WorldWideScience

Sample records for autopolyploidy

  1. Isozymes in Larrea divaricata and Larrea tridentata (Zygophyllaceae): a study of two amphitropical vicariants and autopolyploidy.

    Science.gov (United States)

    Cortes, M C; Hunziker, J H

    1997-10-01

    Electrophoretic variants for seven isozyme systems - probably encoded by 18 structural gene loci - in diploid populations of Larrea divaricata and diploid and tetraploid populations of its North American vicariant derivative L. tridentata were assayed by polyacrilamide and starch gel electrophoresis. High molecular similarity of diploid and tetraploid cytotypes of L. tridentata supports the hypothesis of interracial autopolyploidy. The absence of fixed heterozygosity and additive profiles indicates a low level of divergence between the parental diploids and the tetraploids. The phenogram based on the I coefficient showed the similarities between the populations of diploid L. divaricata and also between the diploid populations of L. tridentata. Both groups of diploid populations were more distantly connected to tetraploid L. tridentata.

  2. The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals

    Directory of Open Access Journals (Sweden)

    Günter Vogt

    2015-11-01

    Full Text Available The parthenogenetic all-female marbled crayfish is a novel research model and potent invader of freshwater ecosystems. It is a triploid descendant of the sexually reproducing slough crayfish, Procambarus fallax, but its taxonomic status has remained unsettled. By cross-breeding experiments and parentage analysis we show here that marbled crayfish and P. fallax are reproductively separated. Both crayfish copulate readily, suggesting that the reproductive barrier is set at the cytogenetic rather than the behavioural level. Analysis of complete mitochondrial genomes of marbled crayfish from laboratory lineages and wild populations demonstrates genetic identity and indicates a single origin. Flow cytometric comparison of DNA contents of haemocytes and analysis of nuclear microsatellite loci confirm triploidy and suggest autopolyploidisation as its cause. Global DNA methylation is significantly reduced in marbled crayfish implying the involvement of molecular epigenetic mechanisms in its origination. Morphologically, both crayfish are very similar but growth and fecundity are considerably larger in marbled crayfish, making it a different animal with superior fitness. These data and the high probability of a divergent future evolution of the marbled crayfish and P. fallax clusters suggest that marbled crayfish should be considered as an independent asexual species. Our findings also establish the P. fallax–marbled crayfish pair as a novel paradigm for rare chromosomal speciation by autopolyploidy and parthenogenesis in animals and for saltational evolution in general.

  3. Origin of triploid Arachis pintoi (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour.

    Science.gov (United States)

    Lavia, Graciela Inés; Ortiz, Alejandra Marcela; Robledo, Germán; Fernández, Aveliano; Seijo, Guillermo

    2011-07-01

    Polyploidy is a dominant feature of flowering-plant genomes, including those of many important crop species. Arachis is a largely diploid genus with just four polyploid species. Two of them are economically important: the cultivated peanut and A. glabrata, a tropical forage crop. Even though it is usually accepted that polyploids within papilionoid legumes have arisen via hybridization and further chromosome doubling, it has been recently suggested that peanut arose through bilateral sexual polyploidization. In this paper, the polyploid nature of the recent, spontaneously originated triploid cytotype of the tropical lucerne, A. pintoi, was analysed, and thereby the mechanism by which polyploids may arise in the genus. Chromosome morphology of 2x and 3x A. pintoi was determined by the Feulgeńs technique and the rDNA sites were mapped by FISH. To investigate whether polyploidization occurred by means of unreduced gametes, a detailed analysis of the microsporogenesis and pollen grains was made. The 2x and 3x plants presented 9m + 1sm and a satellited chromosome type 2 in each haploid genome. Physical mapping revealed a cluster of 18S-26S rDNA, proximally located on chromosome 6, and two 5S rDNA loci on chromosomes 3 and 5. Diploid plants presented 10II in meiosis while trivalents were observed in all triploids, with a maximum of 10III by cell. Diploid A. pintoi produced normal tetrads, but also triads, dyads and monads. Two types of pollen grains were detected: (1) normal-sized with a prolate shape and (2) large ones with a tetrahedral morphology. Karyotype and meiotic analysis demonstrate that the 3x clone of A. pintoi arose by autopolyploidy. The occurrence of unreduced gametes strongly supports unilateral sexual polyploidization as the most probable mechanism that could have led to the origin of the triploid cytotype. This mechanism of polyploidization would probably be one of the most important mechanisms involved in the origin of economically important species

  4. IiSDD1, a gene responsive to autopolyploidy and environmental factors in Isatis indigotica.

    Science.gov (United States)

    Xiao, Ying; Yu, Xiaojing; Chen, Junfeng; Di, Peng; Chen, Wansheng; Zhang, Lei

    2010-02-01

    In plants, stomata play a pivotal role in the regulation of gas exchange and are distributed throughout the aerial epidermis. SDD1, a gene isolated from Arabidopsis thaliana has been demonstrated to specialize in stomatal density and distribution. In our present study, a comprehensive survey of global gene expression performed by using an A. thaliana whole genome Affymetrix gene chip revealed SDD1 tends to be significantly lower in tetraploid Isatis indigotica than in diploid ones. To intensively investigate different SDD1 expression in response to polyploidy, a full-length cDNA clone (IiSDD1) encoding SDD1 was isolated from the traditional Chinese medicinal herb I. indigotica cDNA library. IiSDD1 shared a high level of identity with that from A. thaliana, containing some basic features of subtilases: D, H and S regions, as well as a substrate-binding site. Real-time quantitative PCR analysis indicated that IiSDD1 was constitutively expressed in all tested tissues, including roots, stems and leaves, both in tetraploid and diploid I. indigotica, and with the highest expression in leaves. In addition, IiSDD1 was also found to be down-regulated by signalling molecules for plant defence responses, such as abscisic acid (100 microM) and gibberellin (100 mg/L), as well as by environmental stresses including salt, darkness, coldness and drought. Our study, for the first time, indicates SDD1 participates not only in the defense/stress responsive pathways, but also probably involves in plants polyploidy evolution.

  5. A novel method to infer the origin of polyploids from Amplified Fragment Length Polymorphism data reveals that the alpine polyploid complex of Senecio carniolicus (Asteraceae) evolved mainly via autopolyploidy.

    Science.gov (United States)

    Winkler, Manuela; Escobar García, Pedro; Gattringer, Andreas; Sonnleitner, Michaela; Hülber, Karl; Schönswetter, Peter; Schneeweiss, Gerald M

    2017-09-01

    Despite its evolutionary and ecological relevance, the mode of polyploid origin has been notoriously difficult to be reconstructed from molecular data. Here, we present a method to identify the putative parents of polyploids and thus to infer the mode of their origin (auto- vs. allopolyploidy) from Amplified Fragment Length Polymorphism (AFLP) data. To this end, we use Cohen's d of distances between in silico polyploids, generated within a priori defined scenarios of origin from a priori delimited putative parental entities (e.g. taxa, genetic lineages), and natural polyploids. Simulations show that the discriminatory power of the proposed method increases mainly with increasing divergence between the lower-ploid putative ancestors and less so with increasing delay of polyploidization relative to the time of divergence. We apply the new method to the Senecio carniolicus aggregate, distributed in the European Alps and comprising two diploid, one tetraploid and one hexaploid species. In the eastern part of its distribution, the S. carniolicus aggregate was inferred to comprise an autopolyploid series, whereas for western populations of the tetraploid species, an allopolyploid origin involving the two diploid species was the most likely scenario. Although this suggests that the tetraploid species has two independent origins, other evidence (ribotype distribution, morphology) is consistent with the hypothesis of an autopolyploid origin with subsequent introgression by the second diploid species. Altogether, identifying the best among alternative scenarios using Cohen's d can be straightforward, but particular scenarios, such as allopolyploid origin vs. autopolyploid origin with subsequent introgression, remain difficult to be distinguished. © 2016 John Wiley & Sons Ltd.

  6. Autotetraploids of Vicia cracca show a higher allelic richness in natural populations and a higher seed set after artificial selfing than diploids

    Czech Academy of Sciences Publication Activity Database

    Eliášová, A.; Trávníček, Pavel; Mandák, Bohumil; Münzbergová, Zuzana

    2014-01-01

    Roč. 113, č. 1 (2014), s. 159-170 ISSN 0305-7364 Institutional support: RVO:67985939 Keywords : autopolyploidy * allozyme * genetic diversity Subject RIV: EF - Botanics Impact factor: 3.654, year: 2014

  7. Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient

    Czech Academy of Sciences Publication Activity Database

    Schönswetter, P.; Lachmayer, M.; Lettner, Ch.; Prehsler, D.; Rechnitzer, S.; Reich, D. S.; Sonnleitner, M.; Wagner, I.; Hülber, K.; Schneeweiss, G. M.; Trávníček, Pavel; Suda, Jan

    2007-01-01

    Roč. 120, č. 6 (2007), s. 721-725 ISSN 0918-9440 Institutional research plan: CEZ:AV0Z60050516 Keywords : autopolyploidy * contact zone * flow cytometry Subject RIV: EF - Botanics Impact factor: 1.415, year: 2007

  8. The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity

    Czech Academy of Sciences Publication Activity Database

    Havelka, M.; Bytyutskyy, D.; Symonová, R.; Ráb, Petr; Flajšhans, M.

    2016-01-01

    Roč. 48, č. 12 (2016) ISSN 0999-193X R&D Projects: GA ČR GA14-02940S Institutional support: RVO:67985904 Keywords : sturgeon * spontaneous autopolyploidy * image-analysis densitometry Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.964, year: 2016

  9. Making a functional diploid: from polysomic to disomic inheritance

    Czech Academy of Sciences Publication Activity Database

    Le Comber, S.C.; Ainouche, M.L.; Kovařík, Aleš; Leitch, A.R.

    2010-01-01

    Roč. 186, č. 1 (2010), s. 113-122 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : autopolyploidy * diploidization * neofunctionalization Subject RIV: BO - Biophysics Impact factor: 6.516, year: 2010

  10. Morphological, Genome and Gene Expression Changes in Newly Induced Autopolyploid Chrysanthemum lavandulifolium (Fisch. ex Trautv.) Makino.

    Science.gov (United States)

    Gao, Ri; Wang, Haibin; Dong, Bin; Yang, Xiaodong; Chen, Sumei; Jiang, Jiafu; Zhang, Zhaohe; Liu, Chen; Zhao, Nan; Chen, Fadi

    2016-10-09

    Autopolyploidy is widespread in higher plants and plays an important role in the process of evolution. The present study successfully induced autotetraploidys from Chrysanthemum lavandulifolium by colchicine. The plant morphology, genomic, transcriptomic, and epigenetic changes between tetraploid and diploid plants were investigated. Ligulate flower, tubular flower and leaves of tetraploid plants were greater than those of the diploid plants. Compared with diploid plants, the genome changed as a consequence of polyploidization in tetraploid plants, namely, 1.1% lost fragments and 1.6% novel fragments occurred. In addition, DNA methylation increased after genome doubling in tetraploid plants. Among 485 common transcript-derived fragments (TDFs), which existed in tetraploid and diploid progenitors, 62 fragments were detected as differentially expressed TDFs, 6.8% of TDFs exhibited up-regulated gene expression in the tetraploid plants and 6.0% exhibited down-regulation. The present study provides a reference for further studying the autopolyploidization role in the evolution of C. lavandulifolium. In conclusion, the autopolyploid C. lavandulifolium showed a global change in morphology, genome and gene expression compared with corresponding diploid.

  11. Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers.

    Science.gov (United States)

    Scott, Alison Dawn; Stenz, Noah W M; Ingvarsson, Pär K; Baum, David A

    2016-07-01

    Polyploidy is common and an important evolutionary factor in most land plant lineages, but it is rare in gymnosperms. Coast redwood (Sequoia sempervirens) is one of just two polyploid conifer species and the only hexaploid. Evidence from fossil guard cell size suggests that polyploidy in Sequoia dates to the Eocene. Numerous hypotheses about the mechanism of polyploidy and parental genome donors have been proposed, based primarily on morphological and cytological data, but it remains unclear how Sequoia became polyploid and why this lineage overcame an apparent gymnosperm barrier to whole-genome duplication (WGD). We sequenced transcriptomes and used phylogenetic inference, Bayesian concordance analysis and paralog age distributions to resolve relationships among gene copies in hexaploid coast redwood and close relatives. Our data show that hexaploidy in coast redwood is best explained by autopolyploidy or, if there was allopolyploidy, it happened within the Californian redwood clade. We found that duplicate genes have more similar sequences than expected, given the age of the inferred polyploidization. Conflict between molecular and fossil estimates of WGD can be explained if diploidization occurred very slowly following polyploidization. We extrapolate from this to suggest that the rarity of polyploidy in gymnosperms may be due to slow diploidization in this clade. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Natural polyploidy in Vanilla planifolia (Orchidaceae).

    Science.gov (United States)

    Bory, Séverine; Catrice, Olivier; Brown, Spencer; Leitch, Ilia J; Gigant, Rodolphe; Chiroleu, Frédéric; Grisoni, Michel; Duval, Marie-France; Besse, Pascale

    2008-10-01

    Vanilla planifolia accessions cultivated in Reunion Island display important phenotypic variation, but little genetic diversity is demonstrated by AFLP and SSR markers. This study, based on analyses of flow cytometry data, Feulgen microdensitometry data, chromosome counts, and stomatal length measurements, was performed to determine whether polyploidy could be responsible for some of the intraspecific phenotypic variation observed. Vanilla planifolia exhibited an important variation in somatic chromosome number in root cells, as well as endoreplication as revealed by flow cytometry. Nevertheless, the 2C-values of the 50 accessions studied segregated into three distinct groups averaging 5.03 pg (for most accessions), 7.67 pg (for the 'Stérile' phenotypes), and 10.00 pg (for the 'Grosse Vanille' phenotypes). For the three groups, chromosome numbers varied from 16 to 32, 16 to 38, and 22 to 54 chromosomes per cell, respectively. The stomatal length showed a significant variation from 37.75 microm to 48.25 microm. Given that 2C-values, mean chromosome numbers, and stomatal lengths were positively correlated and that 'Stérile' and 'Grosse Vanille' accessions were indistinguishable from 'Classique' accessions using molecular markers, the occurrence of recent autotriploid and autotetraploid types in Reunion Island is supported. This is the first report showing evidence of a recent autopolyploidy in V. planifolia contributing to the phenotypic variation observed in this species.

  13. Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression

    Science.gov (United States)

    Clark, Lindsay V.; Stewart, J. Ryan; Nishiwaki, Aya; Toma, Yo; Kjeldsen, Jens Bonderup; Jørgensen, Uffe; Zhao, Hua; Peng, Junhua; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko

    2015-01-01

    Unilateral introgression from diploids to tetraploids has been hypothesized to be an important evolutionary mechanism in plants. However, few examples have been definitively identified, perhaps because data of sufficient depth and breadth were difficult to obtain before the advent of affordable high-density genotyping. Throughout Japan, tetraploid Miscanthus sacchariflorus and diploid Miscanthus sinensis are common, and occasionally hybridize. In this study, 667 M. sinensis and 78 M. sacchariflorus genotypes from Japan were characterized using 20 704 SNPs and ten plastid microsatellites. Similarity of SNP genotypes between diploid and tetraploid M. sacchariflorus indicated that the tetraploids originated through autopolyploidy. Structure analysis indicated a gradient of introgression from diploid M. sinensis into tetraploid M. sacchariflorus throughout Japan; most tetraploids had some M. sinensis DNA. Among phenotypically M. sacchariflorus tetraploids, M. sinensis ancestry averaged 7% and ranged from 1–39%, with introgression greatest in southern Japan. Unexpectedly, rare (~1%) diploid M. sinensis individuals from northern Japan were found with 6–27% M. sacchariflorus ancestry. Population structure of M. sinensis in Japan included three groups, and was driven primarily by distance, and secondarily by geographic barriers such as mountains and straits. Miscanthus speciation is a complex and dynamic process. In contrast to limited introgression between diploid M. sacchariflorus and M. sinensis in northern China, selection for adaptation to a moderate maritime climate probably favoured cross-ploidy introgressants in southern Japan. These results will help guide the selection of Miscanthus accessions for the breeding of biomass cultivars. PMID:25618143

  14. Isozyme variation and genetic relationships among taxa in the Asplenium obovatum group (Aspleniaceae, Pteridophyta).

    Science.gov (United States)

    Herrero, A; Pajarón, S; Prada, C

    2001-11-01

    The Asplenium obovatum group consists of diploid and tetraploid taxa; the origin of the tetraploid A. obovatum subsp. lanceolatum was previously considered to have occurred via autopolyploidy, involving one of the diploids of the group, either A. obovatum subsp. obovatum var. obovatum or var. protobillotii. To test this hypothesis, electrophoretic analyses of eight enzyme systems encoded by fourteen putative loci and cytological studies of the artificial hybrid between both diploid varieties were conducted. Alleles of the loci Lap-1, Mdh-2, Mdh-3, Pgm-1, Pgm-1', and 6Pgd-1 emerged as genetic markers for the diploids and were present in an additive pattern in most of the analyzed individuals of the tetraploid. Cytological results indicated a high degree of genomic homology between the diploids. These results indicated that the tetraploid behaves as a segmental allopolyploid. Our results showed that both diploids were involved in the origin of the tetraploid. We propose the new combination Asplenium obovatum subsp. protobillotii for one of the diploids.

  15. Ecological studies of polyploidy in the 100 years following its discovery.

    Science.gov (United States)

    Ramsey, Justin; Ramsey, Tara S

    2014-08-05

    Polyploidy is a mutation with profound phenotypic consequences and thus hypothesized to have transformative effects in plant ecology. This is most often considered in the context of geographical and environmental distributions-as achieved from divergence of physiological and life-history traits-but may also include species interactions and biological invasion. This paper presents a historical overview of hypotheses and empirical data regarding the ecology of polyploids. Early researchers of polyploidy (1910 s-1930 s) were geneticists by training but nonetheless savvy to its phenotypic effects, and speculated on the importance of genome duplication to adaptation and crop improvement. Cytogenetic studies in the 1930 s-1950 s indicated that polyploids are larger (sturdier foliage, thicker stems and taller stature) than diploids while cytogeographic surveys suggested that polyploids and diploids have allopatric or parapatric distributions. Although autopolyploidy was initially regarded as common, influential writings by North American botanists in the 1940 s and 1950 s argued for the principle role of allopolyploidy; according to this view, genome duplication was significant for providing a broader canvas for hybridization rather than for its phenotypic effects per se. The emphasis on allopolyploidy had a chilling effect on nascent ecological work, in part due to taxonomic challenges posed by interspecific hybridization. Nonetheless, biosystematic efforts over the next few decades (1950s-1970s) laid the foundation for ecological research by documenting cytotype distributions and identifying phenotypic correlates of polyploidy. Rigorous investigation of polyploid ecology was achieved in the 1980s and 1990 s by population biologists who leveraged flow cytometry for comparative work in autopolyploid complexes. These efforts revealed multi-faceted ecological and phenotypic differences, some of which may be direct consequences of genome duplication. Several classical

  16. In vitro polyploidy induction: changes in morphology, podophyllotoxin biosynthesis, and expression of the related genes in Linum album (Linaceae).

    Science.gov (United States)

    Javadian, Neda; Karimzadeh, Ghasem; Sharifi, Mohsen; Moieni, Ahmad; Behmanesh, Mehrdad

    2017-06-01

    Induction of tetraploidy was performed and podophyllotoxin production increased by upregulating the expression level and enzyme activity of genes related to its biosynthesis in tetraploid compared to diploid Linum album. Linum album is a valuable medicinal plant that produces antiviral and anticancer compounds including podophyllotoxin (PTOX). To achieve homogeneous materials, in vitro diploid clones were established, and their nodal segments were exposed to different concentrations and durations of colchicine. This resulted in successful tetraploidy induction, confirmed by flow cytometry, and is being reported for the first time. The highest efficiency of tetraploid induction (22%) was achieved after 72 h exposure to 2.5-mM colchicine treatment. The stable tetraploids were produced after being subcultured three times, and their ploidy stability was confirmed after each subculture. The effects of autopolyploidy were measured on the morphological and phytochemical characteristics, as well as enzyme activity and the expression levels of some key genes involved in the PTOX biosynthetic pathway, including phenylalanine ammonia-lyase (PAL), cinnamoyl-Coa reductase (CCR), cinnamyl-alcohol dehydrogenase (CAD), and pinoresinol-lariciresinol reductase (PLR). The tetraploid plants had larger leaves and stomata (length and width) and lower density stomata. Increasing the ploidy level from diploid to tetraploid resulted in 1.39- and 1.23-fold enhancement of PTOX production, respectively, in the leaves and stem. The increase in PTOX content was associated with upregulated activities of some enzymes studied related to its biosynthetic pathway and the expression of the corresponding genes. The expression of the PAL gene and PLR enzymatic activity had the most positive correlation with the ploidy level in both leaf and stem tissues. Our results verified that autotetraploid induction is a useful breeding method, remarkably increasing the PTOX content in the leaves and stem of L

  17. Patterns of rapid diversification in heteroploid Knautia sect. Trichera (Caprifoliaceae, Dipsacoideae), one of the most intricate taxa of the European flora.

    Science.gov (United States)

    Frajman, Božo; Rešetnik, Ivana; Niketić, Marjan; Ehrendorfer, Friedrich; Schönswetter, Peter

    2016-10-10

    Polyploidy is one of the most important evolutionary pathways in flowering plants and has significantly contributed to their diversification and radiation. Due to the prevalence of reticulate evolution spanning three ploidy levels, Knautia is considered one of the taxonomically most intricate groups in the European flora. On the basis of ITS and plastid DNA sequences as well as AFLP fingerprints obtained from 381 populations of almost all species of the genus we asked the following questions. (1) Where and when did the initial diversification in Knautia take place, and how did it proceed further? (2) Did Knautia undergo a similarly recent (Pliocene/Pleistocene) rapid radiation as other genera with similar ecology and overlapping distribution? (3) Did polyploids evolve within the previously recognised diploid groups or rather from hybridisation between groups? The diversification of Knautia was centred in the Eastern Mediterranean. According to our genetic data, the genus originated in the Early Miocene and started to diversify in the Middle Miocene, whereas the onset of radiation of sect. Trichera was in central parts of the Balkan Peninsula, roughly 4 Ma. Extensive spread out of the Balkans started in the Pleistocene about 1.5 Ma. Diversification of sect. Trichera was strongly fostered by polyploidisation, which occurred independently many times. Tetraploids are observed in almost all evolutionary lineages whereas hexaploids are rarer and restricted to a few phylogenetic groups. Whether polyploids originated via autopolyploidy or allopolyploidy is unclear due to the weak genetic separation among species. In spite of the complexity of sect. Trichera, we present nine AFLP-characterised informal species groups, which coincide only partly with former traditional groups. Knautia sect. Trichera is a prime example for rapid diversification, mostly taking place during Pliocene and Pleistocene. Numerous cycles of habitat fragmentation and subsequent reconnections likely