation occurred when the chelator promoted UO2 and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO2 dissolution did not occur, UO2 reoxidation likely proceeded through an aqueous Fe(III) intermediate as observed for both NTA and

  1. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Swanner, E. D.; Bayer, T.; Wu, W.; Hao, L.; Obst, M.; Sundman, A.; Byrne, J. M.; Michel, F. M.; Kleinhanns, I. C.; Kappler, A.; Schoenberg, R.

    2017-04-11

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.

  2. Electrochemical reduction of nitrous oxide on La1-xSrxFeO3 perovskites

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The electrochemical reduction of nitrous oxide and oxygen has been studied on cone-shaped electrodes of La1-xSrxFeO3-delta perovskites in an all solid state cell, using cyclic voltammetry. It was shown that the activity of the La1-xSrxFeO3-delta perovskites for the electrochemical reduction...... of nitrous oxide mainly depends on the amount of Fe(III) and oxide ion vacancies. The activity of the La1-xSrxFeO3-delta perovskites towards the electrochemical reduction of nitrous oxide is much lower than the activity of the La1-xSrxFeO3-delta perovskites towards the electrochemical reduction of oxygen......, making the possibility of electrochemically reducing nitrous oxide selectively in an exhaust gas containing excess oxygen on this type of materials very doubtful....

  3. A Mononuclear Fe(III) Single Molecule Magnet with a 3/2↔5/2 Spin Crossover

    DEFF Research Database (Denmark)

    Mossin, Susanne L.; Tran, Ba L.; Adhikari, Debashis

    2012-01-01

    The air stable complex [(PNP)FeCl2] (1) (PNP = N[2-P(CHMe2)2-4-methylphenyl]2–), prepared from one-electron oxidation of [(PNP)FeCl] with ClCPh3, displays an unexpected S = 3/2 to S = 5/2 transition above 80 K as inferred by the dc SQUID magnetic susceptibility measurement. The ac SQUID magnetiza......The air stable complex [(PNP)FeCl2] (1) (PNP = N[2-P(CHMe2)2-4-methylphenyl]2–), prepared from one-electron oxidation of [(PNP)FeCl] with ClCPh3, displays an unexpected S = 3/2 to S = 5/2 transition above 80 K as inferred by the dc SQUID magnetic susceptibility measurement. The ac SQUID...... magnetization data, at zero field and between frequencies 10 and 1042 Hz, clearly reveal complex 1 to have frequency dependence on the out-of-phase signal and thus being a single molecular magnet with a thermally activated barrier of Ueff = 32–36 cm–1 (47–52 K). Variable-temperature Mössbauer data also...

  4. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor

    Directory of Open Access Journals (Sweden)

    SoeMyat Thandar

    2016-11-01

    Full Text Available Ammonia-oxidizing bacteria (AOB, which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. mobilis Ms1, which was previously isolated into pure culture from the nitrifying granules of wastewater treatment bioreactor. The pure culture of N. mobilis Ms1 was cultivated in liquid mineral medium with 30 mg-N L-1 (2.14 mM of ammonium at room temperature under dark conditions. The optimum growth of N. mobilis Ms1 occurred at 27°C and pH 8, with a maximum growth rate of 0.05–0.07 h-1, which corresponded to a generation time of 10–14 h. The half saturation constant for ammonium uptake rate and the maximum ammonium uptake rate of N. mobilis Ms1 were 30.70±0.51 μM NH4+ and 0.01±0.002 pmol NH4+ cells-1 h-1, respectively. N. mobilis Ms1 had higher ammonia oxidation activity than N. europaea in this study. The oxygen uptake activity kinetics of N. mobilis Ms1 were K_(m(O_2= 21.74±4.01 μM O2 and V_(max⁡(O_2= 0.06±0.02 pmol O2 cells-1 h-1. Ms1 grew well at ammonium and NaCl concentrations of up to 100 mM and 500 mM, respectively. The nitrite tolerance of N. mobilis Ms1 was extremely high (up to 300 mM compared to AOB previously isolated from activated sludge and wastewater treatment plants. The average nucleotide identity between the genomes of N. mobilis Ms1 and other Nitrosomonas species indicated that N. mobilis Ms1 was distantly related to other Nitrosomonas species. The organization of the genes encoding protein inventory involved in ammonia oxidation and nitrifier denitrification processes were different from other Nitrosomonas species. The

  5. Synthesis, characterization, fluorescence and biological studies of Mn(II, Fe(III and Zn(II complexes of Schiff bases derived from Isatin and 3-substituted-4-amino-5-mercapto-1,2,4-triazoles

    Directory of Open Access Journals (Sweden)

    Sangamesh A. Patil

    2014-12-01

    Full Text Available A series of Mn(II, Fe(III and Zn(II complexes have been synthesized with Schiff bases derived from isatin and 3-substituted-4-amino-5-mercapto-1,2,4-triazole. The elemental, spectroscopic (Infrared, nuclear magnetic resonance, ultraviolet-visible, fast atom bombardment-mass, fluorescence and electrochemistry and magnetic studies suggested that the metal complexes possess octahedral geometry. The Schiff bases and their metal complexes exhibit fluorescent properties. The antimicrobial studies of Schiff bases and their metal complexes against various bacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus subtilis and fungal (Aspergillus niger, and Penicillium chrysogenum species by the minimum inhibitory concentration method revealed that the metal complexes possess more healing antibacterial activities than the Schiff bases. DNA cleavage property of Mn(II, Fe(III and Zn(II complexes revealed the important role of metal ion in the biological system.

  6. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    Science.gov (United States)

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: A reaction modeling approach

    Science.gov (United States)

    Spycher, Nicolas F.; Issarangkun, Montarat; Stewart, Brandy D.; Sevinç Şengör, S.; Belding, Eileen; Ginn, Tim R.; Peyton, Brent M.; Sani, Rajesh K.

    2011-08-01

    One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO 2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO 2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO 2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO 2, and for this reason the relative rates of sulfide and UO 2 oxidation play a key role on whether or not UO 2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe +2 activity in solution and increasing the potential for both sulfide and UO 2 reoxidation. The greater (and unintuitive) UO 2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO 2 reoxidation through formation of uranyl carbonate aqueous complexes.

  8. Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions.

    Science.gov (United States)

    Habiba, Umma; Siddique, Tawsif A; Talebian, Sepehr; Lee, Jacky Jia Li; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M

    2017-12-01

    In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (q m ) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cr(III), Fe(III) and Co(III) complexes of tetradentate (ONNO) Schiff base ligands: Synthesis, characterization, properties and biological activity

    Science.gov (United States)

    Keskioğlu, Eren; Gündüzalp, Ayla Balaban; Çete, Servet; Hamurcu, Fatma; Erk, Birgül

    2008-08-01

    A series of metal complexes were synthesized from equimolar amounts of Schiff bases: 1,4-bis[3-(2-hydroxy-1-naphthaldimine)propyl]piperazine (bappnaf) and 1,8-bis[3-(2-hydroxy-1-naphthaldimine)- p-menthane (damnaf) with metal chlorides. All of synthesized compounds were characterized by elemental analyses, spectral (UV-vis, IR, 1H- 13C NMR, LC-MS) and thermal (TGA-DTA) methods, magnetic and conductance measurements. Schiff base complexes supposed in tetragonal geometry have the general formula [M(bappnaf or damnaf)]Cl· nH 2O, where M = Cr(III), Co(III) and n = 2, 3. But also Fe(III) complexes have octahedral geometry by the coordination of two water molecules and the formula is [Fe(bappnaf or damnaf)(H 2O) 2]Cl. The changes in the selected vibration bands in FT-IR indicate that Schiff bases behave as (ONNO) tetradentate ligands and coordinate to metal ions from two phenolic oxygen atoms and two azomethine nitrogen atoms. Conductance measurements suggest 1:1 electrolytic nature of the metal complexes. The synthesized compounds except bappnaf ligand have the antimicrobial activity against the bacteria: Escherichia coli (ATCC 11230), Yersinia enterocolitica (ATCC 1501), Bacillus magaterium (RSKK 5117), Bacillus subtilis (RSKK 244), Bacillus cereus (RSKK 863) and the fungi: Candida albicans (ATCC 10239). These results have been considerably interest in piperazine derivatives due to their significant applications in antimicrobial studies.

  10. Simultaneous oxidation of arsenic and antimony at low and circumneutral pH, with and without microbial catalysis

    Science.gov (United States)

    Asta, Maria P.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2012-01-01

    Arsenic and Sb are common mine-water pollutants and their toxicity and fate are strongly influenced by redox processes. In this study, simultaneous Fe(II), As(III) and Sb(III) oxidation experiments were conducted to obtain rates under laboratory conditions similar to those found in the field for mine waters of both low and circumneutral pH. Additional experiments were performed under abiotic sterile conditions to determine the biotic and abiotic contributions to the oxidation processes. The results showed that under abiotic conditions in aerated Fe(III)–H2SO4 solutions, Sb(III) oxidizes slightly faster than As(III). The oxidation rates of both elements were accelerated by increasing As(III), Sb(III), Fe(III), and Cl− concentrations in the presence of light. For unfiltered circumneutral water from the Giant Mine (Yellowknife, NWT, Canada), As(III) oxidized at 15–78 μmol/L/h whereas Sb(III) oxidized at 0.03–0.05 μmol/L/h during microbial exponential growth. In contrast, As(III) and Sb(III) oxidation rates of 0.01–0.03 and 0.01–0.02 μmol/L/h, respectively, were obtained in experiments performed with acid unfiltered mine waters from the Iberian Pyritic Belt (SW Spain). These results suggest that the Fe(III) formed from microbial oxidation abiotically oxidized As(III) and Sb(III). After sterile filtration of both mine water samples, neither As(III), Sb(III), nor Fe(II) oxidation was observed. Hence, under the experimental conditions, bacteria were catalyzing As and Sb oxidation in the Giant Mine waters and Fe oxidation in the acid waters of the Iberian Pyrite Belt.

  11. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

    Science.gov (United States)

    Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas

    2016-06-01

    Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

  12. Synthesis, characterization and physicochemical studies of new chelating resin 1, 8-(3, 6-dithiaoctyl)-4-polyvinylbenzenesulphonate (dpvbs) and its metallopolymer Cu(II), Ni(II), Co(II) and Fe(III) complexes

    Science.gov (United States)

    Khalil, Tarek E.; Elbadawy, Hemmat A.; El-Dissouky, Ali

    2018-02-01

    A new chelating resin, 1,8-(3,6-dithiaoctyl)-4-polyvinylbenzenesulphonate (dpvbs) has been synthesized by coupling Amberlite XAD-16 with (2,2‧-ethylenedithio) diethanol using pyridine/CH2Cl2 mixture as a solvent. The chelating resin and its metallopolymer Cu(II), Ni(II), Co(II) and Fe(III) complexes have been synthesized and characterized by EDS, SEM, XPS, elemental analysis, spectral (IR, UV/Vis, EPR). The thermal analysis of the resin and its metallopolymer complexes indicated an endothermic spontaneous sorption mechanism with the liberation of water of hydration of the metal ions and that adsorbed by the free resin. At the solid liquid interface, the degrees of freedom increased during the sorption of the metal ions onto the resin. The surface area of polymer support and its metallopolymer complexes are estimated by (BJH) method. The batch equilibrium method was used for studying the metal sorption and selectivity at different pH values and different contact times at room temperature. ICP-AES was used to estimate the metal capacity of the resin for sorption of Cu(II), Ni(II), Co(II) and Fe(III) from aqueous solutions utilizing the batch equilibrium method. The sorption tendency of the metal ions by the resin was found to be: Cu(II) > Fe(III) > Co(II) > Ni(II). Adsorption kinetics was found to be fit the pseudo-second order model.

  13. Qualitative distinction of autotrophic and heterotrophic processes at the leaf level by means of triple stable isotope (C-O-H patterns

    Directory of Open Access Journals (Sweden)

    Adam eKimak

    2015-11-01

    Full Text Available Foliar samples were harvested from two oaks, a beech and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (d13C, d18O and dD were analysed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the d13C values are in agreement with the transition from remobilized carbohydrates (juvenile period, to current photosynthates (mature phase. While the opponent seasonal trends of d18O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for dD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins to 57 permil (oak blades in dD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on dD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level.

  14. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.

    Science.gov (United States)

    Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei

    2015-07-01

    A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An isotope approach based on C-13 pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, C.; Pitkamaki, A. S.; Tavi, N. M.; Koponen, H. T.; Martikainen, P. J. [Univ.of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], e-mail: christina.biasi@uef.fi

    2012-11-01

    We tested an isotope method based on C-13 pulse-chase labelling for determining the fractional contribution of soil microbial respiration to overall soil respiration in an organic soil (cutaway peatland, eastern Finland), cultivated with the bioenergy crop, reed canary grass. The plants were exposed to CO{sub 2}-13 for five hours and the label was thereafter determined in CO{sub 2} derived from the soil-root system. A two-pool isotope mixing model was used to separate sources of respiration. The isotopic approach showed that a minimum of 50% of the total CO{sub 2} originated from soil-microbial respiration. Even though the method uses undisturbed soil-plant systems, it has limitations concerning the experimental determination of the true isotopic signal of all components contributing to autotrophic respiration. A trenching experiment which was comparatively conducted resulted in a 71% fractional contribution of soil-microbial respiration. This value was likely overestimated. Further studies are needed to evaluate critically the output from these two partitioning approaches. (orig.)

  16. Breakdown of Clays by Ectomycorrhizal Fungi Through Changes in Oxidation State of Iron

    Science.gov (United States)

    Arocena, J. M.; Velde, B.

    2012-04-01

    Organisms are known to play a significant role in the transformation of clay minerals in soils. In our earlier work on canola, barley and alfalfa, we reported that Glomus, an arbuscular mycorrhizae, selectively transformed biotite into 2:1 expanding clays through the oxidation of Fe (II) in biotite to Fe(III). In this presentation, we will share similar results on clay transformations mediated by ectomycorrhizal fungi colonizing the roots of coniferous trees. Clay samples were isolated from rhizosphere soils of sub-alpine fir (Abies lasiocarpa (Hook.) Nutt.) in northern British Columbia (Canada). Chemical and mineralogical properties of these soils had been reported in our earlier paper. In this study, we subjected the clay samples to iron X-ray Absorption Near Edge Spectroscopy (Fe-XANES) at the Canadian Light Source synchrotron facility in Saskatoon (Canada). Our initial results showed relatively higher amounts of Fe (III) than Fe(II) in clays collected from rhizosphere of Piloderma (an ectomycorrhizal fungus) compared to soils influenced by non-Piloderma species and Control (non-rhizosphere soil). Coupled with the results of X-ray diffraction (XRD) analysis, there seems to be a positive relationship between the relative amounts of Fe(III) and the 2:1 expanding clays. This relationship is consistent with our results on agricultural plants in laboratory experiments on biotites where we suggested that oxidation of Fe(II) to Fe(III) results in the formation of 2:1 expanding clays. In a related data set on chlorite alteration we observed that after dithionite-citrate-bicarbonate (DCB) treatment, the d-spacing of a slight portion of chloritic expanding clays shifted to higher angles indicating decreased d-spacing towards micaceous clays. The reductive process initiated through the action of the DCB treatment seems to indicate the collapsed of expandable clays upon the reduction of Fe(III) to Fe(II). Initial results from the Fe-XANES and XRD analysis of DCB

  17. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.

    Science.gov (United States)

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-06-15

    The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Physiology, Fe(II oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Swanner

    2015-10-01

    Full Text Available Evidence for Fe(II oxidation and deposition of Fe(III-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF. While the exact mechanisms of Fe(II oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II-rich waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM are consistent with extracellular precipitation of Fe(III (oxyhydroxide minerals, but that >10% of Fe(III sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS in Fe(II toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II. These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  19. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments

    Science.gov (United States)

    Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.

    2009-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.

  20. Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin.

    Science.gov (United States)

    Chobot, Vladimir; Hadacek, Franz

    2011-01-01

    Flavonoids are ubiquitous phenolic plant metabolites. Many of them are well known for their pro- and antioxidant properties. Myricetin has been reported to be either a potent antioxidant or a pro-oxidant depending on the conditions. The reaction conditions for the pro- and antioxidant activities were therefore investigated using variations of the deoxyribose degradation assay systems. The deoxyribose degradation assay systems were conducted as follows; H(2)O(2)/Fe(III)/ascorbic acid, H(2)O(2)/Fe(III), Fe(III)/ascorbic acid, and Fe(III). Each system was carried out in two variants, FeCl(3) (iron ions added as FeCl(3)) and FeEDTA (iron added in complex with ethylenediaminetetraacetic acid). When ascorbic acid was present, myricetin showed antioxidant properties, especially when it occurred in complex with iron. In ascorbic acid-free systems, pro-oxidant activities prevailed, which where enhanced if iron was in complex with EDTA. Myricetin's antioxidant activity depends on both the reactive oxygen species (ROS) scavenging and iron ions chelation properties. The pro-oxidative properties are caused by reduction of molecular oxygen to ROS and iron(III) to iron(II). Myricetin is able to substitute for ascorbic acid albeit less efficiently.

  1. Location of nanophase Fe-oxides in palagonitic soils: Implication for Martian pigments

    Science.gov (United States)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1992-01-01

    Palagonitic materials from Mauna Kea, Hawaii, were identified as Mars analogs based on their spectral and magnetic properties. These materials probably resulted from hydrothermal alteration during eruption of the volcano and/or from weathering under ambient conditions. The reflectance spectra of the Mars surface obtained by Earth-based telescopes and the reflectance spectra of analogs obtained in the laboratory show features due to electronic transitions of Fe(III) in oxide particles that range in size from nanometer (nanophase) to micrometer sized or larger. The presence of Fe(III) suggests oxidizing conditions during the alteration process in Mars that may have occurred in the past or during a slow ongoing process. Two naturally altered basaltic samples from Hawaii (HWMK12 and HWMK13) and a laboratory-altered (PH-13-DCGT2) basaltic glass similar in elemental composition to the above two samples was examined. All three samples exhibited spectral characteristics similar to martian bright-region spectra. Chemical and mineralogical changes occurring at the surface of these basalts were studied in order to understand the basis for their Mars-like properties. The spectral properties of the three samples were examined after the removal of Fe oxides by chemical extractants.

  2. Final Report: Molecular mechanisms and kinetics of microbial anaerobic nitrate-dependent U(IV) and Fe(II) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy A. [Univ. of California, Merced, CA (United States); Asta, Maria P. [Univ. of California, Merced, CA (United States); Kanematsu, Masakazu [Univ. of California, Merced, CA (United States); Beller, Harry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Peng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-02-27

    In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactive transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.

  3. Size, density and composition of cell-mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: Impact on modern and ancient environments

    DEFF Research Database (Denmark)

    Posth, Nicole R.; Huelin, Sonia; Konhauser, Kurt O.

    2010-01-01

    Cell-Fe(III) mineral aggregates produced by anoxygenic Fe(II)-oxidizing photoautotrophic microorganisms (photoferrotrophs) may be influential in the modern Fe cycle and were likely an integral part of ancient biogeochemical cycles on early Earth. While studies have focused on the environmental...... iron phase depended on the composition of the medium: goethite formed in cultures grown by oxidation of dissolved Fe(II) medium in the presence of low phosphate concentrations, while poorly ordered ferrihydrite (or Fe(III) phosphates) formed when amorphous Fe(II) minerals (Fe(II)-phosphates) and high...

  4. Estimation of autotrophic maximum specific growth rate constant--experience from the long-term operation of a laboratory-scale sequencing batch reactor system.

    Science.gov (United States)

    Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R

    2008-04-01

    The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.

  5. Effects of manganese oxide on arsenic reduction and leaching from contaminated floodplain soil

    DEFF Research Database (Denmark)

    Ehlert, Katrin; Mikutta, Christian; Kretzschmar, Ruben

    2016-01-01

    Reductive release of the potentially toxic metalloid As from Fe(III) (oxyhydr)oxides has been identified as an important process leading to elevated As porewater concentrations in soils and sediments. Despite the ubiquitous presence of Mn oxides in soils and their oxidizing power toward As......(III), their impact on interrelated As, Fe, and Mn speciation under microbially reducing conditions remains largely unknown. For this reason, we employed a column setup and X-ray absorption spectroscopy to investigate the influence of increasing birnessite concentrations (molar soil Fe-to-Mn ratios: 4.8, 10.2, and 24.......7) on As speciation and release from an As-contaminated floodplain soil (214 mg As/kg) under anoxic conditions. Our results show that birnessite additions significantly decreased As leaching. The reduction of both As and Fe was delayed, and As(III) accumulated in birnessite-rich column parts, indicating...

  6. Photochemical oxidation of As(III) by vacuum-UV lamp irradiation.

    Science.gov (United States)

    Yoon, Sung-Hwan; Lee, Jai H; Oh, Sangeun; Yang, Jae E

    2008-07-01

    In this study, vacuum-UV (VUV) lamp irradiation emitting both 185 and 254 nm lights has been investigated as a new oxidation method for As(III). Laboratory scale experiments were conducted with a batch reactor and a commercial VUV lamp. Under the experimental conditions of this study, the employed VUV lamp showed a higher performance for As(III) oxidation compared to other photochemical oxidation methods (UV-C/H(2)O(2), UV-A/Fe(III)/H(2)O(2), and UV-A/TiO2). The VUV lamp oxidized 100 microM As(III) almost completely in 10 min, and the reaction occurred mainly due to OH radicals which were produced by photo-splitting of water (H(2)O+hv (lambda=185 nm)-->OH.+H.). There was a little possibility that photo-generated H(2)O(2) acted as a minor oxidant of As(III) at alkaline pHs. The effects of Fe(III), H(2)O(2), and humic acid (HA) on the As(III) oxidation by VUV lamp irradiation were investigated. While Fe(III) and H(2)O(2) increased the As(III) oxidation efficiency, HA did not cause a significant effect. The employed VUV lamp was effective for oxidizing As(III) not only in a Milli-Q water but also in a real natural water, without significant decrease in the oxidation efficiency. Since the formed As(V) should be removed from water, activated alumina (AA) was added as an adsorbent during the As(III) oxidation by VUV lamp irradiation. The combined use of VUV lamp irradiation and AA was much more effective for the removal of total arsenic (As(tot)=As(III)+As(V)) than the single use of AA. The As(tot) removal seemed to occur as a result of the pre-oxidation of As(III) and the subsequent adsorption of As(V) on AA. Alternatively, the combination of VUV lamp irradiation and coagulation/precipitation with FeCl(3) was also an effective removal strategy for As(tot). This study shows that vacuum-UV (VUV) lamp irradiation emitting both 185 and 254 nm lights is a powerful and environmentally friendly method for As(III) oxidation which does not require additional oxidants or

  7. Batch adsorptive removal of Fe(III), Cu(II) and Zn(II) ions in aqueous and aqueous organic–HCl media by Dowex HYRW2-Na Polisher resin as adsorbents

    OpenAIRE

    Aboul-Magd, Abdul-Aleem Soliman; Al-Husain, Salwa Al-Rashed; Al-Zahrani, Salma Ahmed

    2016-01-01

    Of the metal ions in tap, Nile, waste and sea water samples and some ores were carried out. Removal of heavy metal ions such as Fe(III), Cd(II), Zn(II), Cu(II), Mn(II), Mg(II), and Pb(II) from water and wastewater is obligatory in order to avoid water pollution. Batch shaking adsorption experiments to evaluate the performance of nitric and hydrochloric acid solutions in the removal of metal ions by cation exchange resin at the same conditions for both, such as the effect of initial metal ion ...

  8. Ca alginate as scaffold for iron oxide nanoparticles synthesis

    Directory of Open Access Journals (Sweden)

    P. V. Finotelli

    2008-12-01

    Full Text Available Recently, nanotechnology has developed to a stage that makes it possible to process magnetic nanoparticles for the site-specific delivery of drugs. To this end, it has been proposed as biomaterial for drug delivery system in which the drug release rates would be activated by a magnetic external stimuli. Alginate has been used extensively in the food, pharmaceutical and biomedical industries for their gel forming properties in the presence of multivalent cations. In this study, we produced iron oxide nanoparticles by coprecipitation of Fe(III and Fe(II. The nanoparticles were entrapped in Ca alginate beads before and after alginate gelation. XRD analysis showed that particles should be associated to magnetite or maghemite with crystal size of 9.5 and 4.3 nm, respectively. Studies using Mössbauer spectroscopy corroborate the superparamagnetic behavior. The combination of magnetic properties and the biocompatibility of alginate suggest that this biomaterial may be used as biomimetic system.

  9. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, B.D.; Amos, R.T.; Nico, P.S.; Fendorf, S.

    2010-03-15

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl

  10. Predominant Non-additive Effects of Multiple Stressors on Autotroph C:N:P Ratios Propagate in Freshwater and Marine Food Webs

    Science.gov (United States)

    Villar-Argaiz, Manuel; Medina-Sánchez, Juan M.; Biddanda, Bopaiah A.; Carrillo, Presentación

    2018-01-01

    A continuing challenge for scientists is to understand how multiple interactive stressor factors affect biological interactions, and subsequently, ecosystems–in ways not easily predicted by single factor studies. In this review, we have compiled and analyzed available research on how multiple stressor pairs composed of temperature (T), light (L), ultraviolet radiation (UVR), nutrients (Nut), carbon dioxide (CO2), dissolved organic carbon (DOC), and salinity (S) impact the stoichiometry of autotrophs which in turn shapes the nature of their ecological interactions within lower trophic levels in streams, lakes and oceans. Our analysis from 66 studies with 320 observations of 11 stressor pairs, demonstrated that non-additive responses predominate across aquatic ecosystems and their net interactive effect depends on the stressor pair at play. Across systems, there was a prevalence of antagonism in freshwater (60–67% vs. 47% in marine systems) compared to marine systems where synergism was more common (49% vs. 33–40% in freshwaters). While the lack of data impeded comparisons among all of the paired stressors, we found pronounced system differences for the L × Nut interactions. For this interaction, our data for C:P and N:P is consistent with the initial hypothesis that the interaction was primarily synergistic in the oceans, but not for C:N. Our study found a wide range of variability in the net effects of the interactions in freshwater systems, with some observations supporting antagonism, and others synergism. Our results suggest that the nature of the stressor pairs interactions on C:N:P ratios regulates the “continuum” commensalistic-competitive-predatory relationship between algae and bacteria and the food chain efficiency at the algae-herbivore interface. Overall, the scarce number of studies with even more fewer replications in each study that are available for freshwater systems have prevented a more detailed, insightful analysis. Our findings

  11. Predominant Non-additive Effects of Multiple Stressors on Autotroph C:N:P Ratios Propagate in Freshwater and Marine Food Webs

    Directory of Open Access Journals (Sweden)

    Manuel Villar-Argaiz

    2018-01-01

    Full Text Available A continuing challenge for scientists is to understand how multiple interactive stressor factors affect biological interactions, and subsequently, ecosystems–in ways not easily predicted by single factor studies. In this review, we have compiled and analyzed available research on how multiple stressor pairs composed of temperature (T, light (L, ultraviolet radiation (UVR, nutrients (Nut, carbon dioxide (CO2, dissolved organic carbon (DOC, and salinity (S impact the stoichiometry of autotrophs which in turn shapes the nature of their ecological interactions within lower trophic levels in streams, lakes and oceans. Our analysis from 66 studies with 320 observations of 11 stressor pairs, demonstrated that non-additive responses predominate across aquatic ecosystems and their net interactive effect depends on the stressor pair at play. Across systems, there was a prevalence of antagonism in freshwater (60–67% vs. 47% in marine systems compared to marine systems where synergism was more common (49% vs. 33–40% in freshwaters. While the lack of data impeded comparisons among all of the paired stressors, we found pronounced system differences for the L × Nut interactions. For this interaction, our data for C:P and N:P is consistent with the initial hypothesis that the interaction was primarily synergistic in the oceans, but not for C:N. Our study found a wide range of variability in the net effects of the interactions in freshwater systems, with some observations supporting antagonism, and others synergism. Our results suggest that the nature of the stressor pairs interactions on C:N:P ratios regulates the “continuum” commensalistic-competitive-predatory relationship between algae and bacteria and the food chain efficiency at the algae-herbivore interface. Overall, the scarce number of studies with even more fewer replications in each study that are available for freshwater systems have prevented a more detailed, insightful analysis. Our

  12. Subarctic wintertime dissolved iron speciation driven by thermal constraints on Fe(II) oxidation, dissolved organic matter and stream reach

    Science.gov (United States)

    Morita, Yuichiroh; Yamagata, Kei; Oota, Atsuki; Ooki, Atsushi; Isoda, Yutaka; Kuma, Kenshi

    2017-10-01

    We studied the seasonal variations in Fe(II), Fe(III), humic-like dissolved organic matter (DOM), nitrate and nitrite (NO3 + NO2), and silicate (Si(OH)4) in river waters of three subarctic rivers flowing into Hakodate Bay in southwestern Hokkaido, Japan from May 2010 to February 2014. High Fe(II) concentrations were detected in winter at the sampling sites where the river bottom was comprised of sandy or silty sediment, primarily the lower and middle reaches of the rivers. Conversely, from early spring to late autumn Fe(II) levels were low or undetectable. We infer that soluble Fe(II) concentration in these subarctic river waters is driven by the balance between the influx of Fe(II) to the river and the Fe(II) oxidation rates that determines the dynamics in Fe(II) concentration in the river water. The Fe(II) may originate from reductive dissolution of Fe(III) in the river sediment or from Fe(II)-bearing groundwater. The latter seems to be the most likely source during winter time. The high Fe(II) concentrations during winter is predominantly attributed to the extremely slow oxidation rate of Fe(II) to Fe(III) at low water temperature rather than to an actual increase in the flux of reduced Fe(II). Nevertheless, we propose that the flux of reduced Fe(II) from river sediments and groundwater in lowland area of the catchment to overlying river waters might be the most important sources of iron in river waters. This provides an important insight into the role of river processes and the interaction between climate and river morphology in determining the inputs of iron to subarctic coastal marine waters.

  13. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite.

    Science.gov (United States)

    Zhang, Huichun; Huang, Ching-Hua

    2007-01-01

    Seven members (ciprofloxacin, enrofloxacin, norfloxacin, ofloxacin, lomefloxacin, pipemidic acid, and flumequine) of the popular fluoroquinolone antibacterial agents (FQs) were found to adsorb strongly to goethite with 50-76% of the added FQ adsorbed under the experimental conditions. The adsorption isotherms fitted well to the Langmuir model. Adsorption was accompanied by slow oxidation of the FQs (except for flumequine) by goethite yielding a range of hydroxylated and dealkylated products. The oxidation kinetics showed different stages in reaction rate, mostly likely caused by accumulation of Fe(II) species on the oxide surface that slowed the reaction. Structurally related amines 1-phenylpiperazine, N-phenylmorpholine, aniline, and N,N-dimethylaniline were found to be oxidized by goethite without significant adsorption. The results strongly indicate that the carboxylic group of FQs is critical for adsorption while the piperazine ring is susceptible to oxidation. A radical mechanism is proposed for the oxidation of FQs by goethite which involves formation of a surface complex between the FQ and surface-bound Fe(III) through adsorption, and initial oxidation at the piperazinyl N1 atom to form radical intermediates that ultimately lead to the final products. This study indicates that Fe oxides in aquatic sediments may well play an important role in the natural attenuation of fluoroquinolone antibacterial agents.

  14. Autotrophic and heterotrophic soil respiration determined with trenching, soil CO2 fluxes and 13CO2/12CO2 concentration gradients in a boreal forest ecosystem

    Science.gov (United States)

    Pumpanen, Jukka; Shurpali, Narasinha; Kulmala, Liisa; Kolari, Pasi; Heinonsalo, Jussi

    2017-04-01

    Soil CO2 efflux forms a substantial part of the ecosystem carbon balance, and it can contribute more than half of the annual ecosystem respiration. Recently assimilated carbon which has been fixed in photosynthesis during the previous days plays an important role in soil CO2 efflux, and its contribution is seasonally variable. Moreover, the recently assimilated C has been shown to stimulate the decomposition of recalcitrant C in soil and increase the mineralization of nitrogen, the most important macronutrient limiting gross primary productivity (GPP) in boreal ecosystems. Podzolic soils, typical in boreal zone, have distinctive layers with different biological and chemical properties. The biological activity in different soil layers has large seasonal variation due to vertical gradient in temperature, soil organic matter and root biomass. Thus, the source of CO2 and its components have a vertical gradient which is seasonally variable. The contribution of recently assimilated C and its seasonal as well as spatial variation in soil are difficult to assess without disturbing the system. The most common method of partitioning soil respiration into its components is trenching which entails the roots being cut or girdling where the flow of carbohydrates from the canopy to roots has been isolated by cutting of the phloem. Other methods for determining the contribution of autotrophic (Ra) and heterotrophic (Rh) respiration components in soil CO2 efflux are pulse labelling with 13CO2 or 14CO2 or the natural abundance of 13C and/or 14C isotopes. Also differences in seasonal and short-term temperature response of soil respiration have been used to separate Ra and Rh. We compared the seasonal variation in Ra and Rh using the trenching method and differences between seasonal and short-term temperature responses of soil respiration. I addition, we estimated the vertical variation in soil biological activity using soil CO2 concentration and the natural abundance of 13C and 12C

  15. Pollution Control Meets Sustainability: Structure-Activity Studies on New Iron Oxide-Based CO Oxidation Catalysts.

    Science.gov (United States)

    Schoch, Roland; Bauer, Matthias

    2016-08-09

    A new class of catalysts for the oxidation of CO based on iron oxide as a biocompatible, earth-abundant and non-toxic metal is presented. The catalytic activities achieved with these catalysts provide promising milestones towards the substitution of noble metals in CO oxidation catalysts. The catalysts can be obtained by using iron core-shell nanoparticle precursors. The metal used for the shell material determines whether the iron core is integrated in or isolated from the support. The active iron site is effectively integrated into the γ-Al2 O3 support if an aluminum shell is present in the core-shell precursor. When the metal used for the shell is different from the support, an isolated structure is formed. Using this directed synthesis approach, different iron oxide species can be obtained and their structural differences are linked to distinct catalytic activities, as demonstrated by combined in-depth analytical studies using XRD, X-ray absorption spectroscopy (XAS), UV/Vis, and Brunauer-Emmett-Teller (BET) analysis. The key species responsible for high catalytic activity is identified as isolated tetrahedrally coordinated Fe(III) centers, whereas aggregation leads to a reduction in activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Antioxidative Mechanisms of Sulfite and Protein-Derived Thiols during Early Stages of Metal Induced Oxidative Reactions in Beer.

    Science.gov (United States)

    Lund, Marianne N; Krämer, Anna C; Andersen, Mogens L

    2015-09-23

    The radical-mediated reactions occurring during the early stages of beer storage were studied by following the rate of oxygen consumption, radical formation as detected by electron spin resonance spectroscopy, and concentrations of the antioxidant compounds sulfite and thiols. Addition of either Fe(III) or Fe(II) had similar effects, indicating that a fast redox equilibrium is obtained between the two species in beer. Addition of iron in combination with hydrogen peroxide gave the most pronounced levels of oxidation due to a direct initiation of ethanol oxidation through generation of hydroxyl radicals by the Fenton reaction. The concentration of sulfite decreased more than the thiol concentration, suggesting that thiols play a secondary role as antioxidants by mainly quenching 1-hydroxyethyl radicals that are intermediates in the oxidation of ethanol. Increasing the temperature had a minor effect on the rate of oxygen consumption.

  17. Heme-independent Redox Sensing by the Heme-Nitric Oxide/Oxygen-binding Protein (H-NOX) from Vibrio cholerae.

    Science.gov (United States)

    Mukhopadyay, Roma; Sudasinghe, Nilusha; Schaub, Tanner; Yukl, Erik T

    2016-08-19

    Heme nitric oxide/oxygen (H-NOX)-binding proteins act as nitric oxide (NO) sensors among various bacterial species. In several cases, they act to mediate communal behavior such as biofilm formation, quorum sensing, and motility by influencing the activity of downstream signaling proteins such as histidine kinases (HisKa) in a NO-dependent manner. An H-NOX/HisKa regulatory circuit was recently identified in Vibrio cholerae, and the H-NOX protein has been spectroscopically characterized. However, the influence of the H-NOX protein on HisKa autophosphorylation has not been evaluated. This process may be important for persistence and pathogenicity in this organism. Here, we have expressed and purified the V. cholerae HisKa (HnoK) and H-NOX in its heme-bound (holo) and heme-free (apo) forms. Autophosphorylation assays of HnoK in the presence of H-NOX show that the holoprotein in the Fe(II)-NO and Fe(III) forms is a potent inhibitor of HnoK. Activity of the Fe(III) form and aerobic instability of the Fe(II) form suggested that Vibrio cholerae H-NOX may act as a sensor of the redox state as well as NO. Remarkably, the apoprotein also showed robust HnoK inhibition that was dependent on the oxidation of cysteine residues to form disulfide bonds at a highly conserved zinc site. The importance of cysteine in this process was confirmed by mutagenesis, which also showed that holo Fe(III), but not Fe(II)-NO, H-NOX relied heavily upon cysteine for activation. These results highlight a heme-independent mechanism for activation of V. cholerae H-NOX that implicates this protein as a dual redox/NO sensor. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Mutlu, A. Gizem; Jensen, Marlene Mark

    2014-01-01

    Autotrophic nitrogen removal is regarded as a resource efficient process to manage nitrogen-rich residual streams. However, nitrous oxide emissions of these processes are poorly documented and strategies to mitigate emissions unknown. In this study, two sequencing batch reactors performing single......-stage nitritation/anammox were operated under different aeration strategies, gradually adjusted over six months. At constant but limiting oxygen loading, synthetic reject water was fed (0.75g-N/L.d) and high nitrogen removal efficiencies (83 +/- 5 and 88 +/- 2%) obtained. Dynamics of liquid phase nitrous (N2O......) and nitric oxide (NO) concentrations were monitored and N2O emissions calculated. Significant decreases in N2O emissions were obtained when the frequency of aeration was increased while maintaining a constant air flow rate (from >6 to 1.7% Delta N2O/Delta TN). However, no significant effect on the emissions...

  19. Extending the benchmark simulation model no2 with processes for nitrous oxide production and side-stream nitrogen removal

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Sin, Gürkan; Gernaey, Krist V.

    2015-01-01

    increased the total nitrogen removal by 10%; (ii) reduced the aeration demand by 16% compared to the base case, and (iii) the activity of ammonia-oxidizing bacteria is most influencing nitrous oxide emissions. The extended model provides a simulation platform to generate, test and compare novel control......In this work the Benchmark Simulation Model No.2 is extended with processes for nitrous oxide production and for side-stream partial nitritation/Anammox (PN/A) treatment. For these extensions the Activated Sludge Model for Greenhouse gases No.1 was used to describe the main waterline, whereas...... the Complete Autotrophic Nitrogen Removal (CANR) model was used to describe the side-stream (PN/A) treatment. Comprehensive simulations were performed to assess the extended model. Steady-state simulation results revealed the following: (i) the implementation of a continuous CANR side-stream reactor has...

  20. Al(III, Cu(II, Co(II, Pb(II, Mn(II, and Fe(III DETERMINATIONS IN VARIOUS SAMPLES by FAAS AFTER SOLID PHASE EXTRACTION

    Directory of Open Access Journals (Sweden)

    Şule Dinç Zor

    2016-08-01

    Full Text Available In this study, a novel method for the preconcentration of of Al(III, Cu(II, Co(II, Pb(II, Mn(II, and Fe(III in the form of their hematoxylin chelates using a column filled with Amberlite XAD-16 resin was proposed. Metal chelates collected on the resin were eluted by 1 mol/L nitric acid in acetone and determined by flame atomic absorption spectrometry (FAAS. The influences of some analytical parameters including pH, flow rates, sample volume, the type and concentration of eluent on the preconcentration efficiency were examined. Effects of some interfering ions on the recovery values of analytes were also investigated. While optimum pH value was 8.5 for Cu(II, Co(II, Mn(II, and Fe(III ions, it was 6.5 for Al(III and Pb(II ions. Appropriate eluent for quantitative elution was 8 mL of 1 mol/L nitric acid in acetone. Sample and eluent flow rates were found to be 2 mL/min. The maximum sample volume was established by changing the sample volume from 50 mL to 2500 mL. The sample volume does not significantly affect recovery within the range of 50-2000 mL of the sample volume for the investigated metal ions. The preconcentration factor obtained was 400. Under optimized conditions, the detection limits found as concentration which is threefold of the standard deviation of the blank solution were 0.053, 0.080, 0.620, 1.310, 0.330 and 0.120 µg/L for Al(III, Cu(II, Co(II, Pb(II, Mn(II, and Fe(III ions, respectively and the adsorption capacities for these ions were 0.47 ± 0.02, 0.81 ± 0.01, 0.66 ± 0.01, 0.58 ± 0.01, 0.91 ± 0.01, and 0.73 ± 0.02 mg/g, respectively. By using the certified reference materials, the accuracy of the method was verified. The proposed method was successfully applied to cigarette, hair, and some vegetable species.

  1. Spectroscopic and thermal degradation behavior of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with thiopental sodium anesthesia drug

    Science.gov (United States)

    Refat, Moamen S.

    2013-04-01

    A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized with thiopental sodium anesthesia drug. The elemental analyses of the complexes are confined to stoichiometry of the formulas [M(TPL)3]ṡnH2O (M = Cr(III) or Fe(III); n = 6 or 5), [M(TPL)2(H2O)2]ṡnH2O (M = Mn(II), Co(II) or Ni(II); n = 0 or 4), and [M(TPL)2] (M = Cu(II) or Zn(II); n = 2 or 0) respectively, where TPL is thiopental chelating agent. Structures have been discussed and suggested upon elemental analyses, infrared, Raman, electronic, electron spin resonance, 1H NMR spectral data and magnetic studies. The X-ray powder diffraction (XRD) was performed of metal complexes. The XRD patterns indicate crystalline nature for the complexes. The measured low molar conductance values in dimethylsulfoxide indicate that the complexes are non-electrolyte nature. Spectroscopic discussion refer that coordination take place through three types: Cdbnd N (pyrimidine moiety) nitrogen and C2sbnd S (2-thiolate group) for Cr(III), Mn(II) and Fe(III), C6dbnd O (amido group) oxygen and C2sbnd S (2-thiolate group) for Co(II) and Ni(II), and Cu(II) and Zn(II) ions coordinated via Cdbnd N (pyrimidine moiety) nitrogen, C2dbnd S (2-thiolate group) and C6dbnd O (amido group) oxygen, respectively. The thermal behavior (TG/DTG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The thiopental and its complexes have been screened for their antimicrobial (G+ and G-) bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa) and fungi (Aspergillus flavus and Candida albicans) activities by minimum inhibitory concentration (MIC) method.

  2. Quantitative analysis of O-2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria

    DEFF Research Database (Denmark)

    Lueder, U.; Druschel, G.; Emerson, D.

    2018-01-01

    The classical approach for the cultivation of neutrophilic microaerophilic Fe(II)-oxidizing bacteria is agar-based gradient tubes where these bacteria find optimal growth conditions in opposing gradients of oxygen (O-2) and dissolved Fe(II) (Fe2+). The goals of this study were to quantify...... imply that transfer of cultures to fresh tubes within 48-72 h is crucial to provide optimal growth conditions for microaerophilic Fe(II)-oxidizers, particularly for the isolation of new strains....... the first days in regions with an O-2 concentration of 20-40 mu M andwere confirmed to be related to bacterial growth. Microbial Fe(II) oxidation could compete only for the first days with the abiotic reaction after which heterogeneous Fe(II) oxidation, catalyzed by Fe(III) minerals, dominated. Our results...

  3. Ethylene Oxide

    Science.gov (United States)

    Learn about ethylene oxide, which can raise your risk of lymphoma and leukemia. Exposure may occur through industrial emissions, tobacco smoke, and the use of products sterilized with ethylene oxide, such as certain medical products or cosmetics.

  4. Reduction of Tc(VII) by Fe(II) sorbed on Al (hydr)oxides.

    Science.gov (United States)

    Peretyazhko, T; Zachara, J M; Heald, S M; Kukkadapu, R K; Liu, C; Plymale, A E; Resch, C T

    2008-08-01

    Under oxic conditions, Tc exists as the soluble, weakly sorbing pertechnetate [TcO4-] anion. The reduced form of technetium, Tc(IV), is stable in anoxic environments and is sparingly soluble as TcO2 x nH2O(s). Here we investigate the heterogeneous reduction of Tc(VII) by Fe(II) adsorbed on Al (hydr)oxides [diaspore (alpha-AlOOH) and corundum (alpha-Al2O3)]. Experiments were performed to study the kinetics of Tc(VII) reduction, examine changes in Fe surface speciation during Tc(VII) reduction (Mössbauer spectroscopy), and identify the nature of Tc(IV)-containing reaction products (X-ray absorption spectroscopy). We found that Tc(VII) was completely reduced by adsorbed Fe(II) within 11 (diaspore suspension) and 4 days (corundum suspension). Mössbauer measurements revealed thatthe Fe(II) signal became less intense with Tc(VII) reduction and was accompanied by an increase in the intensity of the Fe(III) doublet and magnetically ordered Fe(III) sextet signals. Tc-EXAFS spectroscopy revealed that the final heterogeneous redox product on corundum was similar to Tc(IV) oxyhydroxide, TcO2 x nH2O.

  5. Effects of exogenous pyoverdines on Fe availability and their impacts on Mn(II) oxidation by Pseudomonas putida GB-1

    Science.gov (United States)

    Lee, Sung-Woo; Parker, Dorothy L.; Geszvain, Kati; Tebo, Bradley M.

    2014-01-01

    Pseudomonas putida GB-1 is a Mn(II)-oxidizing bacterium that produces pyoverdine-type siderophores (PVDs), which facilitate the uptake of Fe(III) but also influence MnO2 formation. Recently, a non-ribosomal peptide synthetase mutant that does not synthesize PVD was described. Here we identified a gene encoding the PVDGB-1 (PVD produced by strain GB-1) uptake receptor (PputGB1_4082) of strain GB-1 and confirmed its function by in-frame mutagenesis. Growth and other physiological responses of these two mutants and of wild type were compared during cultivation in the presence of three chemically distinct sets of PVDs (siderotypes n°1, n°2, and n°4) derived from various pseudomonads. Under iron-limiting conditions, Fe(III) complexes of various siderotype n°1 PVDs (including PVDGB-1) allowed growth of wild type and the synthetase mutant, but not the receptor mutant, confirming that iron uptake with any tested siderotype n°1 PVD depended on PputGB1_4082. Fe(III) complexes of a siderotype n°2 PVD were not utilized by any strain and strongly induced PVD synthesis. In contrast, Fe(III) complexes of siderotype n°4 PVDs promoted the growth of all three strains and did not induce PVD synthesis by the wild type, implying these complexes were utilized for iron uptake independent of PputGB1_4082. These differing properties of the three PVD types provided a way to differentiate between effects on MnO2 formation that resulted from iron limitation and others that required participation of the PVDGB-1 receptor. Specifically, MnO2 production was inhibited by siderotype n°1 but not n°4 PVDs indicating PVD synthesis or PputGB1_4082 involvement rather than iron-limitation caused the inhibition. In contrast, iron limitation was sufficient to explain the inhibition of Mn(II) oxidation by siderotype n°2 PVDs. Collectively, our results provide insight into how competition for iron via siderophores influences growth, iron nutrition and MnO2 formation in more complex environmental

  6. Biosynthesis, characterization and biological evalutation of Fe(III) and Cu(II) complexes of neoaspergillic acid, a hydroxamate siderophore produced by co-cultures of two marine-derived mangrove epiphytic fungi.

    Science.gov (United States)

    Zhu, Feng; Wu, Jingshu; Chen, Guangying; Lu, Weihong; Pan, Jiahui

    2011-08-01

    A hydroxamate siderophore, neoaspergillic acid (1), and a red pigment, ferrineoaspergillin (2) which is an Fe(III) complex of 1, were produced by co-cultures of two epiphytic fungi from a rotten fruit of the mangrove Avicennia marina from the South China Sea, and a new Cu(II) complex of 1, designated as cuprineoaspergillin (3), was also prepared by treatment of 1 with cupric acetate. All the compounds (1-3) were characterized by physical and chemical techniques, including 1H NMR, ESIMS, and photoelectron energy spectra. In the bioassays, compounds 1-3 showed significant inhibitory activities against selected Gram-positive and Gram-negative bacteria, and compound 1 also exhibited moderate inhibitory activities against human cancer cell lines SPC-A-1, BEL-7402, SGC-7901 and K562.

  7. Synthesis of a 3D lanthanum(III) MOFs as a multi-chemosensor to Cr(VI)-containing anion and Fe(III) cation based on a flexible ligand

    Science.gov (United States)

    Ma, Yang-Min; Liu, Tong; Huang, Wen-Huan

    2018-02-01

    Based on La(NO3)3·6H2O and 4,4‧-((5-carboxy-1,3-phenylene)bis(oxy))dibenzoic acid (H3cpbda), a 3D porous MOFs, [La(cpbda)(H2O)1.5]n (1), was synthesized by hydrothermal method and further characterized by single-crystal X-ray diffraction, power X-ray diffraction, IR spectroscopy, thermal-gravimetric analysis and fluorescence spectroscopy. Owing to its good stabilities and fluorescence property, the sensing experiments on sixteen cations and eleven anions were implemented. Moreover, the further titration processes show 1 can sensitively detect the Fe(III) cation and Cr(VI)-containing anions by quenching responses.

  8. Genomic insights into metabolic versatility of a lithotrophic sulfur-oxidizing diazotrophic Alphaproteobacterium Azospirillum thiophilum.

    Science.gov (United States)

    Orlova, Maria V; Tarlachkov, Sergey V; Dubinina, Galina A; Belousova, Elena V; Tutukina, Maria N; Grabovich, Margarita Y

    2016-12-01

    Diazotrophic Alphaproteobacteria of the genus Azospirillum are usually organotrophs, although some strains of Azospirillum lipoferum are capable of hydrogen-dependent autotrophic growth. Azospirillum thiophilum strain was isolated from a mineral sulfide spring, a biotope highly unusual for azospirilla. Here, the metabolic pathways utilized by A. thiophilum were revealed based on comprehensive analysis of its genomic organization, together with physiological and biochemical approaches. The A. thiophilum genome contained all the genes encoding the enzymes of carbon metabolism via glycolysis, tricarboxylic acid cycle and glyoxylate cycle. Genes for a complete set of enzymes responsible for autotrophic growth, with an active Calvin-Benson-Bassham cycle, were also revealed, and activity of the key enzymes was determined. Microaerobic chemolithoautotrophic growth of A. thiophilum was detected in the presence of thiosulfate and molecular hydrogen, being in line with the discovery of the genes encoding the two enzymes involved in dissimilatory thiosulfate oxidation, the Sox-complex and thiosulfate dehydrogenase and Ni-Fe hydrogenases. Azospirillum thiophilum utilizes methanol and formate, producing CO 2 that can further be metabolized via the Calvin cycle. Finally, it is capable of anaerobic respiration, using tetrathionate as a terminal electron acceptor. Such metabolic versatility is of great importance for adaptation of A. thiophilum to constantly changing physicochemical environment. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  10. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna

    2015-01-01

    , and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results...

  11. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (application of Feammox-bacteria.

  12. A Synthetic Peptide with the Putative Iron Binding Motif of Amyloid Precursor Protein (APP) Does Not Catalytically Oxidize Iron

    Science.gov (United States)

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2012-01-01

    The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and – by implication – of APP should be re-evaluated. PMID:22916096

  13. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  14. Kinetic studies of the impact of thiocyanate moiety on the catalytic properties of Cu(II) and Fe(III) complexes of a new Mannich base

    Science.gov (United States)

    Ayeni, Ayowole O.; Watkins, Gareth M.

    2018-04-01

    Four new metal complexes of a novel Mannich base 5-methyl-2-((4-(pyridin-2-yl)piperazin-1-yl)methyl)phenol (HL) have been prepared. The compounds were characterized by an array of analytical and spectroscopic methods including Nuclear Magnetic Resonance, Infra-red and UV-Visible spectroscopy. Compounds 1-4 behaved as effective catalysts towards the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to its corresponding quinone in the presence of molecular oxygen in DMF solution while compound 4 proved to be the best catalyst with a turnover rate of 17.93 ± 1.10 h-1 as other complexes showed lower rates of oxidation. Also with the exception of dinuclear iron complex (4); thiocyanate containing Cu(II) complex exhibited lower catecholase activity compared to the Cu(II) complex without it.

  15. RNA oxidation

    DEFF Research Database (Denmark)

    Kjaer, L. K.; Cejvanovic, V.; Henriken, T.

    2015-01-01

    RNA modification has attracted increasing interest as it is realized that epitranscriptomics is important in disease development. In type 2 diabetes we have suggested that high urinary excretion of 8-oxo-2'-Guanosine (8oxoGuo), as a measure of global RNA oxidation, is associated with poor survival.......9 significant hazard ratio for death compared with the quartile with the lowest 8oxoGuo excretion when adjusted for age, sex, BMI, smoker status, s-HbA1c, urine protein excretion and s-cholesterol. We conclude that it is now established that RNA oxidation is an independent risk factor for death in type 2...... diabetes. In agreement with our previous finding, DNA oxidation did not show any prognostic value. RNA oxidation represents oxidative stress intracellularly, presumably predominantly in the cytosol. The mechanism of RNA oxidation is not clear, but hypothesized to result from mitochondrial dysfunction...

  16. Selective oxidation

    International Nuclear Information System (INIS)

    Cortes Henao, Luis F.; Castro F, Carlos A.

    2000-01-01

    It is presented a revision and discussion about the characteristics and factors that relate activity and selectivity in the catalytic and not catalytic partial oxidation of methane and the effect of variables as the temperature, pressure and others in the methane conversion to methanol. It thinks about the zeolites use modified for the catalytic oxidation of natural gas

  17. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.

    Science.gov (United States)

    Percak-Dennett, E; He, S; Converse, B; Konishi, H; Xu, H; Corcoran, A; Noguera, D; Chan, C; Bhattacharyya, A; Borch, T; Boyd, E; Roden, E E

    2017-09-01

    Pyrite (FeS 2 ) is the most abundant sulfide mineral on Earth and represents a significant reservoir of reduced iron and sulfur both today and in the geologic past. In modern environments, oxidative transformations of pyrite and other metal sulfides play a key role in terrestrial element partitioning with broad impacts to contaminant mobility and the formation of acid mine drainage systems. Although the role of aerobic micro-organisms in pyrite oxidation under acidic-pH conditions is well known, to date there is very little known about the capacity for aerobic micro-organisms to oxidize pyrite at circumneutral pH. Here, we describe two enrichment cultures, obtained from pyrite-bearing subsurface sediments, that were capable of sustained cell growth linked to pyrite oxidation and sulfate generation at neutral pH. The cultures were dominated by two Rhizobiales species (Bradyrhizobium sp. and Mesorhizobium sp.) and a Ralstonia species. Shotgun metagenomic sequencing and genome reconstruction indicated the presence of Fe and S oxidation pathways in these organisms, and the presence of a complete Calvin-Benson-Bassham CO 2 fixation system in the Bradyrhizobium sp. Oxidation of pyrite resulted in thin (30-50 nm) coatings of amorphous Fe(III) oxide on the pyrite surface, with no other secondary Fe or S phases detected by electron microscopy or X-ray absorption spectroscopy. Rates of microbial pyrite oxidation were approximately one order of magnitude higher than abiotic rates. These results demonstrate the ability of aerobic microbial activity to accelerate pyrite oxidation and expand the potential contribution of micro-organisms to continental sulfide mineral weathering around the time of the Great Oxidation Event to include neutral-pH environments. In addition, our findings have direct implications for the geochemistry of modern sedimentary environments, including stimulation of the early stages of acid mine drainage formation and mobilization of pyrite

  18. Column solid phase extraction and flame atomic absorption spectrometric determination of manganese(II) and iron(III) ions in water, food and biological samples using 3-(1-methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid on synthesized graphene oxide.

    Science.gov (United States)

    Pourjavid, Mohammad Reza; Sehat, Ali Akbari; Arabieh, Masoud; Yousefi, Seyed Reza; Hosseini, Majid Haji; Rezaee, Mohammad

    2014-02-01

    A modified, selective, highly sensitive and accurate procedure for the determination of trace amounts of manganese and iron ions is established in the presented work. 3-(1-Methyl-1H-pyrrol-2-yl)-1H-pyrazole-5-carboxylic acid (MPPC) and graphene oxide (GO) were used in a glass column as chelating reagent and as adsorbent respectively prior to their determination by flame atomic absorption spectrometry. The adsorption mechanism of titled metals complexes on GO was investigated by using computational chemistry approach based on PM6 semi-empirical potential energy surface (PES). The effect of some parameters including pH, flow rate and volume of sample and type, volume and concentration of eluent, as well as the adsorption capacity of matrix ions on the recovery of Mn(II) and Fe(III) was investigated. The limit of detection was 145 and 162 ng L(-1) for Mn(II) and Fe(III), respectively. Calibration was linear over the range of 0.31-355 μg L(-1) for Mn(II) and 0.34-380 μg L(-1) for Fe(III) ions. The method was successfully applied for the determination of understudied ions in water, food and biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology

    Directory of Open Access Journals (Sweden)

    Ebrahiem E. Ebrahiem

    2017-05-01

    Full Text Available The general strategy of this study was based on evaluation of the possibility of applying advanced photo-oxidation technique (Fenton oxidation process for removal of the residuals organic pollutants present in cosmetic wastewater. The different parameters that affect the chemical oxidation process for dyes in their aqueous solutions were studied by using Fenton’s reaction. These parameters are pH, hydrogen peroxide (H2O2 dose, ferrous sulfate (FeSO4·7H2O dose, Initial dye concentration, and time. The optimum conditions were found to be: pH 3, the dose of 1 ml/l H2O2 and 0.75 g/l for Fe(II and Fe(III and reaction time 40 min. Finally, chemical oxygen demands (COD, before and after oxidation process was measured to ensure the entire destruction of organic dyes during their removal from wastewater. The experimental results show that Fenton’s oxidation process successfully achieved very good removal efficiency over 95%.

  20. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  1. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    .00(OH)5.31(C12H23O2)0.66(SO4)0.51 and FeIII3O2.18(OH)3.13(C12H23O2)0.56(SO4)0.47, respectively. oxGRC12 has the same planar layer structure as GRC12, as revealed by identical powder X‐ray diffraction patterns. The electrostatic interactions between the interlayer dodecanoate (C12) anions and the iron...... hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron...

  2. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur

    Science.gov (United States)

    Balci, N.; Mayer, B.; Shanks, Wayne C.; Mandernack, K.W.

    2012-01-01

    Studies of metal sulfide oxidation in acid mine drainage (AMD) systems have primarily focused on pyrite oxidation, although acid soluble sulfides (e.g., ZnS) are predominantly responsible for the release of toxic metals. We conducted a series of biological and abiotic laboratory oxidation experiments with pure and Fe-bearing sphalerite (ZnS & Zn 0.88Fe 0.12S), respectively, in order to better understand the effects of sulfide mineralogy and associated biogeochemical controls of oxidation on the resultant ?? 34S and ?? 18O values of the sulfate produced. The minerals were incubated in the presence and absence of Acidithiobacillus ferrooxidans at an initial solution pH of 3 and with water of varying ?? 18O values to determine the relative contributions of H 2O-derived and O 2-derived oxygen in the newly formed sulfate. Experiments were conducted under aerobic and anaerobic conditions using O 2 and Fe(III) aq as the oxidants, respectively. Aerobic incubations with A. ferrooxidans, and S o as the sole energy source were also conducted. The ??34SSO4 values from both the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq produced sulfur isotope fractionations (??34SSO4-ZnS) of up to -2.6???, suggesting the accumulation of sulfur intermediates during incomplete oxidation of the sulfide. No significant sulfur isotope fractionation was observed from any of the aerobic experiments. Negative sulfur isotope enrichment factors (??34SSO4-ZnS) in AMD systems could reflect anaerobic, rather than aerobic pathways of oxidation. During the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq all of the sulfate oxygen was derived from water, with measured ?? 18OSO 4-H 2O values of 8.2??0.2??? and 7.5??0.1???, respectively. Also, during the aerobic oxidation of ZnS Fe and S o by A. ferrooxidans, all of the sulfate oxygen was derived from water with similar measured ?? 18OSO 4-H 2O values of 8.1??0.1??? and 8.3??0.3???, respectively. During biological oxidation

  3. Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate, and copper(I) cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Virender K. [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)], E-mail: vsharma@fit.edu; Yngard, Ria A. [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Cabelli, Diane E. [Department of Chemistry, Brookhaven National Laboratory, Long Island, Upton, NY 11973 (United States); Clayton Baum, J. [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2008-06-15

    Cyanide (CN{sup -}), thiocyanate (SCN{sup -}), and copper(I) cyanide (Cu(CN){sub 4}{sup 3-}) are common constituents in the wastes of many industrial processes such as metal finishing and gold mining, and their treatment is required before the safe discharge of effluent. The oxidation of CN{sup -}, SCN{sup -}, and Cu(CN){sub 4}{sup 3-} by ferrate(VI) (Fe{sup VI}O{sub 4}{sup 2-}; Fe(VI)) and ferrate(V) (Fe{sup V}O{sub 4}{sup 3-}; Fe(V)) has been studied using stopped-flow and premix pulse radiolysis techniques. The rate laws for the oxidation of cyanides were found to be first-order with respect to each reactant. The second-order rate constants decreased with increasing pH because the deprotonated species, FeO{sub 4}{sup 2-}, is less reactive than the protonated Fe(VI) species, HFeO{sub 4}{sup -}. Cyanides react 10{sup 3}-10{sup 5} times faster with Fe(V) than with Fe(VI). The Fe(V) reaction with CN{sup -} proceeds by sequential one-electron reductions from Fe(V) to Fe(IV) to Fe(III). However, a two-electron transfer process from Fe(V) to Fe(III) occurs in the reaction of Fe(V) with SCN{sup -} and Cu(CN){sub 4}{sup 3-}. The toxic CN{sup -} species of cyanide wastes is converted into relatively non-toxic cyanate (NCO{sup -}). Results indicate that Fe(VI) is highly efficient in removing cyanides from electroplating rinse water and gold mill effluent.

  4. Liquid-liquid extraction (LLE) of Fe(III) and Ti(IV) by bis-(2-ethyl-hexyl) phosphoric acid (D2EHPA) in sulfuric acid medium; Extracao liquido-liquido de ferro (III) e titanio (IV) pelo acido bis-(2-etil-hexil) fosforico (D2EHPA) em meio de acido sulfurico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Glauco Correa da; Cunha, Jose Waldemar Silva Dias da [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Dept. de Quimica e Materiais Nucleares; Dweck, Jo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica. Dept. de Processos Inorganicos; Afonso, Julio Carlos [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica]. E-mail: julio@iq.ufrj.br

    2008-07-01

    This work presents a study on the separation of Fe(III) and Ti(IV) from sulfuric acid leaching solutions of ilmenite (FeTiO{sub 3}) using liquid-liquid extraction with D2EHPA in n-dodecane as extracting agent. The distribution coefficients (K{sub D}) of the elements related to free acidity and concentration of Fe(III) and Ti(IV) were determined. Free acidity was changed from 3x10{sup -2} to 11.88 mol L{sup -1} and D2EHPA concentration was fixed at 1.5 mol L{sup 1}. Recovery of final products as well as recycling of wastes generated in the process were also investigated. The LLE process as a feasible alternative to obtain high-purity TiO{sub 2}. (author)

  5. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some people use it as ... one to four times daily depending on which brand is used and what condition you have. Follow ...

  6. Iron Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Amonette, James E.

    2016-09-19

    Abstract: Fe oxides are common clay-sized oxide, oxyhydroxide and hydroxide soil minerals. They are compounds of Fe, O, and H that have structures based on close-packed arrays of O. The octahedral and tetrahedral cavities within these arrays are filled with either Fe3+ or Fe2+ to form Fe(O/OH)6, FeO6, or FeO4 structural units. All of the naturally occurring Fe oxide minerals usually undergo some degree of isomorphous substitution of other metal ions for Fe in their structures. Relatively simple techniques may be used to identify Fe oxides in the field based on their typical colors and magnetic properties. In the laboratory, a variety of instrumental techniques can be used to confirm phase identity and to quantify amount. Of these, X-ray diffraction, infrared spectroscopy, electron microscopy, thermal analysis, and Mössbauer spectroscopy are the most commonly used techniques. As oxides, the functional groups on their surfaces may have positive, negative, or no charge depending on pH and on the concentration and nature of other ions in the contact solution. A net positive surface charge usually is observed in soils because Fe oxides have a point-of-zero-charge in the neutral or slightly basic pHs. The functional groups on the surface form complexes with cations and anions from the aqueous phase. Their sorption and electron-buffering properties significantly affect the geochemical cycles of almost all elements having agronomic or environmental significance.

  7. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Yin, Huaqun; Zhang, Xian; Li, Xiaoqi; He, Zhili; Liang, Yili; Guo, Xue; Hu, Qi; Xiao, Yunhua; Cong, Jing; Ma, Liyuan; Niu, Jiaojiao; Liu, Xueduan

    2014-07-04

    Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights

  8. Batch adsorptive removal of Fe(III, Cu(II and Zn(II ions in aqueous and aqueous organic–HCl media by Dowex HYRW2-Na Polisher resin as adsorbents

    Directory of Open Access Journals (Sweden)

    Abdul-Aleem Soliman Aboul-Magd

    2016-09-01

    Full Text Available Of the metal ions in tap, Nile, waste and sea water samples and some ores were carried out. Removal of heavy metal ions such as Fe(III, Cd(II, Zn(II, Cu(II, Mn(II, Mg(II, and Pb(II from water and wastewater is obligatory in order to avoid water pollution. Batch shaking adsorption experiments to evaluate the performance of nitric and hydrochloric acid solutions in the removal of metal ions by cation exchange resin at the same conditions for both, such as the effect of initial metal ion concentration, different proportions of some organic solvents, H+-ion concentrations and reaction temperature on the partition coefficients. The metal adsorption for the cation exchanger was found to be significant in different media for both nitric and hydrochloric acids, i.e., the adsorption up take of metal ions presented in this work is very significant depending on the characteristics of ions and on the external concentrations of solute. The presence of low ionic strength or low concentration of acids does have a significant adsorption of metal ions on ion-exchange resin. The results show that the ion exchanger could be employed for the preconcentration, separation and the determination.

  9. Comparative ligational, optical band gap and biological studies on Cr(III) and Fe(III) complexes of hydrazones derived from 2-hydrazinyl-2-oxo-N-phenylacetamide with both vanillin and O-vanillin

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Attia, M. I.; El-Tabai, M. N.

    2015-09-01

    The Cr(III) and Fe(III) complexes of hydrazones derived from the condensation of 2-hydrazinyl-2-oxo-N-phenylacetamide with both vanillin and o-vanillin synthesized and characterized by different conventional physicochemical techniques. The kinetic and thermodynamic parameters for the different decomposition steps were calculated using Coats-Redfern and Horowitz-Metzger equations. The bond lengths, bond angles, HOMO, LUMO, dipole moment and binding energy calculated by DFT calculations. The optical band gap (Eg) values equal 3.28, 3.03, 3.58 and 3.57 eV for [Cr(HL1)Cl2(H2O)2](0.75H2O), [Cr(HL2)Cl2(H2O)](H2O), [Fe(HL1)Cl2(H2O)2](0.5H2O) and [Fe(HL2)2Cl(H2O)](3H2O) complexes, respectively. The antibacterial activities tested against Bacillus subtilis and Escherichia coli bacteria.

  10. Indolenine meso-substituted dibenzotetraaza[14]annulene and its coordination chemistry toward the transition metal ions Mn(III), Fe(III), Co(II), Ni(II), Cu(II), and Pd(II).

    Science.gov (United States)

    Khaledi, Hamid; Olmstead, Marilyn M; Ali, Hapipah Mohd; Thomas, Noel F

    2013-02-18

    A new dibenzotetraaza[14]annulene bearing two 3,3-dimethylindolenine fragments at the meso positions (LH(2)), has been synthesized through a nontemplate method. X-ray crystallography shows that the whole molecule is planar. The basicity of the indolenine ring permits the macrocycle to be protonated external to the core and form LH(4)(2+)·2Cl(-). Yet another structural modification having strong C-H···π interactions was found in the chloroform solvate of LH(2). The latter two modifications are accompanied by a degree of nonplanar distortion. The antiaromatic core of the macrocycle can accommodate a number of metal ions, Mn(III), Fe(III), Co(II), Ni(II) and Cu(II), to form complexes of [Mn(L)Br], [Mn(L)Cl], [Fe(LH(2))Cl(2)](+)·Cl(-), [Co(L)], [Ni(L)], and [Cu(L)]. In addition, the reaction of LH(2) with the larger Pd(II) ion leads to the formation of [Pd(2)(LH(2))(2)(OAc)(4)] wherein the macrocycle acts as a semiflexible ditopic ligand to coordinate pairs of metal ions via its indolenine N atoms into dinuclear metallocycles. The compounds LH(2), [Co(L)], and [Ni(L)] are isostructural and feature close π-stacking as well as linear chain arrangements in the case of the metal complexes. Variable temperature magnetic susceptibility measurements showed thermally induced paramagnetism in [Ni(L)].

  11. Metal-organic frameworks with 1,4-di(1H-imidazol-4-yl)benzene and varied carboxylate ligands for selectively sensing Fe(iii) ions and ketone molecules.

    Science.gov (United States)

    Liu, Zhi-Qiang; Zhao, Yue; Zhang, Xiu-Du; Kang, Yan-Shang; Lu, Qing-Yi; Azam, Mohammad; Al-Resayes, Saud I; Sun, Wei-Yin

    2017-10-17

    Four new metal-organic frameworks (MOFs) [Zn(L)(bpdc)]·1.6H 2 O (1), [Co(L)(bpdc)]·H 2 O (2), [Ni 3 (L) 2 (bptc) 2 (H 2 O) 10 ]·2H 2 O (3) and [Cd 2 (L)(Hbptc) 2 ] (4) were achieved by reactions of the corresponding metal salt with mixed organic ligands of 1,4-di(1H-imidazol-4-yl)benzene (L) and 4,4'-benzophenonedicarboxylic acid (H 2 bpdc) or biphenyl-2,4',5-tricarboxylic acid (H 3 bptc). They exhibit varied structures: MOFs 1 and 4 are porous three-dimensional (3D) frameworks, while 2 is an infinite one-dimensional (1D) chain and 3 is a two-dimensional (2D) network. Remarkably, 1 and 4 can act as potential fluorescent materials for sensing Fe(iii) ions and different ketone molecules with high selectivity and sensitivity. In addition, MOF 1 shows selective adsorption of CO 2 over N 2 .

  12. An autotrophic nitrogen removal process: short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachate.

    Science.gov (United States)

    Liu, Jie; Zuo, Jian'e; Yang, Yang; Zhu, Shuquan; Kuang, Sulin; Wang, Kaijun

    2010-01-01

    A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate. The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L), treating about 50% of the diluted raw wastewater. The ammonium removal efficiency and the ratio of NO2- -N to NOx- -N in the effluent were both higher than 80%, at a maximum nitrogen loading rate of 1.47 kg/(m3 x ay). The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L), using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1. The ammonium and nitrite removal efficiency reached over 93% and 95%, respectively, after 70-day continuous operation, at a maximum total nitrogen loading rate of 0.91 kg/(m3 x day), suggesting a successful operation of the combined process. The average nitrogen loading rate of the combined system was 0.56 kg/(m3 x day), with an average total inorganic nitrogen removal efficiency 87%. The nitrogen in the effluent was mostly nitrate. The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate.

  13. Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Vardanyan, Zaruhi [Department of Biophysics of the Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan (Armenia); Trchounian, Armen, E-mail: trchounian@ysu.am [Department of Biophysics of the Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan (Armenia)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fe{sup 3+} stimulates but Fe{sup 2+} suppresses Enterococcus hirae wild-type and atpD mutant growth. Black-Right-Pointing-Pointer Fe ions change oxidation-reduction potential drop during cell growth. Black-Right-Pointing-Pointer Fe{sup 3+} and Fe{sup 2+} have opposite effects on a membrane-associated ATPase activity. Black-Right-Pointing-Pointer These effects are either in the presence of F{sub 0}F{sub 1} inhibitor or non-functional F{sub 0}F{sub 1}. Black-Right-Pointing-Pointer Fe ions decrease protons and coupled potassium ions fluxes across the membrane. -- Abstract: Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reduction potential (E{sub h}) from positive values to negative ones (down to {approx}-200 mV). In this study, iron (III) ions (Fe{sup 3+}) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe{sup 2+}) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E{sub h} values during bacterial growth. It was revealed that ATPase activity with and without N,N Prime -dicyclohexylcarbodiimide (DCCD), an inhibitor of the F{sub 0}F{sub 1}-ATPase, increased in the presence of even low Fe{sup 3+} concentration (0.05 mM) but decreased in the presence of Fe{sup 2+}. It was established that Fe{sup 3+} and Fe{sup 2+} both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe{sup 2+} with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F{sub 0}F{sub 1}) MS116 strains but they were different with Fe{sup 3+} and Fe{sup 2+}. It is suggested that the effects of Fe{sup 3+} might be due to

  14. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    International Nuclear Information System (INIS)

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-01-01

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na 3 MnPO 4 CO 3 and MnCO 3 were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N 2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g −1 adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na 3 MnPO 4 CO 3. Results suggested the complexity of natural microbe-mediated Mn transformation.

  15. Iron oxide incrustations in wells. Part 1: genesis, mineralogy and geochemistry

    International Nuclear Information System (INIS)

    Houben, G.J.

    2003-01-01

    The formation of incrustations seriously affects the performance of wells, piezometers and drains. Their economic relevance must not be underestimated. Oxides of Fe(III) represent the most common incrustation type. Their formation via oxidation of dissolved Fe(II) is enhanced at zones of elevated flow velocities. The first, 'amorphous' precipitates (ferrihydrite) are thermodynamically unstable and re-crystallise with time to form stable phases, mainly goethite ('ageing'). This transformation involves a decrease of surface area and a simultaneous decrease in reactivity and explains why older incrustations are harder to remove by chemical treatment. During formation, Fe oxide incrustations take up large amounts of trace elements from groundwater. Anions such as phosphate and arsenate dominate over cations. Anions are surface-bound and are mostly expelled with the decrease of surface area during ageing. Cations are probably bound in the crystal structure rather than as sorbed surface species. Only those with large ionic radius are mostly not expelled during ageing. Trace element concentrations influence the rate of transformation and the solubility of Fe oxide incrustations

  16. Oxidation of Cyclohexane by Molecular Oxygen Photoassisted by meso-Tetraarylporphyrin Iron(III)-Hydroxo Complexes.

    Science.gov (United States)

    Maldotti, A.; Bartocci, C.; Varani, G.; Molinari, A.; Battioni, P.; Mansuy, D.

    1996-02-28

    The photochemical and photocatalytic properties of iron meso-tetraarylporphyrins bearing an OH(-) axial ligand and different substituents in the beta-positions of the porphyrin ring are reported. Irradiation (lambda = 365 nm) in the absence of dioxygen leads to the reduction of Fe(III) to Fe(II) with the formation of OH(*) radicals. Substituents at the pyrrole beta-positions are found to markedly affect the photoreduction quantum yields. Under aerobic conditions, this photoreaction can induce the subsequent oxidation of cyclohexane to cyclohexanone and cyclohexanol by O(2) itself. The process occurs under mild conditions (22 degrees C; 760 Torr of O(2)) and without the consumption of a reducing agent. The polarity of the solvent and the nature of the porphyrin ring have a remarkable effect on the selectivity of the photooxidation process, likely controlling the cleavage of O-O bonds of possible iron peroxoalkyl intermediates. In particular, in pure cyclohexane, oxidation occurs with the selective formation of cyclohexanone; in contrast, in dichloromethane/cyclohexane mixed solvent, the main oxidation product is cyclohexanol. Phenyl-tert-butylnitrone (pbn) has been found to quench the radical chain autooxidation of the substrate thus increasing the yield of cyclohexanol. This becomes the only oxidation product when iron 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin hydroxide (Fe(III)(TDCPP)(OH)) is used as photocatalyst.

  17. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation

    Science.gov (United States)

    Klatt, Judith M.; Polerecky, Lubos

    2015-01-01

    Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate vs. zero-valent sulfur). Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-zero-valent-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches. PMID:26052315

  18. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation

    Directory of Open Access Journals (Sweden)

    Judith M Klatt

    2015-05-01

    Full Text Available Chemolithoautotrophic sulfur oxidizing bacteria (SOB couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate versus elemental sulfur. Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-elemental-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches.

  19. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  20. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Brandt, K. K.; Sørensen, J.; Krogh, P. H.

    2003-01-01

    in a sandy soil surrounding well-defined sludge bands spiked with high but realistic LAS levels (7.1 or 31.3 g/kg). Surprisingly, LAS had no effect on heterotrophic respiration in the sludge compartment per se but stimulated activity and metabolic quotient (microbial activity per unit of biomass......Recent research has documented soil microorganisms to be rather sensitive to linear alkylbenzene sulfonates (LAS), which may enter the soil environment in considerable quantities following sewage sludge disposal. We here report field effects of LAS on selected microbial populations present......) in the surrounding soil. By contrast, autotrophic ammonia oxidation was initially inhibited in the LAS-spiked sludge. This led to dramatic transient increases of NH+4 availability in the sludge and surrounding soil, subsequently stimulating soil ammonia oxidizers. As judged from a Nitrosomonas europaea...

  1. How different oxidation states of crystalline myoglobin are influenced by X-rays.

    Science.gov (United States)

    Hersleth, Hans-Petter; Andersson, K Kristoffer

    2011-06-01

    X-ray induced radiation damage of protein crystals is well known to occur even at cryogenic temperatures. Redox active sites like metal sites seem especially vulnerable for these radiation-induced reductions. It is essential to know correctly the oxidation state of metal sites in protein crystal structures to be able to interpret the structure-function relation. Through previous structural studies, we have tried to characterise and understand the reactions between myoglobin and peroxides. These reaction intermediates are relevant because myoglobin is proposed to take part as scavenger of reactive oxygen species during oxidative stress, and because these intermediates are similar among the haem peroxidases and oxygenases. We have in our previous studies shown that these different myoglobin states are influenced by the X-rays used. In this study, we have in detail investigated the impact that X-rays have on these different oxidation states of myoglobin. An underlying goal has been to find a way to be able to determine mostly unreduced states. We have by using single-crystal light absorption spectroscopy found that the different oxidation states of myoglobin are to a different extent influenced by the X-rays (e.g. ferric Fe(III) myoglobin is faster reduced than ferryl Fe(IV)═O myoglobin). We observe that the higher oxidation states are not reduced to normal ferrous Fe(II) or ferric Fe(III) states, but end up in some intermediate and possibly artificial states. For ferric myoglobin, it seems that annealing of the radiation-induced/reduced state can reversibly more or less give the starting point (ferric myoglobin). Both scavengers and different dose-rates might influence to which extent the different states are affected by the X-rays. Our study shows that it is essential to do a time/dose monitoring of the influence X-rays have on each specific redox-state with spectroscopic techniques like single-crystal light absorption spectroscopy. This will determine to which

  2. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    Science.gov (United States)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    enumeration of nitrate-dependent U(IV) oxidizing microorganisms demonstrated an abundant community ranging from 1.61x104 to 2.74x104 cells g-1 sediment. Enrichments initiated verified microbial U reduction and U oxidation coupled to nitrate reduction. Sediment slurries were serially diluted and incubated over a period of eight weeks and compared to uninoculated controls. Oxidation (0-4,554 μg/L) and reduction (0-55 μg/L) of U exceeded uninoculated controls further providing evidence of a U biogeochemical cycling in these subsurface sediments. The oxidation of U(IV) could contribute to U mobilization in the groundwater and result in decreased water quality. Not only could nitrate serve as an oxidant, but Fe(III) could also contribute to U mobilization. Nitrate-dependent Fe(II) oxidation is an environmentally ubiquitous process facilitated by a diversity of microorganisms. Additional research is necessary in order to establish a role of biogenic Fe(III) oxides in U geochemical cycling at this site. These microbially mediated processes could also have a confounding effect on uranium mobility in subsurface environments.

  3. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  4. Enhancing the Process of Anaerobic Ammonium Oxidation Coupled to Iron Reduction in Constructed Wetland Mesocosms with Supplementation of Ferric Iron Hydroxides

    Science.gov (United States)

    Shuai, W.; Jaffe, P. R.

    2017-12-01

    Effective ammonium (NH4+) removal has been a challenge in wastewater treatment processes. Aeration, which is required for the conventional NH4+ removal approach by ammonium oxidizing bacteria, is an energy intensive process during the operation of wastewater treatment plant. The efficiency of NH4+ oxidation in natural systems is also limited by oxygen transfer in water and sediments. The objective of this study is to enhance NH4+ removal by applying a novel microbial process, anaerobic NH4+ oxidation coupled to iron (Fe) reduction (also known as Feammox), in constructed wetlands (CW). Our studies have shown that an Acidimicrobiaceae bacterium named A6 can carry out the Feammox process using ferric Fe (Fe(III)) minerals like ferrihydrite as their electron acceptor. To investigate the properties of the Feammox process in CW as well as the influence of electrodes, Feammox bacterium A6 was inoculated in planted CW mesocosms with electrodes installed at multiple depths. CW mesocosms were operated using high NH4+ nutrient solution as inflow under high or low sediment Fe(III) level. During the operation, NH4+ and ferrous Fe concentration, pore water pH, voltages between electrodes, oxidation reduction potential and dissolved oxygen were measured. At the end of the experiment, CW sediment samples at different depths were taken, DNAs were extracted and quantitative polymerase chain reaction and pyrosequencing were performed to analyze the microbial communities. The results show that the high Fe level CW mesocosm has much higher NH4+ removal ability than the low Fe level CW mesocosm after Fe-reducing conditions are developed. This indicates the enhanced NH4+ removal can be attributed to elevated Feammox activity in high Fe level CW mesocosm. The microbial community structures are different in high or low Fe level CW mesocosms and on or away from the installed electrodes. The voltages between cathode and anode increased after the injection of A6 enrichment culture in low Fe

  5. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    Science.gov (United States)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  6. INFLUENŢA SELENITULUI DE Fe(III ŞI A INTENSITĂŢII DE ILUMINARE ASUPRA CONŢINUTULUI DE FICOBILIPROTEINE, SELENIU ŞI FIER ÎN BIOMASA CIANOBACTERIEI SPIRULINA PLATENSIS

    Directory of Open Access Journals (Sweden)

    Valentina BULIMAGA

    2017-03-01

    Full Text Available Productivitatea spirulinei şi onţinutul de fier în biomasă au înregistrat valori mai înalte la iluminare mai intensă (5500 lx, comparativ cu 3500 lx, iar acumularea ficobiliproteinelor în biomasa de spirulină a fost mai semnificativă la 3500 lx. Conţinutul de seleniu acumulat în fracţia de ficobiliproteine a înregistrat valori mai sporite cu majorarea concentraţiei selenitului de fier, fiind maxime la concentraţia acestuia de 45 mg/l la ambele intensităţi de iluminare. La 3500 lx conţinutul de seleniu în extractul sumar de ficobiliproteine a fost de 1,4-1,5 ori mai majorat, comparativ cu cel atestat la 5500 lx.EFFECTS OF Fe(III SELENITE AND LIGHT INTENSITY ON THE ACCUMULATION OF PHYCOBILIPROTEINS, SELENIUM AND IRON IN BIOMASS OF CYANOBACTERIUM SPIRULINA PLATENSISSpirulina productivity and iron content in biomass recorded higher values at light intensity 5500 lx, compared to 3500 lx, but phycobiliproteins accumulation in spirulina biomass was more significant at 3500 lx. The content of the accumulated selenium in the phycobiliproteins registered the increased values with the increasing of selenite concentra­tion, attesting its maximum value at 45 mg/l, at the both light intensity. Selenium content in the phycobiliproteins at 3500 lx was by 1.4-1.5 times higher, compared to that registered at 5500 lx.

  7. Constraining the role of anoxygenic phototrophic Fe(II)-oxidizing bacteria in deposition of BIFs

    Science.gov (United States)

    Kappler, A.; Posth, N. R.; Hegler, F.; Wartha, E.; Huelin, S.

    2007-12-01

    Banded Iron Formations (BIFs) are Precambrian sedimentary deposits of alternating iron oxide and silica mineral layers. Their presence in the rock record ca.3.8-2.2 Ga makes them particularly intriguing formations for the debate over when oxygen became dominant on Earth. The mechanism(s) of BIF deposition is still unclear; suggestions including both abiotic and biotic processes. We are interested in constraining one of these proposed mechanisms; the direct biological oxidation of Fe(II) via anoxygenic Fe(II)-oxidizing autophototrophs. In order to find the limitations of photoferrotrophic BIF deposition, we take a holistic approach, investigating the oxidation of Fe(II) by modern Fe(II)-oxidizing phototrophs, the precipitation of Fe(III) (hydr)oxides, and the fate of the cell-mineral aggregates in the water column and at the basin floor. Specifically, physiology experiments with Fe(II)-oxidizing phototrophs under various conditions of light intensity, pH, Fe(II) concentration and temperature allow us to determine the environmental limits of such organisms. We carry out precipitation experiments to characterize the sedimentation rates, aggregate size and composition in order to resolve the effect of reactions in the water column. Finally, we simulate the diagenetic fate of these aggregates on the basin floor by placing them in gold capsules under T and P conditions relevant for the Transvaal Supergroup BIFs of South Africa. Recently, we have developed a tank simulating the Archean ocean in which the strains grow in continuous culture and collect the aggregates formed under various geochemical conditions. We aim to model the extent of and limitations to photoferrotrophs in BIF deposition. This information will help constrain whether biotic processes were dominant in the Archean ocean and will offer insight to the evolution of the early biogeosphere.

  8. Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium.

    Science.gov (United States)

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2002-10-01

    Water treatment technologies are needed that can remove perchlorate from drinking water without introducing organic chemicals that stimulate bacterial growth in water distribution systems. Hydrogen is an ideal energy source for bacterial degradation of perchlorate as it leaves no organic residue and is sparingly soluble. We describe here the isolation of a perchlorate-respiring, hydrogen-oxidizing bacterium (Dechloromonas sp. strain HZ) that grows with carbon dioxide as sole carbon source. Strain HZ is a Gram-negative, rod-shaped facultative anaerobe that was isolated from a gas-phase anaerobic packed-bed biofilm reactor treating perchlorate-contaminated groundwater. The ability of strain HZ to grow autotrophically with carbon dioxide as the sole carbon source was confirmed by demonstrating that biomass carbon (100.9%) was derived from CO2. Chemolithotrophic growth with hydrogen was coupled with complete reduction of perchlorate (10 mM) to chloride with a maximum doubling time of 8.9 h. Strain HZ also grew using acetate as the electron donor and chlorate, nitrate, or oxygen (but not sulphate) as an electron acceptor. Phylogenetic analysis of the 16S rRNA sequence placed strain HZ in the genus Dechloromonas within the beta subgroup of the Proteobacteria. The study of this and other novel perchlorate-reducing bacteria may lead to new, safe technologies for removing perchlorate and other chemical pollutants from drinking water.

  9. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    Science.gov (United States)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  10. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate.

    Science.gov (United States)

    Schink, Bernhard; Thiemann, Volker; Laue, Heike; Friedrich, Michael W

    2002-05-01

    A new sulfate-reducing bacterium was isolated from marine sediment with phosphite as sole electron donor and CO(2) as the only carbon source. Strain FiPS-3 grew slowly, with doubling times of 3-4 days, and oxidized phosphite, hydrogen, formate, acetate, fumarate, pyruvate, glycine, glutamate, and other substrates nearly completely, with concomitant reduction of sulfate to sulfide. Acetate was formed as a side product to a small extent. Glucose, arabinose, and proline were partly oxidized and partly fermented to acetate plus propionate. Growth with phosphite, hydrogen, or formate was autotrophic. Also, in the presence of sulfate, CO dehydrogenase was present, and added acetate did not increase growth rates or growth yields. In the absence of sulfate, phosphite oxidation was coupled to homoacetogenic acetate formation, with growth yields similar to those in the presence of sulfate. Cells were small rods, 0.6 - 0.8 x 2-4 microm in size, and gram-negative, with a G+C content of 53.9 mol%. They contained desulforubidin, but no desulfoviridin. Based on sequence analysis of the 16S rRNA gene and the sulfite reductase genes dsrAB, strain FiPS-3 was found to be closely related to Desulfotignum balticum. However, physiological properties differed in many points from those of D. balticum. These findings justify the establishment of a new species, Desulfotignum phosphitoxidans.

  11. Sorption-induced reversible oxidation of Fe(2) at the smectite/water interface under strictly anoxic conditions. A Moessbauer spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, A.; Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique (LGIT), Universite de Grenoble, 38 - Grenoble (France); Gehin, A. [Agence Nationale pour la Gestion des Dechets Radioactifs, ANDRA, 92 - Chatenay Malabry (France); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR-CNRS 6087, 72 - Le Mans (France); Brendle, J. [Universite de Haute Alsace, Lab. des Materiaux Mineraux (LMM), 68 - Mulhouse (France); Rancourt, D.G. [Ottawa Univ., Dept. of Physics, Ontario (Canada)

    2005-07-01

    Previous studies of Fe(II) sorption onto montmorillonite have been performed with the mineral extracted from the MX80 bentonite. These studies have shown that Fe(II) can be sorbed onto clay minerals in cation exchange position. The affinity of montmorillonite for Fe(II) and Ca(II) is identical. Fe(II) may also be specifically adsorbed onto montmorillonite clay edges. Moessbauer spectroscopy confirmed the high affinity of clay surfaces for Fe(II) sorption and showed that this sorption is mainly due to a two step mechanism: Fe(II) specific adsorption, followed by oxidation of the Fe(II) sorbed. The identification of the oxidizing agent was prohibited due to the complex chemistry of the natural MX80 montmorillonite. Thus, synthetic iron-free montmorillonite was used (chemical formula: Ca{sub 0.3} (A{sub 1.4}Mg{sub 0.6}) (Si{sub 4}) O{sub 10}(OH){sub 2} ). {sup 57}Fe(II) sorption experiments were conducted in a N{sub 2} atmosphere gloves-box, in strictly anoxic conditions. Solid samples were synthesized in order to confirm the clay high affinity for Fe(II), in absence of structural oxidant, and to have a better comprehension of the sorption mechanism. Moessbauer spectra were recorded for each sample. Whereas no Fe(III) is detected in solution as pH was increased and then, a significant amount of surface sorbed Fe(III) was found to be reversibly produced, which amounts for 0-3% of total Fe in the pre-sorption edge acid region, up to 7% of total Fe when all Fe is sorbed in the neutral to alkaline pH range. From pH {approx_equal} 2 to pH {approx_equal} 7, a sorption edge plateau is observed. In this plateau, the sorbed-Fe(III)/sorbed-Fe ratio increases with pH, up to 45% at pH 7. Moessbauer spectra comparison with ferrous hydroxide, synthesized in the same redox conditions at higher pH, show that this oxidation can not be due to the trace amounts Oz in the suspension. The Moessbauer spectra components of both Fe(II) and Fe(III) appears as paramagnetic doublets: iron has

  12. The Moessbauer effect in Fe(III) HEDTA, Fe(III) EDTA, and Fe(III) CDTA compounds

    International Nuclear Information System (INIS)

    Prado, F.R.

    1989-01-01

    The dependence of Moessbauer spectra with pH value of Fe(III)HEDTA and Fe(III)CDTA compounds is studied. Informations on formation processes of LFe-O-FeL (L=ligand) type dimers by the relation of titration curves of Fe(III)EDTA, Fe(III)HEDTA and Fe(III)CDTA compounds with the series of Moessbauer spectra, are obtained. Some informations on Fe-O-Fe bond structure are also obtained. Comparing the titration curves with the series of Moessbauer spectra, it is concluded that the dimerization process begins when a specie of the form FeXOH α (X = EDTA, HEDTA, CDTA; α = -1, -2) arises. (M.C.K.) [pt

  13. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    Science.gov (United States)

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment.

    Science.gov (United States)

    Handley, Kim M; Wrighton, Kelly C; Piceno, Yvette M; Andersen, Gary L; DeSantis, Todd Z; Williams, Kenneth H; Wilkins, Michael J; N'Guessan, A Lucie; Peacock, Aaron; Bargar, John; Long, Philip E; Banfield, Jillian F

    2012-07-01

    There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments, we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identified hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested that stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (e.g. Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). Data implies complex membership among highly stimulated taxa and, by inference, biogeochemical responses to acetate, a nonfermentable substrate. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Linking Local Environments and Hyperfine Shifts: A Combined Experimental and Theoretical 31P and 7Li Solid–State NMR Study of Paramagnetic Fe(III) Phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonsik [Stony Brook Univ., NY (United States); Middlemiss, Derek S. [Stony Brook Univ., NY (United States); Chernova, Natasha [Univ. of Cambridge (United Kingdom); Zhu, Ben Y.H. [Stony Brook Univ., NY (United States); Masquelier, Christian [SUNY Binghamton, NY (United States); Grey, Clare P. [Stony Brook Univ., NY (United States); Universite de Picardie Jules Verne, Amiens (France)

    2010-11-05

    Iron phosphates (FePO4) are among the most promising candidate materials for advanced Li-ion battery cathodes. This work reports upon a combined nuclear magnetic resonance (NMR) experimental and periodic density functional theory (DFT) computational study of the environments and electronic structures occurring in a range of paramagnetic Fe(III) phosphates comprising FePO4 (heterosite), monoclinic Li3Fe2(PO4)3 (anti-NASICON A type), rhombohedral Li3Fe2(PO4)3 (NASICON B type), LiFeP2O7, orthorhombic FePO4·2H2O (strengite), monoclinic FePO4·2H2O (phosphosiderite), and the dehydrated forms of the latter two phases. Many of these materials serve as model compounds relevant to battery chemistry. The 31P spin-echo mapping and 7Li magic angle spinning NMR techniques yield the hyperfine shifts of the species of interest, complemented by periodic hybrid functional DFT calculations of the respective hyperfine and quadrupolar tensors. A Curie-Weiss-based magnetic model scaling the DFT-calculated hyperfine parameters from the ferromagnetic into the experimentally relevant paramagnetic state is derived and applied, providing quantitative finite temperature values for each phase. The sensitivity of the hyperfine parameters to the composition of the DFT exchange functional is characterized by the application of hybrid Hamiltonians containing admixtures 0%, 20%, and 35% of Fock exchange. Good agreement between experimental and calculated values is obtained, provided that the residual magnetic couplings persisting in the paramagnetic state are included. The potential applications of a similar combined experimental and theoretical NMR approach to a wider range of cathode materials are discussed.

  16. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.

    Science.gov (United States)

    Hall, Steven J; Silver, Whendee L

    2013-09-01

    Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2 ) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (P soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2 O2 ) in addition to Fe(II). Reactions between Fe(II) and H2 O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2 O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short-term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation

  17. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms.

    Science.gov (United States)

    Sisó-Terraza, Patricia; Rios, Juan J; Abadía, Javier; Abadía, Anunciación; Álvarez-Fernández, Ana

    2016-01-01

    Iron (Fe) is abundant in soils but generally poorly soluble. Plants, with the exception of Graminaceae, take up Fe using an Fe(III)-chelate reductase coupled to an Fe(II) transporter. Whether or not nongraminaceous species can convert scarcely soluble Fe(III) forms into soluble Fe forms has deserved little attention so far. We have used Beta vulgaris, one among the many species whose roots secrete flavins upon Fe deficiency, to study whether or not flavins are involved in Fe acquisition. Flavins secreted by Fe-deficient plants were removed from the nutrient solution, and plants were compared with Fe-sufficient plants and Fe-deficient plants without flavin removal. Solubilization of a scarcely soluble Fe(III)-oxide was assessed in the presence or absence of flavins, NADH (nicotinamide adenine dinucleotide, reduced form) or plant roots, and an Fe(II) trapping agent. The removal of flavins from the nutrient solution aggravated the Fe deficiency-induced leaf chlorosis. Flavins were able to dissolve an Fe(III)-oxide in the presence of NADH. The addition of extracellular flavins enabled roots of Fe-deficient plants to reductively dissolve an Fe(III)-oxide. We concluded that root-secretion of flavins improves Fe nutrition in B. vulgaris. Flavins allow B. vulgaris roots to mine Fe from Fe(III)-oxides via reductive mechanisms. © 2015 CSIC New Phytologist © 2015 New Phytologist Trust.

  18. Homogeneous photochemical water oxidation by biuret-modified Fe-TAML: evidence of Fe(V)(O) intermediate.

    Science.gov (United States)

    Panda, Chakadola; Debgupta, Joyashish; Díaz Díaz, David; Singh, Kundan K; Sen Gupta, Sayam; Dhar, Basab B

    2014-09-03

    Water splitting, leading to hydrogen and oxygen in a process that mimics natural photosynthesis, is extremely important for devising a sustainable solar energy conversion system. Development of earth-abundant, transition metal-based catalysts that mimic the oxygen-evolving complex of photosystem II, which is involved in oxidation of water to O2 during natural photosynthesis, represents a major challenge. Further, understanding the exact mechanism, including elucidation of the role of active metal-oxo intermediates during water oxidation (WO), is critical to the development of more efficient catalysts. Herein, we report Fe(III) complexes of biuret-modified tetra-amidomacrocyclic ligands (Fe-TAML; 1a and 1b) that catalyze fast, homogeneous, photochemical WO to give O2, with moderate efficiency (maximum TON = 220, TOF = 0.76 s(-1)). Previous studies on photochemical WO using iron complexes resulted in demetalation of the iron complexes with concomitant formation of iron oxide nanoparticles (NPs) that were responsible for WO. Herein, we show for the first time that a high valent Fe(V)(O) intermediate species is photochemically generated as the active intermediate for the oxidation of water to O2. To the best of our knowledge, this represents the first example of a molecular iron complex catalyzing photochemical WO through a Fe(V)(O) intermediate.

  19. Long Term Performance of an Arsenite-Oxidizing-Chlorate-Reducing Microbial Consortium in an Upflow Anaerobic Sludge Bed (UASB) Bioreactor

    Science.gov (United States)

    Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A.

    2011-01-01

    A chlorate (ClO3−) reducing microbial consortium oxidized arsenite (As(III)) to arsenate (As(V)) in an upflow anaerobic sludge-bed bioreactor over 550 d operation. As(III) was converted with high conversion efficiencies (>98%) at volumetric loadings ranging from 0.45 to 1.92 mmol As/(Lreactor d). The oxidation of As(III) was linked to the complete reduction of ClO3− to Cl− and H2O, as demonstrated by a molar ratio of approximately 3.0 mol As(III) oxidized per mole of Cl− formed and by the greatly lowered ClO3−-reducing capacity without As(III) feeding. An autotrophic enrichment culture was established from the bioreactor biofilm. A 16S rRNA gene clone library indicated that the culture was dominated by Dechloromonas, and Stenotrophomonas as well as genera within the family Comamonadaceae. The results indicate that the oxidation of As(III) to less mobile As(V) utilizing ClO3− as a terminal electron acceptor provides a sustainable bioremediation strategy for arsenic contamination in anaerobic environments. PMID:21333531

  20. Effect of zinc oxide nanoparticles on nitrogen removal, microbial activity and microbial community of CANON process in a membrane bioreactor.

    Science.gov (United States)

    Zhang, Xiaojing; Zhang, Nan; Fu, Haoqiang; Chen, Tao; Liu, Sa; Zheng, Shuhua; Zhang, Jie

    2017-11-01

    In this study, a membrane bioreactor (MBR) was adopted for completely autotrophic nitrogen removal over nitrite (CANON) process. Zinc oxide nanoparticles (ZnO NPs) was step-wise increased to analyze the influence on nitrogen removal, microbial activity and microbial communities. Finally ZnO NPs was removed to study its recovery capability. The bioactivities of ammonia-oxidizing bacteria (AOB), anaerobic ammonia-oxidizing bacteria (AAOB) and nitrite-oxidizing bacteria (NOB) were detected by batch experiments. Results showed that the ZnO NPs with low concentration (≤5mgL -1 ) was profitable for nitrogen removal while the high concentration performed inhibition, and it lowered the abundance of both AOB and NOB while enhanced that of AAOB. ZnO NPs with high concentration (≥10mgL -1 ) suppressed both AOB and AAOB, and long-term exposure within ZnO NPs led to microbial diversity decrease. The inhibition threshold of ZnO NPs on CANON process was 10mgL -1 , and the profitable concentration was 1mgL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Growth of microalgae in autotrophic stationary systems

    Directory of Open Access Journals (Sweden)

    Paulo Cunha

    2008-06-01

    Full Text Available In this paper we evaluate the growth of nine marine microalgae species (Nannochloropsis oculata, Thalassiosira pseudonana, Phaeodactylum tricornutum, Isochrysis galbana, Tetraselmis suecica, Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira fluviatilis and Isochrysis sp. and one freshwater species (Chlorella vulgaris under stationary autotrophy conditions, using erlenmeyers fl asks with 800mL of culture medium exposed to constant light intensities providing a photon flux density of about 150μmol.m-2.s-1 and 25±2oC temperature and constant air flow. The experiment was carried out in a controlled environment considering a block delineating randomized over time with three replicates. The Nannochloropsis oculata showed the highest value of maximum cellular density, but with a longer period of time and a lower growth rate. This was probably due to its tiny cell size, demanding a large number of cells per volume to attain its optimum conditions for light, nutrients, water and atmospheric carbon dioxide. In addition, in spite of showing one of the lowest values of maximum cellular density, Thalassiosira fluviatilis was the species that reached its maximum in a short period of time at the highest growth rate. Chlorella vulgaris was the only freshwater species tested and it showed the poorest performance for all the variables analyzed in the current study.

  2. Aqua(picolinato N-oxide-κ2O1,O2(pyridine-2,6-dicarboxylato-κ3O,N,O′iron(III monohydrate

    Directory of Open Access Journals (Sweden)

    Dong'e Wang

    2008-10-01

    Full Text Available In the title compound, [Fe(C6H4NO3(C7H3NO4(H2O]·H2O, the FeIII ion is coordinated by two O and one N atoms from a pyridine-2,6-dicarboxylate ligand, by two O atoms from a picolinate N-oxide ligand and by one water O atom in a distorted octahedral geometry [Fe—O = 1.940 (3–2.033 (3 Å and Fe—N = 2.057 (4 Å]. In the crystal structure, the coordinated and solvent water molecules contribute to the formation of O—H...O hydrogen bonds, which link the molecules into layers parallel to the ab plane.

  3. Reaction rate constants and mean population percentage for nitrifiers in an alternating oxidation ditch system.

    Science.gov (United States)

    Mantziaras, I D; Katsiri, A

    2011-01-01

    This paper presents a methodology for the determination of reaction rate constants for nitrifying bacteria and their mean population percentage in biomass in an alternating oxidation ditch system. The method used is based on the growth rate equations of the ASM1 model (IWA) (Henze et al. in Activated sludge models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report no. 9, IWA Publishing, London, UK, 2000) and the application of mass balance equations for nitrifiers and ammonium nitrogen in an operational cycle of the ditch system. The system consists of two ditches operating in four phases. Data from a large-scale oxidation ditch pilot plant with a total volume of 120 m(3) within an experimental period of 8 months was used. Maximum specific growth rate for autotrophs (μ(A)) and the half-saturation constant for ammonium nitrogen (K(NH)) were found to be 0.36 day(-1) and 0.65 mgNH(4)-N/l, respectively. Additionally, the average population percentage of the nitrifiers in the biomass was estimated to be around 3%.

  4. Effect of aging on the structure and phosphate retention of Fe(III)-precipitates formed by Fe(II) oxidation in water

    Science.gov (United States)

    Senn, Anna-Caterina; Kaegi, Ralf; Hug, Stephan J.; Hering, Janet G.; Mangold, Stefan; Voegelin, Andreas

    2017-04-01

    Iron(III)-precipitates formed by Fe(II) oxidation in aqueous solutions affect the cycling and impact of Fe and other co-precipitated elements in environmental systems. Fresh Fe(III)-precipitates are metastable and their transformation into more stable phases during aging may result in the release of initially co-precipitated ions. Phosphate, silicate, Mg and Ca play key roles in determining the structure and composition of fresh Fe(III)-precipitates. Here we examine how these ions affect the structure and phosphate retention of Fe(III)-precipitates formed by oxidation of 0.5 mM dissolved Fe(II) at pH 7.0 after aging for 30 days at 40 °C. Iron K-edge X-ray absorption spectroscopy (XAS) shows that aged precipitates consist of the same structural units as fresh precipitates: Amorphous Fe(III)- or Ca-Fe(III)-phosphate, ferrihydrite, and poorly crystalline lepidocrocite. Mg, Ca, and dissolved phosphate stabilize (Ca-)Fe(III)-phosphate against transformation into ferrihydrite. Silicate further attenuates (Ca-)Fe(III)-phosphate transformation. The crystallinity of lepidocrocite formed in phosphate- and silicate-free solutions slightly increases during aging. The transformation of Fe(III)- and Ca-Fe(III)-phosphate into ferrihydrite and ongoing ferrihydrite crystallization during aging result in the release of co-precipitated phosphate. Dissolved Ca on the other hand limits phosphate concentrations to values consistent with solubility control by octacalciumphosphate. Owing to the combined effects of Ca and silicate, phosphate is most effectively retained by Fe(III)-precipitates formed and aged in Ca- and silicate-containing solutions. The results from this study contribute to an improved understanding of the formation and transformation of Fe(III)-precipitates and emphasize that the complexity of Fe(III)-precipitate dynamics in the presence of multiple interfering solutes must be considered when addressing their impact on major and trace elements in environmental systems.

  5. Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide

    KAUST Repository

    Szlachta, Małgorzata

    2012-01-01

    The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6mg/g) and Se(IV) (up to 29.0mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH - groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO 3 did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption. © 2011 Elsevier Inc.

  6. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the general ASM models.

    Science.gov (United States)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer-Nàcher, Carles; Smets, Barth F

    2011-09-15

    Nitrous oxide (N(2)O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N(2)O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N(2)O dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data on N(2)O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO(2)(-) participates as final electron acceptor compared to the oxic pathway. Among the four denitrification steps, the last one (N(2)O reduction to N(2)) seems to be inhibited first when O(2) is present. Overall, N(2)O production can account for 0.1-25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we provide a modeling structure, which adequately captures N(2)O dynamics in autotrophic nitrification and heterotrophic denitrification driven biological N removal processes and which can form the basis for ongoing refinements.

  7. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper

    2012-01-01

    to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...... other RNA molecules show virtually no oxidation. The iron-storage disease hemochromatosis exhibits the most prominent general increase in RNA oxidation ever observed. Oxidation of RNA primarily leads to strand breaks and to oxidative base modifications. Oxidized mRNA is recognized by the ribosomes...

  8. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhouhao@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Pan, Haixia [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Xu, Jianqiang [School of Life Science and Medicine, Dalian University of Technology, Panjin 124221 (China); Xu, Weiping; Liu, Lifen [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China)

    2016-03-05

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na{sub 3}MnPO{sub 4}CO{sub 3} and MnCO{sub 3} were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N{sub 2} adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g{sup −1} adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na{sub 3}MnPO{sub 4}CO{sub 3.} Results suggested the complexity of natural microbe-mediated Mn transformation.

  9. Photo-oxidation catalysts

    Science.gov (United States)

    Pitts, J Roland [Lakewood, CO; Liu, Ping [Irvine, CA; Smith, R Davis [Golden, CO

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  10. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  11. The Enzymatic Oxidation of Graphene Oxide

    Science.gov (United States)

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  12. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.

    Science.gov (United States)

    Hedrich, Sabrina; Johnson, D Barrie

    2012-02-01

    A novel modular bioremediation system which facilitates the selective removal of soluble iron from extremely acidic (pH ∼2) metal-rich wastewaters by ferrous iron oxidation and selective precipitation of the ferric iron produced is described. In the first of the three modules, rapid ferrous iron oxidation was mediated by the recently-characterized iron-oxidizing autotrophic acidophile, "Ferrovum myxofaciens", which grew as long "streamers" within the reactor. Over 90% of the iron present in influent test liquors containing 280mg/L iron was oxidized at a dilution rate of 0.41h(-1), in a proton-consuming reaction. The ferric iron-rich solutions produced were pumped into a second reactor where controlled addition of sodium hydroxide caused the water pH to increase to 3.5 and ferric iron to precipitate as the mineral schwertmannite. Addition of a flocculating agent promoted rapid aggregation and settling of the fine-grain schwertmannite particles. A third passive module (a packed-bed bioreactor, also inoculated with "Fv. myxofaciens") acted as a polishing reactor, lowering soluble iron concentrations in the processed water to iron from a synthetic acidic (pH 2.1) mine water that contained soluble aluminum, copper, manganese and zinc in addition to iron. Schwertmannite was again produced, with little or no co-precipitation of other metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules.

    Science.gov (United States)

    Romano, Ariel A; Hahn, Tobias; Davis, Nicole; Lowery, Colin A; Struss, Anjali K; Janda, Kim D; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-02-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C(12)-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Heterotrophs are key contributors to nitrous oxide production in mixed liquor under low C-to-N ratios during nitrification - batch experiments and modelling

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Pellicer i Nàcher, Carles; Petersen, Morten S.

    2017-01-01

    , rigorous experimental design for calibration of autotrophic N2O production from mixed cultures is essential. The proposed N2O production pathways were examined using five alternative process models confronted with experimental data inferred. Individually, the autotrophic and heterotrophic denitrification...... pathway could describe the observed data. In the best-fit model, which combined two denitrification pathways, the heterotrophic was stronger than the autotrophic contribution to N2O production. Importantly, the individual contribution of autotrophic and heterotrophic to the total N2O pool could...

  15. Nitric oxide supersensitivity

    DEFF Research Database (Denmark)

    Olesen, J; Iversen, Helle Klingenberg; Thomsen, L L

    1993-01-01

    Nitroglycerin, which may be regarded as a prodrug for nitric oxide, induces a mild to moderate headache in healthy subjects. In order to study whether migraine patients are more sensitive to nitric oxide than non-migrainous subjects, four different doses of intravenous nitroglycerin were given...... previously shown a similar supersensitivity to histamine which in human cerebral arteries activates endothelial H1 receptors and causes endothelial production of nitric oxide. Migraine patients are thus supersensitive to exogenous nitric oxide from nitroglycerin as well as to endothelially produced nitric...... oxide. It is suggested that nitric oxide may be partially or completely responsible for migraine pain....

  16. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  17. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  18. Investigation of Phenol Removal in Aqueous Solutions Using Advanced Photochemical Oxidation (APO

    Directory of Open Access Journals (Sweden)

    Naser Jamshidi

    2010-01-01

    Full Text Available Most organic compounds are resistant to conven­tional chemical and biological treatments. For this reason, other methods are being studied as alter­natives to the biological and classical physico-chemical pro­cesses. In this study, advanced photochemical oxidation (APO processes (UV, UV/H2O2, UV/H2O2/Fe(II, andUV/H2O2/Fe(III were investigated in lab-scale experiments for the degradation of phenol in an aqueous solution. A medium-pressure 300 watt (UV-C mercury ultraviolet lamp was used as the radiation source and H2O2 30% as the oxidant. Phenol (initial concentration= 0.5 mmol/L was selected as the model due to its high use and application. Some important parameters such as pH, H2O2 input concentration, iron catalyst concentration, the type of iron salt, and duration of UV radiation were studied based on the standard methods. The results showed that the Photo-Fenton process was the most effective treatment under acidic conditions producing a higher rate of phenol degradation over a very short radiation time. The process accelerated the oxidation rate by 4-5 times the rate of the UV/H2O2 process. The optimum conditions were obtained at a pH value of 3, with a molar ratio of 11.61 for H2O2/Phenol and molar ratios of 0.083 and 0.067for Iron/H2O2 in the UV/H2O2/Fe (II and the UV/H2O2/Fe (III systems, respectively.

  19. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    OpenAIRE

    Boltz, Janika

    2011-01-01

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO2 and TiO2. In order to ach...

  20. Iron and Arsenic Speciation During As(III) Oxidation by Manganese Oxides in the Presence of Fe(II): Molecular-Level Characterization Using XAFS, Mössbauer, and TEM Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yun [Environmental Soil Chemistry Research Group, Delaware Environmental Institute, University of Delaware, Newark, Delaware 19716, United States; Kukkadapu, Ravi K. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Livi, Kenneth J. T. [The High-Resolution Analytical Electron Microbeam Facility, Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218, United States; Xu, Wenqian [Department of Chemistry, Brookhaven National Lab, Upton, New York 11796, United States; Li, Wei [Environmental Soil Chemistry Research Group, Delaware Environmental Institute, University of Delaware, Newark, Delaware 19716, United States; Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, People’s Republic of China; Sparks, Donald L. [Environmental Soil Chemistry Research Group, Delaware Environmental Institute, University of Delaware, Newark, Delaware 19716, United States

    2018-01-17

    The redox state and speciation of metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known the environmental influences (e.g. co-existing ions) on such process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of Fe(II) using X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). As K-edge X-ray absorption near edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, while at higher Fe(II) concentration (200-1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As-Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. As adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that the oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite, goethite, and ferric arsenate like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) and Fe(II) oxidation occurs as a two electron transfer with δ-MnO2 and the observed Mn(III) is due to conproportionation of surface sorbed Mn(II) with Mn(IV) in δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the formation of

  1. The Adsorption of n-Octanohydroxamate Collector on Cu and Fe Oxide Minerals Investigated by Static Secondary Ion Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Alan N. Buckley

    2012-12-01

    Full Text Available The feasibility of investigating the adsorption of n-octanohydroxamate collector on copper and iron oxide minerals with static secondary ion mass spectrometry has been assessed. Secondary ion mass spectra were determined for abraded surfaces of air-exposed copper metal, malachite, pseudomalachite and magnetite that had been conditioned in aqueous potassium hydrogen n-octanohydroxamate solution, as well as for the corresponding bulk CuII and FeIII complexes. In each case, the chemical species present at the solid/vacuum interface of a similarly prepared surface were established by X-ray photoelectron spectroscopy. The most abundant positive and negative metal-containing fragment ions identified for the bulk complexes were also found to be diagnostic secondary ions for the collector adsorbed on the oxide surfaces. The relative abundances of those diagnostic ions varied with, and could be rationalised by, the monolayer or multilayer coverage of the adsorbed collector. However, the precise mass values for the diagnostic ions were not able to corroborate the different bonding in the copper and iron hydroxamate systems that had been deduced from photoelectron and vibrational spectra. Parent secondary ions were able to provide supporting information on the co-adsorption of hydroxamic acid at each conditioned surface.

  2. Sulfate radical degradation of acetaminophen by novel iron-copper bimetallic oxidation catalyzed by persulfate: Mechanism and degradation pathways

    Science.gov (United States)

    Zhang, Yuanchun; Zhang, Qian; Hong, Junming

    2017-11-01

    A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.

  3. The importance of biological oxidation of iron in the aerobic cells of the Wheal Jane pilot passive treatment system.

    Science.gov (United States)

    Hall, G; Swash, P; Kotilainen, S

    2005-02-01

    The passive treatment system designed to treat the mine water discharge of the abandoned Wheal Jane tin mine in Cornwall consisted of a sequence of artificial wetland cells, an anaerobic cell and a final series of rock filters. Three systems were operated which differed only in the pre-treatment of the mine water before discharge to the aerobic wetland cells. The aerobic cells were designed to promote aerobic oxidation and precipitation of iron which could exceed a concentration of 100 mg/l in the raw mine water discharge. The largest investment of land area was to the artificial wetland cells and it was important to understand the processes of oxidation and precipitation of iron so that the performance of this aspect the pilot passive treatment plant (PPTP) could be managed as efficiently as possible. The generally low pH of the influent mine water and inevitable trend of decreasing pH due to hydrolysis of Fe(III) meant that distinguishing between biotic and abiotic mechanisms was fundamental for further design planning of passive treatment systems. This paper describes these observations.

  4. The oxidative pulverisation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Rance, Peter; Beznosyuk, Vassily

    2005-01-01

    An investigation of the oxidation of mixed uranium-plutonium oxide (MOx) fuels containing from 5-30% plutonium (heavy metal basis) in air and oxygen atmospheres has been undertaken. MOx pellets prepared by a co-precipitation process were oxidised at temperatures from 600 to 1200degC, samples were reduced back to the MO 2 state and then re-oxidised. Weight changes were monitored during each procedure and the phases present in the products from each treatment were analysed using X-ray diffraction (XRD). Samples containing up to 10% Pu were oxidised sufficiently to cause pulverisation of the fuel matrix by a single oxidation treatment at 600degC whereas samples containing higher plutonium contents required a cycle of oxidation-reduction-oxidation cause them to become fragmented. XRD data suggests the formation of plutonium-rich and plutonium-lean grains during the reduction cycle and it is suggested that the oxidation of plutonium-lean grains during re-oxidation step is responsible for the break up of the pellets during this step. (author)

  5. The application of Fe–Mn hydrous oxides based adsorbent for removing selenium species from water

    KAUST Repository

    Szlachta, Małgorzata

    2013-02-01

    In this study, the adsorptive removal of selenium(IV) and selenium(VI) from water by a newly developed ion exchange adsorbent, based on Fe(III) and Mn(III) hydrous oxides, was examined. This study was conducted to determine the influence of various operating parameters, such as initial anion concentration, contact time, adsorbent dose, pH, solution temperature, and the presence of competitive anions, on the treatment performance. The high Se(IV) adsorptive capacity of the adsorbent (up to 41.02. mg/g at pH 4) was due to its high affinity for selenite, as reflected in the fast rate of uptake (batch studies) and an efficient long-term removal (column experiments). Although adsorption of anions traditionally decreases as pH increases, the mixed adsorbent was capable of purifying large volumes of Se(IV)-containing water (at pH 7) to reach concentrations lower than 10 μg/L, which meets the European Commission standards. The presence of sulphate and carbonate did not influence Se(IV) adsorption. However, high phosphate and silicate concentrations may have decreased the removal efficiency of Se(IV). Data from the batch and column adsorption experiments were fitted with a number of approved models, which revealed the adsorption mechanism and allowed for a comparison of the results. © 2012 Elsevier B.V.

  6. Kinetic spectrophotometric determination of iron based on catalytic oxidation of p-acetylarsenazo

    Directory of Open Access Journals (Sweden)

    Qing-Zhou Zhai

    2009-12-01

    Full Text Available A novel catalytic kinetic spectrophotometric method for the determination of iron is developed based on the catalytic effect of Fe(III on the oxidation reaction of p-acetylarsenazo(ASApA by potassium periodate. Maximum absorbance of the Fe(III−ASApA−KIO4 system in 8.0 × 10-3 M sulfuric acid occurs at the wavelength of 540 nm. The change in absorbance (ΔA is linearly related with the concentration of iron(III in the range of 0.10−4.0 ng/mL and fitted the equation: ΔA = 4.91 × 10-2 C (C: ng/mL + 0.017, with a regression coefficient of 0.9966 at the wavelength. The detection limit of the method is 0.031 ng/mL. The relative standard deviation of the method was from 1.34% to 1.78% for 11 replicate determinations. The standard addition recovery of the method ranged from 95.71% to 103.3%. The method was used to determine iron in the black gingili paste, oat slice, sleeve-fish silk food samples. The determined results were in agreement with those by atomic absorption spectrometry.

  7. The Experiment Study of Anaerobic Ammonia Oxidation Start-up by Using the Upflow Double Layer Anaerobic Filter

    Directory of Open Access Journals (Sweden)

    YAO Li

    2018-02-01

    Full Text Available Anammox is an efficient nitrogen removal process, but it is difficult to start-up and operate, and ananammox reactor is the efficient way to resolve this problem. The start-up of anammox reactor by upflow anaerobic filter was studied. Denitrifying sludge, anaerobic sludge, and mixed sludge was inoculated on the packing materials, respectively and an autotrophic denitrification condition was provided by the simulated wastewater influent. Along with the gradual increase of matrix concentration and hydraulic load, the microflora was converted to the anaerobic ammonium oxidation(anammoxreaction. The results showed that the anammox reaction could be started by all the three sludge, and the time of start-up of denitrifying sludge, anaerobic sludge, mixed sludge was 42, 54 days and 45 days, respectively. The best result was that inoculated with denitrifying sludge with 82.2% of the total nitrogen removal rate, which started-up quickly and nitrogen was removed efficiently. Double packing effectively improved the stability of anammox process in the reactor, in which the suitable influent concentration loading for the anammox bacteria was 270 mg·L-1 and 360 mg·L-1 for ammonia nitrogen and nitrite nitrogen, respectively, and the COD concentration could not be more than 150 mg· L-1. Furthermore, there was a coexist-effect for anaerobic ammonia oxidation and methanation in this reactor system.

  8. Effect Of Oxidation Temperature And Oxidation Time On Thickness ...

    African Journals Online (AJOL)

    Investigation has been made concerning the effect of oxidation temperature and time on the thickness of copper (I) oxides solar cells prepared by thermal oxidation method. The samples were oxidized at different oxidation temperatures and time. The different oxidation temperatures and lengths of time ware employed in ...

  9. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J. K.

    2017-01-01

    Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several weeks

  10. Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome

    Directory of Open Access Journals (Sweden)

    Sophie S. Abby

    2018-01-01

    Full Text Available Ammonia oxidizing archaea (AOA of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated in hot springs. Here we present the first enrichment of a thermophilic representative with a sequenced genome, which facilitates the search for adaptive strategies and for traits that shape the evolution of Thaumarchaeota. Candidatus Nitrosocaldus cavascurensis has been enriched from a hot spring in Ischia, Italy. It grows optimally at 68°C under chemolithoautotrophic conditions on ammonia or urea converting ammonia stoichiometrically into nitrite with a generation time of approximately 23 h. Phylogenetic analyses based on ribosomal proteins place the organism as a sister group to all known mesophilic AOA. The 1.58 Mb genome of Ca. N. cavascurensis harbors an amoAXCB gene cluster encoding ammonia monooxygenase and genes for a 3-hydroxypropionate/4-hydroxybutyrate pathway for autotrophic carbon fixation, but also genes that indicate potential alternative energy metabolisms. Although a bona fide gene for nitrite reductase is missing, the organism is sensitive to NO-scavenging, underlining the potential importance of this compound for AOA metabolism. Ca. N. cavascurensis is distinct from all other AOA in its gene repertoire for replication, cell division and repair. Its genome has an impressive array of mobile genetic elements and other recently acquired gene sets, including conjugative systems, a provirus, transposons and cell appendages. Some of these elements indicate recent exchange with the environment, whereas others seem to have been domesticated and might convey crucial metabolic traits.

  11. Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome.

    Science.gov (United States)

    Abby, Sophie S; Melcher, Michael; Kerou, Melina; Krupovic, Mart; Stieglmeier, Michaela; Rossel, Claudia; Pfeifer, Kevin; Schleper, Christa

    2018-01-01

    Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated in hot springs. Here we present the first enrichment of a thermophilic representative with a sequenced genome, which facilitates the search for adaptive strategies and for traits that shape the evolution of Thaumarchaeota. Candidatus Nitrosocaldus cavascurensis has been enriched from a hot spring in Ischia, Italy. It grows optimally at 68°C under chemolithoautotrophic conditions on ammonia or urea converting ammonia stoichiometrically into nitrite with a generation time of approximately 23 h. Phylogenetic analyses based on ribosomal proteins place the organism as a sister group to all known mesophilic AOA. The 1.58 Mb genome of Ca. N. cavascurensis harbors an amo AXCB gene cluster encoding ammonia monooxygenase and genes for a 3-hydroxypropionate/4-hydroxybutyrate pathway for autotrophic carbon fixation, but also genes that indicate potential alternative energy metabolisms. Although a bona fide gene for nitrite reductase is missing, the organism is sensitive to NO-scavenging, underlining the potential importance of this compound for AOA metabolism. Ca. N. cavascurensis is distinct from all other AOA in its gene repertoire for replication, cell division and repair. Its genome has an impressive array of mobile genetic elements and other recently acquired gene sets, including conjugative systems, a provirus, transposons and cell appendages. Some of these elements indicate recent exchange with the environment, whereas others seem to have been domesticated and might convey crucial metabolic traits.

  12. Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome

    Science.gov (United States)

    Abby, Sophie S.; Melcher, Michael; Kerou, Melina; Krupovic, Mart; Stieglmeier, Michaela; Rossel, Claudia; Pfeifer, Kevin; Schleper, Christa

    2018-01-01

    Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated in hot springs. Here we present the first enrichment of a thermophilic representative with a sequenced genome, which facilitates the search for adaptive strategies and for traits that shape the evolution of Thaumarchaeota. Candidatus Nitrosocaldus cavascurensis has been enriched from a hot spring in Ischia, Italy. It grows optimally at 68°C under chemolithoautotrophic conditions on ammonia or urea converting ammonia stoichiometrically into nitrite with a generation time of approximately 23 h. Phylogenetic analyses based on ribosomal proteins place the organism as a sister group to all known mesophilic AOA. The 1.58 Mb genome of Ca. N. cavascurensis harbors an amoAXCB gene cluster encoding ammonia monooxygenase and genes for a 3-hydroxypropionate/4-hydroxybutyrate pathway for autotrophic carbon fixation, but also genes that indicate potential alternative energy metabolisms. Although a bona fide gene for nitrite reductase is missing, the organism is sensitive to NO-scavenging, underlining the potential importance of this compound for AOA metabolism. Ca. N. cavascurensis is distinct from all other AOA in its gene repertoire for replication, cell division and repair. Its genome has an impressive array of mobile genetic elements and other recently acquired gene sets, including conjugative systems, a provirus, transposons and cell appendages. Some of these elements indicate recent exchange with the environment, whereas others seem to have been domesticated and might convey crucial metabolic traits. PMID:29434576

  13. 2015 Progress Report/July 2016: Iron Oxide Redox Transformation Pathways: The Bulk Electrical Conduction Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Michelle M. [Univ. of Iowa, Iowa City, IA (United States); Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-25

    Despite decades of research on the reactivity and stable isotope properties of Fe oxides, the ability to describe the redox behavior of Fe oxides in the environment is still quite limited. This is due, in large part, to the analytical and spatial complexities associated with studying microscopic processes at the Fe oxide-water interface. This project had the long-term vision of filling this gap by developing a detailed understanding of the relationship between interfacial ET processes, surface structure and charge, and mineral semiconducting properties. We focused on the Fe(III)-oxides and oxyhydroxides because of their geochemical preponderance, versatility in synthesis of compositionally, structurally, and morphologically tailored phases, and because they are amenable to a wide range of surface and bulk properties characterization. In particular, reductive transformation of phases such as hematite (α-Fe2O3) and goethite (α-FeOOH) in aqueous solution can serve as excellent model systems for studies of electron conduction processes, as well as provide valuable insights into effect of nanoscale conductive materials on contaminant fate at DOE sites. More specifically, the goal of the Iowa component of this project was to use stable Fe isotope measurements to simultaneously measure isotope specific oxidation states and concentrations of Fe at the hematite-water and goethite-water interface. This work builds on our previous work where we used an innovative combination of 57Fe Mössbauer spectroscopy and high precision isotope ratio measurements (MC-ICP-MS) to probe the dynamics of the reaction of aqueous Fe(II) with goethite. Mössbauer spectroscopy detects 57Fe only among all other Fe isotopes and we have capitalized on this to spectroscopically demonstrate Fe(II)-Fe(III) electron transfer between sorbed Fe(II) and Fe(III) oxides (Handler, et al., 2009; Gorski, et al. 2010; Rosso et al., 2010). By combining the M

  14. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reaction...... time was less important within the range studied. Nitrifying bacteria were used to measure the inhibition from wet oxidative-treated samples to study the effect of the (wet oxidation) reaction conditions. Wet oxidation made quinoline more toxic to Nitrosomonas. This was observed for Nitrobacter as well....... The combined wet oxidation and biological treatment of reaction products resulted in 91% oxidation of the parent compound to CO2 and water. Following combined wet oxidation and biological treatment the sample showed low toxicity towards Nitrosomonas and no toxicity towards Nitrobacter. (C) 1998 Elsevier...

  15. Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: Role of reactive oxygen species.

    Science.gov (United States)

    Spencer, Wendy A; Jeyabalan, Jeyaprakash; Kichambre, Sunita; Gupta, Ramesh C

    2011-01-01

    There is increasing evidence supporting a causal role for oxidatively damaged DNA in neurodegeneration during the natural aging process and in neurodegenerative diseases such as Parkinson and Alzheimer. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins in inducing oxidatively generated DNA damage. Autoxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75-fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383±46 adducts/10(6) nucleotides), nearly 3-fold greater than 8-oxo-7,8-dihydro-2'-deoxyguanosine (122±19 adducts/10(6) nucleotides) under the same conditions. The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine, or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role for singlet oxygen, superoxide, H(2)O(2), Cu(I), and Cu(I)OOH in their formation. Whereas the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate, and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These

  16. Genomic insights into a new acidophilic, copper-resistant Desulfosporosinus isolate from the oxidized tailings area of an abandoned gold mine.

    Science.gov (United States)

    Mardanov, Andrey V; Panova, Inna A; Beletsky, Alexey V; Avakyan, Marat R; Kadnikov, Vitaly V; Antsiferov, Dmitry V; Banks, David; Frank, Yulia A; Pimenov, Nikolay V; Ravin, Nikolai V; Karnachuk, Olga V

    2016-08-01

    Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  18. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.

    Science.gov (United States)

    Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten

    2010-10-01

    The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    Science.gov (United States)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  20. Ligand-controlled Fe mobilization catalyzed by adsorbed Fe(II) on Fe(hydr)oxides

    Science.gov (United States)

    Kang, Kyounglim; Biswakarma, Jagannath; Borowski, Susan C.; Hug, Stephan J.; Hering, Janet G.; Schenkeveld, Walter D. C.; Kraemer, Stephan M.

    2017-04-01

    Dissolution of Fe(hydr)oxides is a key process in biological iron acquisition. Due to the low solubility of iron oxides in environments with a circumneutral pH, organisms may exude organic compounds catalyzing iron mobilization by reductive and ligand controlled dissolution mechanisms. Recently, we have shown synergistic effects between reductive dissolution and ligand-controlled dissolution that may operate in biological iron acquisition. The synergistic effects were observed in Fe mobilization from single goethite suspensions as well as in suspensions containing calcareous soil[1],[2]. However, how the redox reaction accelerates Fe(hydr)oxide dissolution by ligands is not studied intensively. In our study, we hypothesized that electron transfer to structural Fe(III) labilizes the Fe(hydr)oxide structure, and that this can accelerate ligand controlled dissolution. Systematical batch dissolution experiments were carried out under anoxic conditions at environmentally relevant pH values in which various Fe(hydr)oxides (goethite, hematite, lepidocrocite) interacted with two different types of ligand (desferrioxamine B (DFOB) and N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid monohydrochloride (HBED)). Electron transfer to the structure was induced by adsorbing Fe(II) to the mineral surface at various Fe(II) concentrations. Our results show a distinct catalytic effect of adsorbed Fe(II) on ligand controlled dissolution, even at submicromolar Fe(II) concentrations. We observed the effect for a range of iron oxides, but it was strongest in lepidocrocite, most likely due to anisotropy in conductivity leading to higher near-surface concentration of reduced iron. Our results demonstrate that the catalytic effect of reductive processes on ligand controlled dissolution require a very low degree of reduction making this an efficient process for biological iron acquisition and a potentially important effect in natural iron cycling. References 1. Wang, Z. M

  1. Weathering of the Rio Blanco Quartz Diorite, Luquillo Mountains, Puerto Rico: Coupling Oxidation, Dissolution, And Fracturing

    International Nuclear Information System (INIS)

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2008-01-01

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (∼2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ΔV of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 (angstrom), forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 x 10 -14 mol biotite m -2 s -1 . Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 (micro)m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 x 10 -13 mol hornblende m -2 s -1 : the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the

  2. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.

    Science.gov (United States)

    Kurz, Philipp

    2016-01-01

    The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnOx. This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnOx. The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV)-oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials. In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnOx catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnOx materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future.

  3. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  4. Oxidizer Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Laboratory

    2016-11-07

    The purpose of this report is to present the results of the acceptable knowledge (AK) review of oxidizers present in active waste streams, provide a technical analysis of the oxidizers, and report the results of the scoping study testing. This report will determine the fastest burning oxidizer to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-002, Sorbent Scoping Studies, contains similar information for sorbents identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  5. METAL OXIDE NANOPARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  6. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

    Science.gov (United States)

    Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas

    2012-06-19

    The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.

  7. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  8. Optimisation of aqueous synthesis of iron oxide nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bonvin, Debora; Hofmann, Heinrich; Mionic Ebersold, Marijana, E-mail: Marijana.Mionic-Ebersold@chuv.ch [Ecole polytechnique fédérale de Lausanne (EPFL), Powder Technology Laboratory, Institute of Materials, School of Engineering (Switzerland)

    2016-12-15

    Iron oxide nanoparticles (IONPs) were prepared via aqueous synthesis which combines alkaline co-precipitation (CP) of ferric and ferrous precursors with mild hydrothermal (HT) treatment without cupping agents (CA). In this novel synthesis route, CP + HT, we found the optimal synthesis conditions to obtain IONPs without a second phase and with the size larger than in standard CP: the equal number of Fe(II) and Fe(III) ions are co-precipitated with 6 M ammonia and further HT treated in mild conditions (120 °C for 24 h) without CA. The IONPs obtained by novel CP + HT route had faceted rectangular morphology, a mean TEM diameter of 21.5 ± 6.3 nm, a hydrodynamic diameter of 30.2 ± 9.1 nm and a zeta potential at pH 4 of 48.2 ± 0.6 mV. After the subsequent oxidation step, the final product (IONPs) was studied by XRD, FTIR and XPS, which confirmed the desired structure of γ-Fe{sub 2}O{sub 3}. Importantly, this synthesis was especially planned for the preparation of IONPs for biomedical applications. Thus, our novel synthesis was designed to be compliant with the regulations of nano-safety: no special atmosphere, no complex multistep size separation, no organic solvents or solvent exchange, no CA and their washing and the use of low temperature in the final optimised conditions. In addition, this simple synthesis route combines the CP and HT methods, which are both proven to be scalable. Moreover, repeatability and reproducibility of the optimal CP + HT synthesis were confirmed on the lab-scale; more than 100 repetitions with different dishes, different operators and different batches of chemicals were performed.

  9. A field study on chemistry, S(IV) oxidation rates and vertical transport during fog conditions

    Science.gov (United States)

    Joos, F.; Baltensperger, U.

    An extensive fog study was carried out in the central plateu of Switzerland. Ninety-seven fog samples were collected along with aerosol filter and cascade impactor samples, and measurements of O 3, SO 2, NO, NO x, PAN, temperature, and wind speed and direction. Maximum levels in fogwater were 4.3, 4.4., 0.033, 1.7, 0.5, 0.024 and 9.2 mmol ℓ -1 for Cl -, NO 3-, NO 2-, SO 42-, S(IV), oxalate and NH 4+, respectively. pH varied between 2.9 and 7.1. Sixteen additional elements were determined in the fog samples by ICP. The sum of the concentrations of SO 42- and S(IV) agreed very with the total sulfur concentration as determined by ICP. A substantial excess of S(IV) (up to 0.2 mmol ℓ -1) compared to Henry and acid-base equilibrium calculations was found, which can probably be attributed to complex formations with aldehydes. S(IV) oxidation rates of up to 650 nmol ℓ -1 s -1 with ozone and of up to 100 nmol ℓ -1 s -1 with NO 2 were calculated. S(IV) oxidation due to PAN, NO 2- and Fe(III) was of minor importance. A substantial fraction of the major ions was present in the intersitial aerosol (aerosol particles < 4 μm) even during fog conditions. High correlations were found for NH 4+, NO 32-. From their ratios in the fog water and the aerosol (< 4 μm) it could be concluded that at least 40% of NO 3- and 20% of NH 4+ in fog water was due to gas phase scavenging. Increasing concentrations in fog water were found during fog dissipation. Concentrations decreased with increasing height. A vertical transport model including turbulent diffusion and droplet sedimentation is introduced, which matches the experimental data of this vertical profile.

  10. Development mechanisms of microorganisms oxidizing the hydrogen: role and consequences in the industry

    International Nuclear Information System (INIS)

    Gales, G.

    2004-10-01

    It is possible to observe a bacterial development in a ultra-pure water basin containing irradiating wastes. This ecosystem has the particularity to contain dissolved molecular hydrogen produced by radiolysis as well as oxygen in non negligible quantities. After having studied the physico-chemical properties of this ecosystem, bio-film and water have been sampled in different parts of the basin. The aim of this work was to identify the different populations of bacteria which are present, to know their origin and to understand their development mechanisms. The water and bio-film samples have been cultivated in order to isolate the chemo-litho-trophic bacteria which oxidize the hydrogen, and on nutritive agar-agar. These bacteria have been identified by partial determination of the DNAr 16S sequences. The DNA has also been extracted of the bio-films in order to carry out a study of the molecular diversity of the bacterial populations (determination of the sequences of the DNAr 16S). Surprisingly, at the surface of the basin, the DNAr 16S sequences of the autotrophic strains are the same as the sequences detected by the method of sequences determination. Most of bacteria of this medium have then been isolated. The comparison between the bacteria isolated from different parts of the basin allows to say that the make-up waters of the basin are the main source of contamination and to propose a scenario for this contamination. The hydrogen metabolism of most of the bacteria has been studied by gaseous exchange mass spectrometry: those isolated make the 'knallgas reaction' (H 2 + 1/2O 2 → H 2 O) and fix carbon dioxide in these conditions. In the studied basin are then a bacterial community based on hydrogen and whose primary producers make the 'knallgas' reaction. Most of the bacteria, mainly a (Ralstonia sp. GGLH002) tolerate the oxidizing stress generated by radiolysis. (O.M.)

  11. Reactivity and operational stability of N-tailed TAMLs through kinetic studies of the catalyzed oxidation of orange II by H2 O2 : synthesis and X-ray structure of an N-phenyl TAML.

    Science.gov (United States)

    Warner, Genoa R; Mills, Matthew R; Enslin, Clarissa; Pattanayak, Shantanu; Panda, Chakadola; Panda, Tamas Kumar; Gupta, Sayam Sen; Ryabov, Alexander D; Collins, Terrence J

    2015-04-13

    The catalytic activity of the N-tailed ("biuret") TAML (tetraamido macrocyclic ligand) activators [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 NR}Cl](2-) (3; N atoms in boldface are coordinated to the central iron atom; the same nomenclature is used in for compounds 1 and 2 below), [X, R=H, Me (a); NO2 , Me (b); H, Ph (c)] in the oxidative bleaching of Orange II dye by H2 O2 in aqueous solution is mechanistically compared with the previously investigated activator [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 CMe2 }OH2 ](-) (1) and the more aggressive analogue [Fe(Me2 C{CON(1,2-C6 H3 -4-X)NCO}2 )OH2 ](-) (2). Catalysis by 3 of the reaction between H2 O2 and Orange II (S) occurs according to the rate law found generally for TAML activators (v=kI kII [Fe(III) ][S][H2 O2 ]/(kI [H2 O2 ]+kII [S]) and the rate constants kI and kII at pH 7 both decrease within the series 3 b>3 a>3 c. The pH dependency of kI and kII was investigated for 3 a. As with all TAML activators studied to-date, bell-shaped profiles were found for both rate constants. For kI , the maximal activity was found at pH 10.7 marking it as having similar reactivity to 1 a. For kII , the broad bell pH profile exhibits a maximum at pH about 10.5. The condition kI ≪kII holds across the entire pH range studied. Activator 3 b exhibits pronounced activity in neutral to slightly basic aqueous solutions making it worthy of consideration on a technical performance basis for water treatment. The rate constants ki for suicidal inactivation of the active forms of complexes 3 a-c were calculated using the general formula ln([S0 ]/[S∞ ])=(kII /ki )[Fe(III) ]; here [Fe(III) ], [S0 ], and [S∞ ] are the total catalyst concentration and substrate concentration at time zero and infinity, respectively. The synthesis and X-ray characterization of 3 c are also described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cosmological billiards and oxidation

    International Nuclear Information System (INIS)

    De Buyl, S.; Paulot, L.; Henneaux, M.; Julia, B.

    2004-01-01

    We show how the properties of the cosmological billiards provide useful information (spacetime dimension and p-form spectrum) on the oxidation endpoint of the oxidation sequence of gravitational theories. We compare this approach to the other available methods: GL(n,R) subgroups and the superalgebras of dualities. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  13. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  14. Monolithic metal oxide transistors.

    Science.gov (United States)

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics.

  15. Death from Nitrous Oxide.

    Science.gov (United States)

    Bäckström, Björn; Johansson, Bengt; Eriksson, Anders

    2015-11-01

    Nitrous oxide is an inflammable gas that gives no smell or taste. It has a history of abuse as long as its clinical use, and deaths, although rare, have been reported. We describe two cases of accidental deaths related to voluntary inhalation of nitrous oxide, both found dead with a gas mask covering the face. In an attempt to find an explanation to why the victims did not react properly to oncoming hypoxia, we performed experiments where a test person was allowed to breath in a closed system, with or without nitrous oxide added. Vital signs and gas concentrations as well as subjective symptoms were recorded. The experiments indicated that the explanation to the fact that neither of the descendents had reacted to oncoming hypoxia and hypercapnia was due to the inhalation of nitrous oxide. This study raises the question whether nitrous oxide really should be easily, commercially available. © 2015 American Academy of Forensic Sciences.

  16. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  17. Characterisation of powerful antioxidants and synthetic iron ligands, as protective agents against oxidative damages, using new high throughput screening assays

    International Nuclear Information System (INIS)

    Meunier, St.

    2002-12-01

    This work was devoted to the development of pertinent high throughput screening assays in the aim of studying oxidative stress. Three screening assays have been developed for the evaluation of protective agents toward ROS generated by gamma irradiation, UV or by a Fenton-like system. 24 natural extracts and a library of 120 pure compounds, containing among the most powerful antioxidants known to date, have been readily studied using, these new techniques. We found that two pulvinic acid derivatives possess excellent protective properties, and especially a pigment of fungus named norbadione A. Beyond its in vitro activity, this molecule displays remarkable biological properties. In the aim of studying an alternative pathway of protection against oxidation induced by iron, ligands able to modify the redox properties of this metal, have been synthesised. We have developed a parallel synthesis allowing the variation of the architecture, denticity, chelating moieties and hydrophobicity of iron chelates. Using this strategy, 47 potential Fe(III) ligands were obtained. Their protective capacities have been studied using a fourth screening assay, demonstrating the effectiveness of some ligands. Finally, the immunoassay technique called SPI-RAD has been used in order to study a particular consequence of drastic oxidative stress, namely covalent crosslinks between proteins. Our results demonstrate that these linkages occur in the presence of metals (FeII or CuII) and hydrogen peroxide, as well as in the presence of NO . radical. Moreover, it has been demonstrated that tyrosines residues and disulfide bridges play an important role in these phenomena. (author)

  18. Oxide Nanocrystal Model Catalysts.

    Science.gov (United States)

    Huang, Weixin

    2016-03-15

    Model catalysts with uniform and well-defined surface structures have been extensively employed to explore structure-property relationships of powder catalysts. Traditional oxide model catalysts are based on oxide single crystals and single crystal thin films, and the surface chemistry and catalysis are studied under ultrahigh-vacuum conditions. However, the acquired fundamental understandings often suffer from the "materials gap" and "pressure gap" when they are extended to the real world of powder catalysts working at atmospheric or higher pressures. Recent advances in colloidal synthesis have realized controlled synthesis of catalytic oxide nanocrystals with uniform and well-defined morphologies. These oxide nanocrystals consist of a novel type of oxide model catalyst whose surface chemistry and catalysis can be studied under the same conditions as working oxide catalysts. In this Account, the emerging concept of oxide nanocrystal model catalysts is demonstrated using our investigations of surface chemistry and catalysis of uniform and well-defined cuprous oxide nanocrystals and ceria nanocrystals. Cu2O cubes enclosed with the {100} crystal planes, Cu2O octahedra enclosed with the {111} crystal planes, and Cu2O rhombic dodecahedra enclosed with the {110} crystal planes exhibit distinct morphology-dependent surface reactivities and catalytic properties that can be well correlated with the surface compositions and structures of exposed crystal planes. Among these types of Cu2O nanocrystals, the octahedra are most reactive and catalytically active due to the presence of coordination-unsaturated (1-fold-coordinated) Cu on the exposed {111} crystal planes. The crystal-plane-controlled surface restructuring and catalytic activity of Cu2O nanocrystals were observed in CO oxidation with excess oxygen. In the propylene oxidation reaction with O2, 1-fold-coordinated Cu on Cu2O(111), 3-fold-coordinated O on Cu2O(110), and 2-fold-coordinated O on Cu2O(100) were identified

  19. Oxidants for uranium leaching

    International Nuclear Information System (INIS)

    Ho, E.; Ring, B.

    2007-01-01

    Most uranium ores are leached with sulfuric acid under oxidising conditions. This paper reviews the oxidants that have been traditionally used in uranium leaching and discusses their merits in the context of overall flow sheet considerations. Options for alternative oxidants are also discussed. In acid leaching, ferric ion in solution oxidises insoluble uranium(IV) to soluble uranium (VI). Though ferric ion may be added directly, usually an oxidant is added to the circuit to convert ferrous ion to ferric ion in the liquor so that leaching can continue. The most common oxidants are pyrolusite and sodium chlorate. Pyrolusite is relatively cheap but introduces manganese ions into the liquor and consumes twice as much acid as sodium chlorate. Sodium chlorate is a slow reacting oxidant at low temperatures and acidities, and introduces chloride into the leach liquor. Caro's acid, is a non-polluting reagent that was used successfully at the Nabarlek uranium mine, and provided very good control of oxidising conditions. Other oxidants that are now being considered to overcome the disadvantages of pyrolusite and sodium chlorate are oxygen, hydrogen peroxide and SO 2 /O 2 . Some performance data for these oxidants are presented

  20. Heptanuclear Fe5Cu2-Phenylgermsesquioxane containing 2,2'-Bipyridine: Synthesis, Structure, and Catalytic Activity in Oxidation of C-H Compounds.

    Science.gov (United States)

    Bilyachenko, Alexey N; Khrustalev, Victor N; Zubavichus, Yan V; Shul'pina, Lidia S; Kulakova, Alena N; Bantreil, Xavier; Lamaty, Frédéric; Levitsky, Mikhail M; Gutsul, Evgeniy I; Shubina, Elena S; Shul'pin, Georgiy B

    2018-01-02

    A new representative of an unusual family of metallagermaniumsesquioxanes, namely the heterometallic cagelike phenylgermsesquioxane (PhGeO 2 ) 12 Cu 2 Fe 5 (O)OH(PhGe) 2 O 5 (bipy) 2 (2), was synthesized and structurally characterized. Fe(III) ions of the complex are coordinated by oxa ligands: (i) cyclic (PhGeO 2 ) 12 and acyclic (Ph 2 Ge 2 O 5 ) germoxanolates and (ii) O 2- and (iii) HO - moieties. In turn, Cu(II) ions are coordinated by both oxa (germoxanolates) and aza ligands (2,2'-bipyridines). This "hetero-type" of ligation gives in sum an attractive pagoda-like molecular architecture of the complex 2. Product 2 showed a high catalytic activity in the