WorldWideScience

Sample records for autosomal-recessive neurodegenerative disorder

  1. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy.

    Science.gov (United States)

    Magen, Daniella; Georgopoulos, Costa; Bross, Peter; Ang, Debbie; Segev, Yardena; Goldsher, Dorit; Nemirovski, Alexandra; Shahar, Eli; Ravid, Sarit; Luder, Anthony; Heno, Bayan; Gershoni-Baruch, Ruth; Skorecki, Karl; Mandel, Hanna

    2008-07-01

    Hypomyelinating leukodystrophies (HMLs) are disorders involving aberrant myelin formation. The prototype of primary HMLs is the X-linked Pelizaeus-Merzbacher disease (PMD) caused by mutations in PLP1. Recently, homozygous mutations in GJA12 encoding connexin 47 were found in patients with autosomal-recessive Pelizaeus-Merzbacher-like disease (PMLD). However, many patients of both genders with PMLD carry neither PLP1 nor GJA12 mutations. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD, in which linkage to PLP1 and GJA12 was excluded. Using homozygosity mapping and mutation analysis, we have identified a homozygous missense mutation (D29G) not previously described in HSPD1, encoding the mitochondrial heat-shock protein 60 (Hsp60) in all affected individuals. The D29G mutation completely segregates with the disease-associated phenotype. The pathogenic effect of D29G on Hsp60-chaperonin activity was verified by an in vivo E. coli complementation assay, which demonstrated compromised ability of the D29G-Hsp60 mutant protein to support E. coli survival, especially at high temperatures. The disorder, which we have termed MitCHAP-60 disease, can be distinguished from spastic paraplegia 13 (SPG13), another Hsp60-associated autosomal-dominant neurodegenerative disorder, by its autosomal-recessive inheritance pattern, as well as by its early-onset, profound cerebral involvement and lethality. Our findings suggest that Hsp60 defects can cause neurodegenerative pathologies of varying severity, not previously suspected on the basis of the SPG13 phenotype. These findings should help to clarify the important role of Hsp60 in myelinogenesis and neurodegeneration.

  2. An exome sequencing strategy to diagnose lethal autosomal recessive disorders.

    Science.gov (United States)

    Ellard, Sian; Kivuva, Emma; Turnpenny, Peter; Stals, Karen; Johnson, Matthew; Xie, Weijia; Caswell, Richard; Lango Allen, Hana

    2015-03-01

    Rare disorders resulting in prenatal or neonatal death are genetically heterogeneous. For some conditions, affected fetuses can be diagnosed by ultrasound scan, but this is not usually possible until mid-gestation. There is often limited fetal DNA available for investigation. We investigated a strategy for diagnosing autosomal recessive lethal disorders in non-consanguineous pedigrees with multiple affected fetuses. Exome sequencing was performed to identify genes where each parent is heterozygous for a rare non-synonymous-coding or splicing variant. Putative pathogenic variants were tested for cosegregation in affected fetuses and unaffected siblings. In eight couples of European ancestry, we found on average 1.75 genes (range 0-4) where both parents were heterozygous for rare potentially deleterious variants. A proof-of-principle study detected heterozygous DYNC2H1 variants in a couple whose five fetuses had short-rib polydactyly. Prospective analysis of two couples with multiple pregnancy terminations for fetal akinesia syndrome was performed and a diagnosis was obtained in both the families. The first couple were each heterozygous for a previously reported GLE1 variant, p.Arg569His or p.Val617Met; both were inherited by their two affected fetuses. The second couple were each heterozygous for a novel RYR1 variant, c.14130-2A>G or p.Ser3074Phe; both were inherited by their three affected fetuses but not by their unaffected child. Biallelic GLE1 and RYR1 disease-causing variants have been described in other cases with fetal akinesia syndrome. We conclude that exome sequencing of parental samples can be an effective tool for diagnosing lethal recessive disorders in outbred couples. This permits early prenatal diagnosis in future pregnancies.

  3. Autosomal recessive disorder with retardation of growth, mental deficiency, ptosis, pectus excavatum and camptodactyly

    Energy Technology Data Exchange (ETDEWEB)

    Khaldi, F.; Bennaceur, B.; Hammou, A.; Hamza, M.; Gharbi, H.A.

    1988-07-01

    Two strikingly similar brothers issued from consanguineous parents in the second degree present the following patterns of anomalies: Retardation of growth, mental deficiency, ocular abnormalities, pectus excavatum and camptodactyly. The ocular abnormalities include ptosis, microphthalmia and hypertelorism. No endocrine or metabolic aberrations are found. The authors conclude that the disorder has probably an autosomal recessive mode of transmission.

  4. More Than Ataxia: Hyperkinetic Movement Disorders in Childhood Autosomal Recessive Ataxia Syndromes

    OpenAIRE

    2016-01-01

    Background The autosomal recessive ataxias are a heterogeneous group of disorders that are characterized by complex neurological features in addition to progressive ataxia. Hyperkinetic movement disorders occur in a significant proportion of patients, and may sometimes be the presenting motor symptom. Presentations with involuntary movements rather than ataxia are diagnostically challenging, and are likely under-recognized. Methods A PubMed literature search was performed in October 2015 util...

  5. Autosomal recessive cerebellar ataxias : the current state of affairs

    NARCIS (Netherlands)

    Vermeer, S.; van de Warrenburg, B. P. C.; Willemsen, M. A. A. P.; Cluitmans, M.; Scheffer, H.; Kremer, B. P.; Knoers, N. V. A. M.

    2011-01-01

    Among the hereditary ataxias, autosomal recessive cerebellar ataxias (ARCAs) encompass a diverse group of rare neurodegenerative disorders in which a cerebellar syndrome is the key clinical feature. The clinical overlap between the different cerebellar ataxias, the occasional atypical phenotypes, an

  6. A new autosomal recessive disorder of bilateral frontotemporal pachygyria without microcephaly: Report of a case and review of literature

    Directory of Open Access Journals (Sweden)

    Phadke Shubha

    2007-01-01

    Full Text Available Pachygyria is a disorder of neuronal migration. We report an Indian family with four siblings with developmental delay, infrequent seizures, normal head size and mild to moderate mental retardation. Two of them had bilaterally symmetrical frontotemporal pachygyria. Dysmorphism and neurological signs were absent in the affected subjects. Affected male and female siblings with normal parents suggests autosomal recessive mode of inheritance. We believe these cases represent a new autosomal recessive disorder of neuronal migration. Other similar cases of lissencephaly are reviewed.

  7. A pedigree-analysis approach to the descriptive epidemiology of autosomal-recessive disorders.

    Science.gov (United States)

    Man, W Y N; Nicholas, F W; James, J W

    2007-03-17

    We describe a pedigree-analysis approach to estimating descriptive epidemiological parameters for autosomal-recessive disorders when the ancestral source of the disorder is known. We show that the expected frequency of carriers in a cohort equals the gene contribution of the ancestral source to that cohort, which is equivalent to the direct (additive) genetic relationship of that ancestor to the cohort. Also, the expected incidence of affected foetuses ranges from (1/2)F* to F*, where F* is the mean partial inbreeding coefficient (due to the ancestor) of the cohort. We applied this approach to complex vertebral malformation (CVM) in Holstein-Friesians in Australia, for which the ancestral source is a USA-born bull, Carlin-M Ivanhoe Bell. The estimated frequency of carriers was 2.47% for the 1992-born and 4.44% for the 1997-born cohort of Holstein-Friesian cows in Australia. The estimated incidence of affected foetuses/calves was considerably less than one per thousand, ranging from 0.0024 to 0.0048% for the 1992-born cohort, and from 0.0288 to 0.0576% for the 1997-born cohort. These incidences correspond to expected numbers of affected female foetuses/calves ranging from 2 to 4 for the 1992-born cohort and from 28 to 56 for the 1997-born cohort. This approach is easy to implement using software that is readily available.

  8. Autosomal recessive epidermolytic palmoplantar keratoderma.

    Science.gov (United States)

    Alsaleh, Q A; Teebi, A S

    1990-08-01

    Palmoplantar keratoderma (PPK) is a heterogeneous group of disorders. Epidermolytic PPK is a well delineated autosomal dominant entity, but no recessive form is known. Here we report two sons of phenotypically normal, consanguineous, Arab parents with features suggestive of PPK. They presented with patchy eczematous skin lesions followed by PPK and raised serum levels of IgE. Skin biopsy from the keratotic lesions showed the features of epidermolytic hyperkeratosis. Autosomal recessive inheritance is suggested and the differential diagnosis is discussed.

  9. [Autosomal recessive polycystic kidney].

    Science.gov (United States)

    Todorov, V; Penkova, S; Lalev, I

    1990-01-01

    A case of a 22 years old woman with autosomal-recessive form of kidney polycystosis is presented. The diagnosis was made in early childhood. A combination of renal anomaly and hepatic fibrosis with manifestations of portal hypertension was present. No deviations from the other internal organs were found. At the age of 12 she entered into the stage of chronic renal failure. The last five years she is on dialysis treatment. She had survived several acute bleedings from esophageal varices. The authors are of the opinion that the case is of interest since patients with autosomal-recessive renal polycystosis very rarely reach majority.

  10. Canine disorder mirrors human disease: exonic deletion in HES7 causes autosomal recessive spondylocostal dysostosis in miniature Schnauzer dogs.

    Directory of Open Access Journals (Sweden)

    Cali E Willet

    Full Text Available Spondylocostal dysostosis is a congenital disorder of the axial skeleton documented in human families from diverse racial backgrounds. The condition is characterised by truncal shortening, extensive hemivertebrae and rib anomalies including malalignment, fusion and reduction in number. Mutations in the Notch signalling pathway genes DLL3, MESP2, LFNG, HES7 and TBX6 have been associated with this defect. In this study, spondylocostal dysostosis in an outbred family of miniature schnauzer dogs is described. Computed tomography demonstrated that the condition mirrors the skeletal defects observed in human cases, but unlike most human cases, the affected dogs were stillborn or died shortly after birth. Through gene mapping and whole genome sequencing, we identified a single-base deletion in the coding region of HES7. The frameshift mutation causes loss of functional domains essential for the oscillatory transcriptional autorepression of HES7 during somitogenesis. A restriction fragment length polymorphism test was applied within the immediate family and supported a highly penetrant autosomal recessive mode of inheritance. The mutation was not observed in wider testing of 117 randomly sampled adult miniature schnauzer and six adult standard schnauzer dogs; providing a significance of association of Praw = 4.759e-36 (genome-wide significant. Despite this apparently low frequency in the Australian population, the allele may be globally distributed based on its presence in two unrelated sires from geographically distant locations. While isolated hemivertebrae have been observed in a small number of other dog breeds, this is the first clinical and genetic diagnosis of spontaneously occurring spondylocostal dysostosis in a non-human mammal and offers an excellent model in which to study this devastating human disorder. The genetic test can be utilized by dog breeders to select away from the disease and avoid unnecessary neonatal losses.

  11. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone- shaped epiphyses in hands and hips

    NARCIS (Netherlands)

    Hellemans, J; Coucke, PJ; Giedion, A; De Paepe, A; Kramer, P; Beemer, F; Mortier, GR

    2003-01-01

    Acrocapitofemoral dysplasia is a recently delineated autosomal recessive skeletal dysplasia, characterized clinically by short stature with short limbs and radiographically by cone-shaped epiphyses, mainly in hands and hips. Genome-wide homozygosity mapping in two consanguineous families linked the

  12. Autosomal recessive hereditary auditory neuropathy

    Institute of Scientific and Technical Information of China (English)

    王秋菊; 顾瑞; 曹菊阳

    2003-01-01

    Objectives: Auditory neuropathy (AN) is a sensorineural hearing disorder characterized by absent or abnormal auditory brainstem responses (ABRs) and normal cochlear outer hair cell function as measured by otoacoustic emissions (OAEs). Many risk factors are thought to be involved in its etiology and pathophysiology. Three Chinese pedigrees with familial AN are presented herein to demonstrate involvement of genetic factors in AN etiology. Methods: Probands of the above - mentioned pedigrees, who had been diagnosed with AN, were evaluated and followed up in the Department of Otolaryngology Head and Neck Surgery, China PLA General Hospital. Their family members were studied and the pedigree diagrams were established. History of illness, physical examination,pure tone audiometry, acoustic reflex, ABRs and transient evoked and distortion- product otoacoustic emissions (TEOAEs and DPOAEs) were obtained from members of these families. DPOAE changes under the influence of contralateral sound stimuli were observed by presenting a set of continuous white noise to the non - recording ear to exam the function of auditory efferent system. Some subjects received vestibular caloric test, computed tomography (CT)scan of the temporal bone and electrocardiography (ECG) to exclude other possible neuropathy disorders. Results: In most affected subjects, hearing loss of various degrees and speech discrimination difficulties started at 10 to16 years of age. Their audiological evaluation showed absence of acoustic reflex and ABRs. As expected in AN, these subjects exhibited near normal cochlear outer hair cell function as shown in TEOAE & DPOAE recordings. Pure- tone audiometry revealed hearing loss ranging from mild to severe in these patients. Autosomal recessive inheritance patterns were observed in the three families. In Pedigree Ⅰ and Ⅱ, two affected brothers were found respectively, while in pedigree Ⅲ, 2 sisters were affected. All the patients were otherwise normal without

  13. Uniparental disomy of chromosome 8 leading to homozygosity of a CYP11B1 mutation in a patient with congenital adrenal hyperplasia: implication for a rare etiology of an autosomal recessive disorder.

    Science.gov (United States)

    Matsubara, Keiko; Kataoka, Naoki; Ogita, Satoko; Sano, Shinichiro; Ogata, Tsutomu; Fukami, Maki; Katsumata, Noriyuki

    2014-01-01

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder that usually results from paternally and maternally transmitted mutations in genes for steroidogenic enzymes. Recent studies on steroid 21-hydroxylase deficiency, the most common form of CAH, have revealed that a small percentage of patients have a non-carrier parent; uniparental disomy (UPD) and de novo mutations were reported as disease-causing mechanisms in these patients. However, it remains unknown whether UPD and de novo mutations underlie other forms of CAH. Here, we report a male patient with steroid 11β-hydroxylase deficiency (11OHD) born to a non-carrier mother. The patient was identified by an elevated 17-hydroxyprogesterone level at a neonatal mass-screening test. His clinical features were comparable to those of previously reported patients with 11OHD. Direct sequencing of CYP11B1 identified a homozygous IVS7+1G>A mutation in the patient, which was not shared by his mother. Comparative genomic hybridization of the patient detected UPD of chromosome 8 [UPD(8)]. Microsatellite analysis indicated non-maternal origin of the UPD(8) and confirmed parentage of other chromosomes. This study shows for the first time that 11OHD can be caused by UPD in the presence of a non-carrier parent. Awareness of such rare cases should improve the accuracy of genetic counseling for families with CAH. Our data support the importance of UPD as an underlying mechanism of autosomal recessive disorders.

  14. Recent progress in neurodegenerative disorder research in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Neurodegenerative disorders,including Alzheimer’s disease(AD) and Parkinson’s disease(PD),are common disorders of the central nervous system among aging populations.In the last 10 years insights concerning the etiology,diagnosis and pathogenesis of these diseases have come from research carried out by Chinese neuroscientists.Their findings include the description of Chinese patients with autosomal recessive early-onset PD,the function of the tau protein,molecular mechanisms underlying protein aggregation,and the identification of biomarkers for AD diagnosis and molecules/compounds with potential neuroprotective activities.

  15. Genetics Home Reference: autosomal recessive cerebellar ataxia type 1

    Science.gov (United States)

    ... Genetics Home Health Conditions ARCA1 autosomal recessive cerebellar ataxia type 1 Enable Javascript to view the expand/ ... Open All Close All Description Autosomal recessive cerebellar ataxia type 1 ( ARCA1 ) is a condition characterized by ...

  16. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia.

    NARCIS (Netherlands)

    Kohl, S.; Varsanyi, B.; Antunes, G.A.; Baumann, B.; Hoyng, C.B.; Jagle, H.; Rosenberg, T.; Kellner, U.; Lorenz, B.; Salati, R.; Jurklies, B.; Farkas, A.; Andreasson, S.; Weleber, R.G.; Jacobson, S.G.; Rudolph, G.; Castellan, C.; Dollfus, H.; Legius, E.; Anastasi, M.; Bitoun, P.; Lev, D.; Sieving, P.A.; Munier, F.L.; Zrenner, E.; Sharpe, L.T.; Cremers, F.P.M.; Wissinger, B.

    2005-01-01

    Achromatopsia is a congenital, autosomal recessively inherited disorder characterized by a lack of color discrimination, low visual acuity (<0.2), photophobia, and nystagmus. Mutations in the genes for CNGA3, CNGB3, and GNAT2 have been associated with this disorder. Here, we analyzed the spectrum

  17. Addressing key issues in the consanguinity-related risk of autosomal recessive disorders in consanguineous communities: lessons from a qualitative study of British Pakistanis.

    Science.gov (United States)

    Darr, A; Small, N; Ahmad, W I U; Atkin, K; Corry, P; Modell, B

    2016-01-01

    Currently, there is no consensus regarding services required to help families with consanguineous marriages manage their increased genetic reproductive risk. Genetic services for communities with a preference for consanguineous marriage in the UK remain patchy, often poor. Receiving two disparate explanations of the cause of recessive disorders (cousin marriage and recessive inheritance) leads to confusion among families. Further, the realisation that couples in non-consanguineous relationships have affected children leads to mistrust of professional advice. British Pakistani families at-risk for recessive disorders lack an understanding of recessive disorders and their inheritance. Such an understanding is empowering and can be shared within the extended family to enable informed choice. In a three-site qualitative study of British Pakistanis, we explored family and health professional perspectives on recessively inherited conditions. Our findings suggest, firstly, that family networks hold strong potential for cascading genetic information, making the adoption of a family-centred approach an efficient strategy for this community. However, this is dependent on provision of high-quality and timely information from health care providers. Secondly, families' experience was of ill-coordinated and time-starved services, with few having access to specialist provision from Regional Genetics Services; these perspectives were consistent with health professionals' views of services. Thirdly, we confirm previous findings that genetic information is difficult to communicate and comprehend, further complicated by the need to communicate the relationship between cousin marriage and recessive disorders. A communication tool we developed and piloted is described and offered as a useful resource for communicating complex genetic information.

  18. Molecular and Cellular Basis of Autosomal Recessive Primary Microcephaly

    Directory of Open Access Journals (Sweden)

    Marine Barbelanne

    2014-01-01

    Full Text Available Autosomal recessive primary microcephaly (MCPH is a rare hereditary neurodevelopmental disorder characterized by a marked reduction in brain size and intellectual disability. MCPH is genetically heterogeneous and can exhibit additional clinical features that overlap with related disorders including Seckel syndrome, Meier-Gorlin syndrome, and microcephalic osteodysplastic dwarfism. In this review, we discuss the key proteins mutated in MCPH. To date, MCPH-causing mutations have been identified in twelve different genes, many of which encode proteins that are involved in cell cycle regulation or are present at the centrosome, an organelle crucial for mitotic spindle assembly and cell division. We highlight recent findings on MCPH proteins with regard to their role in cell cycle progression, centrosome function, and early brain development.

  19. Connexin 26 and autosomal recessive non-syndromic hearing loss

    Directory of Open Access Journals (Sweden)

    Mukherjee Monisha

    2003-01-01

    Full Text Available Prelingual deafness occurs with a frequency of 1 in 1000 live births and is divided into syndromic and non-syndromic forms contributing 40 and 60% respectively. Autosomal recessive non-syndromic hearing loss (ARNSHL is responsible for 80% cases of childhood deafness. Nearly all genes localized for ARNSHL cause prelingual, severe to profound, sensorineural hearing impairment. ARNSHL is genetically heterogeneous and at least 39 loci have been identified. The most significant finding to date has been the discovery of mutations in GJB2 gene at the DFNB1 locus on chromosome 13q12 as the major cause of profound prelingual deafness. This was first reported in a Tunisian family in 1994 and thereafter in many different countries. GJB2 gene encodes the gap-junction protein, connexin 26 (Cx26, mutations in which have become the first genetic marker of inherited hearing loss. Allele-specific polymerase chain reaction (AS-PCR, single stranded conformation polymorphism (SSCP and sequencing methods have been developed for the detection of mutations in Cx26 gene. In India as well, the Cx26 mutations are being screened in families with hearing impaired children using these molecular methods. Therefore, in order to create awareness among the clinicians and the affected families; we have attempted to review the Cx26 gene mutations responsible for autosomal recessive type of non-syndromic hearing loss. The efficacy and utility of Cx26 gene analysis might open the path to proper counseling of families for carrier detection and prenatal diagnosis. It may even facilitate the development of strategies in future for the treatment of this common genetic disorder.

  20. Autophagy and neurodegenerative disorders

    Institute of Scientific and Technical Information of China (English)

    Evangelia Kesidou; Roza Lagoudaki; Olga Touloumi; Kyriaki-Nefeli Poulatsidou; Constantina Simeonidou

    2013-01-01

    Accumulation of aberrant proteins and inclusion bodies are hallmarks in most neurodegenerative diseases. Consequently, these aggregates within neurons lead to toxic effects, overproduction of reactive oxygen species and oxidative stress. Autophagy is a significant intracel ular mechanism that removes damaged organelles and misfolded proteins in order to maintain cel homeostasis. Excessive or insufficient autophagic activity in neurons leads to altered homeostasis and influences their survival rate, causing neurodegeneration. The review article provides an update of the role of autophagic process in representative chronic and acute neurodegenerative disorders.

  1. Prions mediated neurodegenerative disorders.

    Science.gov (United States)

    Huang, W-J; Chen, W-W; Zhang, X

    2015-11-01

    Prions are unprecedented infectious pathogens that are devoid of nucleic acid and cause a group of rare and invariably fatal neurodegenerative disorders, affecting approximately 1 person per 1 million inhabitants annually worldwide. These disorders include Creutzfeld-Jacob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, fatal insomnia (FI), and variable protease-sensitive prionopathy (VPSPr), all of which involve a conformational change of the normal cellular prion protein (PrPC) into the abnormal scrapie prion protein (PrPSc) through a posttranslational process during which PrPc acquires high β-sheet content. This structural change is accompanied by profound changes in the physicochemical properties of PrPC, rendering the molecule resistant to proteolysis. The conformational change of PrPC can occur due to either spontaneous conversion, dominant mutations in the prion protein (PRNP) gene encoding PrPC, or infection with pathogenic isoform PrPsc from exogenous sources. There is general agreement that PrPC serves as a substrate for conversion to abnormal PrPSc. This latter multiplies exponentially and aggregates in the brain, forming deposits that are associated with the neurodegenerative changes. Although the understanding of the primary causes of prion-induced neurodegeneration is still limited, propagation of PrPSc and neurotoxic signaling seem to interplay in pathogenic process of prions. Here, we review recent findings that have provided fresh insights into this process, and present an overview of incidence, causes and spectrum of related disorders.

  2. Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Directory of Open Access Journals (Sweden)

    Woods C Geoffrey

    2004-11-01

    Full Text Available Abstract Background Cerebral palsy (CP is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67, involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA. Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS, epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts. Table 4 GAD1 single nucleotide substitutions detected on mutation analysis and occurring in sequences submitted to NCBI SNP database and in the literature. This is not a definitive list, but includes those described at the time of the mutational analysis. *Nucleotide positions were not provided by Maestrini et al. [47]. Source SNP position in mRNA, from the translational start site (bp Gene position of SNP(bp Amino acid change (ALappalainen et al. (2002 A(-478Del Exon

  3. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H; Barsottini, Orlando G P; Kawarai, Toshitaka; Orlacchio, Antonio

    2016-01-01

    Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot

  4. Autosomal Recessive Polycystic Kidney Disease: Antenatal Diagnosis and Histopathological Correlation

    Directory of Open Access Journals (Sweden)

    Dayananda Kumar Rajanna

    2013-01-01

    Full Text Available Autosomal recessive polycystic kidney disease (ARPKD is one of the most common inheritable disease manifesting in infancy and childhood with a frequency of 1:6,000 to 1:55,000 births. The patient in her second trimester presented with a history of amenorrhea. Ultrasound examination revealed bilateral, enlarged, hyperechogenic kidneys, placentomegaly, and severe oligohydramnios. The pregnancy was terminated. An autopsy was performed on the fetus. Both the kidneys were found to be enlarged and the cut surface showed numerous cysts. The liver sections showed changes due to fibrosis. The final diagnosis of autosomal recessive polycystic kidney disease was made based on these findings. In this article, we correlate the ante-natal ultrasound and histopathological findings in autosomal recessive polycystic kidney disease.

  5. A Register-Based Study of Diseases With an Autosomal Recessive Origin in Small Children in Denmark According to Maternal Country of Origin

    DEFF Research Database (Denmark)

    Gundlund, Anna; Hansen, Anne Vinkel; Pedersen, Grete Skøtt

    2015-01-01

    information on consanguinity is lacking, this suggestion is difficult to test. With an indirect approach, we addressed this question by comparing the risk of diseases with autosomal recessive inheritance in children born in Denmark of Danish-born women and of women born in these five countries, respectively....... METHODS: All children born in Denmark (1994-2010) were followed until 5 years of age or end-of-study period for the risk of hospitalisation with diseases of autosomal recessive aetiology, and therefore considered consanguinity-related. Diagnoses of autosomal recessive diseases were identified using two...... different methods: a literature review of consanguinity-associated diseases and a search in the Online Catalogue of Human Genes and Genetic Disorders. Risks were also calculated for diseases with known non-autosomal recessive aetiology (considered non-consanguinity-related). We estimated adjusted hazard...

  6. Genetics Home Reference: autosomal recessive spastic ataxia of Charlevoix-Saguenay

    Science.gov (United States)

    ... Genetics Home Health Conditions ARSACS autosomal recessive spastic ataxia of Charlevoix-Saguenay Enable Javascript to view the ... Open All Close All Description Autosomal recessive spastic ataxia of Charlevoix-Saguenay , more commonly known as ARSACS , ...

  7. Gonadal mosaicism as a rare cause of autosomal recessive inheritance.

    Science.gov (United States)

    Anazi, S; Al-Sabban, E; Alkuraya, F S

    2014-03-01

    Autosomal recessive diseases are typically caused by the biparental inheritance of familial mutant alleles. Unusual mechanisms by which the recessiveness of a mutant allele is unmasked include uniparental isodisomy and the occurrence of a de novo chromosomal rearrangement that disrupts the other allele. Gonadal mosaicism is a condition in which a postfertilization mutation is confined to the gamete precursors and is not detected in somatic tissues. Gonadal mosaicism is known to give the impression of autosomal recessive inheritance when recurrence of an autosomal-dominant condition among offspring of phenotypically normal parents is observed. Here, we report an extremely rare event in which maternal gonadal mosaicism for a recessive mutation in COL4A4 caused the recurrence of Alport syndrome within a consanguineous family. Such rare occurrence should be taken into account when analyzing pedigrees both for clinical and research purposes.

  8. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism.

    Science.gov (United States)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet; Kelsh, Robert N; Hansen, Lars; Levesque, Mitchell P; Vilhelmsen, Kaj; Møllgård, Kjeld; Stemple, Derek L; Rosenberg, Thomas

    2013-03-07

    Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans.

  9. Mutations of the tyrosinase gene produce autosomal recessive ocular albinism

    Energy Technology Data Exchange (ETDEWEB)

    King, R.A.; Summers, C.G.; Oetting, W.S. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1994-09-01

    Albinism has historically been divided into ocular (OA) and oculocutaneous (OCA) types based on the presence or absence of clinically apparent skin and hair involvement in an individual with the ocular features of albinism. The major genes for OCA include the tyrosinase gene in OCA1 and the P gene in OCA2. X-linked and autosomal recessive OA have been described and the responsible genes have not been identified. We now present six Caucasian individuals who have the phenotype of autosomal recessive OA but who have OCA1 as shown by the presence of mutations of the tyrosinase. They had white or very light hair and white skin at birth, and cutaneous pigment developed in the first decade of life. At ages ranging from 1.5-23 years, hair color was dark blond to light brown. The skin had generalized pigment and well developed tan was present on the exposed arm and face skin of four. Iris pigment was present and iris translucency varied. Molecular analysis of the tyrosinase gene, using PCR amplification and direct di-deoxy sequencing showed the following mutations: E398Z/E398Q, P406S/g346a, R402E/T373K, ?/D383N, and H211N/T373K. The homozygous individual was not from a known consanguineous mating. T373K is the most common tyrosinase gene mutation in our laboratory. Three of these mutations are associated with a total loss of tyrosinase activity (g346a splice-site, T373K, and D383N), while four are associated with residual enzyme activity (H211N, R402E, E398Q, and P406S). These studies show that mutations of the tyrosinase gene can produce the phenotype of autosomal recessive OA in an individual who has normal amounts of cutaneous pigment and the ability to tan after birth. This extends the phenotypic range of OCA1 to normal cutaneous pigment after early childhood, and suggest that mutations of the tyrosinase gene account for a significant number of individuals with autosomal recessive OA.

  10. Microcephaly-chorioretinopathy syndrome, autosomal recessive form. A case report

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano Machado Rosa

    Full Text Available CONTEXT: The autosomal recessive form of microcephaly-chorioretinopathy syndrome is a rare genetic condition that is considered to be an important differential diagnosis with congenital toxoplasmosis.CASE REPORT: Our patient was a seven-year-old white boy who was initially diagnosed with congenital toxoplasmosis. However, his serological tests for congenital infections, including toxoplasmosis, were negative. He was the first child of young, healthy and consanguineous parents (fourth-degree relatives. The parents had normal head circumferences and intelligence. The patient presented microcephaly and specific abnormalities of the retina, with multiple diffuse oval areas of pigmentation and patches of chorioretinal atrophy associated with diffuse pigmentation of the fundus. Ophthalmological evaluations on the parents were normal. A computed tomography scan of the child's head showed slight dilation of lateral ventricles and basal cisterns without evidence of calcifications. We did not find any lymphedema in his hands and feet. He had postnatal growth retardation, severe mental retardation and cerebral palsy.CONCLUSIONS: The finding of chorioretinal lesions in a child with microcephaly should raise suspicions of the autosomal recessive form of microcephaly-chorioretinopathy syndrome, especially in cases with an atypical pattern of eye fundus and consanguinity. A specific diagnosis is essential for an appropriate clinical evaluation and for genetic counseling for the patients and their families.

  11. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation.

    Directory of Open Access Journals (Sweden)

    Dirk J Lefeber

    2011-12-01

    Full Text Available Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5-13 years with a predominant presentation of dilated cardiomyopathy (DCM. Metabolic investigations showed deficient protein N-glycosylation, leading to a diagnosis of Congenital Disorders of Glycosylation (CDG. Homozygosity mapping in the consanguineous families showed a locus with two known genes in the N-glycosylation pathway. In all individuals, pathogenic mutations were identified in DOLK, encoding the dolichol kinase responsible for formation of dolichol-phosphate. Enzyme analysis in patients' fibroblasts confirmed a dolichol kinase deficiency in all families. In comparison with the generally multisystem presentation in CDG, the nonsyndromic DCM in several individuals was remarkable. Investigation of other dolichol-phosphate dependent glycosylation pathways in biopsied heart tissue indicated reduced O-mannosylation of alpha-dystroglycan with concomitant functional loss of its laminin-binding capacity, which has been linked to DCM. We thus identified a combined deficiency of protein N-glycosylation and alpha-dystroglycan O-mannosylation in patients with nonsyndromic DCM due to autosomal recessive DOLK mutations.

  12. Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans.

    Directory of Open Access Journals (Sweden)

    Franz P W Radner

    2013-06-01

    Full Text Available Autosomal recessive congenital ichthyosis (ARCI is a rare genetic disorder of the skin characterized by abnormal desquamation over the whole body. In this study we report four patients from three consanguineous Tunisian families with skin, eye, heart, and skeletal anomalies, who harbor a homozygous contiguous gene deletion syndrome on chromosome 15q26.3. Genome-wide SNP-genotyping revealed a homozygous region in all affected individuals, including the same microdeletion that partially affects two coding genes (ADAMTS17, CERS3 and abolishes a sequence for a long non-coding RNA (FLJ42289. Whereas mutations in ADAMTS17 have recently been identified in autosomal recessive Weill-Marchesani-like syndrome in humans and dogs presenting with ophthalmologic, cardiac, and skeletal abnormalities, no disease associations have been described for CERS3 (ceramide synthase 3 and FLJ42289 so far. However, analysis of additional patients with non-syndromic ARCI revealed a splice site mutation in CERS3 indicating that a defect in ceramide synthesis is causative for the present skin phenotype of our patients. Functional analysis of patient skin and in vitro differentiated keratinocytes demonstrated that mutations in CERS3 lead to a disturbed sphingolipid profile with reduced levels of epidermis-specific very long-chain ceramides that interferes with epidermal differentiation. Taken together, these data present a novel pathway involved in ARCI development and, moreover, provide the first evidence that CERS3 plays an essential role in human sphingolipid metabolism for the maintenance of epidermal lipid homeostasis.

  13. Neurodegenerative disorders and metabolic disease.

    Science.gov (United States)

    Pierre, Germaine

    2013-08-01

    Most genetic causes of neurodegenerative disorders in childhood are due to neurometabolic disease. There are over 200 disorders, including aminoacidopathies, creatine disorders, mitochondrial cytopathies, peroxisomal disorders and lysosomal storage disorders. However, diagnosis can pose a challenge to the clinician when patients present with non-specific problems like epilepsy, developmental delay, autism, dystonia and ataxia. The variety of specialist tests involved can also be daunting. This review aims to give a practical approach to the investigation and diagnosis of neurometabolic disease from the neonatal period to late childhood while prioritising disorders where there are therapeutic options. In particular, patients who have a complex clinical picture of several neurological and non-neurological features should be investigated.

  14. A novel deletion mutation in ASPM gene in an Iranian family with autosomal recessive primary microcephaly

    Directory of Open Access Journals (Sweden)

    Elinaz AKBARIAZAR

    2013-06-01

    Full Text Available How to Cite This Article: Akbarizar E, Ebrahimpour M, Akbari S, Arzhanghi S, Abedini SS, Najmabadi H, Kahrizi K. A Novel Deletion Mutation in ASPM Gene in an Iranian Family with Autosomal Recessive Primary Microcephaly. Iran J Child Neurol.  2013 Spring;7(2:23-30. ObjectiveAutosomal recessive primary microcephaly (MCPH is a neurodevelopmental and genetically heterogeneous disorder with decreased head circumference due to the abnormality in fetal brain growth. To date, nine loci and nine genes responsible for the situation have been identified. Mutations in the ASPM gene (MCPH5 is the most common cause of MCPH. The ASPM gene with 28 exons is essential for normal mitotic spindle function in embryonic neuroblasts.Materials & MethodsWe have ascertained twenty-two consanguineous families withintellectual disability and different ethnic backgrounds from Iran. Ten out of twenty-two families showed primary microcephaly in clinical examination. We investigated MCPH5 locus using homozygosity mapping by microsatellite marker. ResultSequence analysis of exon 8 revealed a deletion of nucleotide (T in donor site of splicing site of ASPM in one family. The remaining nine families were not linked to any of the known loci. More investigation will be needed to detect the causative defect in these families.ConlusionWe detected a novel mutation in the donor splicing site of exon 8 of the ASPM gene. This deletion mutation can alter the ASPM transcript leading to functional impairment of the gene product. References1. Pattison L, Crow YJ, Deeble VJ, Jackson AP, Jafri H, Rashid Y, et al. A Fifth Locus for Primary Autosomal Recessive Microcephaly Maps to Chromosome 1q31. Am J Hum Genet 2000;67(6:1578-80.2. Darvish H, Esmaeeli-Nieh S, Monajemi G, Mohseni M, Ghasemi-Firouzabadi S, Abedini S, et al. A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. Journal of Medical Genetics 2010;47(12:823-8.3. Tolmie JL, M M, JB S, D D, JM C

  15. The Autosomal Recessive Inheritance of Hereditary Gingival Fibromatosis

    Directory of Open Access Journals (Sweden)

    Poulami Majumder

    2013-01-01

    Full Text Available Hereditary gingival fibromatosis (HGF is a rare condition which is marked by enlargement of gingival tissue that covers teeth to various extents leading to aesthetic disfigurement. This study presents a case of a 28-year-old female patient and 18-year-old male who belong to the same family suffering from HGF with chief complaint of overgrowing swelling gingiva. The presence of enlarged gingiva with the same eruption was found in their other family members with no concomitant drug or medical history, and the occurrence of HGF has been found in one generation of this family which may indicate the autosomal recessive inheritance pattern of HGF. Hereditary gingival fibromatosis is an idiopathic condition as its etiology is unknown and it was found to recur in some cases even after surgical treatment. Both patients underwent thorough oral prophylaxis and later surgical therapy to correct the deformity.

  16. Molecular diagnostics of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Megha eAgrawal

    2015-09-01

    Full Text Available Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer’s and Parkinson’s disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease, and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  17. A novel deletion mutation in the TUSC3 gene in a consanguineous Pakistani family with autosomal recessive nonsyndromic intellectual disability

    Directory of Open Access Journals (Sweden)

    Ali Nadir

    2011-04-01

    Full Text Available Abstract Background Intellectual disability (ID is a serious disorder of the central nervous system with a prevalence of 1-3% in a general population. In the past decades, the research focus has been predominantly on X-linked ID (68 loci and 19 genes for non syndromic X linked ID while for autosomal recessive nonsyndromic ID (NSID only 30 loci and 6 genes have been reported to date. Methods Genome-wide homozygosity mapping with 500 K Nsp1 array (Affymetrix, CNV analysis, PCR based breakpoint mapping and DNA sequencing was performed to explore the genetic basis of autosomal recessive nonsyndromic ID in a large Pakistani family. Results Data analysis showed linkage at 8p23 locus with common homozygous region between SNPs rs6989820 and rs2237834, spanning a region of 12.494 Mb. The subsequent CNV analysis of the data revealed a homozygous deletion of 170.673 Kb which encompassed the TUSC3 gene. Conclusion We report a novel deletion mutation in TUSC3 gene which is the second gene after TRAPPC9 in which mutation has been identified in more than one family with autosomal recessive NSID. The study will aid in exploring the molecular pathway of cognition.

  18. Nephrocalcinosis (Enamel Renal Syndrome) Caused by Autosomal Recessive FAM20A Mutations

    Science.gov (United States)

    Jaureguiberry, Graciana; De la Dure-Molla, Muriel; Parry, David; Quentric, Mickael; Himmerkus, Nina; Koike, Toshiyasu; Poulter, James; Klootwijk, Enriko; Robinette, Steven L.; Howie, Alexander J.; Patel, Vaksha; Figueres, Marie-Lucile; Stanescu, Horia C.; Issler, Naomi; Nicholson, Jeremy K.; Bockenhauer, Detlef; Laing, Christopher; Walsh, Stephen B.; McCredie, David A.; Povey, Sue; Asselin, Audrey; Picard, Arnaud; Coulomb, Aurore; Medlar, Alan J.; Bailleul-Forestier, Isabelle; Verloes, Alain; Le Caignec, Cedric; Roussey, Gwenaelle; Guiol, Julien; Isidor, Bertrand; Logan, Clare; Shore, Roger; Johnson, Colin; Inglehearn, Christopher; Al-Bahlani, Suhaila; Schmittbuhl, Matthieu; Clauss, François; Huckert, Mathilde; Laugel, Virginie; Ginglinger, Emmanuelle; Pajarola, Sandra; Spartà, Giuseppina; Bartholdi, Deborah; Rauch, Anita; Addor, Marie-Claude; Yamaguti, Paulo M.; Safatle, Heloisa P.; Acevedo, Ana Carolina; Martelli-Júnior, Hercílio; dos Santos Netos, Pedro E.; Coletta, Ricardo D.; Gruessel, Sandra; Sandmann, Carolin; Ruehmann, Denise; Langman, Craig B.; Scheinman, Steven J.; Ozdemir-Ozenen, Didem; Hart, Thomas C.; Hart, P. Suzanne; Neugebauer, Ute; Schlatter, Eberhard; Houillier, Pascal; Gahl, William A.; Vikkula, Miikka; Bloch-Zupan, Agnès; Bleich, Markus; Kitagawa, Hiroshi; Unwin, Robert J.; Mighell, Alan; Berdal, Ariane; Kleta, Robert

    2013-01-01

    Background/Aims Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. Methods We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. Results All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. Conclusions This au-tosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis. PMID:23434854

  19. Autosomal recessive chronic granulomatous disease presenting with cutaneous dermatoses and ocular infection.

    Science.gov (United States)

    Low, L C M; Manson, A L; Hardman, C; Carton, J; Seneviratne, S L; Ninis, N

    2013-04-01

    Dermatoses such as eczematous dermatitis and cutaneous infection are recognized presentations of primary immunodeficiency (PID). However, atopic dermatitis affects approximately 10% of infants, and cutaneous infections are not uncommon in children, therefore the challenge for the dermatologist is to distinguish the few patients that have PID from the many that do not. We report on a 6-year-old girl who was ultimately diagnosed with autosomal recessive chronic granulomatous disease (AR-CGD) after presenting to various hospitals with dermatitis, scalp plaques recalcitrant to treatment, and recurrent infections over a 3-year period, and describe some aspects of her diagnosis and management. This report highlights the importance of considering rare disorders such as AR-CGD in the differential diagnosis of recurrent or recalcitrant dermatological infections in children.

  20. Root anomalies and dentin dysplasia in autosomal recessive hyperphosphatemic familial tumoral calcinosis (HFTC)

    Science.gov (United States)

    Vieira, Alexandre R.; Lee, Moses; Vairo, Filippo; Leite, Julio Cesar Loguercio; Munerato, Maria Cristina; Visioli, Fernanda; D’Ávila, Stéphanie Rodrigues; Wang, Shih-Kai; Choi, Murim; Simmer, James P.; Hu, Jan C-C.

    2015-01-01

    Hyperphosphatemic familial tumoral calcinosis (HFTC, OMIM #211900) is an autosomal recessive metabolic disorder characterized by hyperphosphatemia, tooth root defects, and the progressive deposition of calcium phosphate crystals in periarticular spaces, soft tissues, and sometimes bone.1 In this HFTC case report, we document the dental phenotype associated with a homozygous missense mutation (g.29077 C>T; c.484 C>T; p.Arg162*) in GALNT3 (OMIM 6017563), a gene encoding UDP-GalNAc transferase 3 that catalyzes the first step of O-linked oligosaccharide biosynthesis in the Golgi. The medical and dental pathology is believed to be caused primarily by high serum phosphate levels (hyperphosphatemia), which, in turn, is caused by failure of GALNT3 to glycosylate the phosphate regulator protein FGF23, impairing its ability inhibit reabsorption of filtered phosphate in the kidneys. PMID:26337219

  1. Tsallis statistics and neurodegenerative disorders

    Science.gov (United States)

    Iliopoulos, Aggelos C.; Tsolaki, Magdalini; Aifantis, Elias C.

    2016-08-01

    In this paper, we perform statistical analysis of time series deriving from four neurodegenerative disorders, namely epilepsy, amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD). The time series are concerned with electroencephalograms (EEGs) of healthy and epileptic states, as well as gait dynamics (in particular stride intervals) of the ALS, PD and HDs. We study data concerning one subject for each neurodegenerative disorder and one healthy control. The analysis is based on Tsallis non-extensive statistical mechanics and in particular on the estimation of Tsallis q-triplet, namely {qstat, qsen, qrel}. The deviation of Tsallis q-triplet from unity indicates non-Gaussian statistics and long-range dependencies for all time series considered. In addition, the results reveal the efficiency of Tsallis statistics in capturing differences in brain dynamics between healthy and epileptic states, as well as differences between ALS, PD, HDs from healthy control subjects. The results indicate that estimations of Tsallis q-indices could be used as possible biomarkers, along with others, for improving classification and prediction of epileptic seizures, as well as for studying the gait complex dynamics of various diseases providing new insights into severity, medications and fall risk, improving therapeutic interventions.

  2. A novel locus for autosomal recessive nonsyndromic hearing impairment, DFNB63, maps to chromosome 11q13.2-q13.4.

    NARCIS (Netherlands)

    Kalay, E.; Caylan, R.; Kiroglu, A.F.; Yasar, T.; Collin, R.W.J.; Heister, J.G.A.M.; Oostrik, J.; Cremers, C.W.R.J.; Brunner, H.G.; Karaguzel, A.; Kremer, H.

    2007-01-01

    Hereditary hearing impairment is a genetically heterogeneous disorder. To date, 49 autosomal recessive nonsyndromic hearing impairment (ARNSHI) loci have been described, and there are more than 16 additional loci announced. In 25 of the known loci, causative genes have been identified. A genome scan

  3. Autosomal recessive PGM3 mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment

    Science.gov (United States)

    Zhang, Yu; Yu, Xiaomin; Ichikawa, Mie; Lyons, Jonathan J.; Datta, Shrimati; Lamborn, Ian T.; Jing, Huie; Kim, Emily S.; Biancalana, Matthew; Wolfe, Lynne A.; DiMaggio, Thomas; Matthews, Helen F.; Kranick, Sarah M.; Stone, Kelly D.; Holland, Steven M.; Reich, Daniel S.; Hughes, Jason D.; Mehmet, Huseyin; McElwee, Joshua; Freeman, Alexandra F.; Freeze, Hudson H.; Su, Helen C.; Milner, Joshua D.

    2014-01-01

    Background Identifying genetic syndromes that lead to significant atopic disease can open new pathways for investigation and intervention in allergy. Objective To define a genetic syndrome of severe atopy, elevated serum IgE, immune deficiency, autoimmunity, and motor and neurocognitive impairment. Methods Eight patients from two families who had similar syndromic features were studied. Thorough clinical evaluations, including brain MRI and sensory evoked potentials, were performed. Peripheral lymphocyte flow cytometry, antibody responses, and T cell cytokine production were measured. Whole exome sequencing was performed to identify disease-causing mutations. Immunoblotting, qRT-PCR, enzymatic assays, nucleotide sugar and sugar phosphate analyses along with MALDI-TOF mass spectrometry of glycans were used to determine the molecular consequences of the mutations. Results Marked atopy and autoimmunity were associated with increased TH2 and TH17 cytokine production by CD4+ T cells. Bacterial and viral infection susceptibility were noted along with T cell lymphopenia, particularly of CD8+ T cells, and reduced memory B cells. Apparent brain hypomyelination resulted in markedly delayed evoked potentials and likely contributed to neurological abnormalities. Disease segregated with novel autosomal recessive mutations in a single gene, phosphoglucomutase 3 (PGM3). Although PGM3 protein expression was variably diminished, impaired function was demonstrated by decreased enzyme activity and reduced UDP-GlcNAc, along with decreased O- and N-linked protein glycosylation in patients’ cells. These results define a new Congenital Disorder of Glycosylation. Conclusions Autosomal recessive, hypomorphic PGM3 mutations underlie a disorder of severe atopy, immune deficiency, autoimmunity, intellectual disability and hypomyelination. PMID:24589341

  4. FOXE3 plays a significant role in autosomal recessive microphthalmia.

    Science.gov (United States)

    Reis, Linda M; Tyler, Rebecca C; Schneider, Adele; Bardakjian, Tanya; Stoler, Joan M; Melancon, Serge B; Semina, Elena V

    2010-03-01

    FOXE3 forkhead transcription factor is essential to lens development in vertebrates. The eyes of Foxe3/foxe3-deficient mice and zebrafish fail to develop normally. In humans, autosomal dominant and recessive mutations in FOXE3 have been associated with variable phenotypes including anterior segment anomalies, cataract, and microphthalmia. We undertook sequencing of FOXE3 in 116 probands with a spectrum of ocular defects ranging from anterior segment dysgenesis and cataract to anophthalmia/microphthalmia. Recessive mutations in FOXE3 were found in four of 26 probands affected with bilateral microphthalmia (15% of all bilateral microphthalmia and 100% of consanguineous families with this phenotype). FOXE3-positive microphthalmia was accompanied by aphakia and/or corneal defects; no other associated systemic anomalies were observed in FOXE3-positive families. The previously reported c.720C > A (p.C240X) nonsense mutation was identified in two additional families in our sample and therefore appears to be recurrent, now reported in three independent microphthalmia families of varied ethnic backgrounds. Several missense variants were identified at varying frequencies in patient and control groups with some apparently being race-specific, which underscores the importance of utilizing race/ethnicity-matched control populations in evaluating the relevance of genetic screening results. In conclusion, FOXE3 mutations represent an important cause of nonsyndromic autosomal recessive bilateral microphthalmia.

  5. Autosomal recessive agammaglobulinemia: a novel non-sense mutation in CD79a.

    Science.gov (United States)

    Khalili, Abbas; Plebani, Alessandro; Vitali, Massimiliano; Abolhassani, Hassan; Lougaris, Vassilios; Mirminachi, Babak; Rezaei, Nima; Aghamohammadi, Asghar

    2014-02-01

    This study describes the fifth case worldwide of autosomal recessive agammaglobulinemia due to a novel non-sense mutation in CD79a gene with a severe unusual onset due to an invasive central nervous system infection.

  6. Autosomal recessive mental retardation syndrome with anterior maxillary protrusion and strabismus: MRAMS syndrome.

    Science.gov (United States)

    Basel-Vanagaite, Lina; Rainshtein, Limor; Inbar, Dov; Gothelf, Doron; Hennekam, Raoul; Straussberg, Rachel

    2007-08-01

    We report on a family in whom the combination of mental retardation (MR), anterior maxillary protrusion, and strabismus segregates. The healthy, consanguineous parents (first cousins) of Israeli-Arab descent had 11 children, 7 of whom (5 girls) were affected. They all had severe MR. Six of the seven had anterior maxillary protrusion with vertical maxillary excess, open bite, and prominent crowded teeth. None of the sibs with normal intelligence had jaw or dental anomalies. The child with MR but without a jaw anomaly was somewhat less severely retarded, had seizures and severe psychosis, which may point to his having a separate disorder. Biochemical and neurological studies, including brain MRI and standard cytogenetic studies, yielded normal results; fragile X was excluded, no subtelomeric rearrangements were detectable, and X-inactivation studies in the mother showed random inactivation. We have been unable to find a similar disorder in the literature, and suggest that this is a hitherto unreported autosomal recessive disorder, which we propose to name MRAMS (mental retardation, anterior maxillary protrusion, and strabismus).

  7. Libyan Boy with Autosomal Recessive Trait (P22-phox Defect of Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Ilka Schulze

    2006-09-01

    Full Text Available Chronic granulomatous disease (CGD is a primary immune deficiency disorder of the phagocytes. In this disorder, phagocytic cells (polymorphonuclear leukocytes and monocytes cannot produce active oxygen metabolites, and therefore, cannot destroy the ingested intracellular bacteria. Clinically, patients with CGD usually have recurrent bacterial and fungal infections causing abscess and granuloma formation in the skin, lymph nodes and visceral organs.In this report, we present a boy from Libya with a rare autosomal recessive trait of CGD (defect of p22-phox who has chronic lung disease following multiple severe pneumonia attacks. The case we present suffered from bloody diarrhea since the third month of his life. He also had recurrent episodes of fever, and later, developed persistent cervical lymphadenitis and failure to gain weight. CGD is a very rare condition worldwide. It is also not recognized here in Libya, and usually not in the list of differential diagnosis for chronic pulmonary infections. We advise that pediatricians and general practitioners who treat chronic cases of lung diseases (with or without chronic diarrhea should consider primary immunodeficiency disorders in the hope that early diagnosis and treatment may prevent chronic complications especially of the respiratory tract. Furthermore, we state that, to the best of our knowledge, this is the first documented case of CGD from Libya.

  8. The molecular basis of autosomal recessive diseases among the Arabs and Druze in Israel.

    Science.gov (United States)

    Zlotogora, Joël

    2010-11-01

    The Israeli population mainly includes Jews, Muslim and Christian Arabs, and Druze In the last decade, data on genetic diseases present in the population have been systematically collected and are available online in the Israeli national genetic database ( http://www.goldenhelix.org/server/israeli ). In the non-Jewish population, up to 1 July 2010, the database included molecular data on six diseases relatively frequent in the whole population: thalassemia, familial Mediterranean fever (FMF), cystic fibrosis, deafness, phenylketonuria and congenital adrenal hyperplasia, as well as data on 195 autosomal recessive diseases among Muslim Israeli Arabs, 11 among the Christian Arabs and 31 among Druze. A single mutation was characterized in 149 out of the 238 rare disorders for which the molecular basis was known. In many diseases, mutation had never been observed in any other population and was present in one family only suggesting that it occurred as a de novo event. In other diseases, the mutation was present in more than one community or even in other populations such as Bedouins from the Arab peninsula or Christians from Lebanon. In the 89 other disorders, more than one mutation was characterized either in the same gene or in more than one gene. While it is probable that most of these cases represent random events in some cases such as Bardet Biedl among the Bedouins, the reason may be a selective advantage to the heterozygotes.

  9. Mutations in Transglutaminase 1 Gene in Autosomal Recessive Congenital Ichthyosis in Egyptian Families

    Directory of Open Access Journals (Sweden)

    R. M. Shawky

    2004-01-01

    Full Text Available Autosomal recessive congenital ichthyosis (ARCI is a rare heterogeneous keratinization disorder of the skin. It is clinically divided into 2 subtypes, lamellar ichthyosis (LI and congenital ichthyosiformis erythroderma (CIE. We investigated forty-three ARCI Egyptian individuals in 16 severe LI, and 10 CIE families. We identified 5 alleles in two Egyptian families as having intron-5/exon-6 splice acceptor mutation recognized by the MspI restriction endonuclease. This promoted to a frequency of 9.6% for this mutation (5 splice-mutation alleles/52 alleles tested. We extended our previous dataset to update the detection of R142H mutation in 4 CIE Egyptian families and one LI phenotype (frequency of 28.8%; 15/52, whereas we still had no R141H among our Egyptian population. There was no correlation between phenotype and genotype in our study. Surprisingly, the mutant alleles detected in intron-5 acceptor splice-site were associated with the other extreme of CIE phenotypes rather than the severe LI form. We clearly demonstrated that the ARCI Egyptian families in Upper Egypt was ethnically pure and had a tendency not to be a hybrid with other populations in Lower Egypt, Delta zone and Cairo city.

  10. Oxidative Stress and Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Jie Li

    2013-12-01

    Full Text Available Living cells continually generate reactive oxygen species (ROS through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs.

  11. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. (Harvard Medical School, Boston, MA (United States)); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya (National Inst. of Neuroscience, Tokyo (Japan))

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  12. Niemann-Pick C disease gene mutations and age-related neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Michael Zech

    Full Text Available Niemann-Pick type C (NPC disease is a rare autosomal-recessively inherited lysosomal storage disorder caused by mutations in NPC1 (95% or NPC2. Given the highly variable phenotype, diagnosis is challenging and particularly late-onset forms with predominantly neuropsychiatric presentations are likely underdiagnosed. Pathophysiologically, genetic alterations compromising the endosomal/lysosomal system are linked with age-related neurodegenerative disorders. We sought to examine a possible association of rare sequence variants in NPC1 and NPC2 with Parkinson's disease (PD, frontotemporal lobar degeneration (FTLD and progressive supranuclear palsy (PSP, and to genetically determine the proportion of potentially misdiagnosed NPC patients in these neurodegenerative conditions. By means of high-resolution melting, we screened the coding regions of NPC1 and NPC2 for rare genetic variation in a homogenous German sample of patients clinically diagnosed with PD (n = 563, FTLD (n = 133 and PSP (n = 94, and 846 population-based controls. The frequencies of rare sequence variants in NPC1/2 did not differ significantly between patients and controls. Disease-associated NPC1/2 mutations were found in six PD patients (1.1% and seven control subjects (0.8%, but not in FTLD or PSP. All rare variation was detected in the heterozygous state and no compound heterozygotes were observed. Our data do not support the hypothesis that rare NPC1/2 variants confer susceptibility for PD, FTLD, or PSP in the German population. Misdiagnosed NPC patients were not present in our samples. However, further assessment of NPC disease genes in age-related neurodegeneration is warranted.

  13. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects.

    Science.gov (United States)

    Zhang, Jinglan; Lachance, Véronik; Schaffner, Adam; Li, Xianting; Fedick, Anastasia; Kaye, Lauren E; Liao, Jun; Rosenfeld, Jill; Yachelevich, Naomi; Chu, Mary-Lynn; Mitchell, Wendy G; Boles, Richard G; Moran, Ellen; Tokita, Mari; Gorman, Elizabeth; Bagley, Kaytee; Zhang, Wei; Xia, Fan; Leduc, Magalie; Yang, Yaping; Eng, Christine; Wong, Lee-Jun; Schiffmann, Raphael; Diaz, George A; Kornreich, Ruth; Thummel, Ryan; Wasserstein, Melissa; Yue, Zhenyu; Edelmann, Lisa

    2016-04-01

    Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway.

  14. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects.

    Directory of Open Access Journals (Sweden)

    Jinglan Zhang

    2016-04-01

    Full Text Available Genetic leukoencephalopathies (gLEs are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS. The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES, we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G, as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026. VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting and CORVET (class C core vacuole/endosome tethering protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway.

  15. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects

    Science.gov (United States)

    Schaffner, Adam; Fedick, Anastasia; Kaye, Lauren E.; Liao, Jun; Yachelevich, Naomi; Chu, Mary-Lynn; Boles, Richard G.; Moran, Ellen; Tokita, Mari; Gorman, Elizabeth; Zhang, Wei; Xia, Fan; Leduc, Magalie; Yang, Yaping; Eng, Christine; Wong, Lee-Jun; Schiffmann, Raphael; Diaz, George A.; Kornreich, Ruth; Thummel, Ryan; Wasserstein, Melissa; Yue, Zhenyu; Edelmann, Lisa

    2016-01-01

    Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway. PMID:27120463

  16. Linkage of DFNB1 to non-syndromic neurosensory autosomal-recessive deafness in Mediterranean families

    NARCIS (Netherlands)

    Gasparini, P; Estivill, [No Value; Volpini, [No Value; Totaro, A; CastellviBel, S; Govea, N; Mila, M; DellaMonica, M; Ventruto, [No Value; DeBenedetto, M; Stanziale, P; Zelante, L; Mansfield, ES; Sandkuijl, L; Surrey, S; Fortina, P

    1997-01-01

    Recent studies show a susceptibility locus (DFNB1) responsible for non-syndromic neurosensory autosomal-recessive deafness (NSRD) mapping to the pericentromeric region of chromosome 13q, In order to better understand the frequency with which DFNB1 is the gene for deafness in our patient population a

  17. Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene

    NARCIS (Netherlands)

    C. Sevin; S. Ferdinandusse; H.R. Waterham; R.J. Wanders; P. Aubourg

    2011-01-01

    ABSTRACT: OBJECTIVE: To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA). Case report: Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of bl

  18. Progeria (Hutchison-Gilford syndrome) in siblings: in an autosomal recessive pattern of inheritance.

    Science.gov (United States)

    Raghu, T Y; Venkatesulu, G A; Kantharaj, G R; Suresh, T; Veeresh, V; Hanumanthappa, Y

    2001-01-01

    Progeria is an autosomal dominant, premature aging syndrome. Six and three year old female siblings had sclerodermatous changes over the extremities, alopecia, beaked nose, prominent veins and bird-like facies. Radiological features were consistent with features of progeria. The present case highlights rarity of progeria in siblings with a possible autosomal recessive pattern.

  19. A Nonsense Mutation in PDE6H Causes Autosomal-Recessive Incomplete Achromatopsia.

    NARCIS (Netherlands)

    Kohl, S.; Coppieters, F.; Meire, F.; Schaich, S.; Roosing, S.; Brennenstuhl, C.; Bolz, S.; Genderen, M.M. van; Riemslag, F.C.; Lukowski, R.; Hollander, A.I. den; Cremers, F.P.M.; Baere, E. de; Hoyng, C.B.; Wissinger, B.

    2012-01-01

    Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C, CNGA3, and CNGB3, have been implicated in ACHM,

  20. Progeria (Hutchison - Gilford syndrome in siblings: In an autosomal recessive pattern of inheritance

    Directory of Open Access Journals (Sweden)

    Raghu Tanjore

    2001-09-01

    Full Text Available Progeria is an autosomal dominant, premature aging syndrome. Six and three year old female siblings had sclcrodermatous changes over the extremities, alopecia, beaked nose, prominent veins and bird-like facies. Radiological features were consistent with features of progeria. The present case highlights rarity of progeria in siblings with a possible autosomal recessive pattern.

  1. Boy with autosomal recessive polycystic kidney and autosomal dominant polycystic liver disease.

    NARCIS (Netherlands)

    Zingg-Schenk, A.; Caduff, J.; Azzarello-Burri, S.; Bergmann, C.; Drenth, J.P.H.; Neuhaus, T.J.

    2012-01-01

    BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) shows a great phenotypic variability between patients, ranging from perinatal demise to mildly affected adults. Autosomal dominant polycystic liver disease (PCLD) does not manifest in childhood. CASE-DIAGNOSIS/TREATMENT: A boy was rep

  2. Autosomal recessive limb girdle myasthenia in two sisters.

    Directory of Open Access Journals (Sweden)

    Shankar A

    2002-10-01

    Full Text Available Limb girdle myasthenic syndromes are rare genetic disorders described under the broad heterogeneous group known as congenital myasthenic syndromes and present with mixed features of myasthenia and myopathy. The familial limb girdle myasthenia has been described as one with selective weakness of pectoral and pelvic girdles, showing a positive response to edrophonium chloride. A report of two sisters affected by this disorder is presented.

  3. A homozygous mutation in a consanguineous family consolidates the role of ALDH1A3 in autosomal recessive microphthalmia

    DEFF Research Database (Denmark)

    Roos, L; Fang, M; Dali, C;

    2013-01-01

    to the identification of new genes. Very recently, homozygous variations within ALDH1A3 have been associated with autosomal recessive microphthalmia with or without cysts or coloboma, and with variable subphenotypes of developmental delay/autism spectrum disorder in eight families. In a consanguineous family where...... three of the five siblings were affected with microphthalmia/coloboma, we identified a novel homozygous missense mutation in ALDH1A3 using exome sequencing. Of the three affected siblings, one had intellectual disability and one had intellectual disability and autism, while the last one presented...... with normal development. This study contributes further to the description of the clinical spectrum associated with ALDH1A3 mutations, and illustrates the interfamilial clinical variation observed in individuals with ALDH1A3 mutations....

  4. Seasonal palmar keratoderma in erythropoietic protoporphyria indicates autosomal recessive inheritance.

    Science.gov (United States)

    Holme, S Alexander; Whatley, Sharon D; Roberts, Andrew G; Anstey, Alexander V; Elder, George H; Ead, Russell D; Stewart, M Felicity; Farr, Peter M; Lewis, Helen M; Davies, Nicholas; White, Marion I; Ackroyd, R Simon; Badminton, Michael N

    2009-03-01

    Erythropoietic protoporphyria (EPP) is an inherited disorder that results from partial deficiency of ferrochelatase (FECH). It is characterized clinically by acute photosensitivity and, in 2% of patients, liver disease. Inheritance is usually autosomal dominant with low penetrance but is recessive in about 4% of families. A cross-sectional study of 223 patients with EPP in the United Kingdom identified six individuals with palmar keratoderma. We now show that these and three additional patients, from six families, have an inherited subtype of EPP which is characterized by seasonal palmar keratoderma, relatively low erythrocyte protoporphyrin concentrations, and recessive inheritance. No patient had evidence of liver dysfunction; four patients had neurological abnormalities. Patients were hetero- or homoallelic for nine different FECH mutations; four of which were previously unreported. Prokaryotic expression predicted that FECH activities were 2.7-25% (mean 10.6%) of normal. Neither mutation type nor FECH activity provided an explanation for the unusual phenotype. Our findings show that palmar keratoderma is a clinical indicator of recessive EPP, identify a phenotype that occurs in 38% of reported families with recessive EPP that to our knowledge is previously unreported, and suggest that patients with this phenotype may carry a lower risk of liver disease than other patients with recessive EPP.

  5. Fine genetic mapping of a gene for autosomal recessive retinitis pigmentosa on chromosome 6p21

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, Yin Y.; Banerjee, P.; Knowles, J.A. [Columbia Univ., New York, NY (United States)] [and others

    1995-08-01

    The inherited retinal degenerations known as retinitis pigmentosa (RP) can be caused by mutations at many different loci and can be inherited as an autosomal recessive, autosomal dominant, or X-linked recessive trait. Two forms of autosomal recessive (arRP) have been reported to cosegregate with mutations in the rhodopsin gene and the beta-subunit of rod phosphodiesterase on chromosome 4p. Genetic linkage has been reported on chromosomes 6p and 1q. In a large Dominican family, we reported an arRp gene near the region of the peripherin/RDS gene. Four recombinations were detected between the disease locus and an intragenic marker derived from peripherin/RDS. 26 refs., 2 figs., 1 tab.

  6. Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat

    Energy Technology Data Exchange (ETDEWEB)

    Casimir, C.M.; Bu-Ghanim, H.N.; Rowe, P.; Segal, A.W. (University College London (England)); Rodaway, A.R.F.; Bentley, D.L. (Imperial Cancer Research Fund Lab., London (England))

    1991-04-01

    Chronic granulomatous disease (CGD) is a rare inherited condition rendering neutrophils incapable of killing invading pathogens. This condition is due to the failure of a multicomponent microbicidal oxidase that normally yields a low-midpoint-potential b cytochrome (cytochrome b{sub 245}). Although defects in the X chromosome-linked cytochrome account for the majority of CGD patients, as many as 30% of CGD cases are due to an autosomal recessive disease. Of these, {gt}90% have been shown to be defective in the synthesis of a 47-kDa cytosolic component of the oxidase. The authors demonstrate here in three unrelated cases of autosomal recessive CGD that the identical underlying molecular lesion is a dinucleotide deletion at a GTGT tandem repeat, corresponding to the acceptor site of the first intron - exon junction. Slippage of the DNA duplex at this site may contribute to the high frequency of defects in this gene.

  7. [Autosomal-recessive renal cystic disease and congenital hepatic fibrosis: clinico-anatomic case].

    Science.gov (United States)

    Rostol'tsev, K V; Burenkov, R A; Kuz'micheva, I A

    2012-01-01

    Clinico-anatomic observation of autosomal-recessive renal cystic disease and congenital hepatic fibrosis at two fetuses from the same family was done. Mutation of His3124Tyr in 58 exon of PKHD1 gene in heterozygous state was found out. The same pathomorphological changes in the epithelium of cystic renal tubules and bile ducts of the liver were noted. We suggest that the autopsy research of fetuses with congenital abnormalities, detected after prenatal ultrasonic screening, has high diagnostic importance.

  8. New form of autosomal-recessive axonal hereditary sensory motor neuropathy.

    Science.gov (United States)

    Eckhardt, S M; Hicks, E M; Herron, B; Morrison, P J; Aicardi, J

    1998-09-01

    Two siblings, a male and a female, had severe axonal neuropathy and sideroblastic anemia. Despite a distinct clinical picture with areflexia, ataxia, hypotonia, optic atrophy, and progressive sensory neural hearing loss, no definite diagnosis could be reached and the older sibling died at 6 years of age of respiratory failure. It is proposed that the two affected siblings have a new form of autosomal-recessive axonal hereditary sensory motor neuropathy.

  9. Macroepiphyseal dysplasia with symptomatic osteoporosis, wrinkled skin, and aged appearance: A presumed autosomal recessive condition

    Energy Technology Data Exchange (ETDEWEB)

    McAlister, W.H.; Coe, J.D.; Whyte, M.P.

    1986-01-01

    We report our detailed investigation of a 7-1/2-year-old girl with short stature, aged appearance, decreased subcutaneous fat and muscle mass, dry coarse hair, foot deformities, macroepiphyses with prominent but lax joints, and osteoporosis with recurrent fractures who is the offspring of first cousins. This constellation of abnormalities differs from previously reported cases where macroepiphyses were a prominent finding. Our patient appears, therefore, to have a new, autosomal recessively inherited, syndrome.

  10. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Science.gov (United States)

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  11. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Directory of Open Access Journals (Sweden)

    K J Kelly

    Full Text Available Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  12. MicroRNAs in neurodegenerative disorders.

    Science.gov (United States)

    Junn, Eunsung; Mouradian, M Maral

    2010-05-01

    MicroRNAs (miRNAs) are endogenous, small, noncoding RNAs regulating eukaryotic gene expression at the post-transcriptional level. During the last decade, considerable advances have been made in our understanding the biogenesis of miRNAs, the molecular mechanisms by which they regulate gene expression and their functional role in various physiological situations. miRNAs are abundant in the brain where they have crucial roles in development and synaptic plasticity. Accumulating evidence from postmortem brain analyses and animal model studies has begun to suggest that miRNA dysfunction contributes to neurodegenerative disorders. Here, we discuss several examples of investigations demonstrating the role of miRNAs in neurodegenerative disorders. As the expression of disease-causing genes is regulated by certain miRNA(s), changes in these miRNAs could lead to the accumulation of disease-causing proteins, and subsequently to neuronal dysfunction and death. Detailed understanding of these mechanisms can provide potential new therapeutic approaches to slow down or halt the progression of neurodegenerative diseases.

  13. Ceruloplasmin in neurodegenerative diseases.

    Science.gov (United States)

    Vassiliev, Vadim; Harris, Zena Leah; Zatta, Paolo

    2005-11-01

    For decades, abnormalities in ceruloplasmin (Cp) synthesis have been associated with neurodegenerative disease. From the early observation that low circulating serum ceruloplasmin levels served as a marker for Wilson's disease to the recent characterization of a neurodegenerative disorder associated with a complete lack of serum ceruloplasmin, the link between Cp and neuropathology has strengthened. The mechanisms associated with these different central nervous system abnormalities are very distinct. In Wilson's disease, a defect in the P-type ATPase results in abnormal hepatic copper accumulation that eventually leaks into the circulation and is abnormally deposited in the brain. In this case, copper deposition results in the neurodegenerative phenotype observed. Patients with autosomal recessive condition, aceruloplasminemia, lack the ferroxidase activity inherent to the multi-copper oxidase ceruloplasmin and develop abnormal iron accumulation within the central nervous system. In the following review ceruloplasmin gene expression, structure and function will be presented and the role of ceruloplasmin in iron metabolism will be discussed. The molecular events underlying the different forms of neurodegeneration observed will be presented. Understanding the role of ceruloplasmin within the central nervous system is fundamental to further our understanding of the pathology observed. Is the ferroxidase function more essential than the antioxidant role? Does Cp help maintain nitrosothiol stores or does it oxidize critical brain substrates? The answers to these questions hold the promise for the treatment of devastating neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. It is essential to further elucidate the mechanism of the neuronal injury associated with these disorders.

  14. Dysregulated microRNAs in neurodegenerative disorders.

    Science.gov (United States)

    Lau, Pierre; de Strooper, Bart

    2010-09-01

    The complexity of the nervous system arises in part, from the large diversity of neural cell types that support the architecture of neuronal circuits. Recent studies have highlighted microRNAs as important players in regulating gene expression at the post-transcriptional level and therefore the phenotype of neural cells. A link between microRNAs and neurodegenerative diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease is becoming increasingly evident. Here, we discuss microRNAs in neurodegeneration, from the fruit fly and mouse utilized as experimental models to dysregulated microRNAs in human neurodegenerative disorders. We propose that studying microRNAs and their mRNA targets in the context of neurodegeneration will significantly contribute to the identification of proteins important for neuronal function and might reveal underlying molecular networks that drive these diseases.

  15. THE SYNDROME OF AUTOSOMAL RECESSIVE PONTOCEREBELLAR HYPOPLASIA, MICROCEPHALY, AND EXTRAPYRAMIDAL DYSKINESIA (PONTOCEREBELLAR HYPOPLASIA TYPE-2) - COMPILED DATA FROM 10 PEDIGREES

    NARCIS (Netherlands)

    BARTH, PG; BLENNOW, G; LENARD, HG; BEGEER, JH; VANDERKLEY, JM; HANEFELD, F; PETERS, ACB; Valk, J.

    1995-01-01

    The syndrome of autosomal recessive pontocerebellar hypoplasia, microcephaly, severely impaired mental and motor development, and extrapyramidal dyskinesia is a distinct system degeneration, previously designated pontocerebellar hypoplasia type 2 (PCH-2). To further characterize its clinical and neu

  16. Computational analysis of TRAPPC9: candidate gene for autosomal recessive non-syndromic mental retardation.

    Science.gov (United States)

    Khattak, Naureen Aslam; Mir, Asif

    2014-01-01

    Mental retardation (MR)/ intellectual disability (ID) is a neuro-developmental disorder characterized by a low intellectual quotient (IQ) and deficits in adaptive behavior related to everyday life tasks such as delayed language acquisition, social skills or self-help skills with onset before age 18. To date, a few genes (PRSS12, CRBN, CC2D1A, GRIK2, TUSC3, TRAPPC9, TECR, ST3GAL3, MED23, MAN1B1, NSUN1) for autosomal-recessive forms of non syndromic MR (NS-ARMR) have been identified and established in various families with ID. The recently reported candidate gene TRAPPC9 was selected for computational analysis to explore its potentially important role in pathology as it is the only gene for ID reported in more than five different familial cases worldwide. YASARA (12.4.1) was utilized to generate three dimensional structures of the candidate gene TRAPPC9. Hybrid structure prediction was employed. Crystal Structure of a Conserved Metalloprotein From Bacillus Cereus (3D19-C) was selected as best suitable template using position-specific iteration-BLAST. Template (3D19-C) parameters were based on E-value, Z-score and resolution and quality score of 0.32, -1.152, 2.30°A and 0.684 respectively. Model reliability showed 93.1% residues placed in the most favored region with 96.684 quality factor, and overall 0.20 G-factor (dihedrals 0.06 and covalent 0.39 respectively). Protein-Protein docking analysis demonstrated that TRAPPC9 showed strong interactions of the amino acid residues S(253), S(251), Y(256), G(243), D(131) with R(105), Q(425), W(226), N(255), S(233), its functional partner 1KBKB. Protein-protein interacting residues could facilitate the exploration of structural and functional outcomes of wild type and mutated TRAPCC9 protein. Actively involved residues can be used to elucidate the binding properties of the protein, and to develop drug therapy for NS-ARMR patients.

  17. Autosomal recessive hyper IgM syndrome associated with activation-induced cytidine deaminase gene in three Turkish siblings presented with tuberculosis lymphadenitis - Case report.

    Science.gov (United States)

    Patiroglu, Turkan; Akar, H Haluk; van der Burg, Mirjam; Unal, Ekrem

    2015-09-01

    The hyper-immunoglobulin M (HIGM) syndrome is a heterogeneous group of genetic disorders characterized by recurrent infections, decreased serum levels of immunoglobulin G (IgG) and IgA, and normal/increased serum levels of IgM. Herein, we describe three Turkish siblings with HIGM syndrome who had a homozygous missense mutation (c.70C>T, p.Arg24Trp) in the activation-induced cytidine deaminase gene which results in autosomal recessive HIGM syndrome. Two of the siblings, sibling 1 and sibling 3, presented with cervical deep abscess and cervical tuberculosis lymphadenitis, respectively.

  18. Coincidence the Autosomal Recessive Polycystic Kidney Disease With Placenta Membranacea (A Probably Genetic Relation with PKHD1 Gene

    Directory of Open Access Journals (Sweden)

    Ehsan Hosseini

    2016-05-01

    Full Text Available Placenta membranacea is one of the most barley anomalies happens in pregnancy defined by chorionic villi (partially or completely covered the fetus membrane. Autosomal recessive polycystic kidney disease in fetus is also a rare case with an incidence of 1: 20,000 live births resulting in a 30% death rate in neonates. In this case for the first time, we reported a placenta membranacea and autosomal recessive polycystic kidney disease occurred with together. A 25-year-old woman was admitted at 16 weeks of gestation for inducing abortion with autosomal recessive polycystic kidney disease in fetus diagnosed in routine sonography fellowship. Post-delivery examination revealed a placenta totally enveloped the fetus, oligohydramnious and bilateral enlarged polycystic kidneys of fetus. Histological study indicated umbilicus has only one artery and one vein as well as autosomal recessive polycystic kidney disease and directly attachment of chorionic villi to fetal membrane eventually diagnosed as complete placenta membranacea. The etiology of placenta membranacea is not completely clarified. As autosomal recessive polycystic kidney disease is a result of mutation in PKHD1 gene, so our finding may be initiates a new investigation about genetic relation between placenta membranacea and autosomal recessive polycystic kidney disease.

  19. DNA triplex structures in neurodegenerative disorder, Friedreich's ataxia

    Indian Academy of Sciences (India)

    Moganty R Rajeswari

    2012-07-01

    It is now established that a small fraction of genomic DNA does adopt the non-canonical B-DNA structure or ‘unusual’ DNA structure. The unusual DNA structures like DNA-hairpin, cruciform, Z-DNA, triplex and tetraplex are represented as hotspots of chromosomal breaks, homologous recombination and gross chromosomal rearrangements since they are prone to the structural alterations. Friedreich’s ataxia (FRDA), the autosomal recessive degenerative disorder of nervous and muscles tissue, is caused by the massive expansion of (GAA) repeats that occur in the first intron of Frataxin gene X25 on chromosome 9q13-q21.1. The purine strand of the DNA in the expanded (GAA) repeat region folds back to form the (R∙R*Y) type of triplex, which further inhibits the frataxin gene expression, and this clearly suggests that the shape of DNA is the determining factor in the cellular function. FRDA is the only disease known so far to be associated with DNA triplex. Structural characterization of GAA-containing DNA triplexes using some simple biophysical methods like UV melting, UV absorption, circular dichroic spectroscopy and electrophoretic mobility shift assay are discussed. Further, the clinical aspects and genetic analysis of FRDA patients who carry (GAA) repeat expansions are presented. The potential of some small molecules that do not favour the DNA triplex formation as therapeutics for FRDA are also briefly discussed.

  20. Diffusion-MRI in neurodegenerative disorders.

    Science.gov (United States)

    Goveas, Joseph; O'Dwyer, Laurence; Mascalchi, Mario; Cosottini, Mirco; Diciotti, Stefano; De Santis, Silvia; Passamonti, Luca; Tessa, Carlo; Toschi, Nicola; Giannelli, Marco

    2015-09-01

    The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.

  1. Neuroinflammation in Neurodegenerative Disorders-a Review.

    Science.gov (United States)

    Schain, Martin; Kreisl, William Charles

    2017-03-01

    The potential for positron emission tomography (PET) to detect neuroinflammation in vivo has sparked a remarkable interest in various disciplines of neuroscience. Early PET radioligands, such as [(11)C]PK(R)-11195 for the 18-kDa translocator protein (TSPO) and [(11)C]L-deprenyl for monoamine oxidase B, have been used in studies designed to clarify the role of neuroinflammation in a variety of psychiatric and neurological disorders. Recent years have witnessed the development of several second-generation PET radioligands for TSPO and radioligands to measure endogenous targets that are active in various stages of the inflammatory cascade, such as cyclooxygenase and arachidonic acid. Here, we discuss some of the biomarkers for neuroinflammation that are available for quantification with PET, as well as recent findings from studies where neuroinflammation has been assessed in neurodegenerative disorders. In addition, we highlight the challenges to accurate interpretation of PET studies of neuroinflammation.

  2. Adaptive Immunity in Neurodegenerative and Neuropsychological Disorders.

    Science.gov (United States)

    Mosley, R Lee

    2015-12-01

    Neurodegenerative and neuropsychological disorders are becoming a greater proportion of the global disease burden; however the pathogenic mechanisms by which these disorders originate and contribute to disease progression are not well-described. Increasing evidence supports neuroinflammation as a common underlying component associated with the neuropathological processes that effect disease progression. This collection of articles explores the role of adaptive immunity in autoimmunity, neurodegeneration, neurotrauma, and psychological disorders. The section emphasizes the interactions of T cells with innate cellular responses within the CNS and the effects on neurological functions. One recurrent theme is that modified and aggregated self-proteins upregulate innate-mediated inflammation and provide a permissive environment for polarization of T cells to proinflammatory effector cells. Moreover, infiltration and reactivation of those T effector cells exacerbate neuroinflammation and oxidative stress to greater neurotoxic levels. Another recurrent theme in these disorders promotes diminished regulatory functions that reduce control over activated T effector cells and microglia, and ultimately augment proinflammatory conditions. Augmentation of regulatory control is discussed as therapeutic strategies to attenuate neuroinflammation, mitigate neurodegeneration or neuronal dysfunction, and lessen disease progression.

  3. Linkage of autosomal recessive primary congenital glaucoma to the GLC3A locus in Roms (Gypsies) from Slovakia.

    Science.gov (United States)

    Plásilová, M; Feráková, E; Kádasi, L; Poláková, H; Gerinec, A; Ott, J; Ferák, V

    1998-01-01

    The autosomal recessive form of primary congenital glaucoma (gene symbol GLC3) has been recently mapped to two different loci, GLC3A (at 2p21), and GLC3B (at 1p36), respectively, on families of Turkish and Saudi Arabian provenance. This disorder is known to occur with an extremely high incidence in Roms (Gypsies) in Slovakia. We performed a standard linkage analysis on a sample of 7 Slovak Gypsy families comprising 18 affected members, and found significant linkage with four STR markers from the chromosomal region of 2p21 (D2S1788, D2S1346, D2S2328, and D2S1356), without heterogeneity. This finding demonstrates that in the Rom population of Slovakia, primary congenital glaucoma is due to the locus GLC3A, and consequently, to the mutation(s) in the cytochrome P4501B1 gene, which has been recently identified as the principal cause of the disease. Roms represent the third population, in which the disorder has been mapped to GLC3A.

  4. Antisense oligonucleotides in therapy for neurodegenerative disorders.

    Science.gov (United States)

    Evers, Melvin M; Toonen, Lodewijk J A; van Roon-Mom, Willeke M C

    2015-06-29

    Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can not only reduce expression of mutant proteins by breakdown of the targeted transcript, but also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation.

  5. Founder mutation in dystonin-e underlying autosomal recessive epidermolysis bullosa simplex in Kuwait.

    Science.gov (United States)

    Takeichi, T; Nanda, A; Liu, L; Aristodemou, S; McMillan, J R; Sugiura, K; Akiyama, M; Al-Ajmi, H; Simpson, M A; McGrath, J A

    2015-02-01

    Only two homozygous nonsense mutations in the epidermal isoform of the dystonin gene, DST-e, have been reported previously in autosomal recessive epidermolysis bullosa simplex (EBS); the affected pedigrees were Kuwaiti and Iranian. This subtype of EBS is therefore considered to be a rare clinicopathological entity. In this study, we identified four seemingly unrelated Kuwaiti families in which a total of seven individuals had predominantly acral trauma-induced blistering since infancy. All affected individuals were homozygous for the mutation p.Gln1124* in DST-e, the same mutation that was identified in the originally reported family from Kuwait. Haplotype analysis in the five pedigrees (including the previous case) revealed a shared block of ~60 kb of genomic DNA across the site of the mutation, consistent with a founder effect. Most heterozygotes had no clinical abnormalities although one subject had mild transient skin fragility during childhood, an observation noted in the previously reported Iranian pedigree, suggesting that the condition may also be semidominant in some pedigrees rather than purely autosomal recessive. Our study reveals propagation of a mutant ancestral allele in DST-e throughout Kuwait, indicating that this subtype of EBS may be more common in Kuwait, and perhaps other Middle Eastern countries, than is currently appreciated.

  6. Autosomal recessive congenital cataract, intellectual disability phenotype linked to STX3 in a consanguineous Tunisian family.

    Science.gov (United States)

    Chograni, M; Alkuraya, F S; Ourteni, I; Maazoul, F; Lariani, I; Chaabouni, H B

    2015-09-01

    The aim of this study is to investigate the genetic basis of autosomal recessive congenital cataract and intellectual disability phenotype in a consanguineous Tunisian family. The whole genome scan of the studied family was performed with single nucleotide polymorphisms (SNPs). The resulted runs of homozygosity (ROH) were analyzed through the integrated Systems Tool for Eye gene discovery (iSyTE) in order to prioritize candidate genes associated with congenital cataract. Selected genes were amplified and sequenced. Bioinformatic analysis was conducted to predict the function of the mutant gene. We identified a new specific lens gene named syntaxin 3 linked to the studied phenotype. The direct sequencing of this gene revealed a novel missense mutation c.122A>G which results in p.E41G. Bioinformatic analysis suggested a deleterious effect of this mutation on protein structure and function. Here, we report for the first time a missense mutation of a novel lens specific gene STX3 in a phenotype associating autosomal recessive congenital cataract and intellectual disability.

  7. Autosomal recessive transmission of MYBPC3 mutation results in malignant phenotype of hypertrophic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Yilu Wang

    Full Text Available BACKGROUND: Hypertrophic cardiomyopathy (HCM due to mutations in genes encoding sarcomere proteins is most commonly inherited as an autosomal dominant trait. Since nearly 50% of HCM cases occur in the absence of a family history, a recessive inheritance pattern may be involved. METHODS: A pedigree was identified with suspected autosomal recessive transmission of HCM. Twenty-six HCM-related genes were comprehensively screened for mutations in the proband with targeted second generation sequencing, and the identified mutation was confirmed with bi-directional Sanger sequencing in all family members and 376 healthy controls. RESULTS: A novel missense mutation (c.1469G>T, p.Gly490Val in exon 17 of MYBPC3 was identified. Two siblings with HCM were homozygous for this mutation, whereas other family members were either heterozygous or wild type. Clinical evaluation showed that both homozygotes manifested a typical HCM presentation, but none of others, including 5 adult heterozygous mutation carriers up to 71 years of age, had any clinical evidence of HCM. CONCLUSIONS: Our data identified a MYBPC3 mutation in HCM, which appeared autosomal recessively inherited in this family. The absence of a family history of clinical HCM may be due to not only a de novo mutation, but also recessive mutations that failed to produce a clinical phenotype in heterozygous family members. Therefore, consideration of recessive mutations leading to HCM is essential for risk stratification and genetic counseling.

  8. History of Innate Immunity in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Patrick eMcGeer

    2011-12-01

    Full Text Available The foundations of innate immunity in neurodegenerative disorders were first laid by Hortega in 1919. He identified and named microglia, recognizing them as cells of mesodermal origin. Van Furth in 1969 elaborated the monocyte phagocytic system with microglia as the brain representatives. Validation of these concepts did not occur until 1987 when HLA-DR was identified on activated microglia in a spectrum of neurological disorders. HLA-DR had already been established as a definitive marker of immunocompetent cells of mesodermal origin. It was soon determined that the observed inflammatory reaction was an innate immune response. A rapid expansion of the field took place as other markers of an innate immune response were found that were made by neurons, astrocytes, oligodendroglia and endothelial cells. The molecules included complement proteins and their regulators, inflammatory cytokines, chemokines, acute phase reactants, prostaglandins, proteases, protease inhibitors, coagulation factors, fibrinolytic factors, anaphylotoxins, integrins, free radical generators, and other unidentified neurotoxins. The Nimmerjahn movies demonstrated that resting microglia were constantly active, sampling the surround and responding rapidly to brain damage. Ways of reducing the neurotoxic innate immune response and stimulating a healing response continue to be sought as a means for ameliorating the pathology in a spectrum of chronic degenerative disorders.

  9. Autosomal recessive posterior column ataxia with retinitis pigmentosa caused by novel mutations in the FLVCR1 gene.

    Science.gov (United States)

    Shaibani, Aziz; Wong, Lee-Jun; Wei Zhang, Victor; Lewis, Richard Alan; Shinawi, Marwan

    2015-01-01

    Posterior column ataxia with retinitis pigmentosa (PCARP) is an autosomal recessive disorder characterized by severe sensory ataxia, muscle weakness and atrophy, and progressive pigmentary retinopathy. Recently, mutations in the FLVCR1 gene were described in four families with this condition. We investigated the molecular basis and studied the phenotype of PCARP in a new family. The proband is a 33-year-old woman presented with sensory polyneuropathy and retinitis pigmentosa (RP). The constellation of clinical findings with normal metabolic and genetic evaluation, including mitochondrial DNA (mtDNA) analysis and normal levels of phytanic acid and vitamin E, prompted us to seek other causes of our patient's condition. Sequencing of FLVCR1 in the proband and targeted mutation testing in her two affected siblings revealed two novel variants, c.1547G > A (p.R516Q) and c.1593+5_+8delGTAA predicted, respectively, to be highly conserved throughout evolution and affecting the normal splicing, therefore, deleterious. This study supports the pathogenic role of FLVCR1 in PCARP and expands the molecular and clinical spectra of PCARP. We show for the first time that nontransmembrane domain (TMD) mutations in the FLVCR1 can cause PCARP, suggesting different mechanisms for pathogenicity. Our clinical data reveal that impaired sensation can be part of the phenotypic spectrum of PCARP. This study along with previously reported cases suggests that targeted sequencing of the FLVCR1 gene should be considered in patients with severe sensory ataxia, RP, and peripheral sensory neuropathy.

  10. Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    Directory of Open Access Journals (Sweden)

    Insa Bultmann-Mellin

    2015-04-01

    Full Text Available Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C, which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−, the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/− mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM. Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.

  11. A homozygous mutation in a consanguineous family consolidates the role of ALDH1A3 in autosomal recessive microphthalmia.

    Science.gov (United States)

    Roos, L; Fang, M; Dali, C; Jensen, H; Christoffersen, N; Wu, B; Zhang, J; Xu, R; Harris, P; Xu, X; Grønskov, K; Tümer, Z

    2014-09-01

    Anomalies of eye development can lead to the rare eye malformations microphthalmia and anophthalmia (small or absent ocular globes), which are genetically very heterogeneous. Several genes have been associated with microphthalmia and anophthalmia, and exome sequencing has contributed to the identification of new genes. Very recently, homozygous variations within ALDH1A3 have been associated with autosomal recessive microphthalmia with or without cysts or coloboma, and with variable subphenotypes of developmental delay/autism spectrum disorder in eight families. In a consanguineous family where three of the five siblings were affected with microphthalmia/coloboma, we identified a novel homozygous missense mutation in ALDH1A3 using exome sequencing. Of the three affected siblings, one had intellectual disability and one had intellectual disability and autism, while the last one presented with normal development. This study contributes further to the description of the clinical spectrum associated with ALDH1A3 mutations, and illustrates the interfamilial clinical variation observed in individuals with ALDH1A3 mutations.

  12. A Linkage Study in 8 Pakistani Families Segregating as Autosomal Recessive Primary Microcephaly

    Directory of Open Access Journals (Sweden)

    M. Hassanullah

    2011-07-01

    Full Text Available The current study was designed to find the most frequent MCPH phenotype in inbred Pakistani families. Primary microcephaly is marked by small brain size and is usually inherited as recessive trait. In the present study, we performed linkage analysis on 8 Pakistani families with autosomal recessive primary microcephaly (MCPH and linked 6 of them to known MCPH genes/loci like MCPH1 (Microcephalin, MCPH3 (CDK5RAP2 and MCPH5 (ASPM. Majority of the families showed linkage with MCPH5, the most common MCPH locus in Pakistan. The linked families were then subjected to mutational analysis, revealing a previously known G to A transition at nucleotide position 3978 in exon 17 of ASPM gene in three of the families. To decrease its incidence, it is indispensible to train the people of the possible devastating outcome of cousin marriages and to find the carriers through carrier screening programs.

  13. Birth prevalence and mutation spectrum in danish patients with autosomal recessive albinism

    DEFF Research Database (Denmark)

    Grønskov, Karen; Ek, Jakob; Sand, Annie;

    2009-01-01

    PURPOSE: The study was initiated to investigate the mutation spectrum of four OCA genes and to calculate the birth prevalence in patients with autosomal recessive albinism. METHODS: Mutation analysis using dHPLC or direct DNA sequencing of TYR, OCA2, TYRP1, and MATP was performed in 62 patients....... Two mutations in one OCA gene explained oculocutaneous albinism (OCA) in 44% of the patients. Mutations in TYR were found in 26% of patients, while OCA2 and MATP caused OCA in 15% and 3%, respectively. No mutations were found in TYRP1. Of the remaining 56% of patients, 29% were heterozygous...... recessive ocular albinism (AROA) based on clinical findings was 55 to 45. CONCLUSIONS: TYR is the major OCA gene in Denmark, but several patients do not have mutations in the investigated genes. A relatively large fraction of patients were observed with AROA, and of those 52% had no mutations compared...

  14. [Autosomal recessive polycystic kidney disease and complex nephronophtisis medullary cystic disease].

    Science.gov (United States)

    2008-12-01

    Reseach during the past decade has led to the discovery that defects in some proteins that localize to primary cilia or the basal body are the main contributors to renal cyst development. Autosomal recessive polycystic disease and nephronophthisis- medullary cystic kidney disease are named ciliopathies. The cilium is a microtubule-based organelle that is found on most mammalian cells. Cilia-mediated hypothesis has evolved into the concept of cystogenesis, cilia bend by fluid initiate a calcium influx that prevents cyst formation. Cilia might sense stimuli in the cell enviroment and control cell polarity and mitosis. A new set of pathogenic mechanisms in renal cystic disease defined new therapeutic targets, control of intracellular calcium, inhibition of cAMP and down regulation cannonical Wnt signaling.

  15. A homozygous mutation in TRIM36 causes autosomal recessive anencephaly in an Indian family.

    Science.gov (United States)

    Singh, Nivedita; Kumble Bhat, Vishwanath; Tiwari, Ankana; Kodaganur, Srinivas G; Tontanahal, Sagar J; Sarda, Astha; Malini, K V; Kumar, Arun

    2017-01-13

    Anencephaly is characterized by the absence of brain tissues and cranium. During primary neurulation stage of the embryo, the rostral part of the neural pore fails to close, leading to anencephaly. Anencephaly shows a heterogeneous etiology, ranging from environmental to genetic causes. The autosomal recessive inheritance of anencephaly has been reported in several populations. In this study, we employed whole-exome sequencing and identified a homozygous missense mutation c.1522C>A (p.Pro508Thr) in the TRIM36 gene as the cause of autosomal recessive anencephaly (APH) in an Indian family. The TRIM36 gene is expressed in the developing brain, suggesting a role in neurogenesis. In silco analysis showed that proline at codon position 508 is highly conserved in 26 vertebrate species, and the mutation is predicted to affect the conformation of the B30.2/SPRY domain of TRIM36. Both in vitro and in vivo results showed that the mutation renders the TRIM36 protein less stable. TRIM36 is known to associate with microtubules. Transient expression of the mutant TRIM36 in HeLa and LN229 cells resulted in microtubule disruption, disorganized spindles, loosely arranged chromosomes, multiple spindles, abnormal cytokinesis, reduced cell proliferation and increased apoptosis as compared to cells transfected with its wild-type counterpart. The siRNA knock down of TRIM36 in HeLa and LN229 cells also led to reduced cell proliferation and increased apoptosis. We suggest that microtubule disruption and disorganized spindles mediated by mutant TRIM36 affect neural cell proliferation during neural tube formation, leading to anencephaly.

  16. ABCA4 gene analysis in patients with autosomal recessive cone and cone rod dystrophies.

    Science.gov (United States)

    Kitiratschky, Veronique B D; Grau, Tanja; Bernd, Antje; Zrenner, Eberhart; Jägle, Herbert; Renner, Agnes B; Kellner, Ulrich; Rudolph, Günther; Jacobson, Samuel G; Cideciyan, Artur V; Schaich, Simone; Kohl, Susanne; Wissinger, Bernd

    2008-07-01

    The ATP-binding cassette (ABC) transporters constitute a family of large membrane proteins, which transport a variety of substrates across membranes. The ABCA4 protein is expressed in photoreceptors and possibly functions as a transporter for N-retinylidene-phosphatidylethanolamine (N-retinylidene-PE), the Schiff base adduct of all-trans-retinal with PE. Mutations in the ABCA4 gene have been initially associated with autosomal recessive Stargardt disease. Subsequent studies have shown that mutations in ABCA4 can also cause a variety of other retinal dystrophies including cone rod dystrophy and retinitis pigmentosa. To determine the prevalence and mutation spectrum of ABCA4 gene mutations in non-Stargardt phenotypes, we have screened 64 unrelated patients with autosomal recessive cone (arCD) and cone rod dystrophy (arCRD) applying the Asper Ophthalmics ABCR400 microarray followed by DNA sequencing of all coding exons of the ABCA4 gene in subjects with single heterozygous mutations. Disease-associated ABCA4 alleles were identified in 20 of 64 patients with arCD or arCRD. In four of 64 patients (6%) only one mutant ABCA4 allele was detected and in 16 patients (25%), mutations on both ABCA4 alleles were identified. Based on these data we estimate a prevalence of 31% for ABCA4 mutations in arCD and arCRD, supporting the concept that the ABCA4 gene is a major locus for various types of degenerative retinal diseases with abnormalities in cone or both cone and rod function.

  17. Homozygosity Mapping in Leber Congenital Amaurosis and Autosomal Recessive Retinitis Pigmentosa in South Indian Families.

    Directory of Open Access Journals (Sweden)

    Sundaramurthy Srilekha

    Full Text Available Leber congenital amaurosis (LCA and retinitis pigmentosa (RP are retinal degenerative diseases which cause severe retinal dystrophy affecting the photoreceptors. LCA is predominantly inherited as an autosomal recessive trait and contributes to 5% of all retinal dystrophies; whereas RP is inherited by all the Mendelian pattern of inheritance and both are leading causes of visual impairment in children and young adults. Homozygosity mapping is an efficient strategy for mapping both known and novel disease loci in recessive conditions, especially in a consanguineous mating, exploiting the fact that the regions adjacent to the disease locus will also be homozygous by descent in such inbred children. Here we have studied eleven consanguineous LCA and one autosomal recessive RP (arRP south Indian families to know the prevalence of mutations in known genes and also to know the involvement of novel loci, if any. Complete ophthalmic examination was done for all the affected individuals including electroretinogram, fundus photograph, fundus autofluorescence, and optical coherence tomography. Homozygosity mapping using Affymetrix 250K HMA GeneChip on eleven LCA families followed by screening of candidate gene(s in the homozygous block identified mutations in ten families; AIPL1 - 3 families, RPE65- 2 families, GUCY2D, CRB1, RDH12, IQCB1 and SPATA7 in one family each, respectively. Six of the ten (60% mutations identified are novel. Homozygosity mapping using Affymetrix 10K HMA GeneChip on the arRP family identified a novel nonsense mutation in MERTK. The mutations segregated within the family and was absent in 200 control chromosomes screened. In one of the eleven LCA families, the causative gene/mutation was not identified but many homozygous blocks were noted indicating that a possible novel locus/gene might be involved. The genotype and phenotype features, especially the fundus changes for AIPL1, RPE65, CRB1, RDH12 genes were as reported earlier.

  18. Comparative Incidence of Conformational, Neurodegenerative Disorders.

    Directory of Open Access Journals (Sweden)

    Jesús de Pedro-Cuesta

    Full Text Available The purpose of this study was to identify incidence and survival patterns in conformational neurodegenerative disorders (CNDDs.We identified 2563 reports on the incidence of eight conditions representing sporadic, acquired and genetic, protein-associated, i.e., conformational, NDD groups and age-related macular degeneration (AMD. We selected 245 papers for full-text examination and application of quality criteria. Additionally, data-collection was completed with detailed information from British, Swedish, and Spanish registries on Creutzfeldt-Jakob disease (CJD forms, amyotrophic lateral sclerosis (ALS, and sporadic rapidly progressing neurodegenerative dementia (sRPNDd. For each condition, age-specific incidence curves, age-adjusted figures, and reported or calculated median survival were plotted and examined.Based on 51 valid reported and seven new incidence data sets, nine out of eleven conditions shared specific features. Age-adjusted incidence per million person-years increased from ≤1.5 for sRPNDd, different CJD forms and Huntington's disease (HD, to 1589 and 2589 for AMD and Alzheimer's disease (AD respectively. Age-specific profiles varied from (a symmetrical, inverted V-shaped curves for low incidences to (b those increasing with age for late-life sporadic CNDDs and for sRPNDd, with (c a suggested, intermediate, non-symmetrical inverted V-shape for fronto-temporal dementia and Parkinson's disease. Frequently, peak age-specific incidences from 20-24 to ≥90 years increased with age at onset and survival. Distinct patterns were seen: for HD, with a low incidence, levelling off at middle age, and long median survival, 20 years; and for sRPNDd which displayed the lowest incidence, increasing with age, and a short median disease duration.These results call for a unified population view of NDDs, with an age-at-onset-related pattern for acquired and sporadic CNDDs. The pattern linking age at onset to incidence magnitude and survival might

  19. Autosomal recessive ataxias: 20 types, and counting Ataxias autossômicas recessivas: 20 tipos e muito mais

    Directory of Open Access Journals (Sweden)

    Emília Katiane Embiruçu

    2009-12-01

    Full Text Available More than 140 years after the first description of Friedreich ataxia, autosomal recessive ataxias have become one of the more complex fields in Neurogenetics. Currently this group of diseases contains more than 20 clinical entities and an even larger number of associated genes. Some disorders are very rare, restricted to isolated populations, and others are found worldwide. An expressive number of recessive ataxias are treatable, and responsibility for an accurate diagnosis is high. The purpose of this review is to update the practitioner on clinical and pathophysiological aspects of these disorders and to present an algorithm to guide the diagnosis.Mais de 140 anos após a primeira descrição da ataxia de Friedreich, as ataxias autossômicas recessivas se transformaram em um dos mais complexos campos da Neurogenética. Atualmente, este grupo de doenças é composto por mais de 20 entidades clínicas e possui um número ainda maior de genes associados. Algumas doenças são muito raras, tendo sido observadas apenas em populações isoladas, enquanto que outras são encontradas no mundo todo. Um número expressivo de ataxias é tratável, e a responsabilidade em se fazer um diagnóstico correto é alta. A finalidade desta revisão é a de atualizar o neurologista a respeito dos principais aspectos clínicos e fisiopatológicos destas doenças e de apresentar um algoritmo para auxiliar a sua investigação e o seu diagnóstico.

  20. Autozygosity mapping of a large consanguineous Pakistani family reveals a novel non-syndromic autosomal recessive mental retardation locus on 11p15-tel

    DEFF Research Database (Denmark)

    Rehman, Shoaib ur; Baig, Shahid Mahmood; Eiberg, Hans;

    2011-01-01

    Autosomal recessive inherited mental retardation is an extremely heterogeneous disease and accounts for approximately 25% of all non-syndromic mental retardation cases. Autozygosity mapping of a large consanguineous Pakistani family revealed a novel locus for non-syndromic autosomal recessive men...

  1. Autosomal recessive hypophosphataemic rickets with hypercalciuria is not caused by mutations in the type II renal sodium/phosphate cotransporter gene.

    NARCIS (Netherlands)

    Heuvel, L.P.W.J. van den; Koul, K. Op de; Knots, E.; Knoers, N.V.A.M.; Monnens, L.A.H.

    2001-01-01

    BACKGROUND: At present the genetic defect for autosomal recessive and autosomal dominant hypophosphataemic rickets with hypercalciuria (HHRH) is unknown. Type II sodium/phosphate cotransporter (NPT2) gene is a serious candidate for being the causative gene in either or both autosomal recessive and a

  2. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors.

    Science.gov (United States)

    Navarro, Claire L; Cadiñanos, Juan; De Sandre-Giovannoli, Annachiara; Bernard, Rafaëlle; Courrier, Sébastien; Boccaccio, Irène; Boyer, Amandine; Kleijer, Wim J; Wagner, Anja; Giuliano, Fabienne; Beemer, Frits A; Freije, Jose M; Cau, Pierre; Hennekam, Raoul C M; López-Otín, Carlos; Badens, Catherine; Lévy, Nicolas

    2005-06-01

    Restrictive dermopathy (RD) is characterized by intrauterine growth retardation, tight and rigid skin with prominent superficial vessels, bone mineralization defects, dysplastic clavicles, arthrogryposis and early neonatal death. In two patients affected with RD, we recently reported two different heterozygous splicing mutations in the LMNA gene, leading to the production and accumulation of truncated Prelamin A. In other patients, a single nucleotide insertion was identified in ZMPSTE24. This variation is located in a homopolymeric repeat of thymines and introduces a premature termination codon. ZMPSTE24 encodes an endoprotease essential for the post-translational cleavage of the Lamin A precursor and the production of mature Lamin A. However, the autosomal recessive inheritance of RD suggested that a further molecular defect was present either in the second ZMPSTE24 allele or in another gene involved in Lamin A processing. Here, we report new findings in RD linked to ZMPSTE24 mutations. Ten RD patients were analyzed including seven from a previous series and three novel patients. All were found to be either homozygous or compound heterozygous for ZMPSTE24 mutations. We report three novel 'null' mutations as well as the recurrent thymine insertion. In all cases, we find a complete absence of both ZMPSTE24 and mature Lamin A associated with Prelamin A accumulation. Thus, RD is either a primary or a secondary laminopathy, caused by dominant de novo LMNA mutations or, more frequently, recessive null ZMPSTE24 mutations, most of which lie in a mutation hotspot within exon 9. The accumulation of truncated or normal length Prelamin A is, therefore, a shared pathophysiological feature in recessive and dominant RD. These findings have an important impact on our knowledge of the pathophysiology in Progeria and related disorders and will help direct the development of therapeutic approaches.

  3. Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness.

    Science.gov (United States)

    Zeitz, Christina; Jacobson, Samuel G; Hamel, Christian P; Bujakowska, Kinga; Neuillé, Marion; Orhan, Elise; Zanlonghi, Xavier; Lancelot, Marie-Elise; Michiels, Christelle; Schwartz, Sharon B; Bocquet, Béatrice; Antonio, Aline; Audier, Claire; Letexier, Mélanie; Saraiva, Jean-Paul; Luu, Tien D; Sennlaub, Florian; Nguyen, Hoan; Poch, Olivier; Dollfus, Hélène; Lecompte, Odile; Kohl, Susanne; Sahel, José-Alain; Bhattacharya, Shomi S; Audo, Isabelle

    2013-01-10

    Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440(∗)]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384(∗)]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs(∗)59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated.

  4. Additional case of Marden-Walker syndrome: support for the autosomal-recessive inheritance adn refinement of phenotype in a surviving patient.

    Science.gov (United States)

    Orrico, A; Galli, L; Zappella, M; Orsi, A; Hayek, G

    2001-02-01

    In this report, we present a 14-year-old girl, born to consanguineous parents, who presented with severe mental retardation, hypotonia, short stature, and congenital joint contractures. The craniofacial features were scaphocephaly, thin/long and immobile face, marked hypoplasia of the midface, temporal narrowness, blepharophimosis, palpebral ptosis, and strabismus. The combination of such a distinctive craniofacial appearance and psychomotor retardation allows us to recognize a new case of the Marden-Walker syndrome. Our patient represents one of the rare cases in which consanguineous mating supports the autosomal-recessive pattern of inheritance of this condition. Furthermore, through refining the phenotype of a surviving patient, this report may contribute to a better recognition of this disorder in older affected children.

  5. Novel homozygous mutations in the EVC and EVC2 genes in two consanguineous families segregating autosomal recessive Ellis-van Creveld syndrome.

    Science.gov (United States)

    Aziz, Abdul; Raza, Syed I; Ali, Salman; Ahmad, Wasim

    2016-01-01

    Ellis-van Creveld syndrome (EVC) is a rare developmental disorder characterized by short limbs, short ribs, postaxial polydactyly, dysplastic nails, teeth, oral and cardiac abnormalities. It is caused by biallelic mutations in the EVC or EVC2 gene, separated by 2.6 kb of genomic sequence on chromosome 4p16. In the present study, we have investigated two consanguineous families of Pakistani origin, segregating EVC in autosomal recessive manner. Linkage in the families was established to chromosome 4p16. Subsequently, sequence analysis identified a novel nonsense mutation (p.Trp234*) in exon 8 of the EVC2 gene and 15 bp duplication in exon 14 of the EVC gene in the two families. This further expands the mutations in the EVC or EVC2 genes resulting in the EVC syndrome.

  6. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy

    Science.gov (United States)

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido

    2015-01-01

    Purpose To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Methods Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. Results The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron–exon junction, we observed a homozygous 10 bp deletion between positions −26 and −17 (c.2281–26_-17del). The deletion was linked to a known SNP, c.2281–6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281–26_-17del leads to

  7. Mutation in LIM2 Is Responsible for Autosomal Recessive Congenital Cataracts

    Science.gov (United States)

    Irum, Bushra; Khan, Shahid Y.; Ali, Muhammad; Kaul, Haiba; Kabir, Firoz; Rauf, Bushra; Fatima, Fareeha; Nadeem, Raheela; Khan, Arif O.; Al Obaisi, Saif; Naeem, Muhammad Asif; Nasir, Idrees A.; Khan, Shaheen N.; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Eghrari, Allen O.; Riazuddin, S. Amer

    2016-01-01

    Purpose To identify the molecular basis of non-syndromic autosomal recessive congenital cataracts (arCC) in a consanguineous family. Methods All family members participating in the study received a comprehensive ophthalmic examination to determine their ocular phenotype and contributed a blood sample, from which genomic DNA was extracted. Available medical records and interviews with the family were used to compile the medical history of the family. The symptomatic history of the individuals exhibiting cataracts was confirmed by slit-lamp biomicroscopy. A genome-wide linkage analysis was performed to localize the disease interval. The candidate gene, LIM2 (lens intrinsic membrane protein 2), was sequenced bi-directionally to identify the disease-causing mutation. The physical changes caused by the mutation were analyzed in silico through homology modeling, mutation and bioinformatic algorithms, and evolutionary conservation databases. The physiological importance of LIM2 to ocular development was assessed in vivo by real-time expression analysis of Lim2 in a mouse model. Results Ophthalmic examination confirmed the diagnosis of nuclear cataracts in the affected members of the family; the inheritance pattern and cataract development in early infancy indicated arCC. Genome-wide linkage analysis localized the critical interval to chromosome 19q with a two-point logarithm of odds (LOD) score of 3.25. Bidirectional sequencing identified a novel missense mutation, c.233G>A (p.G78D) in LIM2. This mutation segregated with the disease phenotype and was absent in 192 ethnically matched control chromosomes. In silico analysis predicted lower hydropathicity and hydrophobicity but higher polarity of the mutant LIM2-encoded protein (MP19) compared to the wild-type. Moreover, these analyses predicted that the mutation would disrupt the secondary structure of a transmembrane domain of MP19. The expression of Lim2, which was detected in the mouse lens as early as embryonic day 15

  8. Scintigraphic visualization of inflammation in neurodegenerative disorders

    NARCIS (Netherlands)

    Versijpt, J; Van Laere, K; Dierckx, RA; Dumont, F; De Deyn, PP; Slegers, G; Korf, J

    2003-01-01

    In the past few decades, our understanding of the central nervous system has evolved from one of an immune-privileged site, to one where inflammation is pathognomonic for some of the most prevalent and tragic neurodegenerative diseases. Current research indicates that diseases as diverse as multiple

  9. Successful twin pregnancy in a patient with parkin-associated autosomal recessive juvenile parkinsonism

    Directory of Open Access Journals (Sweden)

    Takakuwa Koichi

    2011-06-01

    Full Text Available Abstract Background Pregnancy in patients with Parkinson disease is a rare occurrence. To the best of our knowledge, the effect of pregnancy as well as treatment in genetically confirmed autosomal recessive juvenile parkinsonism (ARJP has never been reported. Here, we report the first case of pregnancy in a patient with ARJP associated with a parkin gene mutation, ARJP/PARK2. Case presentation A 27-year-old woman with ARJP/PARK2 was diagnosed as having a spontaneous dichorionic/diamniotic twin pregnancy. Exacerbation of motor disability was noted between ovulation and menstruation before pregnancy as well as during late pregnancy, suggesting that her parkinsonism might have been influenced by fluctuations in the levels of endogenous sex hormones. During the organogenesis period, she was only treated with levodopa/carbidopa, although she continued to receive inpatient hospital care for assistance in the activities of daily living. After the organogenesis period, she was administered sufficient amounts of antiparkinsonian drugs. She delivered healthy male twins, and psychomotor development of both the babies was normal at the age of 2 years. Conclusion Pregnancy may worsen the symptoms of ARJP/PARK2, although appropriate treatments with antiparkinsonian drugs and adequate assistance in the activities of daily living might enable successful pregnancy and birth of healthy children.

  10. Development of novel noninvasive prenatal testing protocol for whole autosomal recessive disease using picodroplet digital PCR

    Science.gov (United States)

    Chang, Mun Young; Kim, Ah Reum; Kim, Min Young; Kim, Soyoung; Yoon, Jinsun; Han, Jae Joon; Ahn, Soyeon; Kang, Changsoo; Choi, Byung Yoon

    2016-01-01

    We developed a protocol of noninvasive prenatal testing (NIPT), employing a higher-resolution picodroplet digital PCR, to detect genetic imbalance in maternal plasma DNA (mpDNA) caused by cell-free fetal DNA (cffDNA). In the present study, this approach was applied to four families with autosomal recessive (AR) congenital sensorineural hearing loss. First, a fraction of the fetal DNA in mpDNA was calculated. Then, we made artificial DNA mixtures (positive and negative controls) to simulate mpDNA containing the fraction of cffDNA with or without mutations. Next, a fraction of mutant cluster signals over the total signals was measured from mpDNA, positive controls, and negative controls. We determined whether fetal DNA carried any paternal or maternal mutations by calculating and comparing the sum of the log-likelihood of the study samples. Of the four families, we made a successful prediction of the complete fetal genotype in two cases where a distinct cluster was identified for each genotype and the fraction of cffDNA in mpDNA was at least 6.4%. Genotyping of only paternal mutation was possible in one of the other two families. This is the first NIPT protocol potentially applicable to any AR monogenic disease with various genotypes, including point mutations. PMID:27924908

  11. Panel-based NGS Reveals Novel Pathogenic Mutations in Autosomal Recessive Retinitis Pigmentosa.

    Science.gov (United States)

    Perez-Carro, Raquel; Corton, Marta; Sánchez-Navarro, Iker; Zurita, Olga; Sanchez-Bolivar, Noelia; Sánchez-Alcudia, Rocío; Lelieveld, Stefan H; Aller, Elena; Lopez-Martinez, Miguel Angel; López-Molina, Ma Isabel; Fernandez-San Jose, Patricia; Blanco-Kelly, Fiona; Riveiro-Alvarez, Rosa; Gilissen, Christian; Millan, Jose M; Avila-Fernandez, Almudena; Ayuso, Carmen

    2016-01-25

    Retinitis pigmentosa (RP) is a group of inherited progressive retinal dystrophies (RD) characterized by photoreceptor degeneration. RP is highly heterogeneous both clinically and genetically, which complicates the identification of causative genes and mutations. Targeted next-generation sequencing (NGS) has been demonstrated to be an effective strategy for the detection of mutations in RP. In our study, an in-house gene panel comprising 75 known RP genes was used to analyze a cohort of 47 unrelated Spanish families pre-classified as autosomal recessive or isolated RP. Disease-causing mutations were found in 27 out of 47 cases achieving a mutation detection rate of 57.4%. In total, 33 pathogenic mutations were identified, 20 of which were novel mutations (60.6%). Furthermore, not only single nucleotide variations but also copy-number variations, including three large deletions in the USH2A and EYS genes, were identified. Finally seven out of 27 families, displaying mutations in the ABCA4, RP1, RP2 and USH2A genes, could be genetically or clinically reclassified. These results demonstrate the potential of our panel-based NGS strategy in RP diagnosis.

  12. The renin-angiotensin system and hypertension in autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Goto, Miwa; Hoxha, Nita; Osman, Rania; Dell, Katherine Macrae

    2010-12-01

    Hypertension is a well-recognized complication of autosomal recessive polycystic kidney disease (ARPKD). The renin-angiotensin system (RAS) is a key regulator of blood pressure; however, data on the RAS in ARPKD are limited and conflicting, showing both up- and down-regulation. In the current study, we characterized intrarenal and systemic RAS activation in relationship to hypertension and progressive cystic kidney disease in the ARPKD orthologous polycystic kidney (PCK) rat. Clinical and histological measures of kidney disease, kidney RAS gene expression by quantitative real-time PCR, angiotensin II (Ang II) immunohistochemistry, and systemic Ang I and II levels were assessed in 2-, 4-, and 6-month-old cystic PCK and age-matched normal rats. PCK rats developed hypertension and progressive cystic kidney disease without significant worsening of renal function or relative kidney size. Intrarenal renin, ACE and Ang II expression was increased significantly in cystic kidneys; angiotensinogen and Ang II Type I receptor were unchanged. Systemic Ang I and II levels did not differ. This study demonstrates that intrarenal, but not systemic, RAS activation is a prominent feature of ARPKD. These findings help reconcile previous conflicting reports and suggest that intrarenal renin and ACE gene upregulation may represent a novel mechanism for hypertension development or exacerbation in ARPKD.

  13. Where do we stand in trial readiness for autosomal recessive limb girdle muscular dystrophies?

    Science.gov (United States)

    Straub, Volker; Bertoli, Marta

    2016-02-01

    Autosomal recessive limb girdle muscular dystrophies (LGMD2) are a group of genetically heterogeneous diseases that are typically characterised by progressive weakness and wasting of the shoulder and pelvic girdle muscles. Many of the more than 20 different conditions show overlapping clinical features with other forms of muscular dystrophy, congenital, myofibrillar or even distal myopathies and also with acquired muscle diseases. Although individually extremely rare, all types of LGMD2 together form an important differential diagnostic group among neuromuscular diseases. Despite improved diagnostics and pathomechanistic insight, a curative therapy is currently lacking for any of these diseases. Medical care consists of the symptomatic treatment of complications, aiming to improve life expectancy and quality of life. Besides well characterised pre-clinical tools like animal models and cell culture assays, the determinants of successful drug development programmes for rare diseases include a good understanding of the phenotype and natural history of the disease, the existence of clinically relevant outcome measures, guidance on care standards, up to date patient registries, and, ideally, biomarkers that can help assess disease severity or drug response. Strong patient organisations driving research and successful partnerships between academia, advocacy, industry and regulatory authorities can also help accelerate the elaboration of clinical trials. All these determinants constitute aspects of translational research efforts and influence patient access to therapies. Here we review the current status of determinants of successful drug development programmes for LGMD2, and the challenges of translating promising therapeutic strategies into effective and accessible treatments for patients.

  14. Mutation Spectrum of EYS in Spanish Patients with Autosomal Recessive Retinitis Pigmentosa

    Science.gov (United States)

    Barragán, Isabel; Borrego, Salud; Pieras, Juan Ignacio; Pozo, María González-del; Santoyo, Javier; Ayuso, Carmen; Baiget, Montserrat; Millan, José M; Mena, Marcela; El-Aziz, Mai M Abd; Audo, Isabelle; Zeitz, Christina; Littink, Karin W; Dopazo, Joaquín; Bhattacharya, Shomi S; Antiñolo, Guillermo

    2010-01-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. We have recently identified a new gene (EYS) encoding an ortholog of Drosophila spacemaker (spam) as a commonly mutated gene in autosomal recessive RP. In the present study, we report the identification of 73 sequence variations in EYS, of which 28 are novel. Of these, 42.9% (12/28) are very likely pathogenic, 17.9% (5/28) are possibly pathogenic, whereas 39.3% (11/28) are SNPs. In addition, we have detected 3 pathogenic changes previously reported in other populations. We are also presenting the characterisation of EYS homologues in different species, and a detailed analysis of the EYS domains, with the identification of an interesting novel feature: a putative coiled-coil domain. Majority of the mutations in the arRP patients have been found within the domain structures of EYS. The minimum observed prevalence of distinct EYS mutations in our group of patients is of 15.9% (15/94), confirming a major involvement of EYS in the pathogenesis of arRP in the Spanish population. Along with the detection of three recurrent mutations in Caucasian population, our hypothesis of EYS being the first prevalent gene in arRP has been reinforced in the present study. © 2010 Wiley-Liss, Inc. PMID:21069908

  15. [Link between aluminum neurotoxicity and neurodegenerative disorders].

    Science.gov (United States)

    Kawahara, Masahiro

    2016-07-01

    Aluminum is an old element that has been known for a long time, but some of its properties are only now being discovered. Although environmentally abundant, aluminum is not essential for life; in fact, because of its specific chemical properties, aluminum inhibits more than 200 biologically important functions and exerts various adverse effects in plants, animals, and humans. Aluminum is a widely recognized neurotoxin. It has been suggested that there is a relationship between exposure to aluminum and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and parkinsonism dementia in the Kii Peninsula and Guam, as well as Alzheimer' s disease: however, this claim remains to be verified. In this chapter, we review the detailed characteristics of aluminum neurotoxicity and the link between Alzheimer' s disease and other neurodegenerative diseases, based on recent findings on metal-metal interactions and the functions of metalloproteins in synapses.

  16. Transmission of Neurodegenerative Disorders Through Blood Transfusion

    DEFF Research Database (Denmark)

    Edgren, Gustaf; Hjalgrim, Henrik; Rostgaard, Klaus

    2016-01-01

    : Multivariable Cox regression models were used to estimate hazard ratios for dementia of any type, Alzheimer disease, and Parkinson disease in patients receiving blood transfusions from donors who were later diagnosed with any of these diseases versus patients who received blood from healthy donors. Whether...... excess occurrence of neurodegenerative disease occurred among recipients of blood from a subset of donors was also investigated. As a positive control, transmission of chronic hepatitis before and after implementation of hepatitis C virus screening was assessed. RESULTS: Among included patients, 2.......9% received a transfusion from a donor diagnosed with one of the studied neurodegenerative diseases. No evidence of transmission of any of these diseases was found, regardless of approach. The hazard ratio for dementia in recipients of blood from donors with dementia versus recipients of blood from healthy...

  17. Interaction between -Synuclein and Other Proteins in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Kurt A. Jellinger

    2011-01-01

    Full Text Available Protein aggregation is a common characteristic of many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic, and experimental differences, evidence increasingly indicates considerable overlap between synucleinopathies and tauopathies or other protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other neurodegenerative diseases, suggest interactions of pathological proteins engaging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/overlaps between these and other neurodegenerative disorders. The synergistic effects of α-synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying molecular pathogenic mechanisms, including induction and spread of protein aggregates, are critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, although the etiology of most of these processes is still mysterious.

  18. Ghrelin: a link between ageing, metabolism and neurodegenerative disorders

    NARCIS (Netherlands)

    Stoyanova, I.I.

    2014-01-01

    Along with the increase in life expectancy over the last century comes the increased risk for development of age-related disorders, including metabolic and neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. These chronic disorders share two main characteristics: 1

  19. Proof-of-principle rapid noninvasive prenatal diagnosis of autosomal recessive founder mutations

    Science.gov (United States)

    Zeevi, David A.; Altarescu, Gheona; Weinberg-Shukron, Ariella; Zahdeh, Fouad; Dinur, Tama; Chicco, Gaya; Herskovitz, Yair; Renbaum, Paul; Elstein, Deborah; Levy-Lahad, Ephrat; Rolfs, Arndt; Zimran, Ari

    2015-01-01

    BACKGROUND. Noninvasive prenatal testing can be used to accurately detect chromosomal aneuploidies in circulating fetal DNA; however, the necessity of parental haplotype construction is a primary drawback to noninvasive prenatal diagnosis (NIPD) of monogenic disease. Family-specific haplotype assembly is essential for accurate diagnosis of minuscule amounts of circulating cell-free fetal DNA; however, current haplotyping techniques are too time-consuming and laborious to be carried out within the limited time constraints of prenatal testing, hampering practical application of NIPD in the clinic. Here, we have addressed this pitfall and devised a universal strategy for rapid NIPD of a prevalent mutation in the Ashkenazi Jewish (AJ) population. METHODS. Pregnant AJ couples, carrying mutation(s) in GBA, which encodes acid β-glucosidase, were recruited at the SZMC Gaucher Clinic. Targeted next-generation sequencing of GBA-flanking SNPs was performed on peripheral blood samples from each couple, relevant mutation carrier family members, and unrelated individuals who are homozygotes for an AJ founder mutation. Allele-specific haplotypes were constructed based on linkage, and a consensus Gaucher disease–associated founder mutation–flanking haplotype was fine mapped. Together, these haplotypes were used for NIPD. All test results were validated by conventional prenatal or postnatal diagnostic methods. RESULTS. Ten parental alleles in eight unrelated fetuses were diagnosed successfully based on the noninvasive method developed in this study. The consensus mutation–flanking haplotype aided diagnosis for 6 of 9 founder mutation alleles. CONCLUSIONS. The founder NIPD method developed and described here is rapid, economical, and readily adaptable for prenatal testing of prevalent autosomal recessive disease-causing mutations in an assortment of worldwide populations. FUNDING. SZMC, Protalix Biotherapeutics Inc., and Centogene AG. PMID:26426075

  20. Brain Connectivity Changes in Autosomal Recessive Parkinson Disease: A Model for the Sporadic Form

    Science.gov (United States)

    Makovac, Elena; Cercignani, Mara; Serra, Laura; Torso, Mario; Spanò, Barbara; Petrucci, Simona; Ricciardi, Lucia; Ginevrino, Monia; Caltagirone, Carlo; Bentivoglio, Anna Rita; Valente, Enza Maria; Bozzali, Marco

    2016-01-01

    Biallelic genetic mutations in the Park2 and PINK1 genes are frequent causes of autosomal recessive PD. Carriers of single heterozygous mutations may manifest subtle signs of disease, thus providing a unique model of preclinical PD. One emerging hypothesis suggests that non-motor symptom of PD, such as cognitive impairment may be due to a distributed functional disruption of various neuronal circuits. Using resting-state functional MRI (RS-fMRI), we tested the hypothesis that abnormal connectivity within and between brain networks may account for the patients’ cognitive status. Eight homozygous and 12 heterozygous carriers of either PINK1 or Park2 mutation and 22 healthy controls underwent RS-fMRI and cognitive assessment. RS-fMRI data underwent independent component analysis to identify five networks of interest: default-mode network, salience network, executive network, right and left fronto-parietal networks. Functional connectivity within and between each network was assessed and compared between groups. All mutation carriers were cognitively impaired, with the homozygous group reporting a more prominent impairment in visuo-spatial working memory. Changes in functional connectivity were evident within all networks between homozygous carriers and controls. Also heterozygotes reported areas of reduced connectivity when compared to controls within two networks. Additionally, increased inter-network connectivity was observed in both groups of mutation carriers, which correlated with their spatial working memory performance, and could thus be interpreted as compensatory. We conclude that both homozygous and heterozygous carriers exhibit pathophysiological changes unveiled by RS-fMRI, which can account for the presence/severity of cognitive symptoms. PMID:27788143

  1. Deletion at the GCNT2 Locus Causes Autosomal Recessive Congenital Cataracts

    Science.gov (United States)

    Irum, Bushra; Khan, Shahid Y.; Ali, Muhammad; Daud, Muhammad; Kabir, Firoz; Rauf, Bushra; Fatima, Fareeha; Iqbal, Hira; Khan, Arif O.; Al Obaisi, Saif; Naeem, Muhammad Asif; Nasir, Idrees A.; Khan, Shaheen N.; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Eghrari, Allen O.; Riazuddin, S. Amer

    2016-01-01

    Purpose The aim of this study is to identify the molecular basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous pedigree. Methods All participating individuals underwent a detailed ophthalmic examination. Each patient’s medical history, particularly of cataracts and other ocular abnormalities, was compiled from available medical records and interviews with family elders. Blood samples were donated by all participating family members and used to extract genomic DNA. Genetic analysis was performed to rule out linkage to known arCC loci and genes. Whole-exome sequencing libraries were prepared and paired-end sequenced. A large deletion was found that segregated with arCC in the family, and chromosome walking was conducted to estimate the proximal and distal boundaries of the deletion mutation. Results Exclusion and linkage analysis suggested linkage to a region of chromosome 6p24 harboring GCNT2 (glucosaminyl (N-acetyl) transferase 2) with a two-point logarithm of odds score of 5.78. PCR amplifications of the coding exons of GCNT2 failed in individuals with arCC, and whole-exome data analysis revealed a large deletion on chromosome 6p in the region harboring GCNT2. Chromosomal walking using multiple primer pairs delineated the extent of the deletion to approximately 190 kb. Interestingly, a failure to amplify a junctional fragment of the deletion break strongly suggests an insertion in addition to the large deletion. Conclusion Here, we report a novel insertion/deletion mutation at the GCNT2 locus that is responsible for congenital cataracts in a large consanguineous family. PMID:27936067

  2. Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta.

    Science.gov (United States)

    El-Sayed, Walid; Parry, David A; Shore, Roger C; Ahmed, Mushtaq; Jafri, Hussain; Rashid, Yasmin; Al-Bahlani, Suhaila; Al Harasi, Sharifa; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2009-11-01

    Healthy dental enamel is the hardest and most highly mineralized human tissue. Though acellular, nonvital, and without capacity for turnover or repair, it can nevertheless last a lifetime. Amelogenesis imperfecta (AI) is a collective term for failure of normal enamel development, covering diverse clinical phenotypes that typically show Mendelian inheritance patterns. One subset, known as hypomaturation AI, is characterised by near-normal volumes of organic enamel matrix but with weak, creamy-brown opaque enamel that fails prematurely after tooth eruption. Mutations in genes critical to enamel matrix formation have been documented, but current understanding of other key events in enamel biomineralization is limited. We investigated autosomal-recessive hypomaturation AI in a consanguineous Pakistani family. A whole-genome SNP autozygosity screen identified a locus on chromosome 15q21.3. Sequencing candidate genes revealed a point mutation in the poorly characterized WDR72 gene. Screening of WDR72 in a panel of nine additional hypomaturation AI families revealed the same mutation in a second, apparently unrelated, Pakistani family and two further nonsense mutations in Omani families. Immunohistochemistry confirmed intracellular localization in maturation-stage ameloblasts. WDR72 function is unknown, but as a putative beta propeller is expected to be a scaffold for protein-protein interactions. The nearest homolog, WDR7, is involved in vesicle mobilization and Ca2+-dependent exocytosis at synapses. Vesicle trafficking is important in maturation-stage ameloblasts with respect to secretion into immature enamel and removal of cleaved enamel matrix proteins via endocytosis. This raises the intriguing possibility that WDR72 is critical to ameloblast vesicle turnover during enamel maturation.

  3. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    Science.gov (United States)

    Liao, Yajin; Dong, Yuan; Cheng, Jinbo

    2017-01-01

    The mitochondrial calcium uniporter (MCU)—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders. PMID:28208618

  4. Global warming and neurodegenerative disorders: speculations on their linkage.

    Science.gov (United States)

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  5. Skeletal muscle, but not cardiovascular function, is altered in a mouse model of autosomal recessive hypophosphatemic rickets

    Directory of Open Access Journals (Sweden)

    Michael J. Wacker

    2016-05-01

    Full Text Available Autosomal recessive hypophosphatemic rickets (ARHR is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL- fast-twitch muscle, soleus (SOL- slow-twitch muscle, heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2a or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In

  6. A new autosomal recessive non-progressive congenital cerebellar ataxia associated with mental retardation, optic atrophy, and skin abnormalities (CAMOS) maps to chromosome 15q24-q26 in a large consanguineous Lebanese Druze Family.

    Science.gov (United States)

    Delague, Valérie; Bareil, Corinne; Bouvagnet, Patrice; Salem, Nabiha; Chouery, Eliane; Loiselet, Jacques; Mégarbané, André; Claustres, Mireille

    2002-03-01

    Congenital cerebellar ataxias are a heterogeneous group of non-progressive disorders characterized by hypotonia and developmental delay followed by the appearance of ataxia, and often associated with dysarthria, mental retardation, and atrophy of the cerebellum. We report the mapping of a disease gene in a large inbred Lebanese Druze family, with five cases of a new form of non-progressive autosomal recessive congenital ataxia associated with optic atrophy, severe mental retardation, and structural skin abnormalities, to a 3.6-cM interval on chromosome 15q24-15q26.

  7. Do consanguineous parents of a child affected by an autosomal recessive disease have more DNA identical-by-descent than similarly-related parents with healthy offspring? Design of a case-control study

    Directory of Open Access Journals (Sweden)

    Cornel Martina C

    2010-07-01

    Full Text Available Abstract Background The offspring of consanguineous relations have an increased risk of congenital/genetic disorders and early mortality. Consanguineous couples and their offspring account for approximately 10% of the global population. The increased risk for congenital/genetic disorders is most marked for autosomal recessive disorders and depends on the degree of relatedness of the parents. For children of first cousins the increased risk is 2-4%. For individual couples, however, the extra risk can vary from zero to 25% or higher, with only a minority of these couples having an increased risk of at least 25%. It is currently not possible to differentiate between high-and low-risk couples. The quantity of DNA identical-by-descent between couples with the same degree of relatedness shows a remarkable variation. Here we hypothesize that consanguineous partners with children affected by an autosomal recessive disease have more DNA identical-by-descent than similarly-related partners who have only healthy children. The aim of the study is thus to establish whether the amount of DNA identical-by-descent in consanguineous parents of children with an autosomal recessive disease is indeed different from its proportion in consanguineous parents who have healthy children only. Methods/Design This project is designed as a case-control study. Cases are defined as consanguineous couples with one or more children with an autosomal recessive disorder and controls as consanguineous couples with at least three healthy children and no affected child. We aim to include 100 case couples and 100 control couples. Control couples are matched by restricting the search to the same family, clan or ethnic origin as the case couple. Genome-wide SNP arrays will be used to test our hypothesis. Discussion This study contains a new approach to risk assessment in consanguineous couples. There is no previous study on the amount of DNA identical-by-descent in consanguineous

  8. Cerebral Toxocariasis: Silent Progression to Neurodegenerative Disorders?

    Science.gov (United States)

    Fan, Chia-Kwung; Holland, Celia V; Loxton, Karen; Barghouth, Ursula

    2015-07-01

    Toxocara canis and T. cati are highly prevalent nematode infections of the intestines of dogs and cats. In paratenic hosts, larvae do not mature in the intestine but instead migrate through the somatic tissues and organs of the body. The presence of these migrating larvae can contribute to pathology. Toxocara larvae can invade the brains of humans, and while case descriptions of cerebral toxocariasis are historically rare, improved diagnosis and greater awareness have contributed to increased detection. Despite this, cerebral or neurological toxocariasis (NT) remains a poorly understood phenomenon. Furthermore, our understanding of cognitive deficits due to toxocariasis in human populations remains particularly deficient. Recent data describe an enhanced expression of biomarkers associated with brain injury, such as GFAP, AβPP, transforming growth factor β1 (TGF-β1), NF-L, S100B, tTG, and p-tau, in mice receiving even low doses of Toxocara ova. Finally, this review outlines a hypothesis to explore the relationship between the presence of T. canis larvae in the brain and the progression of Alzheimer's disease (AD) due to enhanced AD-associated neurodegenerative biomarker expression.

  9. Genetic spectrum of autosomal recessive non-syndromic hearing loss in Pakistani families.

    Directory of Open Access Journals (Sweden)

    Sobia Shafique

    Full Text Available The frequency of inherited bilateral autosomal recessive non-syndromic hearing loss (ARNSHL in Pakistan is 1.6/1000 individuals. More than 50% of the families carry mutations in GJB2 while mutations in MYO15A account for about 5% of recessive deafness. In the present study a cohort of 30 ARNSHL families was initially screened for mutations in GJB2 and MYO15A. Homozygosity mapping was performed by employing whole genome single nucleotide polymorphism (SNP genotyping in the families that did not carry mutations in GJB2 or MYO15A. Mutation analysis was performed for the known ARNSHL genes present in the homozygous regions to determine the causative mutations. This allowed the identification of a causative mutation in all the 30 families including 9 novel mutations, which were identified in 9 different families (GJB2 (c.598G>A, p.Gly200Arg; MYO15A (c.9948G>A, p.Gln3316Gln; c.3866+1G>A; c.8767C>T, p.Arg2923* and c.8222T>C, p.Phe2741Ser, TMC1 (c.362+18A>G, BSND (c.97G>C, p.Val33Leu, TMPRSS3 (c.726C>G, p.Cys242Trp and MSRB3 (c.20T>G, p.Leu7Arg. Furthermore, 12 recurrent mutations were detected in 21 other families. The 21 identified mutations included 10 (48% missense changes, 4 (19% nonsense mutations, 3 (14% intronic mutations, 2 (9% splice site mutations and 2 (9% frameshift mutations. GJB2 accounted for 53% of the families, while mutations in MYO15A were the second most frequent (13% cause of ARNSHL in these 30 families. The identification of novel as well as recurrent mutations in the present study increases the spectrum of mutations in known deafness genes which could lead to the identification of novel founder mutations and population specific mutated deafness genes causative of ARNSHL. These results provide detailed genetic information that has potential diagnostic implication in the establishment of cost-efficient allele-specific analysis of frequently occurring variants in combination with other reported mutations in Pakistani populations.

  10. Clinical translation of stem cells in neurodegenerative disorders.

    Science.gov (United States)

    Lindvall, Olle; Barker, Roger A; Brüstle, Oliver; Isacson, Ole; Svendsen, Clive N

    2012-02-01

    Stem cells and their derivatives show tremendous potential for treating many disorders, including neurodegenerative diseases. We discuss here the challenges and potential for the translation of stem-cell-based approaches into treatments for Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis.

  11. Clinical Translation of Stem Cells in Neurodegenerative Disorders

    Science.gov (United States)

    Lindvall, Olle; Barker, Roger A.; Brüstle, Oliver; Isacson, Ole; Svendsen, Clive N.

    2014-01-01

    Stem cells and their derivatives show tremendous potential for treating many disorders, including neurode-generative diseases. We discuss here the challenges and potential for the translation of stem-cell-based approaches into treatments for Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. PMID:22305565

  12. Gaucher disease: a lysosomal neurodegenerative disorder.

    Science.gov (United States)

    Huang, W J; Zhang, X; Chen, W W

    2015-04-01

    Gaucher disease is a multisystemic disorder that affects men and woman in equal numbers and occurs in all ethnic groups at any age with racial variations and an estimated worldwide incidence of 1/75,000. It is caused by a genetic deficient activity of the lysosomal enzyme glucocerebrosidase due to mutations in the β-glucocerebrosidase gene, and resulting in lack of glucocerebroside degradation. The subsequent accumulation of glucocerebroside in lysosomes of tissue macrophages primarily in the liver, bone marrow and spleen, causes damage in haematological, skeletal and nervous systems. The clinical manifestations show a high degree of variability with symptoms that varies according to organs involved. In many cases, these disorders do not correlate with mutations in the β-glucocerebrosidase gene. Although several mutations have been identified as responsible for the deficient activity of glucocerebrosidase, mechanisms by which this enzymatic defect leads to Gaucher disease remain poorly understood. Recent reports indicate the implication of complex mechanisms, including enzyme deficiency, substrate accumulation, unfolded protein response, and macrophage activation. Further elucidating these mechanisms will advance understanding of Gaucher disease and related disorders.

  13. Nanomedicine and neurodegenerative disorders: so close yet so far.

    Science.gov (United States)

    Tosi, Giovanni; Vandelli, Maria Angela; Forni, Flavio; Ruozi, Barbara

    2015-07-01

    This editorial provides an overview of the main advantages of the use of nanomedicine-based approach for innovation in the treatment of neurodegenerative diseases. Besides these aspects, a critical analysis on the main causes that slow the application of nanomedicine to brain disorders is given along with the identification of possible solutions and possible interventions. Better communication between the main players of research in this field and a detailed understanding of the most critical issues to be addressed should help in defining future directions towards the improvement and, finally, the clinical application of nanomedicine to neurodegenerative diseases.

  14. A novel frameshift mutation in KCNQ4 in a family with autosomal recessive non-syndromic hearing loss.

    Science.gov (United States)

    Wasano, Koichiro; Mutai, Hideki; Obuchi, Chie; Masuda, Sawako; Matsunaga, Tatsuo

    2015-08-01

    Mutation of KCNQ4 has been reported to cause autosomal dominant non-syndromic hearing loss (DFNA2A) that usually presents as progressive hearing loss starting from mild to moderate hearing loss during childhood. Here, we identified a novel KCNQ4 mutation, c.1044_1051del8, in a family with autosomal recessive non-syndromic hearing loss. The proband was homozygous for the mutation and was born to consanguineous parents; she showed severe hearing loss that was either congenital or of early childhood onset. The proband had a sister who was heterozygous for the mutation but showed normal hearing. The mutation caused a frameshift that eliminated most of the cytoplasmic C-terminus, including the A-domain, which has an important role for protein tetramerization, and the B-segment, which is a binding site for calmodulin (CaM) that regulates channel function via Ca ions. The fact that the heterozygote had normal hearing indicates that sufficient tetramerization and CaM binding sites were present to preserve a normal phenotype even when only half the proteins contained an A-domain and B-segment. On the other hand, the severe hearing loss in the homozygote suggests that complete loss of the A-domain and B-segment in the protein caused loss of function due to the failure of tetramer formation and CaM binding. This family suggests that some KCNQ4 mutations can cause autosomal recessive hearing loss with more severe phenotype in addition to autosomal dominant hearing loss with milder phenotype. This genotype-phenotype correlation is analogous to that in KCNQ1 which causes autosomal dominant hereditary long QT syndrome 1 with milder phenotype and the autosomal recessive Jervell and Lange-Nielsen syndrome 1 with more severe phenotype due to deletion of the cytoplasmic C-terminus of the potassium channel.

  15. CLPB Variants Associated with Autosomal-Recessive Mitochondrial Disorder with Cataract, Neutropenia, Epilepsy, and Methylglutaconic Aciduria

    DEFF Research Database (Denmark)

    Saunders, Carol; Smith, Laurie; Wibrand, Flemming;

    2015-01-01

    of type IV 3-MGA-uria characterized by cataracts, severe psychomotor regression during febrile episodes, epilepsy, neutropenia with frequent infections, and death in early childhood. Four of the individuals were of Greenlandic descent, and one was North American, of Northern European and Asian descent......3-methylglutaconic aciduria (3-MGA-uria) is a nonspecific finding associated with mitochondrial dysfunction, including defects of oxidative phosphorylation. 3-MGA-uria is classified into five groups, of which one, type IV, is genetically heterogeneous. Here we report five children with a form...

  16. A mutation in the FOXE3 gene causes congenital primary aphakia in an autosomal recessive consanguineous Pakistani family

    DEFF Research Database (Denmark)

    Anjum, Iram; Eiberg, Hans; Baig, Shahid Mahmood;

    2010-01-01

    PURPOSE: Aphakia is the complete absence of any lens in the eye, either due to surgical removal of the lens as a result of a perforating wound or ulcer, or due to a congenital anomaly. The purpose of this study was to elucidate the molecular genetics for a large consanguineous Pakistani family...... with a clear aphakia phenotype. METHODS: The initial homozygosity screening of the family was extended to all the known autosomal recessive cataract loci in order to exclude the possibility of surgical cataract removal leading to aphakia. The screening was performed using polymorphic nucleotide repeat markers...

  17. Arthrogryposis multiplex with deafness, inguinal hernias, and early death: a family report of a probably autosomal recessive trait.

    Science.gov (United States)

    Tiemann, Christian; Bührer, Christoph; Burwinkel, Barbara; Wirtenberger, Michael; Hoehn, Thomas; Hübner, Christoph; van Landeghem, Frank K H; Stoltenburg, Gisela; Obladen, Michael

    2005-08-30

    We report on three male newborn infants of a highly inbred Lebanese family presenting with a characteristic phenotype: arthrogryposis multiplex, deafness, large inguinal hernia, hiccup-like diaphragmatic contractions, and inability to suck, requiring nasogastric gavage feeding. All three boys died from respiratory failure during the first 3 months of life. Intra vitam or post mortem examinations revealed myopathic changes and elevated glycogen content of muscle tissue. This new syndrome is probably transmitted in an autosomal recessive mode, although X-linked inheritance cannot be excluded.

  18. Dentinogenesis imperfecta associated with short stature, hearing loss and mental retardation: a new syndrome with autosomal recessive inheritance?

    Science.gov (United States)

    Cauwels, R G E C; De Coster, P J; Mortier, G R; Marks, L A M; Martens, L C

    2005-08-01

    The follow-up history and oral findings in two brothers from consanguineous parents suggest that the association of dentinogenesis imperfecta (DI), delayed tooth eruption, mild mental retardation, proportionate short stature, sensorineural hearing loss and dysmorphic facies may represent a new syndrome with autosomal recessive inheritance. Histological examination of the dentin matrix of a permanent molar from one of the siblings reveals morphological similarities with defective dentinogenesis as presenting in patients affected with Osteogenesis Imperfecta (OI), a condition caused by deficiency of type I collagen. A number of radiographic and histological characteristics, however, are inconsistent with classical features of DI. These findings suggest that DI may imply greater genetical heterogeneity than currently assumed.

  19. Evidence-based therapy for sleep disorders in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    LIU Ling

    2013-08-01

    Full Text Available Objective To evaluate the effectiveness of the treatments for sleep disorders in neurodegenerative diseases so as to provide the best therapeutic regimens for the evidence-based treatment. Methods Search PubMed, MEDLINE, Cochrane Library, Wanfang Data and China National Knowledge Infrastructure (CNKI databases with "sleep disorder or sleep disturbance", "neurodegenerative diseases", "Parkinson's disease or PD", "Alzheimer's disease or AD", "multiple system atrophy or MSA" as retrieval words. The quality of the articles were evaluated with Jadad Scale. Results A total of 35 articles, including 2 systematic reviews, 5 randomized controlled trials, 13 clinical controlled trials, 13 case series and 2 epidemiological investigation studies were included for evaluation, 13 of which were high grade and 22 were low grade articles. Clinical evidences showed that: 1 advice on sleep hygiene, careful use of dopaminergic drugs and hypnotic sedative agents should be considered for PD. Bright light therapy (BLT may improve circadian rhythm sleep disorders and clonazepam may be effective for rapid eye movement sleep behavior disorder (RBD. However, to date, very few controlled studies are available to make a recommendation for the management of sleep disorders in PD; 2 treatments for sleep disorders in AD include drug therapy (e.g. melatonin, acetylcholinesterase inhibitors, antipsychotic drugs, antidepressants and non-drug therapy (e.g. BLT, behavior therapy, but very limited evidence shows the effectiveness of these treatments; 3 the first line treatment for sleep-related breathing disorder in MSA is nasal continuous positive airway pressure (nCPAP, and clonazepam is effective for RBD in MSA; 4 there is rare evidence related to the treatment of sleep disorders in dementia with Lewy body (DLB and amyotrophic lateral sclerosis (ALS. Conclusion Evidence-based medicine can provide the best clinical evidence on sleep disorders' treatment in neurodegenerative

  20. Prions and prion-like pathogens in neurodegenerative disorders.

    Science.gov (United States)

    Peggion, Caterina; Sorgato, Maria Catia; Bertoli, Alessandro

    2014-02-18

    Prions are unique elements in biology, being able to transmit biological information from one organism to another in the absence of nucleic acids. They have been identified as self-replicating proteinaceous agents responsible for the onset of rare and fatal neurodegenerative disorders-known as transmissible spongiform encephalopathies, or prion diseases-which affect humans and other animal species. More recently, it has been proposed that other proteins associated with common neurodegenerative disorders, such as Alzheimer's and Parkinson's disease, can self-replicate like prions, thus sustaining the spread of neurotoxic entities throughout the nervous system. Here, we review findings that have contributed to expand the prion concept, and discuss if the involved toxic species can be considered bona fide prions, including the capacity to infect other organisms, or whether these pathogenic aggregates share with prions only the capability to self-replicate.

  1. [Neurodegenerative disorders: review of current classification and diagnostic neuropathological criteria].

    Science.gov (United States)

    Matej, R; Rusina, R

    2012-04-01

    Neurodegenerative disorders are progressive diseases characterized by loss of specific neuronal populations followed by a clinical picture of a different neurodegenerative entity. Current classification of these diseases respects the names of the main pathophysiological processes involved in the groups of disorders. This is the reason why key proteins which represent neuropathological and biochemical hallmarks of diseases are found in their names. Neuropathological diagnosis is a synthesis of neurohistological changes in the brain and spinal cord and identification of pathological proteinaceous aggregates in neurons and/or glial cells. These inclusions are predominant diagnostic micromorphological and biochemical markers of disease. In the text, there is a brief summary of current knowledge about pathophysiology of neurodegenerations and diagnostic criteria for the most frequent entities.

  2. Circulating miRNAs as biomarkers for neurodegenerative disorders.

    Science.gov (United States)

    Grasso, Margherita; Piscopo, Paola; Confaloni, Annamaria; Denti, Michela A

    2014-05-23

    Neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and frontotemporal dementias (FTD), are considered distinct entities, however, there is increasing evidence of an overlap from the clinical, pathological and genetic points of view. All neurodegenerative diseases are characterized by neuronal loss and death in specific areas of the brain, for example, hippocampus and cortex for AD, midbrain for PD, frontal and temporal lobes for FTD. Loss of neurons is a relatively late event in the progression of neurodegenerative diseases that is typically preceded by other events such as metabolic changes, synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities, such as axonal transport defects. The brain's ability to compensate for these dysfunctions occurs over a long period of time and results in late clinical manifestation of symptoms, when successful pharmacological intervention is no longer feasible. Currently, diagnosis of AD, PD and different forms of dementia is based primarily on analysis of the patient's cognitive function. It is therefore important to find non-invasive diagnostic methods useful to detect neurodegenerative diseases during early, preferably asymptomatic stages, when a pharmacological intervention is still possible. Altered expression of microRNAs (miRNAs) in many disease states, including neurodegeneration, and increasing relevance of miRNAs in biofluids in different pathologies has prompted the study of their possible application as neurodegenerative diseases biomarkers in order to identify new therapeutic targets. Here, we review what is known about the role of miRNAs in the pathogenesis of neurodegeneration and the possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative conditions.

  3. Circulating miRNAs as Biomarkers for Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Margherita Grasso

    2014-05-01

    Full Text Available Neurodegenerative disorders, such as Alzheimer’s disease (AD, Parkinson’s disease (PD and frontotemporal dementias (FTD, are considered distinct entities, however, there is increasing evidence of an overlap from the clinical, pathological and genetic points of view. All neurodegenerative diseases are characterized by neuronal loss and death in specific areas of the brain, for example, hippocampus and cortex for AD, midbrain for PD, frontal and temporal lobes for FTD. Loss of neurons is a relatively late event in the progression of neurodegenerative diseases that is typically preceded by other events such as metabolic changes, synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities, such as axonal transport defects. The brain’s ability to compensate for these dysfunctions occurs over a long period of time and results in late clinical manifestation of symptoms, when successful pharmacological intervention is no longer feasible. Currently, diagnosis of AD, PD and different forms of dementia is based primarily on analysis of the patient’s cognitive function. It is therefore important to find non-invasive diagnostic methods useful to detect neurodegenerative diseases during early, preferably asymptomatic stages, when a pharmacological intervention is still possible. Altered expression of microRNAs (miRNAs in many disease states, including neurodegeneration, and increasing relevance of miRNAs in biofluids in different pathologies has prompted the study of their possible application as neurodegenerative diseases biomarkers in order to identify new therapeutic targets. Here, we review what is known about the role of miRNAs in the pathogenesis of neurodegeneration and the possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative conditions.

  4. Autosomal recessive MFN2-related Charcot-Marie-Tooth disease with diaphragmatic weakness: Case report and literature review.

    Science.gov (United States)

    Tan, Christopher A; Rabideau, Marina; Blevins, Amy; Westbrook, Marjorie Jody; Ekstein, Tali; Nykamp, Keith; Deucher, Anne; Harper, Amy; Demmer, Laurie

    2016-06-01

    Pathogenic variants in the mitofusin 2 gene (MFN2) are the most common cause of autosomal dominant Charcot-Marie-Tooth (CMT2) disease, which is typically characterized by axonal sensorimotor neuropathy. We report on a 7-month-old white female with hypotonia, motor delay, distal weakness, and motor/sensory axonal neuropathy in which next-generation sequencing analysis identified compound heterozygous pathogenic variants (c.2054_2069_1170del and c.392A>G) in MFN2. A review of the literature reveals that sporadic and familial cases of compound heterozygous or homozygous pathogenic MFN2 variants have been infrequently described, which indicates that MFN2 can also be inherited in a recessive manner. This case highlights several clinical findings not typically associated with MFN2 pathogenic variants, including young age of onset and rapidly progressing diaphragmatic paresis that necessitated tracheostomy and mechanical ventilation, and adds to the growing list of features identified in autosomal recessive MFN2-related CMT2. Our patient with MFN2-related CMT2 expands the clinical and mutational spectrum of individuals with autosomal recessive CMT2 and identifies a new clinical feature that warrants further observation. © 2016 Wiley Periodicals, Inc.

  5. Discriminative Features in Three Autosomal Recessive Cutis Laxa Syndromes: Cutis Laxa IIA, Cutis Laxa IIB, and Geroderma Osteoplastica

    Directory of Open Access Journals (Sweden)

    Ariana Kariminejad

    2017-03-01

    Full Text Available Cutis laxa is a heterogeneous condition characterized by redundant, sagging, inelastic, and wrinkled skin. The inherited forms of this disease are rare and can have autosomal dominant, autosomal recessive, or X-linked inheritance. Three of the autosomal recessive cutis laxa syndromes, namely cutis laxa IIA (ARCL2A, cutis laxa IIB (ARCL2B, and geroderma osteodysplastica (GO, have very similar clinical features, complicating accurate diagnosis. Individuals with these conditions often present with cutis laxa, progeroid features, and hyperextensible joints. These conditions also share additional features, such as short stature, hypotonia, and congenital hip dislocation, but the severity and frequency of these findings are variable in each of these cutis laxa syndromes. The characteristic features for ARCL2A are abnormal isoelectric focusing and facial features, including downslanting palpebral fissures and a long philtrum. Rather, the clinical phenotype of ARCL2B includes severe wrinkling of the dorsum of the hands and feet, wormian bones, athetoid movements, lipodystrophy, cataract and corneal clouding, a thin triangular face, and a pinched nose. Normal cognition and osteopenia leading to pathological fractures, maxillary hypoplasia, and oblique furrowing from the outer canthus to the lateral border of the supraorbital ridge are discriminative features for GO. Here we present 10 Iranian patients who were initially diagnosed clinically using the respective features of each cutis laxa syndrome. Each patient’s clinical diagnosis was then confirmed with molecular investigation of the responsible gene. Review of the clinical features from the cases reported from the literature also supports our conclusions.

  6. Melatonin in Alzheimer's disease and other neurodegenerative disorders

    OpenAIRE

    Poeggeler B; Cardinali DP; Pandi-Perumal SR; Srinivasan V; Hardeland R

    2006-01-01

    Abstract Increased oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). As the age-related decline in the production of melatonin may contribute to increased levels of oxidative stress in the elderly, the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple actions as...

  7. Hyperactive Somatostatin Interneurons Contribute to Excitotoxicity in Neurodegenerative Disorders

    Science.gov (United States)

    Liang, Bo; Schroeder, David; Zhang, Zhong-wei; Cox, Gregory A.; Li, Yun; Lin, Da-Ting

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping neurodegenerative disorders whose pathogenesis remains largely unknown. Here using TDP-43A315T mice, an ALS and FTD model with profound cortical pathology, we demonstrated that hyperactive somatostatin interneurons disinhibited layer 5 pyramidal neurons (L5-PN) and contributed to their excitotoxicity. Focal ablation of somatostatin interneurons efficiently restored normal excitability of L5-PN and alleviated neurodegeneration, suggesting a novel therapeutic target for ALS and FTD. PMID:26900927

  8. Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders.

    Science.gov (United States)

    Cai, Huan; Cong, Wei-na; Ji, Sunggoan; Rothman, Sarah; Maudsley, Stuart; Martin, Bronwen

    2012-01-01

    Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.

  9. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome.

    Science.gov (United States)

    Bicknell, Louise S; Pitt, James; Aftimos, Salim; Ramadas, Ram; Maw, Marion A; Robertson, Stephen P

    2008-10-01

    There are several rare syndromes combining wrinkled, redundant skin and neurological abnormalities. Although phenotypic overlap between conditions has suggested that some might be allelic to one another, the aetiology for many of them remains unknown. A consanguineous New Zealand Maori family has been characterised that segregates an autosomal recessive connective tissue disorder (joint dislocations, lax skin) associated with neurological abnormalities (severe global developmental delay, choreoathetosis) without metabolic abnormalities in four affected children. A genome-screen performed under a hypothesis of homozygosity by descent for an ancestral mutation, identified a locus at 10q23 (Z = 3.63). One gene within the candidate interval, ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), was considered a plausible disease gene since a missense mutation had previously been shown to cause progressive neurodegeneration, cataracts, skin laxity, joint dislocations and metabolic derangement in a consanguineous Algerian family. A missense mutation, 2350C>T, was identified in ALDH18A1, which predicts the substitution H784Y. H784 is invariant across all phyla and lies within a previously unrecognised, conserved C-terminal motif in P5CS. In an in vivo assay of flux through this metabolic pathway using dermal fibroblasts obtained from an affected individual, proline and ornithine biosynthetic activity of P5CS was not affected by the H784Y substitution. These data suggest that P5CS may possess additional uncharacterised functions that affect connective tissue and central nervous system function.

  10. Transposable elements in TDP-43-mediated neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Wanhe Li

    Full Text Available Elevated expression of specific transposable elements (TEs has been observed in several neurodegenerative disorders. TEs also can be active during normal neurogenesis. By mining a series of deep sequencing datasets of protein-RNA interactions and of gene expression profiles, we uncovered extensive binding of TE transcripts to TDP-43, an RNA-binding protein central to amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration (FTLD. Second, we find that association between TDP-43 and many of its TE targets is reduced in FTLD patients. Third, we discovered that a large fraction of the TEs to which TDP-43 binds become de-repressed in mouse TDP-43 disease models. We propose the hypothesis that TE mis-regulation contributes to TDP-43 related neurodegenerative diseases.

  11. Need to improve clinical trials in rare neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Maria Puopolo

    2011-01-01

    Full Text Available Rare neurodegenerative diseases are fatal and no therapy is available to cure or slow down the progression of disease. We report possibly weaknesses in the management of clinical studies in these diseases, ranging from poor preclinical studies, difficulties in the recruitment of patients, delay in the onset of treatment because of lack in early disease-specific biomarkers, and suboptimal design of Phase II clinical trials. The adoption of innovative statistical approaches in early Phase II trials might improve the screening of drugs in rare neurodegenerative disorders, but this implicates efforts from clinical researchers, statisticians, and regulatory people to the development of new strategies that should maintain rigorous scientific integrity together with a more ethical approach to human experimentations.

  12. A novel HSF4 gene mutation (p.R405X causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan

    Directory of Open Access Journals (Sweden)

    Cheema Abdul

    2008-11-01

    Full Text Available Abstract Background Hereditary cataracts are most frequently inherited as autosomal dominant traits, but can also be inherited in an autosomal recessive or X-linked fashion. To date, 12 loci for autosomal recessive cataracts have been mapped including a locus on chromosome 16q22 containing the disease-causing gene HSF4 (Genbank accession number NM_001040667. Here, we describe a family from Pakistan with the first nonsense mutation in HSF4 thus expanding the mutational spectrum of this heat shock transcription factor gene. Methods A large consanguineous Pakistani family with autosomal recessive cataracts was collected from Quetta. Genetic linkage analysis was performed for the common known autosomal recessive cataracts loci and linkage to a locus containing HSF4 (OMIM 602438 was found. All exons and adjacent splice sites of the heat shock transcription factor 4 gene (HSF4 were sequenced. A mutation-specific restriction enzyme digest (HphI was performed for all family members and unrelated controls. Results The disease phenotype perfectly co-segregated with markers flanking the known cataract gene HSF4, whereas other autosomal recessive loci were excluded. A maximum two-point LOD score with a Zmax = 5.6 at θ = 0 was obtained for D16S421. Direct sequencing of HSF4 revealed the nucleotide exchange c.1213C > T in this family predicting an arginine to stop codon exchange (p.R405X. Conclusion We identified the first nonsense mutation (p.R405X in exon 11 of HSF4 in a large consanguineous Pakistani family with autosomal recessive cataract.

  13. Connected Speech in Neurodegenerative Language Disorders: A Review

    Science.gov (United States)

    Boschi, Veronica; Catricalà, Eleonora; Consonni, Monica; Chesi, Cristiano; Moro, Andrea; Cappa, Stefano F.

    2017-01-01

    Language assessment has a crucial role in the clinical diagnosis of several neurodegenerative diseases. The analysis of extended speech production is a precious source of information encompassing the phonetic, phonological, lexico-semantic, morpho-syntactic, and pragmatic levels of language organization. The knowledge about the distinctive linguistic variables identifying language deficits associated to different neurodegenerative diseases has progressively improved in the last years. However, the heterogeneity of such variables and of the way they are measured and classified limits any generalization and makes the comparison among studies difficult. Here we present an exhaustive review of the studies focusing on the linguistic variables derived from the analysis of connected speech samples, with the aim of characterizing the language disorders of the most prevalent neurodegenerative diseases, including primary progressive aphasia, Alzheimer's disease, movement disorders, and amyotrophic lateral sclerosis. A total of 61 studies have been included, considering only those reporting group analysis and comparisons with a group of healthy persons. This review first analyzes the differences in the tasks used to elicit connected speech, namely picture description, story narration, and interview, considering the possible different contributions to the assessment of different linguistic domains. This is followed by an analysis of the terminologies and of the methods of measurements of the variables, indicating the need for harmonization and standardization. The final section reviews the linguistic domains affected by each different neurodegenerative disease, indicating the variables most consistently impaired at each level and suggesting the key variables helping in the differential diagnosis among diseases. While a large amount of valuable information is already available, the review highlights the need of further work, including the development of automated methods, to

  14. Dose L1 Retrotransposition Cause Neuronal Loss in Neurodegenerative Disorders?

    Directory of Open Access Journals (Sweden)

    Laleh Habibi

    2010-10-01

    Full Text Available "nNeurodegenerative disorders are among debilitating diseases that could affect many aspects of patient's life. Several mechanisms were shown to be involved in neuronal degeneration. However, the direct role of genomic instability is little considered in such disorders. L1 retrotransposons could cause genomic instability in different ways. Studies have shown increasing in L1 retrotransposition due to some reagents like heavy metals, stressors and the ones that may cause neuronal degeneration; Therefore cause cell to die. On the other hand, L1s retrotransposition was shown in neuronal precursor cells (NPCs providing the first evidence for movement of theses elements in nervous system."nHere, we propose that stimulation of L1 retrotransposition by environmental and genetic factors in neurons of central nervous system may lead them to apoptosis and result in neurodegenerative disorders. This hypothesis will be verified using L1-RP vector transfecting to definite neuronal cell line. By adding toxic agents including oxidative stress reagents and heavy metals to cell culture, we may track L1 retrotransposition and effects of this movement on cell physiology. Finding the involvement of mechanism in neurodegeneration may result in inventing new drugs for these disorders.

  15. [Neuroprotective mechanisms of cannabinoids in brain ischemia and neurodegenerative disorders].

    Science.gov (United States)

    Osuna-Zazuetal, Marcela Amparo; Ponce-Gómez, Juan Antonio; Pérez-Neri, Iván

    2015-06-01

    One of the most important causes of morbidity and mortality is neurologic dysfunction; its high incidence has led to an intense research of the mechanisms that protect the central nervous system from hypoxia and ischemia. The mayor challenge is to block the biochemical events leading to neuronal death. This may be achieved by neuroprotective mechanisms that avoid the metabolic and immunologic cascades that follow a neurological damage. When it occurs, several pathophysiological events develop including cytokine release, oxidative stress and excitotoxicity. Neuroprotective effects of cannabinoids to all those mechanisms have been reported in animal models of brain ischemia, excitotoxicity, brain trauma and neurodegenerative disorders. Some endocannabinoid analogs are being tested in clinical studies (I-III phase) for acute disorders involving neuronal death (brain trauma and ischemia). The study of the cannabinoid system may allow the discovery of effective neuroprotective drugs for the treatment of neurological disorders.

  16. Familial Clustering of Unexplained Transient Respiratory Distress in 12 Newborns from Three Unrelated Families Suggests an Autosomal-Recessive Inheritance

    Directory of Open Access Journals (Sweden)

    Andrea Guala

    2007-01-01

    Full Text Available We report on 12 near-term babies from three families in which an unexplained transient respiratory distress was observed. No known risk factor was present in any family and no sequelae were recorded at follow-up. The most common causes of respiratory distress at birth are Neonatal Respiratory Distress Syndrome (NRD and Transient Tachypnea of the Newborn (TTN, and their cumulative incidence is estimated to be about 2%. Genetic factors have been identified in NRD (surfactant genes or suggested for TTN (genes affecting lung liquid clearance. Survivors from NRD may develop clinically relevant sequelae, while TTN does not cause any problem later in life. Our cases do not immediately fit NRD or TTN, while familial recurrence suggests the existence of a previously unreported subgroup on patients with respiratory distress for which autosomal-recessive inheritance is likely.

  17. A new autosomal recessive syndrome characterized by ocular hypertelorism, distinctive face, mental retardation, brachydactyly, and genital abnormalities.

    Science.gov (United States)

    Spiegel, Ronen; Horovitz, Yoseph; Peters, Hartmut; Erdogan, Fikret; Chervinsky, Ilana; Shalev, Stavit A

    2009-12-01

    We report on three individuals of Muslim Arab origin from a village located in Northern Israel affected by an apparent autosomal recessive syndrome characterized by distinctive facial phenotype of which the most prominent feature is ocular hypertelorism. The other clinical features of the syndrome include variable degree of mental retardation, genital abnormalities dominated by short penis, and skeletal abnormalities including chest deformity (combination of upper pectus carinatum with lower pectus excavatum), and short palms with broad short fingers. Affected individuals displayed distinctive facial features including upslanting palpebral fissures, thick eyebrows, long philtrum, wide mouth with thin upper lip and upturned corners of the mouth, widow's peak, broad nasal bridge, and simple ears with fleshy overfolded helices. This phenotype does not fully meet typical diagnostic features of any known condition.

  18. Familial clustering of unexplained transient respiratory distress in 12 newborns from three unrelated families suggests an autosomal-recessive inheritance.

    Science.gov (United States)

    Guala, Andrea; Carrera, Paola; Pastore, Guido; Somaschini, Marco; Ancora, Gina; Faldella, Giacomo; De Filippi, Paolo; Ferrero, Federica; Guarino, Roberta; Danesino, Cesare

    2007-09-28

    We report on 12 near-term babies from three families in which an unexplained transient respiratory distress was observed. No known risk factor was present in any family and no sequelae were recorded at follow-up. The most common causes of respiratory distress at birth are Neonatal Respiratory Distress Syndrome (NRD) and Transient Tachypnea of the Newborn (TTN), and their cumulative incidence is estimated to be about 2%. Genetic factors have been identified in NRD (surfactant genes) or suggested for TTN (genes affecting lung liquid clearance). Survivors from NRD may develop clinically relevant sequelae, while TTN does not cause any problem later in life. Our cases do not immediately fit NRD or TTN, while familial recurrence suggests the existence of a previously unreported subgroup on patients with respiratory distress for which autosomal-recessive inheritance is likely.

  19. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders.

    Science.gov (United States)

    Jucker, Mathias; Walker, Lary C

    2011-10-01

    The misfolding and aggregation of specific proteins is a seminal occurrence in a remarkable variety of neurodegenerative disorders. In Alzheimer disease (the most prevalent cerebral proteopathy), the two principal aggregating proteins are β-amyloid (Aβ) and tau. The abnormal assemblies formed by conformational variants of these proteins range in size from small oligomers to the characteristic lesions that are visible by optical microscopy, such as senile plaques and neurofibrillary tangles. Pathologic similarities with prion disease suggest that the formation and spread of these proteinaceous lesions might involve a common molecular mechanism-corruptive protein templating. Experimentally, cerebral β-amyloidosis can be exogenously induced by exposure to dilute brain extracts containing aggregated Aβ seeds. The amyloid-inducing agent probably is Aβ itself, in a conformation generated most effectively in the living brain. Once initiated, Aβ lesions proliferate within and among brain regions. The induction process is governed by the structural and biochemical nature of the Aβ seed, as well as the attributes of the host, reminiscent of pathogenically variant prion strains. The concept of prionlike induction and spreading of pathogenic proteins recently has been expanded to include aggregates of tau, α-synuclein, huntingtin, superoxide dismutase-1, and TDP-43, which characterize such human neurodegenerative disorders as frontotemporal lobar degeneration, Parkinson/Lewy body disease, Huntington disease, and amyotrophic lateral sclerosis. Our recent finding that the most effective Aβ seeds are small and soluble intensifies the search in bodily fluids for misfolded protein seeds that are upstream in the proteopathic cascade, and thus could serve as predictive diagnostics and the targets of early, mechanism-based interventions. Establishing the clinical implications of corruptive protein templating will require further mechanistic and epidemiologic investigations

  20. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement.

    NARCIS (Netherlands)

    Estrada-Cuzcano, A.; Neveling, K.; Kohl, S.; Banin, E.; Rotenstreich, Y.; Sharon, D.; Falik-Zaccai, T.C.; Hipp, S.; Roepman, R.; Wissinger, B.; Letteboer, S.J.F.; Mans, D.A.; Blokland, E.A.W.; Kwint, M.P.; Gijsen, S.J.; Huet, R.A.C. van; Collin, R.W.J.; Scheffer, H.; Veltman, J.A.; Zrenner, E.; Hollander, A.I. den; Klevering, B.J.; Cremers, F.P.M.

    2012-01-01

    Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together

  1. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease

    DEFF Research Database (Denmark)

    Gal, Andreas; Rau, Isabella; El Matri, Leila

    2011-01-01

    Posterior microphthalmos (MCOP) is a rare isolated developmental anomaly of the eye characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal-recessive form (arMCOP) of the disease. Based on published linkage data, we...

  2. Staging neurodegenerative disorders: structural, regional, biomarker, and functional progressions.

    Science.gov (United States)

    Archer, Trevor; Kostrzewa, Richard M; Beninger, Richard J; Palomo, Tomas

    2011-02-01

    The notion of staging in the neurodegenerative disorders is modulated by the constant and progressive loss of several aspects of brain structural integrity, circuitry, and neuronal processes. These destructive processes eventually remove individuals' abilities to perform at sufficient and necessary functional capacity at several levels of disease severity. The classification of (a) patients on the basis of diagnosis, risk prognosis, and intervention outcome, forms the basis of clinical staging, and (b) laboratory animals on the basis of animal model of brain disorder, extent of insult, and dysfunctional expression, provides the components for the clinical staging and preclinical staging, respectively, expressing associated epidemiological, biological, and genetic characteristics. The major focus of clinical staging in the present account stems from the fundamental notions of Braak staging as they describe the course and eventual prognosis for Alzheimer's disease, Lewy Body dementia, and Parkinson's disease. Mild cognitive impairment, which expresses the decline in episodic and semantic memory performance below the age-adjusted normal range without marked loss of global cognition or activities of daily living, and the applications of longitudinal magnetic resonance imaging, major instruments for the monitoring of either disease progression in dementia, present important challenges for staging concepts. Although Braak notions present the essential basis for further developments, current staging conceptualizations seem inadequate to comply with the massive influx of information dealing with neurodegenerative processes in brain, advanced both under clinical realities, and discoveries in the laboratory setting. The contributions of various biomarkers of disease progression, e.g., amyloid precursor protein, and neurotransmitter system imbalances, e.g., dopamine receptor supersensitivity and interactive propensities, await their incorporation into the existing staging

  3. Autosomal recessive transmission of a rare KRT74 variant causes hair and nail ectodermal dysplasia: allelism with dominant woolly hair/hypotrichosis.

    Directory of Open Access Journals (Sweden)

    Doroteya Raykova

    Full Text Available Pure hair and nail ectodermal dysplasia (PHNED comprises a heterogeneous group of rare heritable disorders characterized by brittle hair, hypotrichosis, onychodystrophy and micronychia. Autosomal recessive (AR PHNED has previously been associated with mutations in either KRT85 or HOXC13 on chromosome 12p11.1-q14.3. We investigated a consanguineous Pakistani family with AR PHNED linked to the keratin gene cluster on 12p11.1 but without detectable mutations in KRT85 and HOXC13. Whole exome sequencing of affected individuals revealed homozygosity for a rare c.821T>C variant (p.Phe274Ser in the KRT74 gene that segregates AR PHNED in the family. The transition alters the highly conserved Phe274 residue in the coil 1B domain required for long-range dimerization of keratins, suggesting that the mutation compromises the stability of intermediate filaments. Immunohistochemical (IHC analyses confirmed a strong keratin-74 expression in the nail matrix, the nail bed and the hyponychium of mouse distal digits, as well as in normal human hair follicles. Furthermore, hair follicles and epidermis of an affected family member stained negative for Keratin-74 suggesting a loss of function mechanism mediated by the Phe274Ser substitution. Our observations show for the first time that homozygosity for a KRT74 missense variant may be associated with AR PHNED. Heterozygous KRT74 mutations have previously been associated with autosomal dominant woolly hair/hypotrichosis simplex (ADWH. Thus, our findings expand the phenotypic spectrum associated with KRT74 mutations and imply that a subtype of AR PHNED is allelic with ADWH.

  4. An autosomal recessive leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa maps to chromosome 17q24.2-25.3

    Directory of Open Access Journals (Sweden)

    Bouhouche Ahmed

    2012-03-01

    Full Text Available Abstract Background Single-gene disorders related to ischemic stroke seem to be an important cause of stroke in young patients without known risk factors. To identify new genes responsible of such diseases, we studied a consanguineous Moroccan family with three affected individuals displaying hereditary leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa that appears to segregate in autosomal recessive pattern. Methods All family members underwent neurological and radiological examinations. A genome wide search was conducted in this family using the ABI PRISM linkage mapping set version 2.5 from Applied Biosystems. Six candidate genes within the region linked to the disease were screened for mutations by direct sequencing. Results Evidence of linkage was obtained on chromosome 17q24.2-25.3. Analysis of recombination events and LOD score calculation suggests linkage of the responsible gene in a genetic interval of 11 Mb located between D17S789 and D17S1806 with a maximal multipoint LOD score of 2.90. Sequencing of seven candidate genes in this locus, ATP5H, FDXR, SLC25A19, MCT8, CYGB, KCNJ16 and GRIN2C, identified three missense mutations in the FDXR gene which were also found in a homozygous state in three healthy controls, suggesting that these variants are not disease-causing mutations in the family. Conclusion A novel locus for leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa has been mapped to chromosome 17q24.2-25.3 in a consanguineous Moroccan family.

  5. Iron biomineralization of brain tissue and neurodegenerative disorders

    Science.gov (United States)

    Mikhaylova (Mikhailova), Albina

    The brain is an organ with a high concentration of iron in specific areas, particularly in the globus pallidus, the substantia nigra, and the red nucleus. In certain pathological states, such as iron overload disease and neurodegenerative disorders, a disturbed iron metabolism can lead to increased accumulation of iron not only in these areas, but also in the brain regions that are typically low in iron content. Recent studies of the physical and magnetic properties of metalloproteins, and in particular the discovery of biogenic magnetite in human brain tissue, have raised new questions about the role of biogenic iron formations in living organisms. Further investigations revealed the presence of magnetite-like crystalline structures in human ferritin, and indicated that released ferritin iron might act as promoter of oxidative damage to tissue, therefore contributing to pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. The purpose of this work was to examine the elemental composition and structure of iron deposits in normal brain tissue as well as tissue affected by neurodegenerative disorders. Employing the methods of X-ray microfocus fluorescence mapping, X-ray Absorption Near Edge Structure (XANES), X-ray Absorption Fine Structure spectroscopy (XAFS), and light and electron microscopic examinations allows one to obtain qualitative as well as quantitative data with respect to the cellular distribution and chemical state of iron at levels not detected previously. The described tissue preparation technique allows not only satisfactory XAS iron elemental imaging in situ but also multimodal examination with light and electron microscopes of the same samples. The developed protocol has assured consistent and reproducible results on relatively large sections of flat-embedded tissue. The resulting tissue samples were adequate for XAS examination as well as sufficiently well-preserved for future microscopy studies

  6. REM behaviour disorder detection associated with neurodegenerative diseases

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sorensen, Gertrud; Zoetmulder, Marielle

    2010-01-01

    Abnormal skeleton muscle activity during REM sleep is characterized as REM Behaviour Disorder (RBD), and may be an early marker for different neurodegenerative diseases. Early detection of RBD is therefore highly important, and in this ongoing study a semi-automatic method for RBD detection......, a computerized algorithm has been attempted implemented. By analysing the REM and non-REM EMG activity, using advanced signal processing tools combined with a statistical classifier, it is possible to discriminate normal and abnormal EMG activity. Due to the small number of patients, the overall performance...... is an improvement compared to previous published studies. Conclusion: The overall result indicates the usefulness of a computerized scoring algorithm and may be a feasible way of reducing scoring time. Further enhancement on additional data, i.e. subjects with idiopathic RBD (iRBD) and PD without RBD, is needed...

  7. The link between type 2 diabetes and neurodegenerative disorders

    Institute of Scientific and Technical Information of China (English)

    Changqing Liu; Jake Hoekstra; Kangping Xiong; Jing Zhang

    2014-01-01

    Various age-associated diseases are becoming more prominent as a greater percentage of the population reaches old age.Neurodegenerative disorders,e.g.Alzheimer's disease (AD)and Parkinson's disease (PD),and diabetes,in particular type 2 diabetes mellitus (T2DM),are the diseases that represent a large proportion of diagnoses amongst this group.These dis-eases have long been regarded as separate and each has distinct pathologies,symptoms,and treatments.Recent studies in epide-miology and pathology,however,have shown that T2DM may share a common mechanism of disease with AD and PD, which could allow for a therapeutic intervention capable of managing each disease.This review will discuss evidence implicating connections between these diseases,potential shared mechanisms,and possible treatments.

  8. Support system and method for detecting neurodegenerative disorder

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a system and a method for detection of abnormal motor activity during REM sleep, and further to systems and method for assisting in detecting neurodegenerative disorders such as Parkinson's. One embodiment relates to a method for detection of abnormal motor activity...... during REM sleep comprising the steps of: performing polysomnographic recordings of a sleeping subject, thereby obtaining one or more electromyography (EMG) derivations, preferably surface EMG recordings, and one or more EEG derivations, and/or one or more electrooculargraphy (EOG) derivations, detecting...... one or more REM sleep stages, preferably based on the one or more EEG and/or EOG derivations, determining the level of muscle activity during the one or more REM sleep stages based on the one or more EMG derivations, wherein a subject having an increased level of muscle activity during REM sleep...

  9. Melatonin in Alzheimer's disease and other neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Poeggeler B

    2006-05-01

    Full Text Available Abstract Increased oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's disease (AD, Parkinson's disease (PD and Huntington's disease (HD. As the age-related decline in the production of melatonin may contribute to increased levels of oxidative stress in the elderly, the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple actions as a regulator of antioxidant and prooxidant enzymes, radical scavenger and antagonist of mitochondrial radical formation. The ability of melatonin and its kynuramine metabolites to interact directly with the electron transport chain by increasing the electron flow and reducing electron leakage are unique features by which melatonin is able to increase the survival of neurons under enhanced oxidative stress. Moreover, antifibrillogenic actions have been demonstrated in vitro, also in the presence of profibrillogenic apoE4 or apoE3, and in vivo, in a transgenic mouse model. Amyloid-β toxicity is antagonized by melatonin and one of its kynuramine metabolites. Cytoskeletal disorganization and protein hyperphosphorylation, as induced in several cell-line models, have been attenuated by melatonin, effects comprising stress kinase downregulation and extending to neurotrophin expression. Various experimental models of AD, PD and HD indicate the usefulness of melatonin in antagonizing disease progression and/or mitigating some of the symptoms. Melatonin secretion has been found to be altered in AD and PD. Attempts to compensate for age- and disease-dependent melatonin deficiency have shown that administration of this compound can improve sleep efficiency in AD and PD and, to some extent, cognitive function in AD patients. Exogenous melatonin has also been reported to alleviate behavioral symptoms such as sundowning. Taken together, these findings suggest that melatonin

  10. Genetic dissection of two Pakistani families with consanguineous localized autosomal recessive hypotrichosis (LAH

    Directory of Open Access Journals (Sweden)

    Seyyedha Abbas

    2014-07-01

    Conclusion:Both families were tested for linkage by genotyping polymorphic microsatellite markers linked to known alopecia loci. Family A excluded all known diseased regions that is suggestive of some novel chromosomal disorder. However, sequencing of P2RY5 gene in family B showed no pathogenic mutation.

  11. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases.

    Science.gov (United States)

    Irwin, Michael H; Moos, Walter H; Faller, Douglas V; Steliou, Kosta; Pinkert, Carl A

    2016-05-01

    Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc.

  12. Novel Mutations and Mutation Combinations of TMPRSS3 Cause Various Phenotypes in One Chinese Family with Autosomal Recessive Hearing Impairment

    Science.gov (United States)

    Wang, Guo-Jian; Xu, Jin-Cao; Su, Yu

    2017-01-01

    Autosomal recessive hearing impairment with postlingual onset is rare. Exceptions are caused by mutations in the TMPRSS3 gene, which can lead to prelingual (DFNB10) as well as postlingual deafness (DFNB8). TMPRSS3 mutations can be classified as mild or severe, and the phenotype is dependent on the combination of TMPRSS3 mutations. The combination of two severe mutations leads to profound hearing impairment with a prelingual onset, whereas severe mutations in combination with milder TMPRSS3 mutations lead to a milder phenotype with postlingual onset. We characterized a Chinese family (number FH1523) with not only prelingual but also postlingual hearing impairment. Three mutations in TMPRSS3, one novel mutation c.36delC [p.(Phe13Serfs⁎12)], and two previously reported pathogenic mutations, c.916G>A (p.Ala306Thr) and c.316C>T (p.Arg106Cys), were identified. Compound heterozygous mutations of p.(Phe13Serfs⁎12) and p.Ala306Thr manifest as prelingual, profound hearing impairment in the patient (IV: 1), whereas the combination of p.Arg106Cys and p.Ala306Thr manifests as postlingual, milder hearing impairment in the patient (II: 2, II: 3, II: 5), suggesting that p.Arg106Cys mutation has a milder effect than p.(Phe13Serfs⁎12). We concluded that different combinations of TMPRSS3 mutations led to different hearing impairment phenotypes (DFNB8/DFNB10) in this family. PMID:28246597

  13. Autosomal recessive spastic paraplegia (SPG45) with mental retardation maps to 10q24.3-q25.1.

    Science.gov (United States)

    Dursun, Umut; Koroglu, Cigdem; Kocasoy Orhan, Elif; Ugur, Sibel Aylin; Tolun, Aslihan

    2009-10-01

    Hereditary spastic paraplegias (HSPs) are characterized by progressive spasticity in the lower limbs. They are clinically heterogeneous, and pure forms as well as complicated forms with other accompanying clinical findings are known. HSPs are also genetically heterogeneous. We performed clinical and genetic studies in a consanguineous family with five affected members. A genome scan using 405 microsatellite markers for eight members of the family identified candidate gene loci, and subsequent fine mapping in 16 members identified the gene locus responsible for the HSP. The clinical manifestations were very early onset spastic paraplegia (SPG) accompanied by mental retardation and ocular signs. The gene locus was identified as the interval 102.05-106.64 Mbp on chromosome 10. Gene MRPL43 was analyzed in the patients. No mutation but high levels of mRNA were detected. We have mapped a novel autosomal recessive complicated form of HSP (SPG45) to a 4.6-Mbp region at 10q24.3-q25.1 with multipoint logarithm of odds scores >4.5.

  14. A novel deletion partly removing the AVP gene causes autosomal recessive inheritance of early-onset neurohypophyseal diabetes insipidus.

    Science.gov (United States)

    Christensen, J H; Kvistgaard, H; Knudsen, J; Shaikh, G; Tolmie, J; Cooke, S; Pedersen, S; Corydon, T J; Gregersen, N; Rittig, S

    2013-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) typically presents with age-dependent penetrance and autosomal dominant inheritance caused by missense variations in one allele of the AVP gene encoding the arginine vasopressin (AVP) prohormone. We present the molecular genetic characteristics underlying an unusual form of FNDI occurring with very early onset and seemingly autosomal recessive inheritance. By DNA amplification and sequencing, we identified a novel variant allele of the AVP gene carrying a 10,396 base pair deletion involving the majority of the AVP gene as well as its regulatory sequences in the intergenic region between the AVP and the OXT gene, encoding the oxytocin prohormone. We found two chromosomes carrying the deletion in affected family members and one in unaffected family members suspected to transmit the deleted allele. Whole-genome array analysis confirmed the results and excluded the presence of any additional major pathogenic abnormalities. The deletion is predicted to abolish the transcription of the AVP gene, thus the fact that family members heterozygous for the deletion remain healthy argues, in general, against haploinsufficiency as the pathogenic mechanism FNDI. Accordingly, our data is strong support to the prevailing idea that dominant inheritance of FNDI is due to a dominant-negative effect exerted by variant AVP prohormone.

  15. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).

    Science.gov (United States)

    Bichet, Daniel G; Bockenhauer, Detlef

    2016-03-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration.

  16. Preimplantation genetic diagnosis for a Chinese family with autosomal recessive Meckel-Gruber syndrome type 3 (MKS3.

    Directory of Open Access Journals (Sweden)

    Yanping Lu

    Full Text Available Meckel-Gruber syndrome type 3 is an autosomal recessive genetic defect caused by mutations in TMEM67 gene. In our previous study, we have identified a homozygous TMEM67 mutation in a Chinese family exhibiting clinical characteristics of MKS3, which provided a ground for further PGD procedure. Here we report the development and the first clinical application of the PGD for this MKS3 family. Molecular analysis protocol for clinical PGD procedure was established using 50 single cells in pre-clinical set-up. After whole genomic amplification by multiple displacement amplification with the DNA from single cells, three techniques were applied simultaneously to increase the accuracy and reliability of genetic diagnosis in single blastomere, including real-time PCR with Taq Man-MGB probe, haplotype analysis with polymorphic STR markers and Sanger sequencing. In the clinical PGD cycle, nine embryos at cleavage-stage were biopsied and subjected to genetic diagnosis. Two embryos diagnosed as free of TMEM67 mutation were transferred and one achieving normal pregnancy. Non-invasive prenatal assessment of trisomy 13, 18 and 21 by multiplex DNA sequencing at 18 weeks' gestation excluded the aneuploidy of the analyzed chromosomes. A healthy boy was delivered by cesarean section at 39 weeks' gestation. DNA sequencing from his cord blood confirmed the result of genetic analysis in the PGD cycle. The protocol developed in this study was proved to be rapid and safe for the detection of monogenic mutations in clinical PGD cycle.

  17. Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27

    Energy Technology Data Exchange (ETDEWEB)

    Matsumine, Hiroto; Shimoda-Matsubayashi, Satoe; Nakagawa-Hattori, Yuko [Tokyo Metropolitan Ebara Hospital (Japan)] [and others

    1997-03-01

    An autosomal recessive form of juvenile Parkinsonism (AR-JP) (MIM 600116) is a levodopa-responsive Parkinsonism whose pathological finding is a highly selective degeneration of dopaminergic neurons in the zona compacta of the substantia nigra. By linkage analysis of diallelic polymorphism of the Mn-superoxide dismutase gene (SOD2), we found a family with AR-JP showing perfect segregation of the disease with the SOD2 locus. By extending the linkage analysis to 13 families with AR-JP, we discovered strong evidence for the localization of the AR-JP gene at chromosome 6q25.2-27, including the SOD2 locus, with the maximal cumulative pairwise LOD scores of 7.26 and 7.71 at D6S305 ({theta} = .03) and D6S253 ({theta} = .02), respectively. Observation of obligate recombination events, as well as multipoint linkage analysis, placed the AR-JP gene in a 17-cM interval between D6S437 and D6S264. Delineation of the AR-JP gene will be an important step toward our understanding of the molecular mechanism underlying selective degeneration of the nigral neurons. 38 refs., 4 figs., 1 tab.

  18. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability

    Science.gov (United States)

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J. M.; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein; Arshad Rafiq, Muhammad; Mozhdehipanah, Hossein; Rashidinejad, Ali; Samiei, Shahram; Ghadami, Mohsen; Windpassinger, Christian; Gillessen-Kaesbach, Gabriele; Tzschach, Andreas; Ahmed, Iltaf; Mikhailov, Anna; Stavropoulos, D. James; Carter, Melissa T.; Keshavarz, Soraya; Ayub, Muhammad; Najmabadi, Hossein; Liu, Xudong; Ropers, Hans Hilger; Macheroux, Peter; Vincent, John B.

    2015-01-01

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability. PMID:26206890

  19. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins.

    Science.gov (United States)

    Butterfield, D A; Kanski, J

    2001-07-15

    Protein oxidation, one of a number of brain biomarkers of oxidative stress, is increased in several age-related neurodegenerative disorders or animal models thereof, including Alzheimer's disease, Huntington's disease, prion disorders, such as Creutzfeld-Jakob disease, and alpha-synuclein disorders, such as Parkinson's disease and frontotemporal dementia. Each of these neurodegenerative disorders is associated with aggregated proteins in brain. However, the relationship among protein oxidation, protein aggregation, and neurodegeneration remain unclear. The current rapid progress in elucidation of mechanisms of protein oxidation in neuronal loss should provide further insight into the importance of free radical oxidative stress in these neurodegenerative disorders.

  20. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta.

    Science.gov (United States)

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S; Reid, Bryan M; Lin, Brent P; Wang, Susan J; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2014-04-15

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.

  1. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy

    Science.gov (United States)

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A.; Hernandez, Dena G.; Heutink, Peter; Gibbs, J. Raphael; Hardy, John; Wood, Nicholas W.; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis; Lesage, Suzanne; Tison, François; Vidailhet, Marie; Corvol, Jean-Christophe; Agid, Yves; Anheim, Mathieu; Bonnet, Anne-Marie; Borg, Michel; Broussolle, Emmanuel; Damier, Philippe; Destée, Alain; Dürr, Alexandra; Durif, Franck; Krack, Paul; Klebe, Stephan; Lohmann, Ebba; Martinez, Maria; Pollak, Pierre; Rascol, Olivier; Tranchant, Christine; Vérin, Marc; Viallet, François; Brice, Alexis; Lesage, Suzanne; Majounie, Elisa; Tison, François; Vidailhet, Marie; Corvol, Jean Christophe; Nalls, Michael A.; Hernandez, Dena G.; Gibbs, J. Raphael; Dürr, Alexandra; Arepalli, Sampath; Barker, Roger A.; Ben-Shlomo, Yoav; Berg, Daniela; Bettella, Francesco; Bhatia, Kailash; de Bie, Rob M.A.; Biffi, Alessandro; Bloem, Bastiaan R.; Bochdanovits, Zoltan; Bonin, Michael; Lesage, Suzanne; Tison, François; Vidailhet, Marie; Corvol, Jean-Christophe; Agid, Yves; Anheim, Mathieu; Bonnet, Anne-Marie; Borg, Michel; Broussolle, Emmanuel; Damier, Philippe; Destée, Alain; Dürr, Alexandra; Durif, Franck; Krack, Paul; Klebe, Stephan; Lohmann, Ebba; Martinez, Maria; Pollak, Pierre; Rascol, Olivier; Tranchant, Christine; Vérin, Marc; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Dong, Jing; Durif, Frank; Edkins, Sarah; Escott-Price, Valentina; Evans, Jonathan R.; Foltynie, Thomas; Gao, Jianjun; Gardner, Michelle; Goate, Alison; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holmans, Peter; Holton, Janice; Hu, Michèle; Huang, Xuemei; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Kilarski, Laura L.; Jansen, Iris E.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; Lubbe, Steven; Lungu, Codrin; Martinez, María; Mätzler, Walter; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morrison, Karen E.; Mudanohwo, Ese; O’Sullivan, Sean S.; Owen, Michael J.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Plagnol, Vincent; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Saad, Mohamad; Simón-Sánchez, Javier; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Schulte, Claudia; Sharma, Manu; Shaw, Karen; Sheerin, Una-Marie; Shoulson, Ira; Shulman, Joshua; Sidransky, Ellen; Spencer, Chris C.A.; Stefánsson, Hreinn; Stefánsson, Kári; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Wurster, Isabel; Williams, Nigel; Morris, Huw R.; Heutink, Peter; Hardy, John; Wood, Nicholas W.; Gasser, Thomas; Singleton, Andrew B.; Brice, Alexis

    2016-01-01

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. PMID:26942284

  2. Therapeutic potential of cannabinoids in neurodegenerative disorders: a selective review.

    Science.gov (United States)

    Velayudhan, Latha; Van Diepen, Erik; Marudkar, Mangesh; Hands, Oliver; Suribhatla, Srinivas; Prettyman, Richard; Murray, Jonathan; Baillon, Sarah; Bhattacharyya, Sagnik

    2014-01-01

    The endocannabinoid system (ECS) is now recognised as an important modulator of various central nervous system processes. More recently, an increasing body of evidence has accumulated to suggest antioxidant, anti-inflammatory and neuroprotective roles of ECS. In this review we discuss the role and therapeutic potential of ECS in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease, multiple sclerosis, Huntington's disease, Tourette's syndrome, brain ischemia and amyotrophic lateral sclerosis (ALS). Elements of the ECS, such as fatty acid amide hydrolase or the cannabinoid receptors are now considered as promising pharmacological targets for some diseases. Although still preliminary, recent reports suggest that modulation of the ECS may constitute a novel approach for the treatment of AD. There are windows of opportunity in conditions caused by acute events such as trauma and ischemia as well in conditions that may involve altered functionality of the target receptors of the ECS, such as in AD. The ECS changes in Parkinson's disease could be compensatory as well as pathogenic of the illness process and needs further understanding and clinical studies are still in the preliminary stage. There is not enough evidence to support use of cannabinoids in treating Huntington's disease, tics and obsessive compulsive behaviour in Tourette's syndrome. Evidence on therapeutic use of cannabinoids in multiple sclerosis and ALS is currently limited. A major challenge for future research is the development of novel compounds with more selectivity for various components of the ECS which could target different neurotoxic pathways and be used in combination therapy.

  3. Analysis of missense variants in the PKHD1-gene in patients with autosomal recessive polycystic kidney disease (ARPKD).

    Science.gov (United States)

    Losekoot, Monique; Haarloo, Cathleen; Ruivenkamp, Claudia; White, Stefan J; Breuning, Martijn H; Peters, Dorien J M

    2005-11-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a severe form of polycystic kidney disease characterized by enlarged kidneys and congenital hepatic fibrosis. Given the poor prognosis for the majority of children with the severe perinatal ARPKD phenotype, there is a regular request for prenatal testing. ARPKD is caused by mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which consists of 86 exons that are variably assembled into a number of alternatively spliced transcripts. The longest transcript, comprising 67 exons, encodes the protein fibrocystin/polyductin. We have set up mutation analysis by direct sequencing of these 67 exons. In 39 mainly Dutch families we identified: 11 nonsense mutations, 15 deletions/insertions, 5 splice site mutations, and 39 missense mutations. To classify missense variants we combined evolutionary conservation, using the human, chimpanzee, dog, mouse, chicken and frog Pkhd1 sequences, with the Grantham score for chemical differences. Thirty-three missense mutations were considered pathogenic and seven were classified as rare, probably pathogenic variants. In addition to sequence analysis, multiplex ligation-dependent probe amplification (MLPA) was used to identify multiple exon deletions. However, no large deletions in the PKHD1 gene were identified. In 31 index patients two mutations were found, in 6 patients one mutation was found, leading to a mutation detection rate of 87%. The analysis of amino acid conservation as well as applying the Grantham score for chemical differences allowed us to determine the pathogeneity for nearly all new missense mutations and thus proved to be useful tools to classify missense variants.

  4. Clinical manifestations of autosomal recessive polycystic kidney disease (ARPKD): kidney-related and non-kidney-related phenotypes.

    Science.gov (United States)

    Büscher, Rainer; Büscher, Anja K; Weber, Stefanie; Mohr, Julia; Hegen, Bianca; Vester, Udo; Hoyer, Peter F

    2014-10-01

    Autosomal recessive polycystic kidney disease (ARPKD), although less frequent than the dominant form, is a common, inherited ciliopathy of childhood that is caused by mutations in the PKHD1-gene on chromosome 6. The characteristic dilatation of the renal collecting ducts starts in utero and can present at any stage from infancy to adulthood. Renal insufficiency may already begin in utero and may lead to early abortion or oligohydramnios and lung hypoplasia in the newborn. However, there are also affected children who have no evidence of renal dysfunction in utero and who are born with normal renal function. Up to 30 % of patients die in the perinatal period, and those surviving the neonatal period reach end stage renal disease (ESRD) in infancy, early childhood or adolescence. In contrast, some affected patients have been diagnosed as adults with renal function ranging from normal to moderate renal insufficiency to ESRD. The clinical spectrum of ARPKD is broader than previously recognized. While bilateral renal enlargement with microcystic dilatation is the predominant clinical feature, arterial hypertension, intrahepatic biliary dysgenesis remain important manifestations that affect approximately 45 % of infants. All patients with ARPKD develop clinical findings of congenital hepatic fibrosis (CHF); however, non-obstructive dilation of the intrahepatic bile ducts in the liver (Caroli's disease) is seen at the histological level in only a subset of patients. Cholangitis and variceal bleeding, sequelae of portal hypertension, are life-threatening complications that may occur more often in advanced cases of liver disease. In this review we focus on common and uncommon kidney-related and non-kidney-related phenotypes. Clinical management of ARPKD patients should include consideration of potential problems related to these manifestations.

  5. Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: implication in autosomal recessive juvenile parkinsonism.

    Science.gov (United States)

    Bonilla-Ramirez, Leonardo; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2013-01-10

    recessive juvenile Parkinsonism (AR-JD)/PD. Most importantly, we have shown for the first time that low amounts of stressors induce a health-promoting extending effect in K-D parkin flies. Altogether our present results open new avenues for the screening, testing and development of novel antioxidant drugs against OS stimuli in neurodegenerative disorders.

  6. Congenital sensorineural deafness in Australian stumpy-tail cattle dogs is an autosomal recessive trait that maps to CFA10.

    Directory of Open Access Journals (Sweden)

    Susan Sommerlad

    -value = 3.64, as was both coat colour and speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (n = 93. Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations. CONCLUSIONS: Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10.

  7. Highly prevalent LIPH founder mutations causing autosomal recessive woolly hair/hypotrichosis in Japan and the genotype/phenotype correlations.

    Directory of Open Access Journals (Sweden)

    Kana Tanahashi

    Full Text Available Mutations in LIPH cause of autosomal recessive woolly hair/hypotrichosis (ARWH, and the 2 missense mutations c.736T>A (p.Cys246Ser and c.742C>A (p.His248Asn are considered prevalent founder mutations for ARWH in the Japanese population. To reveal genotype/phenotype correlations in ARWH cases in Japan and the haplotypes in 14 Japanese patients from 14 unrelated Japanese families. 13 patients had woolly hair, and 1 patient had complete baldness since birth. An LIPH mutation search revealed homozygous c.736T>A mutations in 10 of the patients. Compound heterozygous c.736T>A and c.742C>A mutations were found in 3 of the patients, and homozygous c.742C>A mutation in 1 patient. The phenotype of mild hypotrichosis with woolly hair was restricted to the patients with the homozygous c.736T>A mutation. The severe phenotype of complete baldness was seen in only 1 patient with homozygous c.742C>A. Haplotype analysis revealed that the alleles containing the LIPH c.736T>A mutation had a haplotype identical to that reported previously, although 4 alleles out of 5 chromosomes containing the LIPH c.742C>A mutation had a different haplotype from the previously reported founder allele. These alleles with c.742C>A are thought to be the third founder LIPH mutation causing ARWH. To accurately determine the prevalence of the founder mutations, we investigated allele frequencies of those mutations in 819 Japanese controls. Heterozygous c.736T>A mutations were found in 13 controls (allele frequency: 0.0079; carrier rate: 0.016, and heterozygous c.742C>A mutations were found in 2 controls (allele frequency: 0.0012; carrier rate: 0.0024. In conclusion, this study confirms the more accurate allele frequencies of the pathogenic founder mutations of LIPH and shows that there is a third founder mutation in Japan. In addition, the present findings suggest that the mutation patterns of LIPH might be associated with hypotrichosis severity in ARWH.

  8. Hereditary palmoplantar keratosis of the Gamborg Nielsen type. Clinical and ultrastructural characteristics of a new type of autosomal recessive palmoplantar keratosis.

    Science.gov (United States)

    Kastl, I; Anton-Lamprecht, I; Gamborg Nielsen, P

    1990-01-01

    A new kind of diffuse palmoplantar keratoderma with autosomal recessive inheritance and without associated symptoms was described in Norrbotten, Sweden by Gamborg Nielsen in 1985. Clinically, it ranges between the less severe dominant Unna-Thost type and the more severe recessive Meleda type, as it is milder than the latter. Skin biopsies of five patients from three different families with this new palmoplantar keratoderma, as well as five obligatory heterozygotes from one family, were investigated ultrastructurally in order to characterize this new entity and to differentiate it from the Meleda type. Several features are common to both autosomal recessive palmoplantar keratoses. They show a broadened granular layer, a transit region consisting of cells with a marginal envelope, and considerable hyperkeratosis. Morphologically, this transformation delay is less pronounced in the Gamborg Nielsen type than in the classical Meleda type. As is typical for ridged skin, both types of palmoplantar keratoses possess composite keratohyaline granules. In contrast to the normal appearance of keratohyaline granules in the Meleda type, the Gamborg Nielsen type also shows qualitative deviations of keratohyaline granules with different degrees of spongiosity and electron density and sometimes with a granular border. It seems that abnormal keratohyaline proteins are synthesized that behave differently. The sudden transformation of a granular into a horny cell is physiologically regulated by different enzymes. A delay in this process may be caused by a mutation that reduces or alters the enzymes concerned. We assume the palmoplantar keratoderma of the Gamborg Nielsen type to be a variant of the heterogeneous group of the Meleda type of palmoplantar keratoderma with autosomal recessive inheritance.

  9. The search for mutations in the gene for the beta subunit of the cGMP phosphodiesterase (PDEB) in patients with autosomal recessive retinitis pigmentosa

    DEFF Research Database (Denmark)

    Riess, O; Noerremoelle, A; Weber, B

    1992-01-01

    including 196 bp of the 5' region of the PDEB gene have been assessed for mutations by using single-strand conformational polymorphism analysis in 14 patients from 13 unrelated families with autosomal recessive retinitis pigmentosa (ARRP). No disease-causing mutations were found in this group of affected...... individuals of seven different ancestries. However, a frequent intronic and two exonic polymorphisms (Leu489----Gln and Gly842----Gly) were identified. Segregation analysis using these polymorphic sites excludes linkage of ARRP to the PDEB gene in a family with two affected children....

  10. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders

    OpenAIRE

    2012-01-01

    The intercellular transfer of misfolded proteins has received increasing attention in various neurodegenerative diseases characterized by the aggregation of specific proteins, as observed in Alzheimer’s, Parkinson’s and Huntington’s disease. One hypothesis holds that intercellular dissemination of these aggregates within the central nervous system results in the seeded assembly of the cognate soluble protein in target cells, similar to that proposed for transmissible prion diseases. The molec...

  11. A novel c.5308_5311delGAGA mutation in Senataxin in a Cypriot family with an autosomal recessive cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Zamba-Papanicolaou Eleni

    2008-04-01

    Full Text Available Abstract Background Senataxin (chromosome 9q34 was recently identified as the causative gene for an autosomal recessive form of Ataxia (ARCA, termed as Ataxia with Oculomotor Apraxia, type 2 (AOA2 and characterized by generalized incoordination, cerebellar atrophy, peripheral neuropathy, "oculomotor apraxia" and increased alpha-fetoprotein (AFP. Here, we report a novel Senataxin mutation in a Cypriot ARCA family. Methods We studied several Cypriot autosomal recessive cerebellar ataxia (ARCA families for linkage to known ARCA gene loci. We linked one family (909 to the SETX locus on chromosome 9q34 and screened the proband for mutations by direct sequencing. Results Sequence analysis revealed a novel c.5308_5311delGAGA mutation in exon 11 of the SETX gene. The mutation has not been detected in 204 control chromosomes from the Cypriot population, the remaining Cypriot ARCA families and 37 Cypriot sporadic cerebellar ataxia patients. Conclusion We identified a novel SETX homozygous c.5308_5311delGAGA mutation that co-segregates with ARCA with cerebellar atrophy and raised AFP.

  12. Whole-exome sequencing reveals a novel frameshift mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in the Indian population.

    Science.gov (United States)

    Zhou, Yu; Saikia, Bibhuti B; Jiang, Zhilin; Zhu, Xiong; Liu, Yuqing; Huang, Lulin; Kim, Ramasamy; Yang, Yin; Qu, Chao; Hao, Fang; Gong, Bo; Tai, Zhengfu; Niu, Lihong; Yang, Zhenglin; Sundaresan, Periasamy; Zhu, Xianjun

    2015-10-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 50 genes. To identify genetic mutations underlying autosomal recessive RP (arRP), we performed whole-exome sequencing study on two consanguineous marriage Indian families (RP-252 and RP-182) and 100 sporadic RP patients. Here we reported novel mutation in FAM161A in RP-252 and RP-182 with two patients affected with RP in each family. The FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. By whole-exome sequencing we identified several homozygous genomic regions, one of which included the recently identified FAM161A gene mutated in RP28-linked arRP. Sequencing analysis revealed the presence of a novel homozygous frameshift mutation p.R592FsX2 in both patients of family RP-252 and family RP-182. In 100 sporadic Indian RP patients, this novel homozygous frameshift mutation p.R592FsX2 was identified in one sporadic patient ARRP-S-I-46 by whole-exome sequencing and validated by Sanger sequencing. Meanwhile, this homozygous frameshift mutation was absent in 1000 ethnicity-matched control samples screened by direct Sanger sequencing. In conclusion, we identified a novel homozygous frameshift mutations of RP28-linked RP gene FAM161A in Indian population.

  13. Environmental Pollutants as Risk Factors for Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Miguel eChin-Chan

    2015-04-01

    Full Text Available Neurodegenerative diseases including Alzheimer (AD and Parkinson (PD have attracted attention in last decades due to their high incidence worldwide. The etiology of these diseases is still unclear; however the role of the environment, from diet to the new nanomaterials as putative risk factors has gained importance. More worryingly is the evidence that pre- and post-natal exposures to environmental factors predispose to the onset of neurodegenerative diseases in later life. Neurotoxic metals such as lead, mercury, aluminum, cadmium and arsenic, as well as some pesticides and metal-based nanoparticles have been involved in AD due to their ability to increase beta-amyloid (Aβ peptide and the phosphorylation of Tau protein (P-Tau, causing senile/amyloid plaques and neurofibrillary tangles characteristic of AD. The exposure to lead, manganese, solvents and some pesticides has been related to hallmarks of PD such as mitochondrial dysfunction, alterations in metal homeostasis and aggregation of proteins such as α-synuclein (α-syn, which is a key constituent of Lewy bodies, a crucial factor in PD pathogenesis. Common mechanisms of environmental pollutants to increase Aβ, P-Tau, α-syn and neuronal death have been reported, including the oxidative stress mainly involved in the increase of Aβ and α-syn, and the reduced activity/protein levels of Aβ degrading enzymes such as neprilysin or insulin degrading enzyme. In addition, epigenetic mechanisms by maternal nutrient supplementation and exposure to heavy metals and pesticides have been proposed to lead phenotypic diversity and susceptibility to neurodegenerative diseases. This review discusses data from epidemiological and experimental studies about the role of environmental factors in the development of idiopathic AD and PD, and their mechanisms of action.

  14. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases

    OpenAIRE

    Zeliger, Harold I.

    2013-01-01

    Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer′s disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutan...

  15. 常染色体隐性遗传性成骨不全症的分子遗传学研究进展%Advances on molecular genetics of autosomal recessive osteogenesis imperfecta

    Institute of Scientific and Technical Information of China (English)

    曹丽华; 张学

    2010-01-01

    成骨不全症(osteogenesis imperfecta,OI)又称脆骨症,由于遗传缺陷而引起Ⅰ型胶原结构或功能异常,表现为全身骨骼等结缔组织异常.临床特点是多发性骨折,同时可伴有巨头畸形、蓝巩膜、耳聋、牙齿改变和脊柱后侧凸等.成骨不全症不仪临床表型变异度大,而且遗传异质性高,以常染色体显件或隐性遗传方式传递,本文就常染色体隐性遗传性成骨不全症的分子遗传学研究进展加以综述.%Osteogenesis imperfecta (OI) , also known as brittle bone disease, is a genetic disorder of connective tissue caused by structural or functional abnormality of type I collagen. OI is characterized by multiple bone fractures. Affected individuals may also have macrocephaly, blue sclerae,hearing loss, dentinogene-sis imperfecta, and kyphoscoliosis. OI shows marked clinical variability and genetic heterogeneity, and both autosomal dominant and recessive forms exist. In this paper, we will review the recent progress in molecular genetics of the autosomal recessive OI.

  16. Prions, prion-like prionoids, and neurodegenerative disorders.

    Science.gov (United States)

    Verma, Ashok

    2016-01-01

    Prion diseases or transmissible spongiform encephalopathies are fatal neurodegenerative diseases characterized by the aggregation and deposition of the misfolded prion protein in the brain. α-synuclein (α-syn)-associated multiple system atrophy has been recently shown to be caused by a bona fide α-syn prion strain. Several other misfolded native proteins such as β-amyloid, tau and TDP-43 share some aspects of prions although none of them is shown to be transmissible in nature or in experimental animals. However, these prion-like "prionoids" are causal to a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The remarkable recent discovery of at least two new α-syn prion strains and their transmissibility in transgenic mice and in vitro cell models raises a distinct question as to whether some specific strain of other prionoids could have the capability of disease transmission in a manner similar to prions. In this overview, we briefly describe human and other mammalian prion diseases and comment on certain similarities between prion and prionoid and the possibility of prion-like transmissibility of some prionoid strains.

  17. Prions, prion-like prionoids, and neurodegenerative disordersVacancy

    Directory of Open Access Journals (Sweden)

    Ashok Verma

    2016-01-01

    Full Text Available Prion diseases or transmissible spongiform encephalopathies are fatal neurodegenerative diseases characterized by the aggregation and deposition of the misfolded prion protein in the brain. α-synuclein (α-syn-associated multiple system atrophy has been recently shown to be caused by a bona fide α-syn prion strain. Several other misfolded native proteins such as β-amyloid, tau and TDP-43 share some aspects of prions although none of them is shown to be transmissible in nature or in experimental animals. However, these prion-like “prionoids” are causal to a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The remarkable recent discovery of at least two new α-syn prion strains and their transmissibility in transgenic mice and in vitro cell models raises a distinct question as to whether some specific strain of other prionoids could have the capability of disease transmission in a manner similar to prions. In this overview, we briefly describe human and other mammalian prion diseases and comment on certain similarities between prion and prionoid and the possibility of prion-like transmissibility of some prionoid strains.

  18. Biomarkers of neurodegenerative disorders:How good are they?

    Institute of Scientific and Technical Information of China (English)

    Varun RACHAKONDA; Tian Hong PAN; Wei Dong LE

    2004-01-01

    Biomarkers are very important indicators of normal and abnormal biological processes. Specific changes in pathologies,biochemistries and genetics can give us comprehensive information regarding the nature of any particular disease. A good biomarker should be precise and reliable, distinguishable between normal and interested disease, and differentiable between different diseases. It is believed that biomarkers have great potential in predicting chances for diseases, aiding in early diagnosis, and setting standards for the development of new remedies to treat diseases. New technologies have enabled scientists to identify biomarkers of several different neurodegenerative diseases. The followings, for instance,are only a few of the many new biomarkers that have been recently identified: the phosphorylated tau protein and aggregated β-amyloid peptide for Alzheimer's disease (AD), α-synuclein contained Lewy bodies and altered dopamine transporter (DAT) imaging for Parkinson's disease (PD), SOD mutations for familial amyotrophic lateral sclerosis (ALS), and CAG repeats resulted from Huntington's gene mutations in Huntington's disease (HD). This article will focus on the most-recent findings of biomarkers belonging to the four mentioned neurodegenerative diseases.

  19. Structural studies of parkin and sacsin: Mitochondrial dynamics in neurodegenerative diseases.

    Science.gov (United States)

    Li, Xinlu; Gehring, Kalle

    2015-10-01

    Neurodegenerative diseases are prevalent, chronic diseases emanating from the dysfunction or death of neurons. The disrupted mitochondrial dynamics observed in a large number of neurodegenerative diseases suggests a common etiology with the possibility of therapies targeting multiple diseases. This review highlights the contributions of structural studies of disease-related proteins to the understanding of neurodegenerative disease pathogenesis and especially the cellular events leading to disruptions in mitochondrial dynamics and function. The examples used are parkin and sacsin, two proteins linked respectively to autosomal-recessive early-onset PD and autosomal-recessive spastic ataxia of Charlevoix-Saguenay. Structural studies of parkin and sacsin explain the pathogenicity of a large number of disease-associated mutations and reveal insights into their cellular functions related to mitochondrial dynamics.

  20. Krabbe Disease: Report of a Rare Lipid Storage and Neurodegenerative Disorder

    Science.gov (United States)

    Pavuluri, Pratyusha; Vadakedath, Sabitha; Gundu, Rajkumar; Uppulety, Sushmitha

    2017-01-01

    Krabbe disease is a rare (one in 100,000 births) autosomal recessive condition, usually noticed among children. It causes sphingolipidosis (dysfunctional metabolism of sphingolipids) and leads to fatal degenerative changes affecting the myelin sheath of the nervous system. We report a case of a six-year-old male child who presented with symptoms of muscle spasticity and irritability. Diagnosis of this disease can only be made with clinical suspicion. Laboratory diagnosis includes brain magnetic resonance imaging (MRI), magnetic resonance (MR) spectroscopy, biochemical analysis of cerebrospinal fluid, and genetic analysis for detecting mutation in genes coding for galactosyl cerebroside (GALC). We report a case of late infantile Krabbe disease.

  1. A new locus for autosomal recessive non-syndromic mental retardation maps to 1p21.1-p13.3.

    Science.gov (United States)

    Uyguner, O; Kayserili, H; Li, Y; Karaman, B; Nürnberg, G; Hennies, Hc; Becker, C; Nürnberg, P; Başaran, S; Apak, M Y; Wollnik, B

    2007-03-01

    Autosomal recessive inheritance of non-syndromic mental retardation (ARNSMR) may account for approximately 25% of all patients with non-specific mental retardation (NSMR). Although many X-linked genes have been identified as a cause of NSMR, only three autosomal genes are known to cause ARNSMR. We present here a large consanguineous Turkish family with four mentally retarded individuals from different branches of the family. Clinical tests showed cognitive impairment but no neurological, skeletal, and biochemical involvements. Genome-wide mapping using Human Mapping 10K Array showed a single positive locus with a parametric LOD score of 4.92 in a region on chromosome 1p21.1-p13.3. Further analyses using polymorphic microsatellite markers defined a 6.6-Mb critical region containing approximately 130 known genes. This locus is the fourth one linked to ARNSMR.

  2. A Missense Mutation in the LIM2 Gene Is Associated with Autosomal Recessive Presenile Cataract in an Inbred Iraqi Jewish Family

    Science.gov (United States)

    Pras, Eran; Levy-Nissenbaum, Etgar; Bakhan, Tangiz; Lahat, Hadas; Assia, Ehud; Geffen-Carmi, Noa; Frydman, Moshe; Goldman, Boleslaw; Pras, Elon

    2002-01-01

    In an inbred Iraqi Jewish family, we have studied three siblings with presenile cataract first noticed between the ages of 20 and 51 years and segregating in an autosomal recessive mode. Using microsatellite repeat markers in close proximity to 25 genes and loci previously associated with congenital cataracts in humans and mice, we identified five markers on chromosome 19q that cosegregated with the disease. Sequencing of LIM2, one of two candidate genes in this region, revealed a homozygous T→G change resulting in a phenylalanine-to-valine substitution at position 105 of the protein. To our knowledge, this constitutes the first report, in humans, of cataract formation associated with a mutation in LIM2. Studies of late-onset single-gene cataracts may provide insight into the pathogenesis of the more common age-related cataracts. PMID:11917274

  3. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target

    Science.gov (United States)

    Cassano, Tommaso; Calcagnini, Silvio; Pace, Lorenzo; De Marco, Federico; Romano, Adele; Gaetani, Silvana

    2017-01-01

    As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases. PMID:28210207

  4. Identification and characterization of novel parathyroid-specific transcription factor Glial Cells Missing Homolog B (GCMB) mutations in eight families with autosomal recessive hypoparathyroidism.

    Science.gov (United States)

    Bowl, Michael R; Mirczuk, Samantha M; Grigorieva, Irina V; Piret, Sian E; Cranston, Treena; Southam, Lorraine; Allgrove, Jeremy; Bahl, Shailini; Brain, Caroline; Loughlin, John; Mughal, Zulf; Ryan, Fiona; Shaw, Nick; Thakker, Yogini V; Tiosano, Dov; Nesbit, M Andrew; Thakker, Rajesh V

    2010-05-15

    GCMB is a member of the small transcription factor family GCM (glial cells missing), which are important regulators of development, present in vertebrates and some invertebrates. In man, GCMB encodes a 506 amino acid parathyroid gland-specific protein, mutations of which have been reported to cause both autosomal dominant and autosomal recessive hypoparathyroidism. We ascertained 18 affected individuals from 12 families with autosomal recessive hypoparathyroidism and have investigated them for GCMB abnormalities. Four different homozygous germline mutations were identified in eight families that originate from the Indian Subcontinent. These consisted of a novel nonsense mutation R39X; a missense mutation, R47L in two families; a novel missense mutation, R110W; and a novel frameshifting deletion, I298fsX307 in four families. Haplotype analysis, using polymorphic microsatellites from chromosome 6p23-24, revealed that R47L and I298fsX307 mutations arose either as ancient founders, or recurrent de novo mutations. Functional studies including: subcellular localization studies, EMSAs and luciferase-reporter assays, were undertaken and these demonstrated that: the R39X mutant failed to localize to the nucleus; the R47L and R110W mutants both lost DNA-binding ability; and the I298fsX307 mutant had reduced transactivational ability. In order to gain further insights, we undertook 3D-modeling of the GCMB DNA-binding domain, which revealed that the R110 residue is likely important for the structural integrity of helix 2, which forms part of the GCMB/DNA binding interface. Thus, our results, which expand the spectrum of hypoparathyroidism-associated GCMB mutations, help elucidate the molecular mechanisms underlying DNA-binding and transactivation that are required for this parathyroid-specific transcription factor.

  5. Exogenous melatonin for sleep disorders in neurodegenerative diseases: a meta-analysis of randomized clinical trials.

    Science.gov (United States)

    Zhang, Wei; Chen, Xue-yan; Su, Su-wen; Jia, Qing-zhong; Ding, Tao; Zhu, Zhong-ning; Zhang, Tong

    2016-01-01

    The purpose of this work is to investigate the efficacy of exogenous melatonin in the treatment of sleep disorders in patients with neurodegenerative disease. We searched Pubmed, the Cochrane Library, and ClinicalTrials.gov, from inception to July 2015. We included randomized clinical trials (RCTs) that compared melatonin with placebo and that had the primary aim of improving sleep in people with neurodegenerative diseases, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). We pooled data with the weighted mean difference in sleep outcomes. To assess heterogeneity in results of individual studies, we used Cochran's Q statistic and the I (2) statistic. 9 RCTs were included in this research. We found that the treatment with exogenous melatonin has positive effects on sleep quality as assessed by the Pittsburgh Sleep Quality Index (PSQI) in PD patients (MD: 4.20, 95 % CI: 0.92-7.48; P = 0.01), and by changes in PSQI component 4 in AD patients (MD: 0.67, 95 % CI: 0.04-1.30; P = 0.04), but not on objective sleep outcomes in both AD and PD patients. Treatment with melatonin effectively improved the clinical and neurophysiological aspects of rapid eye movement (REM) sleep behavior disorder (RBD), especially elderly individuals with underlying neurodegenerative disorders. This meta-analysis provided some evidence that melatonin improves sleep quality in patients with AD and PD, and melatonin can be considered as a possible sole or add-on therapy in neurodegenerative disorders patients with RBD.

  6. Abnormal red cell features associated with hereditary neurodegenerative disorders: the neuroacanthocytosis syndromes

    NARCIS (Netherlands)

    Franceschi, L. De; Bosman, G.J.C.G.M.; Mohandas, N.

    2014-01-01

    PURPOSE OF REVIEW: This review discusses the mechanisms involved in the generation of thorny red blood cells (RBCs), known as acanthocytes, in patients with neuroacanthocytosis, a heterogenous group of neurodegenerative hereditary disorders that include chorea-acanthocytosis (ChAc) and McLeod syndro

  7. ROCK in CNS: Different Roles of Isoforms and Therapeutic Target for Neurodegenerative Disorders.

    Science.gov (United States)

    Chong, Cheong-Meng; Ai, Nana; Lee, Simon Ming-Yuen

    2017-01-01

    Rho-associated protein kinase (ROCK) is a serine-threonine kinase originally identified as a crucial regulator of actin cytoskeleton. Recent studies have defined new functions of ROCK as a critical component of diverse signaling pathways in neurons. In addition, inhibition of ROCK causes several biological events such as increase of neurite outgrowth, axonal regeneration, and activation of prosurvival Akt. Thus, it has attracted scientist's strong attentions and considered ROCK as a promising therapeutic target for the treatment of neurodegenerative disorders including Alzheimer disease, Parkinson's disease, Huntington';s disease, multiple sclerosis, and amyotrophic lateral sclerosis. However, ROCK has two highly homologous isoforms, ROCK1 and ROCK2. Accumulated evidences indicate that ROCK1 and ROCK2 might involve in distinct cellular functions in central nervous system (CNS) and neurodegenerative processes. This review summarizes recent updates regarding ROCK isoformspecific functions in CNS and the progress of ROCK inhibitors in preclinical studies for neurodegenerative diseases.

  8. Role of nucleolar dysfunction in neurodegenerative disorders: a game of genes?

    Directory of Open Access Journals (Sweden)

    Rosanna Parlato

    2015-05-01

    Full Text Available Within the cell nucleus the nucleolus is the site of rRNA transcription and ribosome biogenesis and its activity is clearly essential for a correct cell function, however its specific role in neuronal homeostasis remains mainly unknown. Here we review recent evidence that impaired nucleolar activity is a common mechanism in different neurodegenerative disorders. We focus on the specific causes and consequences of impaired nucleolar activity to better understand the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD, Parkinson's disease (PD, Huntington's disease (HD and amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD. In particular, we discuss the genetic and epigenetic factors that might regulate nucleolar function in these diseases. In addition, we describe novel animal models enabling the dissection of the context-specific series of events triggered by nucleolar disruption, also known as nucleolar stress. Finally, we suggest how this novel mechanism could help to identify strategies to treat these still incurable disorders.

  9. CREB-regulated transcription coactivator 1: important roles in neurodegenerative disorders.

    Science.gov (United States)

    Xue, Zhan-Cheng; Wang, Chuang; Wang, Qin-Wen; Zhang, Jun-Fang

    2015-04-25

    The cAMP-responsive element binding protein (CREB)-regulated transcription coactivator, CRTC (also known as transducer of regulated CREB, TORC), is identified as a potent modulator of cAMP response element (CRE)-driven gene transcription. The CRTC family consists of three members (CRTC1-3), among which the CRTC1 shows the highest expression in the brain. Several studies have demonstrated that the CRTC1 plays critical roles in neuronal dendritic growth, long-term synaptic plasticity, memory consolidation and reconsolidation etc., whereas dysfunction of CRTC1 is mainly involved in neurodegenerative disorders. In light of these findings, we aim to review recent research reports that indicate the CRTC1 dysfunction and its underlying mechanisms in the neurodegenerative disorders.

  10. Hydrogel-Based Nanocomposites and Mesenchymal Stem Cells: A Promising Synergistic Strategy for Neurodegenerative Disorders Therapy

    Directory of Open Access Journals (Sweden)

    Diego Albani

    2013-01-01

    Full Text Available Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs, to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  11. Neuronal histaminergic system in aging and age-related neurodegenerative disorders.

    Science.gov (United States)

    Shan, Ling; Swaab, Dick F; Bao, Ai-Min

    2013-07-01

    The neuronal histaminergic system is involved in many physiological functions and is severely affected in age-related neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). The properties of the neuronal histaminergic system in experimental animals and the alterations observed in postmortem brain material of PD or AD patients are reviewed. The production of neuronal histamine shows diurnal fluctuations in control subjects who had no neuropsychiatric disorders, while this fluctuation was strongly altered in patients with neurodegenerative diseases, including PD and AD. In addition, different alterations shown as expression levels of histidine decarboxylase (the key enzyme for histamine production), histamine-methyltransferase (the histamine deactivating enzyme), and histamine receptors (H(1-4)R) were found in various neurodegenerative disorders. Discrepancies between results from animal models and postmortem human brain material studies have made clear that the validation of animal models is absolutely necessary and that studies on patients and human postmortem material are essential to understand the changes of neuronal histaminergic system occurring in neuropsychiatric disorders.

  12. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders.

    Science.gov (United States)

    Weitzer, Stefan; Hanada, Toshikatsu; Penninger, Josef M; Martinez, Javier

    2015-01-01

    Defects in RNA metabolic pathways are well-established causes for neurodegenerative disorders. Several mutations in genes involved in pre-messenger RNA (pre-mRNA) and tRNA metabolism, RNA stability and protein translation have been linked to motor neuron diseases. Our study on a mouse carrying a catalytically inactive version of the RNA kinase CLP1, a component of the tRNA splicing endonuclease complex, revealed a neurological disorder characterized by progressive loss of lower spinal motor neurons. Surprisingly, mutant mice accumulate a novel class of tRNA-derived fragments. In addition, patients with homozygous missense mutations in CLP1 (R140H) were recently identified who suffer from severe motor-sensory defects, cortical dysgenesis and microcephaly, and exhibit alterations in transfer RNA (tRNA) splicing. Here, we review functions of CLP1 in different RNA pathways and provide hypotheses on the role of the tRNA splicing machinery in the generation of tRNA fragments and the molecular links to neurodegenerative disorders. We further immerse the biology of tRNA splicing into topics of (t)RNA metabolism and oxidative stress, putting forward the idea that defects in tRNA processing leading to tRNA fragment accumulation might trigger the development of neurodegenerative diseases.

  13. Animals deficient in C2Orf71, an autosomal recessive retinitis pigmentosa-associated locus, develop severe early-onset retinal degeneration.

    Science.gov (United States)

    Kevany, Brian M; Zhang, Ning; Jastrzebska, Beata; Palczewski, Krzysztof

    2015-05-01

    Genetic mapping was recently used to identify the underlying cause for a previously uncharacterized cohort of autosomal recessive retinitis pigmentosa cases. Genetic mapping of affected individuals resulted in the identification of an uncharacterized gene, C2Orf71, as the causative locus. However, initial homology searches failed to reveal similarities to any previously characterized protein or domain. To address this issue, we characterized the mouse homolog, BC027072. Immunohistochemistry with a custom polyclonal antibody showed staining localized to the inner segments (IS) of photoreceptor cells, as well as the outer segments (OS) of cone cells. A knockout mouse line (BC(-/-)) was generated and demonstrated that loss of this gene results in a severe, early-onset retinal degeneration. Histology and electron microscopy (EM) revealed disorganized OS as early as 3 weeks with complete loss by 24 weeks of age. EM micrographs displayed packets of cellular material containing OS discs or IS organelles in the OS region and abnormal retinal pigmented epithelium cells. Analyses of retinoids and rhodopsin levels showed retinal degenerations. Although its function remains unknown, this protein appears essential for normal OS development/maintenance and vision in humans and mice. RNAseq data are available in the GEO database under accession: GSE63810.

  14. Clinical Application of Screening for GJB2 Mutations before Cochlear Implantation in a Heterogeneous Population with High Rate of Autosomal Recessive Nonsyndromic Hearing Loss

    Directory of Open Access Journals (Sweden)

    Masoud Motasaddi Zarandy

    2011-01-01

    Full Text Available Clinical application of mutation screening and its effect on the outcome of cochlear implantation is widely debated. We investigated the effect of mutations in GJB2 gene on the outcome of cochlear implantation in a population with a high rate of consanguineous marriage and autosomal recessive nonsyndromic hearing loss. Two hundred and one children with profound prelingual sensorineural hearing loss were included. Forty-six patients had 35delG in GJB2. Speech awareness thresholds (SATs and speech recognition thresholds (SRTs improved following implantation, but there was no difference in performance between patients with GJB2-related deafness versus control (all >0.10. Both groups had produced their first comprehensible words within the same period of time following implantation (2.27 months in GJB2-related deaf versus 2.62 months in controls, =0.22. Although our findings demonstrate the need to uncover unidentified genetic causes of hereditary deafness, they do not support the current policy for genetic screening before cochlear implantation, nor prove a prognostic value.

  15. SIPA1L3 identified by linkage analysis and whole-exome sequencing as a novel gene for autosomal recessive congenital cataract.

    Science.gov (United States)

    Evers, Christina; Paramasivam, Nagarajan; Hinderhofer, Katrin; Fischer, Christine; Granzow, Martin; Schmidt-Bacher, Annette; Eils, Roland; Steinbeisser, Herbert; Schlesner, Matthias; Moog, Ute

    2015-12-01

    Congenital cataract (CC) is one of the most important causes for blindness or visual impairment in infancy. A substantial proportion of isolated CCs has monogenic causes. The disease is genetically heterogeneous, and all Mendelian modes of inheritance have been reported. We mapped a locus for isolated CC on 19p13.1-q13.2 in a distantly consanguineous German family with two sisters affected by dense white cataracts. Whole-exome sequencing identified a homozygous nonsense variant c.4489C>T (p.(R1497*)) in SIPA1L3 (signal-induced proliferation-associated 1 like 3) in both affected children. SIPA1L3 encodes a GTPase-activating protein (GAP), which interacts with small GTPases of the Rap family via its Rap-GAP-domain. The suggested role of Rap GTPases in cell growth, differentiation and organization of the cytoskeleton in the human lens, and lens-enriched expression of the murine ortholog gene Sipa1l3 in embryonic mice indicates that this gene is crucial for early lens development. Our results provide evidence that sequence variants in human SIPA1L3 cause autosomal recessive isolated CC and give new insight into the molecular pathogenesis underlying human cataracts.

  16. Mutations in CDC14A, Encoding a Protein Phosphatase Involved in Hair Cell Ciliogenesis, Cause Autosomal-Recessive Severe to Profound Deafness.

    Science.gov (United States)

    Delmaghani, Sedigheh; Aghaie, Asadollah; Bouyacoub, Yosra; El Hachmi, Hala; Bonnet, Crystel; Riahi, Zied; Chardenoux, Sebastien; Perfettini, Isabelle; Hardelin, Jean-Pierre; Houmeida, Ahmed; Herbomel, Philippe; Petit, Christine

    2016-06-01

    By genetic linkage analysis in a large consanguineous Iranian family with eleven individuals affected by severe to profound congenital deafness, we were able to define a 2.8 Mb critical interval (at chromosome 1p21.2-1p21.1) for an autosomal-recessive nonsyndromic deafness locus (DFNB). Whole-exome sequencing allowed us to identify a CDC14A biallelic nonsense mutation, c.1126C>T (p.Arg376(∗)), which was present in the eight clinically affected individuals still alive. Subsequent screening of 115 unrelated individuals affected by severe or profound congenital deafness of unknown genetic cause led us to identify another CDC14A biallelic nonsense mutation, c.1015C>T (p.Arg339(∗)), in an individual originating from Mauritania. CDC14A encodes a protein tyrosine phosphatase. Immunofluorescence analysis of the protein distribution in the mouse inner ear showed a strong labeling of the hair cells' kinocilia. By using a morpholino strategy to knockdown cdc14a in zebrafish larvae, we found that the length of the kinocilia was reduced in inner-ear hair cells. Therefore, deafness caused by loss-of-function mutations in CDC14A probably arises from a morphogenetic defect of the auditory sensory cells' hair bundles, whose differentiation critically depends on the proper growth of their kinocilium.

  17. Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others.

    Science.gov (United States)

    Fernández-Ruiz, Javier; Romero, Julián; Ramos, José A

    2015-01-01

    This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders. First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy. We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson's disease, Huntington's chorea, and Alzheimer's disease), as well as in other less well-studied disorders. We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders. Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.

  18. Recent Updates in the Treatment of Neurodegenerative Disorders Using Natural Compounds

    Directory of Open Access Journals (Sweden)

    Mahmood Rasool

    2014-01-01

    Full Text Available Neurodegenerative diseases are characterized by protein aggregates and inflammation as well as oxidative stress in the central nervous system (CNS. Multiple biological processes are linked to neurodegenerative diseases such as depletion or insufficient synthesis of neurotransmitters, oxidative stress, abnormal ubiquitination. Furthermore, damaging of blood brain barrier (BBB in the CNS also leads to various CNS-related diseases. Even though synthetic drugs are used for the management of Alzheimer’s disease, Parkinson’s disease, autism, and many other chronic illnesses, they are not without side effects. The attentions of researchers have been inclined towards the phytochemicals, many of which have minimal side effects. Phytochemicals are promising therapeutic agents because many phytochemicals have anti-inflammatory, antioxidative as well as anticholinesterase activities. Various drugs of either synthetic or natural origin applied in the treatment of brain disorders need to cross the BBB before they can be used. This paper covers various researches related to phytochemicals used in the management of neurodegenerative disorders.

  19. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders.

    Science.gov (United States)

    Maiese, Kenneth

    2016-11-01

    Neurodegenerative disorders are significantly increasing in incidence as the age of the global population continues to climb with improved life expectancy. At present, more than 30 million individuals throughout the world are impacted by acute and chronic neurodegenerative disorders with limited treatment strategies. The mechanistic target of rapamycin (mTOR), also known as the mammalian target of rapamycin, is a 289 kDa serine/threonine protein kinase that offers exciting possibilities for novel treatment strategies for a host of neurodegenerative diseases that include Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, stroke and trauma. mTOR governs the programmed cell death pathways of apoptosis and autophagy that can determine neuronal stem cell development, precursor cell differentiation, cell senescence, cell survival and ultimate cell fate. Coupled to the cellular biology of mTOR are a number of considerations for the development of novel treatments involving the fine control of mTOR signalling, tumourigenesis, complexity of the apoptosis and autophagy relationship, functional outcome in the nervous system, and the intimately linked pathways of growth factors, phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation two homologue one (Saccharomyces cerevisiae) (SIRT1) and others. Effective clinical translation of the cellular signalling mechanisms of mTOR offers provocative avenues for new drug development in the nervous system tempered only by the need to elucidate further the intricacies of the mTOR pathway.

  20. C9orf72-related disorders: expanding the clinical and genetic spectrum of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paulo Victor Sgobbi de Souza

    2015-03-01

    Full Text Available Neurodegenerative diseases represent a heterogeneous group of neurological conditions primarily involving dementia, motor neuron disease and movement disorders. They are mostly related to different pathophysiological processes, notably in family forms in which the clinical and genetic heterogeneity are lush. In the last decade, much knowledge has been acumulated about the genetics of neurodegenerative diseases, making it essential in cases of motor neuron disease and frontotemporal dementia the repeat expansions of C9orf72 gene. This review analyzes the main clinical, radiological and genetic aspects of the phenotypes related to the hexanucleotide repeat expansions (GGGGCC of C9orf72 gene. Future studies will aim to further characterize the neuropsychological, imaging and pathological aspects of the extra-motor features of motor neuron disease, and will help to provide a new classification system that is both clinically and biologically relevant.

  1. Stem cells in human neurodegenerative disorders--time for clinical translation?

    Science.gov (United States)

    Lindvall, Olle; Kokaia, Zaal

    2010-01-01

    Stem cell-based approaches have received much hype as potential treatments for neurodegenerative disorders. Indeed, transplantation of stem cells or their derivatives in animal models of neurodegenerative diseases can improve function by replacing the lost neurons and glial cells and by mediating remyelination, trophic actions, and modulation of inflammation. Endogenous neural stem cells are also potential therapeutic targets because they produce neurons and glial cells in response to injury and could be affected by the degenerative process. As we discuss here, however, significant hurdles remain before these findings can be responsibly translated to novel therapies. In particular, we need to better understand the mechanisms of action of stem cells after transplantation and learn how to control stem cell proliferation, survival, migration, and differentiation in the pathological environment.

  2. The relation of SMI and the VSEP in a risk sample for neurodegenerative disorders.

    Science.gov (United States)

    Hagen, Katja; Ehlis, Ann-Christine; Haeussinger, Florian B; Beeretz, Stefan; Kromer, Gina V; Heinzel, Sebastian; Maetzler, Walter; Eschweiler, Gerhard W; Berg, Daniela; Fallgatter, Andreas J; Metzger, Florian G

    2015-08-01

    Vagus somatosensory evoked potentials (VSEP) have been shown to have higher latencies with aging, which are even more increased in patients with Alzheimer's disease and subjects with mild cognitive impairment compared to age-matched healthy controls. In this study, the association of VSEP with subjective memory impairment (SMI), a potential risk or prodromal marker for Alzheimer's disease, was examined. The association of VSEP latencies and SMI was studied in a healthy risk cohort, including 358 elderly subjects, who are in a longitudinal study of risk factors for neurodegenerative disorders. The results show increased VSEP latencies for peak P2 at Fz-F4 in subjects who report SMI and are worried about it as compared to subjects who report memory impairment, but are not concerned and subjects without complaints. The results support a potential role of VSEP for the detection of very early neurodegenerative processes which may precede Alzheimer's disease.

  3. A novel mutation in the sterol 27-hydroxylase gene of a woman with autosomal recessive cerebrotendinous xanthomatosis

    Directory of Open Access Journals (Sweden)

    Garuti Rita

    2010-10-01

    Full Text Available Article abstract Mutations of the gene encoding the mitochondrial enzyme sterol 27-hydroxylase (CYP27A1 gene cause defects in the cholesterol pathway to bile acids that lead to the storage of cholestanol and cholesterol in tendons, lenses and the central nervous system. This disorder is the cause of a clinical syndrome known as cerebrotendinous xanthomatosis (CTX. Since 1991 several mutations of the CYP27A1 gene have been reported. We diagnosed the clinical features of CTX in a caucasian woman. Serum levels of cholestanol and 7α-hydroxycholesterol were elevated and the concentration of 27-hydroxycholesterol was reduced. Bile alcohols in the urine and faeces were increased. The analysis of the CYP27A1 gene showed that the patient was a compound heterozygote carrying two mutations both located in exon 8. One mutation is a novel four nucleotide deletion (c.1330-1333delTTCC that results in a frameshift and the occurrence of a premature stop codon leading to the formation of a truncated protein of 448 amino acids. The other mutation, previously reported, is a C - > T transition (c. c.1381C > T that converts the glutamine codon at position 461 into a termination codon (p.Q461X. These truncated proteins are expected to have no biological function being devoid of the cysteine residue at position 476 of the normal enzyme that is crucial for heme binding and enzyme activity.

  4. Stem cells in neuroinjury and neurodegenerative disorders: challenges and future neurotherapeutic prospects.

    Science.gov (United States)

    Mouhieddine, Tarek H; Kobeissy, Firas H; Itani, Muhieddine; Nokkari, Amaly; Wang, Kevin K W

    2014-05-01

    The prevalence of neurodegenerative diseases and neural injury disorders is increasing worldwide. Research is now focusing on improving current neurogenesis techniques including neural stem cell therapy and other biochemical drug-based approaches to ameliorate these disorders. Unfortunately, we are still facing many obstacles that are rendering current neurotherapies ineffective in clinical trials for reasons that are yet to be discovered. That is why we should start by fully understanding the complex mechanisms of neurogenesis and the factors that affect it, or else, all our suggested therapies would fail since they would not be targeting the essence of the neurological disorder but rather the symptoms. One possible paradigm shift is to switch from neuroprotectant therapies towards neurodegeneration/neurorestorative approaches. In addition, other and our laboratories are increasingly focusing on combining the use of pharmacological agents (such as Rho-associated kinase (ROCK) inhibitors or other growth factors (such as brain-derived neurotrophic factor (BDNF)) and stem cell treatment to enhance the survivability and/or differentiation capacity of transplanted stem cells in neurotrauma or other neurodegeneration animal models. Ongoing stem cell research is surely on the verge of a breakthrough of multiple effective therapeutic options for neurodegenerative disorders. Once, we fully comprehend the process of neurogenesis and its components, we will fully be capable of manipulating and utilizing it. In this work, we discuss the current knowledge of neuroregenerative therapies and their associated challenges.

  5. Initial evaluation of hepatic T1 relaxation time as an imaging marker of liver disease associated with autosomal recessive polycystic kidney disease (ARPKD).

    Science.gov (United States)

    Gao, Ying; Erokwu, Bernadette O; DeSantis, David A; Croniger, Colleen M; Schur, Rebecca M; Lu, Lan; Mariappuram, Jose; Dell, Katherine M; Flask, Chris A

    2016-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a potentially lethal multi-organ disease affecting both the kidneys and the liver. Unfortunately, there are currently no non-invasive methods to monitor liver disease progression in ARPKD patients, limiting the study of potential therapeutic interventions. Herein, we perform an initial investigation of T1 relaxation time as a potential imaging biomarker to quantitatively assess the two primary pathologic hallmarks of ARPKD liver disease: biliary dilatation and periportal fibrosis in the PCK rat model of ARPKD. T1 relaxation time results were obtained for five PCK rats at 3 months of age using a Look-Locker acquisition on a Bruker BioSpec 7.0 T MRI scanner. Six three-month-old Sprague-Dawley (SD) rats were also scanned as controls. All animals were euthanized after the three-month scans for histological and biochemical assessments of bile duct dilatation and hepatic fibrosis for comparison. PCK rats exhibited significantly increased liver T1 values (mean ± standard deviation = 935 ± 39 ms) compared with age-matched SD control rats (847 ± 26 ms, p = 0.01). One PCK rat exhibited severe cholangitis (mean T1  = 1413 ms), which occurs periodically in ARPKD patients. The observed increase in the in vivo liver T1 relaxation time correlated significantly with three histological and biochemical indicators of biliary dilatation and fibrosis: bile duct area percent (R = 0.85, p = 0.002), periportal fibrosis area percent (R = 0.82, p = 0.004), and hydroxyproline content (R = 0.76, p = 0.01). These results suggest that hepatic T1 relaxation time may provide a sensitive and non-invasive imaging biomarker to monitor ARPKD liver disease.

  6. Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye disease.

    Science.gov (United States)

    Waters, Flavie; Collerton, Daniel; Ffytche, Dominic H; Jardri, Renaud; Pins, Delphine; Dudley, Robert; Blom, Jan Dirk; Mosimann, Urs Peter; Eperjesi, Frank; Ford, Stephen; Larøi, Frank

    2014-07-01

    Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications.

  7. Cerebrospinal fluid levels of diazepam-binding inhibitor in neurodegenerative disorders with dementia.

    Science.gov (United States)

    Ferrarese, C; Appollonio, I; Frigo, M; Meregalli, S; Piolti, R; Tamma, F; Frattola, L

    1990-04-01

    We investigated CSF levels of diazepam-binding inhibitor (DBI), a recently discovered neuropeptide that allosterically modulates GABAergic transmission, in various neurodegenerative disorders with dementia (28 patients with Parkinson's disease, 10 with Alzheimer's disease, 7 with Huntington's chorea). We applied a battery of neuropsychological tests to determine the degree of dementia and to exclude the presence of mood alterations. CSF DBI levels were elevated in parkinsonian subjects with dementia and in patients with Alzheimer's disease, but decreased in Huntington's chorea patients. We hypothesize that modifications of CSF DBI levels may be related to a functional or structural alteration of the GABAergic system.

  8. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models

    Indian Academy of Sciences (India)

    Moushami Mallik; Subhash C. Lokhotia

    2010-12-01

    Polyglutamine (polyQ) diseases, resulting from a dynamic expansion of glutamine repeats in a polypeptide, are a class of genetically inherited late onset neurodegenerative disorders which, despite expression of the mutated gene widely in brain and other tissues, affect defined subpopulations of neurons in a disease-specific manner. We briefly review the different poly Q-expansion-induced neurodegenerative disorders and the advantages of modelling them in Drosophila. Studies using the fly models have successfully identified a variety of genetic modifiers and have helped in understanding some of the molecular events that follow expression of the abnormal polyQ proteins. Expression of the mutant polyQ proteins causes, as a consequence of intra-cellular and inter-cellular networking, mis-regulation at multiple steps like transcriptional and post-transcriptional regulations, cell signalling, protein quality control systems (protein folding and degradation networks), axonal transport machinery etc., in the sensitive neurons, resulting ultimately in their death. The diversity of genetic modifiers of polyQ toxicity identified through extensive genetic screens in fly and other models clearly reflects a complex network effect of the presence of the mutated protein. Such network effects pose a major challenge for therapeutic applications.

  9. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  10. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells.

    Science.gov (United States)

    Sanberg, Paul R; Eve, David J; Willing, Alison E; Garbuzova-Davis, Svitlana; Tan, Jun; Sanberg, Cyndy D; Allickson, Julie G; Cruz, L Eduardo; Borlongan, Cesar V

    2011-01-01

    Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.

  11. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases.

    Science.gov (United States)

    Zeliger, Harold I

    2013-09-01

    Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutants (POPs), the plastic exudates bisphenol A and phthalates, low molecular weight hydrocarbons (LMWHCs) and polynuclear aromatic hydrocarbons (PAHs). It is reported here that though these chemicals differ widely in their chemical properties, reactivities and known points of attack in humans, a common link does exist between them. All are lipophilic species found in serum and they promote the sequential absorption of otherwise non-absorbed toxic hydrophilic species causing these diseases.

  12. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders

    Directory of Open Access Journals (Sweden)

    GABRIELA D. COLPO

    2015-08-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent progenitor cells that have the capacity to differentiate into all lineages of mesodermal origin, e.g., cartilage, bone, and adipocytes. MSCs have been identified at different stages of development, including adulthood, and in different tissues, such as bone marrow, adipose tissue and umbilical cord. Recent studies have shown that MSCs have the ability to migrate to injured sites. In this regard, an important characteristic of MSCs is their immunomodulatory and anti-inflammatory effects. For instance, there is evidence that MSCs can regulate the immune system by inhibiting proliferation of T and B cells. Clinical interest in the use of MSCs has increased considerably over the past few years, especially because of the ideal characteristics of these cells for regenerative medicine. Therapies with MSCs have shown promising results neurodegenerative diseases, in addition to regulating inflammation, they can promote other beneficial effects, such as neuronal growth, decrease free radicals, and reduce apoptosis. Notwithstanding, despite the vast amount of research into MSCs in neurodegenerative diseases, the mechanism of action of MSCs are still not completely clarified, hindering the development of effective treatments. Conversely, studies in models of psychiatric disorders are scarce, despite the promising results of MSCs therapies in this field as well.

  13. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders.

    Science.gov (United States)

    Colpo, Gabriela D; Ascoli, Bruna M; Wollenhaupt-Aguiar, Bianca; Pfaffenseller, Bianca; Silva, Emily G; Cirne-Lima, Elizabeth O; Quevedo, João; Kapczinski, Flávio; Rosa, Adriane R

    2015-08-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells that have the capacity to differentiate into all lineages of mesodermal origin, e.g., cartilage, bone, and adipocytes. MSCs have been identified at different stages of development, including adulthood, and in different tissues, such as bone marrow, adipose tissue and umbilical cord. Recent studies have shown that MSCs have the ability to migrate to injured sites. In this regard, an important characteristic of MSCs is their immunomodulatory and anti-inflammatory effects. For instance, there is evidence that MSCs can regulate the immune system by inhibiting proliferation of T and B cells. Clinical interest in the use of MSCs has increased considerably over the past few years, especially because of the ideal characteristics of these cells for regenerative medicine. Therapies with MSCs have shown promising results neurodegenerative diseases, in addition to regulating inflammation, they can promote other beneficial effects, such as neuronal growth, decrease free radicals, and reduce apoptosis. Notwithstanding, despite the vast amount of research into MSCs in neurodegenerative diseases, the mechanism of action of MSCs are still not completely clarified, hindering the development of effective treatments. Conversely, studies in models of psychiatric disorders are scarce, despite the promising results of MSCs therapies in this field as well.

  14. Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders.

    Science.gov (United States)

    Al-Harthi, Lena

    2012-12-01

    Wnt signaling is a fundamental pathway in embryogenesis which is evolutionary conserved from metazoans to humans. Much of our understanding of Wnt signaling events emerged from key developmental studies in drosophila, zebra fish, xenopus, and mice. Considerable data now exists on the role of Wnt signaling beyond these developmental processes and in particular its role in health and disease. The focus of this special issue is on Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. This special issue is composed of six reviews and two original articles selected to highlight recent advances in the role of Wnt signaling in CNS embryonic development, in adult brain function, in neurodegenerative conditions such as Alzheimer's disease, schizophrenia, NeuroAIDS, and in gliomas. The finding that β-catenin can translocate to the nucleus where it binds to TCF/LEF transcription factors to regulate target gene expression was a seminal observation that linked β-catenin/LEF to T cell development and differentiation. We also provide a nostalgic look on recent advances in role of Wnts in T cell development and maturation. These reviews highlight the extensive body of work in these thematic areas as well as identify knowledge gaps, where appropriate. Understanding Wnt function under healthy and diseased conditions may provide a therapeutic resource, albeit it a challenging one, in diseases where dysfunctional and/or diminished Wnt signaling is a prominent player in the disease process.

  15. Cancer and neurodegenerative disorders: pathogenic convergence through microRNA regulation

    Institute of Scientific and Technical Information of China (English)

    Liqin Du; Alexander Pertsemlidis

    2011-01-01

    Although cancer and neurodegenerative disease are two distinct pathological disorders, emerging evidence indicates that these two types of disease share common mechanisms of genetic and molecular abnormalities. Recent studies show that individual microRNAs (miRNAs) could be involved in the pathology of both diseases, indicating that the mechanisms of these two seemingly dichotomous diseases converge in the dysregulation of gene expression at the post-transcriptional level. Given the increasing evidence showing that miRNA-based therapeutic strategies that modulate the activity of one or more miRNAs are potentially effective for a wide range of pathological conditions, the involvement of miRNAs in the common pathways of leading both diseases suggests a bright future for developing common therapeutic approaches for both diseases. Moreover, the miRNAs that are dysregulated in both diseases may hold promise as uniquely informative diagnostic markers. Here, we review recent studies on the miRNAs that have been implicated in both cancer and neurodegenerative diseases.

  16. Cancer and neurodegenerative disorders: pathogenic convergence through microRNA regulation.

    Science.gov (United States)

    Du, Liqin; Pertsemlidis, Alexander

    2011-06-01

    Although cancer and neurodegenerative disease are two distinct pathological disorders, emerging evidence indicates that these two types of disease share common mechanisms of genetic and molecular abnormalities. Recent studies show that individual microRNAs (miRNAs) could be involved in the pathology of both diseases, indicating that the mechanisms of these two seemingly dichotomous diseases converge in the dysregulation of gene expression at the post-transcriptional level. Given the increasing evidence showing that miRNA-based therapeutic strategies that modulate the activity of one or more miRNAs are potentially effective for a wide range of pathological conditions, the involvement of miRNAs in the common pathways of leading both diseases suggests a bright future for developing common therapeutic approaches for both diseases. Moreover, the miRNAs that are dysregulated in both diseases may hold promise as uniquely informative diagnostic markers. Here, we review recent studies on the miRNAs that have been implicated in both cancer and neurodegenerative diseases.

  17. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien

    2012-01-01

    Full Text Available The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs. In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.

  18. The path to microRNA therapeutics in psychiatric and neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Anthony WS Chan

    2012-05-01

    Full Text Available The microRNA (miRNA class of noncoding RNAs exhibit a diverse range of regulatory roles in neuronal functions that are conserved from lower vertebrates to primates. Disruption of miRNA expression has compellingly been linked to pathogenesis in neuropsychiatric and neurodegenerative disorders, such as schizophrenia, Alzheimer’s Disease, and Autism. The list of transcript targets governed by a single miRNA provide a molecular paradigm applicable for therapeutic intervention. Indeed, reports have shown that specific manipulation of a miRNA in cell or animal models can significantly alter phenotypes linked with neurological disease. Here, we review how a diverse range of biological systems, from rodents to primates such as monkeys and humans, can be integrated into the translation of miRNAs as novel clinical targets.

  19. Committing to Memory: Memory Prosthetics Show Promise in Helping Those with Neurodegenerative Disorders.

    Science.gov (United States)

    Solis, Michele

    2017-01-01

    Cell phone chimes, sticky notes, even the proverbial string around a finger-these timehonored external cues help guard against our inevitable memory lapses. But some internal help to the brain itself may be on the way in the form of what's being called memory prosthetics. Once considered to be on the fringes of neuroscience, the idea of adding hardware to the brain to help with memory has gathered steam. In 2014, the U.S. Defense Advanced Research Projects Agency (DARPA) made a US$30 million investment in memory prosthetic research as part of the Obama administration's Brain Research through Advancing Innovative Neurotechnologies initiative. In August 2016, Kernel, a startup based in Los Angeles, California, announced its goal to develop a clinical memory device for those debilitated by neurodegenerative disorders such as Alzheimer's disease.

  20. Lower urinary tract dysfunction in patients with parkinsonism and other neurodegenerative disorders

    DEFF Research Database (Denmark)

    Winge, Kristian

    2015-01-01

    Progressive neurodegenerative disorders are devastating diseases with often fatal outcomes. Lower urinary tract symptoms (LUTS) add to morbidity and increase the risk of becoming dependent on the help of others (e.g., nursing-home referral). In Parkinson's disease (PD), the specific loss...... of dopaminergic neurons in the substantia nigra and possibly also in the ventral tegmental area induces loss of neurogenic bladder control through dysfunction of a complex network in which selective disinhibition of bladder reflexes is lost. In PD, more than 60% of patients have troublesome bladder symptoms......, and 30% experience incontinence, though not daily. In atypical parkinsonism, including multiple system atrophy, LUTS are highly prevalent, and the onset of LUTS in comparison to other autonomic symptoms and motor symptoms may serve as a diagnostic marker. Less is known about the pathophysiology...

  1. Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders.

    Science.gov (United States)

    Fields, Jerel; Dumaop, Wilmar; Langford, T D; Rockenstein, Edward; Masliah, E

    2014-03-01

    Migration of HIV infected cells into the CNS is associated with a spectrum of neurological disorders, ranging from milder forms of HIV-associated neurocognitive disorders (HAND) to HIV-associated dementia (HAD). These neuro-psychiatric syndromes are related to the neurodegenerative pathology triggered by the release of HIV proteins and cytokine/chemokines from monocytes/macrophages into the CNS -a condition known as HIV encephalitis (HIVE). As a result of more effective combined anti-retroviral therapy patients with HIV are living longer and thus the frequency of HAND has increased considerably, resulting in an overlap between the neurodegenerative pathology associated with HIV and that related to aging. In fact, HIV infection is believed to hasten the aging process. The mechanisms through which HIV and aging lead to neurodegeneration include: abnormal calcium flux, excitotoxicity, signaling abnormalities, oxidative stress and autophagy defects. Moreover, recent studies have shown that defects in the processing and transport of neurotrophic factors such as fibroblast growth factors (FGFs), neural growth factor (NGF) and brain-derived growth factor (BDNF) might also play a role. Recent evidence implicates alterations in neurotrophins in the pathogenesis of neurodegeneration associated with HAND in the context of aging. Here, we report FGF overexpression curtails gp120-induced neurotoxicity in a double transgenic mouse model. Furthermore, our data show disparities in brain neurotrophic factor levels may be exacerbated in HIV patients over 50 years of age. In this review, we discuss the most recent findings on neurotrophins and HAND in the context of developing new therapies to combat HIV infection in the aging population.

  2. The human intrinsic factor-vitamin B12 receptor, cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region

    DEFF Research Database (Denmark)

    Kozyraki, R; Kristiansen, M; Silahtaroglu, A

    1998-01-01

    -5445 on the short arm of chromosome 10. This is within the autosomal recessive megaloblastic anemia (MGA1) 6-cM region harboring the unknown recessive-gene locus of juvenile megaloblastic anemia caused by intestinal malabsorption of cobalamin (Imerslund-Gräsbeck's disease). In conclusion, the present...... molecular and genetic information on human cubilin now provides circumstantial evidence that an impaired synthesis, processing, or ligand binding of cubilin is the molecular background of this hereditary form of megaloblastic anemia. Udgivelsesdato: 1998-May-15...

  3. MRI assessment of fetal autosomal recessive polycystic kidney disease%常染色体隐性遗传性多囊肾病胎儿的MRI表现

    Institute of Scientific and Technical Information of China (English)

    董素贞; 朱铭; 钟玉敏; 张弘; 潘慧红

    2014-01-01

    目的 探讨MRI对常染色体隐性遗传性多囊肾病(ARPKD)胎儿的诊断价值.方法 回顾性分析2005年7月至2013年12月间产前超声检查提示异常,然后行MR检查,并经引产后尸解或病理证实的ARPKD胎儿16例.MR扫描序列主要采用稳态自由进动(SSFP)序列、单次激发快速自旋回波(SSTSE)序列和快速加权序列T1WI.将产前MRI、超声表现与引产后尸解或病理结果进行对照分析.结果 16例ARPKD患儿均表现为双侧肾脏体积明显增大,SSTSE序列肾髓质弥漫性高信号小囊肿.11例合并羊水过少,11例合并双肺发育不良,6例合并肝纤维化.11例双肺发育不良和6例肝脏轻度纤维化超声均未提示,肾脏病变超声误诊1例,MRI诊断均正确.结论 MRI诊断胎儿ARPKD具有明显优势,不受羊水量的影响,能准确评价肾脏及肺异常.%Objective To explore the value of MRI on fetal autosomal recessive polycystic kidney disease (ARPKD).Methods Sixteen pregnant women,aged from 28 to 38 years (average 30 years) and with gestation age from 22 to 36 weeks (average 25 weeks) underwent MR scanning with a 1.5 T MR unit within 24 to 48 hours after ultrasound examinations.The imaging sequences included steady-state free-precession (SSFP) sequence,single-shot turbo spin echo (SSTSE) sequence and T1-weighted fast imaging sequence.Prenatal US and MR imaging findings were compared with autopsy or pathological results.Results A total of 16 cases of ARPKD showed bilateral markedly enlarged kidneys and diffuse high signal small cysts in renal medulla on SSTSE sequence.Among the 16 cases,11 cases were with oligohydramnios,1 1 cases were with pulmonary hypoplasia,and 6 cases were with hepatic fibrosis.Eleven cases of pulmonary hypoplasia and 6 cases of hepatic fibrosis were all missed by US.For the diagnosis of the renal anomalies,US missed one case.MRI diagnosis was correct in all these cases.Conclusions MRI shows great advantages on the diagnosis of fetal ARPKD

  4. Inhibitory action of chlorophyllin of autosome recessive lethals induced by irradiation; Accion inhibidora de la clorofilina de letales recesivos autosonicos inducidos por irradiacion

    Energy Technology Data Exchange (ETDEWEB)

    Salceda, V.M.; Pimentel, P.A.E.; Cruces, M.P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: vmss@nuclear.inin.mx

    2006-07-01

    chlorophyllin on the damage caused by the radiation, it was into accothe presence of lethal and semi lethals autosomal. One observes this way that even without the use of the radiation the semi lethals frequency is diminished when the chlorophyllin is applied, in this case the decrease was significant and although there was decrease in the case of the irradiated group this it was not significant; in the case of the lethal ones it happened the opposite it was not significant in radiation absence on the contrary elevate the frequency of this type of genes, however, before the radiation and with pre-treatment with chlorophyllin this it reduced the frequency of autosomal recessive lethals significantly. This is important because in the case of bound recessive lethals recessive to the sex this doesn't happen. (Author)

  5. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program.

    Science.gov (United States)

    Beach, Thomas G; Adler, Charles H; Sue, Lucia I; Serrano, Geidy; Shill, Holly A; Walker, Douglas G; Lue, LihFen; Roher, Alex E; Dugger, Brittany N; Maarouf, Chera; Birdsill, Alex C; Intorcia, Anthony; Saxon-Labelle, Megan; Pullen, Joel; Scroggins, Alexander; Filon, Jessica; Scott, Sarah; Hoffman, Brittany; Garcia, Angelica; Caviness, John N; Hentz, Joseph G; Driver-Dunckley, Erika; Jacobson, Sandra A; Davis, Kathryn J; Belden, Christine M; Long, Kathy E; Malek-Ahmadi, Michael; Powell, Jessica J; Gale, Lisa D; Nicholson, Lisa R; Caselli, Richard J; Woodruff, Bryan K; Rapscak, Steven Z; Ahern, Geoffrey L; Shi, Jiong; Burke, Anna D; Reiman, Eric M; Sabbagh, Marwan N

    2015-08-01

    The Brain and Body Donation Program (BBDP) at Banner Sun Health Research Institute (http://www.brainandbodydonationprogram.org) started in 1987 with brain-only donations and currently has banked more than 1600 brains. More than 430 whole-body donations have been received since this service was commenced in 2005. The collective academic output of the BBDP is now described as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). Most BBDP subjects are enrolled as cognitively normal volunteers residing in the retirement communities of metropolitan Phoenix, Arizona. Specific recruitment efforts are also directed at subjects with Alzheimer's disease, Parkinson's disease and cancer. The median age at death is 82. Subjects receive standardized general medical, neurological, neuropsychological and movement disorders assessments during life and more than 90% receive full pathological examinations by medically licensed pathologists after death. The Program has been funded through a combination of internal, federal and state of Arizona grants as well as user fees and pharmaceutical industry collaborations. Subsets of the Program are utilized by the US National Institute on Aging Arizona Alzheimer's Disease Core Center and the US National Institute of Neurological Disorders and Stroke National Brain and Tissue Resource for Parkinson's Disease and Related Disorders. Substantial funding has also been received from the Michael J. Fox Foundation for Parkinson's Research. The Program has made rapid autopsy a priority, with a 3.0-hour median post-mortem interval for the entire collection. The median RNA Integrity Number (RIN) for frozen brain and body tissue is 8.9 and 7.4, respectively. More than 2500 tissue requests have been served and currently about 200 are served annually. These requests have been made by more than 400 investigators located in 32 US states and 15 countries. Tissue from the BBDP has contributed to more than 350 publications and more than 200

  6. Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23

    NARCIS (Netherlands)

    Watanabe, Hiroyuki; Mizoguchi, Hirokazu; Verbeek, Dineke S.; Kuzmin, Alexander; Nyberg, Fred; Krishtal, Oleg; Sakurada, Shinobu; Bakalkin, Georgy

    2012-01-01

    We previously identified four missense mutations in the prodynorphin gene that cause human neurodegenerative disorder spinocerebellar ataxia type 23 (SCA23). Three mutations substitute Leu(5), Arg(6), and Arg(9) to Ser (L5S), Trp (R6W) and Cys (R9C) in dynorphin A(1-17) (Dyn A), a peptide with both

  7. Yoga as Therapy for Neurodegenerative Disorders: A Case Report of Therapeutic Yoga for Adrenomyeloneuropathy.

    Science.gov (United States)

    Muhammad, Charlene Marie; Moonaz, Steffany Haaz

    2014-06-01

    Yoga is a promising therapeutic modality for neurodegenerative diseases. This case study presents a therapeutic yoga protocol for adrenomyeloneuropathy (AMN) and its effect on a patient's quality of life (QOL), agility, balance, and peripheral dexterity. A 61-y-old man diagnosed with AMN who was experiencing (1) peripheral neuropathy in his legs and feet, (2) lower-back pain (LBP), and (3) osteoarthritis received 60-min weekly therapeutic yoga sessions for a 10-mo period. Yoga therapy included hatha yoga asanas (poses) and pranayama (breathing exercises). Hatha yoga asanas were aligned with 7 Berg Balance Scale (BBS) indicators to measure improvement in balance and range of motion. The 10-mo course of therapeutic yoga resulted in improved LBP; improved flexion of the patient's hips, knees, and ankles; improved propulsion phase of walking; and improvement in the patient's ability to stand and balance without an assistive device. The effect of yoga therapy on the patient in this case study aligns with current QOL improvements noted in current research on yoga therapy for neurological disorders. The described concepts and methods of employing therapeutic yoga provide insights for clinicians into a modality that is low risk and low cost and that can support individuals with other neurological disorders, such as multiple sclerosis (MS), fibromyalgia (FM), and diseases of the peripheral nervous system. Further study is warranted to help determine the safety and efficacy of yoga therapy for these conditions.

  8. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders

    NARCIS (Netherlands)

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-01-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar

  9. Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools

    Directory of Open Access Journals (Sweden)

    Juliana Silva

    2015-08-01

    Full Text Available Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.

  10. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders.

    Science.gov (United States)

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-10-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar across different pathological conditions. The purpose of this systematic review was to provide an extensive overview of the neuroimaging literature on apathy including studies of various patient populations, and evaluate whether the current state of affairs suggest disorder specific or shared neural correlates of apathy. Results suggest that abnormalities within fronto-striatal circuits are most consistently associated with apathy across the different pathological conditions. Of note, abnormalities within the inferior parietal cortex were also linked to apathy, a region previously not included in neuroanatomical models of apathy. The variance in brain regions implicated in apathy may suggest that different routes towards apathy are possible. Future research should investigate possible alterations in different processes underlying goal-directed behavior, ranging from intention and goal-selection to action planning and execution.

  11. Old Things New View: Ascorbic Acid Protects the Brain in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Adriana Covarrubias-Pinto

    2015-11-01

    Full Text Available Ascorbic acid is a key antioxidant of the Central Nervous System (CNS. Under brain activity, ascorbic acid is released from glial reservoirs to the synaptic cleft, where it is taken up by neurons. In neurons, ascorbic acid scavenges reactive oxygen species (ROS generated during synaptic activity and neuronal metabolism where it is then oxidized to dehydroascorbic acid and released into the extracellular space, where it can be recycled by astrocytes. Other intrinsic properties of ascorbic acid, beyond acting as an antioxidant, are important in its role as a key molecule of the CNS. Ascorbic acid can switch neuronal metabolism from glucose consumption to uptake and use of lactate as a metabolic substrate to sustain synaptic activity. Multiple evidence links oxidative stress with neurodegeneration, positioning redox imbalance and ROS as a cause of neurodegeneration. In this review, we focus on ascorbic acid homeostasis, its functions, how it is used by neurons and recycled to ensure antioxidant supply during synaptic activity and how this antioxidant is dysregulated in neurodegenerative disorders.

  12. Mutations in SLC33A1 cause a lethal autosomal-recessive disorder with congenital cataracts, hearing loss, and low serum copper and ceruloplasmin

    DEFF Research Database (Denmark)

    Huppke, Peter; Brendel, Cornelia; Kalscheuer, Vera

    2012-01-01

    , hearing loss, and severe developmental delay. Cerebral MRI showed pronounced cerebellar hypoplasia and hypomyelination. Homozygosity mapping was performed and displayed a region of commonality among three families at chromosome 3q25. Deep sequencing and conventional sequencing disclosed homozygous...

  13. X-ray fluorescence imaging reveals subcellular biometal disturbances in a childhood neurodegenerative disorder.

    Science.gov (United States)

    Grubman, A; James, S A; James, J; Duncan, C; Volitakis, I; Hickey, J L; Crouch, P J; Donnelly, P S; Kanninen, K M; Liddell, J R; Cotman, S L; de Jonge; White, A R

    2014-06-01

    Biometals such as zinc, iron, copper and calcium play key roles in diverse physiological processes in the brain, but can be toxic in excess. A hallmark of neurodegeneration is a failure of homeostatic mechanisms controlling the concentration and distribution of these elements, resulting in overload, deficiency or mislocalization. A major roadblock to understanding the impact of altered biometal homeostasis in neurodegenerative disease is the lack of rapid, specific and sensitive techniques capable of providing quantitative subcellular information on biometal homeostasis in situ. Recent advances in X-ray fluorescence detectors have provided an opportunity to rapidly measure biometal content at subcellular resolution in cell populations using X-ray Fluorescence Microscopy (XFM). We applied this approach to investigate subcellular biometal homeostasis in a cerebellar cell line isolated from a natural mouse model of a childhood neurodegenerative disorder, the CLN6 form of neuronal ceroid lipofuscinosis, commonly known as Batten disease. Despite no global changes to whole cell concentrations of zinc or calcium, XFM revealed significant subcellular mislocalization of these important biological second messengers in cerebellar Cln6(nclf) (CbCln6(nclf) ) cells. XFM revealed that nuclear-to-cytoplasmic trafficking of zinc was severely perturbed in diseased cells and the subcellular distribution of calcium was drastically altered in CbCln6(nclf) cells. Subtle differences in the zinc K-edge X-ray Absorption Near Edge Structure (XANES) spectra of control and CbCln6(nclf) cells suggested that impaired zinc homeostasis may be associated with an altered ligand set in CbCln6(nclf) cells. Importantly, a zinc-complex, Zn(II)(atsm), restored the nuclear-to-cytoplasmic zinc ratios in CbCln6(nclf) cells via nuclear zinc delivery, and restored the relationship between subcellular zinc and calcium levels to that observed in healthy control cells. Zn(II)(atsm) treatment also resulted in a

  14. Functional validation of ABHD12 mutations in the neurodegenerative disease PHARC

    DEFF Research Database (Denmark)

    Tingaud-Sequeira, Angèle; Raldúa, Demetrio; Lavie, Julie

    2016-01-01

    ABHD12 mutations have been linked to neurodegenerative PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract), a rare, progressive, autosomal, recessive disease. Although ABHD12 is suspected to play a role in the lysophosphatidylserine and/or endocannabinoid...... knockdown morphants were consistent with human PHARC hallmarks. High abhd12 transcript levels were found in the optic tectum and tract, colocalized with myelin basic protein, and in the spinal cord. Morphants have myelination defects and concomitant functional deficits, characterized by progressive ataxia...

  15. A neonate with Coombs-negative hemolytic jaundice with spherocytes but normal erythrocyte indices: a rare case of autosomal-recessive hereditary spherocytosis due to alpha-spectrin deficiency.

    Science.gov (United States)

    Yaish, H M; Christensen, R D; Agarwal, A

    2013-05-01

    The diagnosis of hereditary spherocytosis (HS) in a newborn infant is generally made on the basis of a positive family history, spherocytes on blood film and Coombs-negative hemolytic jaundice of variable severity with an elevated mean corpuscular hemoglobin concentration (MCHC) and a low mean corpuscular volume (MCV). In general, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) quantification of erythrocyte membrane proteins is not needed to make the clinical diagnosis of HS. However, we observed that a neonate with no family history of HS, but with abundant spherocytosis on repeated blood films, Coombs-negative hemolytic jaundice and normal MCHC and MCV measurements, where SDS-PAGE revealed alpha-spectrin deficiency, a rare autosomal-recessive variety of HS that generally has a severe clinical phenotype.

  16. Microcefalia primária autossômica recessiva em três famílias pernambucanas: aspectos clínicos e moleculares Autosomal recessive primary microcephaly in three families from Pernambuco: clinical and molecular aspects

    Directory of Open Access Journals (Sweden)

    Gabriela F. Leal

    2005-06-01

    Full Text Available OBJETIVOS: descrever os aspectos clínicos de três famílias pernambucanas com microcefalia primária autossômica recessiva e as análises de ligação em uma delas (família 2. MÉTODOS: três famílias consangüíneas pernambucanas, não relacionadas biologicamente, com microcefalia primária, foram estudadas. Os heredogramas e a história clínica dos afetados foram construídos com base em informações obtidas de seus pais e outros parentes. O exame físico foi realizado em todos os afetados, seus genitores e na quase totalidade dos irmãos normais dos afetados. O DNA genômico dos afetados da família 2 e de seus pais foi usado em reações de PCR (polimerase chain reaction com primers elaborados para amplificar marcadores microssatélites ligados aos locos já conhecidos de microcefalia primária autossômica recessiva. Os marcadores amplificados foram submetidos a eletroforese e seus alelos analisados. RESULTADOS: nas três famílias, os afetados apresentavam perímetro cefálico muito reduzido acompanhado de retardo mental e apenas uma paciente (da família 3 manifestava outras alterações neurológicas, mas sem dismorfias associadas. Estudos moleculares demonstraram que a microcefalia, na família 2, não apresentava ligação com nenhum dos locos associados à microcefalia primária autossômica recessiva já conhecidos. CONCLUSÕES: pelo menos mais um gene associado à microcefalia primária autossômica recessiva existe e aguarda identificação.OBJECTIVES: to describe the clinical findings in three families from Pernambuco with autosomal recessive primary microcephaly, and the linkage analysis in one of them (family 2. METHODS: three consanguineous families from Pernambuco, not related one to another and with primary microcephaly, were studied. The genealogical data and the clinical history of the affected individuals were obtained from their parents and other family members. All the affected subjects, almost all their normal

  17. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila.

    NARCIS (Netherlands)

    Zweier, C.; Jong, E.K. de; Zweier, M.; Orrico, A.; Ousager, L.B.; Collins, A.L.; Bijlsma, E.K.; Oortveld, M.A.W.; Ekici, A.B.; Reis, A.; Schenck, A.; Rauch, A.

    2009-01-01

    Heterozygous copy-number variants and SNPs of CNTNAP2 and NRXN1, two distantly related members of the neurexin superfamily, have been repeatedly associated with a wide spectrum of neuropsychiatric disorders, such as developmental language disorders, autism spectrum disorders, epilepsy, and schizophr

  18. New strategies for the treatment of Parkinson's disease hold considerable promise for future management of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Bjarkam, Carsten Reidies; Sørensen, Jens Christian; Sunde, Niels Å;

    2001-01-01

    Neurodegenerative diseases are often consideredincurable with no efficient therapies to modifyor halt the progress of disease, and ultimatelylead to reduced quality of life and to death.Our knowledge of the nervous system in healthand disease has, however, increasedconsiderably during the last...... fifty years andtoday, neuroscience reveals promising newstrategies to deal with disorders of thenervous system.Some of these results have been implementedwith success in the treatment of Parkinson'sdisease, a common neurodegenerative illnessaffecting approximately 1% of the populationaged seventy...... or more. Parkinson's disease ischaracterized by a massive loss of dopaminergicneurons in the substantia nigra, leading tosevere functional disturbance of the neuronalcircuitry in the basal ganglia. A thoroughdescription of basal ganglia circuitry inhealth and disease is presented. We describehow...

  19. PET Imaging of the Peripheral Benzodiazepine Receptor : Monitoring Disease Progression and Therapy Response in Neurodegenerative Disorders

    NARCIS (Netherlands)

    Doorduin, Janine; de Vries, Erik F. J.; Dierckx, Rudi A.; Klein, Hans C.

    2008-01-01

    It is important to gain more insight into neurodegenerative diseases, because these debilitating diseases can not be cured. A common characteristic of many neurological diseases is neuroinflammation, which is accompanied by the presence of activated microglia cells. In activated microglia cells, an

  20. Proline-rich polypeptides in Alzheimer's disease and neurodegenerative disorders - Therapeutic potential or a mirage?

    NARCIS (Netherlands)

    Gladkevich, A.; Bosker, F.; Korf, J.; Yenkoyan, K.; Vahradyan, H.; Aghajanov, M.

    2007-01-01

    The development of effective and safe drugs for a growing Alzheimer disease population is an increasing need at present. Both experimental and clinical evidence support a beneficial effect of proline-rich polypeptides in a number of neurodegenerative diseases, including Alzheimer disease. Experiment

  1. Visual Hallucinations in the Psychosis Spectrum and Comparative Information From Neurodegenerative Disorders and Eye Disease

    NARCIS (Netherlands)

    Waters, Flavie; Collerton, Daniel; Ffytche, Dominic H.; Jardri, Renaud; Pins, Delphine; Dudley, Robert; Blom, Jan Dirk; Mosimann, Urs Peter; Eperjesi, Frank; Ford, Stephen; Laroi, Frank

    2014-01-01

    Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VH

  2. Combination Comprising Parthenolide For Use In The Treatment Of Alzheimer's Disease And Other Neurodegenerative Disorders

    KAUST Repository

    Bajic, Vladimir B.

    2015-06-18

    The present invention generally concerns particular methods and compositions for treatment of a neurodegenerative disease, such as Alzheimer\\'s Disease. In particular embodiments, there is a composition comprising Parthenolide and a second agent, including an inhibitor of TLR4/MD-2/CD14, nAChR agonist, Resatorvid, Curcumin, Tilorone or a Tilorone analog, or a combination thereof.

  3. [Multiple system atrophy and Alzheimer's disease: a case report of a rare association of two neuro-degenerative disorders].

    Science.gov (United States)

    Rusina, R; Bourdain, F; Matej, R

    2007-12-01

    Multiple system atrophy (MSA) is a neurodegenerative disorder typically characterised by cerebellar dysfunction, parkinsonism, pyramidal signs and dysautonomy. Cognitive impairement is usually limited to a moderate subcortical dysexecutive syndrom. We report the case of a 62-year-old woman suffering from MSA who progressively developed severe dementia. Neuropathological examination confirmed the diagnosis of definite MSA and also showed histopathological hallmarks of Alzheimer's disease. This association is extremely rare in the literature. Our observation confirmes that franc dementia in MSA should prompt a search for another associated cause and underlines the usefulness of neuropathological verifications in atypical clinical pictures.

  4. Sjogren-Larsson syndrome: A rare neurocutaneous disorder

    Directory of Open Access Journals (Sweden)

    Velusamy Subramanian

    2016-01-01

    Full Text Available Sjogren-Larsson syndrome is an autosomal recessive disorder characterized by defective activity of fatty aldehyde dehydrogenase. It presents as a triad of congenital ichthyosis, spastic diplegia, and mental retardation. The pathology behind this syndrome is the failure of degradation of fatty aldehydes. This case is presented for its rarity.

  5. Sjogren-Larsson syndrome: A rare neurocutaneous disorder.

    Science.gov (United States)

    Subramanian, Velusamy; Hariharan, Praveen; Balaji, J

    2016-01-01

    Sjogren-Larsson syndrome is an autosomal recessive disorder characterized by defective activity of fatty aldehyde dehydrogenase. It presents as a triad of congenital ichthyosis, spastic diplegia, and mental retardation. The pathology behind this syndrome is the failure of degradation of fatty aldehydes. This case is presented for its rarity.

  6. Are human neurodegenerative disorders linked to environmental chemicals with excitotoxic properties

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P.S.; Ludolph, A.C.; Kisby, G.E. (Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland (United States))

    1992-05-11

    At the present time, it seems unlikely that progressive neurodegenerative diseases, such as ALS, Parkinson's disease, and dementia of the Alzheimer type, are triggered by environmental agents with excitotoxic potential. These include excitotoxic agents that behave as glutamate agonists or disrupt energy metabolism: both types elicit permanent but self-limiting neuronal diseases with patterns of neuronal deficit that reflect selective chemical exposure (MPP+ and parkinsonism), differential susceptibility to energy dysmetabolism (NPA and dystonia), or the distribution of glutamate-receptors (domoic acid and memory loss). If environmental agents play an etiologic role in progressive neurodegenerative diseases, they are likely to target a critical, irreplaceable neuronal molecule that is required to maintain long-term neuronal integrity.41 references.

  7. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Martin Hofmann-Apitius

    2015-12-01

    Full Text Available Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies—data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI; which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations

  8. Yoga as Therapy for Neurodegenerative Disorders: A Case Report of Therapeutic Yoga for Adrenomyeloneuropathy

    OpenAIRE

    Muhammad, Charlene Marie; Moonaz, Steffany Haaz

    2014-01-01

    Yoga is a promising therapeutic modality for neurodegenerative diseases. This case study presents a therapeutic yoga protocol for adrenomyeloneuropathy (AMN) and its effect on a patient’s quality of life (QOL), agility, balance, and peripheral dexterity. A 61-y-old man diagnosed with AMN who was experiencing (1) peripheral neuropathy in his legs and feet, (2) lower-back pain (LBP), and (3) osteoarthritis received 60-min weekly therapeutic yoga sessions for a 10-mo period. Yoga therapy include...

  9. Bioinformatics Mining and Modeling Methods for the Identification of Disease Mechanisms in Neurodegenerative Disorders.

    Science.gov (United States)

    Hofmann-Apitius, Martin; Ball, Gordon; Gebel, Stephan; Bagewadi, Shweta; de Bono, Bernard; Schneider, Reinhard; Page, Matt; Kodamullil, Alpha Tom; Younesi, Erfan; Ebeling, Christian; Tegnér, Jesper; Canard, Luc

    2015-12-07

    Since the decoding of the Human Genome, techniques from bioinformatics, statistics, and machine learning have been instrumental in uncovering patterns in increasing amounts and types of different data produced by technical profiling technologies applied to clinical samples, animal models, and cellular systems. Yet, progress on unravelling biological mechanisms, causally driving diseases, has been limited, in part due to the inherent complexity of biological systems. Whereas we have witnessed progress in the areas of cancer, cardiovascular and metabolic diseases, the area of neurodegenerative diseases has proved to be very challenging. This is in part because the aetiology of neurodegenerative diseases such as Alzheimer´s disease or Parkinson´s disease is unknown, rendering it very difficult to discern early causal events. Here we describe a panel of bioinformatics and modeling approaches that have recently been developed to identify candidate mechanisms of neurodegenerative diseases based on publicly available data and knowledge. We identify two complementary strategies-data mining techniques using genetic data as a starting point to be further enriched using other data-types, or alternatively to encode prior knowledge about disease mechanisms in a model based framework supporting reasoning and enrichment analysis. Our review illustrates the challenges entailed in integrating heterogeneous, multiscale and multimodal information in the area of neurology in general and neurodegeneration in particular. We conclude, that progress would be accelerated by increasing efforts on performing systematic collection of multiple data-types over time from each individual suffering from neurodegenerative disease. The work presented here has been driven by project AETIONOMY; a project funded in the course of the Innovative Medicines Initiative (IMI); which is a public-private partnership of the European Federation of Pharmaceutical Industry Associations (EFPIA) and the European

  10. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila

    DEFF Research Database (Denmark)

    Zweier, Christiane; de Jong, Eiko K; Zweier, Markus;

    2009-01-01

    Heterozygous copy-number variants and SNPs of CNTNAP2 and NRXN1, two distantly related members of the neurexin superfamily, have been repeatedly associated with a wide spectrum of neuropsychiatric disorders, such as developmental language disorders, autism spectrum disorders, epilepsy...... protein can reorganize synaptic morphology and induce increased density of active zones, the synaptic domains of neurotransmitter release. Moreover, both Nrx-I and Nrx-IV determine the level of the presynaptic active-zone protein bruchpilot, indicating a possible common molecular mechanism in Nrx......, and schizophrenia. We now identified homozygous and compound-heterozygous deletions and mutations via molecular karyotyping and mutational screening in CNTNAP2 and NRXN1 in four patients with severe mental retardation (MR) and variable features, such as autistic behavior, epilepsy, and breathing anomalies...

  11. GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness

    NARCIS (Netherlands)

    N.S. Peachey (Neal ); T.A. Ray (Thomas A.); R.J. Florijn (Ralph); L.B. Rowe (Lucy ); T. Sjoerdsma (Trijntje); S. Contreras-Alcantara (Susana); K. Baba (Kenkichi); G. Tosini (Gianluca); N. Pozdeyev (Nikita); P.M. Iuvone (P. Michael); P. Bojang Jr. (Pasano); J.N. Pearring (Jillian ); H.J. Simonsz (Huib); M.M. van Genderen (Maria); D.G. Birch (David ); E.I. Traboulsi (Elias); A. Dorfman (Allison); I. Lopez (Irma); H. Ren (Huanan); A.F.X. Goldberg (Andrew ); P.M. Nishina (Patsy); P. Lachapelle (Pierre); M.A. McCall (Maureen ); R.K. Koenekoop (Robert); A.A.B. Bergen (Arthur); M. Kamermans; R.G. Gregg (Ronald)

    2012-01-01

    textabstractComplete congenital stationary night blindness (cCSNB) is a clinically and genetically heterogeneous group of retinal disorders characterized by nonprogressive impairment of night vision, absence of the electroretinogram (ERG) b-wave, and variable degrees of involvement of other visual f

  12. The interplay between iron accumulation, mitochondrial dysfunction and inflammation during the execution step of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Pamela J. Urrutia

    2014-03-01

    Full Text Available A growing set of observations points to mitochondrial dysfunction, iron accumulation, oxidative damage and chronic inflammation as common pathognomonic signs of a number of neurodegenerative diseases that includes Alzheimer's disease, Huntington disease, amyotrophic lateral sclerosis, Friedrich’s ataxia and Parkinson’s disease. Particularly relevant for neurodegenerative processes is the relationship between mitochondria and iron. The mitochondrion upholds the synthesis of iron-sulfur clusters and heme, the most abundant iron-containing prosthetic groups in a large variety of proteins, so a fraction of incoming iron must go through this organelle before reaching its final destination. In turn, the mitochondrial respiratory chain is the source of reactive oxygen species (ROS derived from leaks in the electron transport chain. The co-existence of both iron and ROS in the secluded space of the mitochondrion makes this organelle particularly prone to hydroxyl radical-mediated damage. In addition, a connection between the loss of iron homeostasis and inflammation is starting to emerge; thus, inflammatory cytokines like TNF-alpha and IL-6 induce the synthesis of the divalent metal transporter 1 and promote iron accumulation in neurons and microglia. Here, we review the recent literature on mitochondrial iron homeostasis and the role of inflammation on mitochondria dysfunction and iron accumulation on the neurodegenerative process that lead to cell death in Parkinson’s disease. We also put forward the hypothesis that mitochondrial dysfunction, iron accumulation and inflammation are part of a synergistic self-feeding cycle that ends in apoptotic cell death, once the antioxidant cellular defense systems are finally overwhelmed.

  13. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila.

    Science.gov (United States)

    Zweier, Christiane; de Jong, Eiko K; Zweier, Markus; Orrico, Alfredo; Ousager, Lilian B; Collins, Amanda L; Bijlsma, Emilia K; Oortveld, Merel A W; Ekici, Arif B; Reis, André; Schenck, Annette; Rauch, Anita

    2009-11-01

    Heterozygous copy-number variants and SNPs of CNTNAP2 and NRXN1, two distantly related members of the neurexin superfamily, have been repeatedly associated with a wide spectrum of neuropsychiatric disorders, such as developmental language disorders, autism spectrum disorders, epilepsy, and schizophrenia. We now identified homozygous and compound-heterozygous deletions and mutations via molecular karyotyping and mutational screening in CNTNAP2 and NRXN1 in four patients with severe mental retardation (MR) and variable features, such as autistic behavior, epilepsy, and breathing anomalies, phenotypically overlapping with Pitt-Hopkins syndrome. With a frequency of at least 1% in our cohort of 179 patients, recessive defects in CNTNAP2 appear to significantly contribute to severe MR. Whereas the established synaptic role of NRXN1 suggests that synaptic defects contribute to the associated neuropsychiatric disorders and to severe MR as reported here, evidence for a synaptic role of the CNTNAP2-encoded protein CASPR2 has so far been lacking. Using Drosophila as a model, we now show that, as known for fly Nrx-I, the CASPR2 ortholog Nrx-IV might also localize to synapses. Overexpression of either protein can reorganize synaptic morphology and induce increased density of active zones, the synaptic domains of neurotransmitter release. Moreover, both Nrx-I and Nrx-IV determine the level of the presynaptic active-zone protein bruchpilot, indicating a possible common molecular mechanism in Nrx-I and Nrx-IV mutant conditions. We therefore propose that an analogous shared synaptic mechanism contributes to the similar clinical phenotypes resulting from defects in human NRXN1 and CNTNAP2.

  14. The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Bruce Xue Wen Wong

    2014-04-01

    Full Text Available As with most bioavailable transition metals, iron is essential for many metabolic processes required by the cell but when left unregulated is implicated as a potent source of reactive oxygen species. It is uncertain whether the brain’s evident vulnerability to reactive species-induced oxidative stress is caused by a reduced capability in cellular response or an increased metabolic activity. Either way, dys-regulated iron levels appear to be involved in oxidative stress provoked neurodegeneration. As in peripheral iron management, cells within the central nervous system tightly regulate iron homeostasis via responsive expression of select proteins required for iron flux, transport and storage. Recently proteins directly implicated in the most prevalent neurodegenerative diseases, such as amyloid-β precursor protein, tau, α-synuclein, prion protein and huntingtin, have been connected to neuronal iron homeostatic control. This suggests that disrupted expression, processing or location of these proteins may result in a failure of their cellular iron homeostatic roles and augment the common underlying susceptibility to neuronal oxidative damage that is triggered in neurodegenerative disease.

  15. A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis

    Science.gov (United States)

    Ahmed, Mustafa Y.; Al-Khayat, Aisha; Al-Murshedi, Fathiya; Al-Futaisi, Amna; Chioza, Barry A.; Pedro Fernandez-Murray, J.; Self, Jay E.; Salter, Claire G.; Harlalka, Gaurav V.; Rawlins, Lettie E.; Al-Zuhaibi, Sana; Al-Azri, Faisal; Al-Rashdi, Fatma; Cazenave-Gassiot, Amaury; Wenk, Markus R.; Al-Salmi, Fatema; Patton, Michael A.; Silver, David L.; McMaster, Christopher R.; Crosby, Andrew H.

    2017-01-01

    Abstract Mutations in genes involved in lipid metabolism have increasingly been associated with various subtypes of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative motor neuron disorders characterized by spastic paraparesis. Here, we report an unusual autosomal recessive neurodegenerative condition, best classified as a complicated form of hereditary spastic paraplegia, associated with mutation in the ethanolaminephosphotransferase 1 (EPT1) gene (now known as SELENOI), responsible for the final step in Kennedy pathway forming phosphatidylethanolamine from CDP-ethanolamine. Phosphatidylethanolamine is a glycerophospholipid that, together with phosphatidylcholine, constitutes more than half of the total phospholipids in eukaryotic cell membranes. We determined that the mutation defined dramatically reduces the enzymatic activity of EPT1, thereby hindering the final step in phosphatidylethanolamine synthesis. Additionally, due to central nervous system inaccessibility we undertook quantification of phosphatidylethanolamine levels and species in patient and control blood samples as an indication of liver phosphatidylethanolamine biosynthesis. Although this revealed alteration to levels of specific phosphatidylethanolamine fatty acyl species in patients, overall phosphatidylethanolamine levels were broadly unaffected indicating that in blood EPT1 inactivity may be compensated for, in part, via alternate biochemical pathways. These studies define the first human disorder arising due to defective CDP-ethanolamine biosynthesis and provide new insight into the role of Kennedy pathway components in human neurological function. PMID:28052917

  16. Progressive cerebellar atrophy: hereditary ataxias and disorders with spinocerebellar degeneration.

    Science.gov (United States)

    Wolf, Nicole I; Koenig, Michel

    2013-01-01

    The hereditary ataxias with onset in childhood are a group of heterogeneous disorders, usually with autosomal recessive inheritance. In many of them, magnetic resonance imaging (MRI) shows cerebellar atrophy. The most prominent exception to this is Friedreich's ataxia, where MRI shows normal cerebellar volume, but sometimes spinal cord atrophy. In several of the hereditary ataxias, the causative gene plays an important role in DNA repair: ataxia telangiectasia and ataxia telangiectasia-like disorder, and ataxia with oculomotor apraxia type I and II. Mitochondrial metabolism is impaired in another group of inherited ataxias including the emergent group of defects in coenzyme Q10 synthesis. Few of these disorders are amenable to effective treatment, the most important of these being vitamin E-responsive ataxia. The autosomal dominant spinocerebellar ataxias are rare in childhood. Some of them, especially SCA7 and SCA2, may begin in childhood or even infancy, family history being positive in these cases. Additional clinical clues such as presence or absence of neuropathy or oculomotor apraxia still help in making a definitive diagnosis albeit there are still many unsolved cases. In pontocerebellar hypoplasia, a neurodegenerative disease with prenatal onset, the genetic basis of the different subtypes has recently been elucidated and involves genes with different functions.

  17. Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome: implications for normal aging and age-dependent neurodegenerative disorders.

    Science.gov (United States)

    Graziotto, John J; Cao, Kan; Collins, Francis S; Krainc, Dimitri

    2012-01-01

    While rapamycin has been in use for years in transplant patients as an antirejection drug, more recently it has shown promise in treating diseases of aging, such as neurodegenerative disorders and atherosclerosis. We recently reported that rapamycin reverses the cellular phenotype of fibroblasts from children with the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). We found that the causative aberrant protein, progerin, was cleared through autophagic mechanisms when the cells were treated with rapamycin, suggesting a new potential treatment for HGPS. Recent evidence shows that progerin is also present in aged tissues of healthy individuals, suggesting that progerin may contribute to physiological aging. While it is intriguing to speculate that rapamycin may affect normal aging in humans, as it does in lower organisms, it will be important to identify safer analogues of rapamycin for chronic treatments in humans in order to minimize toxicity. In addition to its role in HGPS and normal aging, we discuss the potential of rapamycin for the treatment of age-dependent neurodegenerative diseases.

  18. The potential use of adult stem cells for the treatment of multiple sclerosis and other neurodegenerative disorders.

    Science.gov (United States)

    Slavin, Shimon; Kurkalli, Basan G S; Karussis, Dimitrios

    2008-11-01

    No specific treatment exists for patients with multiple sclerosis (MS) who fail to respond to conventional immunosuppressive and immunomodulating modalities. Furthermore, no method is available for regeneration of existing defect in the central nervous system (CNS). The ultimate goals of MS treatment, similarly to other autoimmune diseases, are twofold: first, to eliminate self-reactive lymphocytes and to prevent de novo development of self-reactivity by induction of self-tolerance. Second, attempting regeneration and repair of existing damage. In the case of MS, there is a need to stop the ongoing process of inflammation against the CNS by self-reactive lymphocytes thus facilitating spontaneous re-myelinization while in parallel attempt to recover existing neurological deficits caused by the autoimmune process resulting in demyelinization. Cell therapy stands out as the most rationale approach for neurological regeneration. In the absence of clinically applicable approaches involving the use of embryonic stem cells, we are investigating the feasibility and efficacy of enriched autologous mesenchymal stromal cells (MSC) injected intrathecally and intravenously to induce in situ immunomodulation and neuroprotection and possibly facilitate repair of the CNS in patients with MS and other neurodegenerative disorders. Our preclinical results suggest that bone marrow cells may provide a source of stem cells with a potential for migration into inflamed CNS and differentiate into cells expressing neuronal and glial cell markers. Based on the preclinical data, we are currently evaluating the safety of a similar therapeutic approach in a small group of patients with MS and other neurodegenerative diseases.

  19. S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding.

    Science.gov (United States)

    Nakamura, T; Lipton, S A

    2007-07-01

    Although activation of glutamate receptors is essential for normal brain function, excessive activity leads to a form of neurotoxicity known as excitotoxicity. Key mediators of excitotoxic damage include overactivation of N-methyl-D-aspartate (NMDA) receptors, resulting in excessive Ca(2+) influx with production of free radicals and other injurious pathways. Overproduction of free radical nitric oxide (NO) contributes to acute and chronic neurodegenerative disorders. NO can react with cysteine thiol groups to form S-nitrosothiols and thus change protein function. S-nitrosylation can result in neuroprotective or neurodestructive consequences depending on the protein involved. Many neurodegenerative diseases manifest conformational changes in proteins that result in misfolding and aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Molecular chaperones - such as protein-disulfide isomerase, glucose-regulated protein 78, and heat-shock proteins - can provide neuroprotection by facilitating proper protein folding. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence that NO contributes to degenerative conditions by S-nitrosylating-specific chaperones that would otherwise prevent accumulation of misfolded proteins and neuronal cell death. In contrast, we also review therapeutics that can abrogate excitotoxic damage by preventing excessive NMDA receptor activity, in part via S-nitrosylation of this receptor to curtail excessive activity.

  20. ATP6V0A2 mutations present in two Mexican Mestizo children with an autosomal recessive cutis laxa syndrome type IIA

    Directory of Open Access Journals (Sweden)

    D. Bahena-Bahena

    2014-01-01

    Full Text Available Patients with ARCL-IIA harbor mutations in ATP6V0A2 that codes for an organelle proton pump. The ARCL-IIA syndrome characteristically presents a combined glycosylation defect affecting N-linked and O-linked glycosylations, differentiating it from other cutis laxa syndromes and classifying it as a Congenital Disorder of Glycosylation (ATP6V0A2-CDG. We studied two Mexican Mestizo patients with a clinical phenotype corresponding to an ARCL-IIA syndrome. Both patients presented abnormal transferrin (N-linked glycosylation but Patient 1 had a normal ApoCIII (O-linked glycosylation profile. Mutational screening of ATP6V0A2 using cDNA and genomic DNA revealed in Patient 1 a previously reported homozygous nonsense mutation c.187C>T (p.R63X associated with a novel clinical finding of a VSD. In Patient 2 we found a homozygous c.2293C>T (p.Q765X mutation that had been previously reported but found that it also altered RNA processing generating a novel transcript not previously identified (r.2176_2293del; p.F726Sfs*10. This is the first report to describe Mestizo patients with molecular diagnosis of ARCL-IIA/ATP6V0A2-CDG and to establish that their mutations are the first to be found in patients from different regions of the world and with different genetic backgrounds.

  1. A familial disorder with low bone density and renal phosphate wasting.

    NARCIS (Netherlands)

    Grondel, I.M.; Deure, J. van der; Zanen, A.L.; Dogger, M.; Heuvel, L.P.W.J. van den

    2009-01-01

    Hereditary forms of renal phosphate wasting have been studied thoroughly in the past years. X-linked Hypophosphatemic rickets (XLH), autosomal dominant hypophosphatemic rickets/osteomalacia (ADHR) and autosomal recessive hypophosphatemic rickets (ARHR) are known genetic disorders in which a disturba

  2. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia

    NARCIS (Netherlands)

    Kohl, S.; Zobor, D.; Chiang, W.C.; Weisschuh, N.; Staller, J.; Menendez, I.G.; Chang, S.; Beck, S.C.; Garrido, M. Garcia; Sothilingam, V.; Seeliger, M.W.; Stanzial, F.; Benedicenti, F.; Inzana, F.; Heon, E; Vincent, A.; Beis, J.; Strom, T.M.; Rudolph, G.; Roosing, S.; Hollander, A.I. den; Cremers, F.P.M.; Lopez, I.; Ren, H.; Moore, A.T.; Webster, A.R.; Michaelides, M.; Koenekoop, R.K.; Zrenner, E.; Kaufman, R.J.; Tsang, S.H.; Wissinger, B.; Lin, J.H.

    2015-01-01

    Achromatopsia (ACHM) is an autosomal recessive disorder characterized by color blindness, photophobia, nystagmus and severely reduced visual acuity. Using homozygosity mapping and whole-exome and candidate gene sequencing, we identified ten families carrying six homozygous and two compound-heterozyg

  3. Reduced cholinergic olfactory centrifugal inputs in patients with neurodegenerative disorders and MPTP-treated monkeys.

    Science.gov (United States)

    Mundiñano, Iñaki-Carril; Hernandez, Maria; Dicaudo, Carla; Ordoñez, Cristina; Marcilla, Irene; Tuñon, Maria-Teresa; Luquin, Maria-Rosario

    2013-09-01

    Olfactory impairment is a common feature of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). Olfactory bulb (OB) pathology in these diseases shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. Since cholinergic denervation might be a common underlying pathophysiological feature, the objective of this study was to determine cholinergic innervation of the OB in 27 patients with histological diagnosis of PD (n = 5), AD (n = 14), DLB (n = 8) and 8 healthy control subjects. Cholinergic centrifugal inputs to the OB were clearly reduced in all patients, the most significant decrease being in the DLB group. We also studied cholinergic innervation of the OB in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys (n = 7) and 7 intact animals. In MPTP-monkeys, we found that cholinergic innervation of the OB was reduced compared to control animals (n = 7). Interestingly, in MPTP-monkeys, we also detected a loss of cholinergic neurons and decreased dopaminergic innervation in the horizontal limb of the diagonal band, which is the origin of the centrifugal cholinergic input to the OB. All these data suggest that cholinergic damage in the OB might contribute, at least in part, to the olfactory dysfunction usually exhibited by these patients. Moreover, decreased cholinergic input to the OB found in MPTP-monkeys suggests that dopamine depletion in itself might reduce the cholinergic tone of basal forebrain cholinergic neurons.

  4. Application of PIXE in medical study. Environmental minerals and neurodegenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S. [Department of Neurology, Wakayama Medical College, Wakayama (Japan)

    1999-07-01

    Comparative study on amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PDC) in the Kii Peninsula of Japan and Guam was conducted to evaluate the participatory role of environmental minerals in the pathogenesis of the above neurodegenerative diseases, using particle-induced x-ray emission (PIXE) spectrometry and morphometric-statistical analysis. A significantly high content of Al in the hippocampus and spinal cord or Kii and Guamanian ALS/PD cases was found with a positive correlation for Fe and Cu, and a negative correlation for Zn. The numbers of hippocampal neurons in Guamanian PDC, Alzheimer's disease, and Parkinson's disease were significantly decreased with a high Al content. Al content significantly and positively correlated with the number of Alzheimer's neurofibrillary tangles (NFTs) in the hippocampus of ALS cases and controls in both foci, especially in Guamanian cases. The slope of best linear regression of Guamanian cases was markedly steeper than that of Japanese cases (p < 0,001), Morin staining for Al showed green fluorescence on the nucleolus, cytoplasm, and NFT in the hippocampus of Kii ALS cases. These findings suggest that Guamanian and Kii people have a predisposition to develop ALS/PDC precipitated by their geological/geochemical environmental status, i.e., a prolonged low intake or Ca and Mg together with excess exposure to Al and other environmental minerals. (author)

  5. Molecular characterization of WFS1 in patients with Wolfram syndrome

    NARCIS (Netherlands)

    Van den Ouweland, JMW; Cryns, K; Pennings, RJE; Walraven, [No Value; Janssen, GMC; Maassen, JA; Veldhuijzen, BFE; Arntzenius, AB; Lindhout, D; Cremers, CWRJ; Van Camp, G; Dikkeschei, LD

    2003-01-01

    Wolfram (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness) syndrome is a rare autosomal-recessive neurodegenerative disorder that is characterized by juvenile-onset diabetes mellitus, optic atrophy, diabetes insipidus, and sensorineural hearing impairment. A gene responsible for Wo

  6. Molecular characterization of WFS1 in patients with Wolfram syndrome.

    NARCIS (Netherlands)

    Ouweland, J.M.W. van den; Cryns, K.; Pennings, R.J.E.; Walraven, I.; Janssen, G.M.; Maassen, J.A.; Veldhuijzen, B.F.; Arntzenius, A.B.; Lindhout, D.; Cremers, C.W.R.J.; Camp, G. van; Dikkeschei, L.D.

    2003-01-01

    Wolfram (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness) syndrome is a rare autosomal-recessive neurodegenerative disorder that is characterized by juvenile-onset diabetes mellitus, optic atrophy, diabetes insipidus, and sensorineural hearing impairment. A gene responsible for Wo

  7. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia

    NARCIS (Netherlands)

    Namavar, Yasmin; Barth, Peter G; Kasher, Paul R; van Ruissen, Fred; Brockmann, Knut; Bernert, Günther; Writzl, Karin; Ventura, Karen; Cheng, Edith Y; Ferriero, Donna M; Basel-Vanagaite, Lina; Eggens, Veerle R C; Krägeloh-Mann, Ingeborg; De Meirleir, Linda; King, Mary; Graham, John M; von Moers, Arpad; Knoers, Nine; Sztriha, Laszlo; Korinthenberg, Rudolf; Dobyns, William B; Baas, Frank; Poll-The, Bwee Tien; Sival, Deborah

    2011-01-01

    Pontocerebellar hypoplasia is a group of autosomal recessive neurodegenerative disorders with prenatal onset. The common characteristics are cerebellar hypoplasia with variable atrophy of the cerebellum and the ventral pons. Supratentorial involvement is reflected by variable neocortical atrophy, ve

  8. A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum.

    Science.gov (United States)

    Boukhris, Amir; Feki, Imed; Elleuch, Nizar; Miladi, Mohamed Imed; Boland-Augé, Anne; Truchetto, Jérémy; Mundwiller, Emeline; Jezequel, Nadia; Zelenika, Diana; Mhiri, Chokri; Brice, Alexis; Stevanin, Giovanni

    2010-10-01

    Hereditary spastic paraplegia (HSP) with thin corpus callosum (TCC) and mental impairment is a frequent subtype of complicated HSP, often inherited as an autosomal recessive (AR) trait. It is clear from molecular genetic analyses that there are several underlying causes of this syndrome, with at least six genetic loci identified to date. However, SPG11 and SPG15 are the two major genes for this entity. To map the responsible gene in a large AR-HSP-TCC family of Tunisian origin, we investigated a consanguineous family with a diagnosis of AR-HSP-TCC excluded for linkage to the SPG7, SPG11, SPG15, SPG18, SPG21, and SPG32 loci. A genome-wide scan was undertaken using 6,090 SNP markers covering all chromosomes. The phenotypic presentation in five patients was suggestive of a complex HSP that associated an early-onset spastic paraplegia with mild handicap, mental deterioration, congenital cataract, cerebellar signs, and TCC. The genome-wide search identified a single candidate region on chromosome 9, exceeding the LOD score threshold of +3. Fine mapping using additional markers narrowed the candidate region to a 45.1-Mb interval (15.4 cM). Mutations in three candidate genes were excluded. The mapping of a novel AR-HSP-TCC locus further demonstrates the extensive genetic heterogeneity of this condition. We propose that testing for this locus should be performed, after exclusion of mutations in SPG11 and SPG15 genes, in AR-HSP-TCC families, especially when cerebellar ataxia and cataract are present.

  9. Rescue of the temperature-sensitive, autosomal-recessive mutation R298S in the sodium-bicarbonate cotransporter NBCe1-A characterized by a weakened dimer and abnormal aggregation

    Science.gov (United States)

    Gill, Harindarpal S.; Choi, Kun-Young; Kammili, Lakshmi; Popratiloff, Anastas

    2015-01-01

    Background Band keratopathy, an ocular disease that is characterized by hypercalcemia and opaque bands across the cornea, has been associated with kidney disease. Type-II renal tubular acidosis (RTA), a condition in which the kidneys fail to recover bicarbonate (HCO3−) in the proximal tubule of the nephron, results in HCO3− wastage in the urine and low blood pH. The development of these diseases is associated with autosomal-recessive mutations in the Na+-coupled HCO3− cotransporter NBCe1-A located at the basolateral membranes of either cell type. Methods We provide insight into the devastating R298S mutation found in type-II RTA-afflicted individuals using confocal-microscopy imaging of fluorescently-tagged NBCe1-A and NBCe1-A-R298S molecules expressed in human corneal endothelial and proximal tubule cells and from in-depth biophysical studies of their cytoplasmic N-terminal domains (Nt and Nt-R298S), including Nt crystal structure, melting-temperature, and homodimer dissociation constant (KD) analyses. Results We illuminate and rescue trafficking defects of the R298S mutation of NBCe1-A. The KD for Nt monomer-dimer equilibrium is established. The KD for Nt-R298S is significantly higher, but immeasurable due to environmental factors (pH, temperature, concentration) that result in dimer instability leading to precipitation. The crystal structure of Nt-dimer shows that R298 is part of a putative substrate conduit and resides near the dimer interface held together by hydrogen-bond networks. Conclusions The R298S is a temperature-sensitive mutation in Nt that results in instability of the colloidal system leading to abnormal aggregation. General significance Our findings provide new perspectives to the aberrant mechanism of certain ocular pathologies and type-II RTA associated with the R298S mutation. PMID:25743102

  10. Aberrant expression pattern of a novel mutation in connexin 26 gene resulting in autosomal recessive deafness%连接蛋白基因一个新致聋突变体p.Y155X及功能分析

    Institute of Scientific and Technical Information of China (English)

    杨中纯; 肖自安; 谢鼎华; 夏昆

    2010-01-01

    Objective To report a novel deafness-causing mutation c. 465T→A, p. Y155X in connexin 26 (CX26) (also called gap junction protein β-2, GJB2 ), and perform functional analysis of the mutated protein p. Y155X in Hela cells to explore the underlying mechanism on deafness. Methods Mutations in CX26 gene of the proband in an autosomal recessive inherited deafness family were tested by direct DNA sequencing method. Mutant p. Y155X, which was found in the deafness family, and wild type CX26 (wtCX26), were directionally subcloned into the pEGFP-N1 plasmid to construct the recombinant fusion protein expression vector of CX26 p. Y155X-EGFP and wtCX26-EGFP, followed by transfecting into HeLa cells. The expression of the mutated and wild type proteins was analyzed using Western blot analysis. The intracellular localization of proteins and the formation of gap junction-like plaques at plasma membrane were observed under confocal microscope. Gap junction coupling was tested by calcein-AM dye transfer experiment. Results A novel nonsense mutation c. 465T→A, p. Y155X in the CX26 gene was found in the autosomal recessive deafness family. The molecular weight of protein p. Y155X was smaller than that of wtCX26 in transiently expressed HeLa cells. The mutated protein failed to reach the cell surface to form gap junction plaques, and displayed cytoplasmic accumulation. Also, no calcein-AM dye was transferred from the donor cells to the recipient cells when both were transfected with CX26 p. Y155X. The wtCX26 protein localized at the cell membrane to form gap junction plaques with permeability to fluorescent dye calcein-AM. Conclusion CX26 p. Y155X could not be targeted to the plasma membrane and there was no formation of gap junction channels between the adjacent cells. The mutation c. 465T→A, p. Y155X in CX26 gene was responsible for the autosomal recessive hearing impairment in this family.%目的 观察连接蛋白(connexin 26,CX26)基因的一个新致聋突变c.465T

  11. Mesenchymal stem cells-based therapy as a potential treatment in neurodegenerative disorders: is the escape from senescence an answer?

    Science.gov (United States)

    Castorina, Alessandro; Szychlinska, Marta Anna; Marzagalli, Rubina; Musumeci, Giuseppe

    2015-06-01

    Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-repair ability of neuronal cells, which undergo progressive deterioration. Once initiated, this process hampers the already limited regenerative power of the central nervous system, making the search for new therapeutic strategies particularly difficult in elderly affected patients. So far, mesenchymal stem cells have proven to be a viable option to ameliorate certain aspects of neurodegeneration, as they possess high proliferative rate and differentiate in vitro into multiple lineages. However, accumulating data have demonstrated that during long-term culture, mesenchymal stem cells undergo spontaneous transformation. Transformed mesenchymal stem cells show typical features of senescence, including the progressive shortening of telomers, which results in cell loss and, as a consequence, hampered regenerative potential. These evidences, in line with those observed in mesenchymal stem cells isolated from old donors, suggest that senescence may represent a limit to mesenchymal stem cells exploitation in therapy, prompting scholars to either find alternative sources of pluripotent cells or to arrest the age-related transformation. In the present review, we summarize findings from recent literature, and critically discuss some of the major hurdles encountered in the search of appropriate sources of mesenchymal stem cells, as well as benefits arising from their use in neurodegenerative diseases. Finally, we provide some insights that may aid in the development of strategies to arrest or, at least, delay the aging of mesenchymal stem cells to improve their therapeutic potential.

  12. Mesenchymal stem cells-based therapy as a potential treatment in neurodegenerative disorders: is the escape from senescence an answer?

    Directory of Open Access Journals (Sweden)

    Alessandro Castorina

    2015-01-01

    Full Text Available Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-repair ability of neuronal cells, which undergo progressive deterioration.Once initiated, this process hampers the already limited regenerative power of the central nervous system, making the search for new therapeutic strategies particularly difficult in elderly affected patients. So far, mesenchymal stem cells have proven to be a viable option to ameliorate certain aspects of neurodegeneration, as they possess high proliferative rate and differentiate in vitro into multiple lineages. However, accumulating data have demonstrated that during long-term culture, mesenchymal stem cells undergo spontaneous transformation. Transformed mesenchymal stem cells show typical features of senescence, including the progressive shortening of telomers, which results in cell loss and, as a consequence, hampered regenerative potential. These evidences, in line with those observed in mesenchymal stem cells isolated from old donors, suggest that senescence may represent a limit to mesenchymal stem cells exploitation in therapy, prompting scholars to either find alternative sources of pluripotent cells or to arrest the age-related transformation. In the present review, we summarize findings from recent literature, and critically discuss some of the major hurdles encountered in the search of appropriate sources of mesenchymal stem cells, as well as benefits arising from their use in neurodegenerative diseases. Finally, we provide some insights that may aid in the development of strategies to arrest or, at least, delay the aging of mesenchymal stem cells to improve their therapeutic potential.

  13. Scientific and ethical issues related to stem cell research and interventions in neurodegenerative disorders of the brain.

    Science.gov (United States)

    Barker, Roger A; de Beaufort, Inez

    2013-11-01

    Should patients with Parkinson's disease participate in research involving stem cell treatments? Are induced pluripotent stem cells (iPSC) the ethical solution to the moral issues regarding embryonic stem cells? How can we adapt trial designs to best assess small numbers of patients in receipt of invasive experimental therapies? Over the last 20 years there has been a revolution in our ability to make stem cells from different sources and use them for therapeutic gain in disorders of the brain. These cells, which are defined by their capacity to proliferate indefinitely as well as differentiate into selective phenotypic cell types, are viewed as being especially attractive for studying disease processes and for grafting in patients with chronic incurable neurodegenerative disorders of the CNS such as Parkinson's disease (PD). In this review we briefly discuss and summarise where our understanding of stem cell biology has taken us relative to the clinic and patients, before dealing with some of the major ethical issues that work of this nature generates. This includes issues to do with the source of the cells, their ownership and exploitation along with questions about patient recruitment, consent and trial design when they translate to the clinic for therapeutic use.

  14. Copper interactions with DNA of chromatin and its role in neurodegenerative disorders

    Institute of Scientific and Technical Information of China (English)

    M.Govindaraju; H.S. Shekar; S.B.Sateesha; P.Vasudeva Raju; K.R.Sambasiva Rao; K.S.J. Rao; A.J.Rajamma

    2013-01-01

    In this study, we have demonstrated the conformational changes to DNA induced by abnormal interactions of copper using circular dichroism, in combination with UV-absorbance and fluorescence spectroscopy. Results confirm that binding of copper to bases of DNA in chromatin is concentration dependent. Binding efficiency of Cu2+ions to DNA is increased in proportion to the degree of unwinding of the double helix induced by denaturation. Altered B-DNA conformation will alter the integrity of DNA which may affect the normal process of DNA replication and transcription. Copper induced DNA damage in the brain may cause neurotoxicity and the neuronal cell death and is implicated in Alzheimer's disease and other neurological disorders.

  15. Targeting autophagy in neurodegenerative diseases.

    Science.gov (United States)

    Vidal, René L; Matus, Soledad; Bargsted, Leslie; Hetz, Claudio

    2014-11-01

    The most prevalent neurodegenerative disorders involve protein misfolding and the aggregation of specific proteins. Autophagy is becoming an attractive target to treat neurodegenerative disorders through the selective degradation of abnormally folded proteins by the lysosomal pathway. However, accumulating evidence indicates that autophagy impairment at different regulatory steps may contribute to the neurodegenerative process. Thus, a complex scenario is emerging where autophagy may play a dual role in neurodegenerative diseases by causing the downstream effect of promoting the degradation of misfolded proteins and an upstream effect where its deregulation perturbs global proteostasis, contributing to disease progression. Challenges in the future development of therapeutic strategies to target the autophagy pathway are discussed.

  16. TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders

    Directory of Open Access Journals (Sweden)

    Stuart L. Graham

    2013-05-01

    Full Text Available The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF, neurotrophin-3 (NT3 and neurotrophin-4 (NT4. TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. Unusual changes in TrkB signalling pathway have also been observed and implicated in a range of cancers. Variations in TrkB pathway have been observed in obesity and hyperphagia related disorders as well. Both BDNF and TrkB have been shown to play critical roles in the survival of retinal ganglion cells in the retina. The ability to specifically modulate TrkB signalling can be critical in various pathological scenarios associated with this pathway. In this review, we discuss the mechanisms underlying TrkB signalling, disease implications and explore plausible ameliorative or preventive approaches.

  17. Genetic screening of Congenital Short Bowel Syndrome patients confirms CLMP as the major gene involved in the recessive form of this disorder

    NARCIS (Netherlands)

    Alves, Maria M.; Halim, Danny; Maroofian, Reza; de Graaf, Bianca M.; Rooman, Raoul; van der Werf, Christine S.; Van de Vijver, Els; Mehrjardi, Mohammad Y. V.; Aflatoonian, Majid; Chioza, Barry A.; Baple, Emma L.; Dehghani, Mohammadreza; Crosby, Andrew H.; Hofstra, Robert M. W.

    2016-01-01

    Congenital short bowel syndrome (CSBS) is an intestinal pediatric disorder, where patients are born with a dramatic shortened small intestine. Pathogenic variants in CLMP were recently identified to cause an autosomal recessive form of the disease. However, due to the rare nature of CSBS, only a sma

  18. 常染色体隐性遗传多囊肾病 PKHD1基因检测%Detection of PKHD1 gene in autosomal recessive polycystic kidney disease

    Institute of Scientific and Technical Information of China (English)

    宋红霞; 孙春梅; 韩蓁; 李媛; 周熙惠

    2013-01-01

    Objective To identify and analyze mutation in polycystic kidney and hepatic disease 1 ( PKHD1 ) in one abortion fetus of autosomal recessive polycystic kidney disease ( ARPKD).Methods Genome DNA was extracted from peripheral venous blood sampled from the fetus and his parents .PCR amplification and DNA direct sequencing and other technical means were adopted to perform gene mutation analysis of PKHD1.Results The following DNA sequence variations were found , ISV7+51G>T in intron 7, c.1587T>C(p. N529N) in exon 17, c.3785C>T(p.A1262V) in exon 32, which caused amino acid substitution from Alanine to Valine .Conclusion The variation of PKHD1 sequence may be involved in the pathogenesis of ARPKD .The sequence analysis of PKHD1 gene can be used as an effective method for prenatal diagnosis .%目的对1例引产的常染色体隐性遗传性多囊肾病胎儿的多囊肾/多囊肝病变1基因( PKHD1)进行基因突变鉴定和结果分析。方法采集引产胎儿及其父母外周静脉血,分别提取基因组DNA,应用PCR扩增、DNA直接测序等技术手段对该胎儿及其父母进行PKHD1基因突变分析。结果胎儿PKHD1基因出现几种序列变异:PKHD1基因第7号内含子发生ISV7+51G>T变异;第17号外显子发生c.1587T>C(p.N529N)变异;第32号外显子发生c.3785C>T(p.A1262V)变异,导致编码PKHD1蛋白多肽链第1262号氨基酸由丙氨酸变为缬氨酸。结论 PKHD1基因序列变异可能是常染色体隐性遗传性多囊肾病的病因,PKHD1基因检测可作为产前筛查的有效诊断手段。

  19. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders.

    Science.gov (United States)

    Jana, Arundhati; Modi, Khushbu K; Roy, Avik; Anderson, John A; van Breemen, Richard B; Pahan, Kalipada

    2013-06-01

    This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA - CREB pathway, which may be of benefit for various neurodegenerative disorders.

  20. Glutamate and Neurodegenerative Disease

    Science.gov (United States)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  1. The proposed use of cervical spinal cord stimulation for the treatment and prevention of cognitive decline in dementias and neurodegenerative disorders.

    Science.gov (United States)

    Tomycz, Nestor D

    2016-11-01

    Cervical spinal cord stimulation is a well-established treatment for intractable neuropathic upper extremity pain. More than 20years ago it was demonstrated that cervical spinal cord stimulation could engender an increase in cerebral blood flow. Cerebral blood flow has been shown to be decreased in many patients with dementia and in various neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Furthermore, there is evidence that reduced cerebral blood flow worsens neurodegenerative disease and may also predict which patients progress from mild cognitive impairment to full blown Alzheimer's disease. Thus, the identification of decreased cerebral blood flow in patients with early cognitive problems may offer clinicians a window of opportunity to intervene and prevent further brain damage. Further evidence that supports augmenting cerebral blood flow as an effective strategy for preventing and treating cognitive brain dysfunction comes from experimental studies with omental transposition. The author proposes cervical spinal cord stimulation as a titratable, programmable extracranial neuromodulation technique to increase cerebral blood flow for the purposes of improving cognitive function and preventing cognitive deterioration in patients with dementias and neurodegenerative disorders.

  2. Neurodegenerative disease phenotypes in carriers of MAPT p.A152T, a risk factor for frontotemporal dementia spectrum disorders and Alzheimer disease.

    Science.gov (United States)

    Lee, Suzee E; Tartaglia, Maria C; Yener, Görsev; Genç, Sermin; Seeley, William W; Sanchez-Juan, Pascual; Moreno, Fermin; Mendez, Mario F; Klein, Eric; Rademakers, Rosa; López de Munain, Adolfo; Combarros, Onofre; Kramer, Joel H; Kenet, Robert O; Boxer, Adam L; Geschwind, Michael D; Gorno-Tempini, Maria-Luisa; Karydas, Anna M; Rabinovici, Gil D; Coppola, Giovanni; Geschwind, Daniel H; Miller, Bruce L

    2013-01-01

    Recently, Coppola and colleagues demonstrated that a rare microtubule-associated protein tau (MAPT) sequence variant, c.454G>A (p.A152T) significantly increases the risk of frontotemporal dementia (FTD) spectrum disorders and Alzheimer disease (AD) in a screen of 15,369 subjects. We describe clinical features of 9 patients with neurodegenerative disease (4 women) harboring p.A152T, aged 51 to 79 years at symptom onset. Seven developed FTD spectrum clinical syndromes, including progressive supranuclear palsy syndrome (n=2), behavioral variant FTD (bvFTD, n=1), nonfluent variant primary progressive aphasia (nfvPPA, n=2), and corticobasal syndrome (n=2); 2 patients were diagnosed with clinical AD. Thus, MAPT p.A152T is associated with a variety of FTD spectrum clinical presentations, although patients with clinical AD are also identified. These data warrant larger studies with clinicopathologic correlation to elucidate the influence of this genetic variant on neurodegenerative disease.

  3. Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: ashwagandha.

    Science.gov (United States)

    Ven Murthy, M R; Ranjekar, Prabhakar K; Ramassamy, Charles; Deshpande, Manasi

    2010-09-01

    nontoxic medication that normalizes physiological functions, disturbed by chronic stress, through correction of imbalances in the neuroendocrine and immune systems [9, 10]. The scientific research that has been carried out on Ashwagandha and other ayurvedic herbal medicines may be classified into three major categories, taking into consideration the endogenous or exogenous phenomena that are known to cause physiological disequilibrium leading to the pathological state; (A) pharmacological and therapeutic effects of extracts, purified compounds or multi-herbal mixtures on specific non-neurological diseases; (B) pharmacological and therapeutic effects of extracts, purified compounds or multi-herbal mixtures on neurodegenerative disorders; and (C) biochemical, physiological and genetic studies on the herbal plants themselves, in order to distinguish between those originating from different habitats, or to improve the known medicinal quality of the indigenous plant. Some of the major points on its use in the treatment of neurodegenerative disorders are described below.

  4. Aspectos clínicos da doença renal policística autossômica recessiva DRPAR Clinical aspects of autosomal recessive polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Natasha Favoretto Dias

    2010-09-01

    Full Text Available INTRODUÇÃO: A Doença Renal Policística Autossômica Recessiva (DRPAR é uma causa importante de morbidade e mortalidade pediátricas, com um espectro variável de manifestações clínicas. MÉTODOS: A apresentação e evolução clínica de 25 pacientes (Pts foram analisadas através da revisão de prontuários, aplicando-se os formulários propostos por Guay-Woodford et al. As morbidades associadas à doença foram avaliadas quanto à frequência e à idade de manifestação. RESULTADOS: A idade média de diagnóstico foi de 61,45 meses (0 a 336,5 meses, com distribuição similar entre os sexos (52% dos pts do sexo feminino. Houve histórico familiar da doença em 20% dos casos (5/25, com dois casos de consanguinidade. Na análise inicial, diagnosticou-se hipertensão arterial (HAS em 56% dos Pts (14/25; doença renal crônica estágio > 2 (DRC > 2 em 24% (6/25; infecções do trato urinário (ITU em 40% (10/25 e hipertensão portal (HP em 32% dos casos (8/25. Das ultrassonografias abdominais iniciais, 80% demonstraram rins ecogênicos com cistos grosseiros e 64% detectaram fígado e vias biliares normais. Inibidores da ECA foram utilizados em 36% dos Pts, betabloqueadores em 20%, bloqueadores de canais de cálcio em 28% e diuréticos em 36% dos casos. Na análise final, após um tempo de acompanhamento médio de 152,2 meses (29,8 a 274,9 meses, HAS foi diagnosticada em 76% dos Pts, DRC > 2 em 44%, ITU em 52% e HP em 68%. CONCLUSÃO: As altas morbidade e mortalidade associadas à DRPAR justificam a construção de um banco de dados internacional, visando ao estabelecimento de um tratamento de suporte precoce.INTRODUCTION: Autosomal Recessive Polycystic Kidney Disease (ARPKD is an important pediatric cause of morbidity and mortality, with a variable clinical spectrum. METHODS: The clinical presentation and evolution of 25 patients (Pts were analyzed by clinical record review, according to the forms proposed by Guay-Woodford et al

  5. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach.

    Science.gov (United States)

    Calabrese, V; Scapagnini, G; Colombrita, C; Ravagna, A; Pennisi, G; Giuffrida Stella, A M; Galli, F; Butterfield, D A

    2003-12-01

    Oxidative stress has been implicated in mechanisms leading to neuronal cell injury in various pathological states of the brain. Alzheimer's disease (AD) is a progressive disorder with cognitive and memory decline, speech loss, personality changes and synapse loss. Many approaches have been undertaken to understand AD, but the heterogeneity of the etiologic factors makes it difficult to define the clinically most important factor determining the onset and progression of the disease. However, increasing evidence indicates that factors such as oxidative stress and disturbed protein metabolism and their interaction in a vicious cycle are central to AD pathogenesis. Brains of AD patients undergo many changes, such as disruption of protein synthesis and degradation, classically associated with the heat shock response, which is one form of stress response. Heat shock proteins are proteins serving as molecular chaperones involved in the protection of cells from various forms of stress.Recently, the involvement of the heme oxygenase (HO) pathway in anti-degenerative mechanisms operating in AD has received considerable attention, as it has been demonstrated that the expression of HO is closely related to that of amyloid precursor protein (APP). HO induction occurs together with the induction of other HSPs during various physiopathological conditions. The vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, products of HO-catalyzed reaction, represent a protective system potentially active against brain oxidative injury. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing the heat shock response. Increasing interest has been focused on identifying dietary compounds that can inhibit, retard or reverse the multi-stage pathophysiological events underlying AD pathology. Alzheimer's disease, in fact, involves a chronic inflammatory response

  6. No Geographic Correlation between Lyme Disease and Death Due to 4 Neurodegenerative Disorders, United States, 2001-2010.

    Science.gov (United States)

    Forrester, Joseph D; Kugeler, Kiersten J; Perea, Anna E; Pastula, Daniel M; Mead, Paul S

    2015-11-01

    Associations between Lyme disease and certain neurodegenerative diseases have been proposed, but supportive evidence for an association is lacking. Similar geographic distributions would be expected if 2 conditions were etiologically linked. Thus, we compared the distribution of Lyme disease cases in the United States with the distributions of deaths due to Alzheimer disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson disease; no geographic correlations were identified. Lyme disease incidence per US state was not correlated with rates of death due to ALS, MS, or Parkinson disease; however, an inverse correlation was detected between Lyme disease and Alzheimer disease. The absence of a positive correlation between the geographic distribution of Lyme disease and the distribution of deaths due to Alzheimer disease, ALS, MS, and Parkinson disease provides further evidence that Lyme disease is not associated with the development of these neurodegenerative conditions.

  7. DNA damage in neurodegenerative diseases.

    Science.gov (United States)

    Coppedè, Fabio; Migliore, Lucia

    2015-06-01

    Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans.

  8. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders I: Parkinson's disease.

    Science.gov (United States)

    Campos, Helineide Cristina; da Rocha, Miguel Divino; Viegas, Flávia Pereira Dias; Nicastro, Patrícia Carolina; Fossaluzza, Poliana Calve; Fraga, Carlos Alberto Manssour; Barreiro, Eliezer J; Viegas, Claudio

    2011-03-01

    Neurodegenerative disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS) are currently incurable pathologies with huge social and economic impacts closely related to the increasing of life expectancy in modern times. Although the clinical and neuropathological aspects of these debilitating disorders are distinct, they share a pattern of neurodegeneration in anatomically or functionally related regions. For each disease, presently available treatments only address symptoms and do not alter the course or progression of the underlying diseases. In this context, the search for new effective chemical entities, capable of acting on diverse biochemical targets, with new mechanisms of action and low toxicity are genuine challenges to research groups and the pharmaceutical industry. This medical need has led to the reemerging of modern natural products chemistry that has yielded sophisticated and complex new lead molecules for drug discovery and development. In this review we discuss some of the main contributions of the natural products chemistry that covers multiple and varied plant species. Advances in the discovery of active constituents of plants, herbs, and extracts prescribed by traditional medicine practices for the treatment of senile neurodegenerative disorders, especially for PD, in the period after the 2000s is reviewed. The most important contributions from the 1990s are also discussed. The review also focuses on the pharmacological mechanisms of action that might underlie the purported beneficial improvements in memory and cognition, neurovascular function, and in neuroprotection. It is concluded that natural product chemistry brings tremendous diversity and historical precedent to a huge area of unmet medical need.

  9. Oxidative Stress and Protein Quality Control Systems in the Aged Canine Brain as a Model for Human Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Mariarita Romanucci

    2015-01-01

    Full Text Available Aged dogs are considered the most suitable spontaneous animal model for studying normal aging and neurodegenerative diseases. Elderly canines naturally develop cognitive dysfunction and neuropathological hallmarks similar to those seen in humans, especially Alzheimer’s disease-like pathology. Pet dogs also share similar living conditions and diets to humans. Oxidative damage accumulates in the canine brain during aging, making dogs a valid model for translational antioxidant treatment/prevention studies. Evidence suggests the presence of detective protein quality control systems, involving ubiquitin-proteasome system (UPS and Heat Shock Proteins (HSPs, in the aged canine brain. Further studies on the canine model are needed to clarify the role of age-related changes in UPS activity and HSP expression in neurodegeneration in order to design novel treatment strategies, such as HSP-based therapies, aimed at improving chaperone defences against proteotoxic stress affecting brain during aging.

  10. The Role of Uric Acid and Methyl Derivatives in the Prevention of Age-Related Neurodegenerative Disorders.

    Science.gov (United States)

    Cutler, Roy G; Camandola, Simonetta; Malott, Kelli F; Edelhauser, Maria A; Mattson, Mark P

    2015-01-01

    High uric acid (UA levels have been correlated with a reduced risk of many neurodegenerative diseases through mechanisms involving chelating Fenton reaction transitional metals, antioxidant quenching of superoxide and hydroxyl free radicals, and as an electron donor that increases antioxidant enzyme activity (e.g. SOD. However, the clinical usefulness of UA is limited by its' low water solubility and propensity to form inflammatory crystals at hyperuricemic levels. This review focuses on the role of UA in neuroprotection, as well as potential strategies aimed at increasing UA levels in the soluble range, and the potential therapeutic use of more water-soluble methyl-UA derivatives from the natural catabolic end-products of dietary caffeine, theophylline, and theobromine.

  11. The X-Linked Hypothesis of Brain Disorders: Can Gender Ratios Tell Us Anything About Cellular Etiology of Neurodegenerative and Psychiatric Diseases?

    Science.gov (United States)

    Turkheimer, Federico E; Bodini, Benedetta; Politis, Marios; Pariante, Carmine M; Ciccarelli, Olga; Yeo, Ronald A

    2015-12-01

    In this article, we propose an X-linked hypothesis of brain disorders that postulates a neuronal origin of those neurodegenerative and psychiatric disorders with a greater male prevalence. The hypothesis is based on the accumulated genetics and genomic evidence linking X chromosome genes and transcripts to neuronal cells. The behavioral genetics literature has long pointed to the link between postsynaptic protein complexes coded on chromosome X and mental retardation. More recently, novel genomic evidence has emerged of X-linked mRNA overexpression of neuronal source in the human brain. We review the evidence for this hypothesis and its consistency with the distribution across genders of brain disorders of known aetiology. We then provide examples of the utilization of this hypothesis in the investigation of the pathophysiology of complex brain disorders in both the stratification of disease cohorts and the development of realistic preclinical models. We conclude by providing a general framework for testing its validity, which will be exploited in future studies, and provide future directions for research.

  12. Community engagement and education: addressing the needs of South Asian families with genetic disorders.

    Science.gov (United States)

    Khan, Nasaim; Kerr, Gifford; Kingston, Helen

    2016-10-01

    Consanguineous marriage is common among the South Asian heritage community in the UK. While conferring social and cultural benefits, consanguinity is associated with an increased risk of autosomal recessive disorders and an increase in childhood death and disability. We have previously developed a genetic service to address the needs of this community. We report the extension of this service to include community-based initiatives aimed at promoting understanding of genetic issues related to consanguinity and improving access to genetic services. Our approach was to develop integrated clinical, educational and community engagement initiatives that would be sustainable on a long-term basis. The service provided for South Asian families by a specialist genetic counsellor was extended, and a series of genetics education and awareness sessions were provided for a diverse range of frontline healthcare workers. Two community genetic outreach worker posts were established to facilitate the engagement of the local South Asian population with genetics. The education and awareness sessions helped address the lack of genetic knowledge among primary health care professionals and community workers. Engagement initiatives by the genetic outreach worker raised awareness of genetic issues in the South Asian community and families affected by autosomal recessive disorders. All three elements of the extended service generated positive feedback. A three-stranded approach to addressing the needs of consanguineous families affected by autosomal recessive disorders as recommended by the World Health Organisation is suggested to be an acceptable, effective and sustainable approach to delivery of service in the UK.

  13. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  14. Cerebral Blood Flow and A beta-Amyloid Estimates by WARAM Analysis of [C-11]PiB Uptake Distinguish among and between Neurodegenerative Disorders and Aging

    DEFF Research Database (Denmark)

    Rodell, Anders B.; O'Keefe, Graeme; Rowe, Christopher C.

    2017-01-01

    metabolism and reduction of blood flow by neurovascular coupling in neurodegenerative disorders, including Alzheimer’s disease. Methods: Previously reported images of [11C]PiB retention in brain of 29 subjects with cognitive impairment or dementia [16 Alzheimer’s Disease (AD), eight subjects with dementia...... among patients with dementia, including AD, and healthy volunteers, with ROC that are superior to conventional methods of analysis. The distinction between estimates of flow and amyloid load from the same dynamic emission tomograms provides valuable pathogenetic information.......Background: We report results of the novel Washout Allometric Reference Method (WARM) that uses estimates of cerebral blood flow and amyloid load from the same [11C]Pittsburgh Compound B ([11C]PiB) retention maps in brain to distinguish between patients with different forms dementia, including...

  15. Kartagener syndrome: a rare genetic disorder.

    Science.gov (United States)

    Shakya, K

    2009-01-01

    Kartagener Syndrome is a rare autosomal recessive disorder consisting of triad of sinusitis, bronchiectasis and situs inversus with dextrocardia. It is the subset of disorder called primary ciliary dyskinesia in which the cilia have abnormal structure and/or function resulting in multisystem diseases of various severity. Clinical manifestations include lifelong, chronic upper and lower respiratory tract diseases secondary to ineffective mucociliary clearance. Early diagnosis and management of chest infections can prevent irreversible damage to lungs and prevent potential lifelong complications. This case report is on a patient who presented with long standing history of sinusitis, bronchiectasis and on examination situs inversus with dextrocardia.

  16. Prospective diagnostic analysis of copy number variants using SNP microarrays in individuals with autism spectrum disorders.

    Science.gov (United States)

    Nava, Caroline; Keren, Boris; Mignot, Cyril; Rastetter, Agnès; Chantot-Bastaraud, Sandra; Faudet, Anne; Fonteneau, Eric; Amiet, Claire; Laurent, Claudine; Jacquette, Aurélia; Whalen, Sandra; Afenjar, Alexandra; Périsse, Didier; Doummar, Diane; Dorison, Nathalie; Leboyer, Marion; Siffroi, Jean-Pierre; Cohen, David; Brice, Alexis; Héron, Delphine; Depienne, Christel

    2014-01-01

    Copy number variants (CNVs) have repeatedly been found to cause or predispose to autism spectrum disorders (ASDs). For diagnostic purposes, we screened 194 individuals with ASDs for CNVs using Illumina SNP arrays. In several probands, we also analyzed candidate genes located in inherited deletions to unmask autosomal recessive variants. Three CNVs, a de novo triplication of chromosome 15q11-q12 of paternal origin, a deletion on chromosome 9p24 and a de novo 3q29 deletion, were identified as the cause of the disorder in one individual each. An autosomal recessive cause was considered possible in two patients: a homozygous 1p31.1 deletion encompassing PTGER3 and a deletion of the entire DOCK10 gene associated with a rare hemizygous missense variant. We also identified multiple private or recurrent CNVs, the majority of which were inherited from asymptomatic parents. Although highly penetrant CNVs or variants inherited in an autosomal recessive manner were detected in rare cases, our results mainly support the hypothesis that most CNVs contribute to ASDs in association with other CNVs or point variants located elsewhere in the genome. Identification of these genetic interactions in individuals with ASDs constitutes a formidable challenge.

  17. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism.

    NARCIS (Netherlands)

    Steinfeld, R.; Grapp, M.; Kraetzner, R.; Dreha-Kulaczewski, S.; Helms, G.; Dechent, P.; Wevers, R.A.; Grosso, S.; Gartner, J.

    2009-01-01

    Sufficient folate supplementation is essential for a multitude of biological processes and diverse organ systems. At least five distinct inherited disorders of folate transport and metabolism are presently known, all of which cause systemic folate deficiency. We identified an inherited brain-specifi

  18. Mesenchymal stem cells-based therapy as a potential treatment in neurodegenerative disorders:is the escape from senescence an answer?

    Institute of Scientific and Technical Information of China (English)

    Alessandro Castorina; Marta Anna Szychlinska; Rubina Marzagalli; Giuseppe Musumeci

    2015-01-01

    Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-repair ability of neuronal cells, which undergo progressive deterioration. Once initiated, this process hampers the already limited regenerative power of the central ner-vous system, making the search for new therapeutic strategies particularly difficult in elderly affected patients. So far, mesenchymal stem cells have proven to be a viable option to ameliorate certain aspects of neurodegeneration, as they possess high proliferative rate and differentiate in vitro into multiple lineages. However, accumulating data have demonstrated that during long-term culture, mesenchymal stem cells undergo spontaneous transformation. Transformed mesenchymal stem cells show typical features of senescence, including the progressive shortening of telomers, which results in cell loss and, as a consequence, hampered regenerative potential. These evidences, in line with those observed in mesenchymal stem cells isolated from old donors, suggest that senescence may represent a limit to mesenchymal stem cells exploitation in therapy, prompting scholars to either ifnd alternative sources of pluripotent cells or to arrest the age-re-lated transformation. In the present review, we summarize ifndings from recent literature, and critically discuss some of the major hurdles encountered in the search of appropriate sources of mesenchymal stem cells, as well as beneifts arising from their use in neurodegenerative diseases. Finally, we provide some insights that may aid in the development of strategies to arrest or, at least, delay the aging of mesenchymal stem cells to improve their therapeutic potential.

  19. Sirtuin deacetylases in neurodegenerative diseases of aging

    Institute of Scientific and Technical Information of China (English)

    Adrianna Z Herskovits; Leonard Guarente

    2013-01-01

    Sirtuin enzymes are a family of highly conserved protein deacetylases that depend on nicotinamide adenine dinucleotide (NAD+) for their activity.There are seven sirtuins in mammals and these proteins have been linked with caloric restriction and aging by modulating energy metabolism,genomic stability and stress resistance.Sirtuin enzymes are potential therapeutic targets in a variety of human diseases including cancer,diabetes,inflammatory disorders and neurodegenerative disease.Modulation of sirtuin activity has been shown to impact the course of several aggregate-forming neurodegenerative disorders including Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis and spinal and bulbar muscular atrophy.Sirtuins can influence the progression of neurodegenerative disorders by modulating transcription factor activity and directly deacetylating proteotoxic species.Here,we describe sirtuin protein targets in several aggregate-forming neurodegenerative diseases and discuss the therapeutic potential of compounds that modulate sirtuin activity in these disorders.

  20. Depressive symptoms in neurodegenerative diseases.

    Science.gov (United States)

    Baquero, Miquel; Martín, Nuria

    2015-08-16

    Depressive symptoms are very common in chronic conditions. This is true so for neurodegenerative diseases. A number of patients with cognitive decline and dementia due to Alzheimer's disease and related conditions like Parkinson's disease, Lewy body disease, vascular dementia, frontotemporal degeneration amongst other entities, experience depressive symptoms in greater or lesser grade at some point during the course of the illness. Depressive symptoms have a particular significance in neurological disorders, specially in neurodegenerative diseases, because brain, mind, behavior and mood relationship. A number of patients may develop depressive symptoms in early stages of the neurologic disease, occurring without clear presence of cognitive decline with only mild cognitive deterioration. Classically, depression constitutes a reliable diagnostic challenge in this setting. However, actually we can recognize and evaluate depressive, cognitive or motor symptoms of neurodegenerative disease in order to establish their clinical significance and to plan some therapeutic strategies. Depressive symptoms can appear also lately, when the neurodegenerative disease is fully developed. The presence of depression and other neuropsychiatric symptoms have a negative impact on the quality-of-life of patients and caregivers. Besides, patients with depressive symptoms also tend to further decrease function and reduce cognitive abilities and also uses to present more affected clinical status, compared with patients without depression. Depressive symptoms are treatable. Early detection of depressive symptoms is very important in patients with neurodegenerative disorders, in order to initiate the most adequate treatment. We review in this paper the main neurodegenerative diseases, focusing in depressive symptoms of each other entities and current recommendations of management and treatment.

  1. 三个常染色体隐性遗传早发型帕金森病家系的PARKIN基因研究%A study on PARKIN gene in three pedigrees with autosomal recessive early-onset Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    金淼; 焦劲松; 顾卫红; 王康; 邹海强; 陈彪; 王国相

    2005-01-01

    目的探讨PARKIN基因与中国人常染色体隐性遗传早发型帕金森病(autosomal recessive early-onset Parkinson's disease, AREP)家系的关系.方法对3个AREP家系的6例患者和23位成员进行系统的临床检查并进行PARKIN基因PCR扩增,产物通过变性高压液相色谱(denaturing high-performance liquid chromatography, DHPLC)进行突变检测,阳性结果标本进行基因测序.结果所有研究对象的PARKIN基因外显子均扩增成功.DHPLC检测和基因测序发现一个家系中存在PARKIN基因杂合Gly284Arg突变,另一个家系中存在PARKIN基因Ser167Asn多态性,且患者均有环境毒物接触史.结论 PARKIN基因杂合Gly284Arg突变在环境因素的协同作用下可能导致发病.PARKIN基因Ser167Asn多态性是帕金森病的易感因素,汞中毒与其共同作用可能导致发病.

  2. Peroxisome Proliferator-Activated Receptor (PPAR) γ and PPARα Agonists Modulate Mitochondrial Fusion-Fission Dynamics: Relevance to Reactive Oxygen Species (ROS)-Related Neurodegenerative Disorders?

    Science.gov (United States)

    Zolezzi, Juan M.; Silva-Alvarez, Carmen; Ordenes, Daniela; Godoy, Juan A.; Carvajal, Francisco J.; Santos, Manuel J.; Inestrosa, Nibaldo C.

    2013-01-01

    Recent studies showed that the activation of the retinoid X receptor, which dimerizes with peroxisome proliferator-activated receptors (PPARs), leads to an enhanced clearance of Aβ from the brain of transgenic mice model of Alzheimer’s disease (AD), because an increased expression of apolipoprotein E and it main transporters. However, the effects observed must involve additional underlying mechanisms that have not been yet explored. Several studies conducted in our laboratory suggest that part of the effects observed for the PPARs agonist might involves mitochondrial function and, particularly, mitochondrial dynamics. In the present study we assessed the effects of oxidative stress challenge on mitochondrial morphology and mitochondrial dynamics-related proteins in hippocampal neurons. Using immunofluorescence, we evaluated the PPARγ co-activator 1α (PGC-1α), dynamin related protein 1 (DRP1), mitochondrial fission protein 1 (FIS1), and mitochondrial length, in order to determine if PPARs agonist pre-treatment is able to protect mitochondrial population from hippocampal neurons through modulation of the mitochondrial fusion-fission events. Our results suggest that both a PPARγ agonist (ciglitazone) and a PPARα agonist (WY 14.643) are able to protect neurons by modulating mitochondrial fusion and fission, leading to a better response of neurons to oxidative stress, suggesting that a PPAR based therapy could acts simultaneously in different cellular components. Additionally, our results suggest that PGC-1α and mitochondrial dynamics should be further studied in future therapy research oriented to ameliorate neurodegenerative disorders, such as AD. PMID:23675519

  3. The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile

    Directory of Open Access Journals (Sweden)

    Di Benedetto Giulia

    2008-09-01

    Full Text Available Abstract This review will discuss some issues related to the risk/benefit profile of the use of dietary antioxidants. Thus, recent progress regarding the potential benefit of dietary antioxidants in the treatment of chronic diseases with a special focus on immune system and neurodegenerative disorders will be discussed here. It is well established that reactive oxygen species (ROS play an important role in the etiology of numerous diseases, such as atherosclerosis, diabetes and cancer. Among the physiological defense system of the cell, the relevance of antioxidant molecules, such as glutathione and vitamins is quite well established. Recently, the interest of researchers has, for example, been conveyed on antioxidant enzyme systems, such as the heme oxygenase/biliverdin reductase system, which appears modulated by dietary antioxidant molecules, including polyphenols and beta-carotene. These systems possibly counteract oxidative damage very efficiently and finally modulate the activity of oxidative phenomena occurring, for instance, during pathophysiological processes. Although evidence shows that antioxidant treatment results in cytoprotection, the potential clinical benefit deriving from both nutritional and supplemental antioxidants is still under wide debate. In this line, the inappropriate assumption of some lipophylic vitamins has been associated with increased incidence of cancer rather than with beneficial effects.

  4. When cytokinin, a plant hormone, meets the adenosine A2A receptor: a novel neuroprotectant and lead for treating neurodegenerative disorders?

    Directory of Open Access Journals (Sweden)

    Yi-Chao Lee

    Full Text Available It is well known that cytokinins are a class of phytohormones that promote cell division in plant roots and shoots. However, their targets, biological functions, and implications in mammalian systems have rarely been examined. In this study, we show that one cytokinin, zeatin riboside, can prevent pheochromocytoma (PC12 cells from serum deprivation-induced apoptosis by acting on the adenosine A(2A receptor (A(2A-R, which was blocked by an A(2A-R antagonist and a protein kinase A (PKA inhibitor, demonstrating the functional ability of zeatin riboside by mediating through A(2A-R signaling event. Since the A(2A-R was implicated as a therapeutic target in treating Huntington's disease (HD, a cellular model of HD was applied by transfecting mutant huntingtin in PC12 cells. By using filter retardation assay and confocal microscopy we found that zeatin riboside reversed mutant huntingtin (Htt-induced protein aggregations and proteasome deactivation through A(2A-R signaling. PKA inhibitor blocked zeatin riboside-induced suppression of mutant Htt aggregations. In addition, PKA activated proteasome activity and reduced mutant Htt protein aggregations. However, a proteasome inhibitor blocked both zeatin riboside-and PKA activator-mediated suppression of mutant Htt aggregations, confirming mediation of the A(2A-R/PKA/proteasome pathway. Taken together, zeatin riboside might have therapeutic potential as a novel neuroprotectant and a lead for treating neurodegenerative disorders.

  5. A functional SNP catalog of overlapping miRNA-binding sites in genes implicated in prion disease and other neurodegenerative disorders.

    Science.gov (United States)

    Saba, Reuben; Medina, Sarah J; Booth, Stephanie A

    2014-10-01

    The involvement of SNPs in miRNA target sites remains poorly investigated in neurodegenerative disease. In addition to associations with disease risk, such genetic variations can also provide novel insight into mechanistic pathways that may be responsible for disease etiology and/or pathobiology. To identify SNPs associated specifically with degenerating neurons, we restricted our analysis to genes that are dysregulated in CA1 hippocampal neurons of mice during early, preclinical phase of Prion disease. The 125 genes chosen are also implicated in other numerous degenerative and neurological diseases and disorders and are therefore likely to be of fundamental importance. We predicted those SNPs that could increase, decrease, or have neutral effects on miRNA binding. This group of genes was more likely to possess DNA variants than were genes chosen at random. Furthermore, many of the SNPs are common within the human population, and could contribute to the growing awareness that miRNAs and associated SNPs could account for detrimental neurological states. Interestingly, SNPs that overlapped miRNA-binding sites in the 3'-UTR of GABA-receptor subunit coding genes were particularly enriched. Moreover, we demonstrated that SNP rs9291296 would strengthen miR-26a-5p binding to a highly conserved site in the 3'-UTR of gamma-aminobutyric acid receptor subunit alpha-4.

  6. Case Report: Whole exome sequencing reveals a novel frameshift deletion mutation p.G2254fs in COL7A1 associated with autosomal recessive dystrophic epidermolysis bullosa [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Shamsudheen Karuthedath Vellarikkal

    2016-07-01

    Full Text Available Dystrophic epidermolysis bullosa simplex (DEB is a phenotypically diverse inherited skin fragility disorder. It is majorly manifested by appearance of epidermal bullae upon friction caused either by physical or environmental trauma. The phenotypic manifestations also include appearance of milia, scarring all over the body and nail dystrophy. DEB can be inherited in a recessive or dominant form and the recessive form of DEB (RDEB is more severe. In the present study, we identify a novel p.G2254fs mutation in COL7A1 gene causing a sporadic case of RDEB by whole exome sequencing (WES. Apart from adding a novel frameshift Collagen VII mutation to the repertoire of known mutations reported in the disease, to the best of our knowledge, this is the first report of a genetically characterized case of DEB from India.

  7. Case Report: Whole exome sequencing reveals a novel frameshift deletion mutation p.G2254fs in COL7A1 associated with autosomal recessive dystrophic epidermolysis bullosa [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Shamsudheen Karuthedath Vellarikkal

    2016-05-01

    Full Text Available Dystrophic epidermolysis bullosa simplex (DEB is a phenotypically diverse inherited skin fragility disorder. It is majorly manifested by appearance of epidermal bullae upon friction caused either by physical or environmental trauma. The phenotypic manifestations also include appearance of milia, scarring all over the body and nail dystrophy. DEB can be inherited in a recessive or dominant form and the recessive form of DEB (RDEB is more severe. In the present study, we identify a novel p.G2254fs mutation in COL7A1 gene causing a sporadic case of RDEB by whole exome sequencing (WES. Apart from adding a novel frameshift Collagen VII mutation to the repertoire of known mutations reported in the disease, to the best of our knowledge, this is the first report of a genetically characterized case of DEB from India.

  8. CYP7B1

    DEFF Research Database (Denmark)

    Roos, P; Svenstrup, K; Danielsen, E R

    2014-01-01

    UNLABELLED: The SPG5A subtype of Hereditary Spastic Paraplegia (HSP) is a rare autosomal recessive neurodegenerative disorder caused by mutations in the CYP7B1 gene, which encodes a steroid cytochrome P450 7α-hydroxylase. This enzyme provides the primary metabolic route for neurosteroids. Clinica......UNLABELLED: The SPG5A subtype of Hereditary Spastic Paraplegia (HSP) is a rare autosomal recessive neurodegenerative disorder caused by mutations in the CYP7B1 gene, which encodes a steroid cytochrome P450 7α-hydroxylase. This enzyme provides the primary metabolic route for neurosteroids...

  9. Meditation and neurodegenerative diseases.

    Science.gov (United States)

    Newberg, Andrew B; Serruya, Mijail; Wintering, Nancy; Moss, Aleezé Sattar; Reibel, Diane; Monti, Daniel A

    2014-01-01

    Neurodegenerative diseases pose a significant problem for the healthcare system, doctors, and patients. With an aging population, more and more individuals are developing neurodegenerative diseases and there are few treatment options at the present time. Meditation techniques present an interesting potential adjuvant treatment for patients with neurodegenerative diseases and have the advantage of being inexpensive, and easy to teach and perform. There is increasing research evidence to support the application of meditation techniques to help improve cognition and memory in patients with neurodegenerative diseases. This review discusses the current data on meditation, memory, and attention, and the potential applications of meditation techniques in patients with neurodegenerative diseases.

  10. Neurodegenerative diseases and rapid eye movement sleep behavior disorder%神经系统变性疾病与快速眼动期睡眠行为异常

    Institute of Scientific and Technical Information of China (English)

    何荆贵; 张熙

    2011-01-01

    Sleep behavior disorder (RBD) is characterized by loss of muscular atonia and prominent motor behavior during rapid eye movement(REM) sleep. RBD can cause sleep disruption and severe injuries for the patient or bed partner. The disorder is strongly associated with neurodegenerative diseases, such as multiple-system atrophy(MSA), Parkinson's disease(PD), dementia with Lewy bodies(LBD), and progressive supranuclear palsy(PSP). In many cases, the symptoms of RBD precede other symptoms of these neurodegenerative disorders by several years. RBD might be a stage in the development of neurodegenerative disorders. Longitudinal studies in patients with idiopathic RBD are warranted to characterize the natural history of such patients and will increase awareness of mechanisms, diagnosis, and treatment of neurodegenerative disorders.%睡眠行为异常(RBD)的特征是快速眼动(REM)睡眠期骨骼肌弛缓现象消失,并出现突出的运动行为,导致睡眠中断和自身或床伴的伤害.RBD与神经系统变性病有密切关联.RBD的症状常在神经系统变性病的其他症状数年之前出现,被认为可能是神经系统变性病发展过程中的某个阶段.对原发性RBD的纵向研究能充分了解其自然病程,将能增加对神经系统变性病的机制、诊断及治疗的认识.

  11. Evidence-based therapy for sleep disorders in neurodegenerative diseases%神经变性疾病相关睡眠障碍的循证治疗

    Institute of Scientific and Technical Information of China (English)

    林雪; 李娟; 刘凌

    2013-01-01

    Objective To evaluate the effectiveness of the treatments for sleep disorders in neurodegeuerative diseases so as to provide the best therapeutic regimens for the evidence-based treatment.Methods Search PubMed,MEDLINE,Cochrane Library,Wanfang Data and China National Knowledge Infrastructure (CNKI) databases with "sleep disorder or sleep disturbance","neurodegenerative diseases","Parkinson's disease or PD","Alzheimer's disease or AD","multiple system atrophy or MSA" as retrieval words.The quality of the articles were evaluated with Jadad Scale.Results A total of 35 articles,including 2 systematic reviews,5 randomized controlled trials,13 clinical controlled trials,13 case series and 2 epidemiological investigation studies were included for evaluation,13 of which were high grade and 22 were low grade articles.Clinical evidences showed that:1) advice on sleep hygiene,careful use of dopaminergic drugs and hypnotic sedative agents should be considered for PD.Bright light therapy (BLT)may improve circadian rhythm sleep disorders and clonazepam may be effective for rapid eye movement sleep behavior disorder (RBD).However,to date,very few controlled studies are available to make a recommendation for the management of sleep disorders in PD; 2) treatments for sleep disorders in AD include drug therapy (e.g.melatonin,acetylcholinesterase inhibitors,antipsychotic drugs,antidepressants)and non-drug therapy (e.g.BLT,behavior therapy),but very limited evidence shows the effectiveness of these treatments; 3) the first line treatment for sleep-related breathing disorder in MSA is nasal continuous positive airway pressure (nCPAP),and clonazepam is effective for RBD in MSA; 4) there is rare evidence related to the treatment of sleep disorders in dementia with Lewy body (DLB) and amyotrophic lateral sclerosis (ALS).Conclusion Evidence-based medicine can provide the best clinical evidence on sleep disorders' treatment in neurodegenerative diseases.%目的 评价神经变性疾病相

  12. Exploring N(1)-p-fluorobenzyl-cymserine as an inhibitor of 5-lipoxygenase as a candidate for type 2 diabetes and neurodegenerative disorder treatment.

    Science.gov (United States)

    ul Ain, Qurrat; Greig, Nigel H; Nawaz, Muhammad S; Rashid, Sajid; Kamal, Mohammad A

    2014-03-01

    Developing a single selective ligand to a target relevant to two mechanistically interlinked diseases, such as type 2 diabetes mellitus (T2DM) and a neurodegenerative disorder, like Parkinson's disease or Alzheimer's disease, provides the potential for an effective treatment that may impact both. The enzyme 5-lipoxygenase (5-LOX) has been revealed responsible for producing fatty acid molecules, leukotrienes. These leukotrienes are known to produce inflammatory responses in asthma and allergic reactions, to induce a reduction of tyrosine hydroxylase in brain, and are involved in the development of cardiac strokes, obesity and type 2 diabetes. N(1)-p-fluorobenzyl-cymserine (FBC), an analogue of cymserine and a known cholineterase inhibitor, was evaluated for inhibition of pleiotropic 5-LOX in our study. The stable 3D structure of 5-LOX was obtained from the Protein Data Bank (PDB) database and was implied for homology modeling of four reported mutant models. Each generated model was submitted to the Protein Model Database (PMDB) and employed for measuring inhibition and ligand efficiency of FBC with support of molecular docking. For each model, normal as well as mutant, FBC yielded remarkable inhibition constant values, with exothermic free binding energies. The current study revealed a highly reactive narrow fissure near the non-heme iron binding pocket of 5-LOX that contains residues crucial for 5-LOX stability and FBC binding. Investigating the binding of FBC with stabilized and destabilized 5-LOX structures confirmed it as a candidate therapeutic inhibitor worthy of assessment in preclinical models of T2DM and neurodegeneration.

  13. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world

    Directory of Open Access Journals (Sweden)

    Marina Vladimirovna Zueva

    2015-07-01

    Full Text Available The theory that ties normal functioning and pathology of the brain and visual system with the spatial-temporal structure of the visual and other sensory stimuli is described for the first time in the present study. The deficit of fractal complexity of environmental influences can lead to the distortion of fractal complexity in the visual pathways of the brain and abnormalities of development or aging. The use of fractal light stimuli and fractal stimuli of other modalities can help to restore the functions of the brain, particularly in the elderly and in patients with neurodegenerative disorders or amblyopia. Nonlinear dynamics of these physiological processes have a strong base of evidence, which is seen in the impaired fractal regulation of rhythmic activity in aged and diseased brains. From birth to old age, we live in a nonlinear world, in which objects and processes with the properties of fractality and non-linearity surround us. Against this background, the evolution of man took place and all periods of life unfolded. Works of art created by man may also have fractal properties. The positive influence of music on cognitive functions is well-known. Insufficiency of sensory experience is believed to play a crucial role in the pathogenesis of amblyopia and age-dependent diseases. The brain is very plastic in its early development, and the plasticity decreases throughout life. However, several studies showed the possibility to reactivate the adult's neuroplasticity in a variety of ways. We propose that a non-linear structure of sensory information on many spatial and temporal scales is crucial to the brain health and fractal regulation of physiological rhythms. Theoretical substantiation of the author's theory is presented. Possible applications and the future research that can experimentally confirm or refute the theoretical concept are considered.

  14. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases.

    Science.gov (United States)

    Sharma, Meenakshi; Tiwari, Manisha; Tiwari, Rakesh Kumar

    2015-11-01

    Neurodegenerative diseases are the diseases of the central nervous system with various aetiology and symptoms. Dementia, Alzheimer's disease (AD), Parkinson's disease (PD) and autism are some examples of neurodegenerative diseases. Hyperhomocysteinemia (Hhcy) is considered to be an independent risk factor for numerous pathological conditions under neurodegenerative diseases. Along with genetic factors that are the prime cause of homocysteine (Hcy) imbalance, the nutritional and hormonal factors are also contributing to high Hcy levels in the body. Numerous clinical and epidemiological data confirm the direct correlation of Hcy levels in the body and generation of different types of central nervous system disorders, cardiovascular diseases, cancer and others. Till now, it is difficult to say whether homocysteine is the cause of the disease or whether it is one of the impacts of the diseases. However, Hhcy is a surrogate marker of vitamin B deficiency and is a neurotoxic agent. This Mini Review will give an overview of how far research has gone into understanding the homocysteine imbalance with prognostic, causative and preventive measures in treating neurodegenerative diseases.

  15. Apoptosis and oxidative stress in neurodegenerative diseases.

    Science.gov (United States)

    Radi, Elena; Formichi, Patrizia; Battisti, Carla; Federico, Antonio

    2014-01-01

    Neurodegenerative disorders affect almost 30 million individuals leading to disability and death. These disorders are characterized by pathological changes in disease-specific areas of the brain and degeneration of distinct neuron subsets. Despite the differences in clinical manifestations and neuronal vulnerability, the pathological processes appear similar, suggesting common neurodegenerative pathways. Apoptosis seems to play a key role in the progression of several neurologic disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis as demonstrated by studies on animal models and cell lines. On the other hand, research on human brains reported contradictory results. However, many dying neurons have been detected in brains of patients with neurodegenerative diseases, and these conditions are often associated with significant cell loss accompanied by typical morphological features of apoptosis such as chromatin condensation, DNA fragmentation, and activation of cysteine-proteases, caspases. Cell death and neurodegenerative conditions have been linked to oxidative stress and imbalance between generation of free radicals and antioxidant defenses. Multiple sclerosis, stroke, and neurodegenerative diseases have been associated with reactive oxygen species and nitric oxide. Here we present an overview of the involvement of neuronal apoptosis and oxidative stress in the most important neurodegenerative diseases, mainly focusing the attention on several genetic disorders, discussing the interaction between primary genetic abnormalities and the apoptotic pathways.

  16. [Copper metabolism and genetic disorders].

    Science.gov (United States)

    Shimizu, Norikazu

    2016-07-01

    Copper is one of essential trace elements. Copper deficiency lead to growth and developmental failure and/or neurological dysfunction. However, excess copper is also problems for human life. There are two disorders of inborn error of copper metabolism, Menkes disease and Wilson disease. Menkes disease is an X linked recessive disorder with copper deficiency and Wilson disease is an autosomal recessive disorder with copper accumulation. These both disorders result from the defective functioning of copper transport P-type ATPase, ATP7A of Menkes disease and ATP7B of Wilson disease. In this paper, the author describes about copper metabolism of human, and clinical feature, diagnosis and treatment of Menkes disease and Wilson disease.

  17. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

    OpenAIRE

    Bhullar, Khushwant S.; Vasantha Rupasinghe, H.P.

    2013-01-01

    Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer’s disease (AD), stroke, multiple sclerosis (MS), Parkins...

  18. X-Linked and Autosomal Recessive Alport Syndrome

    DEFF Research Database (Denmark)

    Savige, Judith; Storey, Helen; Il Cheong, Hae

    2016-01-01

    Alport syndrome results from mutations in the COL4A5 (X-linked) or COL4A3/COL4A4 (recessive) genes. This study examined 754 previously- unpublished variants in these genes from individuals referred for genetic testing in 12 accredited diagnostic laboratories worldwide, in addition to all publishe...

  19. X-Linked and Autosomal Recessive Alport Syndrome

    DEFF Research Database (Denmark)

    Savige, Judith; Storey, Helen; Il Cheong, Hae;

    2016-01-01

    , retinopathy, lamellated glomerular basement membrane), variant pathogenicity was assessed using currently-accepted criteria, and variants were examined for gene location, and age at renal failure onset. Results were compared using Fisher's exact test (DNA Stata). Altogether 754 new DNA variants were...

  20. Spectrum of Autosomal Recessive Congenital Ichthyosis in Scandinavia

    DEFF Research Database (Denmark)

    Hellström Pigg, Maritta; Bygum, Anette; Gånemo, Agneta;

    2016-01-01

    -100%). A scoring (0-4) of ichthyosis/ery-thema past infancy showed widely different mean values in the subgroups: HI (3.2/3.1), LI (2.4/0.6), CIE (1.8/1.6), PI (1.1/0.3). Novel or recurrent mutations were found in 113 patients: TGM1 (n = 56), NIPAL4 (n = 15), ALOX12B (n = 15), ABCA12 (n = 8), ALOXE3 (n = 9), SLC27...

  1. Genetics Home Reference: autosomal recessive hyper-IgE syndrome

    Science.gov (United States)

    ... attacks the body's own tissues and organs, causing autoimmune disease. For example, autoimmunity can lead to abnormal destruction of red blood cells (hemolytic anemia ) in people with AR-HIES. AR-HIES is ...

  2. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Edyta Paczkowska

    that CM from SPCs favorable influence neural cell proliferation and survival. Understanding the mechanisms governing the characterization and humoral activity of subsets of SPCs may yield new therapeutic strategies that might be more effective in treating neurodegenerative disorders.

  3. The DNA repair-ubiquitin-associated HR23 proteins are constituents of neuronal inclusions in specific neurodegenerative disorders without hampering DNA repair

    NARCIS (Netherlands)

    Bergink, Steven; Severijnen, Lies-Anne; Wijgers, Nils; Sugasawa, Kaoru; Yousaf, Humaira; Kros, Johan M.; van Swieten, John; Oostra, Ben A.; Hoeijmakers, Jan H.; Vermeulen, Wim; Willemsen, Rob

    2006-01-01

    Intracellular inclusions play a profound role in many neurodegenerative diseases. Here, we report that HR23B and HR23A, proteins that are involved in both DNA repair and shuttling proteins to the 26S proteasome for degradation, accumulate in neuronal inclusions in brain from a mouse model for FXTAS,

  4. Coenzyme Q10 effects in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Meredith Spindler

    2009-11-01

    Full Text Available Meredith Spindler1, M Flint Beal1,2, Claire Henchcliffe1,21Department of Neurology, 2Department of Neuroscience, Weill Medical College of Cornell University, New York, NY, USAAbstract: Coenzyme Q10 (CoQ10 is an essential cofactor in the mitochondrial respiratory chain, and as a dietary supplement it has recently gained attention for its potential role in the treatment of neurodegenerative disease. Evidence for mitochondrial dysfunction in neurodegenerative disorders derives from animal models, studies of mitochondria from patients, identification of genetic defects in patients with neurodegenerative disease, and measurements of markers of oxidative stress. Studies of in vitro models of neuronal toxicity and animal models of neurodegenerative disorders have demonstrated potential neuroprotective effects of CoQ10. With this data in mind, several clinical trials of CoQ10 have been performed in Parkinson’s disease and atypical Parkinson’s syndromes, Huntington’s disease, Alzheimer disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis, with equivocal findings. CoQ10 is widely available in multiple formulations and is very well tolerated with minimal adverse effects, making it an attractive potential therapy. Phase III trials of high-dose CoQ10 in large sample sizes are needed to further ascertain the effects of CoQ10 in neurodegenerative diseases.Keywords: coenzyme Q10, neurodegenerative disease, Parkinson’s disease, Huntington’s disease, mitochondrial dysfunction

  5. Alu elements mediate large SPG11 gene rearrangements: further spatacsin mutations.

    NARCIS (Netherlands)

    Conceicao Pereira, M.; Loureiro, J.L.; Pinto-Basto, J.; Brandao, E.; Margarida Lopes, A.; Neves, G.; Dias, P.; Geraldes, R.; Martins, I.P.; Cruz, V.T.; Kamsteeg, E.J.; Brunner, H.G.; Coutinho, P.; Sequeiros, J.; Alonso, I.

    2012-01-01

    PURPOSE: Hereditary spastic paraplegias compose a group of neurodegenerative disorders with a large clinical and genetic heterogeneity. Among the autosomal recessive forms, spastic paraplegia type 11 is the most common. METHODS: To better understand the spastic paraplegia type 11 mutation spectrum,

  6. Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity

    NARCIS (Netherlands)

    Franceschi, L. de; Tomelleri, C.; Matte, A.; Brunati, A.M.; Bovee-Geurts, P.H.M.; Bertoldi, M.; Lasonder, E.; Tibaldi, E.; Danek, A.; Walker, R.H.; Jung, H.H.; Bader, B.; Siciliano, A.; Ferru, E.; Mohandas, N.; Bosman, G.J.C.G.M.

    2011-01-01

    Acanthocytic RBCs are a peculiar diagnostic feature of chorea-acanthocytosis (ChAc), a rare autosomal recessive neurodegenerative disorder. Although recent years have witnessed some progress in the molecular characterization of ChAc, the mechanism(s) responsible for generation of acanthocytes in ChA

  7. Genotype-phenotype correlations in spastic paraplegia type 7 : a study in a large Dutch cohort

    NARCIS (Netherlands)

    van Gassen, Koen L. I.; van der Heijden, Charlotte D. C. C.; de Bot, Susanne T.; den Dunnen, Wilfred F. A.; van den Berg, Leonard H.; Verschuuren-Bemelmans, Corien C.; Kremer, H. P. H.; Veldink, Jan H.; Kamsteeg, Erik-Jan; Scheffer, Hans; van de Warrenburg, Bart P.

    2012-01-01

    Spastic paraplegia type 7 is an autosomal recessive neurodegenerative disorder mainly characterized by progressive bilateral lower limb spasticity and referred to as a form of hereditary spastic paraplegia. Additional disease features may also be observed as part of a more complex phenotype. Many di

  8. Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort

    NARCIS (Netherlands)

    Gassen, K.L. van; Heijden, C.D. van der; Bot, S.T. de; Den Dunnen, W.F.; Berg, L.H. van den; Verschuuren-Bemelmans, C.C.; Kremer, H.P.H.; Veldink, J.H.; Kamsteeg, E.J.; Scheffer, H.; Warrenburg, B.P.C. van de

    2012-01-01

    Spastic paraplegia type 7 is an autosomal recessive neurodegenerative disorder mainly characterized by progressive bilateral lower limb spasticity and referred to as a form of hereditary spastic paraplegia. Additional disease features may also be observed as part of a more complex phenotype. Many di

  9. Ataxia, dystonia and myoclonus in adult patients with Niemann-Pick type C

    NARCIS (Netherlands)

    Koens, L. H.; Kuiper, A.; Coenen, M. A.; Elting, J. W. J.; de Vries, J. J.; Engelen, M.; Koelman, J. H. T. M.; van Spronsen, F. J.; Spikman, J. M.; de Koning, T. J.; Tijssen, M. A. J.

    2016-01-01

    Background: Niemann-Pick type C (NP-C) is a rare autosomal recessive progressive neurodegenerative disorder caused by mutations in the NP-C 1 or 2 gene. Besides visceral symptoms, presentation in adolescent and adult onset variants is often with neurological symptoms. The most frequently reported pr

  10. Impairment of the tRNA-splicing endonuclease subunit 54 (tsen54) gene causes neurological abnormalities and larval death in zebrafish models of pontocerebellar hypoplasia

    NARCIS (Netherlands)

    Kasher, P.R.; Namavar, Y.; van Tijn, P.; Fluiter, K.; Sizarov, A.; Kamermans, M.; Grierson, A.J.; Zivkovic, D.; Baas, F.

    2011-01-01

    Pontocerebellar hypoplasia (PCH) represents a group (PCH1-6) of neurodegenerative autosomal recessive disorders characterized by hypoplasia and/or atrophy of the cerebellum, hypoplasia of the ventral pons, progressive microcephaly and variable neocortical atrophy. The majority of PCH2 and PCH4 cases

  11. Mutation analysis of the WFS1 gene in seven Danish Wolfram syndrome families; four new mutations identified

    DEFF Research Database (Denmark)

    Hansen, Lars; Eiberg, Hans Rudolf Lytchoff; Barrett, Timothy

    2005-01-01

    Wolfram syndrome (WS) is a neuro-degenerative autosomal recessive (AR) disorder (OMIM #222300) caused by mutations in the WFS1 gene on 4p16.1. More than 120 mutations have been identified in WFS1 associated with AR WS, as well as autosomal dominant nonsyndromic low-frequency sensorineural hearing...

  12. Metal attenuating therapies in neurodegenerative disease.

    Science.gov (United States)

    Mot, Alexandra I; Wedd, Anthony G; Sinclair, Layla; Brown, David R; Collins, Steven J; Brazier, Marcus W

    2011-12-01

    The clinical and pathological spectrum of neurodegenerative diseases is diverse, although common to many of these disorders is the accumulation of misfolded proteins, with oxidative stress thought to be an important contributing mechanism to neuronal damage. As a corollary, transition metal ion dyshomeostasis appears to play a key pathogenic role in a number of these maladies, including the most common of neurodegenerative diseases. In this review, studies spanning a wide variety of neurodegenerative disorders are presented with their involvement of transition metals compared and contrasted, including more detailed treatise in relation to Alzheimer's disease, Parkinson's disease and prion diseases. For each of these diseases, a discussion of the evolving scientific rationale for the development of therapies aimed at ameliorating the detrimental effects of transition metal dysregulation, including results from various human trials, is then provided.

  13. The role of viruses in neurodegenerative and neurobehavioral diseases.

    Science.gov (United States)

    Karim, Sajjad; Mirza, Zeenat; Kamal, Mohammad A; Abuzenadah, Adel M; Azhar, Esam I; Al-Qahtani, Mohammed H; Damanhouri, Ghazi A; Ahmad, Fahim; Gan, Siew H; Sohrab, Sayed S

    2014-01-01

    Neurodegenerative and neurobehavioral diseases may be caused by chronic and neuropathic viral infections and may result in a loss of neurons and axons in the central nervous system that increases with age. To date, there is evidence of systemic viral infections that occur with some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, autism spectrum disorders, and HIV-associated neurocognitive disorders. With increasing lifespan, the incidence of neurodegenerative diseases increases consistently. Neurodegenerative diseases affect approximately 37 million people worldwide and are an important cause of mortality. In addition to established non-viral-induced reasons for neurodegenerative diseases, neuropathic infections and viruses associated with neurodegenerative diseases have been proposed. Neuronal degeneration can be either directly or indirectly affected by viral infection. Viruses that attack the human immune system can also affect the nervous system and interfere with classical pathways of neurodegenerative diseases. Viruses can enter the central nervous system, but the exact mechanism cannot be understood well. Various studies have supported viral- and non-viral-mediated neurodegeneration at the cellular, molecular, genomic and proteomic levels. The main focus of this review is to illustrate the association between viral infections and both neurodegenerative and neurobehavioral diseases, so that the possible mechanism and pathway of neurodegenerative diseases can be better explained. This information will strengthen new concepts and ideas for neurodegenerative and neurobehavioral disease treatment.

  14. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    Science.gov (United States)

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression.

  15. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns

    Science.gov (United States)

    Sanchez-Mut, J V; Heyn, H; Vidal, E; Moran, S; Sayols, S; Delgado-Morales, R; Schultz, M D; Ansoleaga, B; Garcia-Esparcia, P; Pons-Espinal, M; de Lagran, M M; Dopazo, J; Rabano, A; Avila, J; Dierssen, M; Lott, I; Ferrer, I; Ecker, J R; Esteller, M

    2016-01-01

    Different neurodegenerative disorders often show similar lesions, such as the presence of amyloid plaques, TAU-neurotangles and synuclein inclusions. The genetically inherited forms are rare, so we wondered whether shared epigenetic aberrations, such as those affecting DNA methylation, might also exist. The studied samples were gray matter samples from the prefrontal cortex of control and neurodegenerative disease-associated cases. We performed the DNA methylation analyses of Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Alzheimer-like neurodegenerative profile associated with Down's syndrome samples. The DNA methylation landscapes obtained show that neurodegenerative diseases share similar aberrant CpG methylation shifts targeting a defined gene set. Our findings suggest that neurodegenerative disorders might have similar pathogenetic mechanisms that subsequently evolve into different clinical entities. The identified aberrant DNA methylation changes can be used as biomarkers of the disorders and as potential new targets for the development of new therapies. PMID:26784972

  16. 应用SYBR GreenⅠ实时荧光定量聚合酶链反应检测常染色体隐性遗传早发性帕金森综合征的parkin基因外显子重排突变%Analysis of exon rearrangements in the parkin gene in patients with autosomal recessive early-onset parkinsonism using SYBR Green Ⅰ Real-time PCR

    Institute of Scientific and Technical Information of China (English)

    唐北沙; 严新翔; 聂利珞; 郭纪锋; 张海南; 张学伟; 王磊; 沈璐; 江泓; 夏昆

    2009-01-01

    目的 建立应用SYBR GreenⅠ实时荧光定量聚合酶链反应(Real-time PCR,RT-PCR)检测parkin基因外显子重排突变的技术平台,应用该技术对常染色体隐性遗传早发型帕金森综合征(autosomal recessive early-onset parkinsonism,AREP) 家系进行parkin基因外显子重排突变分析.方法 应用SYBR GreenⅠRT-PCR技术对32个中国AREP家系进行parkin基因外显子重排突变分析.结果 14个家系先证者存在parkin基因外显子重排突变,其中3个为纯合缺失突变、3个为复杂杂合缺失突变和8个杂合缺失突变,未发现外显子重复突变,突变主要累及第2~4号外显子.结论 建立了应用SYBR GreenⅠRT-PCR技术检测parkin基因外显子重排突变的基因检测平台;中国AREP 家系的parkin基因外显子重排突变频率为43.8%,与国外报道相似.%Objective To develop a method of detection exon rearrangements in the parkin gene (PARK2) using SYBR Green Ⅰ real-time PCR and to analyze PARK2 exon rearrangement mutations in families with autosomal recessive early-onset parkinsonism (AREP) using this method. Methods Exon rearrangement in PARK2 was screened by SYBR Green Ⅰ real-time PCR in 32 families with AREP. Results Exon rearrangement mutations were found in 14 families, including 3 compound heterozygous deletions;3 homozygous deletions;and 8 heterozygous deletions. No duplication mutation was found. Hotspot for exon rearrangements clustered in exons 2 through 4. Conclusions We have developed a gene test method using SYBR Green Ⅰ Real-time PCR to detect exon rearrangements in the gene PARK2. The frequency of PARK2 mutation is 43.8% in Chinese families with AREP. This frequency is similar to reported findings in other countries.

  17. 常染色体隐性遗传的类Duchenne肌营养不良临床特征及其发生比率的估计值分析%The Proportion and Clinical Feature of Duchenne Muscular Dystrophy With Autosomal Recessive Inheritance

    Institute of Scientific and Technical Information of China (English)

    麻宏伟; 武盈玉; 王阳; 高薇; 薛燕宁

    2001-01-01

    目的:探讨常染色体隐性遗传的类杜氏肌营养不良(类DMD)临床特点及其在杜氏肌营养不良症(DMD)中的比例。方法:研究8个家系中9例女性类DMD的临床表现、家族史及血清肌酸激酶水平,并估计常染色体隐性遗传的类DMD在DMD中的比例。结果:常染色体隐性遗传的类DMD患者独立行走的平均时间为(1.47±1.00)岁,症状出现的平均时间为(8.11±4.32)岁,血清肌酸激酶平均水平为(2785.10±1500.29)U/L,这种常染色体隐性遗传型类DMD占DMD的9.4%。结论:常染色体隐性遗传的类DMD与DMD在临床上无法区别,部分被认为是性连锁隐性遗传的DMD,实际上是常染色体隐性遗传的类DMD。%Objective:Our aim was to investigate the proportion of autosomal recessive (AR) inheritance among families with patients with Duchenne muscular dystrophy (DMD) and clinical feature in patients with AR form of DMD. Methods:A total of 193 families was studied, 8 of them with at least one girl with “DMD - like” phenotype and 185 with only boys with this kind of phenotype. Based on the number of families with at least one affected girl and the number of patients per sibship among these pedigrees, the proportion of families with DMD inherited as an AR trait was estimated. The clinical examination, family history and serum creatine-kinase were studied in 11 patients diagnosed as AR form of DMD. Results: The proportion of families with AR form of DMD was estimated as 9.4%. The average age of being able to walk is (1.47±1.00) year, serum creatine-kinase levels were (2785.10±1500.29) U/L. The clinical symptom occurred at the average age of (8.11±4.32) year in patients with AR form of DMD. Conclusion: The AR form of muscular dystrophy and DMD not be distingushed clinically. Some families with only affected boys diagnosed as typical DMD, in fact, have the AR form of the disease. This study is very useful for genetic consulting.

  18. Oxidative stress in neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Xueping Chen; Chunyan Guo; Jiming Kong

    2012-01-01

    Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2-) and hydroxyl radical (OH-), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention.

  19. Exon rearrangement analysis of parkin gene in patients with autosomal recessive early-onset parkinsonism using fluorescent semi-quantitative PCR%应用荧光半定量聚合酶链反应方法检测常染色体隐性遗传早发性帕金森综合征parkin基因外显子重排突变分析

    Institute of Scientific and Technical Information of China (English)

    郭纪锋; 蔡芳; 潘乾; 沈璐; 江泓; 唐北沙; 夏昆; 严新翔; 张玉虎; 陈涛; 李静; 张学伟; 曹立

    2006-01-01

    目的探讨常染色体隐性遗传早发性帕金森综合征(autosomal recessive early-onset parkinsonism,AREP)parkin基因外显子重排突变情况.方法应用荧光半定量聚合酶链反应(PCR)方法对18个AREP家系进行parkin基因外显子重排突变分析.结果9个AREP家系含有parkin基因外显子重排突变,其中2个家系为外显子4纯合缺失,2个家系为外显子4杂合缺失,2个家系为外显子2杂合缺失,1家系为外显子3杂合缺失,1家系为外显子1杂合缺失,此外,1家系为外显子3和外显子4的复合杂合缺失.未见parkin基因外显子重复突变.结论我国AREP患者存在parkin基因外显子重排突变;parkin基因外显子重排突变可能是我国AREP患者的主要致病因素.

  20. Stem cells and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the de-velopment of old-aging society, the incidence of neurodegenerative diseases is on the increase. How-ever, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegen-erative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, Hunt-ington’s disease and Amyotrophic lateral sclerosis/Lou Gehrig’s disease.

  1. Kartagener Syndrome: A Rare Genetic Disorder

    Directory of Open Access Journals (Sweden)

    Kunjan Shakya

    2009-01-01

    Full Text Available Kartagener Syndrome is a rare autosomal recessive disorder consisting of triad of sinusitis, bronchiectasis and situs inversus with dextrocardia. It is the subset of disorder called primary ciliary dyskinesia in which the cilia have abnormal structure and/or function resulting in multisystem diseases of various severity. Clinical manifestations include lifelong, chronic upper and lower respiratory tract diseases secondary to ineffective mucociliary clearance. Early diagnosis and management of chest infections can prevent irreversible damage to lungs and prevent potential lifelong complications. This case report is on a patient who presented with long standing history of sinusitis, bronchiectasis and on examination situs inversus with dextrocardia. Key Words:bronchiectasis, dextrocardia, kartagener syndrome, primary ciliary dyskinesia, situs inversus

  2. A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV).

    Science.gov (United States)

    Dai, Yifan; Molazemhosseini, Alireza; Liu, Chung Chiun

    2017-02-19

    A single-use, in vitro biosensor for the detection of T-Tau protein in phosphate-buffer saline (PBS) and undiluted human serum was designed, manufactured, and tested. Differential pulse voltammetry (DPV) served as the transduction mechanism. This biosensor consisted of three electrodes: working, counter, and reference electrodes fabricated on a PET sheet. Both working and counter electrodes were thin gold film, 10 nm in thickness. Laser ablation technique was used to define the size and structure of the biosensor. The biosensor was produced using cost-effective roll-to-roll process. Self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA) were employed to covalently immobilize the anti-T-Tau (T-Tau antibody) on the gold working electrode. A carbodiimide conjugation approach using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) cross-linked anti-T-Tau to the carboxylic groups on one end of the MPA. A T-Tau protein ladder with six isoforms was used in this study. The anti-T-Tau concentration used was 500,000 pg/mL. The T-Tau protein concentration ranged from 1000 pg/mL to 100,000 pg/mL. DPV measurements showed excellent responses, with a good calibration curve. Thus, a practical tool for simple detection of T-Tau protein, a biomarker of neuro-degenerative disorders, has been successfully developed. This tool could also be extended to detect other biomarkers for neuro-degenerative disorders, such as P-Tau protein and β-amyloid 42.

  3. Circulating microRNAs in Neurodegenerative Diseases.

    Science.gov (United States)

    Grasso, Margherita; Piscopo, Paola; Crestini, Alessio; Confaloni, Annamaria; Denti, Michela A

    2015-01-01

    Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by a combination of events that impair normal neuronal function. Although they are considered different disorders, there are overlapping features among them from the clinical, pathological, and genetic points of view. Synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities such as axonal transport defects normally precede the neuronal loss that is a relatively late event. The diagnosis of many neurodegenerative diseases is mainly based on patient's cognitive function analysis, and the development of diagnostic methods is complicated by the brain's capacity to compensate for neuronal loss over a long period of time. This results in the late clinical manifestation of symptoms, a time when successful treatment is no longer feasible. Thus, a noninvasive diagnostic method based on early events detection is particularly important. In the last years, some biomarkers expressed in human body fluids have been proposed. microRNAs (miRNAs), with their high stability, tissue- or cell type-specific expression, lower cost, and shorter time in the assay development, could constitute a good tool to obtain an early disease diagnosis for a wide number of human pathologies, including neurodegenerative diseases. The possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative disorders is a highly promising approach for developing minimally invasive screening tests and to identify new therapeutic targets.

  4. Stem cells and neurodegenerative diseases.

    Science.gov (United States)

    Hou, LingLing; Hong, Tao

    2008-04-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington' disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.

  5. Stem cells and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    HOU LingLing; HONG Tao

    2008-01-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells,including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington's disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.

  6. CYBA突变所致儿童常染色体隐性遗传性慢性肉芽肿病二例临床特点和突变分析%Clinical features and molecular analysis of 2 Chinese children with autosomal recessive chronic granulomatous disease caused by CYBA mutations

    Institute of Scientific and Technical Information of China (English)

    贺建新; 赵顺英; 徐保平; 胡英惠; 申昆玲; 江载芳

    2011-01-01

    Objective To summarize clinical and molecular features of two children with autosomal recessive chronic granulomatous disease caused by CYBA mutations.Method The clinical records and CYBA mutations were reviewed for analysis of infections and inflammatory complications.Result The first case was a girl diagnosed with "liver and spleen abscess" in our hospital when she was 2.9 years old,with past history of neonatal impetigo and recurrent purulent lymphadenitis and positive family history.The results of DHR123 flow-cytometry showed that positive phagocytes after phorbol ester (PMA) stimulation was 84.63%.CYBA mutation analysis showed that she had heterozygous 35C > T,Q3X and IVS-2A > G.The second case was a boy diagnosed with" sepsis (salmonella D)" when he was 4 years old with a past history of impetigo,sepsis,perianal abscess,skin infection and positive family history.The results of flowcytometry showed that positive phagocytes after PMA stimulation was 96.13%.CYBA mutation analysis showed that he had homozygous 35C > T,Q3X and his parents were all carriers.All of them had BCG related axillary lymphnode calcification.Conclusion A22CGD cases had recurrent purulent infections (skin,lymphnode,liver and spleen,lung,blood),DHR123 flowcytometric analysis helped the diagnosis of CGD,CYBA mutation analysis ascertained the diagnosis of A22CGD.%目的 报道2例由细胞色素b,α亚单位(CYBA)突变所致常染色体隐性遗传性慢性肉芽肿病(A22CGD)患儿的临床表现及基因突变特点.方法 针对经DHR123流式细胞分析和CYBA基因突变分析明确诊断的2例A22CGD患儿,回顾其临床资料,总结与感染及炎症并发症相关的临床特点.结果 例1,女,2岁11个月,以肝脾脓肿入院,既往有新生儿脓疱疹,反复化脓性淋巴结炎病史.有2例同胞兄长生后早期高热夭折病史.DHR123流式细胞分析结果示佛波酯(PMA)刺激后阳性吞噬细胞为84.61%.CYBA基因突变分析为杂合的35T>C,Q3X

  7. A case report of primary ciliary dyskinesia, laterality defects and developmental delay caused by the co-existence of a single gene and chromosome disorder.

    LENUS (Irish Health Repository)

    Casey, Jillian P

    2015-01-01

    Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterised by abnormal ciliary motion and impaired mucociliary clearance, leading to recurrent respiratory infections, sinusitis, otitis media and male infertility. Some patients also have laterality defects. We recently reported the identification of three disease-causing PCD genes in the Irish Traveller population; RSPH4A, DYX1C1 and CCNO. We have since assessed an additional Irish Traveller family with a complex phenotype involving PCD who did not have any of the previously identified PCD mutations.

  8. Synthetic prions and other human neurodegenerative proteinopathies.

    Science.gov (United States)

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Aulić, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-02

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau.

  9. Ageing and neurodegenerative diseases.

    Science.gov (United States)

    Hung, Chia-Wei; Chen, Yu-Chih; Hsieh, Wan-Ling; Chiou, Shih-Hwa; Kao, Chung-Lan

    2010-11-01

    Ageing, which all creatures must encounter, is a challenge to every living organism. In the human body, it is estimated that cell division and metabolism occurs exuberantly until about 25 years of age. Beyond this age, subsidiary products of metabolism and cell damage accumulate, and the phenotypes of ageing appear, causing disease formation. Among these age-related diseases, neurodegenerative diseases have drawn a lot of attention due to their irreversibility, lack of effective treatment, and accompanied social and economical burdens. In seeking to ameliorate ageing and age-related diseases, the search for anti-ageing drugs has been of much interest. Numerous studies have shown that the plant polyphenol, resveratrol (3,5,4'-trihydroxystilbene), extends the lifespan of several species, prevents age-related diseases, and possesses anti-inflammatory, and anti-cancer properties. The beneficial effects of resveratrol are believed to be associated with the activation of a longevity gene, SirT1. In this review, we discuss the pathogenesis of age-related neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and cerebrovascular disease. The therapeutic potential of resveratrol, diet and the roles of stem cell therapy are discussed to provide a better understanding of the ageing mystery.

  10. Sleep disturbance in mental health problems and neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Anderson KN

    2013-05-01

    Full Text Available Kirstie N Anderson1 Andrew J Bradley2,3 1Department of Neurology, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK; 2Eli Lilly and Company Limited, Lilly House, Basingstoke, UK; 3Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK Abstract: Sleep has been described as being of the brain, by the brain, and for the brain. This fundamental neurobiological behavior is controlled by homeostatic and circadian (24-hour processes and is vital for normal brain function. This review will outline the normal sleep–wake cycle, the changes that occur during aging, and the specific patterns of sleep disturbance that occur in association with both mental health disorders and neurodegenerative disorders. The role of primary sleep disorders such as insomnia, obstructive sleep apnea, and REM sleep behavior disorder as potential causes or risk factors for particular mental health or neurodegenerative problems will also be discussed. Keywords: sleep, mental health, neurodegenerative disorders, cognition

  11. Cultured cells of the nervous system, including human neurones, in the study of the neuro-degenerative disorder, Alzheimer's disease: an overview.

    Science.gov (United States)

    De Boni, U

    1985-01-01

    Human nervous-system cells in culture are a suitable model for the study of the degenerative changes associated with Alzheimer's disease. Alzheimer-diseased brain contains a factor which induces the formation of paired helical filaments (PHF) in cultured cells, similar to that seen in Alzheimer's disease. The excitotoxic amino acids, glutamate and aspartate, induce similar PHE formation in cultured cells. The neurotoxic element aluminium is present in high concentrations in the brain in several human neurological disorders, including Alzheimer's disease. In cultured-cell systems, aluminium interacts with acidic nuclear proteins, decreases steroid binding, produces a form of neurofibrillary degeneration and alters nucleoside metabolism.

  12. Intelligence: shared genetic basis between Mendelian disorders and a polygenic trait.

    Science.gov (United States)

    Franić, Sanja; Groen-Blokhuis, Maria M; Dolan, Conor V; Kattenberg, Mathijs V; Pool, René; Xiao, Xiangjun; Scheet, Paul A; Ehli, Erik A; Davies, Gareth E; van der Sluis, Sophie; Abdellaoui, Abdel; Hansell, Narelle K; Martin, Nicholas G; Hudziak, James J; van Beijsterveldt, Catherina E M; Swagerman, Suzanne C; Hulshoff Pol, Hilleke E; de Geus, Eco J C; Bartels, Meike; Ropers, H Hilger; Hottenga, Jouke-Jan; Boomsma, Dorret I

    2015-10-01

    Multiple inquiries into the genetic etiology of human traits indicated an overlap between genes underlying monogenic disorders (eg, skeletal growth defects) and those affecting continuous variability of related quantitative traits (eg, height). Extending the idea of a shared genetic basis between a Mendelian disorder and a classic polygenic trait, we performed an association study to examine the effect of 43 genes implicated in autosomal recessive cognitive disorders on intelligence in an unselected Dutch population (N=1316). Using both single-nucleotide polymorphism (SNP)- and gene-based association testing, we detected an association between intelligence and the genes of interest, with genes ELP2, TMEM135, PRMT10, and RGS7 showing the strongest associations. This is a demonstration of the relevance of genes implicated in monogenic disorders of intelligence to normal-range intelligence, and a corroboration of the utility of employing knowledge on monogenic disorders in identifying the genetic variability underlying complex traits.

  13. Molecular imaging of stem cell transplantation for neurodegenerative diseases.

    Science.gov (United States)

    Wang, Ping; Moore, Anna

    2012-01-01

    Cell replacement therapy with stem cells holds tremendous therapeutic potential for treating neurodegenerative diseases. Over the last decade, molecular imaging techniques have proven to be of great value in tracking transplanted cells and assessing the therapeutic efficacy. This current review summarizes the role and capabilities of different molecular imaging modalities including optical imaging, nuclear imaging and magnetic resonance imaging in the field of stem cell therapy for neurodegenerative disorders. We discuss current challenges and perspectives of these techniques and encompass updated information such as theranostic imaging and optogenetics in stem cell-based treatment of neurodegenerative diseases.

  14. Clinico-Pathological Correlations of the Most Common Neurodegenerative Dementias

    OpenAIRE

    Taipa, Ricardo; Pinho, João; Melo-Pires, Manuel

    2012-01-01

    Neurodegenerative dementias are a group of neurological disorders characterized by deterioration in several cognitive domains in which there is selective and progressive loss of specific populations of neurons. The precise neurobiological basis for the different neurodegenerative dementias remains unknown. It is expected that different pathologies reflect different mechanisms, at least early in the neurodegeneration process. The next decades promise treatments directed to causes and mechanism...

  15. Polar Body Diagnosis for Monogenic Disorders in Regensburg

    Directory of Open Access Journals (Sweden)

    Hehr A

    2009-01-01

    Full Text Available Polar body diagnosis (PBD is currently the only legal option to perform a preimplantation genetic diagnosis (PGD in Germany. The results of PBD for monogenic disorders performed at our center in Regensburg since 2001 are reported. Our data show that PBD can be safely performed on first and second polar bodies within the tight timeframe provided by the German Embryo Protection Act. It requires extensive interdisciplinary counseling of the couple, good and close cooperation between the IVF center and the genetics laboratory as well as meticulous development, validation, and performance of the individual genetic assay. Provided that these prerequisites are met, PBD can today be an acceptable option for German couples at high risk for a particular monogenic disorder in their offspring. Main arguments pro PBD usually include a decline of both conventional prenatal diagnosis and subsequently induced abortion of an affected offspring as well as the birth of an affected child. Major disadvantages of PBD in this situation include the requirement of assisted reproduction for couples in the absence of any obvious fertility problems with their immanent obstacles like pregnancy rate, remaining recurrence risk for the particular monogenic disorder, costs etc. Furthermore, PBD can only be offered for mutations, which are passed on by the female partner with her nuclear DNA (autosomal dominant, X-chromosomal as well as autosomal recessive traits. For heterozygous female mutation carriers of autosomal recessive or X-chromosomal inherited disorders PBD requires discarding all oocytes carrying the mutation, although they may result in healthy offspring if the sperm does not carry the mutation or the Y chromosome, respectively. Finally, both PBD as well as PGD can substantially reduce the recurrence risk for a particular monogenic disorder but not diminish it entirely. Therefore, conventional prenatal diagnosis (PND should still be offered and in fact has been

  16. Molecular chaperones and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Neurodegenerative diseases are characterized by the accumulation of intracellular or extracellular protein aggregates that result from conformational changes in proteins. These diseases may result from an imbalance between the production of misfolded proteins and normal chaperone capacity. Molecular chaperones provide a first line of defence against misfolded, aggregation-prone proteins and are, therefore, promising therapeutic targets for neurodegenerative diseases.

  17. Psychiatric disorder in two siblings with hallervorden-spatz disease.

    Science.gov (United States)

    Sunwoo, Young-Kyung; Lee, Jeong-Seop; Kim, Won-Hyoung; Shin, Yong-Bum; Lee, Myung-Ji; Cho, In-Hee; Ock, Sun-Myeong

    2009-09-01

    Hallervorden-Spatz disease (HSD) is a rare autosomal-recessive hereditary disorder characterized by the early onset of progressive movement alterations, including dystonia, rigidity, choreoathetosis, and mental deterioration. HSD is also associated with a variety of psychiatric symptoms, primarily depression and mental deterioration. However, psychosis has rarely been reported as a major symptom of HSD. We report two siblings who presented psychiatric symptoms as major clinical presentations, accompanied by ataxic and spastic gait, dysarthria, and typical neuroimaging findings of HSD. A 14-year-old girl presented complex motor tics, stereotypic behavior and anxiety symptoms. Her older brother, a 16-year-old boy, presented prominent auditory hallucinations, persecutory delusions and social withdrawal symptoms. Psychiatric symptoms were improved after atypical antipsychotic treatment. HSD is a rare disease but should be carefully considered in the diagnosis of patients with both motor disorder and various psychiatric symptoms.

  18. The Roles of Inositol 1,4,5-Trisphosphate Receptor in Neurodegenerative Disorders%IP3受体在神经退行性疾病中的作用

    Institute of Scientific and Technical Information of China (English)

    于天贵; 逯爱梅; 张庆柱

    2008-01-01

    目的 综述三磷酸肌醇受体(inositol 1,4,5-trisphosphate receptor,IP3R)介导的Ca2+信号与神经退行性疾病(neurodegenerative disorders,NDD)发生发展之间的关系.方法 依据近年来国内外文献.进行分析、归纳和总结.结果 与结论 IP3R活性改变诱发的Ca2+稳态失衡,参与了阿尔茨海默病(Alzheimer's disease,AD)、亨廷顿病(Huntington'8 disease,HD)、脊髓小脑性共济失调(Spinocerebellar ataxia type 1,SCA-1)等NDD的发生发展,这对于揭示NDD的病因学和寻找以IP3受体为新靶点的治疗措施均具有重要的意义.

  19. A late-diagnosed phenylketonuria case presenting with autism spectrum disorder in early childhood.

    Science.gov (United States)

    Mazlum, Betül; Anlar, Banu; Kalkanoğlu-Sivri, H Serap; Karlı-Oğuz, Kader; Özusta, Şeniz; Ünal, Fatih

    2016-01-01

    Phenylketonuria is one of the most prevalent autosomal recessive hereditary disorders in Turkey. If untreated, it results in severe brain damage and can also be associated with autism in certain patients. We present a three-year old boy who exhibited the symptoms of autism and was subsequently diagnosed with phenylketonuria. This case illustrates that because the majority of autism cases are idiopathic, an occasional patient with a metabolic disorder might be overlooked especially in the era of newborn screening. We also discuss the possible pathogenetic processes leading to autistic symptoms in phenylketonuria, and wish to draw attention to the possibility of cases missed in the screening program because of less than 100% coverage or insufficient food intake before blood sampling. Clinicians should keep in mind the possibility of treatable disorders in children with autism even when such disorders appear unlikely.

  20. The lysosome and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Lisha Zhang; Rui Sheng; Zhenghong Qin

    2009-01-01

    It has long been believed that the lysosome is an important digestive organelle. There is increasing evidence that the lysosome is also involved in pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Abnormal protein degradation and deposition induced by lysosoreal dysfunction may be the primary contributor to age-related neurodegeneration. In this review, the possible relationship between lysosome and various neurodegenerative diseases is described.

  1. Anaesthetic management of a child with congenital afibrinogenemia - A rare inherited coagulation disorder

    Directory of Open Access Journals (Sweden)

    Sham Sunder Goyal

    2011-01-01

    Full Text Available Congenital afibrinogenemia is a very rare autosomal recessive disorder, results from mutation that affects plasma fibrinogen concentration. It is frequently associated with bleeding diathesis of varying severity. We describe the case of a 10-year-old child diagnosed of congenital afibrinogenemia who presented to hospital with subperiosteal haematoma and was posted for incision and drainage. Replacement therapy is the mainstay of treatment of bleeding episodes in this patient and plasma-derived fibrinogen concentrate is the agent of choice. Cryoprecipitate and fresh frozen plasma are alternative treatments. Appropriate amount of cryoprecipitate were transfused pre-operatively to the child. Individuals with congenital afibrinogenemia should be managed by a comprehensive bleeding disorder care team experienced in diagnosing and managing inherited bleeding disorders. Anaesthesiologist, surgeons and haematologist should work like a unit to manage the surgical emergencies.

  2. NOSH-aspirin (NBS-1120), a novel nitric oxide and hydrogen sulfide releasing hybrid, attenuates neuroinflammation induced by microglial and astrocytic activation: a new candidate for treatment of neurodegenerative disorders.

    Science.gov (United States)

    Lee, Moonhee; McGeer, Edith; Kodela, Ravinder; Kashfi, Khosrow; McGeer, Patrick L

    2013-10-01

    Hydrogen sulfide (H2 S) and nitric oxide (NO) have been described as gasotransmitters. Anti-inflammatory activity in the central and peripheral nervous systems may be one of their functions. Previously we demonstrated that several SH(-) donors including H2 S-releasing aspirin (S-ASA) exhibited anti-inflammatory and neuroprotective activity in vitro against toxins released by activated microglia and astrocytes. Here we report that NOSH-ASA, an NO- and H2 S-releasing hybrid of aspirin, has a significantly greater anti-inflammatory and neuroprotective effect than S-ASA or NO-ASA. When activated by LPS/IFNγ, human microglia and THP-1 cells release materials that are toxic to differentiated SH-SY5Y cells. These phenomena also occur with IFNγ-stimulated human astroglia and U373 cells. When the cells were treated with the S-ASA or NO-ASA, there was a significant enhancement of neuroprotection. However, NOSH-ASA had significantly more potent protection properties than NO-ASA or S-ASA. The effect was concentration-dependent, as well as incubation time-dependent. Such treatment not only reduced the release of the TNFα and IL-6, but also attenuated activation of P38 MAPK and NFκB proteins. All the compounds tested were not harmful when applied directly to SH-SY5Y cells. These data suggest that NOSH-ASA has significant anti-inflammatory properties and may be a new candidate for treating neurodegenerative disorders that have a prominent neuroinflammatory component such as Alzheimer disease and Parkinson disease.

  3. Chronic sleep disturbance and neural injury: links to neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Abbott SM

    2016-01-01

    Full Text Available Sabra M Abbott,1 Aleksandar Videnovic21Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA; 2Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Abstract: Sleep–wake disruption is frequently observed and often one of the earliest reported symptoms of many neurodegenerative disorders. This provides insight into the underlying pathophysiology of these disorders, as sleep–wake abnormalities are often accompanied by neurodegenerative or neurotransmitter changes. However, in addition to being a symptom of the underlying neurodegenerative condition, there is also emerging evidence that sleep disturbance itself may contribute to the development and facilitate the progression of several of these disorders. Due to its impact both as an early symptom and as a potential factor contributing to ongoing neurodegeneration, the sleep–wake cycle is an ideal target for further study for potential interventions not only to lessen the burden of these diseases but also to slow their progression. In this review, we will highlight the sleep phenotypes associated with some of the major neurodegenerative disorders, focusing on the circadian disruption associated with Alzheimer’s disease, the rapid eye movement behavior disorder and sleep fragmentation associated with Parkinson’s disease, and the insomnia and circadian dysregulation associated with Huntington’s disease. Keywords: sleep, neurodegeneration, Alzheimer's disease, Parkinson's disease, Huntington's disease

  4. Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease.

    Science.gov (United States)

    Brunden, Kurt R; Trojanowski, John Q; Smith, Amos B; Lee, Virginia M-Y; Ballatore, Carlo

    2014-09-15

    Microtubules (MTs), cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer's disease, frontotemporal lobar degeneration, and Parkinson's disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders.

  5. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    , which includes the cardiac centre and controls autonomic functions, and therefore autonomic dysfunction may be experienced early in the disease course. Sleep disturbances are also common non-motor complications of PD, and therefore PD patients undergo polysomnography at the Danish Center for Sleep......Neurodegenerative diseases are highly debilitating and often lead to severe morbidity and even death. Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease. According to the Braak staging study, the progressionof PD starts in the medulla oblongata...... Medicine to assess the sleep disturbances. The aim of this PhD dissertation was to: 1) Develop a method to investigate autonomic changes during sleep in neurodegenerative diseases, and apply this method on PD, iRBD and narcolepsy patients to evaluate the autonomic function in these diseases. 2) Validate...

  6. NSAIDs and cardiovascular drugs in neurodegenerative and cerebrovascular diseases

    NARCIS (Netherlands)

    M.D.M. Haag (Mendel)

    2009-01-01

    textabstractNeurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer disease (AD)), Parkinson disease (PD) and stroke. The prevalence of these neurological disorders rises with older age. From 55 years to 90 years and abo

  7. Changes in adult neurogenesis in neurodegenerative diseases: Cause or consequence?

    NARCIS (Netherlands)

    Thompson, A.; Boekhoorn, K.; van Dam, A.-M.; Lucassen, P.J.

    2008-01-01

    This review addresses the role of adult hippocampal neurogenesis and stem cells in some of the most common neurodegenerative disorders and their related animal models. We discuss recent literature in relation to Alzheimer's disease and dementia, Parkinson's disease, Huntington's disease, amyotrophic

  8. Apraxias in neurodegenerative dementias

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2015-01-01

    Full Text Available Background: Apraxia is a state of inability to carry out a learned motor act in the absence of motor, sensory or cerebellar defect on command processed through the Praxis circuit. Breakdown in default networking is one of the early dysfunction in cortical dementias and result in perplexity, awkwardness, omission, substitution errors, toying behavior and unrecognizable gestures in response to command with voluntary reflex dissociation where, when unobserved patient will carry out reflex movements normally. Awareness into the organicity of these phenomenas will help in early diagnosis, which will help in initiating appropriate treatment and slowing down the progression of the disease. Aims and Objectives: The aim was to look for the various kinds of apraxias in patients with dementia using appropriate simple tests. Patients and Methods: Three hundred patients satisfying Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for dementia were evaluated in detail with mandatory investigations for dementia followed by testing for ideational, ideomotor, limb-kinetic, buccopharyngeal, dressing apraxia, constructional apraxia and gait apraxias in addition to recording of rare apraxias when present. Results: Alzheimer′s disease showed maximum association with apraxias in all the phases of the disease ideational, ideomotor, dressing and constructional apraxias early and buccopharyngeal and gait apraxia late. Frontotemporal lobe dementia showed buccopharyngeal and gait apraxias late into the disease. Cortical basal ganglionic degeneration showed limb apraxias and diffuse Lewy body disease showed more agnosias and less apraxias common apraxias seen was Ideational and Ideomotor. Conclusion: Recognition of the apraxias help in establishing organicity, categorization, caregiver education, early strategies for treatment, avoiding anti-psychotics and introducing disease modifying pharmacotherapeutic agents and also prognosticating.

  9. Neurodegenerative Diseases: Multifactorial Conformational Diseases and Their Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Saba Sheikh

    2013-01-01

    Full Text Available Neurodegenerative diseases are multifactorial debilitating disorders of the nervous system that affect approximately 30 millionindividuals worldwide. Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis diseases are the consequence of misfolding and dysfunctional trafficking of proteins. Beside that, mitochondrial dysfunction, oxidative stress, and/or environmental factors strongly associated with age have also been implicated in causing neurodegeneration. After years of intensive research, considerable evidence has accumulated that demonstrates an important role of these factors in the etiology of common neurodegenerative diseases. Despite the extensive efforts that have attempted to define the molecular mechanisms underlying neurodegeneration, many aspects of these pathologies remain elusive. However, in order to explore the therapeutic interventions directed towards treatment of neurodegenerative diseases, neuroscientists are now fully exploiting the data obtained from studies of these basic mechanisms that have gone awry. The novelty of these mechanisms represents a challenge to the identification of viable drug targets and biomarkers for early diagnosis of the diseases. In this paper, we are reviewing various aspects associated with the disease and the recent trends that may have an application for the treatment of the neurodegenerative disorders.

  10. Clinical and Molecular Features of Laron Syndrome, A Genetic Disorder Protecting from Cancer.

    Science.gov (United States)

    Janecka, Anna; Kołodziej-Rzepa, Marta; Biesaga, Beata

    2016-01-01

    Laron syndrome (LS) is a rare, genetic disorder inherited in an autosomal recessive manner. The disease is caused by mutations of the growth hormone (GH) gene, leading to GH/insulin-like growth factor type 1 (IGF1) signalling pathway defect. Patients with LS have characteristic biochemical features, such as a high serum level of GH and low IGF1 concentration. Laron syndrome was first described by the Israeli physician Zvi Laron in 1966. Globally, around 350 people are affected by this syndrome and there are two large groups living in separate geographic regions: Israel (69 individuals) and Ecuador (90 individuals). They are all characterized by typical appearance such as dwarfism, facial phenotype, obesity and hypogenitalism. Additionally, they suffer from hypoglycemia, hypercholesterolemia and sleep disorders, but surprisingly have a very low cancer risk. Therefore, studies on LS offer a unique opportunity to better understand carcinogenesis and develop new strategies of cancer treatment.

  11. Distribution of Wfs1 protein in the central nervous system of the mouse and its relation to clinical symptoms of the Wolfram syndrome

    DEFF Research Database (Denmark)

    Luuk, H.; Koks, S.; Plaas, M.;

    2008-01-01

    Mutations in the coding region of the WFS1 gene cause Wolfram syndrome, a rare multisystem neurodegenerative disorder of autosomal recessive inheritance. Patients with Wolfram syndrome display considerable clinical pleiomorphism, and symptoms such as neurological complications and psychiatric dis...... and psychiatric symptoms found in Wolfram syndrome. Enrichment of Wfs1 protein in the central extended amygdala suggests a role in the modulation of anxiety and fear Udgivelsesdato: 2008/8/20...

  12. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model

    OpenAIRE

    2012-01-01

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of th...

  13. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases

    OpenAIRE

    2015-01-01

    Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD), Huntington’s disease (HD), and Alzheimer’s d...

  14. Phenotypic screens targeting neurodegenerative diseases.

    Science.gov (United States)

    Zhang, Minhua; Luo, Guangrui; Zhou, Yanjiao; Wang, Shaohui; Zhong, Zhong

    2014-01-01

    Neurodegenerative diseases affect millions of people worldwide, and the incidences increase as the population ages. Disease-modifying therapy that prevents or slows disease progression is still lacking, making neurodegenerative diseases an area of high unmet medical need. Target-based drug discovery for disease-modifying agents has been ongoing for many years, without much success due to incomplete understanding of the molecular mechanisms underlying neurodegeneration. Phenotypic screening, starting with a disease-relevant phenotype to screen for compounds that change the outcome of biological pathways rather than activities at certain specific targets, offers an alternative approach to find small molecules or targets that modulate the key characteristics of neurodegeneration. Phenotypic screens that focus on amelioration of disease-specific toxins, protection of neurons from degeneration, or promotion of neuroregeneration could be potential fertile grounds for discovering therapeutic agents for neurodegenerative diseases. In this review, we will summarize the progress of compound screening using these phenotypic-based strategies for this area, with a highlight on unique considerations for disease models, assays, and screening methodologies. We will further provide our perspectives on how best to use phenotypic screening to develop drug leads for neurodegenerative diseases.

  15. Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL in humans.

    Directory of Open Access Journals (Sweden)

    Vafa Bayat

    Full Text Available An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS, and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.

  16. Role of autophagy in prion protein-induced neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Hao Yao; Deming Zhao; Sher Hayat Khan; Lifeng Yang

    2013-01-01

    Prion diseases,characterized by spongiform degeneration and the accumulation of misfolded and aggregated PrPSc in the central nervous system,are one of fatal neurodegenerative and infectious disorders of humans and animals.In earlier studies,autophagy vacuoles in neurons were frequently observed in neurodegenerative diseases such as Alzheimer's,Parkinson's,and Huntington's diseases as well as prion diseases.Autophagy is a highly conserved homeostatic process by which several cytoplasmic components (proteins or organelles) are sequestered in a doublemembrane-bound vesicle termed 'autophagosome' and degraded upon their fusion with lysosome.The pathway of intercellular self-digestion at basal physiological levels is indispensable for maintaining the healthy status of tissues and organs.In case of prion infection,increasing evidence indicates that autophagy has a crucial ability of eliminating pathological PrPSc accumulated within neurons.In contrast,autophagy dysfunction in affected neurons may contribute to the formation of spongiform changes.In this review,we summarized recent findings about the effect of mammalian autophagy in neurodegenerative disorders,particularly in prion diseases.We also summarized the therapeutic potential of some small molecules (such as lithium,rapamycin,Sirtuin 1 and resveratrol) targets to mitigate such diseases on brain function.Furthermore,we discussed the controversial role of autophagy,whether it mediates neuronal toxicity or serves a protective function in neurodegenerative disorders.

  17. Copper handling by astrocytes: insights into neurodegenerative diseases.

    Science.gov (United States)

    Tiffany-Castiglioni, Evelyn; Hong, Sandra; Qian, Yongchang

    2011-12-01

    Copper (Cu) is an essential trace element in the brain that can be toxic at elevated levels. Cu accumulation is a suspected etiology in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and prion-induced disorders. Astrocytes are a proposed depot in the brain for Cu and other metals, including lead (Pb). This article describes the physiological roles of Cu in the central nervous system and in selected neurodegenerative diseases, and reviews evidence that astrocytes accumulate Cu and protect neurons from Cu toxicity. Findings from murine genetic models of Menkes disease and from cell culture models concerning the molecular mechanisms by which astrocytes take up, store, and buffer Cu intracellularly are discussed, as well as potential mechanistic linkages between astrocyte functions in Cu handling and neurodegenerative diseases.

  18. The transition metals copper and iron in neurodegenerative diseases.

    Science.gov (United States)

    Rivera-Mancía, Susana; Pérez-Neri, Iván; Ríos, Camilo; Tristán-López, Luis; Rivera-Espinosa, Liliana; Montes, Sergio

    2010-07-30

    Neurodegenerative diseases constitute a worldwide health problem. Metals like iron and copper are essential for life, but they are also involved in several neurodegenerative mechanisms such as protein aggregation, free radical generation and oxidative stress. The role of Fe and Cu, their pathogenic mechanisms and possible therapeutic relevance are discussed regarding four of the most common neurodegenerative diseases, Alzheimer's, Parkinson's and Huntington's diseases as well as amyotrophic lateral sclerosis. Metal-mediated oxidation by Fenton chemistry is a common feature for all those disorders and takes part of a self-amplifying damaging mechanism, leading to neurodegeneration. The interaction between metals and proteins in the nervous system seems to be a crucial factor for the development or absence of neurodegeneration. The present review also deals with the therapeutic strategies tested, mainly using metal chelating drugs. Metal accumulation within the nervous system observed in those diseases could be the result of compensatory mechanisms to improve metal availability for physiological processes.

  19. Stem Cells for the Treatment of Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2010-09-01

    Full Text Available Neurodegenerative diseases are characterized by neurodegenerative changes or apoptosis of neurons involved in networks, leading to permanent paralysis and loss of sensation below the site of the injury. Cell replacement therapy has provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases. In recent years, neurons and glial cells have successfully been generated from stem cells, and extensive efforts by investigators to develop stem cell-based brain transplantation therapies have been carried out. We review here notable previously published experimental and preclinical studies involving stem cell-based cell for neurodegenerative diseases and discuss the future prospects for stem cell therapy of neurological disorders in the clinical setting. Steady and solid progress in stem cell research in both basic and preclinical settings should support the hope for development of stem cell-based cell therapies for neurological diseases.

  20. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease.

    Science.gov (United States)

    Hroudová, Jana; Singh, Namrata; Fišar, Zdeněk

    2014-01-01

    Mitochondrial dysfunctions are supposed to be responsible for many neurodegenerative diseases dominating in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). A growing body of evidence suggests that defects in mitochondrial metabolism and particularly of electron transport chain may play a role in pathogenesis of AD. Structurally and functionally damaged mitochondria do not produce sufficient ATP and are more prominent in producing proapoptotic factors and reactive oxygen species (ROS), and this can be an early stage of several mitochondrial disorders, including neurodegenerative diseases. Mitochondrial dysfunctions may be caused by both mutations in mitochondrial or nuclear DNA that code mitochondrial components and by environmental causes. In the following review, common aspects of mitochondrial impairment concerned about neurodegenerative diseases are summarized including ROS production, impaired mitochondrial dynamics, and apoptosis. Also, damaged function of electron transport chain complexes and interactions between pathological proteins and mitochondria are described for AD particularly and marginally for PD and HD.

  1. Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2014-01-01

    Full Text Available An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson’s disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review.

  2. A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis.

    Science.gov (United States)

    Ferguson, Polly J; Bing, Xinyu; Vasef, Mohammed A; Ochoa, Luis A; Mahgoub, Amar; Waldschmidt, Thomas J; Tygrett, Lorraine T; Schlueter, Annette J; El-Shanti, Hatem

    2006-01-01

    Chronic recurrent multifocal osteomyelitis (CRMO) is an autoinflammatory disorder that primarily affects bone but is often accompanied by inflammation of the skin and/or gastrointestinal tract. The etiology is unknown but evidence suggests a genetic component to disease susceptibility. Although most cases of CRMO are sporadic, there is an autosomal recessive syndromic form of the disease, called Majeed syndrome, which is due to homozygous mutations in LPIN2. In addition, there is a phenotypically similar mouse, called cmo (chronic multifocal osteomyelitis) in which the disease is inherited as an autosomal recessive disorder. The cmo locus has been mapped to murine chromosome 18. In this report, we describe phenotypic abnormalities in the cmo mouse that include bone, cartilage and skin inflammation. Utilizing a backcross breeding strategy, we refined the cmo locus to a 1.3 Mb region on murine chromosome 18. Within the refined region was the gene pstpip2, which shares significant sequence homology to the PSTPIP1. Mutations in PSTPIP1 have been shown to cause the autoinflammatory disorder PAPA syndrome (pyogenic arthritis, pyoderma gangrenosum and acne). Mutation analysis, utilizing direct sequencing, revealed a single base pair change c.293T --> C in the pstpip2 gene resulting in a highly conserved leucine at amino acid 98 being replaced by a proline (L98P). No other mutations were found in the coding sequence of the remaining genes in the refined interval, although a 50 kb gap remains unexplored. These data suggest that mutations in pstpip2 may be the genetic explanation for the autoinflammatory phenotype seen in the cmo mouse.

  3. Personalized medicine in neurodegenerative diseases: how far away?

    Science.gov (United States)

    Gotovac, Kristina; Hajnšek, Sanja; Pašić, Marija Bošnjak; Pivac, Nela; Borovečki, Fran

    2014-02-01

    Neurodegenerative diseases are characterized by progressive dysfunction of the nervous system as a result of neuronal loss in the brain and spinal cord. Despite extensive research efforts aimed at development of new disease-modifying therapeutics, there is still no effective treatment to halt neurodegenerative processes. Thus, modification of current therapeutic and diagnostic research strategies is a goal of increasing urgency. The biggest limitation in neurodegenerative disease research is the lack of appropriate biomarkers. Discovery of universal biomarkers capable of diagnosing patients with neurodegenerative diseases, monitoring their response to therapy, and predicting disease progression seems to be a tall order. Instead, a combination of different methodologies in the discovery of biomarkers specific for each described aspect of the disease seems to be a more viable approach. Although application of personalized medicine in diagnosis and treatment of neurodegenerative diseases may seem far off, some recent developments, such as utilizing specific biological therapies in multiple sclerosis, microRNA profiling as a source of novel biomarkers in Parkinson’s disease, or combination of neuroimaging and proteomic analyses in diagnosis of Alzheimer’s disease patients, already point to the way clinical neurology may integrate new achievements in everyday practice. Combination of genomic, proteomic, glycomic, and metabolomic approaches may yield novel insights into molecular mechanisms of disease pathophysiology, which could then be integrated and translated into clinical neurology. Based on the developments during the past decade, it is feasible to predict that a personalized approach to treating neurological disorders will become more widely applicable in the coming years.

  4. Animal models of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Fabiola Mara Ribeiro

    2013-01-01

    Full Text Available The prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD and Parkinson's disease (PD, increases with age, and the number of affected patients is expected to increase worldwide in the next decades. Accurately understanding the etiopathogenic mechanisms of these diseases is a crucial step for developing disease-modifying drugs able to preclude their emergence or at least slow their progression. Animal models contribute to increase the knowledge on the pathophysiology of neurodegenerative diseases. These models reproduce different aspects of a given disease, as well as the histopathological lesions and its main symptoms. The purpose of this review is to present the main animal models for AD, PD, and Huntington's disease.

  5. Transgenic nonhuman primates for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS

    2004-06-01

    Full Text Available Abstract Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD, Parkinson's disease (PD and Huntington's disease (HD have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which

  6. Two siblings with immunodeficiency, facial abnormalities and chromosomal instability without mutation in DNMT3B gene but liability towards malignancy; a new chromatin disorder delineation?

    Directory of Open Access Journals (Sweden)

    Neitzel Heidemarie

    2010-03-01

    Full Text Available Abstract Background ICF syndrome (standing for Immunodeficiency, Centromere instability and Facial anomalies syndrome is a very rare autosomal recessive immune disorder caused by mutations of the gene de novo DNA-methyltransferase 3B (DNMT3B. However, in the literature similar clinical cases without such mutations are reported, as well. Results We report on a family in which the unrelated spouses had two female siblings sharing similar phenotypic features resembling ICF-syndrome, i.e. congenital abnormalities, immunodeficiency, developmental delay and high level of chromosomal instability, including high frequency of centromeric/pericentromeric rearrangements and breaks, chromosomal fragments despiralization or pulverization. However, mutations in DNMT3B could not be detected. Conclusion The discovery of a new so-called 'chromatin disorder' is suggested. Clinical, molecular genetic and cytogenetic characteristics are reported and compared to other 'chromatin disorders'.

  7. 非人灵长类动物模型睡眠研究在神经精神疾病的早期诊断和药效评价中的作用%Sleep disorder,a potential early diagnostic marker for psychiatric and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    陈艳梅; 秦冬冬; 姜慧慧; 胡新天; 马原野

    2011-01-01

    Sleep/circadian timing depends on several neurotransmitter systems, including 5-HT, NE, DA, Ach,GABA, etc. These neurotransmitter systems play critical roles in mental, emotional and cognitive functions in the brain.Dysfunctions of these systems not only result in sleep disorder, but are also related to many psychiatric and neurodegenerative diseases. Sleep disruption is tightly associated with an increased susceptibility to a broad range of psychiatric and neurodegenerative diseases, such as depression and Parkinson diseases. Non-human primates, especially the thesus monkey is an excellent biomedical model for human sleep and CNS diseases. Establishing nonhuman primates'model of mental disorders and monitoring the sleep changes during the development of the model will help us to know more about the relationships between sleep disorder and psychiatric and neurodegenerative diseases. Sleep disorder as an early marker for psychiatric and neurodegenerative diseases would permit early intervention of these diseases and draw attention to the potential therapeutic benefits of normalizing sleep thythms in individuals with brain pathologies.%清醒-睡眠的周期性调节需要众多单胺类神经递质(5-HT、NE、DA 等)、乙酰胆碱等兴奋性神经递质以及GABA 等抑制性神经递质的参与.这些递质系统的异常不仅会导致睡眠周期紊乱,还与一系列的精神性和神经退行性疾病相关.睡眠异常被认为是抑郁症、帕金森氏病等神经系统疾病发生的早期预警信号.相比起低等哺乳动物,非人灵长类动物的睡眠与人类的睡眠具有更好的可比性.近来,利用非人灵长类动物来建立神经精神疾病模型的研究已取得明显进展.在建模的同时监测动物的睡眠状况,有助于我们进一步了解睡眠在这些疾病早期诊断和发展过程中的作用,为疾病的早期诊断、治疗和药效评价提供更好的客观依据.

  8. SNP Analysis and Whole Exome Sequencing: Their Application in the Analysis of a Consanguineous Pedigree Segregating Ataxia

    Directory of Open Access Journals (Sweden)

    Sarah L. Nickerson

    2015-10-01

    Full Text Available Autosomal recessive cerebellar ataxia encompasses a large and heterogeneous group of neurodegenerative disorders. We employed single nucleotide polymorphism (SNP analysis and whole exome sequencing to investigate a consanguineous Maori pedigree segregating ataxia. We identified a novel mutation in exon 10 of the SACS gene: c.7962T>G p.(Tyr2654*, establishing the diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS. Our findings expand both the genetic and phenotypic spectrum of this rare disorder, and highlight the value of high-density SNP analysis and whole exome sequencing as powerful and cost-effective tools in the diagnosis of genetically heterogeneous disorders such as the hereditary ataxias.

  9. Brain connectivity in neurodegenerative diseases--from phenotype to proteinopathy.

    Science.gov (United States)

    Pievani, Michela; Filippini, Nicola; van den Heuvel, Martijn P; Cappa, Stefano F; Frisoni, Giovanni B

    2014-11-01

    Functional and structural connectivity measures, as assessed by means of functional and diffusion MRI, are emerging as potential intermediate biomarkers for Alzheimer disease (AD) and other disorders. This Review aims to summarize current evidence that connectivity biomarkers are associated with upstream and downstream disease processes (molecular pathology and clinical symptoms, respectively) in the major neurodegenerative diseases. The vast majority of studies have addressed functional and structural connectivity correlates of clinical phenotypes, confirming the predictable correlation with topography and disease severity in AD and frontotemporal dementia. In neurodegenerative diseases with motor symptoms, structural--but, to date, not functional--connectivity has been consistently found to be associated with clinical phenotype and disease severity. In the latest studies, the focus has moved towards the investigation of connectivity correlates of molecular pathology. Studies in cognitively healthy individuals with brain amyloidosis or genetic risk factors for AD have shown functional connectivity abnormalities in preclinical disease stages that are reminiscent of abnormalities observed in symptomatic AD. This shift in approach is promising, and may aid identification of early disease markers, establish a paradigm for other neurodegenerative disorders, shed light on the molecular neurobiology of connectivity disruption and, ultimately, clarify the pathophysiology of neurodegenerative diseases.

  10. Neurofilament proteins in axonal regeneration and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Haitao Wang; Minfei Wu; Chuanjun Zhan; Enyuan Ma; Maoguang Yang; Xiaoyu Yang; Yingpu Li

    2012-01-01

    Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.

  11. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases.

    Science.gov (United States)

    Duarte-Neves, Joana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-11-01

    Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.

  12. Sleep-wake changes and cognition in neurodegenerative disease.

    Science.gov (United States)

    Naismith, Sharon L; Lewis, Simon J G; Rogers, Naomi L

    2011-01-01

    With the increasing aging population, neurodegenerative disorders will become more common in clinical practice. These disorders involve multiple pathophysiological mechanisms that differentially affect cognition, mood, and physical functions. Possibly due to the involvement of common underlying neurobiological circuits, sleep and/or circadian (sleep-wake) changes are also common in this disease group. Of significance, sleep-wake changes are often a prodromal feature and are predictive of cognitive decline, psychiatric symptoms, quality of life, need for institutional care, and caregiver burden. Unfortunately, in neurodegenerative disease, few studies have included detailed polysomnography or neuropsychological assessments although some data indicate that sleep and neurocognitive features are related. Further studies are also required to address the effects of pharmacological and nonpharmacological treatments on cognitive functioning. Such research will hopefully lead to targeted early intervention approaches for cognitive decline in older people.

  13. Neurodegenerative diseases: exercising towards neurogenesis and neuroregeneration

    Directory of Open Access Journals (Sweden)

    Eng-Tat Ang

    2010-07-01

    Full Text Available Currently, there is still no effective therapy for neurodegenerative diseases (NDD such as Alzheimer’s disease (AD and Parkinson’s disease (PD despite intensive research and on-going clinical trials. Collectively, these diseases account for the bulk of health care burden associated with age-related neurodegenerative disorders. There is therefore an urgent need to further research into the molecular pathogenesis, histological differentiation, and clinical management of NDD. Importantly, there is also an urgency to understand the similarities and differences between these two diseases so as to identify the common or different upstream and downstream signaling pathways. In this review, the role iron play in NDD will be highlighted, as iron is key to a common underlying pathway in the production of oxidative stress. There is increasing evidence to suggest that oxidative stress predisposed cells to undergo damage to DNA, protein and lipid, and as such a common factor involved in the pathogenesis of AD and PD. The challenge then is to minimize elevated and uncontrolled oxidative stress levels while not affecting basal iron metabolism, as iron plays vital roles in sustaining cellular function. However, overload of iron results in increased oxidative stress due to the Fenton reaction. We discuss evidence to suggest that sustained exercise and diet restriction may be ways to slow the rate of neurodegeneration, by perhaps promoting neurogenesis or antioxidant-related pathways. It is also our intention to cover NDD in a broad sense, in the context of basic and clinical sciences to cater for both clinician’s and the scientist’s needs, and to highlight current research investigating exercise as a therapeutic or preventive measure.

  14. Tau imaging in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Dani, M.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Neuroscience, London (United Kingdom); Brooks, D.J. [Imperial College London, Neurology Imaging Unit, Division of Neuroscience, London (United Kingdom); Aarhus University, Institute of Clinical Medicine, Aarhus (Denmark)

    2016-06-15

    Aggregated tau protein is a major neuropathological substrate central to the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and chronic traumatic encephalopathy. In AD, it has been shown that the density of hyperphosphorylated tau tangles correlates closely with neuronal dysfunction and cell death, unlike β-amyloid. Until now, diagnostic and pathologic information about tau deposition has only been available from invasive techniques such as brain biopsy or autopsy. The recent development of selective in-vivo tau PET imaging ligands including [{sup 18}F]THK523, [{sup 18}F]THK5117, [{sup 18}F]THK5105 and [{sup 18}F]THK5351, [{sup 18}F]AV1451(T807) and [{sup 11}C]PBB3 has provided information about the role of tau in the early phases of neurodegenerative diseases, and provided support for diagnosis, prognosis, and imaging biomarkers to track disease progression. Moreover, the spatial and longitudinal relationship of tau distribution compared with β - amyloid and other pathologies in these diseases can be mapped. In this review, we discuss the role of aggregated tau in tauopathies, the challenges posed in developing selective tau ligands as biomarkers, the state of development in tau tracers, and the new clinical information that has been uncovered, as well as the opportunities for improving diagnosis and designing clinical trials in the future. (orig.)

  15. Glutathione transferases and neurodegenerative diseases.

    Science.gov (United States)

    Mazzetti, Anna Paola; Fiorile, Maria Carmela; Primavera, Alessandra; Lo Bello, Mario

    2015-03-01

    There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.

  16. Pain in Neurodegenerative Disease: Current Knowledge and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Marina de Tommaso

    2016-01-01

    Full Text Available Neurodegenerative diseases are going to increase as the life expectancy is getting longer. The management of neurodegenerative diseases such as Alzheimer’s disease (AD and other dementias, Parkinson’s disease (PD and PD related disorders, motor neuron diseases (MND, Huntington’s disease (HD, spinocerebellar ataxia (SCA, and spinal muscular atrophy (SMA, is mainly addressed to motor and cognitive impairment, with special care to vital functions as breathing and feeding. Many of these patients complain of painful symptoms though their origin is variable, and their presence is frequently not considered in the treatment guidelines, leaving their management to the decision of the clinicians alone. However, studies focusing on pain frequency in such disorders suggest a high prevalence of pain in selected populations from 38 to 75% in AD, 40% to 86% in PD, and 19 to 85% in MND. The methods of pain assessment vary between studies so the type of pain has been rarely reported. However, a prevalent nonneuropathic origin of pain emerged for MND and PD. In AD, no data on pain features are available. No controlled therapeutic trials and guidelines are currently available. Given the relevance of pain in neurodegenerative disorders, the comprehensive understanding of mechanisms and predisposing factors, the application and validation of specific scales, and new specific therapeutic trials are needed.

  17. The role of intrinsically unstructured proteins in neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Swasti Raychaudhuri

    Full Text Available The number and importance of intrinsically disordered proteins (IUP, known to be involved in various human disorders, are growing rapidly. To test for the generalized implications of intrinsic disorders in proteins involved in Neurodegenerative diseases, disorder prediction tools have been applied to three datasets comprising of proteins involved in Huntington Disease (HD, Parkinson's disease (PD, Alzheimer's disease (AD. Results show, in general, proteins in disease datasets possess significantly enhanced intrinsic unstructuredness. Most of these disordered proteins in the disease datasets are found to be involved in neuronal activities, signal transduction, apoptosis, intracellular traffic, cell differentiation etc. Also these proteins are found to have more number of interactors and hence as the proportion of disorderedness (i.e., the length of the unfolded stretch increased, the size of the interaction network simultaneously increased. All these observations reflect that, "Moonlighting" i.e. the contextual acquisition of different structural conformations (transient, eventually may allow these disordered proteins to act as network "hubs" and thus they may have crucial influences in the pathogenecity of neurodegenerative diseases.

  18. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    Science.gov (United States)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  19. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases.

    Science.gov (United States)

    Fan, Hueng-Chuen; Chi, Ching-Shiang; Cheng, Shin-Nan; Lee, Hsiu-Fen; Tsai, Jeng-Dau; Lin, Shinn-Zong; Harn, Horng-Jyh

    2015-12-25

    Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.

  20. "Dermatoglyphic Observations in an Iranian Girl Affected with Congenital Cutis Laxa (Autosomal Recessive"

    Directory of Open Access Journals (Sweden)

    H Pour-Jafari

    2003-08-01

    Full Text Available The aim of the this work was to determine the finger patterns, Finger Ridge Count (FRC, Total Finger Ridge Count (TFRC, and Asymmetry of Finger Ridge Count (AFRC of an Iranian girl (aged 13 years affected with congenital cutis laxa (CCL.The fingerprints of the first phalanx of both hands were taken by using the standard method (stamp ink. The fingerprints were classified according to the Galton nomenclature. The patterns of palm creases were also studied. Besides, the ridges of fingerprints of all ten fingers were counted, then employing the related formulas, the FRC, TFRC and AFRC were calculated.Results showed that the finger patterns of all ten fingers were radial loop; the major creases of the palms existed but their sizes were not normal. TFRC, which is the sum of all ten FRCs, was 77 (“low”, and AFRC was 10.344, more than that of her normal sister, that was 7.280. It is concluded that in CCL, the TFRC and symmetry of the fingertips ridges count may decrease; also palm pattern may be unusual.

  1. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism

    DEFF Research Database (Denmark)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet

    2013-01-01

    in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted...... in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal...

  2. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    NARCIS (Netherlands)

    Iqbal, Z.; Puttmann, L.; Musante, L.; Razzaq, A.; Zahoor, M.Y.; Hu, H; Wienker, T.F.; Garshasbi, M.; Fattahi, Z.; Gilissen, C.; Vissers, L.E.; Brouwer, A.P. de; Veltman, J.A.; Pfundt, R.P.; Najmabadi, H.; Ropers, H.H.; Riazuddin, S.; Kahrizi, K.; Bokhoven, H. van

    2016-01-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants

  3. Autosomal recessive agammaglobulinemia: novel insights from mutations in Ig-beta.

    Science.gov (United States)

    Lougaris, Vassilios; Ferrari, Simona; Cattalini, Marco; Soresina, Annarosa; Plebani, Alessandro

    2008-09-01

    Agammaglobulinemia is a rare primary immuno-deficiency characterized by an early block of B-cell development in the bone marrow resulting in the absence of peripheral B cells and low/absent immunoglobulin serum levels. Mutations in the Bruton tyrosine kinase and in components of the pre-B-cell receptor (pre-BCR), such as mu heavy chain, surrogate light chain, and Igalpha have been found in 85% to 90% of patients affected by this disease. Here we review the recent advances in the characterization of molecular defects underlying an early block in B-cell development, focusing on the novel finding of the first two patients with agammaglobulinemia caused by mutations in Igbeta, the transmembrane protein that associates with Igalpha as part of the pre-BCR complex. Characterization of novel genetic defects involving components of the pre-BCR is crucial for a better understanding of the biology of early B-cell development and may have therapeutic and prognostic implications.

  4. Vici Syndrome: A Rare Autosomal Recessive Syndrome with Brain Anomalies, Cardiomyopathy, and Severe Intellectual Disability

    Directory of Open Access Journals (Sweden)

    R. Curtis Rogers

    2011-01-01

    Full Text Available Purpose. The objective of this study was to present and describe two additional patients diagnosed with Vici syndrome. Methods. Clinical, laboratory, and imaging findings of the two siblings are discussed in detail. The two patients' descriptions are compared with the other eleven patients reported in the literature. We also presented detailed autopsy results on the male sibling, which demonstrated cytoplasmic vacuoles of the cardiomyocytes and confirmed the clinical findings. Results. The patients reported here include the 13th and 14th patients reported with Vici syndrome. The summary of findings present in these patients includes postnatal growth retardation, developmental delay, bilateral cataracts, agenesis of the corpus callosum, cerebellar anomalies, gyral abnormalities, seizures, hypotonia, and cardiomyopathy. Conclusion. Vici syndrome should be suspected in any child with agenesis of the corpus callosum and one of the following findings: cardiomyopathy, cataracts, immune deficiency, or cutaneous hypopigmentation.

  5. Decreased bone density and treatment in patients with autosomal recessive cutis laxa.

    NARCIS (Netherlands)

    Noordam, C.; Funke, S.; Slobbe-Knoers, V.V.A.M.; Jira, P.E.; Wevers, R.A.; Urban, Z.; Morava, E.

    2009-01-01

    AIM: Due to the occasional association pathological fractures and osteoporosis we evaluated four patients with cutis laxa syndrome for skeletal anomalies. PATIENT/METHODS: We prospectively evaluated four patients, a male and a female child and a brother-sister sib pair, with dysmorphic features, gro

  6. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis

    DEFF Research Database (Denmark)

    Gribouval, Olivier; Morinière, Vincent; Pawtowski, Audrey

    2012-01-01

    , pulmonary hypoplasia, and refractory arterial hypotension. The disease is linked to mutations in the genes encoding several components of the renin-angiotensin system (RAS): AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), and AGTR1 (angiotensin II receptor type 1). Here, we review...

  7. A homozygous missense mutation in the IRBP gene (RBP3) associated with autosomal recessive retinitis pigmentosa.

    NARCIS (Netherlands)

    Hollander, A.I. den; McGee, T.L.; Ziviello, C.; Banfi, S.; Dryja, T.P.; Gonzalez-Fernandez, F.; Ghosh, D.; Berson, E.L.

    2009-01-01

    PURPOSE: Interphotoreceptor retinoid-binding protein (IRBP) has been considered essential for normal rod and cone function, as it mediates the transport of retinoids between the photoreceptors and the retinal pigment epithelium. This study was performed to determine whether mutations in the IRBP gen

  8. An autosomal recessive cerebellar ataxia syndrome with upward gaze palsy, neuropathy, and seizures

    NARCIS (Netherlands)

    Straussberg, R; Basel-Vanagaite, L; Kivity, S; Dabby, R; Cirak, S; Nurnberg, P; Voit, T; Mahajnah, M; Inbar, D; Saifi, GM; Lupski, [No Value; Delague, [No Value; Megarbane, A; Richter, A; Leshinsky, E; Berkovic, SF

    2005-01-01

    The authors describe three siblings born to consanguineous parents with early onset ataxia, dysarthria, myoclonic, generalized tonic clonic seizures, upward gaze palsy, extensor plantar reflexes, sensory neuropathy, and normal cognition. Direct screening excluded mutations in FRDA, TDP1, and SACS ge

  9. Identification of the CRB1 gene and analysis of its role in autosomal recessive retinal dystrophies

    NARCIS (Netherlands)

    Hollander, Antonia Ingrid den

    2002-01-01

    Inherited retinal dystrophies generally lead to severe visual impairment early in life. Most genes involved in retinal dystrophies are expressed exclusively or predominantly in the retina or the RPE. To identify candidate genes for inherited retinal dystrophies, we isolated

  10. [Autosomal recessive GTPCH 1 deficiency: the importance of the analysis of neurotransmitters in cerebrospinal fluid].

    Science.gov (United States)

    Moreno-Medinilla, E E; Mora-Ramirez, M D; Calvo-Medina, R; Martinez-Anton, J

    2016-06-01

    Introduccion. El deficit de la enzima trifosfato de guanosina ciclohidrolasa 1 (GTPCH 1) origina una disminucion de la sintesis de la tetrahidrobiopterina (BH4), cofactor indispensable en la sintesis de la tirosina, la dopamina y la serotonina. Es una enfermedad poco frecuente que produce un retraso o regresion psicomotora y trastornos del movimiento, y en la que el tratamiento puede mejorar o incluso corregir la clinica. Caso clinico. Niña afecta de deficit de GTPCH con herencia autosomica recesiva, diagnosticada a los 14 meses con estudio del liquido cefalorraquideo con deficit de pterinas, HVA y 5-HIAA, test de sobrecarga de fenilalanina y estudio genetico positivos. La clinica comenzo a los 5 meses con temblor cefalico y de las extremidades superiores, en reposo e intencional, intermitente, que desaparecio en un mes. El desarrollo psicomotor era normal, destacaba una hipotonia axial leve en la exploracion y las pruebas complementarias realizadas fueron normales. Posteriormente presento regresion psicomotora con perdida del sosten cefalico, disminucion de los movimientos activos, dificultad para la manipulacion bimanual, hipomimia e hipotonia global grave, lo que motivo el estudio de una encefalopatia progresiva. Tras el diagnostico de deficit de GTPCH, inicio tratamiento sustitutivo con levodopa/carbidopa, OH triptofano y BH4, con muy buena evolucion tanto motora como cognitiva. Actualmente, la paciente tiene 5 años, presenta un desarrollo psicomotor adecuado a su edad, cursa tercer curso de educacion infantil y ha alcanzado el nivel de su clase. Conclusion. Hay que destacar en este caso la mejoria tan satisfactoria, tanto motora como cognitiva, tras iniciar el tratamiento sustitutivo, ya que el nivel cognitivo suele quedar afectado en muchos casos.

  11. A mutation in CABP2, expressed in cochlear hair cells, causes autosomal-recessive hearing impairment

    NARCIS (Netherlands)

    Schrauwen, I.; Helfmann, S.; Inagaki, A.; Predoehl, F.; Tabatabaiefar, M.A.; Picher, M.M.; Sommen, M.; Seco, C.Z.; Oostrik, J.; Kremer, J.M.J.; Dheedene, A.; Claes, C.; Fransen, E.; Chaleshtori, M.H.; Coucke, P.; Lee, A.; Moser, T.; Camp, G. van

    2012-01-01

    CaBPs are a family of Ca(2+)-binding proteins related to calmodulin and are localized in the brain and sensory organs, including the retina and cochlea. Although their physiological roles are not yet fully elucidated, CaBPs modulate Ca(2+) signaling through effectors such as voltage-gated Ca(v) Ca(2

  12. Screening for homozygosity by descent in families with autosomal recessive retinitis pigmentosa

    Indian Academy of Sciences (India)

    Kota Lalitha; Subhadra Jalali; Tejas Kadakia; Chitra Kannabiran

    2002-08-01

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease and an important cause of blindness in the state of Andhra Pradesh in India. In an attempt to identify the disease locus in families with the recessive form of the disease, we used the approach of screening for homozygosity by descent in offspring of consanguineous and nonconsanguineous families with RP. Microsatellite markers closely flanking 21 known candidate genes for RP were genotyped in parents and affected offspring to determine whether there was homozygosity at these loci that was shared by affected individuals of a family. This screening approach may be a rapid preliminary method to test known loci for possible cosegregation with disease.

  13. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  14. Genetic disorders with both hearing loss and cardiovascular abnormalities.

    Science.gov (United States)

    Belmont, John W; Craigen, William; Martinez, Hugo; Jefferies, John Lynn

    2011-01-01

    There has been a growing appreciation for conditions that affect hearing and which are accompanied by significant cardiovascular disorders. In this chapter we consider several broad classes of conditions including deafness due to abnormal structural development of the inner ear, those with physiological abnormalities in the inner ear sensory apparatus, and conditions with progressive loss of function of sensory cells or middle ear functions. Because of shared developmental controls, inner ear malformations are often associated with congenital heart defects and can be part of complex syndromes that affect other organs and neurodevelopmental outcome. Physiological disorders of the hair cells can lead to hearing loss and can be associated with cardiac arrhythmias, especially long QT syndrome. In addition, cellular energy defects such as mitochondrial disorders can affect maintenance of hair cells and are often associated with cardiomyopathy. Lysosomal storage diseases and other disorders affecting connective tissue can lead to chronic middle ear disease, with conductive hearing loss and also cause cardiac valve disease and/or cardiomyopathy. The genetic basis for these conditions is heterogeneous and includes chromosomal/genomic disorders, de novo dominant mutations, and familial dominant, autosomal-recessive, and mitochondrial (matrilineal) inheritance. Taken together, there are more than 100 individual genes implicated in genetic hearing impairment that are also associated with congenital and/or progressive cardiac abnormalities. These genes encode transcription factors, chromatin remodeling factors, components of signal transduction pathways, ion channels, mitochondrial proteins and assembly factors, extracellular matrix proteins, and enzymes involved in lysosomal functions.

  15. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases.

    Science.gov (United States)

    Carletti, Barbara; Piemonte, Fiorella; Rossi, Ferdinando

    2011-06-01

    During the past decades Neural Stem Cells have been considered as an alternative source of cells to replace lost neurons and NSC transplantation has been indicated as a promising treatment for neurodegenerative disorders. Nevertheless, the current understanding of NSC biology suggests that, far from being mere spare parts for cell replacement therapies, NSCs could play a key role in the pharmacology of neuroprotection and become protagonists of innovative treatments for neurodegenerative diseases. Here, we review this new emerging concept of NSC biology.

  16. Brain-specific proteins in cerebrospinal fluid for the diagnosis of neurodegenerative diseases.

    NARCIS (Netherlands)

    Verbeek, M.M.; Jong, D.J. de; Kremer, H.P.H.

    2003-01-01

    Neurodegenerative disorders have traditionally been classified according to clinical criteria, e.g. as dementia syndromes (the best known is Alzheimer's disease) or as movement disorders (e.g. Parkinson's disease). Another subdivision is based on recent insights into the respective pathogenetic mech

  17. [Progress in induced pluripotent stem cell research for age-related neurodegenerative diseases].

    Science.gov (United States)

    Ito, Daisuke; Yagi, Takuya; Suzuki, Norihiro

    2013-03-01

    In 2006, Takahashi et al. established a method for reprogramming somatic cells by introducing definite transcription factors, which enabled the generation of induced pluripotent stem cells (iPSCs) with pluripotency comparable to that of embryonic stem cells. In turn, it has become possible to use these iPSCs for producing various tissues needed for the treatment of neurodegenerative disorders, which have been difficult to obtain from living bodies. This advancement is expected to bring forth rapid progress in the clarification of mechanisms underlying the diseases and discovery of new innovative drugs and lead to rapid progress in regenerative medicine. In recent years, recapitulation and analysis of disease conditions using iPSCs derived from the patients themselves have been reported, and remarkable advances have been made, even for late-onset neurodegenerative disorders. These findings show that the phenotypes of late-onset neurodegenerative disorders can be recapitulated in iPSC-derived neuronal cells, which are reflected the early developmental stages, indicating cellular abnormalities exist from the prenatal period, despite the late onset diseases. In this review, we summarize the state of iPSCs research in the context of neurodegenerative disorders, discuss the possible ways for understanding the mechanisms underlying neurodegenerative disorders and discovering new drugs, and describe some other aspects of regenerative medicine.

  18. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  19. Neuronal network disintegration: common pathways linking neurodegenerative diseases

    Science.gov (United States)

    Ahmed, Rebekah M; Devenney, Emma M; Irish, Muireann; Ittner, Arne; Naismith, Sharon; Ittner, Lars M; Rohrer, Jonathan D; Halliday, Glenda M; Eisen, Andrew; Hodges, John R; Kiernan, Matthew C

    2016-01-01

    Neurodegeneration refers to a heterogeneous group of brain disorders that progressively evolve. It has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels and therefore traditional clinicopathological correlation approaches to better classify a disease have met with limited success. Neuronal network disintegration is fundamental to neurodegeneration, and concepts based around such a concept may better explain the overlap between their clinical and pathological phenotypes. In this Review, promoters of overlap in neurodegeneration incorporating behavioural, cognitive, metabolic, motor, and extrapyramidal presentations will be critically appraised. In addition, evidence that may support the existence of large-scale networks that might be contributing to phenotypic differentiation will be considered across a neurodegenerative spectrum. Disintegration of neuronal networks through different pathological processes, such as prion-like spread, may provide a better paradigm of disease and thereby facilitate the identification of novel therapies for neurodegeneration. PMID:27172939

  20. Stem cell technology for neurodegenerative diseases.

    Science.gov (United States)

    Lunn, J Simon; Sakowski, Stacey A; Hur, Junguk; Feldman, Eva L

    2011-09-01

    Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.

  1. Summary of cerebrospinal fluid routine parameters in neurodegenerative diseases.

    Science.gov (United States)

    Jesse, Sarah; Brettschneider, Johannes; Süssmuth, Sigurd D; Landwehrmeyer, Bernhard G; von Arnim, Christine A F; Ludolph, Albert C; Tumani, Hayrettin; Otto, Markus

    2011-06-01

    In neurodegenerative diseases, cerebrospinal fluid analysis (CSF) is predominantly performed to exclude inflammatory diseases and to perform a risk assessment in dementive disorders by measurement of tau proteins and amyloid beta peptides. However, large scale data on basic findings of CSF routine parameters are generally lacking. The objective of the study was to define a normal reference spectrum of routine CSF parameters in neurodegenerative diseases. Routine CSF parameters (white cell count, lactate and albumin concentrations, CSF/serum quotients of albumin (Q (alb)), IgG, IgA, IgM, and oligoclonal IgG bands (OCB)) were retrospectively analyzed in an academic research setting. A total of 765 patients (Alzheimer's disease (AD), Parkinson's disease (PD), Parkinson's disease dementia (PDD), vascular dementia (VD), frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), multisystem atrophy (MSA), motor neuron diseases (MND), spinocerebellar ataxia (SCA), Huntington's disease (HD)) and non-demented control groups including a group of patients with muscular disorders (MD). The main outcome measures included statistical analyses of routine CSF parameters. Mildly elevated Q (alb) were found in a small percentage of nearly all subgroups and in a higher proportion of patients with PSP, MSA, VD, PDD, and MND. With the exception of 1 MND patient, no intrathecal Ig synthesis was observed. Isolated OCBs in CSF were sometimes found in patients with neurodegenerative diseases without elevated cell counts; lactate levels were always normal. A slightly elevated Q (alb) was observed in a subgroup of patients with neurodegenerative diseases and does not exclude the diagnosis. Extensive elevation of routine parameters is not characteristic and should encourage a re-evaluation of the clinical diagnosis.

  2. Hematological manifestations of primary mitochondrial disorders.

    Science.gov (United States)

    Finsterer, Josef

    2007-01-01

    At onset mitochondrial disorders (MID) frequently manifest as a mono-organic problem but turn into multisystem disease during the disease course in most of the cases. Organs/tissues most frequently affected in MID are the cerebrum, peripheral nerves, and the skeletal muscle. Additionally, most of the inner organs may be affected alone or in combination. Hematological manifestations of MID include aplastic, megaloblastic, or sideroblastic anemia, leukopenia, neutropenia, thrombocytopenia, or pancytopenia. In single cases either permanent or recurrent eosinophilia has been observed. Hematological abnormalities may occur together with syndromic or nonsyndromic MIDs. Syndromic MIDs, in which hematological manifestations predominate, are the Pearson syndrome (pancytopenia), Kearns-Sayre syndrome (anemia), Barth syndrome (neutropenia), and the autosomal recessive mitochondrial myopathy, lactic acidosis and sideroblastic anemia syndrome. In single cases with Leigh's syndrome, MERRF (myoclonic epilepsy and ragged-red fiber) syndrome, Leber's hereditary optic neuropathy, and Friedreich's ataxia anemia has been described. Anemia, leukopenia, thrombocytopenia, eosinophilia, or pancytopenia can frequently also be found in nonsyndromic MIDs with or without involvement of other tissues. Therapy of blood cell involvement in MID comprises application of antioxidants, vitamins, iron, bone marrow-stimulating factors, or substitution of cells.

  3. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases.

    Science.gov (United States)

    Tanna, Tanmay; Sachan, Vatsal

    2014-01-01

    Mesenchymal Stem Cells or Marrow Stromal Cells (MSCs) have long been viewed as a potent tool for regenerative cell therapy. MSCs are easily accessible from both healthy donor and patient tissue and expandable in vitro on a therapeutic scale without posing significant ethical or procedural problems. MSC based therapies have proven to be effective in preclinical studies for graft versus host disease, stroke, myocardial infarction, pulmonary fibrosis, autoimmune disorders and many other conditions and are currently undergoing clinical trials at a number of centers all over the world. MSCs are also being extensively researched as a therapeutic tool against neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD) and Multiple Sclerosis (MS). MSCs have been discussed with regard to two aspects in the context of neurodegenerative diseases: their ability to transdifferentiate into neural cells under specific conditions and their neuroprotective and immunomodulatory effects. When transplanted into the brain, MSCs produce neurotrophic and growth factors that protect and induce regeneration of damaged tissue. Additionally, MSCs have also been explored as gene delivery vehicles, for example being genetically engineered to over express glial-derived or brain-derived neurotrophic factor in the brain. Clinical trials involving MSCs are currently underway for MS, ALS, traumatic brain injuries, spinal cord injuries and stroke. In the present review, we explore the potential that MSCs hold with regard to the aforementioned neurodegenerative diseases and the current scenario with reference to the same.

  4. Role of Redox Signaling in Neuroinflammation and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Hsi-Lung Hsieh

    2013-01-01

    Full Text Available Reactive oxygen species (ROS, a redox signal, are produced by various enzymatic reactions and chemical processes, which are essential for many physiological functions and act as second messengers. However, accumulating evidence has implicated the pathogenesis of several human diseases including neurodegenerative disorders related to increased oxidative stress. Under pathological conditions, increasing ROS production can regulate the expression of diverse inflammatory mediators during brain injury. Elevated levels of several proinflammatory factors including cytokines, peptides, pathogenic structures, and peroxidants in the central nervous system (CNS have been detected in patients with neurodegenerative diseases such as Alzheimer’s disease (AD. These proinflammatory factors act as potent stimuli in brain inflammation through upregulation of diverse inflammatory genes, including matrix metalloproteinases (MMPs, cytosolic phospholipase A2 (cPLA2, cyclooxygenase-2 (COX-2, and adhesion molecules. To date, the intracellular signaling mechanisms underlying the expression of target proteins regulated by these factors are elusive. In this review, we discuss the mechanisms underlying the intracellular signaling pathways, especially ROS, involved in the expression of several inflammatory proteins induced by proinflammatory factors in brain resident cells. Understanding redox signaling transduction mechanisms involved in the expression of target proteins and genes may provide useful therapeutic strategies for brain injury, inflammation, and neurodegenerative diseases.

  5. Mesenchymal stem cells for the treatment of neurodegenerative disease.

    Science.gov (United States)

    Joyce, Nanette; Annett, Geralyn; Wirthlin, Louisa; Olson, Scott; Bauer, Gerhard; Nolta, Jan A

    2010-11-01

    Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

  6. Corruption and Spread of Pathogenic Proteins in Neurodegenerative Diseases*

    Science.gov (United States)

    Walker, Lary C.; LeVine, Harry

    2012-01-01

    With advancing age, the brain becomes increasingly susceptible to neurodegenerative diseases, most of which are characterized by the misfolding and errant aggregation of certain proteins. The induction of aggregation involves a crystallization-like seeding mechanism by which a specific protein is structurally corrupted by its misfolded conformer. The latest research indicates that, once formed, proteopathic seeds can spread from one locale to another via cellular uptake, transport, and release. Impeding this process could represent a unified therapeutic strategy for slowing the progression of a wide range of currently intractable disorders. PMID:22879600

  7. Oxidative stress, mitochondrial damage and neurodegenerative diseases****

    Institute of Scientific and Technical Information of China (English)

    Chunyan Guo; Li Sun; Xueping Chen; Danshen Zhang

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. Al these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive thera-peutic interventions for the treatment of various neurodegenerative diseases.

  8. Molecular Modeling Studies of Piperidine Derivatives as New Acetylcholinesterase Inhibitors against Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Elaine F. F. da Cunha

    2013-01-01

    Full Text Available Neurodegenerative disorders are related to the progressive loss of structure or function and, eventually, death of neurons. These processes are responsible for diseases like Parkinson’s, Alzheimer’s, and Huntington’s, and the main molecular target for the drug design against these illnesses today is the enzyme acetylcholinesterase (AChE. Following this line, in the present work, we applied docking techniques to study some piperidine derivative inhibitors of AChE and further propose structures of six new AChE inhibitors as potential new drugs against neurodegenerative disorders. The best inhibitor proposed was submitted to additional molecular dynamics simulations steps.

  9. Stem cell challenges in the treatment of neurodegenerative disease.

    Science.gov (United States)

    Feng, Zhongling; Gao, Feng

    2012-02-01

    Neurodegenerative diseases result from the gradual and progressive loss of neural cells and lead to nervous system dysfunction. The rapidly advancing stem cell field is providing attractive alternative options for fighting these diseases. Results have provided proof of principle that cell replacement can work in humans with Parkinson's disease (PD). However, three clinical studies of cell transplantation were published that found no net benefit, while patients in two of the studies developed dyskinesias that persisted despite reductions in treatment. Induced pluripotent stem cells (iPSC) have major potential advantages because patient-specific neuroblasts are suitable for transplantation, avoid immune reactions, and can be produced without the use of human ES cells (hESC). Although iPSCs have not been successfully used in clinical trials for PD, patients with amyotrophic lateral sclerosis (ALS) were treated with autologous stem cells and, though they had some degree of decline one year after treatment, they were still improved compared with the preoperative period or without any drug therapy. In addition, neural stem cells (NSCs), via brain-derived neurotrophic factor (BDNF), have been shown to ameliorate complex behavioral deficits associated with widespread Alzheimer's disease (AD) pathology in a transgenic mouse model of AD. So far, the FDA lists 18 clinical trials treating multiple sclerosis (MS), but most are in preliminary stages. This article serves as an overview of recent studies in stem cell and regenerative approaches to the above chronic neurodegenerative disorders. There are still many obstacles to the use of stem cells as a cure for neurodegenerative disease, especially because we still don't fully understand the true mechanisms of these diseases. However, there is hope in the potential of stem cells to help us learn and understand a great deal more about the mechanisms underlying these devastating neurodegenerative diseases.

  10. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses.

    Science.gov (United States)

    Wilkaniec, Anna; Czapski, Grzegorz A; Adamczyk, Agata

    2016-01-01

    Cyclin-dependent kinase 5 (Cdk5) is involved in proper neurodevelopment and brain function and serves as a switch between neuronal survival and death. Overactivation of Cdk5 is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important link between disease-initiating factors and cell death effectors. A common hallmark of neurodegenerative disorders is incorrect folding of specific proteins, thus leading to their intra- and extracellular accumulation in the nervous system. Abnormal Cdk5 signaling contributes to dysfunction of individual proteins and has a substantial role in either direct or indirect interactions of proteins common to, and critical in, different neurodegenerative diseases. While the roles of Cdk5 in α-synuclein (ASN) - tau or β-amyloid peptide (Aβ) - tau interactions are well documented, its contribution to many other pertinent interactions, such as that of ASN with Aβ, or interactions of the Aβ - ASN - tau triad with prion proteins, did not get beyond plausible hypotheses and remains to be proven. Understanding of the exact position of Cdk5 in the deleterious feed-forward loop critical for development and progression of neurodegenerative diseases may help designing successful therapeutic strategies of several fatal neurodegenerative diseases. Cyclin-dependent kinase 5 (Cdk5) is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important factor involved in protein misfolding, toxicity and interaction. We suggest that Cdk5 may contribute to the vicious circle of neurotoxic events involved in the pathogenesis of different neurodegenerative diseases.

  11. Human embryonic stem cell therapies for neurodegenerative diseases.

    Science.gov (United States)

    Tomaskovic-Crook, Eva; Crook, Jeremy M

    2011-06-01

    There is a renewed enthusiasm for the clinical translation of human embryonic stem (hES) cells. This is abetted by putative clinically-compliant strategies for hES cell maintenance and directed differentiation, greater understanding of and accessibility to cells through formal cell registries and centralized cell banking for distribution, the revised US government policy on funding hES cell research, and paradoxically the discovery of induced pluripotent stem (iPS) cells. Additionally, as we consider the constraints (practical and fiscal) of delivering cell therapies for global healthcare, the more efficient and economical application of allogeneic vs autologous treatments will bolster the clinical entry of hES cell derivatives. Neurodegenerative disorders such as Parkinson's disease are primary candidates for hES cell therapy, although there are significant hurdles to be overcome. The present review considers key advances and challenges to translating hES cells into novel therapies for neurodegenerative diseases, with special consideration given to Parkinson's disease and Alzheimer's disease. Importantly, despite the focus on degenerative brain disorders and hES cells, many of the issues canvassed by this review are relevant to systemic application of hES cells and other pluripotent stem cells such as iPS cells.

  12. Emerging role of autophagy in pediatric neurodegenerative and neurometabolic diseases.

    Science.gov (United States)

    Ebrahimi-Fakhari, Darius; Wahlster, Lara; Hoffmann, Georg F; Kölker, Stefan

    2014-01-01

    Pediatric neurodegenerative diseases are a heterogeneous group of diseases that result from specific genetic and biochemical defects. In recent years, studies have revealed a wide spectrum of abnormal cellular functions that include impaired proteolysis, abnormal lipid trafficking, accumulation of lysosomal content, and mitochondrial dysfunction. Within neurons, elaborated degradation pathways such as the ubiquitin-proteasome system and the autophagy-lysosomal pathway are critical for maintaining homeostasis and normal cell function. Recent evidence suggests a pivotal role for autophagy in major adult and pediatric neurodegenerative diseases. We herein review genetic, pathological, and molecular evidence for the emerging link between autophagy dysfunction and lysosomal storage disorders such as Niemann-Pick type C, progressive myoclonic epilepsies such as Lafora disease, and leukodystrophies such as Alexander disease. We also discuss the recent discovery of genetically deranged autophagy in Vici syndrome, a multisystem disorder, and the implications for the role of autophagy in development and disease. Deciphering the exact mechanism by which autophagy contributes to disease pathology may open novel therapeutic avenues to treat neurodegeneration. To this end, an outlook on novel therapeutic approaches targeting autophagy concludes this review.

  13. MicroRNAs in neurodegenerative diseases and their therapeutic potential.

    Science.gov (United States)

    Junn, Eunsung; Mouradian, M Maral

    2012-02-01

    MicroRNAs (miRNAs) are abundant, endogenous, short, noncoding RNAs that act as important post-transcriptional regulators of gene expression by base-pairing with their target mRNA. During the last decade, substantial knowledge has accumulated regarding the biogenesis of miRNAs, their molecular mechanisms and functional roles in a variety of cellular contexts. Altered expression of certain miRNA molecules in the brains of patients with neurodegenerative diseases such as Alzheimer and Parkinson suggests that miRNAs could have a crucial regulatory role in these disorders. Polymorphisms in miRNA target sites may also constitute an important determinant of disease risk. Additionally, emerging evidence points to specific miRNAs targeting and regulating the expression of particular proteins that are key to disease pathogenesis. Considering that the amount of these proteins in susceptible neuronal populations appears to be critical to neurodegeneration, miRNA-mediated regulation represents a new target of significant therapeutic prospects. In this review, the implications of miRNAs in several neurodegenerative disorders and their potential as therapeutic interventions are discussed.

  14. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Hueng-Chuen Fan

    2015-12-01

    Full Text Available Neurodegenerative diseases (NDs are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD, Huntington’s disease (HD, and Alzheimer’s disease (AD and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM, and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.

  15. MicroRNAs: novel therapeutic targets in neurodegenerative diseases.

    Science.gov (United States)

    Roshan, Reema; Ghosh, Tanay; Scaria, Vinod; Pillai, Beena

    2009-12-01

    The prevalence of neurodegenerative disorders is rising steadily as human life expectancy increases. However, limited knowledge of the molecular basis of disease pathogenesis is a major hurdle in the identification of drug targets and development of therapeutic strategies for these largely incurable disorders. Recently, differential expression of endogenous regulatory small RNAs, known as 'microRNAs' (miRNAs), in patients of Alzheimer's disease, Parkinson's disease and models of ataxia suggest that they might have key regulatory roles in neurodegeneration. miRNAs that can target known mediators of neurodegeneration offer potential therapeutic targets. Our bioinformatic analysis suggests novel miRNA-target interactions that could potentially influence neurodegeneration. The recent development of molecules that alter miRNA expression promises valuable tools that will enhance the therapeutic potential of miRNAs.

  16. Role of iron in neurodegenerative diseases.

    Science.gov (United States)

    Li, Kai; Reichmann, Heinz

    2016-04-01

    Currently, we still lack effective measures to modify disease progression in neurodegenerative diseases. Iron-containing proteins play an essential role in many fundamental biological processes in the central nervous system. In addition, iron is a redox-active ion and can induce oxidative stress in the cell. Although the causes and pathology hallmarks of different neurodegenerative diseases vary, iron dyshomeostasis, oxidative stress and mitochondrial injury constitute a common pathway to cell death in several neurodegenerative diseases. MRI is capable of depicting iron content in the brain, and serves as a potential biomarker for early and differential diagnosis, tracking disease progression and evaluating the effectiveness of neuroprotective therapy. Iron chelators have shown their efficacy against neurodegeneration in a series of animal models, and been applied in several clinical trials. In this review, we summarize recent developments on iron dyshomeostasis in Parkinson's disease, Alzheimer's disease, Friedreich ataxia, and Huntington's disease.

  17. Therapeutic approach to pain in neurodegenerative diseases : current evidence and perspectives

    NARCIS (Netherlands)

    De Tommaso, Marina; Kunz, Miriam; Valeriani, Massimiliano

    2016-01-01

    INTRODUCTION Neurodegenerative diseases are increasing in parallel to the lengthening of survival. The management of Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD) and PD-related disorders, and motor neuron diseases (MND), is mainly targeted to motor and cognitive impairment,

  18. Endoplasmic Reticulum Protein Quality Control in Neurodegenerative Disease: The Good, the Bad and the Therapy

    NARCIS (Netherlands)

    W. Scheper; J.J.M. Hoozemans

    2009-01-01

    Neurodegenerative disorders are often characterized by the aggregation and accumulation of misfolded proteins (e. g. Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis). Aggregated proteins are very toxic to cells in culture and both in vitro and in vivo there is overwhelming ev

  19. Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases.

    Science.gov (United States)

    Tan, Lin; Yu, Jin-Tai; Tan, Lan

    2015-01-01

    Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), originate from a loss of neurons in the central nervous system (CNS) and are severely debilitating. The incidence of neurodegenerative diseases increases with age, and they are expected to become more common due to extended life expectancy. Because of no clear mechanisms, these diseases have become a major challenge in neurobiology. It is well recognized that these disorders become the culmination of many different genetic and environmental influences. Prior studies have shown that microRNAs (miRNAs) are pathologically altered during the inexorable course of some neurodegenerative diseases, suggesting that miRNAs may be the contributing factor in neurodegeneration. Here, we review what is known about the involvement of miRNAs in the pathogenesis of neurodegenerative diseases. The biogenesis of miRNAs and various functions of miRNAs that act as the chief regulators will be discussed. We focus in particular on dysregulation of miRNAs which leads to several neurodegenerative diseases from three aspects: miRNA-generating disorders, miRNA-targeting genes and epigenetic alterations. Furthermore, recent evidences have shown that circulating miRNA expression levels are changed in patients with neurodegenerative diseases. Circulating miRNA expression levels are reported in patients in order to evaluate their application as biomarkers of these diseases. A discussion is included with a potential diagnostic biomarker and the possible future direction in exploring the nexus between miRNAs and various neurodegenerative diseases.

  20. Mitochondrial drug targets in neurodegenerative diseases.

    Science.gov (United States)

    Lee, Jiyoun

    2016-02-01

    Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.

  1. Seeking environmental causes of neurodegenerative disease and envisioning primary prevention.

    Science.gov (United States)

    Spencer, Peter S; Palmer, Valerie S; Kisby, Glen E

    2016-09-01

    Pathological changes of the aging brain are expressed in a range of neurodegenerative disorders that will impact increasing numbers of people across the globe. Research on the causes of these disorders has focused heavily on genetics, and strategies for prevention envision drug-induced slowing or arresting disease advance before its clinical appearance. We discuss a strategic shift that seeks to identify the environmental causes or contributions to neurodegeneration, and the vision of primary disease prevention by removing or controlling exposure to culpable agents. The plausibility of this approach is illustrated by the prototypical neurodegenerative disease amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC). This often-familial long-latency disease, once thought to be an inherited genetic disorder but now known to have a predominant or exclusive environmental origin, is in the process of disappearing from the three heavily affected populations, namely Chamorros of Guam and Rota, Japanese residents of Kii Peninsula, Honshu, and Auyu and Jaqai linguistic groups on the island of New Guinea in West Papua, Indonesia. Exposure via traditional food and/or medicine (the only common exposure in all three geographic isolates) to one or more neurotoxins in seed of cycad plants is the most plausible if yet unproven etiology. Neurotoxin dosage and/or subject age at exposure might explain the stratified epidemic of neurodegenerative disease on Guam in which high-incidence ALS peaked and declined before that of PD, only to be replaced today by a dementing disorder comparable to Alzheimer's disease. Exposure to the Guam environment is also linked to the delayed development of ALS among a subset of Chamorro and non-Chamorro Gulf War/Era veterans, a summary of which is reported here for the first time. Lessons learned from this study and from 65 years of research on ALS-PDC include the exceptional value of initial, field-based informal investigation of

  2. Disease: H01146 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H01146 Aminoacylase 1 deficiency Aminoacylase 1 deficiency is an autosomal recessive disea...ave been reported. Inherited metabolic disease; Neurodegenerative disease hsa0033... deficiency causes spongy degeneration of the brain known as Canavan disease [DS:

  3. Mesenchymal Stem Cells in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Olcay Ergurhan Kiroglu

    2015-03-01

    Full Text Available Neurodegenerative diseases are almost incurable, debilitating, and they might be fatal, because of limited neurogenesis in nervous system, presence of inhibitory substances and inhibition of recovery due to development of glial scar. Despite many treatment strategies of neurodegenerative diseases no full cure has been achieved. The successful results for mesenchymal stem cells applications on muscles, heart and liver diseases and the application of these cells to the damaged area in particular, hypoxia, inflammation and apoptosis promise hope of using them for neurodegenerative diseases. Mesenchymal stem cells applications constitute a vascular and neuronal phenotype in Parkinsons disease, Huntingtons disease, Amyotrophic lateral sclerosis and Alzheimers disease. Stem cells release bioactive agents that lead to suppression of local immune system, reduction of free radicals, increase in angiogenesis, inhibition of fibrosis, and apoptosis. In addition, tissue stem cells, increase neuronal healing, stimulate proliferation and differentiation. These findings show that stem cells might be a hope of a cure in the treatment of neurodegenerative diseases and intensive work on this issue should continue.

  4. Induced pluripotent stem cells and neurodegenerative diseases.

    Science.gov (United States)

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  5. 4 Tesla MRI for Neurodegenerative Diseases

    Science.gov (United States)

    2005-10-01

    gyrus. Histological studies have shown that these subfields are differently affected by different diseases , e.g. Alzheimer Disease (AD) affects...Increased brain iron deposits are found in a number of neurodegenerative diseases , in particular Alzheimer’s disease (AD) and Parkinson’s disease (PD... Diseases PRINCIPAL INVESTIGATOR: Michael W. Weiner, M.D. CONTRACTING ORGANIZATION: Northern California Institute for Research

  6. Autophagy and its neuroprotection in neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Ping Gu; Avaneesh Jakkoju; Mingwei Wang; Weidong Le

    2011-01-01

    It has been suggested that protein misfolding and aggregation contribute significantly to the development of neurodegenerative diseases. Misfolded and aggregated proteins are cleared by ubiquitin proteasomal system (UPS) and by both Micro and Macro autophagy lysosomal pathway (ALP). Autophagosomal dysfunction has been implicated in an increasing number of diseases including neurodegenerative diseases. Autophagy is a cellular self-eating process that plays an important role in neuroprotection as well as neuronal injury and death. While a decrease in autophagic activity interferes with protein degradation and possibly organelle turnover, increased autophagy has been shown to facilitate the clearance of aggregation-prone proteins and promote neuronal survival in a number of disease models. On the other hand, too much autophagic activity can be detrimental, suggesting the regulation of autophagy is critical in dictating cell fate. In this review paper, we will discuss various aspects of ALP biology and its dual functions in neuronal cell death and survival. We will also evaluate the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis. Finally, we will explore the therapeutic potential of autophagy modifiers in several neurodegenerative diseases.

  7. Dysregulation of glutathione homeostasis in neurodegenerative diseases.

    Science.gov (United States)

    Johnson, William M; Wilson-Delfosse, Amy L; Mieyal, John J

    2012-10-09

    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, and Friedreich's ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated.

  8. Role of neuroinflammation in neurodegenerative diseases (Review).

    Science.gov (United States)

    Chen, Wei-Wei; Zhang, Xia; Huang, Wen-Juan

    2016-04-01

    Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro‑inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro‑inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases.

  9. Amnestic disorders

    NARCIS (Netherlands)

    Kessels, R.P.C.; Savage, G.

    2015-01-01

    Amnestic disorders may involve deficits in the encoding or storage of information in memory, or in retrieval of information from memory. Etiologies vary and include traumatic brain injury, neurodegenerative disease, and psychiatric illness. Different forms of amnesia can be distinguished: anterograd

  10. The Role of the Craniocervical Junction in Craniospinal Hydrodynamics and Neurodegenerative Conditions

    Directory of Open Access Journals (Sweden)

    Michael F. Flanagan

    2015-01-01

    Full Text Available The craniocervical junction (CCJ is a potential choke point for craniospinal hydrodynamics and may play a causative or contributory role in the pathogenesis and progression of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, MS, and ALS, as well as many other neurological conditions including hydrocephalus, idiopathic intracranial hypertension, migraines, seizures, silent-strokes, affective disorders, schizophrenia, and psychosis. The purpose of this paper is to provide an overview of the critical role of the CCJ in craniospinal hydrodynamics and to stimulate further research that may lead to new approaches for the prevention and treatment of the above neurodegenerative and neurological conditions.

  11. Non-coding RNA and pseudogenes in neurodegenerative diseases: "The (unUsual Suspects"

    Directory of Open Access Journals (Sweden)

    Valerio eCosta

    2012-10-01

    Full Text Available Neurodegenerative disorders and cancer are severe diseases threatening human health. The glaring differences between neurons and cancer cells mask the processes involved in their pathogenesis. Defects in cell cycle, DNA repair and cell differentiation can determine unlimited proliferation in cancer, or conversely, compromise neuronal plasticity, leading to cell death and neurodegeneration.Alteration in regulatory networks affecting gene expression contribute to human diseases' onset, including neurodegenerative disorders, and deregulation of non-coding RNAs - particularly microRNAs - is supposed to have a significant impact.Recently, competitive endogenous RNAs - acting as sponges - have been identified in cancer, indicating a new and intricate regulatory network. Given that neurodegenerative disorders and cancer share altered genes and pathways, and considering the emerging role of microRNAs in neurogenesis, we hypothesize competitive endogenous RNAs may be implicated in neurodegenerative diseases. Here we propose, and computationally predict, such regulatory mechanism may be shared between the diseases. It is predictable that similar regulation occurs in other complex diseases, and further investigation is needed.

  12. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    Energy Technology Data Exchange (ETDEWEB)

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  13. Role of the Retromer Complex in Neurodegenerative Diseases.

    Science.gov (United States)

    Li, Chaosi; Shah, Syed Zahid Ali; Zhao, Deming; Yang, Lifeng

    2016-01-01

    The retromer complex is a protein complex that plays a central role in endosomal trafficking. Retromer dysfunction has been linked to a growing number of neurological disorders. The process of intracellular trafficking and recycling is crucial for maintaining normal intracellular homeostasis, which is partly achieved through the activity of the retromer complex. The retromer complex plays a primary role in sorting endosomal cargo back to the cell surface for reuse, to the trans-Golgi network (TGN), or alternatively to specialized endomembrane compartments, in which the cargo is not subjected to lysosomal-mediated degradation. In most cases, the retromer acts as a core that interacts with associated proteins, including sorting nexin family member 27 (SNX27), members of the vacuolar protein sorting 10 (VPS10) receptor family, the major endosomal actin polymerization-promoting complex known as Wiskott-Aldrich syndrome protein and scar homolog (WASH), and other proteins. Some of the molecules carried by the retromer complex are risk factors for neurodegenerative diseases. Defects such as haplo-insufficiency or mutations in one or several units of the retromer complex lead to various pathologies. Here, we summarize the molecular architecture of the retromer complex and the roles of this system in intracellular trafficking related the pathogenesis of neurodegenerative diseases.

  14. Biomarkers in Rare Disorders: The Experience with Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Christina Brahe

    2010-12-01

    Full Text Available Spinal muscular atrophy (SMA is an autosomal recessive neuromuscular disorder caused by homozygous mutations of the SMN1 gene. Based on clinical severity, three forms of SMA are recognized (type I–III. All patients have at least one (usually 2–4 copies of a highly homologous gene (SMN2 which produces insufficient levels of functional SMN protein, due to alternative splicing of exon7. Recently, evidence has been provided that SMN2 expression can be enhanced by different strategies. The availability of potential candidates to treat SMA has raised a number of issues, including the availability of data on the natural history of the disease, the reliability and sensitivity of outcome measures, the duration of the studies, and the number and clinical homogeneity of participating patients. Equally critical is the availability of reliable biomarkers. So far, different tools have been proposed as biomarkers in SMA, classifiable into two groups: instrumental (the Compound Motor Action Potential, the Motor Unit Number Estimation, and the Dual-energy X-ray absorptiometry and molecular (SMN gene products dosage, either transcripts or protein. However, none of the biomarkers available so far can be considered the gold standard. Preclinical studies on SMA animal models and double-blind, placebo-controlled studies are crucial to evaluate the appropriateness of biomarkers, on the basis of correlations with clinical outcome.

  15. The ubiquitin-proteasome system in spongiform degenerative disorders.

    Science.gov (United States)

    Whatley, Brandi R; Li, Lian; Chin, Lih-Shen

    2008-12-01

    Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer's disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan's spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin-proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin-protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders.

  16. Nonpeptide neurotrophic agents useful in the treatment of neurodegenerative diseases such as Alzheimer's disease.

    Science.gov (United States)

    Akagi, Masaaki; Matsui, Nobuaki; Akae, Haruka; Hirashima, Nana; Fukuishi, Nobuyuki; Fukuyama, Yoshiyasu; Akagi, Reiko

    2015-02-01

    Developed regions, including Japan, have become "aged societies," and the number of adults with senile dementias, such as Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease, has also increased in such regions. Neurotrophins (NTs) may play a role in the treatment of AD because endogenous neurotrophic factors (NFs) prevent neuronal death. However, peptidyl compounds have been unable to cross the blood-brain barrier in clinical studies. Thus, small molecules, which can mimic the functions of NFs, might be promising alternatives for the treatment of neurodegenerative diseases. Natural products, such as or nutraceuticals or those used in traditional medicine, can potentially be used to develop new therapeutic agents against neurodegenerative diseases. In this review, we introduced the neurotrophic activities of polyphenols honokiol and magnolol, which are the main constituents of Magnolia obovata Thunb, and methanol extracts from Zingiber purpureum (BANGLE), which may have potential therapeutic applications in various neurodegenerative disorders.

  17. Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases--a mechanistic approach.

    Science.gov (United States)

    Baltazar, Maria Teresa; Dinis-Oliveira, Ricardo Jorge; de Lourdes Bastos, Maria; Tsatsakis, Aristidis M; Duarte, José Alberto; Carvalho, Félix

    2014-10-15

    The etiology of most neurodegenerative disorders is multifactorial and consists of an interaction between environmental factors and genetic predisposition. The role of pesticide exposure in neurodegenerative disease has long been suspected, but the specific causative agents and the mechanisms underlying are not fully understood. For the main neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis there are evidences linking their etiology with long-term/low-dose exposure to pesticides such as paraquat, maneb, dieldrin, pyrethroids and organophosphates. Most of these pesticides share common features, namely the ability to induce oxidative stress, mitochondrial dysfunction, α-synuclein fibrillization and neuronal cell loss. This review aims to clarify the role of pesticides as environmental risk factors in genesis of idiopathic PD and other neurological syndromes. For this purpose, the most relevant epidemiological and experimental data is highlighted in order to discuss the molecular mechanisms involved in neurodegeneration.

  18. [Hereditary red cell membrane disorders in Japan: comparison with other countries].

    Science.gov (United States)

    Nakanishi, Hidekazu; Wada, Hideho; Suemori, Shinichiro; Sugihara, Takashi

    2015-07-01

    Red cell membrane disorders are the most common type of inherited hemolytic disorders in the Japanese population. In hereditary spherocytosis (HS), the primary presentation is a loss of membrane surface area, leading to reduced deformability because of defects in the membrane proteins ankyrin, band 3, β-spectrin, α spectrin, or protein 4.2 (P4.2). Complete P4.2 deficiencies, which are inherited in an autosomal recessive manner, comprise a unique HS subgroup and are common in Japanese, but rare in other populations. In contrast, the principle presentation in hereditary elliptocytosis (HE) is mechanical weakness of the erythrocyte membrane skeleton due to defects in α-spectrin, β-spectrin, or protein 4.1. Although α-spectrin mutations are the most frequent cause of HE in Caucasian, African, and Mediterranean populations, these mutations are rare in the Japanese population, in which P4.1 deficiencies are instead most common. Furthermore, hereditary stomatocytoses (HSt) are disorders of monovalent cation permeability in the red cell membrane.

  19. Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance.

    Science.gov (United States)

    Rossi, Luisa; Lombardo, Marco F; Ciriolo, Maria R; Rotilio, Giuseppe

    2004-03-01

    Copper is an essential transition metal ion for the function of key metabolic enzymes, but its uncontrolled redox reactivity is source of reactive oxygen species. Therefore a network of transporters strictly controls the trafficking of copper in living systems. Deficit, excess, or aberrant coordination of copper are conditions that may be detrimental, especially for neuronal cells, which are particularly sensitive to oxidative stress. Indeed, the genetic disturbances of copper homeostasis, Menkes' and Wilson's diseases, are associated with neurodegeneration. Furthermore, copper interacts with the proteins that are the hallmarks of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, prion diseases, and familial amyotrophic lateral sclerosis. In all cases, copper-mediated oxidative stress is linked to mitochondrial dysfunction, which is a common feature of neurodegeneration. In particular we recently demonstrated that in copper deficiency, mitochondrial function is impaired due to decreased activity of cytochrome c oxidase, leading to production of reactive oxygen species, which in turn triggers mitochondria-mediated apoptotic neurodegeneration.

  20. Disease: H00816 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H00816 Agenesis of the corpus callosum with peripheral neuropathy (ACCPN) Agenesis ...of the corpus callosum with peripheral neuropathy (ACCPN) is a severe neurodegenerative disorder that is tra...nsmitted as an autosomal recessive trait. It is associated with mental retardation, progressive peripheral neuropathy...nsporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesi... GA The gene responsible for a severe form of peripheral neuropathy and agenesis of the corpus callosum maps to chromosome 15q. Am J Hum Genet 58:28-34 (1996) ...

  1. Current concepts in the treatment of hereditary ataxias

    Directory of Open Access Journals (Sweden)

    Pedro Braga Neto

    2016-03-01

    Full Text Available ABSTRACT Hereditary ataxias (HA represents an extensive group of clinically and genetically heterogeneous neurodegenerative diseases, characterized by progressive ataxia combined with extra-cerebellar and multi-systemic involvements, including peripheral neuropathy, pyramidal signs, movement disorders, seizures, and cognitive dysfunction. There is no effective treatment for HA, and management remains supportive and symptomatic. In this review, we will focus on the symptomatic treatment of the main autosomal recessive ataxias, autosomal dominant ataxias, X-linked cerebellar ataxias and mitochondrial ataxias. We describe management for different clinical symptoms, mechanism-based approaches, rehabilitation therapy, disease modifying therapy, future clinical trials and perspectives, genetic counseling and preimplantation genetic diagnosis.

  2. Current Drug Managements of Wilson's Disease: From West to East.

    Science.gov (United States)

    Li, Wen-Jie; Chen, Chen; You, Zhi-Fei; Yang, Ren-Min; Wang, Xiao-Ping

    2016-01-01

    Wilson's disease (WD), also called hepatolenticular degeneration, is an autosomal recessive inheritance disorder of copper metabolism characterized by the multiple mutations in the ATP-ase 7B gene of chromosome 13q. About half of the WD patients have neurological or psychiatric symptoms. As WD is a kind of medicable or nearly curable neurodegenerative disease in the field of medicine, early consideration/examination and without delay/ life-long treatment usually lead to better prognoses. The drugs, also named as anticopper agents, are commonly used in clinics including D-penicillamine, trientine, sodium dimercaptosuccinate, dimercaptosuccinic acid, zinc and tetrathiomolybdate. This provides detailed reviews about these medicines.

  3. Apocynin, a Low Molecular Oral Treatment for Neurodegenerative Disease

    NARCIS (Netherlands)

    't Hart, Bert A.; Copray, Sjef; Philippens, Ingrid

    2014-01-01

    Accumulating evidence suggests that inflammatory mediators secreted by activated resident or infiltrated innate immune cells have a significant impact on the pathogenesis of neurodegenerative diseases. This may imply that patients affected by a neurodegenerative disease may benefit from treatment wi

  4. Nitric Oxide Homeostasis in Neurodegenerative Diseases.

    Science.gov (United States)

    Hannibal, Luciana

    2016-01-01

    The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases.

  5. Major Congenital Metabolic Disorders in the First 12 years of Life in 79,100 Consecutively Born Children in Qazvin Province

    Directory of Open Access Journals (Sweden)

    Abolfazl Movafagh

    2011-09-01

    Full Text Available ObjectiveDeficient enzyme activity may cause congenital metabolic defects. These defectsare inherited in an autosomal recessive, autosomal dominant, and X-linkedpatterns. This study was aimed at investigating the occurrence of metabolicdiseases in Qazvin Province.Materials & MethodsThis cross-sectional study was performed on 79,100 children aged 12 years orless between 2000 and 2010. Clinical manifestations, laboratory findings, and allother essential information were assessed to precisely diagnose the metabolicdiseases. The sorted information on congenital metabolic defects of the patients,information included in a checklist, and data were analyzed usnig SPSS.ResultsA total of 57 metabolic disorders were recorded. The difference in the prevalenceof metabolic disorders between male (29 cases and female (28 cases wasnot statistically significant. The most frequent congenital metabolic disorderamong our patients was phenylketonuria (PKU; 5 per 1,000 cases, and the leastcommon disorder was galactosemia (3 per 1,000 cases.ConclusionTimely detection and management of congenital metabolic disorders canhelp save the affected children. Prenatal screening programs, molecular genetherapy, and counseling for consanguineous marriage can play important rolesin reducing the rate of metabolic disorders in this province.Keywords: Congenital metabolic disorders; prevalence; population; Qazvin

  6. Recent progress in translational research on neurovascular and neurodegenerative disorders

    DEFF Research Database (Denmark)

    Demuth, Hans-Ulrich; Dijkhuizen, Rick M; Farr, Tracy D

    2017-01-01

    translational research on stroke and dementia, thereby spurring the entire field of translational neuroscience. Moreover, they may also pave the way for the renaissance of classical neuroprotective paradigms.This review reports and summarizes some of the most interesting and promising recent achievements...... in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given...... on translational stories ranging from fundamental research on neurode- and -regeneration to late stage translational or early stage clinical investigations....

  7. Neurodegenerative disorder masquerading as psychosis in a forensic psychiatry setting.

    Science.gov (United States)

    Sommerlad, Andrew; Lee, James; Warren, Jason; Price, Gary

    2014-06-13

    A man presenting in his 50s, following conviction for a non-violent crime, to forensic psychiatric services, and then to a neuropsychiatry service with an unusual presentation of psychosis: second person auditory hallucinations, grandiose delusions and somatic delusions. Detailed collateral and family history revealed a background of progressive cognitive deficit and a family history of motor neuron disease. MRI of the brain revealed asymmetrical parieto-occipital volume loss and genetic testing demonstrated a pathogenic expansion of the chromosome 9 open reading frame 72 (C9ORF72) gene consistent with familial frontotemporal dementia caused by a hexanucleotide repeat expansion at C9ORF72, a recently discovered cause of familial frontotemporal dementia/motor neuron disease. This form of frontotemporal dementia should be considered as an important potential differential diagnosis for patients presenting with psychotic symptoms in later life, in whom a detailed family history and thorough cognitive assessment is essential.

  8. Neurotrophin Therapy of Neurodegenerative Disorders with Mitochondrial Dysfunction

    Science.gov (United States)

    2006-09-01

    SUBJECT TERMS mitochondria, neurotrophin, BDNF, trkB, trisomy 16, oxidative stress, rotenone, Parkinsons 16. SECURITY CLASSIFICATION OF: 17...16:mediation by caspases. Journal of Neurochemistry 72:1769-1772. Bambrick LL, Krueger BK, Fiskum G (2005) Mitochondrial function in the trisomy 16

  9. Sleep Spindles as Biomarker for Early Detection of Neurodegenerative Disorders

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to the use of sleep spindles as a novel biomarker for early diagnosis of synucleinopathies, in particular Parkinson's disease (PD). The method is based on automatic detection of sleep spindles. The method may be combined with measurements of one or more further...... biomarkers derived from polysomnographic recordings....

  10. Recent progress in translational research on neurovascular and neurodegenerative disorders.

    Science.gov (United States)

    Demuth, Hans-Ulrich; Dijkhuizen, Rick M; Farr, Tracy D; Gelderblom, Mathias; Horsburgh, Karen; Iadecola, Costantino; Mcleod, Damian D; Michalski, Dominik; Murphy, Tim H; Orbe, Josune; Otte, Willem M; Petzold, Gabor C; Plesnila, Nikolaus; Reiser, Georg; Reymann, Klaus G; Rueger, Maria A; Saur, Dorothee; Savitz, Sean I; Schilling, Stephan; Spratt, Neil J; Turner, Renée J; Vemuganti, Raghu; Vivien, Denis; Yepes, Manuel; Zille, Marietta; Boltze, Johannes

    2017-01-01

    The already established and widely used intravenous application of recombinant tissue plasminogen activator as a re-opening strategy for acute vessel occlusion in ischemic stroke was recently added by mechanical thrombectomy, representing a fundamental progress in evidence-based medicine to improve the patient's outcome. This has been paralleled by a swift increase in our understanding of pathomechanisms underlying many neurovascular diseases and most prevalent forms of dementia. Taken together, these current advances offer the potential to overcome almost two decades of marginally successful translational research on stroke and dementia, thereby spurring the entire field of translational neuroscience. Moreover, they may also pave the way for the renaissance of classical neuroprotective paradigms.This review reports and summarizes some of the most interesting and promising recent achievements in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given on translational stories ranging from fundamental research on neurode- and -regeneration to late stage translational or early stage clinical investigations.

  11. Polymer Drug Conjugates for the Treatment of Neurodegenerative Disorders

    OpenAIRE

    Conejos Sánchez, Inmaculada

    2013-01-01

    Nanociencia y nanotecnología son la base de técnicas innovadoras para el transporte de fármacos con beneficios potenciales para el paciente y nuevos mercados para la industria. La obtención de nuevos sistemas de transporte de fármacos más efectivos es uno de los principales retos actuales, junto con la mejora del diagnóstico tanto in vitro como in vivo y el desarrollo de tecnologías para la ingeniería tisular y la medicina regenerativa. Además de ser necesario disponer de moléculas con activi...

  12. Disruption of sonic hedgehog signaling in Ellis-van Creveld dwarfism confers protection against bipolar affective disorder.

    Science.gov (United States)

    Ginns, E I; Galdzicka, M; Elston, R C; Song, Y E; Paul, S M; Egeland, J A

    2015-10-01

    Ellis-van Creveld syndrome, an autosomal recessively inherited chondrodysplastic dwarfism, is frequent among Old Order Amish of Pennsylvania. Decades of longitudinal research on bipolar affective disorder (BPAD) revealed cosegregation of high numbers of EvC and Bipolar I (BPI) cases in several large Amish families descending from the same pioneer. Despite the high prevalence of both disorders in these families, no EvC individual has ever been reported with BPI. The proximity of the EVC gene to our previously reported chromosome 4p16 BPAD locus with protective alleles, coupled with detailed clinical observations that EvC and BPI do not occur in the same individuals, led us to hypothesize that the genetic defect causing EvC in the Amish confers protection from BPI. This hypothesis is supported by a significant negative association of these two disorders when contrasted with absence of disease (P=0.029, Fisher's exact test, two-sided, verified by permutation to estimate the null distribution of the test statistic). As homozygous Amish EVC mutations causing EvC dwarfism do so by disrupting sonic hedgehog (Shh) signaling, our data implicate Shh signaling in the underlying pathophysiology of BPAD. Understanding how disrupted Shh signaling protects against BPI could uncover variants in the Shh pathway that cause or increase risk for this and related mood disorders.

  13. Progressive neurodegenerative syndrome in a patient with X-linked agammaglobulinemia receiving intravenous immunoglobulin therapy.

    Science.gov (United States)

    Sag, Aslihan Taskiran; Saka, Esen; Ozgur, Tuba Turul; Sanal, Ozden; Ayvaz, Deniz Cagdas; Elibol, Bulent; Kurne, Asli Tuncer

    2014-09-01

    A progressive encephalopathy of unknown etiology has been described in patients with primary immunodeficiency disorders. In this report, we characterize the clinical features of this progressive neurodegenerative dementing disorder in a young man with Bruton agammaglobulinemia, through neuropsychological tests and a video sequence. The clinical course of the encephalopathy seems rather uniform: Cognition, especially frontal lobe function, is affected in the early stages, and some patients develop movement disorders. The syndrome causes severe cognitive and physical disability, and can eventually be fatal. The autoimmunity results from dysregulated immune responses, but the underlying mechanism has not yet been fully explained.

  14. Stem cells in neuroinjury and neurodegenerative disorders:challenges and future neurotherapeutic prospects

    Institute of Scientific and Technical Information of China (English)

    Tarek H.Mouhieddine; Firas H.Kobeissy; Muhieddine Itani; Amaly Nokkari; Kevin K.W.Wang

    2014-01-01

    The prevalence of neurodegenerative diseases and neural injury disorders is increasing world-wide. Research is now focusing on improving current neurogenesis techniques including neural stem cell therapy and other biochemical drug-based approaches to ameliorate these disorders. Unfortunately, we are still facing many obstacles that are rendering current neurotherapies in-effective in clinical trials for reasons that are yet to be discovered. That is why we should start by fully understanding the complex mechanisms of neurogenesis and the factors that affect it, or else, all our suggested therapies would fail since they would not be targeting the essence of the neurological disorder but rather the symptoms. One possible paradigm shift is to switch from neuroprotectant therapies towards neurodegeneration/neurorestorative approaches. In addition, other and our laboratories are increasingly focusing on combining the use of pharmacologi-cal agents (such as Rho-associated kinase (ROCK) inhibitors or other growth factors (such as brain-derived neurotrophic factor (BDNF)) and stem cell treatment to enhance the survivability and/or differentiation capacity of transplanted stem cells in neurotrauma or other neurodegen-eration animal models. Ongoing stem cell research is surely on the verge of a breakthrough of multiple effective therapeutic options for neurodegenerative disorders. Once, we fully compre-hend the process of neurogenesis and its components, we will fully be capable of manipulating and utilizing it. In this work, we discuss the current knowledge of neuroregenerative therapies and their associated challenges.

  15. Multi-Channel neurodegenerative pattern analysis and its application in Alzheimer's disease characterization.

    Science.gov (United States)

    Liu, Sidong; Cai, Weidong; Wen, Lingfeng; Feng, David Dagan; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Eberl, Stefan

    2014-09-01

    Neuroimaging has played an important role in non-invasive diagnosis and differentiation of neurodegenerative disorders, such as Alzheimer's disease and Mild Cognitive Impairment. Various features have been extracted from the neuroimaging data to characterize the disorders, and these features can be roughly divided into global and local features. Recent studies show a tendency of using local features in disease characterization, since they are capable of identifying the subtle disease-specific patterns associated with the effects of the disease on human brain. However, problems arise if the neuroimaging database involved multiple disorders or progressive disorders, as disorders of different types or at different progressive stages might exhibit different degenerative patterns. It is difficult for the researchers to reach consensus on what brain regions could effectively distinguish multiple disorders or multiple progression stages. In this study we proposed a Multi-Channel pattern analysis approach to identify the most discriminative local brain metabolism features for neurodegenerative disorder characterization. We compared our method to global methods and other pattern analysis methods based on clinical expertise or statistics tests. The preliminary results suggested that the proposed Multi-Channel pattern analysis method outperformed other approaches in Alzheimer's disease characterization, and meanwhile provided important insights into the underlying pathology of Alzheimer's disease and Mild Cognitive Impairment.

  16. Major Congenital Metabolic Disorders in the First 12 years of Life in 79,100 Consecutively Born Children in Qazvin Province

    Directory of Open Access Journals (Sweden)

    Abolfazl Movafagh

    2011-06-01

    Full Text Available ObjectiveDeficient enzyme activity may cause congenital metabolic defects. These defectsare inherited in an autosomal recessive, autosomal dominant, and X-linkedpatterns. This study was aimed at investigating the occurrence of metabolicdiseases in Qazvin Province.Materials & MethodsThis cross-sectional study was performed on 79,100 children aged 12 years orless between 2000 and 2010. Clinical manifestations, laboratory findings, and allother essential information were assessed to precisely diagnose the metabolicdiseases. The sorted information on congenital metabolic defects of the patients,information included in a checklist, and data were analyzed usnig SPSS.ResultsA total of 57 metabolic disorders were recorded. The difference in the prevalenceof metabolic disorders between male (29 cases and female (28 cases wasnot statistically significant. The most frequent congenital metabolic disorderamong our patients was phenylketonuria (PKU; 5 per 1,000 cases, and the leastcommon disorder was galactosemia (3 per 1,000 cases.ConclusionTimely detection and management of congenital metabolic disorders canhelp save the affected children. Prenatal screening programs, molecular genetherapy, and counseling for consanguineous marriage can play important rolesin reducing the rate of metabolic disorders in this province.

  17. Females with a disorder phenotypically identical to X-linked agammaglobulinemia

    Energy Technology Data Exchange (ETDEWEB)

    Conley, M.E. (Univ. of Tennessee College of Medicine, Memphis (United States)); Sweinberg, S.K. (Children' s Hospital of Philadelphia, PA (United States))

    1992-03-01

    Clinical and laboratory findings in two girls with a disorder phenotypically indistinguishable from typical X-linked agammaglobulinemia (XLA) are described. To examine the possibility that subtle defects in the X chromosome might explain the findings, detailed genetic studies were performed on one of these patients. Cytogenetic studies showed a normal 46XX karyotype. Southern blot analysis of her DNA showed that she had inherited a maternal and a paternal allele at sites flanking the locus for typical XLA at Xq22, making a microdeletion or uniparental disomy unlikely. To determine whether both of her X chromosomes could function as the active X, somatic-cell hybrids that selectively retained the active X were produced from her activated T cells. A normal random pattern of X inactivation was seen. Of 21 T-cell hybrids, 3 retained both X chromosomes, 7 had one X as the active X, and 11 had the other X as the active X. The authors have interpreted these studies as indicating that there is an autosomal recessive disorder that is phenotypically identical to XLA.

  18. [The onset of psychiatric disorders and Wilson's disease].

    Science.gov (United States)

    Benhamla, T; Tirouche, Y D; Abaoub-Germain, A; Theodore, F

    2007-12-01

    Wilson's disease is an infrequent, autosomic recessive pathology, resulting from a loss of function of an adenosine triphosphatase (ATP7B or WDNP), secondarily to a change (more than 60 are described currently), insertion or deletion of the ATP7B gene located on the chromosome 13q14.3-q21.1, which involves a reduction or an absence of the transport of copper in the bile and its accumulation in the body, notably the brain. Wilson's disease is transmitted by an autosomic recessive gene located on the long arm of chromosome 13. The prevalence of the heterozygote is evaluated at 1/90 and the homozygote at 1/30,000. Consanguinity, frequent in the socially geographically isolated populations, increases the prevalence of the disease. The toxic quantities of copper, which accumulate in the liver since early childhood and perhaps before, remain concentrated in the body for years. Hence, cytological and histological modifications can be detected in the biopsies, before the appearance of clinical or biological symptoms of hepatic damage. The accumulation of copper in the liver is due to a defect in the biliary excretion of metal and is accompanied invariably by a deficit in ceruloplasmin; protein synthesized from a transferred ATP7B gene, which causes retention of the copper ions in the liver. The detectable cellular anomalies are of two types: hepatic lesions resulting in acute hepatic insufficiency, acute hepatitis and finally advanced cirrhosis and lesions of the central nervous system responsible for the neurological and psychiatric disorders. In approximately 40-50% of the patients, the first manifestation of Wilson's disease affects the central nervous system. Although copper diffuses in the liver towards the blood and then towards other tissues, it has disastrous consequences only in the brain. It can therefore cause either a progressive neurological disease, or psychiatric disorders. Wilson's disease begins in the form of a hepatic, neurological, or psychiatric

  19. Ectopic mineralization disorders of the extracellular matrix of connective tissue: molecular genetics and pathomechanisms of aberrant calcification.

    Science.gov (United States)

    Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni

    2014-01-01

    Ectopic mineralization of connective tissues is a complex process leading to deposition of calcium phosphate complexes in the extracellular matrix, particularly affecting the skin and the arterial blood vessels and common in age-associated disorders. A number of initiating and contributing metabolic and environmental factors are linked to aberrant mineralization in these diseases, making the identification of precise pathomechanistic pathways exceedingly difficult. However, there has been significant recent progress in understanding the ectopic mineralization processes through study of heritable single-gene disorders, which have allowed identification of discrete pathways and contributing factors leading to aberrant connective tissue mineralization. These studies have provided support for the concept of an intricate mineralization/anti-mineralization network present in peripheral connective tissues, providing a perspective to development of pharmacologic approaches to limit the phenotypic consequences of ectopic mineralization. This overview summarizes the current knowledge of ectopic heritable mineralization disorders, with accompanying animal models, focusing on pseudoxanthoma elasticum and generalized arterial calcification of infancy, two autosomal recessive diseases manifesting with extensive connective tissue mineralization in the skin and the cardiovascular system.

  20. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease.

    Science.gov (United States)

    Sacksteder, Colette A; Qian, Wei-Jun; Knyushko, Tatyana V; Wang, Haixing; Chin, Mark H; Lacan, Goran; Melega, William P; Camp, David G; Smith, Richard D; Smith, Desmond J; Squier, Thomas C; Bigelow, Diana J

    2006-07-04

    Increased abundance of nitrotyrosine modifications of proteins have been documented in multiple pathologies in a variety of tissue types and play a role in the redox regulation of normal metabolism. To identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic data set identifying 7792 proteins from a whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in the identification of 31 unique nitrotyrosine sites within 29 different proteins. More than half of the nitrated proteins that have been identified are involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces an increased level of nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high-resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, a characteristic consistent with peroxynitrite-induced tyrosine modification. In addition, most sequences contain cysteines or methionines proximal to nitrotyrosines, contrary to suggestions that these amino acid side chains prevent tyrosine nitration. More striking is the presence of a positively charged moiety near the sites of nitration, which is not observed for non-nitrated tyrosines. Together, these observations suggest a predictive tool of functionally important sites of nitration and that cellular nitrating conditions play a role in neurodegenerative changes in the brain.