WorldWideScience

Sample records for autophagy genes map1lc3b

  1. MAP1LC3B overexpression protects against Hermansky-Pudlak syndrome type-1-induced defective autophagy in vitro.

    Science.gov (United States)

    Ahuja, Saket; Knudsen, Lars; Chillappagari, Shashi; Henneke, Ingrid; Ruppert, Clemens; Korfei, Martina; Gochuico, Bernadette R; Bellusci, Saverio; Seeger, Werner; Ochs, Matthias; Guenther, Andreas; Mahavadi, Poornima

    2016-03-15

    Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder, and some patients with HPS develop pulmonary fibrosis, known as HPS-associated interstitial pneumonia (HPSIP). We have previously reported that HPSIP is associated with severe surfactant accumulation, lysosomal stress, and alveolar epithelial cell type II (AECII) apoptosis. Here, we hypothesized that defective autophagy might result in excessive lysosomal stress in HPSIP. Key autophagy proteins, including LC3B lipidation and p62, were increased in HPS1/2 mice lungs. Electron microscopy demonstrated a preferable binding of LC3B to the interior of lamellar bodies in the AECII of HPS1/2 mice, whereas in wild-type mice it was present on the limiting membrane in addition to the interior of the lamellar bodies. Similar observations were noted in human HPS1 lung sections. In vitro knockdown of HPS1 revealed increased LC3B lipidation and p62 accumulation, associated with an increase in proapoptotic caspases. Overexpression of LC3B decreased the HPS1 knockdown-induced p62 accumulation, whereas rapamycin treatment did not show the same effect. We conclude that loss of HPS1 protein results in impaired autophagy that is restored by exogenous LC3B and that defective autophagy might therefore play a critical role in the development and progression of HPSIP. PMID:26719147

  2. Autophagic Marker MAP1LC3B Expression Levels Are Associated with Carotid Atherosclerosis Symptomatology

    OpenAIRE

    Swaminathan, Bhairavi; Goikuria, Haize; Vega, Reyes; Rodríguez-Antigüedad, Alfredo; López Medina, Antonio; Freijo, María del Mar; Vandenbroeck, Koen; Alloza, Iraide

    2014-01-01

    Objectives The mechanism by which atheroma plaque becomes unstable is not completely understood to date but analysis of differentially expressed genes in stable versus unstable plaques may provide clues. This will be crucial toward disclosing the mechanistic basis of plaque instability, and may help to identify prognostic biomarkers for ischaemic events. The objective of our study was to identify differences in expression levels of 59 selected genes between symptomatic patients (unstable plaq...

  3. Autophagic Marker MAP1LC3B Expression Levels Are Associated with Carotid Atherosclerosis Symptomatology

    OpenAIRE

    Swaminathan, Bhairavi; Goikuria Iriondo, Haize; Vega, Reyes; Rodríguez-Antigüedad, Alfredo; López Medina, Antonio; Freijo, María del Mar; Vandenbroeck, Koen; Alloza Moral, Iraide

    2014-01-01

    Objectives: The mechanism by which atheroma plaque becomes unstable is not completely understood to date but analysis of differentially expressed genes in stable versus unstable plaques may provide clues. This will be crucial toward disclosing the mechanistic basis of plaque instability, and may help to identify prognostic biomarkers for ischaemic events. The objective of our study was to identify differences in expression levels of 59 selected genes between symptomatic patients (unstable pla...

  4. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy.

    Science.gov (United States)

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-08-01

    Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation. PMID:27337297

  5. Changes of beclin 1 expression in radiation-induced autophagy in breast cancer cells

    International Nuclear Information System (INIS)

    Objective: To investigate the changes of beclin 1 expression in radiation-induced autophagy in breast cancer cell line MCF-7. Methods: Real-time RT-PCR was used to detect the expression of autophagy-related genes MAP1LC3B. Reverse transcription-PCR was used to detect the expression of beclin 1. Western blot was used to analyze the protein expression of beclin 1. Results: Dose-response of MAP1LC3B mRNA studies showed that MAP1LC3B mRNA increased in 8, 16 and 32 h dose-effect studies, up to peak at 12 Gy in 8 h study (F=13.831, P<0.05), 12 Gy in 16 h study (F=10.996, P<0.01) and 8 Gy in 32 h study (F=17.019, P<0.01), respectively. Time-response studies showed that MAP1LC3B mRNA increased and reached to peak at 16 h in 2 Gy dose-effect study (F=16.284, P<0.01), 32 h in 8 Gy study (F=9.030, P<0.05) and 16 h in 12 Gy study (F=20.315, P<0.05), respectively. Dose-response studies of beclin 1 mRNA showed that beclin 1 increased after 2, 4 and 8 Gy irradiation. Time-response studies showed that beclin 1 increased in a time-dependent manner after 8 Gy irradiation. 16 h dose-effect study of beclin 1 protein showed the increase of beclin 1 expression, and 2 Gy time-response study that beclin 1 expression increased and reached the peak at 8 h . Conclusions: X-ray irradiation could induce autophagy in MCF-7 cells. beclin 1 might play an important role in the process of autophagy. (authors)

  6. IFNB1/interferon-ß-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Ejlerskov, Patrick; Liu, Yawei; Lees, Michael; Jäättelä, Marja; Navikas, Shohreh

    2013-01-01

    survival pathways leading to treatment resistance. Defects in autophagy, a conserved cellular degradation pathway, are implicated in numerous cancer diseases. Autophagy is induced in response to cancer therapies and can contribute to treatment resistance. While the type II IFN, IFNG, which in many aspects...... differs significantly from type I IFNs, can induce autophagy, no such function for any type I IFN has been reported. We show here that IFNB1 induces autophagy in MCF-7, MDAMB231 and SKBR3 breast cancer cells by measuring the turnover of two autophagic markers, MAP1LC3B/LC3 and SQSTM1/p62. The induction of...... autophagy in MCF-7 cells occurred upstream of the negative regulator of autophagy MTORC1, and autophagosome formation was dependent on the known core autophagy molecule ATG7 and the IFNB1 signaling molecule STAT1. Using siRNA-mediated silencing of several core autophagy molecules and STAT1, we provide...

  7. Activation of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection.

    Science.gov (United States)

    Bretin, Alexis; Carrière, Jessica; Dalmasso, Guillaume; Bergougnoux, Agnès; B'chir, Wafa; Maurin, Anne-Catherine; Müller, Stefan; Seibold, Frank; Barnich, Nicolas; Bruhat, Alain; Darfeuille-Michaud, Arlette; Nguyen, Hang Thi Thu

    2016-05-01

    The intestinal mucosa of Crohn disease (CD) patients is abnormally colonized by adherent-invasive E. coli (AIEC). Upon AIEC infection, autophagy is induced in host cells to restrain bacterial intracellular replication. The underlying mechanism, however, remains unknown. Here, we investigated the role of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway in the autophagic response to AIEC infection. We showed that infection of human intestinal epithelial T84 cells with the AIEC reference strain LF82 activated the EIF2AK4-EIF2A-ATF4 pathway, as evidenced by increased phospho-EIF2AK4, phospho-EIF2A and ATF4 levels. EIF2AK4 depletion inhibited autophagy activation in response to LF82 infection, leading to increased LF82 intracellular replication and elevated pro-inflammatory cytokine production. Mechanistically, EIF2AK4 depletion suppressed the LF82-induced ATF4 binding to promoters of several autophagy genes including MAP1LC3B, BECN1, SQSTM1, ATG3 and ATG7, and this subsequently inhibited transcription of these genes. LF82 infection of wild-type (WT), but not eif2ak4(-/-), mice activated the EIF2AK4-EIF2A-ATF4 pathway, inducing autophagy gene transcription and autophagy response in enterocytes. Consequently, eif2ak4(-/-) mice exhibited increased intestinal colonization by LF82 bacteria and aggravated inflammation compared to WT mice. Activation of the EIF2AK4-EIF2A-ATF4 pathway was observed in ileal biopsies from patients with noninflamed CD, and this was suppressed in inflamed CD, suggesting that a defect in the activation of this pathway could be one of the mechanisms contributing to active disease. In conclusion, we show that activation of the EIF2AK4-EIF2A-ATF4 pathway upon AIEC infection serves as a host defense mechanism to induce functional autophagy to control AIEC intracellular replication. PMID:26986695

  8. Characterization of a novel autophagy-specific gene, ATG29

    International Nuclear Information System (INIS)

    Autophagy is a process whereby cytoplasmic proteins and organelles are sequestered for bulk degradation in the vacuole/lysosome. At present, 16 ATG genes have been found that are essential for autophagosome formation in the yeast Saccharomyces cerevisiae. Most of these genes are also involved in the cytoplasm to vacuole transport pathway, which shares machinery with autophagy. Most Atg proteins are colocalized at the pre-autophagosomal structure (PAS), from which the autophagosome is thought to originate, but the precise mechanism of autophagy remains poorly understood. During a genetic screen aimed to obtain novel gene(s) required for autophagy, we identified a novel ORF, ATG29/YPL166w. atg29Δ cells were sensitive to starvation and induction of autophagy was severely retarded. However, the Cvt pathway operated normally. Therefore, ATG29 is an ATG gene specifically required for autophagy. Additionally, an Atg29-GFP fusion protein was observed to localize to the PAS. From these results, we propose that Atg29 functions in autophagosome formation at the PAS in collaboration with other Atg proteins

  9. Detection of Autophagy in Caenorhabditis elegans Using GFP::LGG-1 as an Autophagy Marker.

    Science.gov (United States)

    Palmisano, Nicholas J; Meléndez, Alicia

    2016-01-01

    In yeast and mammalian cells, the autophagy protein Atg8/LC3 (microtubule-associated proteins 1A/1B light chain 3B encoded by MAP1LC3B) has been the marker of choice to detect double-membraned autophagosomes that are produced during the process of autophagy. A lipid-conjugated form of Atg8/LC3B is localized to the inner and outer membrane of the early-forming structure known as the phagophore. During maturation of autophagosomes, Atg8/LC3 bound to the inner autophagosome membrane remains in situ as the autophagosomes fuse with lysosomes. The nematode Caenorhabditis elegans is thought to conduct a similar process, meaning that tagging the nematode ortholog of Atg8/LC3-known as LGG-1-with a fluorophore has become a widely accepted method to visualize autophagosomes. Under normal growth conditions, GFP-modified LGG-1 displays a diffuse expression pattern throughout a variety of tissues, whereas, when under conditions that induce autophagy, the GFP::LGG-1 tag labels positive punctate structures, and its overall level of expression increases. Here, we present a protocol for using fluorescent reporters of LGG-1 coupled to GFP to monitor autophagosomes in vivo. We also discuss the use of alternative fluorescent markers and the possible utility of the LGG-1 paralog LGG-2. PMID:26729905

  10. Polymorphisms in autophagy genes and susceptibility to tuberculosis.

    Directory of Open Access Journals (Sweden)

    Mario Songane

    Full Text Available Recent data suggest that autophagy is important for intracellular killing of Mycobacterium tuberculosis, and polymorphisms in the autophagy gene IRGM have been linked with susceptibility to tuberculosis (TB among African-Americans, and with TB caused by particular M. tuberculosis genotypes in Ghana. We compared 22 polymorphisms of 14 autophagy genes between 1022 Indonesian TB patients and 952 matched controls, and between patients infected with different M. tuberculosis genotypes, as determined by spoligotyping. The same autophagy polymorphisms were studied in correlation with ex-vivo production of TNF, IL-1β, IL-6, IL-8, IFN-γ and IL-17 in healthy volunteers. No association was found between TB and polymorphisms in the genes ATG10, ATG16L2, ATG2B, ATG5, ATG9B, IRGM, LAMP1, LAMP3, P2RX7, WIPI1, MTOR and ATG4C. Associations were found between polymorphisms in LAMP1 (p = 0.02 and MTOR (p = 0.02 and infection with the successful M. tuberculosis Beijing genotype. The polymorphisms examined were not associated with M. tuberculosis induced cytokines, except for a polymorphism in ATG10, which was linked with IL-8 production (p = 0.04. All associations found lost statistical significance after correction for multiple testing. This first examination of a broad set of polymorphisms in autophagy genes fails to show a clear association with TB, with M. tuberculosis Beijing genotype infection or with ex-vivo pro-inflammatory cytokine production.

  11. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    Science.gov (United States)

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rate<0.05). Thus, altered expression levels of several autophagy related genes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis. PMID:27125224

  12. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaojun [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zhong, Xiaomin [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Tanyi, Janos L.; Shen, Jianfeng [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Xu, Congjian [Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011 (China); Gao, Peng [Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000 (China); Zheng, Tim M. [Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); DeMichele, Angela [Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zhang, Lin, E-mail: linzhang@mail.med.upenn.edu [Ovarian Cancer Research Center and Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2013-02-15

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.

  13. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy

  14. Determination of autophagy gene ATG16L1 polymorphism in human colorectal cancer

    DEFF Research Database (Denmark)

    Nicoli, Elena Raluca; Dumitrescu, Theodor; Uscatu, Constantin Daniel;

    2014-01-01

    Autophagy has emerged not only as an essential repair mechanism to degrade damaged organelles and proteins but also as a major player in protection of tumor cells from multiple stresses. It was shown that autophagy gene polymorphisms are correlated with development of chronic inflammatory lesions...

  15. Tissue distribution, gender- and genotype-dependent expression of autophagy-related genes in avian species.

    Directory of Open Access Journals (Sweden)

    Alissa Piekarski

    Full Text Available As a result of the genetic selection of broiler (meat-type breeders chickens for enhanced growth rate and lower feed conversion ratio, it has become necessary to restrict feed intake. When broilers are fed ad libitum, they would become obese and suffer from several health-related problems. A vital adaptation to starvation is autophagy, a self-eating mechanism for recycling cellular constituents. The autophagy pathway has witnessed dramatic growth in the last few years and extensively studied in yeast and mammals however, there is a paucity of information in avian (non-mammalian species. Here we characterized several genes involved in autophagosome initiation and elongation in Red Jungle fowl (Gallus gallus and Japanese quail (coturnix coturnix Japonica. Both complexes are ubiquitously expressed in chicken and quail tissues (liver, leg and breast muscle, brain, gizzard, intestine, heart, lung, kidney, adipose tissue, ovary and testis. Alignment analysis showed high similarity (50.7 to 91.5% between chicken autophagy-related genes and their mammalian orthologs. Phylogenetic analysis demonstrated that the evolutionary relationship between autophagy genes is consistent with the consensus view of vertebrate evolution. Interestingly, the expression of autophagy-related genes is tissue- and gender-dependent. Furthermore, using two experimental male quail lines divergently selected over 40 generations for low (resistant, R or high (sensitive, S stress response, we found that the expression of most studied genes are higher in R compared to S line. Together our results indicate that the autophagy pathway is a key molecular signature exhibited gender specific differences and likely plays an important role in response to stress in avian species.

  16. Viruses, Autophagy Genes, and Crohn’s Disease

    OpenAIRE

    Hubbard, Vanessa M.; Ken Cadwell

    2011-01-01

    The etiology of the intestinal disease Crohn’s disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, a...

  17. Corresponding erdosteine changes autophagy genes expression in hippocampus on Rhinitis medicamentosa model

    Directory of Open Access Journals (Sweden)

    Dokuyucu Recep

    2015-01-01

    Full Text Available In our study, rats were subjected to Oxymetazoline hydrochloride treatment and Rhinitis medicamentosa (RM was formed and then autophagy gene expression levels were determined after the application of an antioxidant agent erdosteine (ED. The rats were divided into three groups; Group 1 was the control group. Group 2 (RM and group 3 (RM+ED rats received two spray puffs of 0.05% oxymetazoline into the nasal cavities three times daily for eight weeks. After determination of RM in the rats, the RM group were killed. The ED+RM group received 10 mg/kg of an ED suspension. At the end of seven days, these rats were also killed. All groups’ hippocampus tissues were obtained for the measurement of autophagy gene expressions. In rhinitis medicamentosa group Atg5, Atg7 and Atg10 gene expressions in the left hippocampus were reduced as compared to control group (p=0.01, p>0.05, p=0.01, respectively. Also, erdosteine treatments were restored mRNA expression of autophagy genes. In right hippocampus of rhinitis medicamentosa group, Atg5 and Atg10 gene expressions was found to be down-regulated as compared to control group (p>0.05, p<0.05, respectively. Both BECN1 and ULK genes expression were found to be reduced in left hippocampus of rhinitis medicamentosa group. Erdosteine applications was restored the expression of these genes (p=0.03, p=0.03, respectively. Additionally, in right hippocampus, Erdosteine application was restored the expression of ULK gene (p=0.01. This is the first report that evaluated the expression autophagy genes in RM rat models and the changes observed after erdosteine applications.

  18. Activation of RARα induces autophagy in SKBR3 breast cancer cells and depletion of key autophagy genes enhances ATRA toxicity.

    Science.gov (United States)

    Brigger, D; Schläfli, A M; Garattini, E; Tschan, M P

    2015-01-01

    All-trans retinoic acid (ATRA), a pan-retinoic acid receptor (RAR) agonist, is, along with other retinoids, a promising therapeutic agent for the treatment of a variety of solid tumors. On the one hand, preclinical studies have shown promising anticancer effects of ATRA in breast cancer; on the other hand, resistances occurred. Autophagy is a cellular recycling process that allows the degradation of bulk cellular contents. Tumor cells may take advantage of autophagy to cope with stress caused by anticancer drugs. We therefore wondered if autophagy is activated by ATRA in mammary tumor cells and if modulation of autophagy might be a potential novel treatment strategy. Indeed, ATRA induces autophagic flux in ATRA-sensitive but not in ATRA-resistant human breast cancer cells. Moreover, using different RAR agonists as well as RARα-knockdown breast cancer cells, we demonstrate that autophagy is dependent on RARα activation. Interestingly, inhibition of autophagy in breast cancer cells by either genetic or pharmacological approaches resulted in significantly increased apoptosis under ATRA treatment and attenuated epithelial differentiation. In summary, our findings demonstrate that ATRA-induced autophagy is mediated by RARα in breast cancer cells. Furthermore, inhibition of autophagy results in enhanced apoptosis. This points to a potential novel treatment strategy for a selected group of breast cancer patients where ATRA and autophagy inhibitors are applied simultaneously. PMID:26313912

  19. The autophagy associated gene, ULK1, promotes tolerance to chronic and acute hypoxia

    International Nuclear Information System (INIS)

    Background and purpose: Tumor hypoxia is associated with therapy resistance and malignancy. Previously we demonstrated that activation of autophagy and the unfolded protein response (UPR) promote hypoxia tolerance. Here we explored the importance of ULK1 in hypoxia tolerance, autophagy induction and its prognostic value for recurrence after treatment. Material and methods: Hypoxic regulation of ULK1 mRNA and protein was assessed in vitro and in primary human head and neck squamous cell carcinoma (HNSCC) xenografts. Its importance in autophagy induction, mitochondrial homeostasis and tolerance to chronic and acute hypoxia was evaluated in ULK1 knockdown cells. The prognostic value of ULK1 mRNA expression was assessed in 82 HNSCC patients. Results: ULK1 enrichment was observed in hypoxic tumor regions. High enrichment was associated with a high hypoxic fraction. In line with these findings, high ULK1 expression in HNSCC patients appeared associated with poor local control. Exposure of cells to hypoxia induced ULK1 mRNA in a UPR and HIF1α dependent manner. ULK1 knockdown decreased autophagy activation, increased mitochondrial mass and ROS exposure and sensitized cells to acute and chronic hypoxia. Conclusions: We demonstrate that ULK1 is a hypoxia regulated gene and is associated with hypoxia tolerance and a worse clinical outcome

  20. Corresponding erdosteine changes autophagy genes expression in hippocampus on Rhinitis medicamentosa model

    OpenAIRE

    Dokuyucu Recep; Gogebakan Bulent; Cevik Cengiz

    2015-01-01

    In our study, rats were subjected to Oxymetazoline hydrochloride treatment and Rhinitis medicamentosa (RM) was formed and then autophagy gene expression levels were determined after the application of an antioxidant agent erdosteine (ED). The rats were divided into three groups; Group 1 was the control group. Group 2 (RM) and group 3 (RM+ED) rats received two spray puffs of 0.05% oxymetazoline into the nasal cavities three times daily for eight weeks. After...

  1. A genetic screen for modifiers of Drosophila caspase Dcp-1 reveals caspase involvement in autophagy and novel caspase-related genes

    Directory of Open Access Journals (Sweden)

    Ahnn Joohong

    2010-01-01

    Full Text Available Abstract Background Caspases are cysteine proteases with essential functions in the apoptotic pathway; their proteolytic activity toward various substrates is associated with the morphological changes of cells. Recent reports have described non-apoptotic functions of caspases, including autophagy. In this report, we searched for novel modifiers of the phenotype of Dcp-1 gain-of-function (GF animals by screening promoter element- inserted Drosophila melanogaster lines (EP lines. Results We screened ~15,000 EP lines and identified 72 Dcp-1-interacting genes that were classified into 10 groups based on their functions and pathways: 4 apoptosis signaling genes, 10 autophagy genes, 5 insulin/IGF and TOR signaling pathway genes, 6 MAP kinase and JNK signaling pathway genes, 4 ecdysone signaling genes, 6 ubiquitination genes, 11 various developmental signaling genes, 12 transcription factors, 3 translation factors, and 11 other unclassified genes including 5 functionally undefined genes. Among them, insulin/IGF and TOR signaling pathway, MAP kinase and JNK signaling pathway, and ecdysone signaling are known to be involved in autophagy. Together with the identification of autophagy genes, the results of our screen suggest that autophagy counteracts Dcp-1-induced apoptosis. Consistent with this idea, we show that expression of eGFP-Atg5 rescued the eye phenotype caused by Dcp-1 GF. Paradoxically, we found that over-expression of full-length Dcp-1 induced autophagy, as Atg8b-GFP, an indicator of autophagy, was increased in the eye imaginal discs and in the S2 cell line. Taken together, these data suggest that autophagy suppresses Dcp-1-mediated apoptotic cell death, whereas Dcp-1 positively regulates autophagy, possibly through feedback regulation. Conclusions We identified a number of Dcp-1 modifiers that genetically interact with Dcp-1-induced cell death. Our results showing that Dcp-1 and autophagy-related genes influence each other will aid future

  2. Characterization of an Autophagy-related Gene MdATG8i from apple

    Directory of Open Access Journals (Sweden)

    Ping eWang

    2016-05-01

    Full Text Available Nutrient deficiencies restrict apple (Malus sp. tree growth and productivity in Northwest China. The process of autophagy, a conserved degradation pathway in eukaryotic cells, has important roles in nutrient-recycling and helps improve plant performance during periods of nutrient-starvation. Little is known about the functioning of autophagy-related genes (ATGs in apple. In this study, one of the ATG8 gene family members MdATG8i was isolated from M. domestica. MdATG8i has conserved putative tubulin binding sites and ATG7 interaction domains. A 1865-bp promoter region cloned from apple genome DNA was predicated to have cis-regulatory elements responsive to light, environmental stresses and hormones. MdATG8i transcriptions were induced in response to leaf senescence, nitrogen depletion, and oxidative stress. At cellular level, MdATG8i protein was expressed in the nucleus and cytoplasm of onion epidermal cells. Yeast two-hybrid tests showed that MdATG8i could interact with MdATG7a and MdATG7b. In Arabidopsis, its heterologous expression was associated with enhanced vegetative growth, leaf senescence, and tolerance to nitrogen- and carbon-starvation. MdATG8i-overexpressing ‘Orin’ apple callus lines also displayed improved tolerance to nutrient-limited conditions. Our results demonstrate that MdATG8i protein could function in autophagy in a conserved way, as a positive regulator in the response to nutrient-starvation.

  3. Autophagy in Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Alexander J. S. Choi

    2011-01-01

    Full Text Available Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. During starvation, autophagy exerts a homeostatic function that promotes cell survival by recycling metabolic precursors. Additionally, autophagy can interact with other vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms, and thereby potentially influence disease pathogenesis. Macrophages deficient in autophagic proteins display enhanced caspase-1-dependent proinflammatory cytokine production and the activation of the inflammasome. Autophagy provides a functional role in infectious diseases and sepsis by promoting intracellular bacterial clearance. Mutations in autophagy-related genes, leading to loss of autophagic function, have been implicated in the pathogenesis of Crohn's disease. Furthermore, autophagy-dependent mechanisms have been proposed in the pathogenesis of several pulmonary diseases that involve inflammation, including cystic fibrosis and pulmonary hypertension. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases associated with inflammation.

  4. ISG20L1 is a p53 family target gene that modulates genotoxic stress-induced autophagy

    Directory of Open Access Journals (Sweden)

    Johnson Kimberly N

    2010-04-01

    Full Text Available Abstract Background Autophagy is characterized by the sequestration of cytoplasm and organelles into multimembrane vesicles and subsequent degradation by the cell's lysosomal system. It is linked to many physiological functions in human cells including stress response, protein degradation, organelle turnover, caspase-independent cell death and tumor suppression. Malignant transformation is frequently associated with deregulation of autophagy and several tumor suppressors can modulate autophagic processes. The tumor suppressor p53 can induce autophagy after metabolic or genotoxic stress through transcriptionally-dependent and -independent mechanisms. In this study we expand on the former mechanism by functionally characterizing a p53 family target gene, ISG20L1 under conditions of genotoxic stress. Results We identified a p53 target gene, ISG20L1, and show that transcription of the gene can be regulated by all three p53 family members (p53, p63, and p73. We generated an antibody to ISG20L1 and found that it localizes to the nucleolar and perinucleolar regions of the nucleus and its protein levels increase in a p53- and p73-dependent manner after various forms of genotoxic stress. When ectopically expressed in epithelial cancer-derived cell lines, ISG20L1 expression decreased clonogenic survival without a concomitant elevation in apoptosis and this effect was partially rescued in cells that were ATG5 deficient. Knockdown of ISG20L1 did not alter 5-FU induced apoptosis as assessed by PARP and caspase-3 cleavage, sub-G1 content, and DNA laddering. Thus, we investigated the role of ISG20L1 in autophagy, a process commonly associated with type II cell death, and found that ISG20L1 knockdown decreased levels of autophagic vacuoles and LC3-II after genotoxic stress as assessed by electron microscopy, biochemical, and immunohistochemical measurements of LC3-II. Conclusions Our identification of ISG20L1 as a p53 family target and discovery that modulation

  5. Autophagy Genes Enhance Murine Gammaherpesvirus 68 Reactivation from Latency by Preventing Virus-Induced Systemic Inflammation.

    Science.gov (United States)

    Park, Sunmin; Buck, Michael D; Desai, Chandni; Zhang, Xin; Loginicheva, Ekaterina; Martinez, Jennifer; Freeman, Michael L; Saitoh, Tatsuya; Akira, Shizuo; Guan, Jun-Lin; He, You-Wen; Blackman, Marcia A; Handley, Scott A; Levine, Beth; Green, Douglas R; Reese, Tiffany A; Artyomov, Maxim N; Virgin, Herbert W

    2016-01-13

    Host genes that regulate systemic inflammation upon chronic viral infection are incompletely understood. Murine gammaherpesvirus 68 (MHV68) infection is characterized by latency in macrophages, and reactivation is inhibited by interferon-γ (IFN-γ). Using a lysozyme-M-cre (LysMcre) expression system, we show that deletion of autophagy-related (Atg) genes Fip200, beclin 1, Atg14, Atg16l1, Atg7, Atg3, and Atg5, in the myeloid compartment, inhibited MHV68 reactivation in macrophages. Atg5 deficiency did not alter reactivation from B cells, and effects on reactivation from macrophages were not explained by alterations in productive viral replication or the establishment of latency. Rather, chronic MHV68 infection triggered increased systemic inflammation, increased T cell production of IFN-γ, and an IFN-γ-induced transcriptional signature in macrophages from Atg gene-deficient mice. The Atg5-related reactivation defect was partially reversed by neutralization of IFN-γ. Thus Atg genes in myeloid cells dampen virus-induced systemic inflammation, creating an environment that fosters efficient MHV68 reactivation from latency. PMID:26764599

  6. Autophagy in infection.

    Science.gov (United States)

    Deretic, Vojo

    2010-04-01

    Autophagy is a ubiquitous eukaryotic cytoplasmic quality and quantity control pathway. The role of autophagy in cytoplasmic homeostasis seamlessly extends to cell-autonomous defense against intracellular microbes. Recent studies also point to fully integrated, multitiered regulatory and effector connections between autophagy and nearly all facets of innate and adaptive immunity. Autophagy in the immune system as a whole confers measured immune responses; on the flip side, suppression of autophagy can lead to inflammation and tissue damage, as evidenced by Crohn's disease predisposition polymorphisms in autophagy basal apparatus (Atg16L) and regulatory (IRGM) genes. Polymorphisms in the IRGM gene in human populations have also been linked to predisposition to tuberculosis. There are several areas of most recent growth: first, links between autophagy regulators and infectious disease predisposition in human populations; second, demonstration of a role for autophagy in infection control in vivo in animal models; third, the definition of specific antiautophagic defenses in highly evolved pathogens; and fourth, recognition of connections between the ubiquitin system and autophagy of bacteria (and interestingly mitochondria, which are incidentally organelles of bacterial evolutionary origin) via a growing list of modifier and adapter proteins including p62/SQSTM1, NDP52, Atg32, Parkin, and Nix/BNIP3L. PMID:20116986

  7. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells.

    Science.gov (United States)

    Yu, Yang; Yu, Xiaofeng; Ma, Jianxia; Tong, Yili; Yao, Jianfeng

    2016-07-01

    The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway plays a significant role in colorectal adenocarcinoma. NVP-BEZ235 (dactolisib) is a novel dual inhibitor of PI3K/mTOR. The effects of NVP-BEZ235 in human colorectal adenocarcinoma are still unclear. In the present study, we aimed to explore the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. HT-29 human colorectal adenocarcinoma cells were treated with NVP-BEZ235 (0, 0.001, 0.01, 0.1, 1 and 3 µM) for 24 and 48 h, respectively. Cells were also treated with NVP-BEZ235 (0.1 µM), DDP (100, 300 and 1,000 µM), and NVP-BEZ235 (0.1 µM) combined with DDP (100, 300 and 1,000 µM) respectively, and cultured for 24 h after treatment. MTT assay was utilized to evaluate the effects of NVP-BEZ235 alone or NVP-BEZ235 combined with cis-diamminedichloroplatinum (DDP) on proliferation of HT-29 cells. Cell wound-scratch assay was used detect cell migration. In addition, expression of microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B and LC3B) in HT-29 cells was detected by immunofluorescence at 48 h after NVP-BEZ235 (1 µM) treatment. Expression of proteins involved in cell cycle and proliferation (p-Akt, p-mTOR and cyclin D1), apoptosis (cleaved caspase-3), and autophagy (cleaved LC3B and Beclin-1) were detected by western blot analysis. NVP-BEZ235 inhibited the proliferation and migration of HT-29 human colorectal adenocarcinoma cells. NVP-BEZ235 decreased protein expression of p-Akt, p-mTOR and cyclin D1, and increased protein expression of cleaved caspase-3, cleaved LC3B and Beclin-1 as the concentrations and the incubation time of NVP-BEZ235 increased. In addition, NVP-BEZ235 and DDP had synergic effects in inhibiting cell proliferation and migration. The expression of protein involved in apoptosis (cleaved caspase-3) was higher in drug combination group compared to the NVP-BEZ235 single treatment group. NVP-BEZ235

  8. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3.

    Science.gov (United States)

    Duan, Liang; Yi, Min; Chen, Juan; Li, Shengjin; Chen, Weixian

    2016-05-13

    Autophagy plays a crucial role in the progress of Mycobacterium tuberculosis (MTB) infection. Recently, MTB enhanced intracellular survival (EIS) protein was reported to be secreted from MTB cells and linked to the inhibition of autophagy and the intracellular persistence of the pathogen. Here, we investigated the mechanism of EIS-mediated inhibition of autophagy in a human phorbol myristate acetate (PMA)-treated THP-1 cell line as well as in murine macrophages. We confirmed that the presence of EIS led to the inhibition of rapamycin (Rapa)-induced autophagy, while IL-10 gene expression was increased and Akt/mTOR/p70S6K pathway was activated during the process. IL-10 gene silencing led to a significant recovery of EIS-mediated autophagy suppression and decreased activity of the Akt/mTOR/p70S6K pathway. IL-10 promoter activity was unaffected by EIS. Remarkably, EIS increased the acetylation level of histone H3 (Ac-H3), which binds to the SP1 and STAT3 region of the human IL-10 gene promoter sequence. Thus, EIS protein possibly increased IL-10 expression through the regulation of Ac-H3 of its promoter. Our data demonstrated that one possible mechanism of the MTB evasion of autophagy is that the EIS protein up-regulates IL-10 via Ac-H3 and thus activates Akt/mTOR/p70S6K pathway. PMID:27079235

  9. Identification of Autophagy in the Pine Wood Nematode Bursaphelenchus xylophilus and the Molecular Characterization and Functional Analysis of Two Novel Autophagy-Related Genes, BxATG1 and BxATG8

    Directory of Open Access Journals (Sweden)

    Li-Na Deng

    2016-03-01

    Full Text Available The pine wood nematode, Bursaphelenchus xylophilus, causes huge economic losses in pine forests, has a complex life cycle, and shows the remarkable ability to survive under unfavorable and changing environmental conditions. This ability may be related to autophagy, which is still poorly understood in B. xylophilus and no autophagy-related genes have been previously characterized. In this study, transmission electron microscopy was used to confirm that autophagy exists in B. xylophilus. The full-length cDNAs of BxATG1 and BxATG8 were first cloned from B. xylophilus, and BxATG1 and BxATG8 were characterized using bioinformatics methods. The expression pattern of the autophagy marker BxATG8 was investigated using in situ hybridization (ISH. BxATG8 was expressed in esophageal gland and hypodermal seam cells. We tested the effects of RNA interference (RNAi on BxATG1 and BxATG8. The results revealed that BxATG1 and BxATG8 were likely associated with propagation of nematodes on fungal mats. This study confirmed the molecular characterization and functions of BxATG1 and BxATG8 in B. xylophilus and provided fundamental information between autophagy and B. xylophilus.

  10. Animal genes identification and mTOR signaling reactivation in autophagy

    Institute of Scientific and Technical Information of China (English)

    Xuejun Jiang

    2010-01-01

    @@ Autophagy(self-eating)is a self-degradation process essential for survival,differentiation,development,and homeostasis.Conceiving that a process of cellular self-eating could be beneficial may appear bewildering.In its simplest form,however,autophagy is probably a single cell's adjustment to starvation; the cell is forced to break down part of its own reserves to keep alive until circumstances improve(Mizushima and Klionsky,2007).

  11. Autophagy studies in Bombyx mori

    Directory of Open Access Journals (Sweden)

    L Tian

    2015-03-01

    Full Text Available Autophagy, which is well conserved from yeast to mammals, plays essential roles in development and diseases. Using the domesticated silkworm, Bombyx mori, as a model insect, several reports on autophagy have been made recently. Autophagic features are observed in the midgut and fat body during the larval-pupal transition as well as the silk gland and ovarian nurse cells during the pupal stage. There are 14 autophagy related (Atg genes, including at least two transcript variants of Atg1, predicated in Bombyx. Expression of most Atg genes is consistent with the autophagy process in the fat body during the larval-pupal transition, and reduction of Atg1 expression by RNAi blocks this process. The molting hormone, 20-hydroxyecdysone (20E, and starvation induce autophagy in the fat body by upregulating Atg gene expression and blocking the PI3K-TORC1 pathway. Meanwhile, autophagy precedes apoptosis in the midgut and other larval tissues during the larval-pupal transition, while the detailed mechanism is not illustrated yet. We assume that there are at least four future directions about autophagy studies in Bombyx during the next years: (1 physiological functions of autophagy; (2 identification of new components involved in the autophagy process; (3 detailed molecular mechanism of autophagosome formation; (4 functional relationship between autophagy and apoptosis.

  12. In vivo effect of an antilipolytic drug (3,5'-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver

    International Nuclear Information System (INIS)

    Autophagy is an intracellular pathway induced by starvation, inhibited by nutrients, that is responsible for degradation of long-lived proteins and altered cell organelles. This process is involved in cell maintenance could be induced by antilipolytic drugs and may have anti-aging effects [A. Donati, The involvement of macroautophagy in aging and anti-aging interventions, Mol. Aspects Med. 27 (2006) 455-470]. We analyzed the effect of an intraperitoneal injection of an antilipolytic agent (3,5'-dimethylpyrazole, DMP, 12 mg/kg b.w.), that mimics nutrient shortage on autophagy and expression of autophagic genes in the liver of male 3-month-old Sprague-Dawley albino rats. Autophagy was evaluated by observing electron micrographs of the liver autophagosomal compartment and by monitoring protein degradation assessed by the release of valine into the bloodstream. LC3 gene expression, whose product is one of the best known markers of autophagy, was also monitored. As expected, DMP decreased the plasma levels of free fatty acids, glucose, and insulin and increased autophagic vacuoles and proteolysis. DMP treatment caused an increase in the expression of the LC3 gene although this occurred later than the induction of authophagic proteolysis caused by DMP. Glucose treatment rescued the effects caused by DMP on glucose and insulin plasma levels and negatively affected the rate of autophagic proteolysis, but did not suppress the positive regulatory effect on LC3 mRNA levels. In conclusion, antilipolytic drugs may induce both autophagic proteolysis and higher expression of an autophagy-related gene and the effect on autophagy gene expression might not be secondary to the stimulation of autophagic proteolysis

  13. Autophagy During Cardiac Stress: Joys and Frustrations of Autophagy

    Science.gov (United States)

    Gottlieb, Roberta A.; Mentzer, Robert M.

    2013-01-01

    The study of autophagy has been transformed by the cloning of most genes in the pathway and the introduction of GFP-LC3 as a reporter to allow visual assessment of autophagy. The field of cardiac biology is not alone in attempting to understand the implications of autophagy. The purpose of this review is to address some of the controversies and conundrums associated with the evolving studies of autophagy in the heart. Autophagy is a cellular process involving a complex orchestration of regulatory gene products as well as machinery for assembly, selective targeting, and degradation of autophagosomes and their contents. Our understanding of the role of autophagy in human disease is rapidly evolving as investigators examine the process in different tissues and different pathophysiological contexts. In the field of heart disease, autophagy has been examined in the settings of ischemia and reperfusion, preconditioning, cardiac hypertrophy, and heart failure. This review addresses the role of autophagy in cardioprotection, the balance of catabolism and anabolism, the concept of mitochondrial quality control, and the implications of impaired autophagic flux or frustrated autophagy. PMID:20148666

  14. Autophagy in plants and phytopathogens.

    Science.gov (United States)

    Yoshimoto, Kohki; Takano, Yoshitaka; Sakai, Yasuyoshi

    2010-04-01

    Plants and plant-associated microorganisms including phytopathogens have to adapt to drastic changes in environmental conditions. Because of their immobility, plants must cope with various types of environmental stresses such as starvation, oxidative stress, drought stress, and invasion by phytopathogens during their differentiation, development, and aging processes. Here we briefly describe the early studies of plant autophagy, summarize recent studies on the molecular functions of ATG genes, and speculate on the role of autophagy in plants and phytopathogens. Autophagy regulates senescence and pathogen-induced cell death in plants, and autophagy and pexophagy play critical roles in differentiation and the invasion of host cells by phytopathogenic fungi. PMID:20079356

  15. Upregulation of autophagy-related gene-5 (ATG-5 is associated with chemoresistance in human gastric cancer.

    Directory of Open Access Journals (Sweden)

    Jie Ge

    Full Text Available Autophagy-related gene-5 (ATG-5 is one of the key regulators of autophagic cell death. It has been widely regarded as a protective molecular mechanism for tumor cells during the course of chemotherapy. In the present study, we investigated the expression pattern of ATG-5 and multidrug resistance-associated protein-1 (MRP-1 in 135 gastric cancers (GC patients who were treated with epirubicin, cisplatin and 5-FU adjuvant chemotherapy (ECF following surgical resection and explored their potential clinical significance. We found that both ATG-5 (77.78% and MRP-1 (79.26% were highly expressed in GC patients. ATG-5 expression was significantly associated with depth of wall invasion, TNM stages and distant metastasis of GC (P<0.05, whereas MRP-1 expression was significantly linked with tumor size, depth of wall invasion, lymph node metastasis, TNM stages and differentiation status (P<0.05. ATG-5 expression was positively correlated with MRP-1 (rp = 0.616, P<0.01. Increased expression of ATG-5 and MPR-1 was significantly correlated with poor overall survival (OS; P<0.01 and disease free survival (DFS; P<0.01 of our GC cohort. Furthermore, we demonstrated that ATG-5 was involved in drug resistant of GC cells, which was mainly through regulating autophagy. Our data suggest that upregulated expression of ATG-5, an important molecular feature of protective autophagy, is associated with chemoresistance in GC. Expression of ATG-5 and MRP-1 may be independent prognostic markers for GC treatment.

  16. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway.

    Science.gov (United States)

    Bento, Carla F; Ashkenazi, Avraham; Jimenez-Sanchez, Maria; Rubinsztein, David C

    2016-01-01

    Forms of Parkinson's disease (PD) are associated with lysosomal and autophagic dysfunction. ATP13A2, which is mutated in some types of early-onset Parkinsonism, has been suggested as a regulator of the autophagy-lysosome pathway. However, little is known about the ATP13A2 effectors and how they regulate this pathway. Here we show that ATP13A2 depletion negatively regulates another PD-associated gene (SYT11) at both transcriptional and post-translational levels. Decreased SYT11 transcription is controlled by a mechanism dependent on MYCBP2-induced ubiquitination of TSC2, which leads to mTORC1 activation and decreased TFEB-mediated transcription of SYT11, while increased protein turnover is regulated by SYT11 ubiquitination and degradation. Both mechanisms account for a decrease in the levels of SYT11, which, in turn, induces lysosomal dysfunction and impaired degradation of autophagosomes. Thus, we propose that ATP13A2 and SYT11 form a new functional network in the regulation of the autophagy-lysosome pathway, which is likely to contribute to forms of PD-associated neurodegeneration. PMID:27278822

  17. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    2015-04-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136 in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

  18. Neuronal Autophagy and Neurodevelopmental Disorders

    OpenAIRE

    Lee, Kyung-Min; Hwang, Su-Kyung; Lee, Jin-A

    2013-01-01

    Neurodevelopmental disorders include a wide range of diseases such as autism spectrum disorders and mental retardation. Mutations in several genes that regulate neural development and synapse function have been identified in neurodevelopmental disorders. Interestingly, some affected genes and pathways in these diseases are associated with the autophagy pathway. Autophagy is a complex, bulky degradative process that involves the sequestration of cellular proteins, RNA, lipids, and cellular org...

  19. MOLECULAR CHARACTERIZATION OF AUTOPHAGY-RELATED GENE 5 FROM Spodoptera exigua AND EXPRESSION ANALYSIS UNDER VARIOUS STRESS CONDITIONS.

    Science.gov (United States)

    Liu, Kai-Yu; Xia, Yu-Qian; Zhou, Jing; Chen, Zu-Wen; Lu, Dandan; Zhang, Ning-Zhao; Liu, Xu-Sheng; Ai, Hui; Zhou, Li-Lin

    2016-08-01

    Autophagy is not only involved in development, but also has been proved to attend immune response against invading pathogens. Autophagy protein 5 (ATG5) is an important autophagic protein, which plays a crucial role in autophagosome elongation. Although ATG5 has been well studied in mammal, yeast, and Drosophila, little is known about ATG5 in lepidopteran insects. We cloned putative SeAtg5 gene from Spodoptera exigua larvae by the rapid amplification of cDNA ends method, and its characteristics and the influences of multiple exogenous factors on its expression levels were then investigated. The results showed that the putative S. exigua SeATG5 protein is highly homologous to other insect ATG5 proteins, which has a conserved Pfm domain and multiple phosphorylation sites. Next, fluorescence microscope observation showed that mCherry-SeATG5 was distributed in both nucleus and cytoplasm of Spodoptera litura Sl-HP cells and partially co-localized with BmATG6-GFP, but it almost has no significant co-localization with GFP-HaATG8. Then, the Western blot analysis demonstrated that GFP-SeATG5 conjugated with ATG12. Moreover, real-time PCR revealed that its expression levels significantly increased at the initiation of pupation and the stage of adult. In addition, the expression levels of SeAtg5 can be enhanced by the starvation, UV radiation, and infection of baculovirus and bacterium. However, the expression levels of SeAtg5 decreased at 24 h post treatments in all these treatments except in starvation. These results suggested that SeATG5 might be involved in response of S. exigua under various stress conditions. PMID:27226059

  20. Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor.

    Science.gov (United States)

    Tindwa, Hamisi; Jo, Yong Hun; Patnaik, Bharat Bhusan; Lee, Yong Seok; Kang, Sang Sun; Han, Yeon Soo

    2015-07-01

    Macroautophagy (hereinafter called autophagy) is a highly regulated process used by eukaryotic cells to digest portions of the cytoplasm that remodels and recycles nutrients and disposes of unwanted cytoplasmic constituents. Currently 36 autophagy-related genes (ATG) and their homologs have been characterized in yeast and higher eukaryotes, including insects. In the present study, we identified and functionally characterized the immune function of an ATG8 homolog in a coleopteran insect, Tenebrio molitor (TmATG8). The cDNA of TmATG8 comprises of an ORF of 363 bp that encodes a protein of 120 amino acid residues. TmATG8 transcripts are detected in all the developmental stages analyzed. TmAtg8 protein contains a highly conserved C-terminal glycine residue (Gly116) and shows high amino acid sequence identity (98%) to its Tribolium castaneum homolog, TcAtg8. Loss of function of TmATG8 by RNAi led to a significant increase in the mortality rates of T. molitor larvae against Listeria monocytogenes. Unlike dsEGFP-treated control larvae, TmATG8-silenced larvae failed to turn-on autophagy in hemocytes after injection with L. monocytogenes. These data suggest that TmATG8 play a role in mediating autophagy-based clearance of Listeria in T. molitor. PMID:25727880

  1. Molecular mechanism and regulation of autophagy

    Institute of Scientific and Technical Information of China (English)

    Ya-ping YANG; Zhong-qin LIANG; Zhen-lun GU; Zheng-hong QIN

    2005-01-01

    Autophagy is a major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles in eukaryotic cells. A large number of intracellular/extracellular stimuli, including amino acid starvation and invasion of microorganisms, are able to induce the autophagic response in cells. The discovery of the ATG genes in yeast has greatly advanced our understanding of the molecular mechanisms participating in autophagy and the genes involved in regulating the autophagic pathway. Many yeast genes have mammalian homologs,suggesting that the basic machinery for autophagy has been evolutionarily conserved along the eukaryotic phylum. The regulation of autophagy is a very complex process. Many signaling pathways, including target of rapamycin (TOR) or mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase-I (PI3K-I)/PKB, GTPases, calcium and protein synthesis all play important roles in regulating autophagy. The molecular mechanisms and regulation of autophagy are discussed in this review.

  2. Evaluation of the anti-inflammatory action of curcumin analog (DM1): Effect on iNOS and COX-2 gene expression and autophagy pathways.

    Science.gov (United States)

    Paulino, Niraldo; Paulino, Amarilis Scremin; Diniz, Susana N; de Mendonça, Sergio; Gonçalves, Ivair D; Faião Flores, Fernanda; Santos, Reginaldo Pereira; Rodrigues, Carina; Pardi, Paulo Celso; Quincoces Suarez, José Agustin

    2016-04-15

    This work describes the anti-inflammatory effect of the curcumin-analog compound, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate (DM1), and shows that DM1 modulates iNOS and COX-2 gene expression in cultured RAW 264.7 cells and induces autophagy on human melanoma cell line A375. PMID:27010501

  3. Inducing autophagy

    DEFF Research Database (Denmark)

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S.

    2014-01-01

    Autophagy is a lysosomal-mediated catabolic process, which through degradation of different cytoplasmic components aids in maintaining cellular homeostasis and survival during exposure to extra- or intracellular stresses. Ammonia is a potential toxic and stress-inducing byproduct of glutamine...... catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used...... as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites...

  4. Autophagy-related gene 5 and Wnt5 signaling pathway requires differentiation of embryonic stem cells into odontoblast-like cells.

    Science.gov (United States)

    Ozeki, Nobuaki; Mogi, Makio; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Matsumoto, Toru; Nakata, Kazuhiko

    2016-02-01

    We previously confirmed a unique and unanticipated role for an α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and matrix metalloproteinase (MMP)-3-mediated signaling cascade, in driving the odontoblast-like differentiation of mouse embryonic stem (ES) cells in a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). To explore the early signaling cascade for odontoblastic differentiation, we examined the upregulation of autophagy-related gene (Atg) and Wnt signaling by CS/BMP-4 mediated odontoblast differentiation. In a screening experiment, CS/BMP-4 increased the mRNA and protein levels of Atg5, Lrp5/Fzd9 (an Atg5 receptor), and Wnt5, but not microtubule-associated protein 1 light chain (LC3; a mammalian homolog of yeast Atg8), TFE3, Beclin1, and Atg12, together with the amount of autophagosomes and autophagy fluxes. Treatment with siRNAs against Atg5 and Wnt5 individually suppressed the CS/BMP-4-induced increase in odontoblast differentiation. The odontoblastic phenotype, involving dentin matrix protein-1 and dentin sialophosphoprotein expression, decreased when autophagy was inhibited by chloroquine, but increased after treatment with rapamycin (an autophagy enhancer). Taken together with our previous findings, we have revealed a unique sequential cascade involving Atg5, Wnt5a, α2 integrin, Emmprin, and MMP-3. This cascade results in a potent increase in odontoblastic cell differentiation, indicating the unique involvement of Atg5, autophagy and Wnt5 signaling in CS/BMP-4-induced differentiation of ES cells into odontoblast-like cells, at a relatively early stage. PMID:26806855

  5. Dysregulation of Autophagy, Mitophagy, and Apoptotic Genes in the Medial Temporal Lobe Cortex in an Ischemic Model of Alzheimer’s Disease

    Science.gov (United States)

    Ułamek-Kozioł, Marzena; Kocki, Janusz; Bogucka-Kocka, Anna; Petniak, Alicja; Gil-Kulik, Paulina; Januszewski, Sławomir; Bogucki, Jacek; Jabłoński, Mirosław; Furmaga-Jabłońska, Wanda; Brzozowska, Judyta; Czuczwar, Stanisław J.; Pluta, Ryszard

    2016-01-01

    Ischemic brain damage is a pathological incident that is often linked with medial temporal lobe cortex injury and finally its atrophy. Post-ischemic brain injury associates with poor prognosis since neurons of selectively vulnerable ischemic brain areas are disappearing by apoptotic program of neuronal death. Autophagy has been considered, after brain ischemia, as a guardian against neurodegeneration. Consequently, we have examined changes in autophagy (BECN 1), mitophagy (BNIP 3), and apoptotic (caspase 3) genes in the medial temporal lobe cortex with the use of quantitative reverse-transcriptase PCR following transient 10-min global brain ischemia in rats with survival 2, 7, and 30 days. The intense significant overexpression of BECN 1 gene was noted on the 2nd day, while on days 7–30 the expression of this gene was still upregulated. BNIP 3 gene was downregulated on the 2nd day, but on days 7–30 post-ischemia, there was a significant reverse tendency. Caspase 3 gene, associated with apoptotic neuronal death, was induced in the same way as BNIP 3 gene after brain ischemia. Thus, the demonstrated changes indicate that the considerable dysregulation of expression of BECN 1, BNIP 3, and caspase 3 genes may be connected with a response of neuronal cells in medial temporal lobe cortex to transient complete brain ischemia. PMID:27472881

  6. The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    DEFF Research Database (Denmark)

    Metzger, Silke; Walter, Carolin; Riess, Olaf;

    2013-01-01

    , we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second......The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently...... independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the "REGISTRY" cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a...

  7. Identification of Barley (Hordeum vulgare L. Autophagy Genes and Their Expression Levels during Leaf Senescence, Chronic Nitrogen Limitation and in Response to Dark Exposure

    Directory of Open Access Journals (Sweden)

    Liliana Avila-Ospina

    2016-02-01

    Full Text Available Barley is a cereal of primary importance for forage and human nutrition, and is a useful model for wheat. Autophagy genes first described in yeast have been subsequently isolated in mammals and Arabidopsis thaliana. In Arabidopsis and maize it was recently shown that autophagy machinery participates in nitrogen remobilization for grain filling. In rice, autophagy is also important for nitrogen recycling at the vegetative stage. In this study, HvATGs, HvNBR1 and HvATI1 sequences were identified from bacterial artificial chromosome (BAC, complementary DNA (cDNA and expressed sequence tag (EST libraries. The gene models were subsequently determined from alignments between genome and transcript sequences. Essential amino acids were identified from the protein sequences in order to estimate their functionality. A total of twenty-four barley HvATG genes, one HvNBR1 gene and one HvATI1 gene were identified. Except for HvATG5, all the genomic sequences found completely matched their cDNA sequences. The HvATG5 gene sequence presents a gap that cannot be sequenced due to its high GC content. The HvATG5 coding DNA sequence (CDS, when over-expressed in the Arabidopsis atg5 mutant, complemented the plant phenotype. The HvATG transcript levels were increased globally by leaf senescence, nitrogen starvation and dark-treatment. The induction of HvATG5 during senescence was mainly observed in the flag leaves, while it remained surprisingly stable in the seedling leaves, irrespective of the leaf age during stress treatment.

  8. Canine hereditary ataxia in old english sheepdogs and gordon setters is associated with a defect in the autophagy gene encoding RAB24.

    Directory of Open Access Journals (Sweden)

    Caryline Agler

    2014-02-01

    Full Text Available Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia.

  9. Modulating autophagy: a strategy for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jun-Lin Li; Shao-Liang Han; Xia Fan

    2011-01-01

    Autophagy is a process in which long-lived proteins,damaged cell organelles,and other cellular particles are sequestered and degraded.This process is important for maintaining the cellular microenvironment when the cell is under stress.Many studies have shown that autophagy plays a complex role in human diseases,especially in cancer,where it is known to have paradoxical effects.Namely,autophagy provides the energy for metabolism and tumor growth and leads to cell death that promotes tumor suppression.The link between autophagy and cancer is also evident in that some of the genes that regulate carcinogenesis,oncogenes and tumor suppressor genes,participate in or impact the autophagy process.Therefore,modulating autophagy will be a valuable topic for cancer therapy.Many studies have shown that autophagy can inhibit the tumor growth when autophagy modulators are combined with radiotherapy and/or chemotherapy.These findings suggest that autophagy may be a potent target for cancer therapy.

  10. FGF signalling regulates bone growth through autophagy.

    Science.gov (United States)

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes. PMID:26595272

  11. Folate deprivation modulates the expression of autophagy- and circadian-related genes in HT-22 hippocampal neuron cells through GR-mediated pathway.

    Science.gov (United States)

    Sun, Qinwei; Yang, Yang; Li, Xi; He, Bin; Jia, Yimin; Zhang, Nana; Zhao, Ruqian

    2016-08-01

    Folic acid (FA) is an extremely important nutrient for brain formation and development. FA deficiency is highly linked to brain degeneration and age-related diseases, which are also associated with autophagic activities and circadian rhythm in hippocampal neurons. However, little is known how autophagy- and circadian-related genes in hippocampal neurons are regulated under FA deficiency. Here, hippocampal neuroncells (HT-22) were employed to determine the effect of FA deprivation (FD) on the expression of relevant genes and to reveal the potential role of glucocorticoid receptor (GR). FD increased autophagic activities in HT-22 cells, associated with significantly (PChIP assay showed that FD promoted (Pnetwork in response to folate deficiency. PMID:27133904

  12. Tumor Suppression and Promotion by Autophagy

    Directory of Open Access Journals (Sweden)

    Yenniffer Ávalos

    2014-01-01

    Full Text Available Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  13. The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells.

    Science.gov (United States)

    Sahni, Sumit; Bae, Dong-Hun; Lane, Darius J R; Kovacevic, Zaklina; Kalinowski, Danuta S; Jansson, Patric J; Richardson, Des R

    2014-04-01

    N-myc downstream regulated gene 1 (NDRG1) is a potent metastasis suppressor with an undefined role in the stress response. Autophagy is a pro-survival pathway and can be regulated via the protein kinase-like endoplasmic reticulum kinase (PERK)/eIF2α-mediated endoplasmic reticulum (ER) stress pathway. Hence, we investigated the role of NDRG1 in stress-induced autophagy as a mechanism of inhibiting metastasis via the induction of apoptosis. As thiosemicarbazone chelators induce stress and up-regulate NDRG1 to inhibit metastasis, we studied their effects on the ER stress response and autophagy. This was important to assess, as little is understood regarding the role of the stress induced by iron depletion and its role in autophagy. We observed that the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), which forms redox-active iron and copper complexes, effectively induced ER stress as shown by activation of the PERK/eIF2α pathway. Dp44mT also increased the expression of the autophagic marker, LC3-II, and this was dependent on activation of the PERK/eIF2α axis, as silencing PERK prevented LC3-II accumulation. The effect of Dp44mT on LC3-II expression was at least partially due to iron-depletion, as this effect was also demonstrated with the classical iron chelator, desferrioxamine (DFO), and was not observed for the DFO-iron complex. NDRG1 overexpression also inhibited basal autophagic initiation and the ER stress-mediated autophagic pathway via suppression of the PERK/eIF2α axis. Moreover, NDRG1-mediated suppression of the pro-survival autophagic pathway probably plays a role in its anti-metastatic effects by inducing apoptosis. In fact, multiple pro-apoptotic markers were increased, whereas anti-apoptotic Bcl-2 was decreased upon NDRG1 overexpression. This study demonstrates the role of NDRG1 as an autophagic inhibitor that is important for understanding its mechanism of action. PMID:24532803

  14. Aggresome-autophagy involvement in a sarcopenic patient with rigid spine syndrome and a p.C150R mutation in FHL1 gene

    Directory of Open Access Journals (Sweden)

    Patrizia eSabatelli

    2014-08-01

    Full Text Available The four-and-half LIM domain protein 1 (FHL1 is highly expressed in skeletal and cardiac muscle. Mutations of the FHL1 gene have been associated with diverse chronic myopathies including reducing body myopathy (RBM, rigid spine syndrome, and Emery-Dreifuss muscular dystrophy. We investigated a family with a mutation (p.C150R in the second LIM domain of FHL1. In this family, a brother and a sister were affected by rigid spine syndrome, and their mother had a mild lower limbs weakness. The 34-year-old female had an early and progressive rigidity of the cervical spine and severe respiratory insufficiency. Muscle mass evaluated by DXA was markedly reduced, while fat mass was increased to 40%. CT scan showed an almost complete substitution of muscle by fibro-adipose tissue. Muscle biopsy showed accumulation of FHL1 throughout the cytoplasm and around myonuclei into multiproteic aggregates with aggresome/autophagy features as indicated by ubiquitin, p62 and LC3 labeling. DNA deposits, not associated with nuclear lamina components and histones, were also detected into the aggregates, suggesting nuclear degradation. Ultrastructural analysis showed the presence of dysmorphic nuclei, accumulation of tubulofilamentous and granular material and perinuclear accumulation of autophagic vacuoles. These data point to an involvement of the aggresome-autophagy pathway in the pathophysiological mechanism underlying the muscle pathology of FHL1 C150R mutation.

  15. Hypoxia, MTOR and autophagy

    OpenAIRE

    Blagosklonny, Mikhail V.

    2013-01-01

    Although hypoxia can cause cell cycle arrest, it may simultaneously suppress a conversion from this arrest to senescence. Furthermore, hypoxia can suppress senescence caused by diverse stimuli, maintaining reversible quiescence instead. Hypoxia activates autophagy and inhibits MTOR, thus also activating autophagy. What is the relationship between autophagy and cellular senescence? Also, can inhibition of MTOR and stimulation of autophagy explain the gerosuppressive effects of hypoxia?

  16. Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance

    OpenAIRE

    Troncoso, Rodrigo; Paredes, Felipe; Parra, Valentina; Gatica, Damián; Vásquez-Trincado, César; Quiroga, Clara; Bravo-Sagua, Roberto; López-Crisosto, Camila; Rodriguez, Andrea E; Oyarzún, Alejandra P; Kroemer, Guido; Lavandero, Sergio

    2014-01-01

    Glucocorticoids, such as dexamethasone, enhance protein breakdown via ubiquitin–proteasome system. However, the role of autophagy in organelle and protein turnover in the glucocorticoid-dependent atrophy program remains unknown. Here, we show that dexamethasone stimulates an early activation of autophagy in L6 myotubes depending on protein kinase, AMPK, and glucocorticoid receptor activity. Dexamethasone increases expression of several autophagy genes, including ATG5, LC3, BECN1, and SQSTM1 a...

  17. Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells

    OpenAIRE

    Quan, Wenying; Lim, Yu-Mi; Lee, Myung-Shik

    2012-01-01

    Type 2 diabetes mellitus is characterized by insulin resistance and failure of pancreatic β-cells producing insulin. Autophagy plays a crucial role in cellular homeostasis through degradation and recycling of organelles such as mitochondria or endoplasmic reticulum (ER). Here we discussed the role of β-cell autophagy in development of diabetes, based on our own studies using mice with β-cell-specific deletion of Atg7 (autophagy-related 7), an important autophagy gene, and studies by others. β...

  18. RUFY4: Immunity piggybacking on autophagy?

    Science.gov (United States)

    Terawaki, Seigo; Camosseto, Voahirana; Pierre, Philippe; Gatti, Evelina

    2016-03-01

    Although autophagy is a highly conserved mechanism among species and cell types, few are the molecules involved with the autophagic process that display cell- or tissue- specific expression. We have unraveled the positive regulatory role on autophagy of RUFY4 (RUN and FYVE domain containing 4), which is expressed in subsets of immune cells, including dendritic cells (DCs). DCs orchestrate the eradication of pathogens by coordinating the action of the different cell types involved in microbe recognition and destruction during the immune response. To fulfill this function, DC display particular regulation of their endocytic and autophagy pathways in response to the immune environment. Autophagy flux is downmodulated in DCs upon microbe sensing, but is remarkably augmented, when cells are differentiated in the presence of the pleiotropic cytokine IL4 (interleukin 4). From gene expression studies aimed at comparing the impact of IL4 on DC differentiation, we identified RUFY4, as a novel regulator that augments autophagy flux and, when overexpressed, induces drastic membrane redistribution and strongly tethers lysosomes. RUFY4 is therefore one of the few known positive regulators of autophagy that is expressed in a cell-specific manner or under specific immunological conditions associated with IL4 expression such as allergic asthma. PMID:26760128

  19. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses

    OpenAIRE

    Kenzelmann Broz, Daniela; Spano Mello, Stephano; Bieging, Kathryn T.; Jiang, Dadi; Rachel L Dusek; Brady, Colleen A.; Sidow, Arend; Attardi, Laura D.

    2013-01-01

    To gain new insights into p53 biology, Kenzelmann Broz et al. used high-throughput sequencing to analyze global p53 transcriptional networks in primary mouse embryo fibroblasts in response to DNA damage. This approach identified autophagy genes as direct p53 target genes. p53-induced autophagy was important for both p53-dependent apoptosis and transformation suppression by p53. These data highlight an intimate connection between p53 and autophagy and suggest that autophagy contributes to p53-...

  20. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy

    OpenAIRE

    Wang, Yu; Cai, Shuyu; Yin, Lingling; Kai SHI; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Zhou, Jie

    2015-01-01

    Autophagy plays critical roles in plant responses to stress. In contrast to the wealth of information concerning the core process of plant autophagosome assembly, our understanding of the regulation of autophagy is limited. In this study, we demonstrated that transcription factor HsfA1a played a critical role in tomato tolerance to drought stress, in part through its positive role in induction of autophagy under drought stress. HsfA1a expression was induced by drought stress. Virus-induced Hs...

  1. Selective Autophagy in Drosophila

    Directory of Open Access Journals (Sweden)

    Ioannis P. Nezis

    2012-01-01

    Full Text Available Autophagy is an evolutionarily conserved process of cellular self-eating and is a major pathway for degradation of cytoplasmic material by the lysosomal machinery. Autophagy functions as a cellular response in nutrient starvation, but it is also associated with the removal of protein aggregates and damaged organelles and therefore plays an important role in the quality control of proteins and organelles. Although it was initially believed that autophagy occurs randomly in the cell, during the last years, there is growing evidence that sequestration and degradation of cytoplasmic material by autophagy can be selective. Given the important role of autophagy and selective autophagy in several disease-related processes such as neurodegeneration, infections, and tumorigenesis, it is important to understand the molecular mechanisms of selective autophagy, especially at the organismal level. Drosophila is an excellent genetically modifiable model organism exhibiting high conservation in the autophagic machinery. However, the regulation and mechanisms of selective autophagy in Drosophila have been largely unexplored. In this paper, I will present an overview of the current knowledge about selective autophagy in Drosophila.

  2. The interplay between autophagy and ROS in tumorigenesis

    Directory of Open Access Journals (Sweden)

    VassilikiKarantza

    2012-11-01

    Full Text Available Reactive oxygen species (ROS at physiological levels are important cell signaling molecules. However, aberrantly high ROS are intimately associated with disease and commonly observed in cancer. Mitochondria are primary sources of intracellular ROS, and their maintenance is essential to cellular health. Autophagy, an evolutionarily conserved process whereby cytoplasmic components are delivered to lysosomes for degradation, is responsible for mitochondrial turnover and removal of damaged mitochondria. Impaired autophagy is implicated in many pathological conditions, including neurological disorders, inflammatory bowel disease, diabetes, aging and cancer. The first reports connecting autophagy to cancer showed that allelic loss of the essential autophagy gene BECLIN1 (BECN1 is prevalent in human breast, ovarian and prostate cancers and that Becn1+/- mice develop mammary gland hyperplasias, lymphomas, and lung and liver tumors. Subsequent studies demonstrated that Atg5-/- and Atg7-/- livers give rise to adenomas, Atg4-/- mice are susceptible to chemical carcinogenesis, and Bif1-/- mice are prone to spontaneous tumors, indicating that autophagy defects promote tumorigenesis. Due to defective mitophagy, autophagy-deficient cells accumulate damaged mitochondria and deregulated ROS levels, which likely contribute to their tumor-initiating capacity. However, the role of autophagy in tumorigenesis is complex, as more recent work also revealed tumor dependence on autophagy: autophagy-competent mutant-Ras-expressing cells form tumors more efficiently than their autophagy-deficient counterparts; similarly, FIP200 deficiency suppresses PyMT-driven mammary tumorigenesis. These latter findings are attributed to the fact that tumors driven by powerful oncogenes have high metabolic demands catered to by autophagy. In this review, we discuss the relationship between ROS and autophagy and summarize our current knowledge on their functional interactions in

  3. Chemical Inhibition of Autophagy

    DEFF Research Database (Denmark)

    Baek, Eric; Lin Kim, Che; Gyeom Kim, Mi;

    2016-01-01

    Chinese hamster ovary (CHO) cells activate and undergo apoptosis and autophagy for various environmental stresses. Unlike apoptosis, studies on increasing the production of therapeutic proteins in CHO cells by targeting the autophagy pathway are limited. In order to identify the effects of chemic...

  4. Autophagy and cancer

    Institute of Scientific and Technical Information of China (English)

    Si-Zhao; Lu; Duygu; Dee; Harrison-Findik

    2013-01-01

    Autophagy is a homeostatic and evolutionarily conserved mechanism of self-digestion by which the cells degrade and recycle long-lived proteins and excess or damaged organelles.Autophagy is activated in response to both physiological and pathological stimuli including growth factor depletion,energy deficiency or the upregulation of Bcl-2 protein expression.A novel role of autophagy in various cancers has been proposed.Interestingly,evidence that supports both a positive and negative role of autophagy in the pathogenesis of cancer has been reported.As a tumor suppression mechanism,autophagy maintains genome stability,induces senescence and possibly autophagic cell death.On the other hand,autophagy participates in tumor growth and maintenance by supplying metabolic substrate,limiting oxidative stress,and maintaining cancer stem cell population.It has been proposed that the differential roles of autophagy in cancer are disease type and stage specific.In addition,substrate selectivity might be involved in carrying out the specific effect of autophagy in cancer,and represents one of the potential directions for future studies.

  5. Targeting Autophagy Addiction in Cancer

    OpenAIRE

    Mancias, Joseph Douglas; Kimmelman, Alec C

    2011-01-01

    Autophagy inhibition is a novel cancer therapeutic strategy in the early stages of clinical trial testing. The initial rationale for using autophagy inhibition was generated by research revealing that autophagy is upregulated in response to external stresses, including chemotherapy and radiotherapy. Combining autophagy inhibition with agents that induce autophagy as a pro-survival response may therefore increase their therapeutic efficacy. Recent research has shown that some cancer cells, ...

  6. MicroRNA regulation of Autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Lund, Anders H

    2012-01-01

    progress has recently contributed to our understanding of the molecular mechanisms of the autophagy machinery, yet several gaps remain in our knowledge of this process. The discovery of microRNAs (miRNAs) established a new paradigm of post-transcriptional gene regulation and during the past decade these...

  7. Cellular and Molecular Connections between Autophagy and Inflammation

    Directory of Open Access Journals (Sweden)

    Pierre Lapaquette

    2015-01-01

    Full Text Available Autophagy is an intracellular catabolic pathway essential for the recycling of proteins and larger substrates such as aggregates, apoptotic corpses, or long-lived and superfluous organelles whose accumulation could be toxic for cells. Because of its unique feature to engulf part of cytoplasm in double-membrane cup-shaped structures, which further fuses with lysosomes, autophagy is also involved in the elimination of host cell invaders and takes an active part of the innate and adaptive immune response. Its pivotal role in maintenance of the inflammatory balance makes dysfunctions of the autophagy process having important pathological consequences. Indeed, defects in autophagy are associated with a wide range of human diseases including metabolic disorders (diabetes and obesity, inflammatory bowel disease (IBD, and cancer. In this review, we will focus on interrelations that exist between inflammation and autophagy. We will discuss in particular how mediators of inflammation can regulate autophagy activity and, conversely, how autophagy shapes the inflammatory response. Impact of genetic polymorphisms in autophagy-related gene on inflammatory bowel disease will be also discussed.

  8. Autophagy and Autoimmunity CrossTalks

    Directory of Open Access Journals (Sweden)

    Abhisek eBhattacharya

    2013-04-01

    Full Text Available Autophagy, initially viewed as a conserved bulk-degradation mechanism, has emerged as a central player in a multitude of immune functions. Autophagy is important in host defense against intracellular and extracellular pathogens, metabolic syndromes, immune cell homeostasis, antigen processing and presentation and maintenance of tolerance. The observation that the above processes are implicated in triggering or exacerbating autoimmunity raises the possibility that the autophagy pathway is involved in mediating autoimmune processes, either directly or as a consequence of innate or adaptive functions mediated by the pathway. Genome-wide association studies have shown association between single nucleotide polymorphisms (SNPs in autophagy related gene 5 (Atg5, and Atg16l1 with susceptibility to systemic lupus erythematous (SLE and Crohn’s disease, respectively. Enhanced expression of Atg5 was also reported in blood of mice with experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis (MS, and in T cells isolated from blood or brain tissues from patients with active relapse of MS. This review explores the roles of autophagy pathway in the innate and adaptive immune systems on regulating or mediating the onset, progression or exacerbation of autoimmune processes.

  9. Autophagy in protists.

    Science.gov (United States)

    Duszenko, Michael; Ginger, Michael L; Brennand, Ana; Gualdrón-López, Melisa; Colombo, María Isabel; Coombs, Graham H; Coppens, Isabelle; Jayabalasingham, Bamini; Langsley, Gordon; de Castro, Solange Lisboa; Menna-Barreto, Rubem; Mottram, Jeremy C; Navarro, Miguel; Rigden, Daniel J; Romano, Patricia S; Stoka, Veronika; Turk, Boris; Michels, Paul A M

    2011-02-01

    Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles, and defense against parasitic invaders. During the last 10-20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target. PMID:20962583

  10. Lithium and autophagy.

    Science.gov (United States)

    Motoi, Yumiko; Shimada, Kohei; Ishiguro, Koichi; Hattori, Nobutaka

    2014-06-18

    Lithium, a drug used to treat bipolar disorders, has a variety of neuroprotective mechanisms, including autophagy regulation, in various neuropsychiatric conditions. In neurodegenerative diseases, lithium enhances degradation of aggregate-prone proteins, including mutated huntingtin, phosphorylated tau, and α-synuclein, and causes damaged mitochondria to degrade, while in a mouse model of cerebral ischemia and Alzheimer's disease autophagy downregulation by lithium is observed. The signaling pathway of lithium as an autophagy enhancer might be associated with the mammalian target of rapamycin (mTOR)-independent pathway, which is involved in myo-inositol-1,4,5-trisphosphate (IP3) in Huntington's disease and Parkinson's disease. However, the mTOR-dependent pathway might be involved in inhibiting glycogen synthase kinase-3β (GSK3β) in other diseases. Lithium's autophagy-enhancing property may contribute to the therapeutic benefit of patients with neuropsychiatric disorders. PMID:24738557

  11. The Regulation of Autophagy by Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Rong Zhang

    2014-01-01

    Full Text Available Influenza A virus is a dreadful pathogen of animals and humans, causing widespread infection and severe morbidity and mortality. It is essential to characterize the influenza A virus-host interaction and develop efficient counter measures against the viral infection. Autophagy is known as a catabolic process for the recycling of the cytoplasmic macromolecules. Recently, it has been shown that autophagy is a critical mechanism underlying the interaction between influenza A virus and its host. Autophagy can be induced by the infection with influenza A virus, which is considered as a necessary process for the viral proliferation, including the accumulation of viral elements during the replication of influenza A virus. On the other hand, influenza A virus can inhibit the autophagic formation via interaction with the autophagy-related genes (Atg and signaling pathways. In addition, autophagy is involved in the influenza virus-regulated cell deaths, leading to significant changes in host apoptosis. Interestingly, the high pathogenic strains of influenza A virus, such as H5N1, stimulate autophagic cell death and appear to interplay with the autophagy in distinct ways as compared with low pathogenic strains. This review discusses the regulation of autophagy, an influenza A virus driven process.

  12. Piperlongumine induces autophagy by targeting p38 signaling.

    Science.gov (United States)

    Wang, Y; Wang, J-W; Xiao, X; Shan, Y; Xue, B; Jiang, G; He, Q; Chen, J; Xu, H-G; Zhao, R-X; Werle, K D; Cui, R; Liang, J; Li, Y-L; Xu, Z-X

    2013-01-01

    Piperlongumine (PL), a natural product isolated from the plant species Piper longum L., can selectively induce apoptotic cell death in cancer cells by targeting the stress response to reactive oxygen species (ROS). Here we show that PL induces cell death in the presence of benzyloxycarbonylvalyl-alanyl-aspartic acid (O-methyl)-fluoro-methylketone (zVAD-fmk), a pan-apoptotic inhibitor, and in the presence of necrostatin-1, a necrotic inhibitor. Instead PL-induced cell death can be suppressed by 3-methyladenine, an autophagy inhibitor, and substantially attenuated in cells lacking the autophagy-related 5 (Atg5) gene. We further show that PL enhances autophagy activity without blocking autophagy flux. Application of N-acetyl-cysteine, an antioxidant, markedly reduces PL-induced autophagy and cell death, suggesting an essential role for intracellular ROS in PL-induced autophagy. Furthermore, PL stimulates the activation of p38 protein kinase through ROS-induced stress response and p38 signaling is necessary for the action of PL as SB203580, a p38 inhibitor, or dominant-negative p38 can effectively reduce PL-mediated autophagy. Thus, we have characterized a new mechanism for PL-induced cell death through the ROS-p38 pathway. Our findings support the therapeutic potential of PL by triggering autophagic cell death. PMID:24091667

  13. Transcriptional regulation of mammalian autophagy at a glance.

    Science.gov (United States)

    Füllgrabe, Jens; Ghislat, Ghita; Cho, Dong-Hyung; Rubinsztein, David C

    2016-08-15

    Macroautophagy, hereafter referred to as autophagy, is a catabolic process that results in the lysosomal degradation of cytoplasmic contents ranging from abnormal proteins to damaged cell organelles. It is activated  under diverse conditions, including nutrient deprivation and hypoxia. During autophagy, members of the core autophagy-related (ATG) family of proteins mediate membrane rearrangements, which lead to the engulfment and degradation of cytoplasmic cargo. Recently, the nuclear regulation of autophagy, especially by transcription factors and histone modifiers, has gained increased attention. These factors are not only involved in rapid responses to autophagic stimuli, but also regulate the long-term outcome of autophagy. Now there are more than 20 transcription factors that have been shown to be linked to the autophagic process. However, their interplay and timing appear enigmatic as several have been individually shown to act as major regulators of autophagy. This Cell Science at a Glance article and the accompanying poster highlights the main cellular regulators of transcription involved in mammalian autophagy and their target genes. PMID:27528206

  14. The interplays between autophagy and apoptosis induced by enterovirus 71.

    Directory of Open Access Journals (Sweden)

    Xueyan Xi

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is the causative agent of human diseases with distinct severity, from mild hand, foot and mouth disease to severe neurological syndromes, such as encephalitis and meningitis. The lack of understanding of viral pathogenesis as well as lack of efficient vaccine and drugs against this virus impedes the control of EV71 infection. EV71 virus induces autophagy and apoptosis; however, the relationship between EV71-induced autophagy and apoptosis as well as the influence of autophagy and apoptosis on virus virulence remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, it was observed that the Anhui strain of EV71 induced autophagy and apoptosis in human rhabdomyosarcoma (RD-A cells. Additionally, by either applying chemical inhibitors or knocking down single essential autophagic or apoptotic genes, inhibition of EV71 induced autophagy inhibited the apoptosis both at the autophagosome formation stage and autophagy execution stage. However, inhibition of autophagy at the stage of autophagosome and lysosome fusion promoted apoptosis. In reverse, the inhibition of EV71-induced apoptosis contributed to the conversion of microtubule-associated protein 1 light chain 3-I (LC3-I to LC3-II and degradation of sequestosome 1 (SQSTM1/P62. Furthermore, the inhibition of autophagy in the autophagsome formation stage or apoptosis decreased the release of EV71 viral particles. CONCLUSIONS/SIGNIFICANCE: In conclusion, the results of this study not only revealed novel aspect of the interplay between autophagy and apoptosis in EV71 infection, but also provided a new insight to control EV71 infection.

  15. Avermectin induced autophagy in pigeon spleen tissues.

    Science.gov (United States)

    Liu, Ci; Zhao, Yanbing; Chen, Lijie; Zhang, Ziwei; Li, Ming; Li, Shu

    2015-12-01

    The level of autophagy is considered as an indicator for monitoring the toxic impact of pesticide exposure. Avermectin (AVM), a widely used insecticide, has immunotoxic effects on the pigeon spleen. The aim of this study was to investigate the status of autophagy and the expression levels of microtubule-associated protein1 light chain 3 (LC3), beclin-1, dynein, autophagy associated gene (Atg) 4B, Atg5, target of rapamycin complex 1 (TORC1) and target of rapamycin complex 2 (TORC2) in AVM-treated pigeon spleens. Eighty two-month-old pigeons were randomly divided into four groups: a control group, a low-dose group, a medium-dose group and a high-dose group, which were fed a basal diet spiked with 0, 20, 40 and 60 mg AVM/kg diet, respectively. Microscopic cellular morphology revealed a significant increase in autophagic structures in the AVM-treated groups. The expression of LC3, beclin-1, dynein, Atg4B and Atg5 increased, while mRNA levels of TORC1 and TORC2 were decreased in the AVM-treated groups relative to the control groups at 30, 60 and 90 days in the pigeon spleen. These results indicated that AVM exposure could up-regulate the level of autophagy in a dose-time-dependent manner in the pigeon spleen. PMID:26541719

  16. Receptor Proteins in Selective Autophagy

    Directory of Open Access Journals (Sweden)

    Christian Behrends

    2012-01-01

    Full Text Available Autophagy has long been thought to be an essential but unselective bulk degradation pathway. However, increasing evidence suggests selective autophagosomal turnover of a broad range of substrates. Bifunctional autophagy receptors play a key role in selective autophagy by tethering cargo to the site of autophagosomal engulfment. While the identity of molecular components involved in selective autophagy has been revealed at least to some extent, we are only beginning to understand how selectivity is achieved in this process. Here, we summarize the mechanistic and structural basis of receptor-mediated selective autophagy.

  17. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Orfali, Nina [Cork Cancer Research Center, University College Cork, Cork (Ireland); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); McKenna, Sharon L. [Cork Cancer Research Center, University College Cork, Cork (Ireland); Cahill, Mary R. [Department of Hematology, Cork University Hospital, Cork (Ireland); Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu [Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); Mongan, Nigel P., E-mail: nigel.mongan@nottingham.ac.uk [Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD (United Kingdom); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States)

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  18. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    International Nuclear Information System (INIS)

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects

  19. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    International Nuclear Information System (INIS)

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/β-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome–lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  20. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghao; Qin, Yixian; Zhou, Lei; Kou, Qiuwen; Guo, Xin; Ge, Xinna [Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing (China); Yang, Hanchun, E-mail: yanghanchun1@cau.edu.cn [Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing (China); Hu, Hongbo, E-mail: hongbo@cau.edu.cn [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing (China)

    2012-08-01

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/{beta}-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome-lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  1. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  2. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  3. Autophagy and ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Terrence M Donohue Jr

    2009-01-01

    The majority of ethanol metabolism occurs in the liver. Consequently, this organ sustains the greatest damage from ethanol abuse. Ethanol consumption disturbs the delicate balance of protein homeostasis in the liver, causing intracellular protein accumulation due to a disruption of hepatic protein catabolism.Evidence indicates that ethanol or its metabolism impairs trafficking events in the liver, including the process of macroautophagy, which is the engulfment and degradation of cytoplasmic constituents by the lysosomal system. Autophagy is an essential, ongoing cellular process that is highly regulated by nutrients,endocrine factors and signaling pathways. A great number of the genes and gene products that govern the autophagic response have been characterized and the major metabolic and signaling pathways that activate or suppress autophagy have been identified. This review describes the process of autophagy, its regulation and the possible mechanisms by which ethanol disrupts the process of autophagic degradation. The implications of autophagic suppression are discussed in relation to the pathogenesis of alcohol-induced liver injury.

  4. Autophagy in cardiovascular biology

    OpenAIRE

    Lavandero, Sergio; Chiong, Mario; Rothermel, Beverly A.; Hill, Joseph A.

    2015-01-01

    Cardiovascular disease is the leading cause of death worldwide. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been widely characterized in cardiomyocytes, cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, and macrophages. In all cases, a window of optimal autophagic activity appears to be critical to the mai...

  5. AUTOPHAGY IN LUNG CANCER

    OpenAIRE

    Jaboin, Jerry J.; Hwang, Misun; Lu, Bo

    2009-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. The relatively poor cure rate in lung cancer patients has been associated with a resistance to chemotherapy and radiation that is at least in part related to defects in cellular apoptotic machinery. Exploitation of another form of cell death, autophagy, has the capacity to improve the therapeutic gain of current therapies. In an effort to develop novel treatment strategies to enhance the therapeutic ratio for lung cancer, we...

  6. Autophagy in dementias.

    Science.gov (United States)

    Kragh, Christine Lund; Ubhi, Kiren; Wyss-Coray, Tony; Wyss-Corey, Tony; Masliah, Eliezer

    2012-01-01

    Dementias are a varied group of disorders typically associated with memory loss, impaired judgment and/or language and by symptoms affecting other cognitive and social abilities to a degree that interferes with daily functioning. Alzheimer's disease (AD) is the most common cause of a progressive dementia, followed by dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), (VaD) and HIV-associated neurocognitive disorders (HAND). The pathogenesis of this group of disorders has been linked to the abnormal accumulation of proteins in the brains of affected individuals, which in turn has been related to deficits in protein clearance. Autophagy is a key cellular protein clearance pathway with proteolytic cleavage and degradation via the ubiquitin-proteasome pathway representing another important clearance mechanism. Alterations in the levels of autophagy and the proteins associated with the autophagocytic pathway have been reported in various types of dementias. This review will examine recent literature across these disorders and highlight a common theme of altered autophagy across the spectrum of the dementias. PMID:22150925

  7. Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance

    Science.gov (United States)

    Troncoso, Rodrigo; Paredes, Felipe; Parra, Valentina; Gatica, Damián; Vásquez-Trincado, César; Quiroga, Clara; Bravo-Sagua, Roberto; López-Crisosto, Camila; Rodriguez, Andrea E; Oyarzún, Alejandra P; Kroemer, Guido; Lavandero, Sergio

    2014-01-01

    Glucocorticoids, such as dexamethasone, enhance protein breakdown via ubiquitin–proteasome system. However, the role of autophagy in organelle and protein turnover in the glucocorticoid-dependent atrophy program remains unknown. Here, we show that dexamethasone stimulates an early activation of autophagy in L6 myotubes depending on protein kinase, AMPK, and glucocorticoid receptor activity. Dexamethasone increases expression of several autophagy genes, including ATG5, LC3, BECN1, and SQSTM1 and triggers AMPK-dependent mitochondrial fragmentation associated with increased DNM1L protein levels. This process is required for mitophagy induced by dexamethasone. Inhibition of mitochondrial fragmentation by Mdivi-1 results in disrupted dexamethasone-induced autophagy/mitophagy. Furthermore, Mdivi-1 increases the expression of genes associated with the atrophy program, suggesting that mitophagy may serve as part of the quality control process in dexamethasone-treated L6 myotubes. Collectively, these data suggest a novel role for dexamethasone-induced autophagy/mitophagy in the regulation of the muscle atrophy program. PMID:24897381

  8. Regulation of Autophagy by Kinases

    International Nuclear Information System (INIS)

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  9. Structure biology of selective autophagy receptors

    Science.gov (United States)

    Kim, Byeong-Won; Kwon, Do Hoon; Song, Hyun Kyu

    2016-01-01

    Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy. [BMB Reports 2016; 49(2): 73-80] PMID:26698872

  10. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    International Nuclear Information System (INIS)

    Highlights: ► We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. ► Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. ► Autophagy was required for normal terminal differentiation of preputial gland cells. ► Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  11. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Sukseree, Supawadee [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Rossiter, Heidemarie; Mildner, Michael [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Pammer, Johannes [Institute of Clinical Pathology, Medical University of Vienna, Vienna (Austria); Buchberger, Maria; Gruber, Florian [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Watanapokasin, Ramida [Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Tschachler, Erwin [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Eckhart, Leopold, E-mail: leopold.eckhart@meduniwien.ac.at [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  12. Activation of antibacterial autophagy by NADPH oxidases

    OpenAIRE

    Huang, Ju; Canadien, Veronica; Lam, Grace Y.; Steinberg, Benjamin E.; Mary C. Dinauer; Magalhaes, Marco A. O.; Glogauer, Michael; Grinstein, Sergio; Brumell, John H.

    2009-01-01

    Autophagy plays an important role in immunity to microbial pathogens. The autophagy system can target bacteria in phagosomes, promoting phagosome maturation and preventing pathogen escape into the cytosol. Recently, Toll-like receptor (TLR) signaling from phagosomes was found to initiate their targeting by the autophagy system, but the mechanism by which TLR signaling activates autophagy is unclear. Here we show that autophagy targeting of phagosomes is not exclusive to those containing TLR l...

  13. Autophagy and neurodegenerative disorders

    Institute of Scientific and Technical Information of China (English)

    Evangelia Kesidou; Roza Lagoudaki; Olga Touloumi; Kyriaki-Nefeli Poulatsidou; Constantina Simeonidou

    2013-01-01

    Accumulation of aberrant proteins and inclusion bodies are hallmarks in most neurodegenerative diseases. Consequently, these aggregates within neurons lead to toxic effects, overproduction of reactive oxygen species and oxidative stress. Autophagy is a significant intracel ular mechanism that removes damaged organelles and misfolded proteins in order to maintain cel homeostasis. Excessive or insufficient autophagic activity in neurons leads to altered homeostasis and influences their survival rate, causing neurodegeneration. The review article provides an update of the role of autophagic process in representative chronic and acute neurodegenerative disorders.

  14. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang [East Hospital, Tongji University School of Medicine, Shanghai (China); Dong, Chuanming [East Hospital, Tongji University School of Medicine, Shanghai (China); Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong (China); Sun, Chenxi; Ma, Rongjie; Yang, Danjing [East Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Hongwen, E-mail: hongwen_zhu@hotmail.com [Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin (China); Xu, Jun, E-mail: xunymc2000@yahoo.com [East Hospital, Tongji University School of Medicine, Shanghai (China)

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  15. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    International Nuclear Information System (INIS)

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy

  16. You are what you eat: multifaceted functions of autophagy during C. elegans development.

    Science.gov (United States)

    Yang, Peiguo; Zhang, Hong

    2014-01-01

    Autophagy involves the sequestration of a portion of the cytosolic contents in an enclosed double-membrane autophagosomal structure and its subsequent delivery to lysosomes for degradation. Autophagy activity functions in multiple biological processes during Caenorhabditis elegans development. The basal level of autophagy in embryos removes aggregate-prone proteins, paternal mitochondria and spermatid-specific membranous organelles (MOs). Autophagy also contributes to the efficient removal of embryonic apoptotic cell corpses by promoting phagosome maturation. During larval development, autophagy modulates miRNA-mediated gene silencing by selectively degrading AIN-1, a component of miRNA-induced silencing complex, and thus participates in the specification of multiple cell fates controlled by miRNAs. During development of the hermaphrodite germline, autophagy acts coordinately with the core apoptotic machinery to execute genotoxic stress-induced germline cell death and also cell death when caspase activity is partially compromised. Autophagy is also involved in the utilization of lipid droplets in the aging process in adult animals. Studies in C. elegans provide valuable insights into the physiological functions of autophagy in the development of multicellular organisms. PMID:24296782

  17. Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy.

    Science.gov (United States)

    Dokladny, Karol; Zuhl, Micah Nathaniel; Mandell, Michael; Bhattacharya, Dhruva; Schneider, Suzanne; Deretic, Vojo; Moseley, Pope Lloyd

    2013-05-24

    The eukaryotic cell depends on multitiered homeostatic systems ensuring maintenance of proteostasis, organellar integrity, function and turnover, and overall cellular viability. At the two opposite ends of the homeostatic system spectrum are heat shock response and autophagy. Here, we tested whether there are interactions between these homeostatic systems, one universally operational in all prokaryotic and eukaryotic cells, and the other one (autophagy) is limited to eukaryotes. We found that heat shock response regulates autophagy. The interaction between the two systems was demonstrated by testing the role of HSF-1, the central regulator of heat shock gene expression. Knockdown of HSF-1 increased the LC3 lipidation associated with formation of autophagosomal organelles, whereas depletion of HSF-1 potentiated both starvation- and rapamycin-induced autophagy. HSP70 expression but not expression of its ATPase mutant inhibited starvation or rapamycin-induced autophagy. We also show that exercise induces autophagy in humans. As predicted by our in vitro studies, glutamine supplementation as a conditioning stimulus prior to exercise significantly increased HSP70 protein expression and prevented the expected exercise induction of autophagy. Our data demonstrate for the first time that heat shock response, from the top of its regulatory cascade (HSF-1) down to the execution stages delivered by HSP70, controls autophagy thus connecting and coordinating the two extreme ends of the homeostatic systems in the eukaryotic cell. PMID:23576438

  18. Autophagy precedes apoptosis during the remodeling of silkworm larval midgut.

    Science.gov (United States)

    Franzetti, Eleonora; Huang, Zhi-Jun; Shi, Yan-Xia; Xie, Kun; Deng, Xiao-Juan; Li, Jian-Ping; Li, Qing-Rong; Yang, Wan-Ying; Zeng, Wen-Nian; Casartelli, Morena; Deng, Hui-Min; Cappellozza, Silvia; Grimaldi, Annalisa; Xia, Qingyou; Feng, Qili; Cao, Yang; Tettamanti, Gianluca

    2012-03-01

    Although several features of apoptosis and autophagy have been reported in the larval organs of Lepidoptera during metamorphosis, solid experimental evidence for autophagy is still lacking. Moreover, the role of the two processes and the nature of their relationship are still cryptic. In this study, we perform a cellular, biochemical and molecular analysis of the degeneration process that occurs in the larval midgut of Bombyx mori during larval-adult transformation, with the aim to analyze autophagy and apoptosis in cells that die under physiological conditions. We demonstrate that larval midgut degradation is due to the concerted action of the two mechanisms, which occur at different times and have different functions. Autophagy is activated from the wandering stage and reaches a high level of activity during the spinning and prepupal stages, as demonstrated by specific autophagic markers. Our data show that the process of autophagy can recycle molecules from the degenerating cells and supply nutrients to the animal during the non-feeding period. Apoptosis intervenes later. In fact, although genes encoding caspases are transcribed at the end of the larval period, the activity of these proteases is not appreciable until the second day of spinning and apoptotic features are observable from prepupal phase. The abundance of apoptotic features during the pupal phase, when the majority of the cells die, indicates that apoptosis is actually responsible for cell death and for the disappearance of larval midgut cells. PMID:22127643

  19. Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment.

    Science.gov (United States)

    Rausch, Vanessa; Liu, Li; Apel, Anja; Rettig, Theresa; Gladkich, Jury; Labsch, Sabrina; Kallifatidis, Georgios; Kaczorowski, Adam; Groth, Ariane; Gross, Wolfgang; Gebhard, Martha M; Schemmer, Peter; Werner, Jens; Salnikov, Alexei V; Zentgraf, Hanswalter; Büchler, Markus W; Herr, Ingrid

    2012-07-01

    Involvement of dysregulated autophagy in cancer growth and progression has been shown in different tumour entities, including pancreatic ductal adenocarcinoma (PDA). PDA is an extremely aggressive tumour characterized by a small population of highly therapy-resistant cancer stem cells (CSCs) capable of self-renewal and migration. We examined whether autophagy might be involved in the survival of CSCs despite nutrition and oxygen deprivation typical for the hypoxic tumour microenvironment of PDA. Immunohistochemistry revealed that markers for hypoxia, CSCs and autophagy are co-expressed in patient-derived tissue of PDA. Hypoxia starvation (H/S) enhanced clonogenic survival and migration of established pancreatic cancer cells with stem-like properties (CSC(high)), while pancreatic tumour cells with fewer stem cell markers (CSC(low)) did not survive these conditions. Electron microscopy revealed more advanced autophagic vesicles in CSC(high) cells, which exhibited higher expression of autophagy-related genes under normoxic conditions and relative to CSC(low) cells, as found by RT-PCR and western blot analysis. LC3 was already fully converted to the active LC3-II form in both cell lines, as evaluated by western blot and detection of accumulated GFP-LC3 protein by fluorescence microscopy. H/S increased formation of autophagic and acid vesicles, as well as expression of autophagy-related genes, to a higher extent in CSC(high) cells. Modulation of autophagy by inhibitors and activators resensitized CSC(high) to apoptosis and diminished clonogenicity, spheroid formation, expression of CSC-related genes, migratory activity and tumourigenicity in mice. Our data suggest that enhanced autophagy levels may enable survival of CSC(high) cells under H/S. Interference with autophagy-activating or -inhibiting drugs disturbs the fine-tuned physiological balance of enhanced autophagy in CSC and switches survival signalling to suicide. PMID:22262369

  20. Induction of endoplasmic reticulum stress response by the indole-3-carbinol cyclic tetrameric derivative CTet in human breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Luca Galluzzi

    Full Text Available BACKGROUND: Indole-3-carbinol and its metabolic products are considered promising chemopreventive and anticancer agents. Previously we have shown that the indole-3-carbinol cyclic tetrameric derivative CTet induces autophagy and inhibits cell proliferation via inhibition of Akt activity and overexpression of p21/CDKN1A and GADD45A, in both estrogen receptor-positive (MCF-7 and triple negative (MDA-MB-231 breast cancer cell lines. In the present study, we further characterize the autophagic response and investigate the mechanism through which CTet regulates these events. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of gene expression microarray data and subsequent confirmation by quantitative real-time PCR, showed that CTet is able to induce up-regulation of key signaling molecules involved in endoplasmic reticulum (ER stress response (e.g. DDIT3/CHOP, CHAC1, ATF3, HSPA5/BiP/GRP78, CEBPB, ASNS and autophagy (e.g. MAP1LC3B, in both MCF-7 and MDA-MB-231 cell lines. Moreover, the monitoring of Xbp-1 splicing confirmed the activation of IRE1/Xbp-1 ER stress response branch after CTet treatment. The role of autophagic processes (known to be induced by ER stress was investigated further through ATG5 gene silencing and pharmacological inhibition of AVOs formation. CTet was shown to induce an autophagy-related cell death. Moreover, CTet-treated cells stained with Hoechst/PI revealed the presence of necrotic processes without evidence of apoptosis. CONCLUSIONS/SIGNIFICANCE: The ER stress response was identified as the main upstream molecular mechanism through which CTet acts in both hormone-responsive and triple-negative breast cancer cells. Because of its important role in cancer development, ER stress is a potential target in cancer therapy. The abiltiy of CTet to induce ER stress response and subsequently activate a death program in tumor cells confirms this molecule as a promising anticancer agent.

  1. Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes.

    Science.gov (United States)

    Zhang, Cheng-Feng; Gruber, Florian; Ni, Chunya; Mildner, Michael; Koenig, Ulrich; Karner, Susanne; Barresi, Caterina; Rossiter, Heidemarie; Narzt, Marie-Sophie; Nagelreiter, Ionela M; Larue, Lionel; Tobin, Desmond J; Eckhart, Leopold; Tschachler, Erwin

    2015-05-01

    Autophagy is the central cellular mechanism for delivering organelles and cytoplasm to lysosomes for degradation and recycling of their molecular components. To determine the contribution of autophagy to melanocyte (MC) biology, we inactivated the essential autophagy gene Atg7 specifically in MCs using the Cre-loxP system. This gene deletion efficiently suppressed a key step in autophagy, lipidation of microtubule-associated protein 1 light chain 3 beta (LC3), in MCs and induced slight hypopigmentation of the epidermis in mice. The melanin content of hair was decreased by 10-15% in mice with autophagy-deficient MC as compared with control animals. When cultured in vitro, MCs from mutant and control mice produced equal amounts of melanin per cell. However, Atg7-deficient MCs entered into premature growth arrest and accumulated reactive oxygen species (ROS) damage, ubiquitinated proteins, and the multi-functional adapter protein SQSTM1/p62. Moreover, nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent expression of NAD(P)H dehydrogenase, quinone 1, and glutathione S-transferase Mu 1 was increased, indicating a contribution of autophagy to redox homeostasis in MCs. In summary, the results of our study suggest that Atg7-dependent autophagy is dispensable for melanogenesis but necessary for achieving the full proliferative capacity of MCs. PMID:25290687

  2. EGFR-independent autophagy induction with gefitinib and enhancement of its cytotoxic effect by targeting autophagy with clarithromycin in non-small cell lung cancer cells.

    Science.gov (United States)

    Sugita, Shohei; Ito, Kentaro; Yamashiro, Yutaro; Moriya, Shota; Che, Xiao-Fang; Yokoyama, Tomohisa; Hiramoto, Masaki; Miyazawa, Keisuke

    2015-05-22

    Gefitinib (GEF), an inhibitor for EGFR tyrosine kinase, potently induces autophagy in non-small cell lung cancer (NSCLC) cell lines such as PC-9 cells expressing constitutively activated EGFR kinase by EGFR gene mutation as well as A549 and H226 cells with wild-type EGFR. Unexpectedly, GEF-induced autophagy was also observed in non-NSCLC cells such as murine embryonic fibroblasts (MEF) and leukemia cell lines K562 and HL-60 without EGFR expression. Knockout of EGFR gene in A549 cells by CRISPR/Cas9 system still exhibited autophagy induction after treatment with GEF, indicating that the autophagy induction by GEF is not mediated through inhibiting EGFR kinase activity. Combined treatment with GEF and clarithromycin (CAM), a macrolide antibiotic having the effect of inhibiting autophagy flux, enhances the cytotoxic effect in NSCLC cell lines, although treatment with CAM alone exhibits no cytotoxicity. GEF treatment induced up-regulation of endoplasmic reticulum (ER)-stress related genes such as CHOP/GADD153 and GRP78. Knockdown of CHOP in PC-9 cells and Chop-knockout MEF both exhibited less sensitivity to GEF than controls. Addition of CAM in culture medium resulted in further pronounced GEF-induced ER stress loading, while CAM alone exhibited no effect. These data suggest that GEF-induced autophagy functions as cytoprotective and indicates the potential therapeutic possibility of using CAM for GEF therapy. Furthermore, it is suggested that the intracellular signaling for autophagy initiation in response to GEF can be completely dissociated from EGFR, but unknown target molecule(s) of GEF for autophagy induction might exist. PMID:25858318

  3. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    International Nuclear Information System (INIS)

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation

  4. Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangling; Luo, Peihua; Wang, Jincheng; Dai, Jiabin; Yang, Xiaochun; Wu, Honghai; Yang, Bo, E-mail: yang924@zju.edu.cn; He, Qiaojun, E-mail: qiaojunhe@zju.edu.cn

    2014-01-15

    Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 and 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination. - Highlights: • Autophagy inhibition could be a potential for combretastatin A-4 antitumor efficacy. • The JNK-Bcl-2 pathway plays a critical role in CA-4-induced autophagy. • ABT-737 enhances CA-4 anticancer activity due to inhibition of autophagy.

  5. Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway

    International Nuclear Information System (INIS)

    Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 and 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination. - Highlights: • Autophagy inhibition could be a potential for combretastatin A-4 antitumor efficacy. • The JNK-Bcl-2 pathway plays a critical role in CA-4-induced autophagy. • ABT-737 enhances CA-4 anticancer activity due to inhibition of autophagy

  6. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua, E-mail: yujiahua@suda.edu.cn; Liu, Fenju, E-mail: fangsh@suda.edu.cn

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  7. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  8. Autophagy and intestinal homeostasis.

    Science.gov (United States)

    Patel, Khushbu K; Stappenbeck, Thaddeus S

    2013-01-01

    Nutrient absorption is the basic function that drives mammalian intestinal biology. To facilitate nutrient uptake, the host's epithelial barrier is composed of a single layer of cells. This constraint is problematic, as a design of this type can be easily disrupted. The solution during the course of evolution was to add numerous host defense mechanisms that can help prevent local and systemic infection. These mechanisms include specialized epithelial cells that produce a physiochemical barrier overlying the cellular barrier, robust and organized adaptive and innate immune cells, and the ability to mount an inflammatory response that is commensurate with a specific threat level. The autophagy pathway is a critical cellular process that strongly influences all these functions. Therefore, a fundamental understanding of the components of this pathway and their influence on inflammation, immunity, and barrier function will facilitate our understanding of homeostasis in the gastrointestinal tract. PMID:23216414

  9. Role and Regulation of Autophagy in Heat Stress Responses of Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jie eZhou

    2014-04-01

    Full Text Available As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7 or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates.

  10. Autophagy plays an essential role in cigarette smoke-induced expression of MUC5AC in airway epithelium.

    Science.gov (United States)

    Zhou, Jie-Sen; Zhao, Yun; Zhou, Hong-Bin; Wang, Yong; Wu, Yin-Fang; Li, Zhou-Yang; Xuan, Nan-Xia; Zhang, Chao; Hua, Wen; Ying, Song-Min; Li, Wen; Shen, Hua-Hao; Chen, Zhi-Hua

    2016-06-01

    Mucus hypersecretion is a common pathological feature of chronic airway inflammatory diseases including chronic obstructive pulmonary disease (COPD). However, the molecular basis for this condition remains incompletely understood. We have previously demonstrated a critical role of autophagy in COPD pathogenesis through mediating apoptosis of lung epithelial cells. In this study, we aimed to investigate the function of autophagy as well as its upstream and downstream signals in cigarette smoke-induced mucus production in human bronchial epithelial (HBE) cells and in mouse airways. Cigarette smoke extract (CSE), as well as the classical autophagy inducers starvation or Torin-1, significantly triggered MUC5AC expression, and inhibition of autophagy markedly attenuated CSE-induced mucus production. The CSE-induced autophagy was mediated by mitochondrial reactive oxygen species (mitoROS), which regulated mucin expression through the JNK and activator protein-1 pathway. Epidermal growth factor receptor (EGFR) was also required for CSE-induced MUC5AC in HBE cells, but it exerted inconsiderable effects on the autophagy-JNK signaling cascade. Airways of mice with dysfunctional autophagy-related genes displayed a markedly reduced number of goblet cells and attenuated levels of Muc5ac in response to cigarette smoke exposure. These results altogether suggest that mitoROS-dependent autophagy is essential for cigarette smoke-induced mucus hyperproduction in airway epithelial cells, and reemphasize autophagy inhibition as a novel therapeutic strategy for chronic airway diseases. PMID:27036871

  11. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure.

    Science.gov (United States)

    Corcelle-Termeau, Elisabeth; Vindeløv, Signe Diness; Hämälistö, Saara; Mograbi, Baharia; Keldsbo, Anne; Bräsen, Jan Hinrich; Favaro, Elena; Adam, Dieter; Szyniarowski, Piotr; Hofman, Paul; Krautwald, Stefan; Farkas, Thomas; Petersen, Nikolaj H T; Rohde, Mikkel; Linkermann, Andreas; Jäättelä, Marja

    2016-05-01

    Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by sphingomyelin accumulation and severely disturbed tissue homeostasis. Here, we report that sphingomyelin overload disturbs the maturation and closure of autophagic membranes. Niemann-Pick type A patient fibroblasts and SMPD1-depleted cancer cells accumulate elongated and unclosed autophagic membranes as well as abnormally swollen autophagosomes in the absence of normal autophagosomes and autolysosomes. The immature autophagic membranes are rich in WIPI2, ATG16L1 and MAP1LC3B but display reduced association with ATG9A. Contrary to its normal trafficking between plasma membrane, intracellular organelles and autophagic membranes, ATG9A concentrates in transferrin receptor-positive juxtanuclear recycling endosomes in SMPD1-deficient cells. Supporting a causative role for ATG9A mistrafficking in the autophagy defect observed in SMPD1-deficient cells, ectopic ATG9A effectively reverts this phenotype. Exogenous C12-sphingomyelin induces a similar juxtanuclear accumulation of ATG9A and subsequent defect in the maturation of autophagic membranes in healthy cells while the main sphingomyelin metabolite, ceramide, fails to revert the autophagy defective phenotype in SMPD1-deficient cells. Juxtanuclear accumulation of ATG9A and defective autophagy are also evident in tissues of smpd1-deficient mice with a subsequent inability to cope with kidney ischemia-reperfusion stress. These data reveal sphingomyelin as an important regulator of ATG9A trafficking and maturation of early autophagic membranes. PMID:27070082

  12. Autophagy and apoptosis: rivals or mates?

    Institute of Scientific and Technical Information of China (English)

    Yan Cheng; Jin-Ming Yang

    2013-01-01

    Autophagy,a cellular process of "self-eating" by which intracellular components are degraded within the lysosome,is an evolutionarily conserved response to various stresses.Autophagy is associated with numerous patho-physiological conditions,and dysregulation of autophagy contributes to the pathogenesis of a variety of human diseases including cancer.Depending on context,activation of autophagy may promote either cell survival or death,two major events that determine pathological process of many illnesses.Importantly,the activity of autophagy is often associated with apoptosis,another critical cellular process determining cellular fate.A better understanding of biology of autophagy and its implication in human health and disorder,as well as the relationship between autophagy and apoptosis,has the potential of facilitating the development of autophagy-based therapeutic interventions for human diseases such as cancer.

  13. Fluorescence microscopy: A tool to study autophagy

    Science.gov (United States)

    Rai, Shashank; Manjithaya, Ravi

    2015-08-01

    Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.

  14. Autophagy and apoptosis: rivals or mates?

    Directory of Open Access Journals (Sweden)

    Yan Cheng

    2013-03-01

    Full Text Available Autophagy, a cellular process of "self-eating" by which intracellular components are degraded within the lysosome, is an evolutionarily conserved response to various stresses. Autophagy is associated with numerous patho-physiological conditions, and dysregulation of autophagy contributes to the pathogenesis of a variety of human diseases including cancer. Depending on context, activation of autophagy may promote either cell survival or death, two major events that determine pathological process of many illnesses. Importantly, the activity of autophagy is often associated with apoptosis, another critical cellular process determining cellular fate. A better understanding of biology of autophagy and its implication in human health and disorder, as well as the relationship between autophagy and apoptosis, has the potential of facilitating the development of autophagy-based therapeutic interventions for human diseases such as cancer.

  15. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor

    OpenAIRE

    Torisu, Takehiro; Torisu, Kumiko; Lee, In Hye; Liu, Jie; Malide, Daniela; Combs, Christian A.; Wu, Xufeng S.; Rovira, Ilsa I.; Fergusson, Maria M; Weigert, Roberto; Connelly, Patricia S.; Daniels, Mathew P.; Komatsu, Masaaki; Cao, Liu; Finkel, Toren

    2013-01-01

    Endothelial secretion of von Willebrand factor (VWF) from intracellular organelles known as Weibel-Palade bodies (WPBs) is required for platelet adhesion to the injured vessel wall. Here, we demonstrate that WPBs are in some cases found near or within autophagosomes and that endothelial autophagosomes contain abundant VWF protein. Pharmacological inhibitors of autophagy, or knockdown of the essential autophagy genes Atg5 or Atg7, inhibits the in vitro secretion of VWF. Furthermore, while mice...

  16. STAT3-Mediated Autophagy Dependence Identifies Subtypes of Breast Cancer where Autophagy Inhibition can be Efficacious

    OpenAIRE

    Maycotte, Paola; Gearheart, Christy M.; Barnard, Rebecca; Aryal, Suraj; Mulcahy Levy, Jean M.; Fosmire, Susan P.; Hansen, Ryan J.; Morgan, Michael J.; Christopher C Porter; Gustafson, Daniel L.; Thorburn, Andrew

    2014-01-01

    Autophagy is a protein and organelle degradation pathway that is involved in diverse diseases including cancer. Recent evidence suggests that autophagy is a cell survival mechanism in tumor cells and that its inhibition especially in combination with other therapy could be beneficial but it remains unclear if all cancer cells behave the same way when autophagy is inhibited. We inhibited autophagy in a panel of breast cancer cell lines and found that some of them are dependent on autophagy for...

  17. Autophagy: for better or for worse

    OpenAIRE

    Wirawan, Ellen; Berghe, Tom Vanden; Lippens, Saskia; Agostinis, Patrizia; Vandenabeele, Peter

    2011-01-01

    Autophagy is a lysosomal degradation pathway that degrades damaged or superfluous cell components into basic biomolecules, which are then recycled back into the cytosol. In this respect, autophagy drives a flow of biomolecules in a continuous degradation-regeneration cycle. Autophagy is generally considered a pro-survival mechanism protecting cells under stress or poor nutrient conditions. Current research clearly shows that autophagy fulfills numerous functions in vital biological processes....

  18. Autophagy and mitophagy in cellular damage control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  19. Hepatic autophagy contributes to the metabolic response to dietary protein restriction.

    Science.gov (United States)

    Henagan, Tara M; Laeger, Thomas; Navard, Alexandra M; Albarado, Diana; Noland, Robert C; Stadler, Krisztian; Elks, Carrie M; Burk, David; Morrison, Christopher D

    2016-06-01

    Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction. PMID:27173459

  20. Autophagy in the Pathogenesis of Disease

    OpenAIRE

    Levine, Beth; Kroemer, Guido

    2008-01-01

    Autophagy is a lysosomal degradation pathway that is essential for survival, differentiation, development, and homeostasis. Autophagy principally serves an adaptive role to protect organisms against diverse pathologies, including infections, cancer, neurodegeneration, aging, and heart disease. However, in certain experimental disease settings, the self-cannibalistic or, paradoxically, even the prosurvival functions of autophagy may be deleterious. This Review summarizes recent advances in und...

  1. p53: The Janus of autophagy?

    OpenAIRE

    Levine, Beth; Abrams, John

    2008-01-01

    The autophagy pathway functions in adaptation to nutrient stress and tumour suppression. The p53 tumour suppressor, previously thought to positively regulate autophagy, may also inhibit it. This dual interplay between p53 and autophagy regulation is enigmatic, but may underlie key aspects of metabolism and cancer biology.

  2. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway

    Science.gov (United States)

    Yang, Xiao-Jun; Si, Ruo-Huang; Liang, Yu-He; Ma, Bing-Qiang; Jiang, Ze-Bin; Wang, Bin; Gao, Peng

    2016-01-01

    AIM: To determine if mir-30d inhibits the autophagy response to Helicobacter pylori (H. pylori) invasion and increases H. pylori intracellular survival. METHODS: The expression of mir-30d was detected by quantitative polymerase chain reaction (PCR), and autophagy level was examined by transmission electron microscopy, western blot, and GFP-LC3 puncta assay in human AGS cells and GES-1 cells. Luciferase reporter assay was applied to confirm the specificity of mir-30d regulation on the expression of several core molecules involved in autophagy pathway. The expression of multiple core proteins were analyzed at both the mRNA and protein level, and the intracellular survival of H. pylori after different treatments was detected by gentamicin protection assay. RESULTS: Autophagy level was increased in AGS and GES-1 cells in response to H. pylori infection, which was accompanied by upregulation of mir-30d expression (P pylori infection). In the two gastric epithelial cell lines, mimic mir-30d was found to repress the autophagy process, whereas mir-30d inhibitor increased autophagy response to H. pylori invasion. mir-30d mimic decreased the luciferase activity of wild type reporter plasmids carrying the 3′ untranslated region (UTR) of all five tested genes (ATG2B, ATG5, ATG12, BECN1, and BNIP3L), whereas it had no effect on the mutant reporter plasmids. These five genes are core genes of autophagy pathway, and their expression was reduced significantly after mir-30d mimic transfection (P pylori in AGS cells. CONCLUSION: Mir-30d increases intracellular survival of H. pylori in gastric epithelial cells through inhibition of multiple core proteins in the autophagy pathway. PMID:27099441

  3. DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy

    Directory of Open Access Journals (Sweden)

    Mengqiang Yu

    2014-10-01

    Full Text Available DNA damage-regulated autophagy modulator protein 1 (DRAM1, a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53 target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3 construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  4. p53 status determines the role of autophagy in pancreatic tumour development

    Science.gov (United States)

    Rosenfeldt, Mathias T.; O'Prey, Jim; Morton, Jennifer P.; Nixon, Colin; Mackay, Gillian; Mrowinska, Agata; Au, Amy; Rai, Taranjit Singh; Zheng, Liang; Ridgway, Rachel; Adams, Peter D.; Anderson, Kurt I.; Gottlieb, Eyal; Sansom, Owen J.; Ryan, Kevin M.

    2013-12-01

    Macroautophagy (hereafter referred to as autophagy) is a process in which organelles termed autophagosomes deliver cytoplasmic constituents to lysosomes for degradation. Autophagy has a major role in cellular homeostasis and has been implicated in various forms of human disease. The role of autophagy in cancer seems to be complex, with reports indicating both pro-tumorigenic and tumour-suppressive roles. Here we show, in a humanized genetically-modified mouse model of pancreatic ductal adenocarcinoma (PDAC), that autophagy's role in tumour development is intrinsically connected to the status of the tumour suppressor p53. Mice with pancreases containing an activated oncogenic allele of Kras (also called Ki-Ras)--the most common mutational event in PDAC--develop a small number of pre-cancerous lesions that stochastically develop into PDAC over time. However, mice also lacking the essential autophagy genes Atg5 or Atg7 accumulate low-grade, pre-malignant pancreatic intraepithelial neoplasia lesions, but progression to high-grade pancreatic intraepithelial neoplasias and PDAC is blocked. In marked contrast, in mice containing oncogenic Kras and lacking p53, loss of autophagy no longer blocks tumour progression, but actually accelerates tumour onset, with metabolic analysis revealing enhanced glucose uptake and enrichment of anabolic pathways, which can fuel tumour growth. These findings provide considerable insight into the role of autophagy in cancer and have important implications for autophagy inhibition in cancer therapy. In this regard, we also show that treatment of mice with the autophagy inhibitor hydroxychloroquine, which is currently being used in several clinical trials, significantly accelerates tumour formation in mice containing oncogenic Kras but lacking p53.

  5. Autophagy in 5-Fluorouracil Therapy in Gastrointestinal Cancer: Trends and Challenges

    Institute of Scientific and Technical Information of China (English)

    Jia-Cheng Tang; Yi-Li Feng; Xiao Liang; Xiu-Jun Cai

    2016-01-01

    Objective: 5-Fluorouracil (5-FU)-based combination therapies are standard treatments for gastrointestinal cancer, where the modulation of autophagy is becoming increasingly important in offering effective treatment for patients in clinical practice.This review focuses on the role of autophagy in 5-FU-induced tumor suppression and cancer therapy in the digestive system.Data Sources: All articles published in English from 1996 to date those assess the synergistic effect ofautophagy and 5-FU in gastrointestinal cancer therapy were identified through a systematic online search by use of PubMed.The search terms were "autophagy" and "5-FU" and ("colorectal cancer" or"hepatocellular carcinoma" or"pancreatic adenocarcinoma" or"esophageal cancer" or"gallbladder carcinoma" or "gastric cancer").Study Selection: Critical reviews on relevant aspects and original articles reporting in vitro and/or in vivo results regarding the efficiency ofautophagy and 5-FU in gastrointestinal cancer therapy were reviewed, analyzed, and summarized.The exclusion criteria for the articles were as follows: (1) new materials (e.g., nanomaterial)-induced autophagy;(2) clinical and experimental studies on diagnostic and/or prognostic biomarkers in digestive system cancers;and (3) immunogenic cell death for anticancer chemotherapy.Results: Most cell and animal experiments showed inhibition ofautophagy by either pharmacological approaches or via genetic silencing of autophagy regulatory gene, resulting in a promotion of 5-FU-induced cancer cells death.Meanwhile, autophagy also plays a pro-death role and may mediate cell death in certain cancer cells where apoptosis is defective or difficult to induce.The dual role of autophagy complicates the use of autophagy inhibitor or inducer in cancer chemotherapy and generates inconsistency to an extent in clinic trials.Conclusion: Autophagy might be a therapeutic target that sensitizes the 5-FU treatment in gastrointestinal cancer.

  6. Telemetric control of peripheral lipophagy by hypothalamic autophagy.

    Science.gov (United States)

    Martinez-Lopez, Nuria; Singh, Rajat

    2016-08-01

    Autophagy maintains cellular quality control by degrading organelles, and cytosolic proteins and their aggregates in lysosomes. Autophagy also degrades lipid droplets (LD) through a process termed lipophagy. During lipophagy, LD are sequestered within autophagosomes and degraded by lysosomal acid lipases to generate free fatty acids that are β-oxidized for energy. Lipophagy was discovered in hepatocytes, and since then has been shown to function in diverse cell types. Whether lipophagy degrades LD in the major fat storing cell-the adipocyte-remained unclear. We have found that blocking autophagy in brown adipose tissues (BAT) by deleting the autophagy gene Atg7 in BAT MYF5 (myogenic factor 5)-positive progenitors increases basal lipid content in BAT and decreases lipid utilization during cold exposure-indicating that lipophagy contributes to lipohomeostasis in the adipose tissue. Surprisingly, knocking out Atg7 in hypothalamic proopiomelanocortin (POMC) neurons also blocks lipophagy in BAT and liver suggesting that specific neurons within the central nervous system (CNS) exert telemetric control over lipophagy in BAT and liver. PMID:27341145

  7. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia.

    LENUS (Irish Health Repository)

    Orfali, Nina

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies.

  8. The cellular decision between apoptosis and autophagy

    Directory of Open Access Journals (Sweden)

    Yong-Jun Fan

    2013-03-01

    Full Text Available Apoptosis and autophagy are important molecular processes that maintain organismal and cellular homeostasis, respectively. While apoptosis fulfills its role through dismantling damaged or unwanted cells, autophagy maintains cellular homeostasis through recycling selective intracellular organelles and molecules. Yet in some conditions, autophagy can lead to cell death. Apoptosis and autophagy can be stimulated by the same stresses. Emerging evidence indicates an interplay between the core proteins in both pathways, which underlies the molecular mechanism of the crosstalk between apoptosis and autophagy. This review summarizes recent literature on molecules that regulate both the apoptotic and autophagic processes.

  9. Advances in Autophagy Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Laura E. Gallagher

    2016-05-01

    Full Text Available Autophagy plays a critical role in cell metabolism by degrading and recycling internal components when challenged with limited nutrients. This fundamental and conserved mechanism is based on a membrane trafficking pathway in which nascent autophagosomes engulf cytoplasmic cargo to form vesicles that transport their content to the lysosome for degradation. Based on this simple scheme, autophagy modulates cellular metabolism and cytoplasmic quality control to influence an unexpectedly wide range of normal mammalian physiology and pathophysiology. In this review, we summarise recent advancements in three broad areas of autophagy regulation. We discuss current models on how autophagosomes are initiated from endogenous membranes. We detail how the uncoordinated 51-like kinase (ULK complex becomes activated downstream of mechanistic target of rapamycin complex 1 (MTORC1. Finally, we summarise the upstream signalling mechanisms that can sense amino acid availability leading to activation of MTORC1.

  10. Advances in Autophagy Regulatory Mechanisms.

    Science.gov (United States)

    Gallagher, Laura E; Williamson, Leon E; Chan, Edmond Y W

    2016-01-01

    Autophagy plays a critical role in cell metabolism by degrading and recycling internal components when challenged with limited nutrients. This fundamental and conserved mechanism is based on a membrane trafficking pathway in which nascent autophagosomes engulf cytoplasmic cargo to form vesicles that transport their content to the lysosome for degradation. Based on this simple scheme, autophagy modulates cellular metabolism and cytoplasmic quality control to influence an unexpectedly wide range of normal mammalian physiology and pathophysiology. In this review, we summarise recent advancements in three broad areas of autophagy regulation. We discuss current models on how autophagosomes are initiated from endogenous membranes. We detail how the uncoordinated 51-like kinase (ULK) complex becomes activated downstream of mechanistic target of rapamycin complex 1 (MTORC1). Finally, we summarise the upstream signalling mechanisms that can sense amino acid availability leading to activation of MTORC1. PMID:27187479

  11. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hui [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Zhuo, Liling [College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160 (China); Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China)

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  12. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    International Nuclear Information System (INIS)

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival

  13. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    International Nuclear Information System (INIS)

    Research highlights: → We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. → Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. → This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  14. Transcription factors and cognate signalling cascades in the regulation of autophagy.

    Science.gov (United States)

    Chandra, Vemika; Bhagyaraj, Ella; Parkesh, Raman; Gupta, Pawan

    2016-05-01

    Autophagy is a process that maintains the equilibrium between biosynthesis and the recycling of cellular constituents; it is critical for avoiding the pathophysiology that results from imbalance in cellular homeostasis. Recent reports indicate the need for the design of high-throughput screening assays to identify targets and small molecules for autophagy modulation. For such screening, however, a better understanding of the regulation of autophagy is essential. In addition to regulation by various signalling cascades, regulation of gene expression by transcription factors is also critical. This review focuses on the various transcription factors as well as the corresponding signalling molecules that act together to translate the stimuli to effector molecules that up- or downregulate autophagy. This review rationalizes the importance of these transcription factors functioning in tandem with cognate signalling molecules and their interfaces as possible therapeutic targets for more specific pharmacological interventions. PMID:25651938

  15. Ribose 5-phosphate isomerase inhibits LC3 processing and basal autophagy.

    Science.gov (United States)

    Heintze, Jacob; Costa, Joana R; Weber, Melanie; Ketteler, Robin

    2016-09-01

    Autophagy and cellular metabolism are tightly linked processes, but how individual metabolic enzymes regulate the process of autophagy is not well understood. This study implicates ribose-5-phosphate isomerase (RPIA), a key regulator of the pentose phosphate pathway, in the control of autophagy. We used a dual gene deletion strategy, combining shRNA-mediated knockdown studies with CRISPR/Cas9 genome editing. Knockdown of RPIA by shRNA or genomic deletion by CRISPR/Cas9 genome editing, results in an increase of ATG4B-mediated LC3 processing and in the appearance of LC3-positive autophagosomes in cells. Increased LC3 processing upon knockdown of RPIA can be reversed by treatment with the antioxidant N-acetyl cysteine. The results are consistent with a model in which RPIA suppresses autophagy and LC3 processing by modulation of redox signaling. PMID:27328773

  16. Modulation of pathogen recognition by autophagy

    Directory of Open Access Journals (Sweden)

    Ji Eun eOh

    2012-03-01

    Full Text Available Autophagy is an ancient biological process for maintaining cellular homeostasis by degradation of long-lived cytosolic proteins and organelles. Recent studies demonstrated that autophagy is availed by immune cells to regulate innate immunity. On the one hand, cells exert direct effector function by degrading intracellular pathogens; on the other hand, autophagy modulates pathogen recognition and downstream signaling for innate immune responses. Pathogen recognition via pattern recognition receptors induces autophagy. The function of phagocytic cells is enhanced by recruitment of autophagy-related proteins. Moreover, autophagy acts as a delivery system for viral replication complexes to migrate to the endosomal compartments where virus sensing occurs. In another case, key molecules of the autophagic pathway have been found to negatively regulate immune signaling, thus preventing aberrant activation of cytokine production and consequent immune responses. In this review, we focus on the recent advances in the role of autophagy in pathogen recognition and modulation of innate immune responses.

  17. Historical landmarks of autophagy research

    OpenAIRE

    Ohsumi, Yoshinori

    2013-01-01

    The year of 2013 marked the 50th anniversary of C de Duve's coining of the term “autophagy” for the degradation process of cytoplasmic constituents in the lysosome/vacuole. This year we regretfully lost this great scientist, who contributed much during the early years of research to the field of autophagy. Soon after the discovery of lysosomes by de Duve, electron microscopy revealed autophagy as a means of delivering intracellular components to the lysosome. For a long time after the discove...

  18. Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein.

    LENUS (Irish Health Repository)

    Elzinga, Baukje M

    2013-06-01

    Chronic Myeloid Leukemia (CML) is a disease of hematopoietic stem cells which harbor the chimeric gene Bcr-Abl. Expression levels of this constitutively active tyrosine kinase are critical for response to tyrosine kinase inhibitor treatment and also disease progression, yet the regulation of protein stability is poorly understood. We have previously demonstrated that imatinib can induce autophagy in Bcr-Abl expressing cells. Autophagy has been associated with the clearance of large macromolecular signaling complexes and abnormal proteins, however, the contribution of autophagy to the turnover of Bcr-Abl protein in imatinib treated cells is unknown. In this study, we show that following imatinib treatment, Bcr-Abl is sequestered into vesicular structures that co-localize with the autophagy marker LC3 or GABARAP. This association is inhibited by siRNA mediated knockdown of autophagy regulators (Beclin 1\\/ATG7). Pharmacological inhibition of autophagy also reduced Bcr-Abl\\/LC3 co-localization in both K562 and CML patient cells. Bcr-Abl protein expression was reduced with imatinib treatment. Inhibition of both autophagy and proteasome activity in imatinib treated cells was required to restore Bcr-Abl protein levels to those of untreated cells. This ability to down-regulate Bcr-Abl protein levels through the induction of autophagy may be an additional and important feature of the activity of imatinib.

  19. miR-224-3p inhibits autophagy in cervical cancer cells by targeting FIP200.

    Science.gov (United States)

    Fang, Wang; Shu, Shan; Yongmei, Li; Endong, Zhu; Lirong, Yin; Bei, Sun

    2016-01-01

    Cervical cancer (CC) is a malignant solid tumor, which is one of the main causes of morbidity and mortality in women. Persistent High-risk human papillomavirus (hrHPV) infection is closely related to cervical cancer and autophagy has been suggested to inhibit viral infections. miRNAs have been reported to regulate autophagy in many solid tumors with many studies implicating miR-224-3p in the regulation of autophagy. In this study, we performed a miRNA microarray analysis on CC tissues and found that a large number of miRNAs with differential expressions in hrHPV-infected tissues. We identified miR-224-3p as a candidate miRNA selectively up regulated in HPV-infected tissues and cell lines. Further analysis revealed that miR-224-3p regulates autophagy in cervical cancer tissues and cell lines. While the overexpression of miR-224-3p inhibits autophagy in HPV-infected cells, knocking down endogenous miR-224-3p increases autophagy activity in the same cells. In addition, we found that miR-224-3p directly inhibits the expression of autophagy related gene, FAK family-interacting protein of 200 kDa (FIP200). In summary, we found that miR-224-3p regulates autophagy in hrHPV-induced cervical cancer cells through targeting FIP200 expression. PMID:27615604

  20. Noncoding RNA blockade of autophagy is therapeutic in medullary thyroid cancer

    International Nuclear Information System (INIS)

    Micro-RNAs are dysregulated in medullary thyroid carcinoma (MTC) and preliminary studies have shown that miRNAs may enact a therapeutic effect through changes in autophagic flux. Our aim was to study the in vitro effect of miR-9-3p on MTC cell viability, autophagy and to investigate the mRNA autophagy gene profile of sporadic versus hereditary MTC. The therapeutic role of miR-9-3p was investigated in vitro using human MTC cell lines (TT and MZ-CRC-1 cells), cell viability assays, and functional mechanism studies with a focus on cell cycle, apoptosis, and autophagy. Post-miR-9-3p transfection mRNA profiling of cell lines was performed using a customized, quantitative RT-PCR gene array card. This card was also run on clinical tumor samples (sporadic: n = 6; hereditary: n = 6) and correlated with clinical data. Mir-9-3p transfection resulted in reduced in vitro cell viability; an effect mediated through autophagy inhibition. This was accompanied by evidence of G2 arrest in the TT cell line and increased apoptosis in both cell lines. Atg5 was validated as a predicted miR-9-3p mRNA target in TT cells. Post-miR-9-3p transfection array studies showed a significant global decline in autophagy gene expression (most notably in PIK3C3, mTOR, and LAMP-1). Autophagy gene mRNAs were generally overexpressed in sporadic (vs. hereditary MTC) and Beclin-1 overexpression was shown to correlate with residual disease. Autophagy is a tumor cell survival mechanism in MTC that when disabled, is of therapeutic advantage. Beclin-1 expression may be a useful prognostic biomarker of aggressive disease

  1. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    Science.gov (United States)

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  2. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what is...

  3. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy.

    Science.gov (United States)

    Li, Mengtao; Lu, Guang; Hu, Jia; Shen, Xue; Ju, Jiabao; Gao, Yuanxu; Qu, Liujing; Xia, Yan; Chen, Yingyu; Bai, Yun

    2016-03-01

    Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation. PMID:26905199

  4. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy

    Directory of Open Access Journals (Sweden)

    Mengtao Li

    2016-03-01

    Full Text Available Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation.

  5. Mechanism of action of the tuberculosis and Crohn disease risk factor IRGM in autophagy.

    Science.gov (United States)

    Chauhan, Santosh; Mandell, Michael A; Deretic, Vojo

    2016-02-01

    Polymorphisms in the IRGM gene, associated with Crohn disease (CD) and tuberculosis, are among the earliest identified examples documenting the role of autophagy in human disease. Functional studies have shown that IRGM protects against these diseases by modulating autophagy, yet the exact molecular mechanism of IRGM's activity has remained unknown. We have recently elucidated IRGM's mechanism of action. IRGM functions as a platform for assembling, stabilizing, and activating the core autophagic machinery, while at the same time physically coupling it to conventional innate immunity receptors. Exposure to microbial products or bacterial invasion increases IRGM expression, which leads to stabilization of AMPK. Specific protein-protein interactions and post-translational modifications such as ubiquitination of IRGM, lead to a co-assembly with IRGM of the key autophagy regulators ULK1 and BECN1 in their activated forms. IRGM physically interacts with 2 other CD risk factors, ATG16L1 and NOD2, placing these 3 principal players in CD within the same molecular complex. This explains how polymorphisms altering expression or function of any of the 3 factors individually can affect the same process-autophagy. Furthermore, IRGM's interaction with NOD2, and additional pattern recognition receptors such as NOD1, RIG-I, and select TLRs, transduces microbial signals to the core autophagy apparatus. This work solves the long-standing enigma of how IRGM controls autophagy. PMID:26313894

  6. The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Carol Chen-Scarabelli; Richard Knight; Pratik R Agrawal; Louis Saravolatz; Cadigia Abuniat; Gabriele Scarabelli; Anastasis Stephanou; Leena Loomba; Jagat Narula; Tiziano M Scarabelli

    2014-01-01

    A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cyto-plasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated cata-bolic cellular‘housekeeping’ process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protec-tive mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the va-riability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic ma-nipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling.

  7. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Chen

    Full Text Available BACKGROUND: Chronic obstructive pulmonary disease (COPD is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear. METHODOLOGY AND PRINCIPAL FINDINGS: Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7. Cigarette smoke extract (CSE is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1 and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1(-/- mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema. CONCLUSIONS: We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

  8. The role of autophagy in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Yaru Dong; Xiaoheng Xu; Zhong Xu

    2012-01-01

    Although Parkinson's disease is the most common neurodegenerative movement disorder, the mechanisms of pathogenesis remain poorly understood. Recent findings have shown that deregulation of the autophagy-lysosome pathway is involved in the pathogenesis of Parkinson's disease. This review summarizes the most recent findings and discusses the unique role of the autophagy-lysosome pathway in Parkinson's disease to highlight the possibility of Parkinson's disease treatment strategies that incorporate autophagy-lysosome pathway modulation.

  9. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    OpenAIRE

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio; Hill, Joseph A.

    2014-01-01

    Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both tra...

  10. Autophagy and oxidative stress in cardiovascular diseases

    OpenAIRE

    Mei, Yu; Thompson, Melissa D.; Cohen, Richard A.; Tong, XiaoYong

    2014-01-01

    Autophagy is a highly conserved degradation process by which intracellular components, including soluble macromolecules (e.g. nucleic acids, proteins, carbohydrates, and lipids) and dysfunctional organelles (e.g. mitochondria, ribosomes, peroxisomes, and endoplasmic reticulum) are degraded by the lysosome. Autophagy is orchestrated by the autophagy related protein (Atg) composed protein complexes to form autophagosomes, which fuse with lysosomes to generate autolysosomes where the contents ar...

  11. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  12. Autophagy in muscle of glucose-infusion hyperglycemia rats and streptozotocin-induced hyperglycemia rats via selective activation of m-TOR or FoxO3.

    Directory of Open Access Journals (Sweden)

    Pengfei Lv

    Full Text Available Autophagy is a conserved process in eukaryotes required for metabolism and is involved in diverse diseases. To investigate autophagy in skeletal muscle under hyperglycemia status, we established two hyperglycemia-rat models that differ in their circulating insulin levels, by glucose infusion and singe high-dose streptozotocin injection. We then detected expression of autophagy related genes with real-time PCR and western blot. We found that under hyperglycemia status induced by glucose-infusion, autophagy was inhibited in rat skeletal muscle, whereas under streptozotocin-induced hyperglycemia status autophagy was enhanced. Meanwhile, hyperglycemic gastrocnemius muscle was more prone to autophagy than soleus muscle. Furthermore, inhibition of autophagy in skeletal muscle in glucose-infusion hyperglycemia rats was mediated by the m-TOR pathway while m-TOR and FoxO3 both contributed to enhancement of autophagy in gastrocnemius muscle in streptozotocin-induced hyperglycemia rats. These data shows that insulin plays a relatively more important role than hyperglycemia in regulating autophagy in hyperglycemia rat muscle through selectively activating the m-TOR or FoxO3 pathway in a fiber-selective manner.

  13. Autophagy in the thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model.

    Directory of Open Access Journals (Sweden)

    Supawadee Sukseree

    Full Text Available The thymic epithelium plays critical roles in the positive and negative selection of T cells. Recently, it was proposed that autophagy in thymic epithelial cells is essential for the induction of T cell tolerance to self antigens and thus for the prevention of autoimmune diseases. Here we have tested this hypothesis using mouse models in which autophagy was blocked specifically in epithelial cells expressing keratin 14 (K14, including the precursor of thymic epithelial cells. While the thymic epithelial cells of mice carrying the floxed Atg7 gene (ATG7 f/f showed a high level of autophagy, as determined by LC3 Western blot analysis and fluorescence detection of the recombinant green fluorescent protein (GFP-LC3 reporter protein on autophagosomes, autophagy in the thymic epithelium was efficiently suppressed by deletion of the Atg7 gene using the Cre-loxP system (ATG7 f/f K14-Cre. Suppression of autophagy led to the massive accumulation of p62/sequestosome 1 (SQSTM1 in thymic epithelial cells. However, the structure of the thymic epithelium as well as the organization and the size of the thymus were not altered in mutant mice. The ratio of CD4 to CD8-positive T cells, as well as the frequency of activated (CD69+ CD4 T cells in lymphoid organs, did not differ between mice with autophagy-competent and autophagy-deficient thymic epithelium. Inflammatory infiltrating cells, potentially indicative of autoimmune reactions, were present in the liver, lung, and colon of a similar fraction of ATG7 f/f and ATG7 f/f K14-Cre mice. In contrast to previously reported mice, that had received an autophagy-deficient thymus transplant, ATG7 f/f K14-Cre mice did not suffer from autoimmunity-induced weight loss. In summary, the results of this study suggest that autophagy in the thymic epithelium is dispensable for negative selection of autoreactive T cells.

  14. LAPping up dead cells to prevent lupus nephritis: a novel role for noncanonical autophagy in autoimmunity.

    Science.gov (United States)

    Leventhal, Jeremy S; Ross, Michael J

    2016-08-01

    The mechanisms underlying the development of systemic lupus erythematosus and lupus nephritis remain poorly understood. A recent study demonstrates that deficiencies in the immune system's ability to degrade scavenged dead cells via noncanonical autophagy is sufficient to break immune tolerance and produce features commonly seen in lupus, including circulating autoantibodies, inflammatory cytokines, and nephritis. This work provides a possible mechanism for the association of polymorphisms in autophagy genes with the risk of lupus. PMID:27418084

  15. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis

    OpenAIRE

    Hou, Ying-Chen Claire; Chittaranjan, Suganthi; Barbosa, Sharon González; McCall, Kimberly; Gorski, Sharon M.

    2008-01-01

    A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death–related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes—death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53—as well as Ras–Raf–mitogen activated protein kinase signaling pathway components had a r...

  16. Autophagy in response to photodynamic therapy: cell survival vs. cell death

    Science.gov (United States)

    Oleinick, Nancy L.; Xue, Liang-yan; Chiu, Song-mao; Joseph, Sheeba

    2009-02-01

    Autophagy (or more properly, macroautophagy) is a pathway whereby damaged organelles or other cell components are encased in a double membrane, the autophagosome, which fuses with lysosomes for digestion by lysosomal hydrolases. This process can promote cell survival by removing damaged organelles, but when damage is extensive, it can also be a mechanism of cell death. Similar to the Kessel and Agostinis laboratories, we have reported the vigorous induction of autophagy by PDT; this was found in human breast cancer MCF-7 cells whether or not they were able to efficiently induce apoptosis. One way to evaluate the role of autophagy in PDT-treated cells is to silence one of the essential genes in the pathway. Kessel and Reiners silenced the Atg7 gene of murine leukemia L1210 cells using inhibitory RNA and found sensitization to PDT-induced cell death at a low dose of PDT, implying that autophagy is protective when PDT damage is modest. We have examined the role of autophagy in an epithelium-derived cancer cell by comparing parental and Atg7-silenced MCF-7 cells to varying doses of PDT with the phthalocyanine photosensitizer Pc 4. In contrast to L1210 cells, autophagy-deficient MCF-7 cells were more resistant to the lethal effects of PDT, as judged by clonogenic assays. A possible explanation for the difference in outcome for L1210 vs. MCF-7 cells is the greatly reduced ability of the latter to undergo apoptosis, a deficiency that may convert autophagy into a cell-death process even at low PDT doses. Experiments to investigate the mechanism(s) responsible are in process.

  17. Coffee induces autophagy in vivo

    OpenAIRE

    Pietrocola, Federico; Malik, Shoaib Ahmad; Mariño, Guillermo; Vacchelli, Erika; Senovilla, Laura; Chaba, Kariman; Niso-Santano, Mireia; Maiuri, Maria Chiara; Madeo, Frank; Kroemer, Guido

    2014-01-01

    Epidemiological studies and clinical trials revealed that chronic consumption coffee is associated with the inhibition of several metabolic diseases as well as reduction in overall and cause-specific mortality. We show that both natural and decaffeinated brands of coffee similarly rapidly trigger autophagy in mice. One to 4 h after coffee consumption, we observed an increase in autophagic flux in all investigated organs (liver, muscle, heart) in vivo, as indicated by the increased lipidation ...

  18. Autophagy selectivity through receptor clustering

    Science.gov (United States)

    Rutenberg, Andrew; Brown, Aidan

    Substrate selectivity in autophagy requires an all-or-none cellular response. We focus on peroxisomes, for which autophagy receptor proteins NBR1 and p62 are well characterized. Using computational models, we explore the hypothesis that physical clustering of autophagy receptor proteins on the peroxisome surface provides an appropriate all-or-none response. We find that larger peroxisomes nucleate NBR1 clusters first, and lose them due to competitive coarsening last, resulting in significant size-selectivity. We then consider a secondary hypothesis that p62 inhibits NBR1 cluster formation. We find that p62 inhibition enhances size-selectivity enough that, even if there is no change of the pexophagy rate, the volume of remaining peroxisomes can significantly decrease. We find that enhanced ubiquitin levels suppress size-selectivity, and that this effect is more pronounced for individual peroxisomes. Sufficient ubiquitin allows receptor clusters to form on even the smallest peroxisomes. We conclude that NBR1 cluster formation provides a viable physical mechanism for all-or-none substrate selectivity in pexophagy. We predict that cluster formation is associated with significant size-selectivity. Now at Simon Fraser University.

  19. Autophagy and the (prorenin receptor

    Directory of Open Access Journals (Sweden)

    KatrinaJeanBinger

    2013-10-01

    Full Text Available The (prorenin receptor (PRR is a newly reported member of the renin-angiotensin system (RAS; a hormonal cascade responsible for regulating blood pressure. Originally, the identification of PRR was heralded as the next drug target of the RAS, of which such therapies would have increased benefits against target-organ damage and hypertension. However, in the years since its discovery several conditional knockout mouse models of PRR have demonstrated an essential role for this receptor unrelated to the renin-angiotensin system and blood pressure. Deletion of PRR in podocytes or cardiomyocytes resulted in the rapid onset of organ failure, eventuating in animal mortality after only a matter of weeks. In both cases, deletion of PRR resulted in the intracellular accumulation of autophagosomes and misfolded proteins, indicating a disturbance in autophagy. In light of the fact that the majority of PRR is located intracellularly, this molecular function appears to be more relevant than its ability to bind to high, non-physiological concentrations of (prorenin. This review will focus on the role of PRR in autophagy and its importance in maintaining cellular homeostasis. Understanding the link between PRR, autophagy and how its loss results in cell death will be essential for deciphering its role in physiology and pathology.

  20. Erythropoietin Modulates Autophagy Signaling in the Developing Rat Brain in an In Vivo Model of Oxygen-Toxicity

    Directory of Open Access Journals (Sweden)

    Marco Sifringer

    2012-10-01

    Full Text Available Autophagy is a self-degradative process that involves turnover and recycling of cytoplasmic components in healthy and diseased tissue. Autophagy has been shown to be protective at the early stages of programmed cell death but it can also promote apoptosis under certain conditions. Earlier we demonstrated that oxygen contributes to the pathogenesis of neonatal brain damage, which can be ameliorated by intervention with recombinant human erythropoietin (rhEpo. Extrinsic- and intrinsic apoptotic pathways are involved in oxygen induced neurotoxicity but the role of autophagy in this model is unclear. We analyzed the expression of autophagy activity markers in the immature rodent brain after exposure to elevated oxygen concentrations. We observed a hyperoxia-exposure dependent regulation of autophagy-related gene (Atg proteins Atg3, 5, 12, Beclin-1, microtubule-associated protein 1 light chain 3 (LC3, LC3A-II, and LC3B-II which are all key autophagy activity proteins. Interestingly, a single injection with rhEpo at the onset of hyperoxia counteracted these oxygen-mediated effects. Our results indicate that rhEpo generates its protective effect by modifying the key autophagy activity proteins.

  1. Detecting Autophagy in Caenorhabditis elegans Embryos Using Markers of P Granule Degradation.

    Science.gov (United States)

    Palmisano, Nicholas J; Meléndez, Alicia

    2016-01-01

    Autophagy plays an active role during the early stages of embryogenesis in the nematode Caenorhabditis elegans. Although their exact function is unknown, P granules are ribonucleoprotein particles that play a role in germ cell specification. The localization of P granules is restricted to the germline precursor cells in wild-type embryos, as a result of their degradation in the somatic cell lineage. Autophagy is known to be required for the degradation of P granules, as mutations in various autophagy genes, including those encoding the adaptor SEPA-1 and the p62-like adaptor SQST-1, result in the accumulation of the P granule components PGL-1 and PGL-3 (termed PGL granules) in the somatic cells of C. elegans embryos. In this protocol, we present a methodology for using fusion reporters of SEPA-1, SQST-1, and PGL-1 that have aided in the identification of new genes for normal autophagy activity by screening for mutant animals that lack the degradation of these autophagy substrates. PMID:26729906

  2. Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model

    Directory of Open Access Journals (Sweden)

    Ariadna Bargiela

    2015-07-01

    Full Text Available Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1 disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apoptosis and autophagy. Inhibition of apoptosis or autophagy mediated by the overexpression of DIAP1, mTOR (also known as Tor or muscleblind, or by RNA interference (RNAi-mediated silencing of autophagy regulatory genes, achieved a rescue of the muscle-loss phenotype. In fact, mTOR overexpression rescued muscle size to a size comparable to that in control flies. These results were validated in skeletal muscle biopsies from DM1 patients in which we found downregulated autophagy and apoptosis repressor genes, and also in DM1 myoblasts where we found increased autophagy. These findings provide new insights into the signaling pathways involved in DM1 disease pathogenesis.

  3. Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Rahul Navale

    Full Text Available Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8. To gain insights into autophagy in malaria parasites, we investigated Plasmodium falciparum Atg8 (PfAtg8 employing techniques and conditions that are routinely used to study autophagy. Atg8 was similarly expressed and showed punctate localization throughout the parasite in both asexual and sexual stages; it was exclusively found in the pellet fraction as an integral membrane protein, which is in contrast to the yeast or mammalian Atg8 that is distributed among cytosolic and membrane fractions, and suggests for a constitutive autophagy. Starvation, the best known autophagy inducer, decreased PfAtg8 level by almost 3-fold compared to the normally growing parasites. Neither the Atg8-associated puncta nor the Atg8 expression level was significantly altered by treatment of parasites with routinely used autophagy inhibitors (cysteine (E64 and aspartic (pepstatin protease inhibitors, the kinase inhibitor 3-methyladenine, and the lysosomotropic agent chloroquine, indicating an atypical feature of autophagy. Furthermore, prolonged inhibition of the major food vacuole protease activity by E64 and pepstatin did not cause accumulation of the Atg8-associated puncta in the food vacuole, suggesting that autophagy is primarily not meant for degradative function in malaria parasites. Atg8 showed partial colocalization with the apicoplast; doxycycline treatment, which disrupts apicoplast, did not affect Atg8 localization, suggesting a role, but not exclusive, in

  4. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells.

    Directory of Open Access Journals (Sweden)

    Pei-Ching Chang

    Full Text Available Prostate cancer (PCa cells undergoing neuroendocrine differentiation (NED are clinically relevant to the development of relapsed castration-resistant PCa. Increasing evidences show that autophagy involves in the development of neuroendocrine (NE tumors, including PCa. To clarify the effect of autophagy on NED, androgen-sensitive PCa LNCaP cells were examined. Treatment of LNCaP cells with IL-6 resulted in an induction of autophagy. In the absence of androgen, IL-6 caused an even stronger activation of autophagy. Similar result was identified in NED induction. Inhibition of autophagy with chloroquine (CQ markedly decreased NED. This observation was confirmed by beclin1 and Atg5 silencing experiments. Further supporting the role of autophagy in NED, we found that LC3 was up-regulated in PCa tissue that had relapsed after androgen-deprivation therapy when compared with their primary tumor counterpart. LC3 staining in relapsed PCa tissue showed punctate pattern similar to the staining of chromogranin A (CgA, a marker for NED cells. Moreover, autophagy inhibition induced the apoptosis of IL-6 induced NE differentiated PCa cells. Consistently, inhibition of autophagy by knockdown of beclin1 or Atg5 sensitized NE differentiated LNCaP cells to etoposide, a chemotherapy drug. To identify the mechanisms, phosphorylation of IL-6 downstream targets was analyzed. An increase in phospho-AMPK and a decrease in phospho-mTOR were found, which implies that IL-6 regulates autophagy through the AMPK/mTOR pathway. Most important to this study is the discovery of REST, a neuronal gene-specific transcriptional repressor that is involved in autophagy activation. REST was down-regulated in IL-6 treatment. Knockdown experiments suggest that REST is critical to NED and autophagy activation by IL-6. Together, our studies imply that autophagy is involved in PCa progression and plays a cytoprotective role when NED is induced in PCa cells by IL-6 treatment. These results

  5. Autophagy- An emerging target for melanoma therapy.

    Science.gov (United States)

    Ndoye, Abibatou; Weeraratna, Ashani T

    2016-01-01

    Melanoma accounts for only 5% of all cancers but is the leading cause of skin cancer death due to its high metastatic potential. Patients with metastatic melanoma have a 10-year survival rate of less than 10%. While the clinical landscape for melanoma is evolving rapidly, lack of response to therapies, as well as resistance to therapy remain critical obstacles for treatment of this disease. In recent years, a myriad of therapy resistance mechanisms have been unravelled, one of which is autophagy, the focus of this review. In advanced stages of malignancy, melanoma cells hijack the autophagy machinery in order to alleviate drug-induced and metabolic stress in the tumor microenvironment, thereby promoting resistance to multiple therapies, tumor cell survival, and progression.  Autophagy is an essential cellular process that maintains cellular homeostasis through the recycling of intracellular constituents. Early studies on the role of autophagy in cancer generated controversy as to whether autophagy was pro- or anti-tumorigenic. Currently, there is a consensus that autophagy is tumor-suppressive in the early stages of cancer and tumor-promoting in established tumors.  This review aims to highlight current understandings on the role of autophagy in melanoma malignancy, and specifically therapy resistance; as well as to evaluate recent strategies for therapeutic autophagy modulation. PMID:27583134

  6. Autophagy in allografts rejection: A new direction?

    Science.gov (United States)

    Sun, Hukui; Cheng, Dayan; Ma, Yuanyuan; Wang, Huaiquan; Liang, Ting; Hou, Guihua

    2016-03-18

    Despite the introduction of new and effective immunosuppressive drugs, acute cellular graft rejection is still a major risk for graft survival. Modulating the dosage of immunosuppressive drugs is not a good choice for all patients, new rejection mechanisms discovery are crucial to limit the inflammatory process and preserve the function of the transplant. Autophagy, a fundamental cellular process, can be detected in all subsets of lymphocytes and freshly isolated naive T lymphocytes. It is required for the homeostasis and function of T lymphocytes, which lead to cell survival or cell death depending on the context. T cell receptor (TCR) stimulation and costimulator signals induce strong autophagy, and autophagy deficient T cells leads to rampant apoptosis upon TCR stimulation. Autophagy has been proved to be activated during ischemia-reperfusion (I/R) injury and associated with grafts dysfunction. Furthermore, Autophagy has also emerged as a key mechanism in orchestrating innate and adaptive immune response to self-antigens, which relates with negative selection and Foxp3(+) Treg induction. Although, the role of autophagy in allograft rejection is unknown, current data suggest that autophagy indeed sweeps across both in the graft organs and recipients lymphocytes after transplantation. This review presents the rationale for the hypothesis that targeting the autophagy pathway could be beneficial in promoting graft survival after transplantation. PMID:26876576

  7. Lacritin and other autophagy associated proteins in ocular surface health.

    Science.gov (United States)

    Karnati, Roy; Talla, Venu; Peterson, Katherine; Laurie, Gordon W

    2016-03-01

    Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin. PMID:26318608

  8. Role of autophagy in the pathogenesis of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Lee, Jae Keun; Shin, Jin Hee; Lee, Ji Eun; Choi, Eui-Ju

    2015-11-01

    Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disease characterized by the selective degeneration of upper and lower motor neurons associated with the abnormal aggregation of ubiquitinated proteins. The molecular mechanisms underlying the pathogenesis of ALS remain unclear, however. Autophagy is a major pathway for the elimination of protein aggregates and damaged organelles and therefore contributes to cellular homeostasis. This catabolic process begins with the formation of the double membrane-bound autophagosome that engulfs portions of the cytoplasm and subsequently fuses with a lysosome to form an autolysosome, in which lysosomal enzymes digest autophagic substrates. Defects at various stages of autophagy have been associated with pathological mutations of several ALS-linked genes including SOD1, p62, TDP-43, and optineurin, suggesting that such defects may play a causative role in the pathogenesis of this condition. In this review, we summarize the dysregulation of autophagy associated with ALS as well as potential therapeutic strategies based on modulation of the autophagic process. PMID:26264610

  9. Mevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2015-07-01

    Full Text Available The mevalonate pathway, crucial for cholesterol synthesis, plays a key role in multiple cellular processes. Deregulation of this pathway is also correlated with diminished protein prenylation, an important post-translational modification necessary to localize certain proteins, such as small GTPases, to membranes. Mevalonate pathway blockade has been linked to mitochondrial dysfunction: especially involving lower mitochondrial membrane potential and increased release of pro-apoptotic factors in cytosol. Furthermore a severe reduction of protein prenylation has also been associated with defective autophagy, possibly causing inflammasome activation and subsequent cell death. So, it is tempting to hypothesize a mechanism in which defective autophagy fails to remove damaged mitochondria, resulting in increased cell death. This mechanism could play a significant role in Mevalonate Kinase Deficiency, an autoinflammatory disease characterized by a defect in Mevalonate Kinase, a key enzyme of the mevalonate pathway. Patients carrying mutations in the MVK gene, encoding this enzyme, show increased inflammation and lower protein prenylation levels. This review aims at analysing the correlation between mevalonate pathway defects, mitochondrial dysfunction and defective autophagy, as well as inflammation, using Mevalonate Kinase Deficiency as a model to clarify the current pathogenetic hypothesis as the basis of the disease.

  10. Di-retinoid-pyridinium-ethanolamine (A2E) Accumulation and the Maintenance of the Visual Cycle Are Independent of Atg7-mediated Autophagy in the Retinal Pigmented Epithelium.

    Science.gov (United States)

    Perusek, Lindsay; Sahu, Bhubanananda; Parmar, Tanu; Maeno, Hiroshi; Arai, Eisuke; Le, Yun-Zheng; Subauste, Carlos S; Chen, Yu; Palczewski, Krzysztof; Maeda, Akiko

    2015-11-27

    Autophagy is an evolutionarily conserved catabolic mechanism that relieves cellular stress by removing/recycling damaged organelles and debris through the action of lysosomes. Compromised autophagy has been implicated in many neurodegenerative diseases, including retinal degeneration. Here we examined retinal phenotypes resulting from RPE-specific deletion of the autophagy regulatory gene Atg7 by generating Atg7(flox/flox);VMD2-rtTA-cre+ mice to determine whether autophagy is essential for RPE functions including retinoid recycling. Atg7-deficient RPE displayed abnormal morphology with increased RPE thickness, cellular debris and vacuole formation indicating that autophagy is important in maintaining RPE homeostasis. In contrast, 11-cis-retinal content, ERGs and retinal histology were normal in mice with Atg7-deficient RPE in both fasted and fed states. Because A2E accumulation in the RPE is associated with pathogenesis of both Stargardt disease and age-related macular degeneration (AMD) in humans, deletion of Abca4 was introduced into Atg7(flox/flox);VMD2-rtTA-cre+ mice to investigate the role of autophagy during A2E accumulation. Comparable A2E concentrations were detected in the eyes of 6-month-old mice with and without Atg7 from both Abca4(-/-) and Abca4(+/+) backgrounds. To identify other autophagy-related molecules involved in A2E accumulation, we performed gene expression array analysis on A2E-treated human RPE cells and found up-regulation of four autophagy related genes; DRAM1, NPC1, CASP3, and EIF2AK3/PERK. These observations indicate that Atg7-mediated autophagy is dispensable for retinoid recycling and A2E deposition; however, autophagy plays a role in coping with stress caused by A2E accumulation. PMID:26468292

  11. Stress management by autophagy: Implications for chemoresistance.

    Science.gov (United States)

    Huang, Zhao; Zhou, Li; Chen, Zhibin; Nice, Edouard C; Huang, Canhua

    2016-07-01

    Development of chemoresistance, which limits the efficiency of anticancer agents, has long been a major problem in cancer therapy and urgently needs to be solved to improve clinical outcomes. Factors contributing to chemoresistance are various, but a key factor is the cell's capability for stress management. Autophagy, a favored survival strategy that organisms employ to get over many kinds of stress, is emerging as a crucial player in drug resistance. It has been shown that autophagy facilitates the resistance of tumor cells to anticancer agents, and abrogation of autophagy could be therapeutically beneficial in some cases, suggesting autophagy could be a promising target for cancer treatments. Thus, defining the roles of autophagy in chemoresistance, and the mechanisms involved, will be critical to enhance the efficiency of chemotherapy and develop novel anticancer strategy interventions. PMID:26757106

  12. Autophagy in the pathogenesis of ankylosing spondylitis.

    Science.gov (United States)

    Ciccia, Francesco; Haroon, Nigil

    2016-06-01

    The pathogenesis of ankylosing spondylitis (AS) is not well understood, and treatment options have met with limited success. Autophagy is a highly conserved mechanism of controlled digestion of damaged organelles within a cell. It helps in the maintenance of cellular homeostasis. The process of autophagy requires the formation of an isolation membrane. They form double-membraned vesicles called "autophagosomes" that engulf a portion of the cytoplasm. Beyond the role in maintenance of cellular homeostasis, autophagy has been demonstrated as one of the most remarkable tools employed by the host cellular defense against bacteria invasion. Autophagy also affects the immune system and thus is implicated in several rheumatic disease processes. In this article, we explore the potential role of autophagy in the pathogenesis of AS. PMID:27075464

  13. Autophagy and the immune function in aging.

    Science.gov (United States)

    Cuervo, Ana Maria; Macian, Fernando

    2014-08-01

    Just when you thought that you had heard it all about autophagy-the conserved cellular process that mediates turnover of cellular constituents in the lysosomes - studies keep coming out highlighting new types of autophagy, new functions for autophagy or even new autophagy-independent roles for the proteins associated with this process. The field of immunology has been riding the autophagic wave since the beginning of its revival; first due to its role in the host defense against pathogens, and more recently through the better understanding of the unique characteristics and functions of different autophagic pathways in immune cells. Here, we describe some of these new functions that are tightening the connection between autophagy and acquired or innate immunity and their malfunctioning with age. PMID:24929664

  14. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    Directory of Open Access Journals (Sweden)

    Cristina Cappelletti

    Full Text Available Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs. In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM, polymyositis (PM, dermatomyositis (DM and juvenile dermatomyositis (JDM. We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1. These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  15. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    International Nuclear Information System (INIS)

    Highlights: ► SIRT1 inactivation decreases autophagy in THP-1 cell. ► Inhibition of autophagy induces inflammation. ► SIRT1 inactivation induces inflammation through NF-κB activation. ► The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-κB activation. ► SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD+-dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 through nuclear factor (NF)-κB signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-κB activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-κB activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and is implicated in decreased 5′-AMP activated kinase (AMPK) activation, leading to the impairment of autophagy. The mTOR inhibitor, rapamycin, abolishes

  16. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Koya, Daisuke, E-mail: koya0516@kanazawa-med.ac.jp [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and

  17. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury.

    Science.gov (United States)

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury. PMID:26103523

  18. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sobhakumari, Arya [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Schickling, Brandon M. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Love-Homan, Laurie; Raeburn, Ayanna [Department of Pathology, The University of Iowa, Iowa City, IA (United States); Fletcher, Elise V.M. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Case, Adam J. [Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Domann, Frederick E. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); Miller, Francis J. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); and others

    2013-11-01

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy.

  19. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    International Nuclear Information System (INIS)

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy

  20. The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum

    Science.gov (United States)

    Cervantes, Serena; Bunnik, Evelien M; Saraf, Anita; Conner, Christopher M; Escalante, Aster; Sardiu, Mihaela E; Ponts, Nadia; Prudhomme, Jacques; Florens, Laurence; Le Roch, Karine G

    2014-01-01

    Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies. PMID:24275162

  1. Inhibition of mTOR-dependent autophagy sensitizes leukemic cells to cytarabine-induced apoptotic death.

    Directory of Open Access Journals (Sweden)

    Mihajlo Bosnjak

    Full Text Available The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4 and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR, and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.

  2. Autophagy deficiency in myeloid cells increases susceptibility to obesity-induced diabetes and experimental colitis.

    Science.gov (United States)

    Lee, Hae-Youn; Kim, Jinyoung; Quan, Wenying; Lee, June-Chul; Kim, Min-Soo; Kim, Seok-Hyung; Bae, Jin-Woo; Hur, Kyu Yeon; Lee, Myung-Shik

    2016-08-01

    Autophagy, which is critical for the proper turnover of organelles such as endoplasmic reticulum and mitochondria, affects diverse aspects of metabolism, and its dysregulation has been incriminated in various metabolic disorders. However, the role of autophagy of myeloid cells in adipose tissue inflammation and type 2 diabetes has not been addressed. We produced mice with myeloid cell-specific deletion of Atg7 (autophagy-related 7), an essential autophagy gene (Atg7 conditional knockout [cKO] mice). While Atg7 cKO mice were metabolically indistinguishable from control mice, they developed diabetes when bred to ob/w mice (Atg7 cKO-ob/ob mice), accompanied by increases in the crown-like structure, inflammatory cytokine expression and inflammasome activation in adipose tissue. Mφs (macrophages) from Atg7 cKO mice showed significantly higher interleukin 1 β release and inflammasome activation in response to a palmitic acid plus lipopolysaccharide combination. Moreover, a decrease in the NAD(+):NADH ratio and increase in intracellular ROS content after treatment with palmitic acid in combination with lipopolysaccharide were more pronounced in Mφs from Atg7 cKO mice, suggesting that mitochondrial dysfunction in autophagy-deficient Mφs leads to an increase in lipid-induced inflammasome and metabolic deterioration in Atg7 cKO-ob/ob mice. Atg7 cKO mice were more susceptible to experimental colitis, accompanied by increased colonic cytokine expression, T helper 1 skewing and systemic bacterial invasion. These results suggest that autophagy of Mφs is important for the control of inflammasome activation in response to metabolic or extrinsic stress, and autophagy deficiency in Mφs may contribute to the progression of metabolic syndrome associated with lipid injury and colitis. PMID:27337687

  3. The role of autophagy in sensitizing malignant glioma cells to radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wenzhuo Zhuang; Zhenghong Qin; Zhongqin Liang

    2009-01-01

    Malignant gliomas representthe majority of primary brain tumors.The current standard treatments for malignant gliomas include surgical resection,radiation therapy,and chemotherapy.Radiotherapy,a standard adjuvant therapy,confers some survival advantages,but resistance of the glioma cells to the efficacy of radiation limits the success of the treatment.The mechanisms underlying glioma cell radioresistance have remained elusive.Autophagy is a protein degradation system characterized by a prominent formation of double-membrane vesicles in the cytoplasm.Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy.Also,autophagy is a novel response of glioma cells to ionizing radiation.Autophagic cell death is considered programmed cell death type Ⅱ,whereas apoptosis is programmed cell death type Ⅰ.These two types of cell death are predominantly distinctive,but many studies demonstrate a cross-talk between them.Whether autophagy in cancer cells causes death or protects cells is controversial.The regulatory pathways of autophagy share several molecules.P13K/Akt/Mtor,DNA-PK,tumor suppressor genes, mitochondrial damage,and lysosome may play important roles in radiation-induced autophagy in glioma cells.Recently,a highly tumorigenic glioma tumor subpopulation,termed cancer stem cell or tumor-initiating cell,has been shown to promote therapeutic resistance.This review summarizes the main mediators associated with radiation-induced autophagy in malignant glioma cells and discusses the implications of the cancer stem cell hypothesis for the development of future therapies for brain tumors.

  4. Autophagy and bacterial clearance: a not so clear picture

    OpenAIRE

    Mostowy, Serge

    2012-01-01

    Autophagy, an intracellular degradation process highly conserved from yeast to humans, is viewed as an important defence mechanism to clear intracellular bacteria. However, recent work has shown that autophagy may have different roles during different bacterial infections that restrict bacterial replication (antibacterial autophagy), act in cell autonomous signalling (non-bacterial autophagy) or support bacterial replication (pro-bacterial autophagy). This review will focus on newfound intera...

  5. A Pichia pastoris VPS15 homologue is required in selective peroxisome autophagy

    NARCIS (Netherlands)

    Stasyk, OV; van der Klei, IJ; Bellu, AR; Shen, SG; Kiel, JAKW; Cregg, JM; Veenhuis, M; Stasyk, Oleh V.; Shen, Shigang; Cregg, James M.

    1999-01-01

    Methylotrophic yeasts contain large peroxisomes during growth on methanol. Upon exposure to excess glucose or ethanol these organelles are selectively degraded by autophagy, Here we describe the cloning of a Pichia pastoris gene (PpVPS15) involved ill peroxisome degradation, which is homologous to S

  6. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis.

    Science.gov (United States)

    Hou, Ying-Chen Claire; Chittaranjan, Suganthi; Barbosa, Sharon González; McCall, Kimberly; Gorski, Sharon M

    2008-09-22

    A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death-related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes--death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53-as well as Ras-Raf-mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo. PMID:18794330

  7. Beclin1-induced autophagy abrogates radioresistance of lung cancer cells by suppressing osteopontin

    International Nuclear Information System (INIS)

    Osteopontin (OPN) serves as an indicator of resistance to radiotherapy. However, the role of OPN in the development of acquired radioresistance in human lung cancer cells has not yet been fully elucidated. Therefore, the potential importance of OPN as a marker of lung cancer with a potential significant role in the development of radioresistance against repeated radiotherapy has prompted us to define the pathways by which OPN regulates lung cancer cell growth. In addition, autophagy has been reported to play a key role in the radiosensitization of cancer cells. Here, we report that increased OPN expression through induction of nuclear p53 following irradiation was inhibited by exogenous beclin-1 (BECN1). Our results clearly show that BECN1 gene expression led to induction of autophagy and inhibition of cancer cell growth and angiogenesis. Our results suggest that the induction of autophagy abrogated the radioresistance of the cancer cells. Interestingly, we showed that knockdown of OPN by lentivirus-mediated shRNA induced the autophagy of human lung cancer cell. Taken together, these results suggest that OPN and BECN1 can be molecular targets for overcoming radioresistance by controlling autophagy. (author)

  8. Autophagy may occur at an early stage of cholangiocarcinogenesis via biliary intraepithelial neoplasia.

    Science.gov (United States)

    Sasaki, Motoko; Nitta, Takeo; Sato, Yasunori; Nakanuma, Yasuni

    2015-02-01

    Similar to the pancreatic carcinoma sequence model, cholangiocarcinoma reportedly follows a stepwise carcinogenesis process via the precursor lesion biliary intraepithelial neoplasia (BilIN). Given that autophagy plays an important role in the occurrence and development of carcinomas, we examined the involvement of autophagy in multistep cholangiocarcinogenesis. Thirty-six patients with hepatolithiasis associated with BilIN and/or cholangiocarcinoma, 7 with intrahepatic cholangiocarcinoma, 8 with intraductal papillary neoplasm of the bile duct (IPNB), and 6 with control livers were surveyed. Their lesions were categorized as follows: invasive carcinoma (n = 16), IPNB (n = 8), BIlN-3 (n = 16), BilIN-1/2 (n = 40), nonneoplastic large bile duct (n = 55), and peribiliary gland (n = 55). We examined the immunohistochemical expression of autophagy-related proteins, microtubule-associated proteins light chain 3β (LC3), beclin-1, and p62/sequestosome-1 (p62), as well as tumor suppressor gene product p53. The extent of expression was semiquantitatively assessed. The status of KRAS mutations at codons 12 and 13 was examined in selected cases of BilIN-1/2. The expression of LC3 (cytoplasmic), beclin-1 (cytoplasmic), and p62 (cytoplasmic and nuclear) was significantly higher in BilIN-1/2, BilIN-3, IPNB, and invasive carcinoma than in large bile duct and peribiliary gland (P cholangiocarcinogenesis in hepatolithiasis. Autophagy, probably deregulated autophagy, may be related to the occurrence and development of cholangiocarcinoma. PMID:25466963

  9. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy.

    Science.gov (United States)

    Rolando, Monica; Escoll, Pedro; Nora, Tamara; Botti, Joëlle; Boitez, Valérie; Bedia, Carmen; Daniels, Craig; Abraham, Gilu; Stogios, Peter J; Skarina, Tatiana; Christophe, Charlotte; Dervins-Ravault, Delphine; Cazalet, Christel; Hilbi, Hubert; Rupasinghe, Thusitha W T; Tull, Dedreia; McConville, Malcolm J; Ong, Sze Ying; Hartland, Elizabeth L; Codogno, Patrice; Levade, Thierry; Naderer, Thomas; Savchenko, Alexei; Buchrieser, Carmen

    2016-02-16

    Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen's Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. We show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis. PMID:26831115

  10. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  11. Role of fractionated ionizing radiation in autophagy in drug resistance of ovarian cancer

    International Nuclear Information System (INIS)

    Objective: To detect the effects of different subtypes of fractionated ionizing radiation (IR) on autophagy in ovarian cancer cell line and to explore the relevant mechanisms. Methods: The cells were divided into control group, fractionated IR group (2 Gy ·d-1×5) and single IR group (10 Gy ·d-1×1). MTT assay was used to detect the drug sensitivities of the cells in three groups to VCR, VP-16 and DDP. MDC staining was used to examine the incidence of autophagy, Real-time fluorescence quantitative PCR was used to detect the expression levels of autophagy-relative genes MAPLC3B and Akt1 mRNA. Western blotting was applied to detect the expression of autophagy-related protein MAPLC3B, protein kinase B (PKB, Akt1)/mammalian target of rapamycin (mTOR) and its downstream gene P70 S6K. Results: Compared with control group, IR increased the drug sensitivities of SKVCR cells to VCR and VP-16, which was more significant in fractionated group (P<0.05). Compared with control group, IR increased the incidence of autophagy, particularly in fractionated IR group. Compared with control group, MAPLC3B was increased and Akt1 was decreased (P<0.05) after irradiation both at mRNA level and protein level, the expressions of mTOR, p-mTOR, P70 S6K, p-P70 S6K were decreased, the changes in fractionated IR group were more significant compared with single IR group. Conclusion: Different subtypes of IR can induce the cell death of ovarian cancer, the Akt1/mTOR/S6K signal pathway autophagy might be involved in the regulation mechanism. (authors)

  12. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    International Nuclear Information System (INIS)

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  13. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  14. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  15. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  16. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly.

    Science.gov (United States)

    Lapaquette, Pierre; Glasser, Anne-Lise; Huett, Alan; Xavier, Ramnik J; Darfeuille-Michaud, Arlette

    2010-01-01

    Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to invade and to replicate within intestinal epithelial cells. Recent genome-wide association studies have highlighted the autophagy pathway as being associated with CD risk. In the present study we investigated whether defects in autophagy enhance replication of commensal and pathogenic Escherichia coli and CD-associated AIEC. We show that functional autophagy limits intracellular AIEC replication and that a subpopulation of the intracellular bacteria is located within LC3-positive autophagosomes. In IRGM and ATG16L1 deficient cells intracellular AIEC LF82 bacteria have enhanced replication. Surprisingly autophagy deficiency did not interfere with the ability of intracellular bacteria to survive and/or replicate for any other E. coli strains tested, including non-pathogenic, environmental, commensal, or pathogenic strains involved in gastro enteritis. Together these findings demonstrate a central role for autophagy restraining Adherent-Invasive E. coli strains associated with ileal CD. AIEC infection in patients with polymorphisms in autophagy genes may have a significant impact on the outcome of intestinal inflammation. PMID:19747213

  17. Hypercapnia Inhibits Autophagy and Bacterial Killing in Human Macrophages by Increasing Expression of Bcl-2 and Bcl-xL

    Science.gov (United States)

    Casalino-Matsuda, S. Marina; Nair, Aisha; Beitel, Greg J.; Gates, Khalilah L.; Sporn, Peter H. S.

    2015-01-01

    Hypercapnia, the elevation of CO2 in blood and tissue, commonly develops in patients with advanced lung disease and severe pulmonary infections, and is associated with high mortality. We previously reported that hypercapnia alters expression of host defense genes, inhibits phagocytosis, and increases the mortality of Pseudomonas pneumonia in mice. However, the effect of hypercapnia on autophagy, a conserved process by which cells sequester and degrade proteins and damaged organelles that also plays a key role in antimicrobial host defense and pathogen clearance, has not previously been examined. In the present study we show that hypercapnia inhibits autophagy induced by starvation, rapamycin, LPS, heat-killed and live bacteria in the human macrophage. Inhibition of autophagy by elevated CO2 was not attributable to acidosis. Hypercapnia also reduced macrophage killing of Pseudomonas aeruginosa. Moreover, elevated CO2 induced the expression of Bcl-2 and Bcl-xL, anti-apoptotic factors that negatively regulate autophagy by blocking Beclin 1, an essential component of the autophagy initiation complex. Furthermore, siRNA targeting Bcl-2 and Bcl-xL and the small molecule Z36, which blocks Bcl-2 and Bcl-xL binding to Beclin 1, prevented hypercapnic inhibition of autophagy and bacterial killing. These results suggest that targeting the Bcl-2/Bcl-xL-Beclin 1 interaction may hold promise for ameliorating hypercapnia-induced immunosuppression and improving resistance to infection in patients with advanced lung disease and hypercapnia. PMID:25895534

  18. Autophagy in lung disease pathogenesis and therapeutics

    OpenAIRE

    Ryter, Stefan W.; Augustine M K Choi

    2015-01-01

    Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, an...

  19. Skeletal Muscle Autophagy: A New Metabolic Regulator

    OpenAIRE

    Neel, Brian A.; Lin, Yuxi; Pessin, Jeffrey E.

    2013-01-01

    Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Proper autophagic flux is vital for both functional skeletal muscle, which controls support and movement of the skeleton, and muscle metabolism. The role of autophagy as a metabolic regulator in muscle has been previously studied; however, the underlying molecular mechanisms that...

  20. The role of autophagy in Parkinson's disease☆

    OpenAIRE

    Zhang, Lei; Dong, Yaru; Xu, Xiaoheng; Xu, Zhong

    2012-01-01

    Although Parkinson's disease is the most common neurodegenerative movement disorder, the mechanisms of pathogenesis remain poorly understood. Recent findings have shown that deregulation of the autophagy-lysosome pathway is involved in the pathogenesis of Parkinson's disease. This review summarizes the most recent findings and discusses the unique role of the autophagy-lysosome pathway in Parkinson's disease to highlight the possibility of Parkinson's disease treatment strategies that incorpo...

  1. Mechanisms of mitochondria and autophagy crosstalk

    OpenAIRE

    Rambold, Angelika S.; Lippincott-Schwartz, Jennifer

    2011-01-01

    Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuro...

  2. Rapamycin requires AMPK activity and p27 expression for promoting autophagy-dependent Tsc2-null cell survival.

    Science.gov (United States)

    Campos, Tania; Ziehe, Javiera; Fuentes-Villalobos, Francisco; Riquelme, Orlando; Peña, Daniela; Troncoso, Rodrigo; Lavandero, Sergio; Morin, Violeta; Pincheira, Roxana; Castro, Ariel F

    2016-06-01

    Tuberous sclerosis complex (TSC) disease results from inactivation of the TSC1 or TSC2 gene, and is characterized by benign tumors in several organs. Because TSC tumorigenesis correlates with hyperactivation of mTORC1, current therapies focus on mTORC1 inhibition with rapamycin or its analogs. Rapamycin-induced tumor shrinkage has been reported, but tumor recurrence occurs on withdrawal from rapamycin. Autophagy has been associated with development of TSC tumors and with tumor cell survival during rapamycin treatment. mTORC1 and AMPK directly inhibit and activate autophagy, respectively. AMPK is hyperactivated in TSC cells and tumors, and drives cytoplasmic sequestration of the cell-cycle inhibitor p27KIP (p27). Whether AMPK and p27 are involved in rapamycin-induced autophagy and survival of TSC cells remain unexplored. Here, we show that inhibition of AMPK by compound C or by shRNA-mediated depletion of LKB1 reduces activation of autophagy by rapamycin in Tsc2-null cells. Similarly, shRNA-mediated depletion of p27 inhibited rapamycin-induced autophagy. In support of p27 lying downstream of AMPK on the activation of autophagy in Tsc2-null cells, a p27 mutant that preferentially localizes in the cytosol recovered the effect of rapamycin on autophagy in both p27- and LKB1-depleted cells, but a nuclear p27 mutant was inactive. Finally, we show that p27-dependent activation of autophagy is involved in Tsc2-null cell survival under rapamycin treatment. These results indicate that an AMPK/p27 axis is promoting a survival mechanism that could explain in part the relapse of TSC tumors treated with rapamycin, exposing new avenues for designing more efficient treatments for TSC patients. PMID:26975583

  3. Autophagy in the control of food intake.

    Science.gov (United States)

    Singh, Rajat

    2012-04-01

    The cellular nutrient sensing apparatus detects nutritional depletion and transmits this information to downstream effectors that generate energy from alternate sources. Autophagy is a crucial catabolic pathway that turns over redundant cytoplasmic components in lysosomes to provide energy to the starved cell. Recent studies have described a role for hypothalamic autophagy in the control of food intake and energy balance. Activated autophagy in hypothalamic neurons during starvation mobilized neuron-intrinsic lipids to generate free fatty acids that increased AgRP levels. AgRP neuron-specific inhibition of autophagy decreased fasting-induced increases in AgRP levels and food intake. Deletion of autophagy in AgRP neurons led to constitutive increases in levels of proopiomelanocortin and its active processed product, α-melanocyte stimulating hormone that contributed to reduced adiposity in these rodents. The current manuscript discusses these new findings and raises additional questions that may help understand how hypothalamic autophagy controls food intake and energy balance. These studies may have implications for designing new therapies against obesity and insulin resistance. PMID:23700515

  4. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum

    DEFF Research Database (Denmark)

    Josefsen, Lone; Droce, Aida; Søndergaard, Teis;

    2012-01-01

    The role of autophagy in necrotrophic fungal physiology and infection biology is poorly understood. We have studied autophagy in the necrotrophic plant pathogen Fusarium graminearum in relation to development of nonassimilating structures and infection. We identified an ATG8 homolog F. graminearum...... ability to infect barley and wheat is normal but the mutant is unable to spread from spikelet to spikelet in wheat. Complementation by inserting the F. graminearum atg8 gene into a region adjacent to the actin gene in Delta Fgatg8 fully restores the WT phenotype. The results showed that autophagy plays a...... pivotal role for supplying nutrients to nonassimilating structures necessary for growth and is important for plant colonization. This also indicates that autophagy is a central mechanism for fungal adaptation to nonoptimal C/N ratios....

  5. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling.

    Directory of Open Access Journals (Sweden)

    Dong-Min Shin

    Full Text Available The "enhanced intracellular survival" (eis gene of Mycobacterium tuberculosis (Mtb is involved in the intracellular survival of M. smegmatis. However, its exact effects on host cell function remain elusive. We herein report that Mtb Eis plays essential roles in modulating macrophage autophagy, inflammatory responses, and cell death via a reactive oxygen species (ROS-dependent pathway. Macrophages infected with an Mtb eis-deletion mutant H37Rv (Mtb-Δeis displayed markedly increased accumulation of massive autophagic vacuoles and formation of autophagosomes in vitro and in vivo. Infection of macrophages with Mtb-Δeis increased the production of tumor necrosis factor-α and interleukin-6 over the levels produced by infection with wild-type or complemented strains. Elevated ROS generation in macrophages infected with Mtb-Δeis (for which NADPH oxidase and mitochondria were largely responsible rendered the cells highly sensitive to autophagy activation and cytokine production. Despite considerable activation of autophagy and proinflammatory responses, macrophages infected with Mtb-Δeis underwent caspase-independent cell death. This cell death was significantly inhibited by blockade of autophagy and c-Jun N-terminal kinase-ROS signaling, suggesting that excessive autophagy and oxidative stress are detrimental to cell survival. Finally, artificial over-expression of Eis or pretreatment with recombinant Eis abrogated production of both ROS and proinflammatory cytokines, which depends on the N-acetyltransferase domain of the Eis protein. Collectively, these data indicate that Mtb Eis suppresses host innate immune defenses by modulating autophagy, inflammation, and cell death in a redox-dependent manner.

  6. Characterization of early autophagy signaling by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer Tg; Zarei, Mostafa; Sprenger, Adrian;

    2014-01-01

    Under conditions of nutrient shortage autophagy is the primary cellular mechanism ensuring availability of substrates for continuous biosynthesis. Subjecting cells to starvation or rapamycin efficiently induces autophagy by inhibiting the MTOR signaling pathway triggering increased autophagic flu...

  7. Autophagy as a target for cancer therapy: new developments

    International Nuclear Information System (INIS)

    Autophagy is an evolutionarily conserved lysosomal degradation pathway that eliminates cytosolic proteins, macromolecules, organelles, and protein aggregates. Activation of autophagy may function as a tumor suppressor by degrading defective organelles and other cellular components. However, this pathway may also be exploited by cancer cells to generate nutrients and energy during periods of starvation, hypoxia, and stress induced by chemotherapy. Therefore, induction of autophagy has emerged as a drug resistance mechanism that promotes cancer cell survival via self-digestion. Numerous preclinical studies have demonstrated that inhibition of autophagy enhances the activity of a broad array of anticancer agents. Thus, targeting autophagy may be a global anticancer strategy that may improve the efficacy of many standard of care agents. These results have led to multiple clinical trials to evaluate autophagy inhibition in combination with conventional chemotherapy. In this review, we summarize the anticancer agents that have been reported to modulate autophagy and discuss new developments in autophagy inhibition as an anticancer strategy

  8. Re-expression of ARHI (DIRAS3) induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel

    International Nuclear Information System (INIS)

    ARHI is a Ras-related imprinted gene that inhibits cancer cell growth and motility. ARHI is downregulated in the majority of breast cancers, and loss of its expression is associated with its progression from ductal carcinoma in situ (DCIS) to invasive disease. In ovarian cancer, re-expression of ARHI induces autophagy and leads to autophagic death in cell culture; however, ARHI re-expression enables ovarian cancer cells to remain dormant when they are grown in mice as xenografts. The purpose of this study is to examine whether ARHI induces autophagy in breast cancer cells and to evaluate the effects of ARHI gene re-expression in combination with paclitaxel. Re-expression of ARHI was achieved by transfection, by treatment with trichostatin A (TSA) or by a combination of TSA and 5-aza-2'-deoxycytidine (DAC) in breast cancer cell cultures and by liposomal delivery of ARHI in breast tumor xenografts. ARHI re-expression induces autophagy in breast cancer cells, and ARHI is essential for the induction of autophagy. When ARHI was re-expressed in breast cancer cells treated with paclitaxel, the growth inhibitory effect of paclitaxel was enhanced in both the cell culture and the xenografts. Although paclitaxel alone did not induce autophagy in breast cancer cells, it enhanced ARHI-induced autophagy. Conversely, ARHI re-expression promoted paclitaxel-induced apoptosis and G2/M cell cycle arrest. ARHI re-expression induces autophagic cell death in breast cancer cells and enhances the inhibitory effects of paclitaxel by promoting autophagy, apoptosis, and G2/M cell cycle arrest

  9. Re-expression of ARHI (DIRAS3 induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel

    Directory of Open Access Journals (Sweden)

    Bast Robert C

    2011-01-01

    Full Text Available Abstract Background ARHI is a Ras-related imprinted gene that inhibits cancer cell growth and motility. ARHI is downregulated in the majority of breast cancers, and loss of its expression is associated with its progression from ductal carcinoma in situ (DCIS to invasive disease. In ovarian cancer, re-expression of ARHI induces autophagy and leads to autophagic death in cell culture; however, ARHI re-expression enables ovarian cancer cells to remain dormant when they are grown in mice as xenografts. The purpose of this study is to examine whether ARHI induces autophagy in breast cancer cells and to evaluate the effects of ARHI gene re-expression in combination with paclitaxel. Methods Re-expression of ARHI was achieved by transfection, by treatment with trichostatin A (TSA or by a combination of TSA and 5-aza-2'-deoxycytidine (DAC in breast cancer cell cultures and by liposomal delivery of ARHI in breast tumor xenografts. Results ARHI re-expression induces autophagy in breast cancer cells, and ARHI is essential for the induction of autophagy. When ARHI was re-expressed in breast cancer cells treated with paclitaxel, the growth inhibitory effect of paclitaxel was enhanced in both the cell culture and the xenografts. Although paclitaxel alone did not induce autophagy in breast cancer cells, it enhanced ARHI-induced autophagy. Conversely, ARHI re-expression promoted paclitaxel-induced apoptosis and G2/M cell cycle arrest. Conclusions ARHI re-expression induces autophagic cell death in breast cancer cells and enhances the inhibitory effects of paclitaxel by promoting autophagy, apoptosis, and G2/M cell cycle arrest.

  10. Dual role of autophagy in HIV-1 replication and pathogenesis

    OpenAIRE

    Killian M

    2012-01-01

    Abstract Autophagy, the major mechanism for degrading long-lived intracellular proteins and organelles, is essential for eukaryotic cell homeostasis. Autophagy also defends the cell against invasion by microorganisms and has important roles in innate and adaptive immunity. Increasingly evident is that HIV-1 replication is dependent on select components of autophagy. Fittingly, HIV-1 proteins are able to modulate autophagy to maximize virus production. At the same time, HIV-1 proteins appear t...

  11. Bone Cell Autophagy Is Regulated by Environmental Factors

    OpenAIRE

    Zahm, Adam M.; Bohensky, Jolene; Adams, Christopher S.; Shapiro, Irving M.; Srinivas, Vickram

    2011-01-01

    The goal of this investigation was to ascertain whether bone cells undergo autophagy and to determine if this process is regulated by environmental factors. We showed that osteocytes in both murine and human cortical bone display a punctuate distribution of microtubule-associated protein light chain 3, indicative of autophagy. In addition, we noted a basal level of autophagy in preosteocyte-like murine long bone-derived osteocytic (MLO)-A5 cells. Autophagy was upregulated following nutrient d...

  12. Interactions between Shigella flexneri and the Autophagy Machinery

    OpenAIRE

    Krokowski, Sina; Mostowy, Serge

    2016-01-01

    Autophagy, an intracellular degradation process, is increasingly recognized as having important roles in host defense. Interactions between Shigella flexneri and the autophagy machinery were first discovered in 2005. Since then, work has shown that multiple autophagy pathways are triggered by S. flexneri, and autophagic responses can have different roles during Shigella infection. Here, we review the interactions between S. flexneri and the autophagy machinery, highlighting that studies using...

  13. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    International Nuclear Information System (INIS)

    Highlights: ► miR-199a-5p levels were significantly decreased after cisplatin treatment. ► Cisplatin treatment induced autophagy activation. ► Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  14. Autophagy and Retromer Components in Plant Innate Immunity

    DEFF Research Database (Denmark)

    Munch, David

    -hormone salicylic acid. Here, I present data that make it clear that NPR1 does not directly regulate autophagy, but instead control stress responses that indirectly activate autophagy. The observations presented will also clarify why autophagy has been described as being both a pro-death and pro-life pathway under...

  15. Insulin receptor substrate-1 prevents autophagy-dependent cell death caused by oxidative stress in mouse NIH/3T3 cells

    Directory of Open Access Journals (Sweden)

    Chan Shih-Hung

    2012-07-01

    Full Text Available Abstract Background Insulin receptor substrate (IRS-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels. Methods and results In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3, aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress

  16. Autophagy and Liver Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Raffaele Cursio

    2015-01-01

    Full Text Available Liver ischemia-reperfusion (I-R injury occurs during liver resection, liver transplantation, and hemorrhagic shock. The main mode of liver cell death after warm and/or cold liver I-R is necrosis, but other modes of cell death, as apoptosis and autophagy, are also involved. Autophagy is an intracellular self-digesting pathway responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosomes. Autophagy is found in normal and diseased liver. Although depending on the type of ischemia, warm and/or cold, the dynamic process of liver I-R results mainly in adenosine triphosphate depletion and in production of reactive oxygen species (ROS, leads to both, a local ischemic insult and an acute inflammatory-mediated reperfusion injury, and results finally in cell death. This process can induce liver dysfunction and can increase patient morbidity and mortality after liver surgery and hemorrhagic shock. Whether autophagy protects from or promotes liver injury following warm and/or cold I-R remains to be elucidated. The present review aims to summarize the current knowledge in liver I-R injury focusing on both the beneficial and the detrimental effects of liver autophagy following warm and/or cold liver I-R.

  17. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells.

    Science.gov (United States)

    Martinez, Jennifer; Cunha, Larissa D; Park, Sunmin; Yang, Mao; Lu, Qun; Orchard, Robert; Li, Quan-Zhen; Yan, Mei; Janke, Laura; Guy, Cliff; Linkermann, Andreas; Virgin, Herbert W; Green, Douglas R

    2016-05-01

    Defects in clearance of dying cells have been proposed to underlie the pathogenesis of systemic lupus erythematosus (SLE). Mice lacking molecules associated with dying cell clearance develop SLE-like disease, and phagocytes from patients with SLE often display defective clearance and increased inflammatory cytokine production when exposed to dying cells in vitro. Previously, we and others described a form of noncanonical autophagy known as LC3-associated phagocytosis (LAP), in which phagosomes containing engulfed particles, including dying cells, recruit elements of the autophagy pathway to facilitate maturation of phagosomes and digestion of their contents. Genome-wide association studies have identified polymorphisms in the Atg5 (ref. 8) and possibly Atg7 (ref. 9) genes, involved in both canonical autophagy and LAP, as markers of a predisposition for SLE. Here we describe the consequences of defective LAP in vivo. Mice lacking any of several components of the LAP pathway show increased serum levels of inflammatory cytokines and autoantibodies, glomerular immune complex deposition, and evidence of kidney damage. When dying cells are injected into LAP-deficient mice, they are engulfed but not efficiently degraded and trigger acute elevation of pro-inflammatory cytokines but not anti-inflammatory interleukin (IL)-10. Repeated injection of dying cells into LAP-deficient, but not LAP-sufficient, mice accelerated the development of SLE-like disease, including increased serum levels of autoantibodies. By contrast, mice deficient in genes required for canonical autophagy but not LAP do not display defective dying cell clearance, inflammatory cytokine production, or SLE-like disease, and, like wild-type mice, produce IL-10 in response to dying cells. Therefore, defects in LAP, rather than canonical autophagy, can cause SLE-like phenomena, and may contribute to the pathogenesis of SLE. PMID:27096368

  18. Degradation of AF1Q by chaperone-mediated autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Ji, Min; Lu, Fei; Zhang, Jingru [Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Li, Huanjie; Cui, Taixing; Li Wang, Xing [Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: tangdq@sdu.edu.cn [Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Center for Stem Cell and Regenerative Medicine, The Second Hospital of Shandong University, Jinan 250033 (China); Ji, Chunyan, E-mail: jichunyan@sdu.edu.cn [Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2014-09-10

    AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA. - Highlights: • Chaperone-mediated autophagy (CMA) is involved in the degradation of AF1Q. • Macroautophagy does not contribute to the AF1Q degradation. • AF1Q has a KFERQ-like motif that is recognized by CMA core components.

  19. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    International Nuclear Information System (INIS)

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G2/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21Waf1/Cip1. In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B1, a cyclin required for progression through the G2/M phase. Taken together, DHA induces G2/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.

  20. Downregulation of B-cell lymphoma/leukemia-2 by overexpressed microRNA 34a enhanced titanium dioxide nanoparticle-induced autophagy in BEAS-2B cells

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Sun, Pengling; Gao, Ai

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (TNPs) are manufactured worldwide for a wide range of applications and the toxic effect of TNPs on biological systems is gaining attention. Autophagy is recognized as an emerging toxicity mechanism triggered by nanomaterials. MicroRNA 34a (miR34a) acts as a tumor suppressor gene by targeting many oncogenes, but how it affects autophagy induced by TNPs is not completely understood. Here, we observed the activation of TNP-induced autophagy through monodansylcadaverine staining and LC3-I/LC3-II conversion. Meanwhile, the transmission electron microscope ultrastructural analysis showed typical morphological characteristics in autophagy process. We detected the expression of miR34a and B-cell lymphoma/leukemia-2 (Bcl-2). In addition, the underlying mechanism of TNP-induced autophagy was performed using overexpression of miR34a by lentivirus vector transfection. Results showed that TNPs induced autophagy generation evidently. Typical morphological changes in the process of autophagy were observed by the transmission electron microscope ultrastructural analysis and LC3-I/LC3-II conversion increased significantly in TNP-treated cells. Meanwhile, TNPs induced the downregulation of miR34a and increased the expression of Bcl-2. Furthermore, overexpressed miR34a decreased the expression of Bcl-2 both in messenger RNA and protein level, following which the level of autophagy and cell death rate increased after the transfected cells were incubated with TNPs for 24 hours. These findings provide the first evidence that overexpressed miR34a enhanced TNP-induced autophagy and cell death through targeted downregulation of Bcl-2 in BEAS-2B cells.

  1. High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo

    Science.gov (United States)

    Wang, Xiao-Yu; Li, Shuai; Wang, Guang; Ma, Zheng-Lai; Chuai, Manli; Cao, Liu; Yang, Xuesong

    2015-01-01

    High glucose levels induced by maternal diabetes could lead to defects in neural crest development during embryogenesis, but the cellular mechanism is still not understood. In this study, we observed a defect in chick cranial skeleton, especially parietal bone development in the presence of high glucose levels, which is derived from cranial neural crest cells (CNCC). In early chick embryo, we found that inducing high glucose levels could inhibit the development of CNCC, however, cell proliferation was not significantly involved. Nevertheless, apoptotic CNCC increased in the presence of high levels of glucose. In addition, the expression of apoptosis and autophagy relevant genes were elevated by high glucose treatment. Next, the application of beads soaked in either an autophagy stimulator (Tunicamycin) or inhibitor (Hydroxychloroquine) functionally proved that autophagy was involved in regulating the production of CNCC in the presence of high glucose levels. Our observations suggest that the ERK pathway, rather than the mTOR pathway, most likely participates in mediating the autophagy induced by high glucose. Taken together, our observations indicated that exposure to high levels of glucose could inhibit the survival of CNCC by affecting cell apoptosis, which might result from the dysregulation of the autophagic process. PMID:26671447

  2. Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway.

    Science.gov (United States)

    Shi, Linying; Zhang, Ting; Liang, Xinyu; Hu, Qin; Huang, Juan; Zhou, Yong; Chen, Mingliang; Zhang, Qianyong; Zhu, Jundong; Mi, Mantian

    2015-07-01

    Skeletal muscle insulin resistance (SMIR) plays an important role in the pathogenesis of type 2 diabetes. Dihydromyricetin (DHM), a natural flavonoid, exerts various bioactivities including anti-oxidative and hepatoprotective effects. Herein, we intended to determine the effect of DHM on SMIR and the underlying mechanisms. We found that DHM increased the expression of phosphorylated insulin receptor substrate-1, phosphorylated Akt and glucose uptake capacity in palmitate-treated L6 myotubes under insulin-stimulated conditions. The expression of light chain 3, Beclin 1, autophagy-related gene 5 (Atg5), the degradation of sequestosome 1 and the formation of autophagosomes were also upregulated by DHM. Suppression of autophagy by 3-methyladenine and bafilomycin A1 or Atg5 and Beclin1 siRNA abolished the favorable effects of DHM on SMIR. Furthermore, DHM increased the levels of phosphorylated AMP-activated protein kinase (AMPK) and Ulk1, and decreased phosphorylated mTOR levels. AMPK inhibitor compound C (CC) and AMPK siRNA abrogated DHM-induced autophagy, subsequently suppressed DHM-induced SMIR improvement. Additionally, DHM inhibited the activity of F1F0-ATPase thereby activating AMPK. Finally, the results of in vivo study conducted in high fat diet-fed rats were consistent with the findings of in vitro study. In conclusion, DHM improved SMIR by inducing autophagy via the activation of AMPK signaling pathway. PMID:25797177

  3. Autophagy and cellular senescence mediated by Sox2 suppress malignancy of cancer cells.

    Directory of Open Access Journals (Sweden)

    Yong-Yeon Cho

    Full Text Available Autophagy is a critical cellular process required for maintaining cellular homeostasis in health and disease states, but the molecular mechanisms and impact of autophagy on cancer is not fully understood. Here, we found that Sox2, a key transcription factor in the regulation of the "stemness" of embryonic stem cells and induced-pluripotent stem cells, strongly induced autophagic phenomena, including intracellular vacuole formation and lysosomal activation in colon cancer cells. The activation occurred through Sox2-mediated ATG10 gene expression and resulted in the inhibition of cell proliferation and anchorage-independent colony growth ex vivo and tumor growth in vivo. Further, we found that Sox2-induced-autophagy enhanced cellular senescence by up-regulating tumor suppressors or senescence factors, including p16(INK4a, p21 and phosphorylated p53 (Ser15. Notably, knockdown of ATG10 in Sox2-expressing colon cancer cells restored cancer cell properties. Taken together, our results demonstrated that regulation of autophagy mediated by Sox2 is a mechanism-driven novel strategy to treat human colon cancers.

  4. 自噬过程的晚期阶段%The Late Stages of Autophagy

    Institute of Scientific and Technical Information of China (English)

    杜万清; 俞立

    2011-01-01

    自噬是高度保守的细胞内降解途径.在此过程中,部分细胞质和细胞器被双层膜的囊泡包裹形成自噬体,随后与溶酶体融合并降解被吞噬的物质.降解产物被释放到细胞质中重新用于必需的物质和能量合成.本文主要关注自噬的晚期阶段,即从自噬体合成结束到溶酶体再生过程.通过对这一过程相关基因及蛋白产物的研究,初步揭示了此过程的分子机制.%Autophagy is highly conserved degradation process in which portions of cytosol and organelles are sequestered into a double-membrane vesicle, an autophagosome, and delivered into a degradative organelle, the vacuole/lysosome, for breakdown and eventual recycling of the resulting macromolecules. In this review, we discussed the late stages of autophagy, such as fusion of autophagosome with lysosome/vacuole, degradation of autophagosome and reformation of lysosome from hybrids. Identification of many autophagy-related genes reveals the machinery of the late stages of autophagy. Here, we summarize current information about the molecular mechanism of this process initially.

  5. Human stefin B role in cell's response to misfolded proteins and autophagy.

    Directory of Open Access Journals (Sweden)

    Mira Polajnar

    Full Text Available Alternative functions, apart from cathepsins inhibition, are being discovered for stefin B. Here, we investigate its role in vesicular trafficking and autophagy. Astrocytes isolated from stefin B knock-out (KO mice exhibited an increased level of protein aggregates scattered throughout the cytoplasm. Addition of stefin B monomers or small oligomers to the cell medium reverted this phenotype, as imaged by confocal microscopy. To monitor the identity of proteins embedded within aggregates in wild type (wt and KO cells, the insoluble cell lysate fractions were isolated and analyzed by mass spectrometry. Chaperones, tubulins, dyneins, and proteosomal components were detected in the insoluble fraction of wt cells but not in KO aggregates. In contrast, the insoluble fraction of KO cells exhibited increased levels of apolipoprotein E, fibronectin, clusterin, major prion protein, and serpins H1 and I2 and some proteins of lysosomal origin, such as cathepsin D and CD63, relative to wt astrocytes. Analysis of autophagy activity demonstrated that this pathway was less functional in KO astrocytes. In addition, synthetic dosage lethality (SDL gene interactions analysis in Saccharomyces cerevisiae expressing human stefin B suggests a role in transport of vesicles and vacuoles These activities would contribute, directly or indirectly to completion of autophagy in wt astrocytes and would account for the accumulation of protein aggregates in KO cells, since autophagy is a key pathway for the clearance of intracellular protein aggregates.

  6. Down regulated lncRNA MEG3 eliminates mycobacteria in macrophages via autophagy

    Science.gov (United States)

    Pawar, Kamlesh; Hanisch, Carlos; Palma Vera, Sergio Eliseo; Einspanier, Ralf; Sharbati, Soroush

    2016-01-01

    Small non-coding RNA play a major part in host response to bacterial agents. However, the role of long non-coding RNA (lncRNA) in this context remains unknown. LncRNA regulate gene expression by acting e.g. as transcriptional coactivators, RNA decoys or microRNA sponges. They control development, differentiation and cellular processes such as autophagy in disease conditions. Here, we provide an insight into the role of lncRNA in mycobacterial infections. Human macrophages were infected with Mycobacterium bovis BCG and lncRNA expression was studied early post infection. For this purpose, lncRNA with known immune related functions were preselected and a lncRNA specific RT-qPCR protocol was established. In addition to expression-based prediction of lncRNA function, we assessed strategies for thorough normalisation of lncRNA. Arrayed quantification showed infection-dependent repression of several lncRNA including MEG3. Pathway analysis linked MEG3 to mTOR and PI3K-AKT signalling pointing to regulation of autophagy. Accordingly, IFN-γ induced autophagy in infected macrophages resulted in sustained MEG3 down regulation and lack of IFN-γ allowed for counter regulation of MEG3 by viable M. bovis BCG. Knockdown of MEG3 in macrophages resulted in induction of autophagy and enhanced eradication of intracellular M. bovis BCG. PMID:26757825

  7. Exercise induces autophagy in peripheral tissues and in the brain

    OpenAIRE

    He, Congcong; Sumpter, Jr., Rhea; Levine, Beth

    2012-01-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We ...

  8. Autophagy in the light of sphingolipid metabolism

    DEFF Research Database (Denmark)

    Harvald, Eva Bang; Olsen, Anne Sofie Braun; Færgeman, Nils J.

    2015-01-01

    Maintenance of cellular homeostasis requires tight and coordinated control of numerous metabolic pathways, which are governed by interconnected networks of signaling pathways and energy-sensing regulators. Autophagy, a lysosomal degradation pathway by which the cell self-digests its own components......, has over the past decade been recognized as an essential part of metabolism. Autophagy not only rids the cell of excessive or damaged organelles, misfolded proteins, and invading microorganisms, it also provides nutrients to maintain crucial cellular functions. Besides serving as essential structural...... moieties of biomembranes, lipids including sphingolipids are increasingly being recognized as central regulators of a number of important cellular processes, including autophagy. In the present review we describe how sphingolipids, with special emphasis on ceramides and sphingosine-1-phosphate, can act as...

  9. What to Eat: Evidence for Selective Autophagy in Plants

    Institute of Scientific and Technical Information of China (English)

    Brice E.Floyd; Stephanie C.Morriss; Gustavo C.Maclntosh; Diane C.Bassham

    2012-01-01

    Autophagy is a macromolecular degradation pathway by which cells recycle their contents as a developmental process,house-keeping mechanism,and response to environmental stress.In plants,autophagy involves the sequestration of cargo to be degraded,transport to the cell vacuole in a double-membrane bound autophagosome,and subsequent degradation by lytic enzymes.Autophagy has generally been considered to be a non-selective mechanism of degradation.However,studies in yeast and animals have found numerous examples of selective autophagy,with cargo including proteins,protein aggregates,and organelles.Recent work has also provided evidence for several types of selective autophagy in plants.The degradation of protein aggregates was the first selective autophagy described in plants,and,more recently,a hybrid protein of the mammalian selective autophagy adaptors p62 and NBR1,which interacts with the autophagy machinery and may function in autophagy of protein aggregates,was described in plants.Other intracellular components have been suggested to be selectively targeted by autophagy in plants,but the current evidence is limited.Here,we discuss recent findings regarding the selective targeting of cell components by autophagy in plants.

  10. Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling

    Institute of Scientific and Technical Information of China (English)

    Jianhui Ma; Qian Sun; Ruifang Mi; Hongbing Zhang

    2011-01-01

    Of the few avian influenza viruses that have crossed the species barrier to infect humans,the highly pathogenic influenza A (H5N1) strain has claimed the lives of more than half of the infected patients.With largely unknown mechanism of lung injury by H5N1 infection,acute respiratory distress syndrome (ARDS) is the major cause of death among the victims.Here we present the fact that H5N1 caused autophagic cell death through suppression of mTOR signaling.Inhibition of autophagy,either by depletion of autophagy gene Beclinl or by autophagy inhibitor 3-methyladenine (3-MA),significantly reduced H5N1 mediated cell death.We suggest that autophagic cell death may contribute to the development of ARDS in H5N1 influenza patients and inhibition of autophagy could therefore become a novel strategy for the treatment of H5N1 infection.

  11. Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans

    DEFF Research Database (Denmark)

    Mosbech, Mai-Britt; Kruse, Rikke; Harvald, Eva Bang; Olsen, Anne Sofie Braun; Gallego, Sandra Fernandez; Hannibal-Bach, Hans Kristian; Ejsing, Christer S.; Færgeman, Nils J

    2013-01-01

    Ceramide and its metabolites constitute a diverse group of lipids, which play important roles as structural entities of biological membranes as well as regulators of cellular growth, differentiation, and development. The C. elegans genome comprises three ceramide synthase genes; hyl-1, hyl-2, and...... lagr-1. HYL-1 function is required for synthesis of ceramides and sphingolipids containing very long acyl-chains (≥C24), while HYL-2 is required for synthesis of ceramides and sphingolipids containing shorter acyl-chains (≤C22). Here we show that functional loss of HYL-2 decreases lifespan, while loss...... of HYL-1 or LAGR-1 does not affect lifespan. We show that loss of HYL-1 and LAGR-1 functions extend lifespan in an autophagy-dependent manner, as knock down of the autophagy-associated gene ATG-12 abolishes hyl-1;lagr-1 longevity. The transcription factors PHA-4/FOXA, DAF-16/FOXO, and SKN-1 are also...

  12. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  13. Induction of autophagy improves embryo viability in cloned mouse embryos

    Science.gov (United States)

    Shen, XingHui; Zhang, Na; Wang, ZhenDong; Bai, GuangYu; Zheng, Zhong; Gu, YanLi; Wu, YanShuang; Liu, Hui; Zhou, DongJie; Lei, Lei

    2015-01-01

    Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT. PMID:26643778

  14. Autophagy: A double-edged sword in intervertebral disk degeneration.

    Science.gov (United States)

    Zhang, Shu-Jun; Yang, Wei; Wang, Cheng; He, Wen-Si; Deng, Hai-Yang; Yan, Yi-Guo; Zhang, Jian; Xiang, Yong-Xiao; Wang, Wen-Jun

    2016-06-01

    Autophagy is a homeostatic mechanism through which intracellular damaged organelles and proteins are degraded and recycled in response to increased metabolic demands or stresses. Although primarily cytoprotective, dysfunction of autophagy is often associated with many degenerative diseases, including intervertebral disc (IVD) degeneration (IDD). As a main contributing factor to low back pain, IDD is the pathological basis for various debilitating spinal diseases. Either higher or lower levels of autophagy are observed in degenerative IVD cells. Despite the precise role of autophagy in disc degeneration that is still controversial, with difference from protection to aggravation, targeting autophagy has shown promise for mitigating disc degeneration. In the current review, we summarize the changes of autophagy in degenerative IVD cells and mainly discuss the relationship between autophagy and IDD. With continued efforts, modulation of the autophagic process could be a potential and attractive therapeutic strategy for degenerative disc disease. PMID:27018178

  15. WT1 is involved in the Akt-JNK pathway dependent autophagy through directly regulating Gas1 expression in human osteosarcoma cells.

    Science.gov (United States)

    Mo, Hao; He, Juliang; Yuan, Zhenchao; Mo, Ligen; Wu, Zhenjie; Lin, Xiang; Liu, Bin; Guan, Jian

    2016-09-01

    Macroautophagy (herein termed autophagy) works as a protective mechanism in tumorigenesis and development under metabolic stress condition. Multitudes of genes have been found involved in this process during past decades. In the present study, we report that Wilm's tumor suppressor1 (WT1) is involved in autophagy in osteosarcoma (OS) cells. WT1, a transcription factor with multitude of target genes, expresses in a majority of cancer types. Though wide-ranging effect of WT1 is now well documented, the function of WT1 in tumors remains poorly defined. In this chapter, it is found that high expression of WT1 positively correlates with active autophagy in human osteosarcoma cells. And further study on cell signaling pathway illustrates that Akt/JNK pathway acts as a positive regulator of autophagy induced by WT1. Here, we present evidence that WT1 modulates Akt/JNK signaling pathway mediated autophagy by controlling the expression of growth arrest-specific 1 (Gas1). We show that WT1 is required for Gas1 transcription in osteosarcoma cells. And Gas1 is upregulated followed WT1 overexpression in a time-dependent manner. Loss of Gas1 results in a reduction of WT1-induced autophagy. PMID:27453337

  16. Adenovirus-mediated wild-type PTEN promoting glioma stem/progenitor cells autophagy activity

    OpenAIRE

    ZHAO Yao-dong; Zi-long WEI; Zhang, Quan-Bin; LOU Mei-qing; HUANG, QIANG

    2013-01-01

    Background PTEN is an anti-oncogene frequently inactivating in glioma. The previous study found that PTEN was closely related to cellular autophagy activity. The purpose of this paper is to study whether the inactivation of PTEN in glioma stem/progenitor cells (GSPCs) is correlative with the low autophagic activity in GSPCs. Methods Wild-type PTEN genes were transferred into GSPCs mediated by adenovirus. The autophagic activity in GSPCs before or after the introduction of wild-type PTEN was...

  17. Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis

    OpenAIRE

    Li, Jia; Huang, Kai-xing; Le, Wei-Dong

    2013-01-01

    Aim: To develop a C. elegans model of amyotrophic lateral sclerosis (ALS) and to evaluate the role of autophagy in the disease. Methods: Stable transgenic worms expressing the G93A mutant form of Cu,Zn-superoxide dismutase (SOD1) in GABAergic motor neurons were generated. Axon guidance and protein aggregation in the motor neurons were observed with fluorescence microscopy. A paralysis assay was performed to evaluate the motor function of the transgenic worms. The expression of autophagic gene...

  18. LC3B is indispensable for selective autophagy of p62 but not basal autophagy

    International Nuclear Information System (INIS)

    Highlights: • Knockdown of LC3 or GABARAP families did not affect the basal autophagy. • LC3B has a higher affinity for the autophagy-specific substrate, p62, than GABARAPs. • siRNA-mediated knockdown of LC3B, but not that of GABARAPs, resulted in significant accumulation of p62. - Abstract: Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs

  19. LC3B is indispensable for selective autophagy of p62 but not basal autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoko [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Sou, Yu-Shin; Kageyama, Shun [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Takahashi, Takao [Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Ueno, Takashi [Division of Proteomics and Biomolecular Science, Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Tanaka, Keiji [Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Department of Biochemistry, School of Medicine, Niigata University, Niigata 951-8510 (Japan); Ichimura, Yoshinobu, E-mail: ichimura-ys@igakuken.or.jp [Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan)

    2014-03-28

    Highlights: • Knockdown of LC3 or GABARAP families did not affect the basal autophagy. • LC3B has a higher affinity for the autophagy-specific substrate, p62, than GABARAPs. • siRNA-mediated knockdown of LC3B, but not that of GABARAPs, resulted in significant accumulation of p62. - Abstract: Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.

  20. Neferine Attenuates the Protein Level and Toxicity of Mutant Huntingtin in PC-12 Cells via Induction of Autophagy

    Directory of Open Access Journals (Sweden)

    Vincent Kam Wai Wong

    2015-02-01

    Full Text Available Mutant huntingtin aggregation is highly associated with the pathogenesis of Huntington’s disease, an adult-onset autosomal dominant disorder, which leads to a loss of motor control and decline in cognitive function. Recent literature has revealed the protective role of autophagy in neurodegenerative diseases through degradation of mutant toxic proteins, including huntingtin or a-synuclein. Through the GFP-LC3 autophagy detection platform, we have  identified  neferine,  isolated  from  the  lotus  seed  embryo  of Nelumbo nucifera, which is able to induce autophagy through an AMPK-mTOR-dependent pathway. Furthermore, by overexpressing huntingtin with 74 CAG repeats (EGFP-HTT 74 in PC-12 cells, neferine reduces both the protein level and toxicity of mutant huntingtin through an autophagy-related gene 7 (Atg7-dependent mechanism. With the variety of novel active compounds present in medicinal herbs, our current study suggests the possible protective mechanism of an autophagy inducer isolated from Chinese herbal medicine, which is crucial for its further development into a potential therapeutic agent for neurodegenerative disorders in the future.

  1. Fibrates inhibit the apoptosis of Batten disease lymphoblast cells via autophagy recovery and regulation of mitochondrial membrane potential.

    Science.gov (United States)

    Hong, Minho; Song, Ki Duk; Lee, Hak-Kyo; Yi, SunShin; Lee, Yong Seok; Heo, Tae-Hwe; Jun, Hyun Sik; Kim, Sung-Jo

    2016-03-01

    Batten disease (BD; also known as juvenile neuronal ceroid lipofuscinosis) is a genetic disorder inherited as an autosomal recessive trait and is characterized by blindness, seizures, cognitive decline, and early death resulting from the inherited mutation of the CLN3 gene. Mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, disrupted autophagy, and enhanced apoptosis have been suggested to play a role in BD pathogenesis. Fibrates, a class of lipid-lowering drugs that induce peroxisome proliferator-activated receptor-α (PPAR-α) activation, are the most commonly used PPAR agonists. Assuming that fibrates have a neuroprotective effect, we studied the effects of fibrates, fenofibrate, bezafibrate, and gemfibrozil on apoptosis, depolarization of mitochondrial membrane, and defective autophagy in BD lymphoblast cells. The viability of fibrate-treated BD lymphoblast cells increased to levels of normal lymphoblast cells. In addition, treatment with fibrates inhibited depolarization of mitochondrial membrane potential in BD lymphoblast cells. Defective autophagy in BD lymphoblast cells was normalized when treated with fibrates as indicated by increased acridine orange staining. The recovery of autophagy in BD lymphoblast cells is most likely attributed to the upregulation of autophagy proteins, lysosomal-associated membrane protein 1 (LAMP1), and LC3 I/II, after treatment with fibrates. This study therefore suggests that fibrates may have a therapeutic potential against BD. PMID:26659390

  2. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examined the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.

  3. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Kanae [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Shishido, Mayumi [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Fujimoto, Keiko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan); Hirota, Yuko [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Yo, Kazuyuki; Gomi, Takamasa [Skin Research Department, POLA Chemical Industries, Inc., Yokohama (Japan); Tanaka, Yoshitaka, E-mail: tanakay@bioc.phar.kyushu-u.ac.jp [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Organelle Homeostasis Research Center, Kyushu University, Fukuoka (Japan)

    2014-01-03

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.

  4. Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ping-Ge [Southern Medical University, Guangzhou, Guangdong 510515 (China); Jiang, Zhi-Xin [Centre Laboratory, The 305th Hospital of the People' s Liberation Army, Beijing 100017 (China); Li, Jian-Hua [Department of Geriatric Cardiology, Chinese PLA General Hosptial, Beijing 100853 (China); Zhou, Zhe, E-mail: zhouzhe76@126.com [Laboratory of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Zhang, Qing-Hua, E-mail: 1056055170@qq.com [Department of Cardiology, The 305th Hospital of the People' s Liberation Army, Beijing 100017 (China)

    2015-08-07

    Macrophage autophagy plays an important role in the development of atherosclerosis, but the precise mechanism mediating this process is unclear. The potential role of the X-box binding protein 1 (XBP1), a crucial transduction factor that is involved in endoplasmic reticulum stress and the unfolded protein response, in bone marrow-derived macrophage autophagy is unknown. This study mainly explores the roles of XBP1 mRNA splicing in bone marrow-derived macrophage autophagy. The present study shows that the transient overexpression of spliced XBP1 via adenovirus-mediated gene transfer induces autophagy and promotes proliferation in bone marrow-derived macrophages via the down-regulation of Beclin-1, but that the sustained overexpression of spliced XBP1 leads to apoptosis. When XBP1 is down-regulated in bone marrow-derived macrophages using siRNA, rapamycin-induced autophagosome formation is ablated. Furthermore, we have detected the overexpression of XBP1 in areas of atherosclerotic plaques in the arteries of ApoE−/− mice. These results demonstrate that XBP1 mRNA splicing plays an important role in maintaining the function of bone marrow-derived macrophages and provide new insight into the study and treatment of atherosclerosis. - Highlights: • XBP1 was up-regulated in atherosclerotic plaques of ApoE−/− mice. • Transient spliced XBP1 overexpression induced macrophages autophagy via Beclin-1. • Sustained spliced XBP1 overexpression triggered macrophages apoptosis. • Spliced XBP1 plays a key role in maintaining the macrophages survival.

  5. Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1

    International Nuclear Information System (INIS)

    Macrophage autophagy plays an important role in the development of atherosclerosis, but the precise mechanism mediating this process is unclear. The potential role of the X-box binding protein 1 (XBP1), a crucial transduction factor that is involved in endoplasmic reticulum stress and the unfolded protein response, in bone marrow-derived macrophage autophagy is unknown. This study mainly explores the roles of XBP1 mRNA splicing in bone marrow-derived macrophage autophagy. The present study shows that the transient overexpression of spliced XBP1 via adenovirus-mediated gene transfer induces autophagy and promotes proliferation in bone marrow-derived macrophages via the down-regulation of Beclin-1, but that the sustained overexpression of spliced XBP1 leads to apoptosis. When XBP1 is down-regulated in bone marrow-derived macrophages using siRNA, rapamycin-induced autophagosome formation is ablated. Furthermore, we have detected the overexpression of XBP1 in areas of atherosclerotic plaques in the arteries of ApoE−/− mice. These results demonstrate that XBP1 mRNA splicing plays an important role in maintaining the function of bone marrow-derived macrophages and provide new insight into the study and treatment of atherosclerosis. - Highlights: • XBP1 was up-regulated in atherosclerotic plaques of ApoE−/− mice. • Transient spliced XBP1 overexpression induced macrophages autophagy via Beclin-1. • Sustained spliced XBP1 overexpression triggered macrophages apoptosis. • Spliced XBP1 plays a key role in maintaining the macrophages survival

  6. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2012-10-15

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examined the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.

  7. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    International Nuclear Information System (INIS)

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility

  8. Autophagy as a Potential Target for Sarcopenia.

    Science.gov (United States)

    Fan, Jingjing; Kou, Xianjuan; Jia, Shaohui; Yang, Xiaoqi; Yang, Yi; Chen, Ning

    2016-07-01

    Sarcopenia is an aging-related disease with a significant reduction in mass and strength of skeletal muscle due to the imbalance between protein synthesis and protein degradation. The loss of skeletal muscle is an inevitable event during aging process, which can result in the significant impact on the quality of life, and also can increase the risk for other aging-associated diseases in the elderly. However, the underlying molecular mechanism of aging-related skeletal muscle loss is still poorly understood. Autophagy is a degradation pathway for the clearance of dysfunctional organelles and damaged macromolecules during aging process. Appropriate induction or accurate regulation of autophagic process and improved quality control of mitochondria through autophagy or other strategies are required for the maintenance of skeletal muscle mass. In this article, we have summarized the current understanding of autophagic pathways in sarcopenia, and discussed the functional status of autophagy and autophagy-associated quality control of mitochondria in the pathogenesis of sarcopenia. Moreover, this article will provide some theoretical references for the exploration of scientific and optimal intervention strategies such as exercise and caloric restriction for the prevention and treatment of sarcopenia through the regulation of autophagic pathways. PMID:26580995

  9. The thiazole derivative CPTH6 impairs autophagy.

    Science.gov (United States)

    Ragazzoni, Y; Desideri, M; Gabellini, C; De Luca, T; Carradori, S; Secci, D; Nescatelli, R; Candiloro, A; Condello, M; Meschini, S; Del Bufalo, D; Trisciuoglio, D

    2013-01-01

    We have previously demonstrated that the thiazole derivative 3-methylcyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6) induces apoptosis and cell cycle arrest in human leukemia cells. The aim of this study was to evaluate whether CPTH6 is able to affect autophagy. By using several human tumor cell lines with different origins we demonstrated that CPTH6 treatment induced, in a dose-dependent manner, a significant increase in autophagic features, as imaged by electron microscopy, immunoblotting analysis of membrane-bound form of microtubule-associated protein 1 light chain 3 (LC3B-II) levels and by appearance of typical LC3B-II-associated autophagosomal puncta. To gain insights into the molecular mechanisms of elevated markers of autophagy induced by CPTH6 treatment, we silenced the expression of several proteins acting at different steps of autophagy. We found that the effect of CPTH6 on autophagy developed through a noncanonical mechanism that did not require beclin-1-dependent nucleation, but involved Atg-7-mediated elongation of autophagosomal membranes. Strikingly, a combined treatment of CPTH6 with late-stage autophagy inhibitors, such as chloroquine and bafilomycin A1, demonstrates that under basal condition CPTH6 reduces autophagosome turnover through an impairment of their degradation pathway, rather than enhancing autophagosome formation, as confirmed by immunofluorescence experiments. According to these results, CPTH6-induced enhancement of autophagy substrate p62 and NBR1 protein levels confirms a blockage of autophagic cargo degradation. In addition, CPTH6 inhibited autophagosome maturation and compounds having high structural similarities with CPTH6 produced similar effects on the autophagic pathway. Finally, the evidence that CPTH6 treatment decreased α-tubulin acetylation and failed to increase autophagic markers in cells in which acetyltransferase ATAT1 expression was silenced indicates a possible role of α-tubulin acetylation in

  10. Liver autophagy in anorexia nervosa and acute liver injury.

    Science.gov (United States)

    Kheloufi, Marouane; Boulanger, Chantal M; Durand, François; Rautou, Pierre-Emmanuel

    2014-01-01

    Autophagy, a lysosomal catabolic pathway for long-lived proteins and damaged organelles, is crucial for cell homeostasis, and survival under stressful conditions. During starvation, autophagy is induced in numerous organisms ranging from yeast to mammals, and promotes survival by supplying nutrients and energy. In the early neonatal period, when transplacental nutrients supply is interrupted, starvation-induced autophagy is crucial for neonates' survival. In adult animals, autophagy provides amino acids and participates in glucose metabolism following starvation. In patients with anorexia nervosa, autophagy appears initially protective, allowing cells to copes with nutrient deprivation. However, when starvation is critically prolonged and when body mass index reaches 13 kg/m(2) or lower, acute liver insufficiency occurs with features of autophagic cell death, which can be observed by electron microscopy analysis of liver biopsy samples. In acetaminophen overdose, a classic cause of severe liver injury, autophagy is induced as a protective mechanism. Pharmacological enhancement of autophagy protects against acetaminophen-induced necrosis. Autophagy is also activated as a rescue mechanism in response to Efavirenz-induced mitochondrial dysfunction. However, Efavirenz overdose blocks autophagy leading to liver cell death. In conclusion, in acute liver injury, autophagy appears as a protective mechanism that can be however blocked or overwhelmed. PMID:25250330

  11. Impairment of autophagy: From hereditary disorder to drug intoxication

    International Nuclear Information System (INIS)

    At first, the molecular mechanism of autophagy was unveiled in a unicellular organism Saccharomyces cerevisiae (budding yeast), followed by the discovery that the basic mechanism of autophagy is conserved in multicellular organisms including mammals. Although autophagy was considered to be a non-selective bulk protein degradation system to recycle amino acids during periods of nutrient starvation, it is also believed to be an essential mechanism for the selective elimination of proteins/organelles that are damaged under pathological conditions. Research advances made using autophagy-deficient animals have revealed that impairments of autophagy often underlie the pathogenesis of hereditary disorders such as Danon, Parkinson's, Alzheimer's, and Huntington's diseases, and amyotrophic lateral sclerosis. On the other hand, there are many reports that drugs and toxicants, including arsenic, cadmium, paraquat, methamphetamine, and ethanol, induce autophagy during the development of their toxicity on many organs including heart, brain, lung, kidney, and liver. Although the question as to whether autophagic machinery is involved in the execution of cell death or not remains controversial, the current view of the role of autophagy during cell/tissue injury is that it is an important, often essential, cytoprotective reaction; disturbances in cytoprotective autophagy aggravate cell/tissue injuries. The purpose of this review is to provide (1) a gross summarization of autophagy processes, which are becoming more important in the field of toxicology, and (2) examples of important studies reporting the involvement of perturbations in autophagy in cell/tissue injuries caused by acute as well as chronic intoxication

  12. Liver Autophagy in Anorexia Nervosa and Acute Liver Injury

    Directory of Open Access Journals (Sweden)

    Marouane Kheloufi

    2014-01-01

    Full Text Available Autophagy, a lysosomal catabolic pathway for long-lived proteins and damaged organelles, is crucial for cell homeostasis, and survival under stressful conditions. During starvation, autophagy is induced in numerous organisms ranging from yeast to mammals, and promotes survival by supplying nutrients and energy. In the early neonatal period, when transplacental nutrients supply is interrupted, starvation-induced autophagy is crucial for neonates’ survival. In adult animals, autophagy provides amino acids and participates in glucose metabolism following starvation. In patients with anorexia nervosa, autophagy appears initially protective, allowing cells to copes with nutrient deprivation. However, when starvation is critically prolonged and when body mass index reaches 13 kg/m2 or lower, acute liver insufficiency occurs with features of autophagic cell death, which can be observed by electron microscopy analysis of liver biopsy samples. In acetaminophen overdose, a classic cause of severe liver injury, autophagy is induced as a protective mechanism. Pharmacological enhancement of autophagy protects against acetaminophen-induced necrosis. Autophagy is also activated as a rescue mechanism in response to Efavirenz-induced mitochondrial dysfunction. However, Efavirenz overdose blocks autophagy leading to liver cell death. In conclusion, in acute liver injury, autophagy appears as a protective mechanism that can be however blocked or overwhelmed.

  13. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiwen [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009 (China); Bijie Pilot Area Research Institute of Bijie University, Bijie 551700 (China); Zhu, Jiaqiao; Zhang, Kangbao; Jiang, Chenyang; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009 (China)

    2013-08-16

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity.

  14. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    International Nuclear Information System (INIS)

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity

  15. Research Progression of Cellular Autophagy in Liver System Diseases

    Directory of Open Access Journals (Sweden)

    Chunyun Liu

    2013-09-01

    Full Text Available Autophagy is a basic biological phenomenon widely existed in eukaryotic cells and an important mechanism for cells to adjust to the surrounding environment, prevent invasion of pathogenic micro-organisms and maintain homeostasis, whose activity changes evidently in multiple liver system diseases, suggesting that there is close association between autophagy and the generation and development of liver system diseases. It is also reported that autophagy develops and exerts an important function in many liver-related diseases, such as hepatic carcinoma, non-alcoholic fatty liver disease, alcoholic liver disease, viral liver disease and acute liver injury. Therefore, this study aimed to summarize the relationship between autophagy and multiple liver diseases, hoping to explore the effect of autophagy in liver system diseases and further study the regulative effect of autophagy so as to provide new thoughts for their treatment.

  16. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth

    DEFF Research Database (Denmark)

    Wild, Philipp; Farhan, Hesso; McEwan, David G; Wagner, Sebastian; Rogov, Vladimir V; Brady, Nathan R; Richter, Benjamin; Korac, Jelena; Waidmann, Oliver; Choudhary, Chunaram; Dötsch, Volker; Bumann, Dirk; Dikic, Ivan

    2011-01-01

    Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms...... controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitin-coated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding...... affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin- or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might...

  17. Nanomaterial-modulated autophagy: underlying mechanisms and functional consequences.

    Science.gov (United States)

    Zheng, Wei; Wei, Min; Li, Song; Le, Weidong

    2016-06-01

    Autophagy is an essential lysosome-dependent process that controls the quality of the cytoplasm and maintains cellular homeostasis, and dysfunction of this protein degradation system is correlated with various disorders. A growing body of evidence suggests that nanomaterials (NMs) have autophagy-modulating effects, thus predicting a valuable and promising application potential of NMs in the diagnosis and treatment of autophagy-related diseases. NMs exhibit unique physical, chemical and biofunctional properties, which may endow NMs with capabilities to modulate autophagy via various mechanisms. The present review highlights the impacts of various NMs on autophagy and their functional consequences. The possible underlying mechanisms for NM-modulated autophagy are also discussed. PMID:27193191

  18. Forms, Crosstalks, and the Role of Phospholipid Biosynthesis in Autophagy

    Directory of Open Access Journals (Sweden)

    Leanne Pereira

    2012-01-01

    Full Text Available Autophagy is a highly conserved cellular process occurring during periods of stress to ensure a cell's survival by recycling cytosolic constituents and making products that can be used in energy generation and other essential processes. Three major forms of autophagy exist according to the specific mechanism through which cytoplasmic material is transported to a lysosome. Chaperone-mediated autophagy is a highly selective form of autophagy that delivers specific proteins for lysosomal degradation. Microautophagy is a less selective form of autophagy that occurs through lysosomal membrane invaginations, forming tubes and directly engulfing cytoplasm. Finally, macroautophagy involves formation of new membrane bilayers (autophagosomes that engulf cytosolic material and deliver it to lysosomes. This review provides new insights on the crosstalks between different forms of autophagy and the significance of bilayer-forming phospholipid synthesis in autophagosomal membrane formation.

  19. WASH inhibits autophagy through suppression of Beclin 1 ubiquitination

    OpenAIRE

    Xia, Pengyan; Wang, Shuo; Du, Ying; Zhao, Zhenao; Shi, Lei; Sun, Lei; Huang, Guanling; Ye, Buqing; Li, Chong; Dai, Zhonghua; Hou, Ning; Cheng, Xuan; Sun, Qingyuan; Li, Lei(Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China); Yang, Xiao

    2013-01-01

    Autophagy degrades cytoplasmic proteins and organelles to recycle cellular components that are required for cell survival and tissue homeostasis. However, it is not clear how autophagy is regulated in mammalian cells. WASH (Wiskott–Aldrich syndrome protein (WASP) and SCAR homologue) plays an essential role in endosomal sorting through facilitating tubule fission via Arp2/3 activation. Here, we demonstrate a novel function of WASH in modulation of autophagy. We show that WASH deficiency causes...

  20. Pyrvinium targets autophagy addiction to promote cancer cell death

    OpenAIRE

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards III, Carl K; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that...

  1. Autophagy and mitophagy in the myocardium: therapeutic potential and concerns

    OpenAIRE

    Jimenez, Rebecca E; Kubli, Dieter A.; Gustafsson, Åsa B.

    2014-01-01

    The autophagic-lysosomal degradation pathway is critical for cardiac homeostasis, and defects in this pathway are associated with development of cardiomyopathy. Autophagy is responsible for the normal turnover of organelles and long-lived proteins. Autophagy is also rapidly up-regulated in response to stress, where it rapidly clears dysfunctional organelles and cytotoxic protein aggregates in the cell. Autophagy is also important in clearing dysfunctional mitochondria before they can cause ha...

  2. Autophagy in Lepidoptera: more than old wine in new bottle

    Directory of Open Access Journals (Sweden)

    G Tettamanti

    2011-01-01

    Full Text Available Autophagy is a cellular pathway that leads to the degradation of proteins and organelles. This process is usually involved in the maintenance of cell homeostasis when the organism experiences nutrient starvation, but in holometabolous insects autophagy also intervenes in the demolition of larval tissues and organs during metamorphosis. This review summarizes the current knowledge about autophagy research in Lepidoptera and discusses the use of moths and butterflies as models for tudying the roles and regulation of autophagy. It also gives insights into the cooperation between utophagy and apoptosis in cell death events that occur in lepidopteran in vivo and in vitro systems.

  3. Tracking autophagy during proliferation and differentiation of Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    William R. Proto

    2014-01-01

    Full Text Available Autophagy is a lysosome-dependent degradation mechanism that sequesters target cargo into autophagosomal vesicles. The Trypanosoma brucei genome contains apparent orthologues of several autophagy-related proteins including an ATG8 family. These ubiquitin-like proteins are required for autophagosome membrane formation, but our studies show that ATG8.3 is atypical. To investigate the function of other ATG proteins, RNAi compatible T. brucei were modified to function as autophagy reporter lines by expressing only either YFP-ATG8.1 or YFP-ATG8.2. In the insect procyclic lifecycle stage, independent RNAi down-regulation of ATG3 or ATG7 generated autophagy-defective mutants and confirmed a pro-survival role for autophagy in the procyclic form nutrient starvation response. Similarly, RNAi depletion of ATG5 or ATG7 in the bloodstream form disrupted autophagy, but did not impede proliferation. Further characterisation showed bloodstream form autophagy mutants retain the capacity to undergo the complex cellular remodelling that occurs during differentiation to the procyclic form and are equally susceptible to dihydroxyacetone-induced cell death as wild type parasites, not supporting a role for autophagy in this cell death mechanism. The RNAi reporter system developed, which also identified TOR1 as a negative regulator controlling YFP-ATG8.2 but not YFP-ATG8.1 autophagosome formation, will enable further targeted analysis of the mechanisms and function of autophagy in the medically relevant bloodstream form of T. brucei.

  4. Autophagy is required for IL-2-mediated fibroblast growth

    International Nuclear Information System (INIS)

    Autophagy is an evolutionarily conserved pathway responsible for delivery of cytoplasmic material into the lysosomal degradation pathway to enable vesicular exocytosis. Interleukin (IL)-2 is produced by T-cells and its activity is important for immunoregulation. Fibroblasts are an immune competent cell type, playing a critical role in wound healing, chronic inflammation, and tumor development. Although autophagy plays an important role in each of these processes, whether it regulates IL-2 activity in fibroblasts is unknown. Here, we show that autophagy is required for IL-2-induced cell growth in fibroblasts. IL-2 significantly induced autophagy in mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts. Autophagy inhibitors (e.g., 3-methylamphetamine and bafilomycin A1) or knockdown of ATG5 and beclin 1 blocked clinical grade IL-2-induced autophagy. Moreover, IL-2 induced HMGB1 cytoplasmic translocation in MEFs and promoted interaction between HMGB1 and beclin1, which is required for autophagy induction. Pharmacological and genetic inhibition of autophagy inhibited IL-2-induced cell proliferation and enhanced IL-2-induced apoptosis. These findings suggest that autophagy is an important pro-survival regulator for IL-2-induced cell growth in fibroblasts

  5. Autophagy is required for IL-2-mediated fibroblast growth

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Rui [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Lotze, Michael T., E-mail: lotzemt@upcm.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Zeh III, Herbert J., E-mail: zehh@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States)

    2013-02-15

    Autophagy is an evolutionarily conserved pathway responsible for delivery of cytoplasmic material into the lysosomal degradation pathway to enable vesicular exocytosis. Interleukin (IL)-2 is produced by T-cells and its activity is important for immunoregulation. Fibroblasts are an immune competent cell type, playing a critical role in wound healing, chronic inflammation, and tumor development. Although autophagy plays an important role in each of these processes, whether it regulates IL-2 activity in fibroblasts is unknown. Here, we show that autophagy is required for IL-2-induced cell growth in fibroblasts. IL-2 significantly induced autophagy in mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts. Autophagy inhibitors (e.g., 3-methylamphetamine and bafilomycin A1) or knockdown of ATG5 and beclin 1 blocked clinical grade IL-2-induced autophagy. Moreover, IL-2 induced HMGB1 cytoplasmic translocation in MEFs and promoted interaction between HMGB1 and beclin1, which is required for autophagy induction. Pharmacological and genetic inhibition of autophagy inhibited IL-2-induced cell proliferation and enhanced IL-2-induced apoptosis. These findings suggest that autophagy is an important pro-survival regulator for IL-2-induced cell growth in fibroblasts.

  6. Emerging role of selective autophagy in human diseases.

    Directory of Open Access Journals (Sweden)

    Kenji eMizumura

    2014-11-01

    Full Text Available AbstractAutophagy was originally described as a highly conserved system for the degradation of cytosol through a lysosome-dependent pathway. In response to starvation, autophagy degrades organelles and proteins to provide metabolites and energy for its pro-survival effects. Autophagy is recognized as playing a role in the pathogenesis of disease either directly or indirectly, through the regulation of vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms. Recent studies have demonstrated that autophagy is not only a simple metabolite recycling system, but also has the ability to degrade specific cellular targets, such as mitochondria, cilia, and invading bacteria. In addition, selective autophagy has also been implicated in vesicle trafficking pathways, with potential roles in secretion and other intracellular transport processes. Selective autophagy has drawn the attention of researchers because of its potential importance in clinical diseases. Therapeutic strategies to target selective autophagy rather than general autophagy may maximize clinical benefit by enhancing selectivity. In this review, we outline the principle components of selective autophagy processes and their emerging importance in human disease, with an emphasis on pulmonary diseases.

  7. Regulation of autophagy by cytosolic acetyl-coenzyme A

    DEFF Research Database (Denmark)

    Mariño, Guillermo; Pietrocola, Federico; Eisenberg, Tobias;

    2014-01-01

    proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high Ac......CoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a...

  8. A novel contribution of spvB to pathogenesis of Salmonella Typhimurium by inhibiting autophagy in host cells

    Science.gov (United States)

    Chu, Yuanyuan; Gao, Song; Wang, Ting; Yan, Jing; Xu, Guangmei; Li, Yuanyuan; Niu, Hua; Huang, Rui; Wu, Shuyan

    2016-01-01

    Salmonella plasmid virulence genes (spv) are highly conserved in strains of clinically important Salmonella serovars. It is essential for Salmonella plasmid-correlated virulence, although the exact mechanism remains to be elucidated. Autophagy has been reported to play an important role in host immune responses limiting Salmonella infection. Our previous studies demonstrated that Salmonella conjugative plasmid harboring spv genes could enhance bacterial cytotoxicity by inhibiting autophagy. In the present study, we investigated whether spvB, which is one of the most important constituents of spv ORF could intervene in autophagy pathway. Murine macrophage-like cells J774A.1, human epithelial HeLa cells, and BALB/c mice infected with Salmonella Typhimurium wild type, mutant and complementary strains (carrying or free spvB or complemented only with ADP-ribosyltransferase activity of SpvB) were used in vitro and in vivo assay, respectively. To further explore the molecular mechanisms, both SpvB ectopic eukaryotic expression system and cells deficient in essential autophagy components by siRNA were generated. Results indicated that spvB could suppress autophagosome formation through its function in depolymerizing actin, and aggravate inflammatory injury of the host in response to S. Typhimurium infection. Our studies demonstrated virulence of spvB involving in inhibition of autophagic flux for the first time, which could provide novel insights into Salmonella pathogenesis, and have potential application to develop new antibacterial strategies for Salmonellosis. PMID:26811498

  9. A novel contribution of spvB to pathogenesis of Salmonella Typhimurium by inhibiting autophagy in host cells.

    Science.gov (United States)

    Chu, Yuanyuan; Gao, Song; Wang, Ting; Yan, Jing; Xu, Guangmei; Li, Yuanyuan; Niu, Hua; Huang, Rui; Wu, Shuyan

    2016-02-16

    Salmonella plasmid virulence genes (spv) are highly conserved in strains of clinically important Salmonella serovars. It is essential for Salmonella plasmid-correlated virulence, although the exact mechanism remains to be elucidated. Autophagy has been reported to play an important role in host immune responses limiting Salmonella infection. Our previous studies demonstrated that Salmonella conjugative plasmid harboring spv genes could enhance bacterial cytotoxicity by inhibiting autophagy. In the present study, we investigated whether spvB, which is one of the most important constituents of spv ORF could intervene in autophagy pathway. Murine macrophage-like cells J774A.1, human epithelial HeLa cells, and BALB/c mice infected with Salmonella Typhimurium wild type, mutant and complementary strains (carrying or free spvB or complemented only with ADP-ribosyltransferase activity of SpvB) were used in vitro and in vivo assay, respectively. To further explore the molecular mechanisms, both SpvB ectopic eukaryotic expression system and cells deficient in essential autophagy components by siRNA were generated. Results indicated that spvB could suppress autophagosome formation through its function in depolymerizing actin, and aggravate inflammatory injury of the host in response to S. Typhimurium infection. Our studies demonstrated virulence of spvB involving in inhibition of autophagic flux for the first time, which could provide novel insights into Salmonella pathogenesis, and have potential application to develop new antibacterial strategies for Salmonellosis. PMID:26811498

  10. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans.

    Science.gov (United States)

    de Luca, Antonella; Smeekens, Sanne P; Casagrande, Andrea; Iannitti, Rossana; Conway, Kara L; Gresnigt, Mark S; Begun, Jakob; Plantinga, Theo S; Joosten, Leo A B; van der Meer, Jos W M; Chamilos, Georgios; Netea, Mihai G; Xavier, Ramnik J; Dinarello, Charles A; Romani, Luigina; van de Veerdonk, Frank L

    2014-03-01

    Patients with chronic granulomatous disease (CGD) have a mutated NADPH complex resulting in defective production of reactive oxygen species; these patients can develop severe colitis and are highly susceptible to invasive fungal infection. In NADPH oxidase-deficient mice, autophagy is defective but inflammasome activation is present despite lack of reactive oxygen species production. However, whether these processes are mutually regulated in CGD and whether defective autophagy is clinically relevant in patients with CGD is unknown. Here, we demonstrate that macrophages from CGD mice and blood monocytes from CGD patients display minimal recruitment of microtubule-associated protein 1 light chain 3 (LC3) to phagosomes. This defect in autophagy results in increased IL-1β release. Blocking IL-1 with the receptor antagonist (anakinra) decreases neutrophil recruitment and T helper 17 responses and protects CGD mice from colitis and also from invasive aspergillosis. In addition to decreased inflammasome activation, anakinra restored autophagy in CGD mice in vivo, with increased Aspergillus-induced LC3 recruitment and increased expression of autophagy genes. Anakinra also increased Aspergillus-induced LC3 recruitment from 23% to 51% (P CGD patients. The clinical relevance of these findings was assessed by treating CGD patients who had severe colitis with IL-1 receptor blockade using anakinra. Anakinra treatment resulted in a rapid and sustained improvement in colitis. Thus, inflammation in CGD is due to IL-1-dependent mechanisms, such as decreased autophagy and increased inflammasome activation, which are linked pathological conditions in CGD that can be restored by IL-1 receptor blockade. PMID:24550444

  11. Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells.

    Science.gov (United States)

    Zhang, Qianwen; Zhang, Yuanyuan; Zhang, Pei; Chao, Zhenhua; Xia, Fei; Jiang, Chenchen; Zhang, Xudong; Jiang, Zhiwen; Liu, Hao

    2014-03-01

    Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, has been proposed as a specific antitumor agent. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. Autophagy in mammalian systems occurs under basal conditions and can be stimulated by stresses, including starvation, oxidative stress. Therefore, we hypothesized that 3-BrPA could induce autophagy. In the present study, we explored the mechanism of 3-BrPA and its combined action with chloroquine. Our results demonstrate that in MDA-MB-435 and in MDA-MB-231 cells, 3-BrPA induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment triggered apoptosis in MDA-MB-435 cells, while it induced necroptosis in MDA-MB-231 cells. ROS mediated cell death when 3-BrPA and CQ were co-administered. Finally, CQ enhanced the anticancer efficacy of 3-BrPA in vivo. Collectively, our results show that 3-BrPA triggers autophagy, increasing breast cancer cell resistance to 3-BrPA treatment and that CQ enhanced 3-BrPA-induced cell death in breast cancer cells by stimulating ROS formation. Thus, inhibition of autophagy may be an innovative strategy for adjuvant chemotherapy of breast cancer.human skeletal muscle. Efficient Mirk depletion in SU86.86 pancreatic cancer cells by an inducible shRNA decreased expression of eight antioxidant genes. Thus both cancer cells and differentiated myotubes utilize Mirk kinase to relieve oxidative stress. PMID:25053988

  12. Crystal Structure of Oxidative Stress Sensor Keap1 in Complex with Selective Autophagy Substrate p62

    Science.gov (United States)

    Kurokawa, Hirofumi

    Keap1, an adaptor protein of cullin-RING ubiquitin ligase complex, represses cytoprotective transcription factor Nrf2 in an oxidative stress-dependent manner. The accumulation of selective autophagy substrate p62 also activates Nrf2 target genes, but the detailed mechanism has not been elucidated. Crystal structure of Keap1-p62 complex revealed the structural basis for the Nrf2 activation in which Keap1 is inactivated by p62. The accumulation of p62 is observed in hepatocellular carcinoma. The activation of Nrf2 target genes, including detoxifying enzymes and efflux transporters, by p62 may protect the cancer cells from anti-cancer drugs.

  13. Grouping annotations on the subcellular layered interactome demonstrates enhanced autophagy activity in a recurrent experimental autoimmune uveitis T cell line.

    Directory of Open Access Journals (Sweden)

    Xiuzhi Jia

    Full Text Available Human uveitis is a type of T cell-mediated autoimmune disease that often shows relapse-remitting courses affecting multiple biological processes. As a cytoplasmic process, autophagy has been seen as an adaptive response to cell death and survival, yet the link between autophagy and T cell-mediated autoimmunity is not certain. In this study, based on the differentially expressed genes (GSE19652 between the recurrent versus monophasic T cell lines, whose adoptive transfer to susceptible animals may result in respective recurrent or monophasic uveitis, we proposed grouping annotations on a subcellular layered interactome framework to analyze the specific bioprocesses that are linked to the recurrence of T cell autoimmunity. That is, the subcellular layered interactome was established by the Cytoscape and Cerebral plugin based on differential expression, global interactome, and subcellular localization information. Then, the layered interactomes were grouping annotated by the ClueGO plugin based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The analysis showed that significant bioprocesses with autophagy were orchestrated in the cytoplasmic layered interactome and that mTOR may have a regulatory role in it. Furthermore, by setting up recurrent and monophasic uveitis in Lewis rats, we confirmed by transmission electron microscopy that, in comparison to the monophasic disease, recurrent uveitis in vivo showed significantly increased autophagy activity and extended lymphocyte infiltration to the affected retina. In summary, our framework methodology is a useful tool to disclose specific bioprocesses and molecular targets that can be attributed to a certain disease. Our results indicated that targeted inhibition of autophagy pathways may perturb the recurrence of uveitis.

  14. Autophagy sensitivity of neuroendocrine lung tumor cells

    OpenAIRE

    HONG, SEUNG-KEUN; Kim, Jin-Hwan; Starenki, Dmytro; Park, Jong-In

    2013-01-01

    Neuroendocrine (NE) phenotypes characterize a spectrum of lung tumors, including low-grade typical and intermediate-grade atypical carcinoid, high-grade large-cell NE carcinoma and small cell lung carcinoma. Currently, no effective treatments are available to cure NE lung tumors, demanding identification of biological features specific to these tumors. Here, we report that autophagy has an important role for NE lung tumor cell proliferation and survival. We found that the expression levels of...

  15. Cardiomyocyte autophagy: metabolic profit and loss

    OpenAIRE

    Wang, Zhao V.; Ferdous, Anwarul; Hill, Joseph A.

    2013-01-01

    Cardiovascular disease remains the leading cause of morbidity and mortality worldwide, even despite recent scientific and technological advances and comprehensive preventive strategies. The cardiac myocyte is a voracious consumer of energy, and alterations in metabolic substrate availability and consumption are hallmark features of these disorders. Autophagy, an evolutionarily ancient response to metabolic insufficiency, has been implicated in the pathogenesis of a wide range of heart patholo...

  16. Autophagy in Mycobacterium tuberculosis and HIV infections

    OpenAIRE

    Espert, Lucile; Beaumelle, Bruno; Vergne, Isabelle

    2015-01-01

    Human Immunodeficiency Virus (HIV) and Mycobacterium tuberculosis (M.tb) are among the most lethal human pathogens worldwide, each being responsible for around 1.5 million deaths annually. Moreover, synergy between acquired immune deficiency syndrome (AIDS) and tuberculosis (TB) has turned HIV/M.tb co-infection into a major public health threat in developing countries. In the past decade, autophagy, a lysosomal catabolic process, has emerged as a major host immune defense mechanism against in...

  17. The Role of Autophagy in Lupus Nephritis

    OpenAIRE

    Linlin Wang; Helen Ka Wai Law

    2015-01-01

    Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by the generation of immune responses to self-antigens. Lupus nephritis is one of the most common and severe complications in SLE patients. Though the pathogenesis of lupus nephritis has been studied extensively, unresolved questions are still left and new therapeutic methods are needed for disease control. Autophagy is a conserved catabolic process through which cytoplasmic constituents can be degraded in...

  18. Autophagy extends lifespan via vacuolar acidification

    Directory of Open Access Journals (Sweden)

    Christoph Ruckenstuhl

    2014-05-01

    Full Text Available Methionine restriction (MetR is one of the rare regimes that prolongs lifespan across species barriers. Using a yeast model, we recently demonstrated that this lifespan extension is promoted by autophagy, which in turn requires vacuolar acidification. Our study is the first to place autophagy as one of the major players required for MetR-mediated longevity. In addition, our work identifies vacuolar acidification as a key downstream element of autophagy induction under MetR, and possibly after rapamycin treatment. Unlike other amino acids, methionine plays pleiotropic roles in many metabolism-relevant pathways. For instance, methionine (i is the N-terminal amino acid of every newly translated protein; (ii acts as the central donor of methyl groups through S-adenosyl methionine (SAM during methylation reactions of proteins, DNA or RNA; and (iii provides the sulfhydryl groups for FeS-cluster formation and redox detoxification via transsulfuration to cysteine. Intriguingly, MetR causes lifespan extension, both in yeast and in rodents. We could show that in Saccharomyces cerevisiae, chronological lifespan (CLS is increased in two specific methionine-auxotrophic strains (namely Δmet2 and Δmet15.

  19. Autophagy Proteins ATG5 and ATG7 Are Essential for the Maintenance of Human CD34(+) Hematopoietic Stem-Progenitor Cells.

    Science.gov (United States)

    Gomez-Puerto, Maria Catalina; Folkerts, Hendrik; Wierenga, Albertus T J; Schepers, Koen; Schuringa, Jan Jacob; Coffer, Paul J; Vellenga, Edo

    2016-06-01

    Autophagy is a highly regulated catabolic process that involves sequestration and lysosomal degradation of cytosolic components such as damaged organelles and misfolded proteins. While autophagy can be considered to be a general cellular housekeeping process, it has become clear that it may also play cell type-dependent functional roles. In this study, we analyzed the functional importance of autophagy in human hematopoietic stem/progenitor cells (HSPCs), and how this is regulated during differentiation. Western blot-based analysis of LC3-II and p62 levels, as well as flow cytometry-based autophagic vesicle quantification, demonstrated that umbilical cord blood-derived CD34(+) /CD38(-) immature hematopoietic progenitors show a higher autophagic flux than CD34(+) /CD38(+) progenitors and more differentiated myeloid and erythroid cells. This high autophagic flux was critical for maintaining stem and progenitor function since knockdown of autophagy genes ATG5 or ATG7 resulted in reduced HSPC frequencies in vitro as well as in vivo. The reduction in HSPCs was not due to impaired differentiation, but at least in part due to reduced cell cycle progression and increased apoptosis. This is accompanied by increased expression of p53, proapoptotic genes BAX and PUMA, and the cell cycle inhibitor p21, as well as increased levels of cleaved caspase-3 and reactive oxygen species. Taken together, our data demonstrate that autophagy is an important regulatory mechanism for human HSCs and their progeny, reducing cellular stress and promoting survival. Stem Cells 2016;34:1651-1663. PMID:26930546

  20. Autophagy contributes to resistance of tumor cells to ionizing radiation

    International Nuclear Information System (INIS)

    Background and purpose: Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Materials and methods: Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. Results: LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Conclusion: Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance.

  1. Altered autophagy in human adipose tissues in obesity

    Science.gov (United States)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  2. Autophagy: A double-edged sword in Alzheimer's disease

    Indian Academy of Sciences (India)

    Ying-Tsen Tung; Bo-Jeng Wang; Ming-Kuan Hu; Wen-Ming Hsu; Hsinyu Lee; Wei-Pang Huang; Yung-Feng Liao

    2012-03-01

    Autophagy is a major protein degradation pathway that is essential for stress-induced and constitutive protein turnover. Accumulated evidence has demonstrated that amyloid- (A) protein can be generated in autophagic vacuoles, promoting its extracellular deposition in neuritic plaques as the pathological hallmark of Alzheimer’s disease (AD). The molecular machinery for A generation, including APP, APP-C99 and -/-secretases, are all enriched in autophagic vacuoles. The induction of autophagy can be vividly observed in the brain at early stages of sporadic AD and in an AD transgenic mouse model. Accumulated evidence has also demonstrated a neuroprotective role of autophagy in mediating the degradation of aggregated proteins that are causative of various neurodegenerative diseases. Autophagy is thus widely regarded as an intracellular hub for the removal of the detrimental A peptides and Tau aggregates. Nonetheless, compelling data also reveal an unfavorable function of autophagy in facilitating the production of intracellular A. The two faces of autophagy on the homeostasis of A place it in a very unique and intriguing position in ADpathogenesis. This article briefly summarizes seminal discoveries that are shedding new light on the critical and unique roles of autophagy in AD and potential therapeutic approaches against autophagy-elicited AD.

  3. Autophagy in ageing and ageing-associated diseases

    Institute of Scientific and Technical Information of China (English)

    Li-qiang HE; Jia-hong LU; Zhen-yu YUE

    2013-01-01

    Autophagy is a cell self-digestion process via lysosomes that clears "cellular waste",including aberrantly modified proteins or protein aggregates and damaged organelles.Therefore,autophagy is considered a protein and organelle quality control mechanism that maintains normal cellular homeostasis.Dysfunctional autophagy has been observed in ageing tissues and several ageing-associated diseases.Lifespan of model organisms such as yeast,worms,flies,and mice can be extended through promoting autophagy,either by genetic manipulations such as over-expression of Sirtuin 1,or by administrations of rapamycin,resveratrol or spermidine.The evidence supports that autophagy may play an important role in delaying ageing or extending lifespan.In this review,we summarize the current knowledge about autophagy and its regulation,outline recent developments ie the genetic and pharmacological manipulations of autophagy that affects the lifespan,and discuss the role of autophagy in the ageing-related diseases.ow in Center for Neurodegenerative and Neuroimmunologic Diseases,Department of Neurology,University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School,Piscataway,NJ 08854,USA

  4. Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation.

    Science.gov (United States)

    Yang, Shenghong; Imamura, Yu; Jenkins, Russell W; Cañadas, Israel; Kitajima, Shunsuke; Aref, Amir; Brannon, Arthur; Oki, Eiji; Castoreno, Adam; Zhu, Zehua; Thai, Tran; Reibel, Jacob; Qian, Zhirong; Ogino, Shuji; Wong, Kwok K; Baba, Hideo; Kimmelman, Alec C; Pasca Di Magliano, Marina; Barbie, David A

    2016-06-01

    Autophagy promotes tumor progression downstream of oncogenic KRAS, yet also restrains inflammation and dysplasia through mechanisms that remain incompletely characterized. Understanding the basis of this paradox has important implications for the optimal targeting of autophagy in cancer. Using a mouse model of cerulein-induced pancreatitis, we found that loss of autophagy by deletion of Atg5 enhanced activation of the IκB kinase (IKK)-related kinase TBK1 in vivo, associated with increased neutrophil and T-cell infiltration and PD-L1 upregulation. Consistent with this observation, pharmacologic or genetic inhibition of autophagy in pancreatic ductal adenocarcinoma cells, including suppression of the autophagy receptors NDP52 or p62, prolonged TBK1 activation and increased expression of CCL5, IL6, and several other T-cell and neutrophil chemotactic cytokines in vitro Defective autophagy also promoted PD-L1 upregulation, which is particularly pronounced downstream of IFNγ signaling and involves JAK pathway activation. Treatment with the TBK1/IKKε/JAK inhibitor CYT387 (also known as momelotinib) not only inhibits autophagy, but also suppresses this feedback inflammation and reduces PD-L1 expression, limiting KRAS-driven pancreatic dysplasia. These findings could contribute to the dual role of autophagy in oncogenesis and have important consequences for its therapeutic targeting. Cancer Immunol Res; 4(6); 520-30. ©2016 AACR. PMID:27068336

  5. Autophagy: A Potential Link between Obesity and Insulin Resistance

    NARCIS (Netherlands)

    P. Codogno; A.J. Meijer

    2010-01-01

    Dysregulation of autophagy contributes to aging and to diseases such as neurodegeneration, cardiomyopathy, and cancer. The paper by Yang et al. (2010) in this issue of Cell Metabolism indicates that defective autophagy may also underlie impaired insulin sensitivity in obesity and that upregulating a

  6. Autophagy in RAW264.7 Cells Treated with Surface-Functionalized Graphene Oxides

    Directory of Open Access Journals (Sweden)

    Chang Seok Park

    2015-01-01

    Full Text Available This study investigated cytotoxicity, particularly autophagy, in RAW264.7 cells exposed to graphene oxide (GO and its derivatives (dodecylamine-GO (DA-GO, reduced GO (rGO, and sodium dodecyl sulfate-rGO (SDS-rGO. Appearance of amine stretching bands, out-of-plane C-H stretching vibrations, and S=O stretching bands in infrared spectra indicated the formation of DA-GO, rGO, and SDS-rGO, respectively. Light microscopy and microculture tetrazolium assay showed that all the GO types exerted cytotoxic effects on RAW264.7 cells in a concentration-dependent manner. Higher concentrations of the GO types downregulated the expression of PU.1, a unique transcription factor in monocytes and macrophages, and decreased the conversion of LC3A/B-I to LC3A/B-II, suggesting that PU.1 was associated with autophagy in RAW264.7 cells. These results suggested that surface-functionalized GOs exerted cytotoxic effects in a concentration-dependent manner by changing the expression of critical genes and inducing autophagy in macrophages.

  7. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury

    Science.gov (United States)

    Gao, Shuang; Zhang, Zhong-ming; Shen, Zhao-liang; Gao, Kai; Chang, Liang; Guo, Yue; Li, Zhuo; Wang, Wei; Wang, Ai-mei

    2016-01-01

    Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14–42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function.

  8. Dysregulation of the Autophagy-Endolysosomal System in Amyotrophic Lateral Sclerosis and Related Motor Neuron Diseases

    Directory of Open Access Journals (Sweden)

    Asako Otomo

    2012-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a heterogeneous group of incurable motor neuron diseases (MNDs characterized by a selective loss of upper and lower motor neurons in the brain and spinal cord. Most cases of ALS are sporadic, while approximately 5–10% cases are familial. More than 16 causative genes for ALS/MNDs have been identified and their underlying pathogenesis, including oxidative stress, endoplasmic reticulum stress, excitotoxicity, mitochondrial dysfunction, neural inflammation, protein misfolding and accumulation, dysfunctional intracellular trafficking, abnormal RNA processing, and noncell-autonomous damage, has begun to emerge. It is currently believed that a complex interplay of multiple toxicity pathways is implicated in disease onset and progression. Among such mechanisms, ones that are associated with disturbances of protein homeostasis, the ubiquitin-proteasome system and autophagy, have recently been highlighted. Although it remains to be determined whether disease-associated protein aggregates have a toxic or protective role in the pathogenesis, the formation of them results from the imbalance between generation and degradation of misfolded proteins within neuronal cells. In this paper, we focus on the autophagy-lysosomal and endocytic degradation systems and implication of their dysfunction to the pathogenesis of ALS/MNDs. The autophagy-endolysosomal pathway could be a major target for the development of therapeutic agents for ALS/MNDs.

  9. Biochemical Analysis of Autophagy in Algae and Plants by Monitoring the Electrophoretic Mobility of ATG8.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Crespo, José L

    2016-01-01

    Identification of specific autophagy markers has been fundamental to investigate autophagy as catabolic process. Among them, the ATG8 protein turned out to be one of the most widely used and specific molecular markers of autophagy both in higher and lower eukaryotes. Here, we describe how ATG8 can be used to monitor autophagy in Chlamydomonas and Arabidopsis by western blot analysis. PMID:27424752

  10. Autophagy: Friend or Foe in Breast Cancer Development, Progression, and Treatment

    Directory of Open Access Journals (Sweden)

    Damian E. Berardi

    2011-01-01

    Although autophagy inhibition, combined with anticancer agents, could be therapeutically beneficial in some cases, autophagy induction by itself could lead to cell death in some apoptosis-resistant cancers, indicating that autophagy induction may also be used as a therapy. This paper summarizes the most important findings described in the literature about autophagy and also discusses the importance of this process in clinical settings.

  11. Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice.

    Science.gov (United States)

    Liu, Ying; Palanivel, Rengasamy; Rai, Esther; Park, Min; Gabor, Tim V; Scheid, Michael P; Xu, Aimin; Sweeney, Gary

    2015-01-01

    Numerous studies have characterized the antidiabetic effects of adiponectin, yet the precise cellular mechanisms in skeletal muscle, in particular, changes in autophagy, require further clarification. In the current study, we used a high-fat diet (HFD) to induce obesity and insulin resistance in wild-type (WT) or adiponectin knockout (Ad-KO) mice with and without adiponectin replenishment. Temporal analysis of glucose tolerance and insulin sensitivity using hyperinsulinemic-euglycemic clamp and muscle insulin receptor substrate and Akt phosphorylation demonstrated exaggerated and more rapid HFD-induced insulin resistance in skeletal muscle of Ad-KO mice. Superoxide dismutase activity, the reduced glutathione-to-glutathione disulfide ratio, and lipid peroxidation indicated that HFD-induced oxidative stress was corrected by adiponectin. Gene array analysis implicated several antioxidant enzymes, including Gpxs, Prdx, Sod, and Nox4, in mediating this effect. Adiponectin also attenuated palmitate-induced reactive oxygen species production in cultured myotubes and improved insulin-stimulated glucose uptake in primary muscle cells. Increased LC3-II and decreased p62 expression suggested that HFD induced autophagy in muscle of WT mice; however, these changes were not observed in Ad-KO mice. Replenishing adiponectin in Ad-KO mice increased LC3-II and Beclin1 and decreased p62 protein levels, induced fibroblast growth factor-21 expression, and corrected HFD-induced decreases in LC3, Beclin1, and ULK1 gene expression. In vitro studies examining changes in phospho-ULK1 (Ser555), LC3-II, and lysosomal enzyme activity confirmed that adiponectin directly induced autophagic flux in cultured muscle cells in an AMPK-dependent manner. We overexpressed an inactive mutant of Atg5 to create an autophagy-deficient cell model, and together with pharmacological inhibition of autophagy, demonstrated reduced insulin sensitivity under these conditions. In summary, adiponectin stimulated

  12. Opening new doors in autophagy research: Patrice Codogno.

    Science.gov (United States)

    Codogno, Patrice; Klionsky, Daniel J

    2016-06-01

    Patrice Codogno ( Fig. 1 ), one of the associate editors of Autophagy since it was established, is well known in the autophagy field, and has played a particularly important role in France, serving as the first president of Club Francophone de l'AuTophaGie (CFATG). Patrice's research career spans from the predominantly biochemical analyses that were commonly used in the 1980s to the molecular studies that are the primary focus of many labs currently studying autophagy today. Anyone who has met Patrice knows that he is modest, which means his contributions to autophagy and to promoting the careers of scientists globally, are underappreciated. In addition, there is a fun-loving side to Patrice that is often hidden to the casual observer, and it is time to share some of his personality and thoughts with the rest of the autophagy community. PMID:27158743

  13. Role of autophagy in the regulation of epithelial cell junctions.

    Science.gov (United States)

    Nighot, Prashant; Ma, Thomas

    2016-01-01

    Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions. PMID:27583189

  14. Autophagy in Plants--What's New on the Menu?

    Science.gov (United States)

    Michaeli, Simon; Galili, Gad; Genschik, Pascal; Fernie, Alisdair R; Avin-Wittenberg, Tamar

    2016-02-01

    Autophagy is a major cellular degradation pathway in eukaryotes. Recent studies have revealed the importance of autophagy in many aspects of plant life, including seedling establishment, plant development, stress resistance, metabolism, and reproduction. This is manifested by the dual ability of autophagy to execute bulk degradation under severe environmental conditions, while simultaneously to be highly selective in targeting specific compartments and protein complexes to regulate key cellular processes, even during favorable growth conditions. Delivery of cellular components to the vacuole enables their recycling, affecting the plant metabolome, especially under stress. Recent research in Arabidopsis has further unveiled fundamental mechanistic aspects in autophagy which may have relevance in non-plant systems. We review the most recent discoveries concerning autophagy in plants, touching upon all these aspects. PMID:26598298

  15. Modulation of Autophagy-Like Processes by Tumor Viruses

    Directory of Open Access Journals (Sweden)

    Karl Munger

    2012-06-01

    Full Text Available Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.

  16. Skeletal muscle homeostasis in Duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy

    Directory of Open Access Journals (Sweden)

    Clara eDe Palma

    2014-07-01

    Full Text Available Muscular dystrophies are a group of genetic and heterogeneous neuromuscular disorders characterised by the primary wasting of skeletal muscle. In Duchenne muscular dystrophy (DMD, the most severe form of these diseases, the mutations in the dystrophin gene lead to muscle weakness and wasting, exhaustion of muscular regenerative capacity and chronic local inflammation leading to substitution of myofibres by connective and adipose tissue. DMD patients suffer of continuous and progressive skeletal muscle damage followed by complete paralysis and death, usually by respiratory and/or cardiac failure. No cure is yet available, but several therapeutic approaches aiming at reversing the ongoing degeneration have been investigated in preclinical and clinical settings. The autophagy is an important proteolytic system of the cell and has a crucial role in the removal of proteins, aggregates and organelles. Autophagy is constantly active in skeletal muscle and its role in tissue homeostasis is complex: at high levels it can be detrimental and contribute to muscle wasting; at low levels it can cause weakness and muscle degeneration, due to the unchecked accumulation of damaged proteins and organelles. The causal relationship between DMD pathogenesis and dysfunctional autophagy has been recently investigated. At molecular levels, the Akt axis is one of the key disregulated pathways, although the molecular events are not completely understood.The aim of this review is to describe and discuss the clinical relevance of the recent advances dissecting autophagy and its signalling pathway in DMD. The picture might pave the way for the development of interventions that are able to boost muscle growth and/or prevent muscle wasting.

  17. Streptococcus pneumoniae induces pyroptosis through the regulation of autophagy in murine microglia.

    Science.gov (United States)

    Kim, Ji-Yun; Paton, James C; Briles, David E; Rhee, Dong-Kwon; Pyo, Suhkneung

    2015-12-29

    Streptococcus pneumoniae is responsible for significant mortality and morbidity worldwide and causes invasive pneumococcal diseases including pneumococcal meningitis. Pyroptosis is caspase-1-dependent inflammatory cell death and is known to be induced by various microbial infections. In the present study, we investigated the molecular mechanisms that regulate pyroptosis induced by S. pneumoniae in microglia. Our results revealed that S. pneumoniae induced pyroptosis through caspase-1 activation and IL-1β production. We also found that the activation of caspase-1 and the maturation of IL-1β and IL-18 in the S. pneumoniae-triggered pyroptotic cell death process were mediated by NLRP3 inflammasome. In addition, pneumococcal infection increased the expression of autophagy-related genes and induced autophagosome formation. We also showed that the inhibition of autophagy promoted pneumococcus-induced pyroptosis. Furthermore, ROS was generated by pneumococcal infection and inhibited caspase-1 activation within 4 h of infection. However, in the late phase of infection, IL-1β secretion and caspase-1-dependent cell death were induced by ROS. These results suggest that autophagy induction transiently delay pyroptosis induced by S. pneumoniae in microglia. Our study also revealed that the activation of caspase-1 and the production of IL-1β were induced by pneumolysin and that pneumolysin triggered pyroptosis in microglial cells. Similar to the in vitro results, S. pneumoniae induced caspase-1 activation and caspase-1-dependent cytokine maturation in the mouse meningitis model. Thus, the present data demonstrate that S. pneumoniae induces pyroptosis in murine microglia and that NLRP3 inflammasome is critical for caspase-1 activation during the process. Furthermore, the induction of autophagy could transiently protect microglia from pyroptosis. PMID:26683708

  18. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Santanu Bhattacharya

    Full Text Available GAIP interacting protein C terminus (GIPC is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  19. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease.

    Science.gov (United States)

    Son, Sung Min; Cha, Moon-Yong; Choi, Heesun; Kang, Seokjo; Choi, Hyunjung; Lee, Myung-Shik; Park, Sun Ah; Mook-Jung, Inhee

    2016-05-01

    The secretion of proteins that lack a signal sequence to the extracellular milieu is regulated by their transition through the unconventional secretory pathway. IDE (insulin-degrading enzyme) is one of the major proteases of amyloid beta peptide (Aβ), a presumed causative molecule in Alzheimer disease (AD) pathogenesis. IDE acts in the extracellular space despite having no signal sequence, but the underlying mechanism of IDE secretion extracellularly is still unknown. In this study, we found that IDE levels were reduced in the cerebrospinal fluid (CSF) of patients with AD and in pathology-bearing AD-model mice. Since astrocytes are the main cell types for IDE secretion, astrocytes were treated with Aβ. Aβ increased the IDE levels in a time- and concentration-dependent manner. Moreover, IDE secretion was associated with an autophagy-based unconventional secretory pathway, and depended on the activity of RAB8A and GORASP (Golgi reassembly stacking protein). Finally, mice with global haploinsufficiency of an essential autophagy gene, showed decreased IDE levels in the CSF in response to an intracerebroventricular (i.c.v.) injection of Aβ. These results indicate that IDE is secreted from astrocytes through an autophagy-based unconventional secretory pathway in AD conditions, and that the regulation of autophagy is a potential therapeutic target in addressing Aβ pathology. PMID:26963025

  20. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress.

    Science.gov (United States)

    Yang, Xiaochen; Srivastava, Renu; Howell, Stephen H; Bassham, Diane C

    2016-01-01

    Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress. PMID:26616142

  1. Disrupted cell cycle arrest and reduced proliferation in corneal fibroblasts from GCD2 patients: A potential role for altered autophagy flux

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung-il; Dadakhujaev, Shorafidinkhuja; Maeng, Yong-Sun; Ahn, So-yeon; Kim, Tae-im [Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Eung Kweon, E-mail: eungkkim@yuhs.ac [Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of); BK21 Plus Project for Medical Science and Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-01-02

    Highlights: • Reduced cell proliferation in granular corneal dystrophy type 2. • Abnormal cell cycle arrest by defective autophagy. • Decreased Cyclin A1, B1, and D1 in Atg7 gene knockout cells. • Increase in p16 and p27 expressions were observed in Atg7 gene knockout cells. - Abstract: This study investigates the role of impaired proliferation, altered cell cycle arrest, and defective autophagy flux of corneal fibroblasts in granular corneal dystrophy type 2 (GCD2) pathogenesis. The proliferation rates of homozygous (HO) GCD2 corneal fibroblasts at 72 h, 96 h, and 120 h were significantly lower (1.102 ± 0.027, 1.397 ± 0.039, and 1.527 ± 0.056, respectively) than those observed for the wild-type (WT) controls (1.441 ± 0.029, 1.758 ± 0.043, and 2.003 ± 0.046, respectively). Flow cytometry indicated a decreased G{sub 1} cell cycle progression and the accumulation of cells in the S and G{sub 2}/M phases in GCD2 cells. These accumulations were associated with decreased levels of Cyclin A1, B1, and E1, and increased expression of p16 and p27. p21 and p53 expression was also significantly lower in GCD2 cells compared to the WT. Interestingly, treatment with the autophagy flux inhibitor, bafilomycin A{sub 1}, resulted in similarly decreased Cyclin A1, B1, D1, and p53 expression in WT fibroblasts. Furthermore, similar findings, including a decrease in Cyclin A1, B1, and D1 and an increase in p16 and p27 expression were observed in autophagy-related 7 (Atg7; known to be essential for autophagy) gene knockout cells. These data provide new insight concerning the role of autophagy in cell cycle arrest and cellular proliferation, uncovering a number of novel therapeutic possibilities for GCD2 treatment.

  2. Disrupted cell cycle arrest and reduced proliferation in corneal fibroblasts from GCD2 patients: A potential role for altered autophagy flux

    International Nuclear Information System (INIS)

    Highlights: • Reduced cell proliferation in granular corneal dystrophy type 2. • Abnormal cell cycle arrest by defective autophagy. • Decreased Cyclin A1, B1, and D1 in Atg7 gene knockout cells. • Increase in p16 and p27 expressions were observed in Atg7 gene knockout cells. - Abstract: This study investigates the role of impaired proliferation, altered cell cycle arrest, and defective autophagy flux of corneal fibroblasts in granular corneal dystrophy type 2 (GCD2) pathogenesis. The proliferation rates of homozygous (HO) GCD2 corneal fibroblasts at 72 h, 96 h, and 120 h were significantly lower (1.102 ± 0.027, 1.397 ± 0.039, and 1.527 ± 0.056, respectively) than those observed for the wild-type (WT) controls (1.441 ± 0.029, 1.758 ± 0.043, and 2.003 ± 0.046, respectively). Flow cytometry indicated a decreased G1 cell cycle progression and the accumulation of cells in the S and G2/M phases in GCD2 cells. These accumulations were associated with decreased levels of Cyclin A1, B1, and E1, and increased expression of p16 and p27. p21 and p53 expression was also significantly lower in GCD2 cells compared to the WT. Interestingly, treatment with the autophagy flux inhibitor, bafilomycin A1, resulted in similarly decreased Cyclin A1, B1, D1, and p53 expression in WT fibroblasts. Furthermore, similar findings, including a decrease in Cyclin A1, B1, and D1 and an increase in p16 and p27 expression were observed in autophagy-related 7 (Atg7; known to be essential for autophagy) gene knockout cells. These data provide new insight concerning the role of autophagy in cell cycle arrest and cellular proliferation, uncovering a number of novel therapeutic possibilities for GCD2 treatment

  3. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China); Xia, Qiang, E-mail: xiaqiang1@yahoo.com.cn [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  4. 7-Ketocholesterol Induces Autophagy in Vascular Smooth Muscle Cells through Nox4 and Atg4B

    OpenAIRE

    He, Chaoyong; Zhu, Huaiping; Zhang, Wencheng; Okon, Imoh; Wang, Qilong; Li, Hongliang; Le, Yun-Zheng; Xie, Zhonglin

    2013-01-01

    Oxidized lipoproteins stimulate autophagy in advanced atherosclerotic plaques. However, the mechanisms underlying autophagy induction and the role of autophagy in atherogenesis remain to be determined. This study was designed to investigate the mechanisms by which 7-ketocholesterol (7-KC), a major component of oxidized lipoproteins, induces autophagy. This study was also designed to determine the effect of autophagy induction on apoptosis, a central event in the development of atherosclerosis...

  5. Lysosomes and autophagy in aquatic animals.

    Science.gov (United States)

    Moore, Michael N; Kohler, Angela; Lowe, David; Viarengo, Aldo

    2008-01-01

    The lysosomal-autophagic system appears to be a common target for many environmental pollutants, as lysosomes accumulate many toxic metals and organic xenobiotics, which perturb normal function and damage the lysosomal membrane. In fact, autophagic reactions frequently involving reduced lysosomal membrane integrity or stability appear to be effective generic indicators of cellular well-being in eukaryotes: in social amoebae (slime mold), mollusks and fish, autophagy/membrane destabilization is correlated with many stress and toxicological responses and pathological reactions. Prognostic use of adverse lysosomal and autophagic reactions to environmental pollutants can be used for predicting cellular dysfunction and health in aquatic animals, such as shellfish and fish, which are extensively used as sensitive bioindicators in monitoring ecosystem health; and also represent a significant food resource for at least 20% of the global human population. Explanatory frameworks for prediction of pollutant impact on health have been derived encompassing a conceptual mechanistic model linking lysosomal damage and autophagic dysfunction with injury to cells and tissues. Methods are described for tracking in vivo autophagy of fluorescently labeled cytoplasmic proteins, measuring degradation of radiolabeled intracellular proteins and morphometric measurement of lysosomal/cytoplasmic volume ratio. Additional methods for the determination of lysosomal membrane stability in lower animals are also described, which can be applied to frozen tissue sections, protozoans and isolated cells in vivo. Experimental and simulated results have also indicated that nutritional deprivation (analogous in marine mussels to caloric restriction)-induced autophagy has a protective function against toxic effects mediated by reactive oxygen species (ROS). Finally, coupled measurement of lysosomal-autophagic reactions and simulation modelling is proposed as a practical toolbox for predicting toxic

  6. Activation of p53 with Ilimaquinone and Ethylsmenoquinone, Marine Sponge Metabolites, Induces Apoptosis and Autophagy in Colon Cancer Cells

    OpenAIRE

    Hyun-Young Lee; Kyu Jin Chung; In Hyun Hwang; Jungsuk Gwak; Seoyoung Park; Bong Gun Ju; Eunju Yun; Dong-Eun Kim; Young-Hwa Chung; MinKyun Na; Gyu-Yong Song; Sangtaek Oh

    2015-01-01

    The tumor suppressor, p53, plays an essential role in the cellular response to stress through regulating the expression of genes involved in cell cycle arrest, apoptosis and autophagy. Here, we used a cell-based reporter system for the detection of p53 response transcription to identify the marine sponge metabolites, ilimaquinone and ethylsmenoquinone, as activators of the p53 pathway. We demonstrated that ilimaquinone and ethylsmenoquinone efficiently stabilize the p53 protein through promot...

  7. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes.

    Science.gov (United States)

    Shemi, Adva; Ben-Dor, Shifra; Vardi, Assaf

    2015-04-01

    Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance. PMID:25915714

  8. Canonical autophagy does not contribute to cellular radioresistance

    International Nuclear Information System (INIS)

    Background: (Pre)clinical studies indicate that autophagy inhibition increases response to anti-cancer therapies. Although promising, due to contradicting reports, it remains unclear if radiation therapy changes autophagy activity and if autophagy inhibition changes the cellular intrinsic radiosensitivity. Discrepancies may result from different assays and models through off-target effects and influencing other signaling routes. In this study, we directly compared the effects of genetic and pharmacological inhibition of autophagy after irradiation in human cancer cell lines. Materials and methods: Changes in autophagy activity after ionizing radiation (IR) were assessed by flux analysis in eight cell lines. Clonogenic survival, DNA damage (COMET-assay) and H2AX phosphorylation were assessed after chloroquine or 3-methyladenine pretreatment and after ATG7 or LC3b knockdown. Results: IR failed to induce autophagy and chloroquine failed to change intrinsic radiosensitivity of cells. Interestingly, 3-methyladenine and ATG7- or LC3b-deficiency sensitized cancer cells to irradiation. Surprisingly, the radiosensitizing effect of 3-methyladenine was also observed in ATG7 and LC3b deficient cells and was associated with attenuated γ-H2AX formation and DNA damage repair. Conclusion: Our data demonstrate that the anti-tumor effects of chloroquine are independent of changes in intrinsic radioresistance. Furthermore, ATG7 and LC3b support radioresistance independent of canonical autophagy that involves lysosomal degradation

  9. Targeting autophagy in cancer management – strategies and developments

    Directory of Open Access Journals (Sweden)

    Ozpolat B

    2015-09-01

    Full Text Available Bulent Ozpolat,1 Doris M Benbrook2 1Department of Experimental Therapeutics, The University of Texas – Houston, MD Anderson Cancer Center, Houston, TX, 2Department of Obstetrics and Gynecology, University of Oklahoma HSC, Oklahoma City, OK, USA Abstract: Autophagy is a highly regulated catabolic process involving lysosomal degradation of intracellular components, damaged organelles, misfolded proteins, and toxic aggregates, reducing oxidative stress and protecting cells from damage. The process is also induced in response to various conditions, including nutrient deprivation, metabolic stress, hypoxia, anticancer therapeutics, and radiation therapy to adapt cellular conditions for survival. Autophagy can function as a tumor suppressor mechanism in normal cells and dysregulation of this process (ie, monoallelic Beclin-1 deletion may lead to malignant transformation and carcinogenesis. In tumors, autophagy is thought to promote tumor growth and progression by helping cells to adapt and survive in metabolically-challenged and harsh tumor microenvironments (ie, hypoxia and acidity. Recent in vitro and in vivo studies in preclinical models suggested that modulation of autophagy can be used as a therapeutic modality to enhance the efficacy of conventional therapies, including chemo and radiation therapy. Currently, more than 30 clinical trials are investigating the effects of autophagy inhibition in combination with cytotoxic chemotherapies and targeted agents in various cancers. In this review, we will discuss the role, molecular mechanism, and regulation of autophagy, while targeting this process as a novel therapeutic modality, in various cancers. Keywords: autophagy inhibition, chemotherapy, tumor microenvironment

  10. Laser stimulation can activate autophagy in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Lan, Bei; Cao, Youjia [Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin (China); He, Hao, E-mail: haohe@tju.edu.cn [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2014-10-27

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca{sup 2+} dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  11. Laser stimulation can activate autophagy in HeLa cells

    Science.gov (United States)

    Wang, Yisen; Lan, Bei; He, Hao; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2014-10-01

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca2+ dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  12. Nanomaterials and Autophagy: New Insights in Cancer Treatment

    International Nuclear Information System (INIS)

    Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is involved in several diseases. Recent evidences support a relationship between several classes of nanomaterials and autophagy perturbation, both induction and blockade, in many biological models. In fact, the autophagic mechanism represents a common cellular response to nanomaterials. On the other hand, the dynamic nature of autophagy in cancer biology is an intriguing approach for cancer therapeutics, since during tumour development and therapy, autophagy has been reported to trigger both an early cell survival and a late cell death. The use of nanomaterials in cancer treatment to deliver chemotherapeutic drugs and target tumours is well known. Recently, autophagy modulation mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as adjuvant in chemotherapy or in the development of cancer vaccines or as a potential anti-cancer agent. Herein, we summarize the effects of nanomaterials on autophagic processes in cancer, also considering the therapeutic outcome of synergism between nanomaterials and autophagy to improve existing cancer therapies

  13. Regulation of autophagy in oxygen-dependent cellular stress.

    Science.gov (United States)

    Ryter, Stefan W; Choi, Augustine M K

    2013-01-01

    Oxidative stress caused by supraphysiological production of reactive oxygen species (ROS), can cause cellular injury associated with protein and lipid oxidation, DNA damage, and mitochondrial dysfunction. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of cell survival or cell death pathways. Recent studies suggest that autophagy, a cellular homeostatic process that governs the turnover of damaged organelles and proteins, may represent a general cellular and tissue response to oxidative stress. The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy may play multifunctional roles in cellular adaptation to stress, by maintaining mitochondrial integrity, and removing damaged proteins. Additionally, autophagy may play important roles in the regulation of inflammation and immune function. Modulation of the autophagic pathway has been reported in cell culture models of oxidative stress, including altered states of oxygen tension (i.e., hypoxia, hyperoxia), and exposure to oxidants. Furthermore, proteins that regulate autophagy may be subject to redox regulation. The heme oxygenase- 1 (HO)-1 enzyme system may have a role in the regulation of autophagy. Recent studies suggest that carbon monoxide (CO), a reaction product of HO activity which can alter mitochondrial function, may induce autophagy in cultured epithelial cells. In conclusion, current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. PMID:23092322

  14. The regulation of autophagy during exercise in skeletal muscle.

    Science.gov (United States)

    Vainshtein, Anna; Hood, David A

    2016-03-15

    The merits of exercise on muscle health and well-being are numerous and well documented. However, the mechanisms underlying the robust adaptations induced by exercise, particularly on mitochondria, are less clear and much sought after. Recently, an evolutionary conserved cellular recycling mechanism known as autophagy has been implicated in the adaptations to acute and chronic exercise. A basal level of autophagy is constantly ongoing in cells and tissues, ensuring cellular clearance and energy homeostasis. This pathway can be further induced, as a survival mechanism, by cellular perturbations, such as energetic imbalance and oxidative stress. During exercise, a biphasic autophagy response is mobilized, leading to both an acute induction and a long-term potentiation of the process. Posttranslational modifications arising from upstream signaling cascades induce an acute autophagic response during a single bout of exercise by mobilizing core autophagy machinery. A transcriptional program involving the regulators Forkhead box O, transcription factor EB, p53, and peroxisome proliferator coactivator-1α is also induced to fuel sustained increases in autophagic capacity. Autophagy has also been documented to mediate chronic exercise-induced metabolic benefits, and animal models in which autophagy is perturbed do not adapt to exercise to the same extent. In this review, we discuss recent developments in the field of autophagy and exercise. We specifically highlight the molecular mechanisms activated during acute exercise that lead to a prolonged adaptive response. PMID:26679612

  15. Nanomaterials and Autophagy: New Insights in Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Panzarini, Elisa; Inguscio, Valentina; Tenuzzo, Bernardetta Anna; Carata, Elisabetta; Dini, Luciana, E-mail: luciana.dini@unisalento.it [Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Lecce 73100 (Italy)

    2013-03-21

    Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is involved in several diseases. Recent evidences support a relationship between several classes of nanomaterials and autophagy perturbation, both induction and blockade, in many biological models. In fact, the autophagic mechanism represents a common cellular response to nanomaterials. On the other hand, the dynamic nature of autophagy in cancer biology is an intriguing approach for cancer therapeutics, since during tumour development and therapy, autophagy has been reported to trigger both an early cell survival and a late cell death. The use of nanomaterials in cancer treatment to deliver chemotherapeutic drugs and target tumours is well known. Recently, autophagy modulation mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as adjuvant in chemotherapy or in the development of cancer vaccines or as a potential anti-cancer agent. Herein, we summarize the effects of nanomaterials on autophagic processes in cancer, also considering the therapeutic outcome of synergism between nanomaterials and autophagy to improve existing cancer therapies.

  16. Autophagy in the immune response to tuberculosis: clinical perspectives.

    LENUS (Irish Health Repository)

    Ní Cheallaigh, C

    2011-06-01

    A growing body of evidence points to autophagy as an essential component in the immune response to tuberculosis. Autophagy is a direct mechanism of killing intracellular Mycobacterium tuberculosis and also acts as a modulator of proinflammatory cytokine secretion. In addition, autophagy plays a key role in antigen processing and presentation. Autophagy is modulated by cytokines; it is stimulated by T helper type 1 (Th1) cytokines such as tumour necrosis factor (TNF)-α and interferon (IFN)-γ, and is inhibited by the Th2 cytokines interleukin (IL)-4 and IL-13 and the anti-inflammatory cytokine IL-10. Vitamin D, via cathelicidin, can also induce autophagy, as can Toll-like receptor (TLR)-mediated signals. Autophagy-promoting agents, administered either locally to the lungs or systemically, could have a clinical application as adjunctive treatment of drug-resistant and drug-sensitive tuberculosis. Moreover, vaccines which effectively induce autophagy could be more successful in preventing acquisition or reactivation of latent tuberculosis.

  17. Laser stimulation can activate autophagy in HeLa cells

    International Nuclear Information System (INIS)

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca2+ dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  18. Function of Autophagy in Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Czaja, Mark J

    2016-05-01

    Autophagy is a lysosomal degradative pathway that functions to promote cell survival by supplying energy in times of stress or by removing damaged organelles and proteins after injury. The involvement of autophagy in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) was first suggested by the finding that this pathway mediates the breakdown of intracellular lipids in hepatocytes and therefore may regulate the development of hepatic steatosis. Subsequent studies have demonstrated additional critical functions for autophagy in hepatocytes and other hepatic cell types such as macrophages and stellate cells that regulate insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. These findings suggest a number of possible mechanistic roles for autophagy in the development of NAFLD and progression to NASH and its complications. The functions of autophagy in the liver, together with findings of decreased hepatic autophagy in association with conditions that predispose to NAFLD such as obesity and aging, suggest that autophagy may be a novel therapeutic target in this disease. PMID:26725058

  19. Nrf2 signalling and autophagy are involved in diabetes mellitus-induced defects in the development of mouse placenta

    Science.gov (United States)

    Han, Sha-sha; Jin, Ya; Li, He; Wu, Xia; Ma, Zheng-lai; cheng, Xin; Tang, Xiuwen

    2016-01-01

    It is widely accepted that diabetes mellitus impairs placental development, but the mechanism by which the disease operates to impair development remains controversial. In this study, we demonstrated that pregestational diabetes mellitus (PGDM)-induced defects in placental development in mice are mainly characterized by the changes of morphological structure of placenta. The alteration of differentiation-related gene expressions in trophoblast cells rather than cell proliferation/apoptosis is responsible for the phenotypes found in mouse placenta. Meanwhile, excess reactive oxygen species (ROS) production and activated nuclear factor erythroid2-related factor 2 (Nrf2) signalling were observed in the placenta of mice suffering from PGDM. Using BeWo cells, we also demonstrated that excess ROS was produced and Nrf2 signalling molecules were activated in settings characterized by a high concentration of glucose. More interestingly, differentiation-related gene expressions in trophoblast cells were altered when endogenous Nrf2 expression is manipulated by transfecting Nrf2-wt or Nrf2-shRNA. In addition, PGDM interferes with autophagy in both mouse placenta and BeWo cells, implying that autophagy is also involved, directly or indirectly, in PGDM-induced placental phenotypes. Therefore, we revealed that dysfunctional oxidative stress-activated Nrf2 signalling and autophagy are probably responsible for PGDM-induced defects in the placental development of mice. The mechanism was through the interference with differentiation-related gene expression in trophoblast cells. PMID:27383629

  20. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  1. Autophagy: a new target for nonalcoholic fatty liver disease therapy

    Directory of Open Access Journals (Sweden)

    Mao YQ

    2016-03-01

    Full Text Available Yuqing Mao,1 Fujun Yu,1 Jianbo Wang,2 Chuanyong Guo,3 Xiaoming Fan1 1Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, 2Department of Gastroenterology and Hepatology, The Central Hospital of Lishui City, Wenzhou Medical University, Zhejiang, 3Department of Gastroenterology and Hepatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China Abstract: Nonalcoholic fatty liver disease (NAFLD has gained importance in recent decades due to drastic changes in diet, especially in Western countries. NAFLD occurs as a spectrum from simple hepatic steatosis, steatohepatitis to cirrhosis, and even hepatocellular carcinoma. Although the molecular mechanisms underlying the development of NAFLD have been intensively investigated, many issues remain to be resolved. Autophagy is a cell survival mechanism for disposing of excess or defective organelles, and has become a hot spot for research. Recent studies have revealed that autophagy is linked to the development of NAFLD and regulation of autophagy has therapeutic potential. Autophagy reduces intracellular lipid droplets by enclosing them and fusing with lysosomes for degradation. Furthermore, autophagy is involved in attenuating inflammation and liver injury. However, autophagy is regarded as a double-edged sword, as it may also affect adipogenesis and adipocyte differentiation. Moreover, it is unclear as to whether autophagy protects the body from injury or causes diseases and even death, and the association between autophagy and NAFLD remains controversial. This review is intended to discuss, comment, and outline the progress made in this field and establish the possible molecular mechanism involved. Keywords: nonalcoholic fatty liver disease, autophagy, steatosis, steatohepatitis, fibrosis, carcinogenesis

  2. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  3. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy.

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    Full Text Available Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence

  4. The putative role of proteolytic pathways in the pathogenesis of Type 1 diabetes mellitus: the 'autophagy' hypothesis.

    Science.gov (United States)

    Fierabracci, Alessandra

    2014-05-01

    Autoimmune diseases are a heterogeneous group of disorders affecting different organs and tissues. New tools, such as genome-wide association studies, have provided evidence for new susceptibility loci and candidate genes in the disease process including common susceptibility genes involved in the immunological synapse and T cell activation. Close linkages have been found in a number of diseases, including ankylosing spondylitis, multiple sclerosis, Crohn's disease and insulin-dependent diabetes mellitus (Type 1 diabetes mellitus). Evidence for some association with Type 1 diabetes was previously found in the region containing 5q15/ERAP1 (endoplasmic reticulum aminopeptidase 1) (rs30187, ARTS1). Recent data suggest that in eukaryotic cells in addition to the ubiquitin/proteasome system another proteolytic pathway may have a significant role in the autoimmunity process, i.e. the autophagic pathway which constitutes the principal regulated catabolic process mediated by lysosomes. Autophagy could play a role in MHC class I and class II self-antigen presentation at the basis of the autoimmunity process. Furthermore cross-talk among different proteolytic pathways was recently highlighted i.e. components processed in the ubiquitin/proteasome system possibly engaged in autophagic pathways. T1D is an autoimmune disease characterised by the destruction of pancreatic beta cells by autoreactive T cells. Immunological abnormalities can precede months to years the initial symptoms and clinical diagnosis. Our hypothesis suggests that in the autoimmune process autophagy can intervene at different levels, during the thymic selection process of T lymphocytes causing escape of autoreactive T cells, at the initiation stage of the disease, in the preclinical period or subsequently to the disease onset having a role at the level of perpetuation of the autoimmunity process. Supporting evidence derives from the already reported discovery of polymorphisms in autophagy-related genes in

  5. Role of autophagy in acute myeloid leukemia therapy

    Institute of Scientific and Technical Information of China (English)

    Su-Ping Zhang; Yu-Na Niu; Na Yuan; Ai-Hong Zhang; Dan Chao; Qiu-Ping Xu; Li-Jun Wang

    2013-01-01

    Despite its dual role in determining cell fate in a wide array of solid cancer cell lines,autophagy has been robustly shown to suppress or kill acute myeloid leukemia cells via degradation of the oncogenic fusion protein that drives leukemogenesis.However,autophagy also induces the demise of acute leukemia cells that do not express the known fusion protein,though the molecular mechanism remains elusive.Nevertheless,since it can induce cooperation with apoptosis and differentiation in response to autophagic signals,autophagy can be manipulated for a better therapy on acute myeloid leukemia.

  6. Autophagy in HCV Infection: Keeping Fat and Inflammation at Bay

    Directory of Open Access Journals (Sweden)

    Tiziana Vescovo

    2014-01-01

    Full Text Available Hepatitis C virus (HCV infection is one of the main causes of chronic liver disease. Viral persistence and pathogenesis rely mainly on the ability of HCV to deregulate specific host processes, including lipid metabolism and innate immunity. Recently, autophagy has emerged as a cellular pathway, playing a role in several aspects of HCV infection. This review summarizes current knowledge on the molecular mechanisms that link the HCV life cycle with autophagy machinery. In particular, we discuss the role of HCV/autophagy interaction in dysregulating inflammation and lipid homeostasis and its potential for translational applications in the treatment of HCV-infected patients.

  7. Zymophagy: Selective Autophagy of Secretory Granules

    Directory of Open Access Journals (Sweden)

    Maria I. Vaccaro

    2012-01-01

    Full Text Available Timing is everything. That's especially true when it comes to the activation of enzymes created by the pancreas to break down food. Pancreatic enzymes are packed in secretory granules as precursor molecules called zymogens. In physiological conditions, those zymogens are activated only when they reach the gut, where they get to work releasing and distributing nutrients that we need to survive. If this process fails and the enzymes are prematurely activated within the pancreatic cell, before they are released from the gland, they break down the pancreas itself causing acute pancreatitis. This is a painful disease that ranges from a mild and autolimited process to a severe and lethal condition. Recently, we demonstrated that the pancreatic acinar cell is able to switch on a refined mechanism that could explain the autolimited form of the disease. This is a novel selective form of autophagy named zymophagy, a cellular process to specifically detect and degrade secretory granules containing activated enzymes before they can digest the organ. In this work, we revise the molecules and mechanisms that mediate zymophagy, a selective autophagy of secretory granules.

  8. ER stress, autophagy, and RNA viruses

    Directory of Open Access Journals (Sweden)

    Jia-Rong eJheng

    2014-08-01

    Full Text Available Endoplasmic reticulum (ER stress is a general term for representing the pathway by which various stimuli affect ER functions. ER stress induces the evolutionarily conserved signaling pathways, called the unfolded protein response (UPR, which compromises the stimulus and then determines whether the cell survives or dies. In recent years, ongoing research has suggested that these pathways may be linked to the autophagic response, which plays a key role in the cell’s response to various stressors. Autophagy performs a self-digestion function, and its activation protects cells against certain pathogens. However, the link between the UPR and autophagy may be more complicated. These two systems may act dependently, or the induction of one system may interfere with the other. Experimental studies have found that different viruses modulate these mechanisms to allow them to escape the host immune response or, worse, to exploit the host’s defense to their advantage; thus, this topic is a critical area in antiviral research. In this review, we summarize the current knowledge about how RNA viruses, including influenza virus, poliovirus, coxsackievirus, enterovirus 71, Japanese encephalitis virus, hepatitis C virus, and dengue virus, regulate these processes. We also discuss recent discoveries and how these will produce novel strategies for antiviral treatment.

  9. Adenovirus-mediated wild-type PTEN promoting glioma stem/progenitor cells autophagy activity

    Directory of Open Access Journals (Sweden)

    ZHAO Yao-dong

    2013-05-01

    Full Text Available Background PTEN is an anti-oncogene frequently inactivating in glioma. The previous study found that PTEN was closely related to cellular autophagy activity. The purpose of this paper is to study whether the inactivation of PTEN in glioma stem/progenitor cells (GSPCs is correlative with the low autophagic activity in GSPCs. Methods Wild-type PTEN genes were transferred into GSPCs mediated by adenovirus. The autophagic activity in GSPCs before or after the introduction of wild-type PTEN was detected by immunocytochemistry, electron microscopy, and Western blotting assay. Results After transfection of wild-type PTEN, a large number of microtuble-associated protein 1 light chain 3 (MAP1LC3-positive granules could be found in the cytoplasm of GSPCs under a confocal microscopy, and these granules were demonstrated to be autophagosomes under an electron microscope. Moreover, the expression of autophagy-related gene Beclin-1 significantly increased after the transfection of wild-type PTEN gene. Conclusion The inactivation of PTEN in GSPCs is one reason of the low autophagic activity of GSPCs.

  10. SPBP is a sulforaphane induced transcriptional coactivator of NRF2 regulating expression of the autophagy receptor p62/SQSTM1.

    Directory of Open Access Journals (Sweden)

    Sagar Ramesh Darvekar

    Full Text Available Organisms exposed to oxidative stress respond by orchestrating a stress response to prevent further damage. Intracellular levels of antioxidant agents increase, and damaged components are removed by autophagy induction. The KEAP1-NRF2 signaling pathway is the main pathway responsible for cell defense against oxidative stress and for maintaining the cellular redox balance at physiological levels. Sulforaphane, an isothiocyanate derived from cruciferous vegetables, is a potent inducer of KEAP1-NRF2 signaling and antioxidant response element driven gene expression. In this study, we show that sulforaphane enhances the expression of the transcriptional coregulator SPBP. The expression curve peaks 6-8 hours post stimulation, and parallels the sulforaphane-induced expression of NRF2 and the autophagy receptor protein p62/SQSTM1. Reporter gene assays show that SPBP stimulates the expression of p62/SQSTM1 via ARE elements in the promoter region, and siRNA mediated knock down of SPBP significantly decreases the expression of p62/SQSTM1 and the formation of p62/SQSTM1 bodies in HeLa cells. Furthermore, SPBP siRNA reduces the sulforaphane induced expression of NRF2, and the expression of the autophagy marker protein LC3B. Both these proteins contain ARE-like elements in their promoter regions. Over-expressed SPBP and NRF2 acts synergistically on the p62/SQSTM1 promoter and colocalize in nuclear speckles in HeLa cells. Collectively, these results suggest that SPBP is a coactivator of NRF2, and hence may be important for securing enhanced and sustained expression of NRF2 induced genes such as proteins involved in selective autophagy.

  11. Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mai-Britt Mosbech

    Full Text Available Ceramide and its metabolites constitute a diverse group of lipids, which play important roles as structural entities of biological membranes as well as regulators of cellular growth, differentiation, and development. The C. elegans genome comprises three ceramide synthase genes; hyl-1, hyl-2, and lagr-1. HYL-1 function is required for synthesis of ceramides and sphingolipids containing very long acyl-chains (≥C24, while HYL-2 is required for synthesis of ceramides and sphingolipids containing shorter acyl-chains (≤C22. Here we show that functional loss of HYL-2 decreases lifespan, while loss of HYL-1 or LAGR-1 does not affect lifespan. We show that loss of HYL-1 and LAGR-1 functions extend lifespan in an autophagy-dependent manner, as knock down of the autophagy-associated gene ATG-12 abolishes hyl-1;lagr-1 longevity. The transcription factors PHA-4/FOXA, DAF-16/FOXO, and SKN-1 are also required for the observed lifespan extension, as well as the increased number of autophagosomes in hyl-1;lagr-1 animals. Both autophagic events and the transcription factors PHA-4/FOXA, DAF-16, and SKN-1 have previously been associated with dietary restriction-induced longevity. Accordingly, we find that hyl-1;lagr-1 animals display reduced feeding, increased resistance to heat, and reduced reproduction. Collectively, our data suggest that specific sphingolipids produced by different ceramide synthases have opposing roles in determination of C. elegans lifespan. We propose that loss of HYL-1 and LAGR-1 result in dietary restriction-induced autophagy and consequently prolonged longevity.

  12. Autophagy as a Therapeutic Target in Cardiovascular Disease

    Science.gov (United States)

    Nemchenko, Andriy; Chiong, Mario; Turer, Aslan; Lavandero, Sergio; Hill, Joseph A.

    2011-01-01

    The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels – or perhaps distinct forms of autophagic flux – contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. PMID:21723289

  13. Autophagy in Skeletal Muscle Homeostasis and in Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2012-07-01

    Full Text Available Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis of skeletal muscles during physiological situations and in response to stress. Defective as well as excessive autophagy is harmful for muscle health and has a pathogenic role in several forms of muscle diseases. This review will focus on the role of autophagy in muscle homeostasis and diseases.

  14. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis

    OpenAIRE

    Kaushik, Susmita; Arias, Esperanza; Kwon, Hyokjoon; Lopez, Nuria Martinez; Athonvarangkul, Diana; Sahu, Srabani; Schwartz, Gary J.; Pessin, Jeffrey E.; Singh, Rajat

    2012-01-01

    Both selective loss of autophagy in POMC neurons and ageing decrease ?-melanocyte stimulating hormone levels, promoting adiposity, impairing lipolysis and altering glucose homeostasis. These effects can be pharmacologically alleviated, suggesting prevention strategies for obesity and metabolic syndrome.

  15. Autophagy: A new therapeutic target for liver fibrosis.

    Science.gov (United States)

    Mao, Yu-Qing; Fan, Xiao-Ming

    2015-08-01

    Hepatic fibrosis is a wound-healing response to liver injury and the result of imbalance of extracellular matrix (ECM) accumulation and degradation. The relentless production and progressive accumulation of ECM can lead to end-stage liver disease. Although significant progress has been achieved in elucidating the mechanisms of fibrogenesis, effective anti-fibrotic strategies are still lacking. Autophagy is an intracellular process of self-digestion of defective organelles to provide material recycling or energy for cell survival. Autophagy has been implicated in the pathophysiology of many human disorders including hepatic fibrosis. However, the exact relationships between autophagy and hepatic fibrosis are not totally clear and need further investigations. A new therapeutic target for liver fibrosis could be developed with a better understanding of autophagy. PMID:26261688

  16. Role of autophagy in liver physiology and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Autophagy is a highly conserved intracellular degradation pathway by which bulk cytoplasm and superfluous or damaged organelles are enveloped by double membrane structures termed autophagosomes. The autophago-somes then fuse with lysosomes for degradation of their contents, and the resulting amino acids can then recycle back to the cytosol. Autophagy is normally activated in response to nutrient deprivation and other stressors and occurs in all eukaryotes. In addition to maintaining energy and nutrient balance in the liver, it is now clear that autophagy plays a role in liver protein aggregates related diseases, hepatocyte cell death, steatohepatitis, hepatitis virus infection and hepatocellular carcinoma. In this review, I discuss the recent findings of autophagy with a focus on its role in liver pathophysiology.

  17. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.;

    2015-01-01

    and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...

  18. Methods for the Detection of Autophagy in Mammalian Cells.

    Science.gov (United States)

    Zhang, Ziyan; Singh, Rajat; Aschner, Michael

    2016-01-01

    Macroautophagy (hereafter referred to as autophagy) is a degradation pathway that delivers cytoplasmic materials to lysosomes via double-membraned vesicles designated autophagosomes. Cytoplasmic constituents are sequestered into autophagosomes, which subsequently fuse with lysosomes, where the cargo is degraded. Autophagy is a crucial mechanism involved in many aspects of cell function, including cellular metabolism and energy balance; alterations in autophagy have been linked to various human pathological processes. Thus, methods that accurately measure autophagic activity are necessary. In this unit, we introduce several approaches to analyze autophagy in mammalian cells, including immunoblotting analysis of LC3 and p62, detection of autophagosome formation by fluorescence microscopy, and monitoring autophagosome maturation by tandem mRFP-GFP fluorescence microscopy. Overall, we recommend a combined use of multiple methods to accurately assess the autophagic activity in any given biological setting. © 2016 by John Wiley & Sons, Inc. PMID:27479363

  19. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis.

    Science.gov (United States)

    Pun, Nirmala Tilija; Subedi, Amit; Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  20. Are mitochondrial reactive oxygen species required for autophagy?

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jianfei, E-mail: jjf73@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Maeda, Akihiro; Ji, Jing [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Baty, Catherine J.; Watkins, Simon C. [Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh (United States); Greenberger, Joel S. [Department of Radiation Oncology, University of Pittsburgh (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States)

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  1. Autophagy in Skeletal Muscle Homeostasis and in Muscular Dystrophies

    OpenAIRE

    Paolo Bonaldo; Paolo Grumati

    2012-01-01

    Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy) is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis o...

  2. Autophagy as a new therapeutic target in Duchenne muscular dystrophy

    OpenAIRE

    Palma, C.; F. Morisi; Cheli, S; S. Pambianco; Cappello, V; Vezzoli, M; Rovere-Querini, P; Moggio, M; Ripolone, M.; Francolini, M; Sandri, M.; Clementi, E

    2012-01-01

    A resolutive therapy for Duchene muscular dystrophy, a severe degenerative disease of the skeletal muscle, is still lacking. Because autophagy has been shown to be crucial in clearing dysfunctional organelles and in preventing tissue damage, we investigated its pathogenic role and its suitability as a target for new therapeutic interventions in Duchenne muscular dystrophy (DMD). Here we demonstrate that autophagy is severely impaired in muscles from patients affected by DMD and mdx mice, a mo...

  3. Hypoxic Preconditioning Alleviates Ethanol Neurotoxicity: the Involvement of Autophagy

    OpenAIRE

    Wang, Haiping; Bower, Kimberly A.; Frank, Jacqueline A.; Xu, Mei; Luo, Jia

    2013-01-01

    Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. A sublethal preconditioning has been proposed as a neuroprotective strategy against several central nervous system (CNS) neurodegenerative diseases. We have recently demonstrated that autophagy is a protective response to alleviate ethanol toxicity. A modest hypoxic preconditioning (1% oxygen) did not cause neurotoxicity but induced autophagy (Tzeng et al., 2010). We the...

  4. Are mitochondrial reactive oxygen species required for autophagy?

    International Nuclear Information System (INIS)

    Highlights: → Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. → Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. → Autophagy was detectable in mitochondrial DNA deficient ρ0 cells. → Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H2O2 was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient ρo HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  5. Epigenetic Regulation of Autophagy by the Methyltransferase G9a

    OpenAIRE

    Artal-Martinez de Narvajas, Amaia; Gomez, Timothy S.; Zhang, Jin-San; Mann, Alexander O.; Taoda, Yoshiyuki; Gorman, Jacquelyn A.; Herreros-Villanueva, Marta; Gress, Thomas M; Ellenrieder, Volker; Bujanda, Luis; Kim, Do-Hyung; Kozikowski, Alan P.; Koenig, Alexander; Billadeau, Daniel D.

    2013-01-01

    Macroautophagy is an evolutionarily conserved cellular process involved in the clearance of proteins and organelles. Although the cytoplasmic machinery that orchestrates autophagy induction during starvation, hypoxia, or receptor stimulation has been widely studied, the key epigenetic events that initiate and maintain the autophagy process remain unknown. Here we show that the methyltransferase G9a coordinates the transcriptional activation of key regulators of autophagosome formation by remo...

  6. Autophagy is essential for mouse sense of balance

    OpenAIRE

    Mariño García, Guillermo; Fernández Fernández, Álvaro; Cabrera Benítez, María Sandra; Cabanillas Farpón, Rubén; Francisco RODRÍGUEZ; Salvador Montoliu, Natalia; Fueyo Silva, Antonio Manuel; Lundberg, Yunxia W.; Vega Álvarez, José Antonio; Germanà, Antonino; Pérez Freije, José María; López Otín, Carlos

    2010-01-01

    Autophagy is an evolutionarily conserved process that is essential for cellular homeostasis and organismal viability in eukaryotes. However, the extent of its functions in higher-order processes of organismal physiology and behavior is still unknown. Here, we report that autophagy is essential for the maintenance of balance in mice and that its deficiency leads to severe balance disorders. We generated mice deficient in autophagin-1 protease (Atg4b) and showed that they had substantial system...

  7. Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy

    OpenAIRE

    Tom Verfaillie; Maria Salazar; Guillermo Velasco; Patrizia Agostinis

    2010-01-01

    Different physiological and pathological conditions can perturb protein folding in the endoplasmic reticulum, leading to a condition known as ER stress. ER stress activates a complex intracellular signal transduction pathway, called unfolded protein response (UPR). The UPR is tailored essentially to reestablish ER homeostasis also through adaptive mechanisms involving the stimulation of autophagy. However, when persistent, ER stress can switch the cytoprotective functions of UPR and autophagy...

  8. Obesity, autophagy and the pathogenesis of liver and pancreatic cancers

    OpenAIRE

    Aghajan, Mariam; Ning LI; Karin, Michael

    2012-01-01

    Liver and pancreatic cancers are both highly lethal diseases with limited to no therapeutic options for patients. Recent studies suggest that deregulated autophagy plays a role in the pathogenesis of these diseases by perturbing cellular homeostasis and laying the foundation for disease development. While accumulation of p62 upon impaired autophagy has been implicated in hepatocellular carcinoma, it’s role in pancreatic adenocarcinoma remains less clear. This review will focus on recent studi...

  9. Autophagy Inhibition to Increase Radiosensitization in Breast Cancer

    OpenAIRE

    Liang, Diana Hwang; El-Zein, Randa; Dave, Bhuvanesh

    2015-01-01

    Currently, many breast cancer patients with localized breast cancer undergo breast-conserving therapy, consisting of local excision followed by radiation therapy. Following radiation therapy, breast cancer cells are noted to undergo induction of autophagy, development of radioresistance, and enrichment of breast cancer stem cell subpopulations. It is hypothesized that inhibition of the cytoprotective autophagy that arises following radiation therapy increases radiosensitivity and confers long...

  10. Autophagy in herpesvirus immune control and immune escape

    OpenAIRE

    Taylor, G. S.; Mautner, J.; Münz, C

    2011-01-01

    Autophagy delivers cytoplasmic constituents for lysosomal degradation, and thereby facilitates pathogen degradation and pathogen fragment loading onto MHC molecules for antigen presentation to T cells. Herpesviruses have been used to demonstrate these novel functions of autophagy, which previously has been primarily appreciated for its pro-survival role during starvation. In this review, we summarize recent findings how macroautophagy restricts herpesvirus infections directly, how macroautoph...

  11. Targeting autophagy in cancer management – strategies and developments

    International Nuclear Information System (INIS)

    Autophagy is a highly regulated catabolic process involving lysosomal degradation of intracellular components, damaged organelles, misfolded proteins, and toxic aggregates, reducing oxidative stress and protecting cells from damage. The process is also induced in response to various conditions, including nutrient deprivation, metabolic stress, hypoxia, anticancer therapeutics, and radiation therapy to adapt cellular conditions for survival. Autophagy can function as a tumor suppressor mechanism in normal cells and dysregulation of this process (ie, monoallelic Beclin-1 deletion) may lead to malignant transformation and carcinogenesis. In tumors, autophagy is thought to promote tumor growth and progression by helping cells to adapt and survive in metabolically-challenged and harsh tumor microenvironments (ie, hypoxia and acidity). Recent in vitro and in vivo studies in preclinical models suggested that modulation of autophagy can be used as a therapeutic modality to enhance the efficacy of conventional therapies, including chemo and radiation therapy. Currently, more than 30 clinical trials are investigating the effects of autophagy inhibition in combination with cytotoxic chemotherapies and targeted agents in various cancers. In this review, we will discuss the role, molecular mechanism, and regulation of autophagy, while targeting this process as a novel therapeutic modality, in various cancers

  12. The role of autophagy in microbial infection and immunity

    Directory of Open Access Journals (Sweden)

    Desai M

    2015-01-01

    Full Text Available Mayura Desai,1 Rong Fang,2 Jiaren Sun11Department of Microbiology and Immunology, 2Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USAAbstract: The autophagy pathway represents an evolutionarily conserved cell recycling process that is activated in response to nutrient deprivation and other stress signals. Over the years, it has been linked to an array of cellular functions. Equally, a wide range of cell-intrinsic, as well as extracellular, factors have been implicated in the induction of the autophagy pathway. Microbial infections represent one such factor that can not only activate autophagy through specific mechanisms but also manipulate the response to the invading microbe's advantage. Moreover, in many cases, particularly among viruses, the pathway has been shown to be intricately involved in the replication cycle of the pathogen. Conversely, autophagy also plays a role in combating the infection process, both through direct destruction of the pathogen and as one of the key mediating factors in the host defense mechanisms of innate and adaptive immunity. Further, the pathway also plays a role in controlling the pathogenesis of infectious diseases by regulating inflammation. In this review, we discuss various interactions between pathogens and the cellular autophagic response and summarize the immunological functions of the autophagy pathway.Keywords: autophagy, xenophagy, antiviral, antibacterial

  13. Role of autophagy in prion protein-induced neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Hao Yao; Deming Zhao; Sher Hayat Khan; Lifeng Yang

    2013-01-01

    Prion diseases,characterized by spongiform degeneration and the accumulation of misfolded and aggregated PrPSc in the central nervous system,are one of fatal neurodegenerative and infectious disorders of humans and animals.In earlier studies,autophagy vacuoles in neurons were frequently observed in neurodegenerative diseases such as Alzheimer's,Parkinson's,and Huntington's diseases as well as prion diseases.Autophagy is a highly conserved homeostatic process by which several cytoplasmic components (proteins or organelles) are sequestered in a doublemembrane-bound vesicle termed 'autophagosome' and degraded upon their fusion with lysosome.The pathway of intercellular self-digestion at basal physiological levels is indispensable for maintaining the healthy status of tissues and organs.In case of prion infection,increasing evidence indicates that autophagy has a crucial ability of eliminating pathological PrPSc accumulated within neurons.In contrast,autophagy dysfunction in affected neurons may contribute to the formation of spongiform changes.In this review,we summarized recent findings about the effect of mammalian autophagy in neurodegenerative disorders,particularly in prion diseases.We also summarized the therapeutic potential of some small molecules (such as lithium,rapamycin,Sirtuin 1 and resveratrol) targets to mitigate such diseases on brain function.Furthermore,we discussed the controversial role of autophagy,whether it mediates neuronal toxicity or serves a protective function in neurodegenerative disorders.

  14. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pérez-Martín, Marta; Blaby-Haas, Crysten E; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K; Merchant, Sabeeha S; Crespo, José L

    2015-09-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis. PMID:26163317

  15. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  16. Targeting Protective Autophagy Exacerbates UV-Triggered Apoptotic Cell Death

    Directory of Open Access Journals (Sweden)

    Shih-Hwa Chiou

    2012-01-01

    Full Text Available Autophagy is activated by various stresses, including DNA damage, and previous studies of DNA damage-induced autophagy have focused on the response to chemotherapeutic drugs, ionizing radiation, and reactive oxygen species. In this study, we investigated the biological significance of autophagic response to ultraviolet (UV irradiation in A549 and H1299 cells. Our results indicated that UV induces on-rate autophagic flux in these cells. Autophagy inhibition resulting from the knockdown of beclin-1 and Atg5 reduced cell viability and enhanced apoptosis. Moreover, we found that ATR phosphorylation was accompanied by microtubule-associated protein 1 light chain 3B II (LC3B-II expression during the early phases following UV irradiation, which is a well-established inducer of ATR. Knocking down ATR further attenuated the reduction in LC3B-II at early stages in response to UV treatment. Despite the potential role of ATR in autophagic response, reduced ATR expression does not affect autophagy induction during late phases (24 and 48 h after UV treatment. The result is consistent with the reduced ATR phosphorylation at the same time points and suggests that autophagic response at this stage is activated via a distinct pathway. In conclusion, this study demonstrated that autophagy acts as a cytoprotective mechanism against UV-induced apoptosis and that autophagy induction accompanied with apoptosis at late stages is independent of ATR activation.

  17. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  18. Protective Effects of Gastrodin Against Autophagy-Mediated Astrocyte Death.

    Science.gov (United States)

    Wang, Xin-Shang; Tian, Zhen; Zhang, Nan; Han, Jing; Guo, Hong-Liang; Zhao, Ming-Gao; Liu, Shui-Bing

    2016-03-01

    Gastrodin is an active ingredient derived from the rhizome of Gastrodia elata. This compound is usually used to treat convulsive illness, dizziness, vertigo, and headache. This study aimed to investigate the effect of gastrodin on the autophagy of glial cells exposed to lipopolysaccharides (LPS, 1 µg/mL). Autophagy is a form of programmed cell death, although it also promotes cell survival. In cultured astrocytes, LPS exposure induced excessive autophagy and apoptosis, which were significantly prevented by the pretreatment cells with gastrodin (10 μM). The protective effects of gastrodin via autophagy inhibition were verified by the decreased levels of LC3-II, P62, and Beclin-1, which are classical markers for autophagy. Furthermore, gastrodin protected astrocytes from apoptosis through Bcl-2 and Bax signaling pathway. The treatment of astrocytes with rapamycin (500 nM), wortmannin (100 nM), and LY294002 (10 μM), which are inhibitors of mTOR and PI3K, respectively, eliminated the known effects of gastrodin on the inhibited Beclin-1 expression. Furthermore, gastrodin blocked the down-regulation of glutamine synthetase induced by LPS exposure in astrocytes. Our results suggest that gastrodin can be used as a preventive agent for the excessive autophagy induced by LPS. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26643508

  19. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-MYC dephosphorylation and degradation

    Science.gov (United States)

    Cianfanelli, Valentina; Fuoco, Claudia; Lorente, Mar; Salazar, Maria; Quondamatteo, Fabio; Gherardini, Pier Federico; De Zio, Daniela; Nazio, Francesca; Antonioli, Manuela; D’Orazio, Melania; Skobo, Tatjana; Bordi, Matteo; Rohde, Mikkel; Dalla Valle, Luisa; Helmer-Citterich, Manuela; Gretzmeier, Christine; Dengjel, Joern; Fimia, Gian Maria; Piacentini, Mauro; Di Bartolomeo, Sabrina; Velasco, Guillermo; Cecconi, Francesco

    2016-01-01

    Inhibition of a main regulator of cell metabolism, the protein kinase mTOR, induces autophagy and inhibits cell proliferation. However, the molecular pathways involved in the cross-talk between these two mTOR-dependent cell processes are largely unknown. Here we show that the scaffold protein AMBRA1, a member of the autophagy signalling network and a downstream target of mTOR, regulates cell proliferation by facilitating the dephosphorylation and degradation of the proto-oncogene C-MYC. We found that AMBRA1 favors the interaction between C-MYC and its phosphatase PP2A and that, when mTOR is inhibited, it enhances PP2A activity on this specific target, thereby reducing the cell division rate. As expected, such a de-regulation of C-MYC correlates with increased tumorigenesis in AMBRA1-defective systems, thus supporting a role for AMBRA1 as a haploinsufficient tumour suppressor gene. PMID:25438055

  20. miR-30b inhibits autophagy to alleviate hepatic ischemia-reperfusion injury via decreasing the Atg12-Atg5 conjugate

    Science.gov (United States)

    Li, Shi-Peng; He, Jin-Dan; Wang, Zhen; Yu, Yao; Fu, Shu-Yu; Zhang, Hai-Ming; Zhang, Jian-Jun; Shen, Zhong-Yang

    2016-01-01

    AIM: To explore the role and potential mechanism of miR-30b regulation of autophagy in hepatic ischemia-reperfusion injury (IRI). METHODS: An animal model of hepatic IRI was generated in C57BL/6 mice. For in vitro studies, AML12 cells were immersed in mineral oil for 1 h and then cultured in complete Dulbecco’s Modified Eagle’s Medium (DMEM)/F12 to simulate IRI. Mice and cells were transfected with miR-30b agomir/mimics or antagomir/inhibitor to examine the effect of miR-30b on autophagy to promote hepatic IRI. The expression of miR-30b was measured by real-time polymerase chain reaction. Apoptotic cells were detected by terminal uridine nick-end labeling (TUNEL) staining, and cell viability was detected by methylthiazole tetrazolium assay. The expression of light chain 3, autophagy-related gene (Atg)12, Atg5, P62, and caspase-3 were detected by western blotting analysis. RESULTS: miR-30b levels were significantly downregulated after hepatic IRI, and the numbers of autophagosomes were increased in response to IRI both in vivo and in vitro. These findings demonstrate that low levels of miR-30b could promote hepatic IRI. Furthermore, we found that miR-30b interacted with Atg12-Atg5 conjugate by binding to Atg12. Overexpression of miR-30b diminished Atg12 and Atg12-Atg5 conjugate levels, which promoted autophagy in response to IR. In contrast, downregulation of miR-30b was associated with increased Atg12-Atg5 conjugate levels and increased autophagy. CONCLUSION: miR-30b inhibited autophagy to alleviate hepatic ischemia-reperfusion injury via decreasing the Atg12-Atg5 conjugate. PMID:27182160

  1. Oxidative Stress and Autophagy Responses of Osteocytes Exposed to Spaceflight-like Radiation.

    Science.gov (United States)

    Tahimic, Candice; Rael, Victoria E.; Globus, Ruth K.

    2015-01-01

    Weightlessness and radiation, two of the unique elements of the space environment, causes a profound decrement in bone mass that mimics aging. This bone loss is thought to result from increased activity of bone-resorbing osteoclasts and functional changes in bone-forming osteoblasts, cells that give rise to mature osteocytes. Our current understanding of the signaling factors and mechanisms underlying bone loss is incomplete. However, it is known that oxidative stress, characterized by the excess production of free radicals, is elevated during radiation exposure. The goals of this study is to examine the response of osteocytes to spaceflight-like radiation and to identify signaling processes that may be targeted to mitigate bone loss in scenarios of space exploration, earth-based radiotherapy and accidental radiation exposure. We hypothesize that (1) oxidative stress, as induced by radiation, decreases osteocyte survival and increases pro-osteoclastogenic signals and that (2) autophagy is one of the key cellular defenses against oxidative stress. Autophagy is the process by which cellular components including organelles and proteins are broken down and recycled. To test our hypothesis, we exposed the osteocyte-like cell line, MLO-Y4, to 0.5, 1, and 2 Gy of simulated space radiation (Iron-56 radiation at 600 MeV/n) and assessed cell numbers, cell growth-associated molecules as well as markers of autophagy and oxidative stress at various time points post-irradiation. We observed a reduction in cell numbers in the groups exposed to 1 and 2 Gy of Iron-56 radiation. Collectively, flow cytometry and gene expression analysis revealed that radiation caused a shift in cell cycle distribution consistent with growth arrest. Compared to sham-treatment, 2 Gy of Iron-56 increased FoxO3, SOD1, and RANKL gene expression yet unexpectedly decreased LC3B-II protein levels at 4 and 24 hours post-IR. Taken together, these findings suggest that simulated space radiation invoke

  2. Antitumor effect of matrine in human hepatoma G2 cells by inducing apoptosis and autophagy

    Directory of Open Access Journals (Sweden)

    Jun-Qiang Zhang, Yu-Min Li, Tao Liu, Wen-Ting He, Ying-Tai Chen, Xiao-Hui Chen, Xun Li, Wen-Ce Zhou, Jian-Feng Yi, Zhi-Jian Ren

    2010-09-01

    fluorescent density was higher and the number of MDC-labeled particles in HepG2 cells was greater in matrine treatment group than in control group. Fewer autophagic vacuoles were observed in the combined 3-MA and matrine treatment group when 3-MA was added before matrine treatment, indicating that both autophagy and apoptosis are activated when matrine-induced death of hepatoma G2 cells occurs. Real-time quantitative RT-PCR revealed that the expression levels of Bax gene, an apoptosis-related molecule, and Beclin 1 gene which plays a key role in autophagy were higher in matrine treatment group than in control group, indicating that Beclin 1 is involved in matrine-induced autophagy and the pro-apoptotic mechanism of matrine may be related to its upregulation of Bax expression.CONCLUSION: Matrine has potent antitumor activities in HepG2 cells and may be used as a novel effective reagent in treatment of hepatocellular carcinoma.

  3. Survival by self-destruction: A role for autophagy in the placenta?

    OpenAIRE

    Bildirici, I; Longtine, MS; B. Chen; Nelson, DM

    2012-01-01

    Autophagy is a burgeoning area of research from yeast to humans. Although previously described as a death pathway, autophagy is now considered an important survival phenomenon in response to environmental stressors to which most organs are exposed.

  4. Transient overexpression of Werner protein rescues starvation induced autophagy in Werner syndrome cells.

    Science.gov (United States)

    Maity, Jyotirindra; Bohr, Vilhelm A; Laskar, Aparna; Karmakar, Parimal

    2014-12-01

    Reduced autophagy may be associated with normal and pathological aging. Here we report a link between autophagy and Werner protein (WRNp), mutated in Werner syndrome, the human premature aging Werner syndrome (WS). WRN mutant fibroblast AG11395 and AG05229 respond weakly to starvation induced autophagy compared to normal cells. While the fusion of phagosomes with lysosome is normal, WS cells contain fewer autophagy vacuoles. Cellular starvation autophagy in WS cells is restored after transfection with full length WRN. Further, siRNA mediated silencing of WRN in the normal fibroblast cell line WI-38 results in decreased autophagy and altered expression of autophagy related proteins. Thus, our observations suggest that WRN may have a role in controlling autophagy and hereby cellular maintenance. PMID:25257404

  5. Changes of DRAM expression in radiation-induced autophagy in breast cancer cells

    International Nuclear Information System (INIS)

    Objective: To investigate the expression of DRAM in breast cancer cell line MCF-7 in radiation-induced autophagy. Methods: GFP-LC3 transfection method was used to observe autophagy bubble. Real time-PCR was used to detect DRAM and MAPLC3 from transcriptional and translational level, respectively. The silencing vector from gene engineering was introduced by calcium phosphate transfection. Results: Compared with the control group, GFP-LC3 increased significantly after 8 Gy irradiation by immunofluorescent assay, and the level of MAP-LC3 expression was higher than control group after 8 Gy irradiation by Western blot (F=5.38, 8.72, 10.63, 15.23, 20.78 and 55.23, P<0.05). DRAM protein expression increased significantly at 2 h in the 8 Gy time-dose study,up to maximum at the 32 h (F=116.34, P<0.05).In DRAM model,the expression of LC3 and DRAM decreased significantly (F=20.36 and 40.35, P<0.05) and DRAM expression increased 8 Gy post-irradiation, but still lower than that in 8 Gy irradiation wild-type group. The LC3 expression also decreased 8 Gy post-irradiation (F=50.34, P<0.05). Conclusions: DRAM plays an important role in irradiation-induced autophagy in breast cancer cell. DRAM might participate in the process and serve as a theoretical target for clinical treatment of breast cancer. (authors)

  6. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer

    OpenAIRE

    Yang, Xue; Yu, Dan-Dan; Yan, Fei; Jing, Ying-Ying; Han, Zhi-Peng; Sun, Kai; Liang, Lei; Hou, Jing; Li-xin WEI

    2015-01-01

    Development of a tumor is a very complex process, and invasion and metastasis of malignant tumors are hallmarks and are difficult problems to overcome. The tumor microenvironment plays an important role in controlling tumor fate and autophagy induced by the tumor microenvironment is attracting more and more attention. Autophagy can be induced by several stressors in the tumor microenvironment and autophagy modifies the tumor microenvironment, too. Autophagy has dual roles in tumor growth. In ...

  7. PGC‐1α promotes exercise‐induced autophagy in mouse skeletal muscle

    OpenAIRE

    Halling, Jens F.; Ringholm, Stine; Nielsen, Maja M; Overby, Peter; Pilegaard, Henriette

    2016-01-01

    Abstract Recent evidence suggests that exercise stimulates the degradation of cellular components in skeletal muscle through activation of autophagy, but the time course of the autophagy response during recovery from exercise has not been determined. Furthermore, the regulatory mechanisms behind exercise‐induced autophagy remain unclear, although the muscle oxidative phenotype has been linked with basal autophagy levels. Therefore, the aim of this study was to investigate the role of the key ...

  8. You are what you eat: multifaceted functions of autophagy during C. elegans development

    OpenAIRE

    Yang, Peiguo; Zhang, Hong

    2013-01-01

    Autophagy involves the sequestration of a portion of the cytosolic contents in an enclosed double-membrane autophagosomal structure and its subsequent delivery to lysosomes for degradation. Autophagy activity functions in multiple biological processes during Caenorhabditis elegans development. The basal level of autophagy in embryos removes aggregate-prone proteins, paternal mitochondria and spermatid-specific membranous organelles (MOs). Autophagy also contributes to the efficient removal of...

  9. Sinomenine Hydrochloride Protects against Polymicrobial Sepsis via Autophagy

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2015-01-01

    Full Text Available Sepsis, a systemic inflammatory response to infection, is the major cause of death in intensive care units (ICUs. The mortality rate of sepsis remains high even though the treatment and understanding of sepsis both continue to improve. Sinomenine (SIN is a natural alkaloid extracted from Chinese medicinal plant Sinomenium acutum, and its hydrochloride salt (Sinomenine hydrochloride, SIN-HCl is widely used to treat rheumatoid arthritis (RA. However, its role in sepsis remains unclear. In the present study, we investigated the role of SIN-HCl in sepsis induced by cecal ligation and puncture (CLP in BALB/c mice and the corresponding mechanism. SIN-HCl treatment improved the survival of BALB/c mice that were subjected to CLP and reduced multiple organ dysfunction and the release of systemic inflammatory mediators. Autophagy activities were examined using Western blotting. The results showed that CLP-induced autophagy was elevated, and SIN-HCl treatment further strengthened the autophagy activity. Autophagy blocker 3-methyladenine (3-MA was used to investigate the mechanism of SIN-HCl in vitro. Autophagy activities were determined by examining the autophagosome formation, which was shown as microtubule-associated protein light chain 3 (LC3 puncta with green immunofluorescence. SIN-HCl reduced lipopolysaccharide (LPS-induced inflammatory cytokine release and increased autophagy in peritoneal macrophages (PM. 3-MA significantly decreased autophagosome formation induced by LPS and SIN-HCl. The decrease of inflammatory cytokines caused by SIN-HCl was partially aggravated by 3-MA treatment. Taken together, our results indicated that SIN-HCl could improve survival, reduce organ damage, and attenuate the release of inflammatory cytokines induced by CLP, at least in part through regulating autophagy activities.

  10. Live and Let Die: Roles of Autophagy in Cadmium Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Frank Thévenod

    2015-04-01

    Full Text Available The transition metal ion cadmium (Cd2+ is a significant environmental contaminant. With a biological half-life of ~20 years, Cd2+ accumulates in the kidney cortex, where it particularly damages proximal tubule (PT cells and can result in renal fibrosis, failure, or cancer. Because death represents a powerful means by which cells avoid malignant transformation, it is crucial to clearly identify and understand the pathways that determine cell fate in chronic Cd2+ nephrotoxicity. When cells are subjected to stress, they make a decision to adapt and survive, or—depending on the magnitude and duration of stress—to die by several modes of death (programmed cell death, including autophagic cell death (ACD. Autophagy is part of a larger system of intracellular protein degradation and represents the channel by which organelles and long-lived proteins are delivered to the lysosome for degradation. Basal autophagy levels in all eukaryotic cells serve as a dynamic physiological recycling system, but they can also be induced by intra- or extracellular stress and pathological processes, such as endoplasmic reticulum (ER stress. In a context-dependent manner, autophagy can either be protective and hence contribute to survival, or promote death by non-apoptotic or apoptotic pathways. So far, the role of autophagy in Cd2+-induced nephrotoxicity has remained unsettled due to contradictory results. In this review, we critically survey the current literature on autophagy in Cd2+-induced nephrotoxicity in light of our own ongoing studies. Data obtained in kidney cells illustrate a dual and complex function of autophagy in a stimulus- and time-dependent manner that possibly reflects distinct outcomes in vitro and in vivo. A better understanding of the context-specific regulation of cell fate by autophagy may ultimately contribute to the development of preventive and novel therapeutic strategies for acute and chronic Cd2+ nephrotoxicity.

  11. Autophagy Deficiency Diminishes Indomethacin-Induced Intestinal Epithelial Cell Damage through Activation of the ERK/Nrf2/HO-1 Pathway.

    Science.gov (United States)

    Harada, Satoshi; Nakagawa, Takatoshi; Yokoe, Shunichi; Edogawa, Shoko; Takeuchi, Toshihisa; Inoue, Takuya; Higuchi, Kazuhide; Asahi, Michio

    2015-12-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) can cause epithelial cell damage in the stomach, intestine, and colon. NSAIDs are reported to induce autophagy and apoptosis in intestinal epithelial cells; however, their role in cell damage is poorly understood. To examine the role of autophagy in cell damage, we used autophagy-related gene Atg5-conditional knockout mice, in which the Atg5 gene is only knocked out in intestinal epithelial cells. In an indomethacin (IM)-induced gastrointestinal ulcer mouse model, intestinal epithelium damage was reduced in Atg5-conditional knockout mice compared with wild-type mice. IM-induced damage in IEC6 rat intestinal epithelial cells was reduced when Atg5 was silenced (IEC6shAtg5 cells). Western blot analyses indicated that IM-induced apoptosis decreased, and the potent, oxidative stress-related extracellular signal-regulated kinase (ERK)/nuclear factor-erythroid2-like2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway was upregulated in IEC6shAtg5 cells. An experiment using a reactive oxygen species (ROS)-sensitive fluorescent dye in IEC6shAtg5 cells revealed that the amount of ROS at the baseline and the rate of increase after IM treatment were lower than in intact IEC6 cells. The mitochondrial membrane potential at the baseline and the reduction rate in IM-treated IEC6shAtg5 cells were lower than in intact IEC6 cells, indicating that autophagy deficiency increased ROS production caused by mitochondrial disturbance. Furthermore, MnTMPyP, a manganese-superoxide dismutase mimetic, significantly inhibited IM-induced autophagy and subsequent apoptosis as well as activation of the ERK/Nrf2/HO-1 pathway. These data suggest that autophagy deficiency and subsequent activation of the ERK/Nrf2/HO-1 pathway diminished IM-induced, apoptosis-mediated intestinal epithelial cell damage, and genetic analyses of single nucleotide polymorphisms in autophagy-related genes could predict NSAID-induced intestinal injury. PMID:26404472

  12. Cilostazol Upregulates Autophagy via SIRT1 Activation: Reducing Amyloid-β Peptide and APP-CTFβ Levels in Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Hye Rin Lee

    Full Text Available Autophagy is a vital pathway for the removal of β-amyloid peptide (Aβ and the aggregated proteins that cause Alzheimer's disease (AD. We previously found that cilostazol induced SIRT1 expression and its activity in neuronal cells, and thus, we hypothesized that cilostazol might stimulate clearances of Aβ and C-terminal APP fragment β subunit (APP-CTFβ by up-regulating autophagy.When N2a cells were exposed to soluble Aβ1-42, protein levels of beclin-1, autophagy-related protein5 (Atg5, and SIRT1 decreased significantly. Pretreatment with cilostazol (10-30 μM or resveratrol (20 μM prevented these Aβ1-42 evoked suppressions. LC3-II (a marker of mammalian autophagy levels were significantly increased by cilostazol, and this increase was reduced by 3-methyladenine. To evoke endogenous Aβ overproduction, N2aSwe cells (N2a cells stably expressing human APP containing the Swedish mutation were cultured in medium with or without tetracycline (Tet+ for 48 h and then placed in Tet- condition. Aβ and APP-CTFβ expressions were increased after 12~24 h in Tet- condition, and these increased expressions were significantly reduced by pretreating cilostazol. Cilostazol-induced reductions in the expressions of Aβ and APP-CTFβ were blocked by bafilomycin A1 (a blocker of autophagosome to lysosome fusion. After knockdown of the SIRT1 gene (to ~40% in SIRT1 protein, cilostazol failed to elevate the expressions of beclin-1, Atg5, and LC3-II, indicating that cilostazol increases these expressions by up-regulating SIRT1. Further, decreased cell viability induced by Aβ was prevented by cilostazol, and this inhibition was reversed by 3-methyladenine, indicating that the protective effect of cilostazol against Aβ induced neurotoxicity is, in part, ascribable to the induction of autophagy. In conclusion, cilostazol modulates autophagy by increasing the activation of SIRT1, and thereby enhances Aβ clearance and increases cell viability.

  13. Inflammation, Autophagy, and Obesity: Common Features in the Pathogenesis of Pancreatitis and Pancreatic Cancer

    OpenAIRE

    Gukovsky, Ilya; Ning LI; Todoric, Jelena; Gukovskaya, Anna; Karin, Michael

    2013-01-01

    Inflammation and autophagy are cellular defense mechanisms. When these processes are deregulated (deficient or overactivated) they produce pathologic effects, such as oxidative stress, metabolic impairments, and cell death. Unresolved inflammation and disrupted regulation of autophagy are common features of pancreatitis and pancreatic cancer. Furthermore, obesity, a risk factor for pancreatitis and pancreatic cancer, promotes inflammation and inhibits or deregulates autophagy, creating an env...

  14. Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy.

    Science.gov (United States)

    Gao, Ying; Liu, Yajun; Hong, Liang; Yang, Zuolong; Cai, Xinran; Chen, Xiaoyun; Fu, Yuanyuan; Lin, Yujie; Wen, Weijie; Li, Sitong; Liu, Xingguo; Huang, Heqing; Vogt, Andreas; Liu, Peiqing; Yin, Xiao-Ming; Li, Min

    2016-01-01

    Autophagy is an evolutionarily conserved catabolic process by which cells degrade intracellular proteins and organelles in the lysosomes. Canonical autophagy requires all autophagy proteins (ATGs), whereas noncanonical autophagy is activated by diverse agents in which some of the essential autophagy proteins are dispensable. How noncanonical autophagy is induced and/or inhibited is still largely unclear. In this study, we demonstrated that AMDE-1, a recently identified chemical that can induce canonical autophagy, was able to elicit noncanonical autophagy that is independent of the ULK1 (unc-51-like kinase 1) complex and the Beclin1 complex. AMDE-1-induced noncanonical autophagy could be specifically suppressed by various V-ATPase (vacuolar-type H(+)-ATPase) inhibitors, but not by disturbance of the lysosome function or the intracellular ion redistribution. Similar findings were applicable to a diverse group of stimuli that can induce noncanonical autophagy in a FIP200-independent manner. AMDE-1-induced LC3 lipidation was colocalized with the Golgi complex, and was inhibited by the disturbance of Golgi complex. The integrity of the Golgi complex was also required for multiple other agents to stimulate noncanonical LC3 lipidation. These results suggest that the Golgi complex may serve as a membrane platform for noncanonical autophagy where V-ATPase is a key player. V-ATPase inhibitors could be useful tools for studying noncanonical autophagy. PMID:27512951

  15. Structured illumination microscopy and correlative microscopy to study autophagy.

    Science.gov (United States)

    Ligeon, Laure-Anne; Barois, Nicolas; Werkmeister, Elisabeth; Bongiovanni, Antonino; Lafont, Frank

    2015-03-01

    Autophagy is a predominant eukaryotic mechanism for the engulfment of "portions" of cytoplasm allowing their degradation to recycle metabolites. The autophagy is ubiquitous among the life kingdom revealing the importance of this pathway that appears more complex than previously thought. Several reviews have already addressed how to monitor this pathway and have highlighted the existence of new routes such as the LC3-associated phagocytosis (LAP) and the non-canonical autophagy. The principal difference between autophagosomes and LAP vacuoles is that the former has two limiting membranes positives for LC3 whereas the latter has one. Herein, we propose to emphasize the use of correlative light electron microscopy (CLEM) to answer some autophagy's related questions. The structured illumination microscopy (SIM) relatively easy to implement allows to better observe the Atg proteins recruitment and localization during the autophagy process. While LC3 recruitment is performed using light microscopy the ultrastructural morphological analysis of LC3-vacuoles is ascertained by electron microscopy. Hence, these combined and correlated approaches allow to tackle the LAP vs. autophagosome issue. PMID:25667106

  16. Autophagy is required for ectoplasmic specialization assembly in sertoli cells.

    Science.gov (United States)

    Liu, Chao; Wang, Hongna; Shang, Yongliang; Liu, Weixiao; Song, Zhenhua; Zhao, Haichao; Wang, Lina; Jia, Pengfei; Gao, Fengyi; Xu, Zhiliang; Yang, Lin; Gao, Fei; Li, Wei

    2016-05-01

    The ectoplasmic specialization (ES) is essential for Sertoli-germ cell communication to support all phases of germ cell development and maturity. Its formation and remodeling requires rapid reorganization of the cytoskeleton. However, the molecular mechanism underlying the regulation of ES assembly is still largely unknown. Here, we show that Sertoli cell-specific disruption of autophagy influenced male mouse fertility due to the resulting disorganized seminiferous tubules and spermatozoa with malformed heads. In autophagy-deficient mouse testes, cytoskeleton structures were disordered and ES assembly was disrupted. The disorganization of the cytoskeleton structures might be caused by the accumulation of a negative cytoskeleton organization regulator, PDLIM1, and these defects could be partially rescued by Pdlim1 knockdown in autophagy-deficient Sertoli cells. Altogether, our works reveal that the degradation of PDLIM1 by autophagy in Sertoli cells is important for the proper assembly of the ES, and these findings define a novel role for autophagy in Sertoli cell-germ cell communication. PMID:26986811

  17. Taurine protects against As2O3-induced autophagy in pancreas of rat offsprings through Nrf2/Trx pathway.

    Science.gov (United States)

    Bai, Jie; Yao, Xiaofeng; Jiang, Liping; Qiu, Tianming; Liu, Shuang; Qi, Baoxu; Zheng, Yue; Kong, Yuan; Yang, Guang; Chen, Min; Liu, Xiaofang; Sun, Xiance

    2016-04-01

    Arsenic was increasingly to blame as a risk factor for type 2 diabetes mellitus. In our previous study, we had found iAs stimulated autophagic flux and caused autophagic cell death through ROS pathway in INS-1 cells. Since NF-E2-related factor 2 (Nrf2) and the thioredoxin (Trx) system was a crucial line of defense against ROS, we investigated whether Nrf2/Trx pathway contributed to As2O3-stimulated autophagy and the role of taurine in this study. After treatment with 2 mg/kg BW-8 mg/kg BW As2O3 for 57 d, the expression of Nrf2 protein was decreased significantly in offsprings' pancreas. The expression of Trx gene was decreased significantly in pancreas subsequently. Finally, the generation of reactive oxygen species stimulated autophagy in arsenic-treated pancreas. Taurine could reverse arsenic-inhibited Nrf2 and Trx and inhibit autophagy. In short, inhibition of Nrf2/Trx pathway might play an important role in the pathogenesis of arsenic-related diabetes. Taurine could serve as nutrition supplementation against arsenic-related diabetes in high arsenic exposure area. PMID:26775255

  18. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model.

    Science.gov (United States)

    Muralimanoharan, Sribalasubashini; Gao, Xiaoli; Weintraub, Susan; Myatt, Leslie; Maloyan, Alina

    2016-05-01

    The incidence of maternal obesity and its co-morbidities (diabetes, cardiovascular disease) continues to increase at an alarming rate, with major public health implications. In utero exposure to maternal obesity has been associated with development of cardiovascular and metabolic diseases in the offspring as a result of developmental programming. The placenta regulates maternal-fetal metabolism and shows significant changes in its function with maternal obesity. Autophagy is a cell-survival process, which is responsible for the degradation of damaged organelles and misfolded proteins. Here we show an activation of autophagosomal formation and autophagosome-lysosome fusion in placentas of males but not females from overweight (OW) and obese (OB) women vs. normal weight (NW) women. However, total autophagic activity in these placentas appeared to be decreased as it showed an increase in SQSTM1/p62 and a decrease in lysosomal biogenesis. A mouse model with a targeted deletion of the essential autophagy gene Atg7 in placental tissue showed significant placental abnormalities comparable to those seen in human placenta with maternal obesity. These included a decrease in expression of mitochondrial genes and antioxidants, and decreased lysosomal biogenesis. Strikingly, the knockout mice were developmentally programmed as they showed an increased sensitivity to high-fat diet-induced obesity, hyperglycemia, hyperinsulinemia, increased adiposity, and cardiac remodeling. In summary, our results indicate a sexual dimorphism in placental autophagy in response to maternal obesity. We also show that autophagy plays an important role in placental function and that inhibition of placental autophagy programs the offspring to obesity, and to metabolic and cardiovascular diseases. PMID:26986453

  19. Autophagy-like processes are involved in lipid droplet degradation in Auxenochlorella protothecoides during the heterotrophy-autotrophy transition

    Directory of Open Access Journals (Sweden)

    Li eZhao

    2014-08-01

    Full Text Available Autophagy is a cellular degradation process that recycles cytoplasmic components in eukaryotes. Although intensively studied in yeast, plants, and mammals, autophagy in microalgae is not well understood. Auxenochlorella protothecoides is a green microalga that has the ability to grow either autotrophically when under light or heterotrophically when in media containing glucose. The two growth modes are inter-convertible and transition between them is accompanied by drastic changes in morphology and cellular composition; however, the mechanisms underlying these changes are unknown. In this study, we identified autophagy-related genes and characterized their roles in the degradation of lipid droplets during the heterotrophy-to-autotrophy (HA transition in A. protothecoides. Most of the proteins constituting the eukaryotic core machinery were conserved in A. protothecoides. Two proteins, Atg4 and Atg8, were further investigated. A. protothecoides ATG4 was cloned from a cDNA library and expressed within yeast, and was able to functionally restore the autophagy pathway in atg4Δ yeast during nitrogen starvation. Furthermore, Atg8, which displayed high sequence identity with its yeast homolog, was able to conjugate to phosphatidylethanolamine (PE in vitro and was recruited to the phagophore assembly site in yeast. We also identified a C-terminal glycine residue, G118, that was the cleavage site for Atg4. Finally, we used confocal and transmission electron microscopy to reveal that autophagic-like vacuoles were detectable in algal cells during the HA transition. Our data suggested that the lipid droplets in heterotrophic cells were engulfed directly by the autophagic-like vacuole instead of via autophagosomes.

  20. Synergistic killing of lung cancer cells by cisplatin and radiation via autophagy and apoptosis.

    Science.gov (United States)

    Liu, Min; Ma, Shumei; Liu, Mingbo; Hou, Yufei; Liang, Bing; Su, Xu; Liu, Xiaodong

    2014-06-01

    Cisplatin is a commonly used drug for chemotherapy, however, whether it may be used synergistically with radiotherapy remains unclear. The present study investigated the underlying mechanisms of synergistic killing by radiosensitization and cisplatin, with a focus on the growth inhibition, apoptosis and autophagy of non-small cell human lung cancer cells in vitro and in a tumor xenograft in vivo. A549 cells were used for the in vitro experiments and divided into the following four treatment groups: Sham-irradiated; conventional radiotherapy (CRT) of five doses of 2 Gy every day; hyperfractionated radiotherapy of five doses of 2 Gy (1 Gy twice a day at 4 h intervals) every day; and CRT plus cisplatin. A xenograft tumor-bearing C57BL/6 model was established for the in vivo experiments and the above-mentioned treatments were administered. MTT and colony formation assays were used to detect cell viability and western blotting was performed to detect the levels of protein expression. Monodansylcadaverine staining and the immunofluorescence technique were used to analyze the autophagy rate, while flow cytometry and immunohistochemistry were performed to detect the expression levels of the genes associated with apoptosis and autophagy, including microtubule-associated protein 1 light chain 3 (MAPLC3)-II, phosphoinositide 3-kinase (PI3K) III, Beclin1, phosphorylated protein kinase B (p-AKT), damage-regulated autophagy modulator (DRAM), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, caspase-3 and p21. The MTT assay demonstrated that cisplatin exhibits a dose-dependent cytotoxicity in A549 cells and synergizes with radiation to promote the cell-killing effect of radiation. In the xenograft mouse model of Lewis cells, cisplatin plus ionizing radiation (IR) (five doses of 2 Gy) yielded the most significant tumor suppression. The autophagic vacuoles, the ratio of MAPLC3-II to MAPLC3-I (LC3-II/LC3-I) and the levels of Beclin1 were found to increase in all treatment

  1. Reduction of polyethylenimine-coated iron oxide nanoparticles induced autophagy and cytotoxicity by lactosylation.

    Science.gov (United States)

    Du, Jiuju; Zhu, Wencheng; Yang, Li; Wu, Changqiang; Lin, Bingbing; Wu, Jun; Jin, Rongrong; Shen, Taipeng; Ai, Hua

    2016-12-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are excellent magnetic resonance contrast agents and surface engineering can expand their applications. When covered with amphiphilic alkyl-polyethyleneimine (PEI), the modified SPIO nanoparticles can be used as MRI visible gene/drug delivery carriers and cell tracking probes. However, the positively charged amines of PEI can also cause cytotoxicity and restricts their further applications. In this study, we used lactose to modify amphiphilic low molecular weight polyethylenimine (C12-PEI2K) at different lactosylation degree. It was found that the N-alkyl-PEI-lactobionic acid wrapped SPIO nanocomposites show better cell viability without compromising their labelling efficacy as well as MR imaging capability in RAW 264.7 cells, comparing to the unsubstituted ones. Besides, we found the PEI induced cell autophagy can be reduced via lactose modification, indicating the increased cell viability might rely on down-regulating autophagy. Thus, our findings provide a new approach to overcome the toxicity of PEI wrapped SPIO nanocomposites by lactose modification. PMID:27482464

  2. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation.

    Science.gov (United States)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng; Liu, Jun; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2016-06-01

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3 and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. PMID:26988607

  3. Inhibition of autophagy enhances the cytotoxic effect of PA-MSHA in breast cancer

    International Nuclear Information System (INIS)

    PA-MSHA, a genetically engineered Pseudomonas aeruginosa (PA) strain, is currently under investigation as a new anti-cancer drug. It can induce cell cycle arrest and apoptosis in different human cancer cells, including hormone receptor negative breast cancer cells. However, the underlying mechanism of tumor lethality mediated by PA-MSHA remains to be fully investigated. The effect of PA-MSHA on human hormone receptor negative breast cancer cells was analyzed by morphological measurement, western blot, cell proliferation assay and mouse xenograft model. PA-MSHA was found to induce endoplasmic reticulum (ER) stress in breast cancer cell lines through the IRE1 signaling pathway. Inhibiting autophagy potentiated the cytotoxic effect of PA-MSHA while treating breast cancer cell lines. In mouse xenograft model, PA-MSHA produced more pronounced tumor suppression in mice inoculated with IRE1 gene knockdown. MDA-MB-231HM cells. These findings demonstrated inhibiting autophagy together with PA-MSHA might be a promising therapeutic strategy in treating hormone receptor negative breast cancer cells

  4. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    Science.gov (United States)

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent. PMID:25694272

  5. Dynamin II is required for 17β-estradiol signaling and autophagy-based ERα degradation

    Science.gov (United States)

    Totta, Pierangela; Busonero, Claudia; Leone, Stefano; Marino, Maria; Acconcia, Filippo

    2016-01-01

    17β-estradiol (E2) regulates diverse physiological effects, including cell proliferation, by binding to estrogen receptor α (ERα). ERα is both a transcription factor that drives E2-sensitive gene expression and an extra-nuclear localized receptor that triggers the activation of diverse kinase cascades. While E2 triggers cell proliferation, it also induces ERα degradation in a typical hormone-dependent feedback loop. Although ERα breakdown proceeds through the 26S proteasome, a role for lysosomes and for some endocytic proteins in controlling ERα degradation has been reported. Here, we studied the role of the endocytic protein dynamin II in E2-dependent ERα signaling and degradation. The results indicate that dynamin II siRNA-mediated knock-down partially prevents E2-induced ERα degradation through the inhibition of an autophagy-based pathway and impairs E2-induced cell proliferation signaling. Altogether, these data demonstrate that dynamin II is required for the E2:ERα signaling of physiological functions and uncovers a role for autophagy in the control of ERα turnover. PMID:27009360

  6. X-linked myopathy with excessive autophagy: a failure of self-eating.

    Science.gov (United States)

    Dowling, James J; Moore, Steven A; Kalimo, Hannu; Minassian, Berge A

    2015-03-01

    Autophagic vacuolar myopathies (AVMs) are a group of disorders united by shared histopathological features on muscle biopsy that include the aberrant accumulation of autophagic vacuoles. The classic conditions that compose the AVMs include Pompe Disease, Danon Disease and X-linked myopathy with excessive autophagy (XMEA). Other disorders, including acquired myopathies like chloroquine toxicity, also have features of an autophagic myopathy. This review is focused on XMEA, a myopathy with onset of slowly progressive proximal weakness and elevated serum creatine kinase (2× to 20× normal) typically in the first decade of life. However, both late-adult onset and severe, sometimes lethal, neonatal cases also occur. Skeletal muscle pathology is characterized by numerous cytoplasmic autophagic vacuoles, complex muscle fiber splitting with internalization of capillaries, and complement C5b-9 deposition within vacuoles and along the sarcolemma. The autophagic vacuoles have sarcolemmal features. Mutations in the VMA21 gene at Xq28 cause XMEA by reducing the activity of lysosomal hydrolases. The VMA21 protein regulates the assembly of the V-ATPase required to acidify the lysosome. Increased lysosomal pH and poor degradation of cellular debris may secondarily induce autophagy, the net effect being accumulation of autophagolysosomes. The relationship of XMEA to other lysosomal disorders of muscle and potential therapeutic interventions for XMEA are discussed. PMID:25644398

  7. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  8. MAVS maintains mitochondrial homeostasis via autophagy.

    Science.gov (United States)

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif 'YxxI', suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  9. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum

    Science.gov (United States)

    Li, Ying; Li, Bing; Liu, Luping; Chen, Huaigu; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2015-01-01

    The Ccz1-Mon1 protein complex, the guanine nucleotide exchange factor (GEF) of the late endosomal Rab7 homolog Ypt7, is required for the late step of multiple vacuole delivery pathways, such as cytoplasm-to-vacuole targeting (Cvt) pathway and autophagy processes. Here, we identified and characterized the yeast Mon1 homolog in Fusarium graminearum, named FgMon1. FgMON1 encodes a trafficking protein and is well conserved in filamentous fungi. Targeted gene deletion showed that the ∆Fgmon1 mutant was defective in vegetative growth, asexual/sexual development, conidial germination and morphology, plant infection and deoxynivalenol production. Cytological examination revealed that the ∆Fgmon1 mutant was also defective in vacuole fusion and autophagy, and delayed in endocytosis. Yeast two hybrid and in vitro GST-pull down assays approved that FgMon1 physically interacts with a Rab GTPase FgRab7 which is also important for the development, infection, membrane fusion and autophagy in F. graminearum. FgMon1 likely acts as a GEF of FgRab7 and constitutively activated FgRab7 was able to rescue the defects of the ∆Fgmon1 mutant. In summary, our study provides evidences that FgMon1 and FgRab7 are critical components that modulate vesicle trafficking, endocytosis and autophagy, and thereby affect the development, plant infection and DON production of F. graminearum. PMID:26657788

  10. Reactive oxygen species and autophagy associated apoptosis and limitation of clonogenic survival induced by zoledronic acid in salivary adenoid cystic carcinoma cell line SACC-83.

    Directory of Open Access Journals (Sweden)

    Xi-Yuan Ge

    Full Text Available Salivary adenoid cystic carcinoma is an epithelial tumor in the head and neck region. Despite its slow growth, patients with salivary adenoid cystic carcinoma exhibit poor long term survival because of a high rate of distant metastasis. Lung and bone are common distant metastasis sites. Zoledronic acid, a third generation bisphosphonate, has been used for tumor-induced osteolysis due to bone metastasis and has direct antitumor activity in several human neoplasms. Here, we observed that zoledronic acid inhibited salivary adenoid cystic carcinoma cell line SACC-83 xenograft tumor growth in nude mice. In vitro, zoledronic acid induced apoptosis and reduced clonogenic survival in SACC-83. Flow cytometry and western blotting indicated that the cell cycle was arrested at G0/G1. Zoledronic acid treatment upregulated reactive oxygen species as well as the autophagy marker protein LC-3B. Reactive oxygen species scavenger N-acetylcysteine and autophagy antagonist 3-methyladenine decreased zoledronic acid-induced apoptosis and increased clonogenic survival. Silencing of the autophagy related gene Beclin-1 also decreased zoledronic acid-induced apoptosis and inhibition of clonogenic formation. In addition, isobolographic analysis revealed synergistic effects on apoptosis when zoledronic acid and paclitaxel/cisplatin were combined. Taken together, our results suggest that zoledronic acid induced apoptosis and reduced clonogenic survival via upregulation of reactive oxygen species and autophagy in the SACC-83 cell line. Thus, zoledronic acid should be considered a promising drug for the treatment of salivary adenoid cystic carcinoma.

  11. The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway.

    Science.gov (United States)

    Sullivan, Peter M; Zhou, Xiaolai; Robins, Adam M; Paushter, Daniel H; Kim, Dongsung; Smolka, Marcus B; Hu, Fenghua

    2016-01-01

    Hexanucleotide repeat expansion in the C9orf72 gene is a leading cause of frontotemporal lobar degeneration (FTLD) with amyotrophic lateral sclerosis (ALS). Reduced expression of C9orf72 has been proposed as a possible disease mechanism. However, the cellular function of C9orf72 remains to be characterized. Here we report the identification of two binding partners of C9orf72: SMCR8 and WDR41. We show that WDR41 interacts with the C9orf72/SMCR8 heterodimer and WDR41 is tightly associated with the Golgi complex. We further demonstrate that C9orf72/SMCR8/WDR41 associates with the FIP200/Ulk1 complex, which is essential for autophagy initiation. C9orf72 deficient mice, generated using the CRISPR/Cas9 system, show severe inflammation in multiple organs, including lymph node, spleen and liver. Lymph node enlargement and severe splenomegaly are accompanied with macrophage infiltration. Increased levels of autophagy and lysosomal proteins and autophagy defects were detected in both the spleen and liver of C9orf72 deficient mice, supporting an in vivo role of C9orf72 in regulating the autophagy/lysosome pathway. In summary, our study elucidates potential physiological functions of C9orf72 and disease mechanisms of ALS/FTLD. PMID:27193190

  12. Curcumin could reduce the monomer of TTR with Tyr114Cys mutation via autophagy in cell model of familial amyloid polyneuropathy

    Directory of Open Access Journals (Sweden)

    Li H

    2014-10-01

    Full Text Available Hui Li,1,* Yu Zhang,1,* Li Cao,1 Ran Xiong,1 Bei Zhang,1 Li Wu,1 Zongbo Zhao,1 Sheng-Di Chen1,2 1Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 2Key Laboratory of Stem Cell Biology and Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Science, and Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Transthyretin (TTR familial amyloid polyneuropathy (FAP is an autosomal ­dominant inherited neurodegenerative disorder caused by various mutations in the transthyretin gene. We aimed to identify the mechanisms underlying TTR FAP with Tyr114Cys (Y114C mutation. Our study showed that TTR Y114C mutation led to an increase in monomeric TTR and impaired autophagy. Treatment with curcumin resulted in a significant decrease of monomeric TTR by recovering autophagy. Our research suggests that impairment of autophagy might be involved in the pathogenesis of TTR FAP with Y114C mutation, and curcumin might be a potential therapeutic approach for TTR FAP. Keywords: curcumin, familial amyloid polyneuropathy, transthyretin, autophagy

  13. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death.

    Science.gov (United States)

    Cui, Jing; Chen, Bing; Wang, Hongjuan; Han, Yue; Chen, Xi; Zhang, Wei

    2016-01-01

    Endoplasmic reticulum (ER) stress activates unfolded protein response (UPR) and autophagy. However, prolonged, severe stresses activate programmed cell death (PCD) in both animal and plant cells. Compared to the well-studied UPR pathway, the molecular mechanisms of ER-stress-induced PCD are less understood. Here, we report the identification of Gas2, the glucosidase II β subunit in the ER, as a potential switch between PCD and autophagy in rice. MS analysis identified Gas2, GRP94, and HSP40 protein in a purified caspase-3-like activity from heat stressed rice cell suspensions. The three corresponding genes were down-regulated under DTT-induced ER stress. Gas2 and GRP94 were localized to the ER, while HSP40 localized to the cytoplasm. Compared to wild-type, a Gas2 RNAi cell line was much sensitive to DTT treatment and had high levels of autophagy. Both caspase-3 and heat-stressed cell suspension lysate could cleave Gas2, producing a 14 kDa N-terminal fragment. Conditional expression of corresponding C-terminal fragment resulted in enhanced caspase-3-like activity in the protoplasts under heat stress. We proposed that mild ER stress causes down-regulation of Gas2 and induces autophagy, while severe stress results in Gas2 cleavage by caspase-3-like activity and the cleavage product amplifies this activity, possibly participating in the initiation of PCD. PMID:27538481

  14. PML at Mitochondria-Associated Membranes Is Critical for the Repression of Autophagy and Cancer Development

    Directory of Open Access Journals (Sweden)

    Sonia Missiroli

    2016-08-01

    Full Text Available The precise molecular mechanisms that coordinate apoptosis and autophagy in cancer remain to be determined. Here, we provide evidence that the tumor suppressor promyelocytic leukemia protein (PML controls autophagosome formation at mitochondria-associated membranes (MAMs and, thus, autophagy induction. Our in vitro and in vivo results demonstrate how PML functions as a repressor of autophagy. PML loss promotes tumor development, providing a growth advantage to tumor cells that use autophagy as a cell survival strategy during stress conditions. These findings demonstrate that autophagy inhibition could be paired with a chemotherapeutic agent to develop anticancer strategies for tumors that present PML downregulation.

  15. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission.

    Science.gov (United States)

    Al Rawi, Sara; Louvet-Vallée, Sophie; Djeddi, Abderazak; Sachse, Martin; Culetto, Emmanuel; Hajjar, Connie; Boyd, Lynn; Legouis, Renaud; Galy, Vincent

    2011-11-25

    In sexual reproduction of most animals, the spermatozoon provides DNA and centrioles, together with some cytoplasm and organelles, to the oocyte that is being fertilized. Paternal mitochondria and their genomes are generally eliminated in the embryo by an unknown degradation mechanism. We show that, upon fertilization, a Caenorhabditis elegans spermatozoon triggers the recruitment of autophagosomes within minutes and subsequent paternal mitochondria degradation. Whereas the nematode-specific sperm membranous organelles are ubiquitinated before autophagosome formation, the mitochondria are not. The degradation of both paternal structures and mitochondrial DNA requires an LC3-dependent autophagy. Analysis of fertilized mouse embryos shows the localization of autophagy markers, which suggests that this autophagy event is evolutionarily conserved to prevent both the transmission of paternal mitochondrial DNA to the offspring and the establishment of heteroplasmy. PMID:22033522

  16. Cannabinoid-induced autophagy: Protective or death role?

    Science.gov (United States)

    Costa, Lia; Amaral, Cristina; Teixeira, Natércia; Correia-da-Silva, Georgina; Fonseca, Bruno M

    2016-01-01

    Autophagy, the "self-digestion" mechanism of the cells, is an evolutionary conserved catabolic process that targets portions of cytoplasm, damaged organelles and proteins for lysosomal degradation, which plays a crucial role in development and disease. Cannabinoids are active compounds of Cannabis sativa and the most prevalent psychoactive substance is Δ(9)-tetrahydrocannabinol (THC). Cannabinoid compounds can be divided in three types: the plant-derived natural products (phytocannabinoids), the cannabinoids produced endogenously (endocannabinoids) and the synthesized compounds (synthetic cannabinoids). Various studies reported a cannabinoid-induced autophagy mechanism in cancer and non-cancer cells. In this review we focus on the recent advances in the cannabinoid-induced autophagy and highlight the molecular mechanisms involved in these processes. PMID:26732541

  17. Mycelial development preceding basidioma formation in Moniliophthora perniciosa is associated to chitin, sugar and nutrient metabolism alterations involving autophagy.

    Science.gov (United States)

    Gomes, Dayane Santos; Lopes, Maíza Alves; Menezes, Sara Pereira; Ribeiro, Lidiane Figueredo; Dias, Cristiano Villela; Andrade, Bruno Silva; de Jesus, Raildo Mota; Pires, Acassia Benjamin Leal; Goes-Neto, Aristóteles; Micheli, Fabienne

    2016-01-01

    We identified and characterized two chitinases, named MpCHIT1 and MpCHIT2, from the fungus Moniliophthora perniciosa - the etiologic agent of witches' broom disease in cacao tree (Theobroma cacao L.) - during its development, mainly in the mycelia phases preceding the basidioma formation. The expression of MpCHIT1 and MpCHIT2, together with MpCHS and MpATG8 (chitin synthase and autophagy genes, respectively), was analyzed during the M. perniciosa growth and development on bran-based solid medium as well as in liquid medium containing H2O2 or rapamycin (oxidative and nutritional related-autophagy stress agents, respectively). In order to link the expression of chitin metabolism-related genes to nutritional composition influencing fungus development, we also quantified total and reduced sugars, as well as macro- and micronutrients in the bran-based solid medium. The expression analysis showed that the MpCHS expression increased through mycelial development and then decreased in the primordium and basidioma phases, while the expression of MpCHIT1 and MpCHIT2 was higher in basidioma and primordium phases, respectively. Moreover, the expression pattern of MpCHIT1 and MpCHIT2 is distinct, the second correlated with the MpATG8 expression pattern and possibly with autophagy process, while the first may be related to the basidioma formation. The quantification of total and reduced sugars, as well as macro- and micronutrients supported the idea that the cell wall restructuration due to MpCHS, MpCHIT1 and MpCHIT2 is related to stress and fungal nutrient reallocation, allowing the formation and development of the basidioma. Experiments involving M. perniciosa growth on liquid medium containing H2O2 or rapamycin showed that MpCHIT1 and MpCHIT2 were over-expressed in response to oxidative but also to nutritional related-autophagy stresses. Interestingly, the expression level of MpCHS, MpCHIT1 and MpCHIT2 in presence of rapamycin is similar to the one observed in the primordium

  18. Tuning flux: autophagy as a target of heart disease therapy

    Science.gov (United States)

    Xie, Min; Morales, Cyndi R.; Lavandero, Sergio; Hill, Joseph A.

    2013-01-01

    Purpose of review Despite maximum medical and mechanical support therapy, heart failure remains a relentlessly progressive disorder with substantial morbidity and mortality. Autophagy, an evolutionarily conserved process of cellular cannibalization, has been implicated in virtually all forms of cardiovascular disease. Indeed, its role is context dependent, antagonizing or promoting disease depending on the circumstance. Here, we review current understanding of the role of autophagy in the pathogenesis of heart failure and explore this pathway as a target of therapeutic intervention. Recent findings In preclinical models of heart disease, cardiomyocyte autophagic flux is activated; indeed, its role in disease pathogenesis is the subject of intense investigation to define mechanism. Similarly, in failing human heart of a variety of etiologies, cardiomyocyte autophagic activity is upregulated, and therapy, such as with mechanical support systems, elicits declines in autophagy activity. However, when suppression of autophagy is complete, rapid and catastrophic cell death occurs, consistent with a model in which basal autophagic flux is required for proteostasis. Thus, a narrow zone of ‘optimal’ autophagy seems to exist. The challenge moving forward is to tune the stress-triggered autophagic response within that ‘sweet spot’ range for therapeutic benefit. Summary Whereas we have known for some years of the participation of lysosomal mechanisms in heart disease, it is only recently that upstream mechanisms (autophagy) are being explored. The challenge for the future is to dissect the underlying circuitry and titrate the response into an optimal, proteostasis-promoting range in hopes of mitigating the ever-expanding epidemic of heart failure. PMID:21415729

  19. Autophagy and Tumor%自噬与肿瘤

    Institute of Scientific and Technical Information of China (English)

    王宗鼎

    2011-01-01

    自噬(autophagy)作为细胞一种基本生物学特征,具有独特的形态学改变和特有的调控通路.近年来,自噬在关于对肿瘤的作用的研究已成为热点,在不同的种类肿瘤中,自噬扮演着不同的角色,分为促进和抑制肿瘤两种作用.自噬异常与人类恶性肿瘤的发生、发展联系紧密,其启动及调节与细胞能量代谢、微环境变化、抑癌基因及癌基因家族及复杂的信号调节等有关.清楚了解自噬的特点可为肿瘤治疗提供新的方向.%As a basic biological characteristic of cells, autophagy corresponds with specific morphological changes and a specific regulating pathways. In recent years autophagy has become a hot topic, in part due to its roles in both promoting and preventing neoplasms. Irregularities in autophagy in humans are closely linked to the occurrence of malignant neoplasms. Activation and regulation of autophagy influence not only cellular metabolism, but also microenvironments, antioncogene and oncogene function as well as complex signaling pathways. A clear understanding of autophagy would provide new approaches to the treatment of neoplasms.

  20. Spermidine induces autophagy by inhibiting the acetyltransferase EP300.

    Science.gov (United States)

    Pietrocola, F; Lachkar, S; Enot, D P; Niso-Santano, M; Bravo-San Pedro, J M; Sica, V; Izzo, V; Maiuri, M C; Madeo, F; Mariño, G; Kroemer, G

    2015-03-01

    Several natural compounds found in health-related food items can inhibit acetyltransferases as they induce autophagy. Here we show that this applies to anacardic acid, curcumin, garcinol and spermidine, all of which reduce the acetylation level of cultured human cells as they induce signs of increased autophagic flux (such as the formation of green fluorescent protein-microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta and the depletion of sequestosome-1, p62/SQSTM1) coupled to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1). We performed a screen to identify the acetyltransferases whose depletion would activate autophagy and simultaneously inhibit mTORC1. The knockdown of only two acetyltransferases (among 43 candidates) had such effects: EP300 (E1A-binding protein p300), which is a lysine acetyltranferase, and NAA20 (N(α)-acetyltransferase 20, also known as NAT5), which catalyzes the N-terminal acetylation of methionine residues. Subsequent studies validated the capacity of a pharmacological EP300 inhibitor, C646, to induce autophagy in both normal and enucleated cells (cytoplasts), underscoring the capacity of EP300 to repress autophagy by cytoplasmic (non-nuclear) effects. Notably, anacardic acid, curcumin, garcinol and spermidine all inhibited the acetyltransferase activity of recombinant EP300 protein in vitro. Altogether, these results support the idea that EP300 acts as an endogenous repressor of autophagy and that potent autophagy inducers including spermidine de facto act as EP300 inhibitors. PMID:25526088

  1. The Importance of Autophagy Regulation in Breast Cancer Development and Treatment

    Directory of Open Access Journals (Sweden)

    Joanna Magdalena Zarzynska

    2014-01-01

    Full Text Available Breast cancer (BC is a potentially life-threatening malignant tumor that still causes high mortality among women. One of the mechanisms through which cancer development could be controlled is autophagy. This process exerts different effects during the stages of cancer initiation and progression due to the occurring superimposition of signaling pathways of autophagy and carcinogenesis. Chronic inhibition of autophagy or autophagy deficiency promotes cancer, due to instability of the genome and defective cell growth and as a result of cell stress. However, increased induction of autophagy can become a mechanism which allows tumor cells to survive the conditions of hypoxia, acidosis, or chemotherapy. Therefore, in the development of cancer, autophagy is regarded as a double-edged sword. Determination of the molecular mechanisms underlying autophagy regulation and its role in tumorigenesis is an essential component of modern anticancer strategies. Results of scientific studies show that inhibition of autophagy may enhance the effectiveness of currently used anticancer drugs and other therapies (like radiotherapy. However, in some cases, the promotion of autophagy can induce death and, hence, elimination of the cancer cells and reduction of tumor size. This review summarizes the current knowledge on autophagy regulation in BC and up-to-date anticancer strategies correlated with autophagy.

  2. Autophagy: Friend or Foe in Breast Cancer Development, Progression, and Treatment

    International Nuclear Information System (INIS)

    Autophagy is a catabolic process responsible for the degradation and recycling of long-lived proteins and organelles by lysosomes. This degradative pathway sustains cell survival during nutrient deprivation, but in some circumstances, autophagy leads to cell death. Thereby, autophagy can serve as tumor suppressor, as the reduction in autophagic capacity causes malignant transformation and spontaneous tumors. On the other hand, this process also functions as a protective cell-survival mechanism against environmental stress causing resistance to antineoplastic therapies. Although autophagy inhibition, combined with anticancer agents, could be therapeutically beneficial in some cases, autophagy induction by itself could lead to cell death in some apoptosis-resistant cancers, indicating that autophagy induction may also be used as a therapy. This paper summarizes the most important findings described in the literature about autophagy and also discusses the importance of this process in clinical settings

  3. PUMA and Bax-induced Autophagy Contributes to Apoptosis

    OpenAIRE

    Yee, Karen S.; Wilkinson, Simon; James, John; Ryan, Kevin M.; Vousden, Karen H.

    2009-01-01

    The p53-inducible BH3-only protein PUMA is a key mediator of p53-dependent apoptosis, and PUMA has been shown to function by activating Bax and mitochondrial outer membrane permeabilization. In this study we describe an ability of PUMA to induce autophagy that leads to the selective removal of mitochondria. This function of PUMA depends on Bax/Bak and can be reproduced by overexpression of Bax. The induction of autophagy coincides with cytochrome c release, and taken together the results sugg...

  4. PUMA- and Bax-induced autophagy contributes to apoptosis

    OpenAIRE

    Yee, K S; Wilkinson, S; James, J; Ryan, K M; Vousden, K H

    2009-01-01

    The p53-inducible BH3-only protein PUMA is a key mediator of p53-dependent apoptosis, and PUMA has been shown to function by activating Bax and mitochondrial outer membrane permeabilization. In this study, we describe an ability of PUMA to induce autophagy that leads to the selective removal of mitochondria. This function of PUMA depends on Bax/Bak and can be reproduced by overexpression of Bax. The induction of autophagy coincides with cytochrome c release, and taken together the results sug...

  5. Autophagy: a pathway that contributes to connexin degradation

    OpenAIRE

    Lichtenstein, Alexandra; Minogue, Peter J.; Beyer, Eric C.; Berthoud, Viviana M.

    2011-01-01

    The function of connexins, which form gap junctions, can be rapidly modulated by degradation, because they have half-lives of only a few hours. Autophagy is a degradation pathway that has been implicated in several diseases and can be induced by cellular stresses such as starvation. We investigated the involvement of autophagy in proteolysis of the wild-type connexins CX50 and CX43, and a cataract-associated connexin mutant, CX50P88S, which forms cytoplasmic accumulations. We observed that cy...

  6. Bim Inhibits Autophagy by Recruiting Beclin 1 to Microtubules

    OpenAIRE

    Luo, Shouqing; Garcia-Arencibia, Moises; Zhao, Rui; Puri, Claudia; Toh, Pearl P.C.; Sadiq, Oana; Rubinsztein, David C.

    2012-01-01

    Summary Bim is a proapoptotic BH3-only Bcl-2 family member. In response to death stimuli, Bim dissociates from the dynein light chain 1 (DYNLL1/LC8), where it is inactive, and can then initiate Bax/Bak-mediated mitochondria-dependent apoptosis. We found that Bim depletion increases autophagosome synthesis in cells and in vivo, and this effect is inhibited by overexpression of cell death-deficient Bim. Bim inhibits autophagy by interacting with Beclin 1, an autophagy regulator, and this intera...

  7. Biallelic Mutations in the Autophagy Regulator DRAM2 Cause Retinal Dystrophy with Early Macular Involvement

    Science.gov (United States)

    El-Asrag, Mohammed E.; Sergouniotis, Panagiotis I.; McKibbin, Martin; Plagnol, Vincent; Sheridan, Eamonn; Waseem, Naushin; Abdelhamed, Zakia; McKeefry, Declan; Van Schil, Kristof; Poulter, James A.; Black, Graeme; Hall, Georgina; Ingram, Stuart; Gillespie, Rachel; Ramsden, Simon; Manson, Forbes; Hardcastle, Alison; Michaelides, Michel; Cheetham, Michael; Arno, Gavin; Thomas, Niclas; Bhattacharya, Shomi; Moore, Tony; Nemeth, Andrea; Downes, Susan; Lise, Stefano; Lord, Emma; Johnson, Colin A.; Carr, Ian M.; Leroy, Bart P.; De Baere, Elfride; Inglehearn, Chris F.; Webster, Andrew R.; Toomes, Carmel; Ali, Manir

    2015-01-01

    Retinal dystrophies are an overlapping group of genetically heterogeneous conditions resulting from mutations in more than 250 genes. Here we describe five families affected by an adult-onset retinal dystrophy with early macular involvement and associated central visual loss in the third or fourth decade of life. Affected individuals were found to harbor disease-causing variants in DRAM2 (DNA-damage regulated autophagy modulator protein 2). Homozygosity mapping and exome sequencing in a large, consanguineous British family of Pakistani origin revealed a homozygous frameshift variant (c.140delG [p.Gly47Valfs∗3]) in nine affected family members. Sanger sequencing of DRAM2 in 322 unrelated probands with retinal dystrophy revealed one European subject with compound heterozygous DRAM2 changes (c.494G>A [p.Trp165∗] and c.131G>A [p.Ser44Asn]). Inspection of previously generated exome sequencing data in unsolved retinal dystrophy cases identified a homozygous variant in an individual of Indian origin (c.64_66del [p.Ala22del]). Independently, a gene-based case-control association study was conducted via an exome sequencing dataset of 18 phenotypically similar case subjects and 1,917 control subjects. Using a recessive model and a binomial test for rare, presumed biallelic, variants, we found DRAM2 to be the most statistically enriched gene; one subject was a homozygote (c.362A>T [p.His121Leu]) and another a compound heterozygote (c.79T>C [p.Tyr27His] and c.217_225del [p.Val73_Tyr75del]). DRAM2 encodes a transmembrane lysosomal protein thought to play a role in the initiation of autophagy. Immunohistochemical analysis showed DRAM2 localization to photoreceptor inner segments and to the apical surface of retinal pigment epithelial cells where it might be involved in the process of photoreceptor renewal and recycling to preserve visual function. PMID:25983245

  8. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Barth Julia MI

    2012-12-01

    Full Text Available Abstract Background The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC, but not in the germline cells (GCs. However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Results Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Conclusion Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline and signal receiving cell (FC, thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  9. Role of autophagy in the ω-3 long chain polyunsaturated fatty acid-induced death of lung cancer A549 cells

    OpenAIRE

    Yao, Qinghua; Fu, Ting; Wang, Lu; LAI, YUEBIAO; Wang, Yuqi; Xu, Chao; Huang, Lulu; Guo, Yong

    2015-01-01

    The present study identified that ω-3 long chain polyunsaturated fatty acids (ω-3 PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) demonstrate anti-proliferative effects in lung cancer A549 cells. MTS and cytotoxicity assays were conducted to confirm that ω-3 PUFAs induced cell death. Autophagy-associated gene and signaling pathways were also detected. Microtubule-associated protein light chain 3 (LC3) expression was found to be increased subsequent to treatment with DHA and...

  10. C1q/TNF-Related Protein 9 (CTRP9) attenuates hepatic steatosis via the autophagy-mediated inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Jung, Tae Woo; Hong, Ho Cheol; Hwang, Hwan-Jin; Yoo, Hye Jin; Baik, Sei Hyun; Choi, Kyung Mook

    2015-12-01

    C1q/TNF-Related Protein (CTRP) 9, the closest paralog of adiponectin, has been reported to protect against diet-induced obesity and non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism has not been fully elucidated. We explored the protective effect of CTRP9 against hepatic steatosis and apoptosis, and identified the mechanisms through autophagy and endoplasmic reticulum (ER) stress using in vitro and in vivo experiments. Treating HepG2 cells with human recombinant CTRP9 significantly ameliorated palmitate- or tunicamycin-induced dysregulation of lipid metabolism, caspase 3 activity and chromatin condensation, which lead to reduction of hepatic triglyceride (TG) accumulation. CTRP9 treatment induced autophagy markers including LC3 conversion, P62 degradation, Beclin1 and ATG7 through AMPK phosphorylation in human primary hepatocytes. Furthermore, CTRP9 decreased palmitate- or tunicamycin-induced ER stress markers, such as eIF2α, CHOP and IRE-1, in HepG2 cells. Compound C, an AMPK inhibitor, and 3 methyladenine (3 MA), an autophagy inhibitor, canceled the effects of CTRP9 on ER stress, apoptosis and hepatic steatosis. In the livers of HFD-fed mice, adenovirus-mediated CTRP9 overexpression significantly induced AMPK phosphorylation and autophagy, whereas suppressed ER stress markers. In addition, both SREBP1-mediated lipogenic gene expression and apoptosis were significantly attenuated, which result in improvement in hepatic steatosis by overexpression of CTRP9. These results demonstrate that CTRP9 alleviates hepatic steatosis through relief of ER stress via the AMPK-mediated induction of autophagy. PMID:26419929

  11. Lactaptin induces p53-independent cell death associated with features of apoptosis and autophagy and delays growth of breast cancer cells in mouse xenografts.

    Directory of Open Access Journals (Sweden)

    Olga A Koval

    Full Text Available Lactaptin, the proteolytic fragment of human milk kappa-casein, induces the death of various cultured cancer cells. The mechanisms leading to cell death after lactaptin treatment have not been well characterized. In this study the in vivo and in vitro effects of a recombinant analogue of lactaptin (RL2 were examined. Following treatment with the recombinant analogue of lactaptin strong caspase -3, -7 activation was detected. As a consequence of caspase activation we observed the appearance of a sub-G1 population of cells with subdiploid DNA content. Dynamic changes in the mRNA and protein levels of apoptosis-related genes were estimated. No statistically reliable differences in p53 mRNA level or protein level were found between control and RL2-treated cells. We observed that RL2 constitutively suppressed bcl-2 mRNA expression and down regulated Bcl-2 protein expression in MDA-MB-231 cells. We demonstrated that RL2 penetrates cancer and non-transformed cells. Identification of the cellular targets of the lactaptin analogue revealed that α/β-tubulin and α-actinin-1 were RL2-bound proteins. As the alteration in cellular viability in response to protein stimulus can be realized not only by way of apoptosis but also by autophagy, we examined the implications of autophagy in RL2-dependent cell death. We also found that RL2 treatment induces LC3-processing, which is a hallmark of autophagy. The autophagy inhibitor chloroquine enhanced RL2 cytotoxicity to MDA-MB-231 cells, indicating the pro-survival effect of RL2-dependent autophagy. The antitumour potential of RL2 was investigated in vivo in mouse xenografts bearing MDA-MB-231 cells. We demonstrated that the recombinant analogue of lactaptin significantly suppressed the growth of solid tumours. Our results indicate that lactaptin could be a new molecule for the development of anticancer drugs.

  12. No evidence for activated autophagy in left ventricular myocardium at early reperfusion with protection by remote ischemic preconditioning in patients undergoing coronary artery bypass grafting.

    Directory of Open Access Journals (Sweden)

    Nilgün Gedik

    Full Text Available Remote ischemic preconditioning (RIPC by repeated brief limb ischemia/reperfusion reduces myocardial injury in patients undergoing coronary artery bypass grafting (CABG. Activation of signal transducer and activator of transcription 5 (STAT5 in left ventricular (LV myocardium at early reperfusion is associated with such protection. Autophagy, i.e., removal of dysfunctional cellular components through lysosomes, has been proposed as one mechanism of cardioprotection. Therefore, we analyzed whether or not the protection by RIPC is associated with activated autophagy.CABG patients were randomized to undergo RIPC (3×5 min blood pressure cuff inflation/5 min deflation or placebo (cuff deflated before skin incision (n = 10/10. Transmural myocardial biopsies were taken from the LV before cardioplegia (baseline and at early (5-10 min reperfusion. RIPC-induced protection was reflected by decreased serum troponin I concentration area under the curve (194±17 versus 709±129 ng/ml × 72 h, p = 0.002. Western blotting for beclin-1-phosphorylation and protein expression of autophagy-related gene 5-12 (ATG5-12 complex, light chain 3 (LC3, parkin, and p62 was performed. STAT3-, STAT5- and extracellular signal-regulated protein kinase 1/2 (ERK1/2-phosphorylation was used as positive control to confirm signal activation by ischemia/reperfusion.Signals of all analyzed autophagy proteins did not differ between baseline and early reperfusion and not between RIPC and placebo. STAT5-phosphorylation was greater at early reperfusion only with RIPC (2.2-fold, p = 0.02. STAT3- and ERK1/2-phosphorylation were greater at early reperfusion with placebo and RIPC (≥2.7-fold versus baseline, p≤0.05.Protection through RIPC in patients undergoing CABG surgery does not appear to be associated with enhanced autophagy in LV myocardium at early reperfusion.

  13. Pseudomonas toxin pyocyanin triggers autophagy: Implications for pathoadaptive mutations.

    Science.gov (United States)

    Yang, Zhong-Shan; Ma, Lan-Qing; Zhu, Kun; Yan, Jin-Yuan; Bian, Li; Zhang, Ke-Qin; Zou, Cheng-Gang

    2016-06-01

    Pseudomonas aeruginosa can establish life-long chronic infection in patients with cystic fibrosis by generating genetic loss-of-function mutations, which enhance fitness of the bacterium in the airways. However, the precise role of the pathoadaptive mutations in persistence in chronic airways infection remains largely unknown. Here we demonstrate that pyocyanin, a well-described P. aeruginosa virulence factor that plays an important role in the initial infection, promotes autophagy in bronchial epithelial cells. Disruption of phzM, which is required for pyocyanin biosynthesis, leads to a significant reduction in autophagy in Beas-2B cells and lung tissues. Pyocyanin-induced autophagy is mediated by the EIF2AK4/GCN2-EIF2S1/eIF2α-ATF4 pathway. Interestingly, rats infected with the phzMΔ mutant strain have high mortality rate and numbers of colony-forming units, compared to those infected with wild-type (WT) P. aeruginosa PA14 strain, during chronic P. aeruginosa infection. In addition, the phzMΔ mutant strain induces more extensive alveolar wall thickening than the WT strain in the pulmonary airways of rats. As autophagy plays an essential role in suppressing bacterial burden, our findings provide a detailed understanding of why reduction of pyocyanin production in P. aeruginosa in chronic airways infections has been associated with better host adaptation and worse outcomes in cystic fibrosis. PMID:27159636

  14. microRNA-101 is a potent inhibitor of autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Wen, Jiayu; Lees, Michael; Høyer-Hansen, Maria; Farkas, Thomas; Krogh, Anders; Jäättelä, Marja; Lund, Anders H

    2011-01-01

    performed a functional screen in search of microRNAs (miRNAs), which regulate the autophagic flux in breast cancer cells. In this study, we identified the tumour suppressive miRNA, miR-101, as a potent inhibitor of basal, etoposide- and rapamycin-induced autophagy. Through transcriptome profiling, we...

  15. Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Ramamoorthy, Mahesh; Sykora, Peter;

    2012-01-01

    Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegeneration, cachexia, and accelerated aging. 80% of the cases are caused by mutations in the CS complementation group B (CSB) gene known to be involved in DNA repair and transcription. Recent evidence...... indicates that CSB is present in mitochondria, where it associates with mitochondrial DNA (mtDNA). We report an increase in metabolism in the CSB(m/m) mouse model and CSB-deficient cells. Mitochondrial content is increased in CSB-deficient cells, whereas autophagy is down-regulated, presumably as a result...... of defects in the recruitment of P62 and mitochondrial ubiquitination. CSB-deficient cells show increased free radical production and an accumulation of damaged mitochondria. Accordingly, treatment with the autophagic stimulators lithium chloride or rapamycin reverses the bioenergetic phenotype of...

  16. Role of autophagy in differential sensitivity of hepatocarcinoma cells to sorafenib

    Institute of Scientific and Technical Information of China (English)

    Trevan; D; Fischer; Jin-Hee; Wang; Adrian; Vlada; Jae-Sung; Kim; Kevin; E; Behrns

    2014-01-01

    AIM: To investigate the role of sorafenib(SFN) in autophagy of hepatocellular carcinoma(HCC). We evaluated how SFN affects autophagy signaling pathway in human HCC cell lines. METHODS: Two different human HCC cell lines, Hep3 B and Huh7, were subjected to different concentrations of SFN. Cell viability and onset of apoptosis were determined with colorimetric assay and immunoblotting analysis, respectively. The changes in autophagy-related proteins, including LC3, ULK1, AMPK, and LKB, were determined with immunoblotting analysis in the presence or absence of SFN. To assess autophagic dynamics, autophagic flux was measured with chloroquine, a lysosomal inhibitor. The autophagic responsiveness between different HCC cell lines was compared under the autophagy enhancing conditions.RESULTS: Hep3 B cells were significantly more resistant to SFN than Huh7 cells. Immunoblotting analysis revealed a marked increase in SFN-mediated autophagy flux in Huh7 cells, which was, however, absent in Hep3 B cells. While both starvation and rapamycin enhanced autophagy in Huh7 cells, only rapamycin increased autophagy in Hep3 B cells. Immunoblotting analysis of autophagy initiation proteins showed that SFN substantially increased phosphorylation of AMPK and consequently autophagy in Huh7, but not in Hep3 B cells.CONCLUSION: The autophagic responsiveness to SFN is distinct between Hep3 B and Huh7 cells. Resistance of Hep3 B cells to SFN may be associated with altered autophagy signaling pathways.

  17. Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elżbieta Kania

    2015-01-01

    Full Text Available Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca2+ homeostasis perturbation and starvation. Several Ca2+ channels like voltage-gated T- and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2α-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death.

  18. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes.

    Science.gov (United States)

    Liu, Longhua; Zheng, Louise D; Zou, Peng; Brooke, Joseph; Smith, Cayleen; Long, Yun Chau; Almeida, Fabio A; Liu, Dongmin; Cheng, Zhiyong

    2016-08-01

    Obesity and related metabolic disorders constitute one of the most pressing heath concerns worldwide. Increased adiposity is linked to autophagy upregulation in adipose tissues. However, it is unknown how autophagy is upregulated and contributes to aberrant adiposity. Here we show a FoxO1-autophagy-FSP27 axis that regulates adipogenesis and lipid droplet (LD) growth in adipocytes. Adipocyte differentiation was associated with upregulation of autophagy and fat specific protein 27 (FSP27), a key regulator of adipocyte maturation and expansion by promoting LD formation and growth. However, FoxO1 specific inhibitor AS1842856 potently suppressed autophagy, FSP27 expression, and adipocyte differentiation. In terminally differentiated adipocytes, AS1842856 significantly reduced FSP27 level and LD size, which was recapitulated by autophagy inhibitors (bafilomycin-A1 and leupeptin, BL). Similarly, AS1842856 and BL dampened autophagy activity and FSP27 expression in explant cultures of white adipose tissue. To our knowledge, this is the first study addressing FoxO1 in the regulation of adipose autophagy, shedding light on the mechanism of increased autophagy and adiposity in obese individuals. Given that adipogenesis and adipocyte expansion contribute to aberrant adiposity, targeting the FoxO1-autophagy-FSP27 axis may lead to new anti-obesity options. PMID:27260854

  19. Intestinal Autophagy Improves Healthspan and Longevity in C. elegans during Dietary Restriction.

    Directory of Open Access Journals (Sweden)

    Sara Gelino

    2016-07-01

    Full Text Available Dietary restriction (DR is a dietary regimen that extends lifespan in many organisms. One mechanism contributing to the conserved effect of DR on longevity is the cellular recycling process autophagy, which is induced in response to nutrient scarcity and increases sequestration of cytosolic material into double-membrane autophagosomes for degradation in the lysosome. Although autophagy plays a direct role in DR-mediated lifespan extension in the nematode Caenorhabditis elegans, the contribution of autophagy in individual tissues remains unclear. In this study, we show a critical role for autophagy in the intestine, a major metabolic tissue, to ensure lifespan extension of dietary-restricted eat-2 mutants. The intestine of eat-2 mutants has an enlarged lysosomal compartment and flux assays indicate increased turnover of autophagosomes, consistent with an induction of autophagy in this tissue. This increase in intestinal autophagy may underlie the improved intestinal integrity we observe in eat-2 mutants, since whole-body and intestinal-specific inhibition of autophagy in eat-2 mutants greatly impairs the intestinal barrier function. Interestingly, intestinal-specific inhibition of autophagy in eat-2 mutants leads to a decrease in motility with age, alluding to a potential cell non-autonomous role for autophagy in the intestine. Collectively, these results highlight important functions for autophagy in the intestine of dietary-restricted C. elegans.

  20. SIRT6 suppresses isoproterenol-induced cardiac hypertrophy through activation of autophagy.

    Science.gov (United States)

    Lu, Jing; Sun, Duanping; Liu, Zhiping; Li, Min; Hong, Huiqi; Liu, Cui; Gao, Si; Li, Hong; Cai, Yi; Chen, Shaorui; Li, Zhuoming; Ye, Jiantao; Liu, Peiqing

    2016-06-01

    Reduction in autophagy has been reported to contribute to the pathogenesis of cardiac hypertrophy. However, the molecular pathways leading to impaired autophagy at the presence of hypertrophic stimuli remain to be elucidated. The present study aimed to investigate the role of sirtuin 6 (SIRT6), a sirtuin family member, in regulating cardiomyocyte autophagy, and its implication in prevention of cardiac hypertrophy. Primary neonatal rat cardiomyocytes (NRCMs) or Sprague-Dawley (SD) rats were submitted to isoproterenol (ISO) treatment, and then the hypertrophic responses and changes in autophagy activity were measured. The influence of SIRT6 on autophagy was observed in cultured NRCMs with gain- and loss-of-function approaches to regulate SIRT6 expression, and further confirmed in vivo by intramyocardial delivery of an adenovirus vector encoding SIRT6 cDNA. In addition, the involvement of SIRT6-mediated autophagy in attenuation of cardiomyocyte hypertrophy induced by ISO was determined basing on genetic or pharmaceutical disruption of autophagy, and the underlying mechanism was preliminarily explored. ISO-caused cardiac hypertrophy accompanying with a significant decrease in autophagy activity. SIRT6 overexpression enhanced autophagy in NRCMs and in rat hearts, whereas knockdown of SIRT6 by RNA interference led to suppression of cardiomyocyte autophagy. Furthermore, the protective effect of SIRT6 against ISO-stimulated hypertrophy was associated with induction of autophagy. SIRT6 promoted nuclear retention of forkhead box O3 transcription factor possibly via attenuating Akt signaling, which was responsible for autophagy activation. Our findings revealed that SIRT6 positively regulates autophagy in cardiomyocytes, which may help to ameliorate ISO-induced cardiac hypertrophy. PMID:27016702

  1. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qinyi [Department of Ultrasonograph, Changshu No. 2 People’s Hospital, Changshu (China); Zhou, Hao; Chen, Yan [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Shen, Chenglong [Department of General Surgery, Changshu No. 2 People’s Hospital, Changshu (China); He, Songbing; Zhao, Hua; Wang, Liang [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Wan, Daiwei, E-mail: 372710369@qq.com [Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Gu, Wen, E-mail: 505339704@qq.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  2. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    International Nuclear Information System (INIS)

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death

  3. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    Xiao HAN; Jian-xun LIU; Xin-zhi LI

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes.Methods: Cardiac myocytes were incubated under starvation conditions (GD) for O, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sat B (50 μmol/L) in the presence or absence of chloro-quine (3 μmol/L) under GD 3 h, the amount of LC3-11, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. More-over, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis.Results: Immunoblot analysis showed that the amount of LC3-11 in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-11, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present.Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy.

  4. Autophagy involved in resveratrol increased radiosensitivity in glioma stem cells

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of Resveratrol combined with X-ray on radiosensitivity in glioma stem cells. Methods: The proliferation inhibition of glioma stem cells induced by X-rays and Resveratrol was assessed with MTT assay. The activation of proapoptotic effect was characterized by Hoechst 33258 stain. MDC stain and Western blot analysis were used to analyze the autophagy mechanism in X-rays-induced death of glioma stem cells. Results: MTT assay indicated that X-rays and Resveratrol decreased the viability of glioma stem cells (P<0.05); we found the proliferative inhibition of glioma stem cells was declined when we used 3-MA to inhibit autophagy(P<0.05). When the cells were treated by the Resveratrol and x-rays, their spherical shape were changed. Apoptosis was induced in glioma stem cells by combined X-rays and Resveratrol as detected by Hoechst 33258 staining. In addition, autophagy was induced in glioma stem cells in the combined treatment group as detected by MDC staining. Western blotting showed that Bcl-2 expression was decreased. in the combined treatment group (P<0.01), and the LC3-Ⅱ expression was increased in the combined treatment group (P<0.01). Conclusion: Resveratrol can increased the radiation sensitivity of glioma stem cells, the apoptosis and autophagy was induced in the glioma stem cells in the combined treatment X-rays and Resveratrol. Our results suggest that autophagy plays an essential role in the regulation of radiosensitization of glioma stem cells. (authors)

  5. Autophagy in cerebral ischemia and the effects of traditional Chinese medicine

    Institute of Scientific and Technical Information of China (English)

    Xiao-ping Huang; Huang Ding; Jin-dong Lu; Ying-hong Tang; Bing-xiang Deng; Chang-qing Deng

    2015-01-01

    Autophagy is a lysosome-mediated degradation process for non-essential or damaged celular constituents, playing an important homeostatic role in cel survival, differentiation and development to maintain homeostasis. Autophagy is involved in tumors as wel as neurodegenerative, cardiovascular and cerebrovascular diseases. Recently, active compounds from traditional Chinese medicine (TCM) have been found to modulate the levels of autophagy in tumor cels, nerve cels, myocardial cels and endothelial cels. Ischemic stroke is a major cause of neurological disability and places a heavy burden on family and society. Regaining function can signiifcantly reduce dependence and improve the quality of life of stroke survivors. In healthy cels, autophagy plays a key role in adapting to nutritional deprivation and eliminating aggregated proteins, however inappropriate activation of autophagy may lead to cel death in cerebral ischemia. This paper reviews the process and the molecular basis of autophagy, as wel as its roles in cerebral ischemia and the roles of TCM in modulating its activity.

  6. Knockdown of retinoblastoma protein may sensitize glioma cells to cisplatin through inhibition of autophagy.

    Science.gov (United States)

    Liu, Xiangyu; Sun, Kangjian; Wang, Handong; Dai, Yuyuan

    2016-05-01

    Glioblastoma multiforme (GBM) is one of the deadliest forms of cancer due to its limited sensitivity to chemotherapy and radiotherapy. Cisplatin (CCDP) is a widely used chemotherapeutic agent for tumors, but the agent often results in the development of chemo-resistance. In several cancers, cisplatin resistance is associated with autophagy induction. Here, we found that in glioma cells cisplatin treatment induced autophagy. Our data indicates that the autophagy induction plays a critical role in cisplatin resistance of glioma cells, knockdown of RB inhibited autophagy induced by cisplatin, and inhibition of autophagy improved cisplatin-induced apoptosis. It suggests that a combination of autophagy inhibitors with cisplatin may improve the therapeutic efficiency of cisplatin towards GBM with acquired resistance. PMID:27048711

  7. Mechanisms of autophagy and apoptosis:Recent developments in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Juan; M; Esteve; Erwin; Knecht

    2011-01-01

    Autophagy,the pathway whereby cell components are degraded by lysosomes,is involved in the cell response to environmental stresses,such as nutrient deprivation,hypoxia or exposition to chemotherapeutic agents.Under these conditions,which are reminiscent of certain phases of tumor development,autophagy either promotes cell survival or induces cell death. This strengthens the possibility that autophagy could be an important target in cancer therapy,as has been proposed.Here,we describe the regulation of survival and death by autophagy and apoptosis,especially in cultured breast cancer cells.In particular,we discuss whether autophagy represents an apoptosis-independent process and/or if they share common pathways. We believe that understanding in detail the molecular mechanisms that underlie the relationships between autophagy and apoptosis in breast cancer cells could improve the available treatments for this disease.

  8. Enhanced autophagy as a potential mechanism for the improved physiological function by simvastatin in muscular dystrophy.

    Science.gov (United States)

    Whitehead, Nicholas P

    2016-04-01

    Autophagy has recently emerged as an important cellular process for the maintenance of skeletal muscle health and function. Excessive autophagy can trigger muscle catabolism, leading to atrophy. In contrast, reduced autophagic flux is a characteristic of several muscle diseases, including Duchenne muscular dystrophy, the most common and severe inherited muscle disorder. Recent evidence demonstrates that enhanced reactive oxygen species (ROS) production by CYBB/NOX2 impairs autophagy in muscles from the dmd/mdx mouse, a genetic model of Duchenne muscular dystrophy. Statins decrease CYBB/NOX2 expression and activity and stimulate autophagy in skeletal muscle. Therefore, we treated dmd/mdx mice with simvastatin and showed decreased CYBB/NOX2-mediated oxidative stress and enhanced autophagy induction. This was accompanied by reduced muscle damage, inflammation and fibrosis, and increased muscle force production. Our data suggest that increased autophagy may be a potential mechanism by which simvastatin improves skeletal muscle health and function in muscular dystrophy. PMID:26890413

  9. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome

    DEFF Research Database (Denmark)

    Morselli, Eugenia; Mariño, Guillermo; Bennetzen, Martin V; Eisenberg, Tobias; Megalou, Evgenia; Schroeder, Sabrina; Cabrera, Sandra; Bénit, Paule; Rustin, Pierre; Criollo, Alfredo; Kepp, Oliver; Galluzzi, Lorenzo; Shen, Shensi; Malik, Shoaib Ahmad; Maiuri, Maria Chiara; Horio, Yoshiyuki; López-Otín, Carlos; Andersen, Jens S.; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2011-01-01

    Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy...... independent of SIRT1 in human and yeast cells as well as in nematodes. Although resveratrol and spermidine ignite autophagy through distinct mechanisms, these compounds stimulate convergent pathways that culminate in concordant modifications of the acetylproteome. Both agents favor convergent deacetylation...... and acetylation reactions in the cytosol and in the nucleus, respectively. Both resveratrol and spermidine were able to induce autophagy in cytoplasts (enucleated cells). Moreover, a cytoplasm-restricted mutant of SIRT1 could stimulate autophagy, suggesting that cytoplasmic deacetylation reactions...

  10. Study on γ-ray induced mitochondrial autophagy and regeneration of liver cells in rats

    International Nuclear Information System (INIS)

    Objective: To explore the role of mitochondrial autophagy in wound healing. Methods Damages of liver cells in rats after γ-ray irradiation with a total dose of 8 Gy were investigated. The relationship between mitochondrial autophagy and repair of liver cells was observed ultrastructurally. Apoptosis-related DNA fragment and mitochondrial RNA levels were analyzed. Results: Most of the damaged mitochondria were removed through mitochondrial autophagy. Apoptosis-related DNA fragment analysis implied that, accompanied with reduction of mitochondrial autophagy, the amount of cellular apoptosis was decreased during wound healing. Wound healing was related to mitochondrial regeneration after mitochondrial autophagy. Conclusion: Mitochondrial autophagy may release some molecular signals for wound healing so as to accelerate sufficiently the regeneration of newly formed mitochondria. (authors)

  11. Targeting autophagy as a potential therapeutic approach for immune thrombocytopenia therapy.

    Science.gov (United States)

    Shan, Ning-Ning; Dong, Li-Li; Zhang, Xiao-Mei; Liu, Xin; Li, Ying

    2016-04-01

    Autophagy involves the sequestration and lysosomal degradation of various cytoplasmic structures, including damaged organelles and invading microorganisms. Autophagy is not only an essential cell-intrinsic mechanism for protecting against internal and external stress conditions but is also key in the cellular response against microbes, in antigen processing for major histocompatibility complex (MHC) presentation, and in lymphocyte development, survival, and proliferation. In recent years, perturbations in autophagy have been implicated in a number of diseases, including autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). Immune thrombocytopenia (ITP) is a multifactorial disease characterized by autoimmune responses to self-platelet membrane proteins. Recently, our unpublished original data demonstrated aberrant expression of molecules in the autophagy pathway in ITP patients compared with controls, and we found a close correlation between the pathogenesis of ITP and the autophagy pathway. The potential of targeting the autophagy pathway in ITP as a novel therapeutic approach has been discussed. PMID:26830007

  12. The role of autophagy in cell survival from heavy ion irradiation in the plateau region

    International Nuclear Information System (INIS)

    To study cytotoxic effect of heavy ion irradiation in the plateau region, and investigate whether autophagy induced by heavy ion irradiation is cytoprotective, HeLa cells were irradiated with 350 MeV/u carbon ions beams, and the clonogenic survival was analyzed. The results showed that cell survival decreased with increasing doses. It was also found that G2/M-phase cells increased, and the autophagy-related activity was significantly higher than the control. When autophagy was blocked by 3-methyladenine in carbon-ion irradiated cells, G2/M phase arrest and the percentage of apoptosis cells were further elevated, and cell survival decreased significantly, indicating the induction of cytoprotective autophagy by carbon-ion irradiation. Our results demonstrated that autophagy induced by carbon ion irradiation provided a self-protective mechanism in HeLa cells, short-time inhibition of autophagy before carbon-ion irradiation could enhance radiation cytotoxicity in HeLa cells. (authors)

  13. Cell death and autophagy: Cytokines, drugs, and nutritional factors

    International Nuclear Information System (INIS)

    Cells may use multiple pathways to commit suicide. In certain contexts, dying cells generate large amounts of autophagic vacuoles and clear large proportions of their cytoplasm, before they finally die, as exemplified by the treatment of human mammary carcinoma cells with the anti-estrogen tamoxifen (TAM, ≤1 μM). Protein analysis during autophagic cell death revealed distinct proteins of the nuclear fraction including GST-π and some proteasomal subunit constituents to be affected during autophagic cell death. Depending on the functional status of caspase-3, MCF-7 cells may switch between autophagic and apoptotic features of cell death [Fazi, B., Bursch, W., Fimia, G.M., Nardacci R., Piacentini, M., Di Sano, F., Piredda, L., 2008. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy 4(4), 435-441]. Furthermore, the self-destruction of MCF-7 cells was found to be completed by phagocytosis of cell residues [Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W., Fesues, L., 2007. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Diff. 14 (6), 1117-1128]. Autophagy also constitutes a cell's strategy of defense upon cell damage by eliminating damaged bulk proteins/organelles. This biological condition may be exemplified by the treatment of MCF-7 cells with a necrogenic TAM-dose (10 μM), resulting in the lysis of almost all cells within 24 h. However, a transient (1 h) challenge of MCF-7 cells with the same dose allowed the recovery of cells involving autophagy. Enrichment of chaperones in the insoluble cytoplasmic protein fraction indicated the formation of aggresomes, a potential trigger for autophagy. In a further experimental model HL60 cells were treated with TAM, causing dose-dependent distinct responses: 1-5 μM TAM, autophagy predominant; 7-9 μM, apoptosis predominant; 15 μM, necrosis. These phenomena might be

  14. Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora.

    Science.gov (United States)

    Werner, Antonia; Herzog, Britta; Frey, Stefan; Pöggeler, Stefanie

    2016-01-01

    In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Sm)atg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12. PMID:27309377

  15. Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora.

    Directory of Open Access Journals (Sweden)

    Antonia Werner

    Full Text Available In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Smatg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12.

  16. Enhanced autophagy as a potential mechanism for the improved physiological function by simvastatin in muscular dystrophy

    OpenAIRE

    Whitehead, Nicholas P.

    2016-01-01

    ABSTRACT Autophagy has recently emerged as an important cellular process for the maintenance of skeletal muscle health and function. Excessive autophagy can trigger muscle catabolism, leading to atrophy. In contrast, reduced autophagic flux is a characteristic of several muscle diseases, including Duchenne muscular dystrophy, the most common and severe inherited muscle disorder. Recent evidence demonstrates that enhanced reactive oxygen species (ROS) production by CYBB/NOX2 impairs autophagy ...

  17. Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease

    OpenAIRE

    2013-01-01

    Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1) disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal prot...

  18. Autophagy Inhibition Delays Early but Not Late-Stage Metastatic Disease.

    Science.gov (United States)

    Barnard, Rebecca A; Regan, Daniel P; Hansen, Ryan J; Maycotte, Paola; Thorburn, Andrew; Gustafson, Daniel L

    2016-08-01

    The autophagy pathway has been recognized as a mechanism of survival and therapy resistance in cancer, yet the extent of autophagy's function in metastatic progression is still unclear. Therefore, we used murine models of metastatic cancer to investigate the effect of autophagy modulation on metastasis development. Pharmacologic and genetic autophagy inhibition were able to impede cell proliferation in culture, but did not impact the development of experimentally induced 4T1 and B16-F10 metastases. Similarly, autophagy inhibition by adjuvant chloroquine (CQ) treatment did not delay metastasis in an orthotopic 4T1, tumor-resection model. However, neoadjuvant CQ treatment or genetic autophagy inhibition resulted in delayed metastasis development, whereas stimulation of autophagy by trehalose hastened development. Cisplatin was also administered either as a single agent or in combination with CQ. The combination of cisplatin and CQ was antagonistic. The effects of autophagy modulation on metastasis did not appear to be due to alterations in the intrinsic metastatic capability of the cells, as modulating autophagy had no impact on migration, invasion, or anchorage-independent growth in vitro. To explore the possibility of autophagy's influence on the metastatic microenvironment, bone marrow-derived cells (BMDCs), which mediate the establishment of the premetastatic niche, were measured in the lung and in circulation. Trehalose-treated mice had significantly more BMDCs than either vehicle- or CQ-treated mice. Autophagy inhibition may be most useful as a treatment to impede early metastatic development. However, modulating autophagy may also alter the efficacy of platinum-based therapies, requiring caution when considering combination therapies. PMID:27231155

  19. Autophagy in 5-Fluorouracil Therapy in Gastrointestinal Cancer: Trends and Challenges

    OpenAIRE

    Jia-Cheng Tang; Yi-Li Feng; Xiao Liang; Xiu-Jun Cai

    2016-01-01

    Objective: 5-Fluorouracil (5-FU)-based combination therapies are standard treatments for gastrointestinal cancer, where the modulation of autophagy is becoming increasingly important in offering effective treatment for patients in clinical practice. This review focuses on the role of autophagy in 5-FU-induced tumor suppression and cancer therapy in the digestive system. Data Sources: All articles published in English from 1996 to date those assess the synergistic effect of autophagy and 5-...

  20. Autophagy Induction Protects Against 7-Oxysterol-induced Cell Death via Lysosomal Pathway and Oxidative Stress

    OpenAIRE

    Xi-Ming Yuan; Nargis Sultana; Nabeel Siraj; Ward, Liam J.; Bijar Ghafouri; Wei Li

    2016-01-01

    7-Oxysterols are major toxic components in oxidized low-density lipoprotein and human atheroma lesions, which cause lysosomal membrane permeabilization (LMP) and cell death. Autophagy may function as a survival mechanism in this process. Here, we investigated whether 7-oxysterols mixed in an atheroma-relevant proportion induce autophagy, whether autophagy induction influences 7-oxysterol-mediated cell death, and the underlying mechanisms, by focusing on cellular lipid levels, oxidative stress...

  1. Naringin-sensitive protein phosphorylation pathways in the regulation of hepatocytic autophagy

    OpenAIRE

    2004-01-01

    Autophagy is a process used by eukaryotic cells to degrade their own cytoplasm under conditions of nitrogen starvation or stress, in order to obtain amino acids and other small molecules needed for the maintenance of essential cell functions. A variety of biological agents have been described to take part in the regulation of mammalian autophagy. Naringin, a flavanone isolated from grapefruit peel as the bitter principle, is known to exhibit autophagy-preserving effects in isolated hepatoc...

  2. Ras-Related Tumorigenesis Is Suppressed by BNIP3-Mediated Autophagy through Inhibition of Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Shan-Ying Wu

    2011-12-01

    Full Text Available Autophagy plays diverse roles in Ras-related tumorigenesis. H-rasval12 induces autophagy through multiple signaling pathways including Raf-1/ERK pathway, and various ERK downstream molecules of autophagy have been reported. In this study, Bcl-2/adenovirus E1B 19-kDa–interacting protein 3 (BNIP3 is identified as a downstream transducer of the Ras/Raf/ERK signaling pathway to induce autophagy. BNIP3 was upregulated by H-rasval12 at the transcriptional level to compete with Beclin 1 for binding with Bcl-2. H-rasval12–induced autophagy suppresses cell proliferation demonstrated both in vitro and in vivo by expression of ectopic BNIP3, Atg5, or interference RNA of BNIP3 (siBNIP3 and Atg5 (shAtg5 using mouse NIH3T3 and embryo fibroblast cells. H-rasval12 induces different autophagic responses depending on the duration of Ras overexpression. After a short time (48 hours of Ras overexpression, autophagy inhibits cell proliferation. In contrast, a longer time (2 weeks of Ras overexpression, cell proliferation was enhanced by autophagy. Furthermore, overexpression of mutant Ras, BNIP3, and LC3-II was detected in bladder cancer T24 cells and the tumor parts of 75% of bladder cancer specimens indicating a positive correlation between autophagy and tumorigenesis. Taken together, our mouse model demonstrates a balance between BNIP3-mediated autophagy and H-rasval12–induced tumor formation and reveals that H-rasval12 induces autophagy in a BNIP3-dependent manner, and the threshold of autophagy plays a decisive role in H-rasval12–induced tumorigenesis. Our findings combined with others’ reports suggest a new therapeutic strategy against Ras-related tumorigenesis by negative or positive regulation of autophagic activity, which is determined by the level of autophagy and tumor progression stages.

  3. Autophagy activation aggravates neuronal injury in the hippocampus of vascular dementia rats

    OpenAIRE

    Liu, Bin; Tang, Jing; Zhang, Jinxia; Li, Shiying; Yuan, Min; Wang, Ruimin

    2014-01-01

    It remains unclear whether autophagy affects hippocampal neuronal injury in vascular dementia. In the present study, we investigated the effects of autophagy blockade on hippocampal neuronal injury in a rat model of vascular dementia. In model rats, hippocampal CA1 neurons were severely damaged, and expression of the autophagy-related proteins beclin-1, cathepsin B and microtubule-associated protein 1 light chain 3 was elevated compared with that in sham-operated animals. These responses were...

  4. Perturbation of intracellular acyl-CoA metabolism induces the unfolded protein response pathway and autophagy in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren

    Eukaryotic cells have developed several strategies to respond and adapt to changes in their intracellular and extracellular environment. The unfolded protein response (UPR) pathway is activated following accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER), whereas...... autophagy mainly is a response to the stress of nutrient limitation. In the present study, we demonstrate that perturbation of fatty acid synthesis and transport either through inhibition of fatty acid synthase (FAS) or by depleting cells for the acyl-CoA binding protein, Acb1p, leads to induction of Hac1p......, a transcription factor regulating the unfolded protein response and membrane biogenesis, as well as Hac1p target genes incl. KAR2 and PDI1. Under similar conditions, we find a massive upregulation of pre-autophagosomal structure (PAS) formation, indicative of upregulation of autophagy...

  5. Autophagy may contribute to the recovery of rat mesothelium following acute inflammation in vivo.

    Science.gov (United States)

    Balogh, Petra; Szabó, Arnold; Likó, István; Patócs, Attila; L Kiss, Anna

    2015-10-01

    Following Freund's adjuvant-induced acute inflammation, the regeneration of rat mesothelium is accompanied by the reduction of cell organelles. The aim of the present study is to test whether autophagy may play a role in the recovery process of mesothelial cells by eliminating accumulated cell organelles and also to investigate the presence of potential inducers and molecular transmitters of the process. Control and treated (from day 2 to day 11; D2-D11) mesothelial cells (n = 16 samples/group) obtained from male rats were isolated and phenotypically characterized. Morphological studies included light and electron microscopy. Biochemical studies performed on tissue samples as well as isolated cells were used to evaluate the dynamics of autophagy and also to detect the expression levels of TNF-α, LC3B, estrogen receptors (ER-α and GPR30) and Erk1/2. Gene expression was measured by individual Taqman assays on quantitative RT-PCR. Protein expression study was performed by Western blotting and immunolabeling. Estradiol concentration was measured both in peritoneal fluid and plasma samples in control and treated animals (n = 3-10 animals per group). Our conventional electron microscopic and morphometric results showed a progressive autophagosome formation with a peak by the termination of inflammation (D5). Subsequently, autophagolysosome formation dominated between D6 and D8 with a concomitant expression of LC3B proved by immunoblotting. We further observed the reduction of cell compartments by D11 parallel with the morphological restitution of mesothelium. Estradiol showed a sustained level in the peritoneal fluid but not in plasma samples between D3 and D11 compared to levels obtained from untreated animals. The mRNA expression of TNF-α was increased between D2 and D11 compared to control. Western blot analysis showed a constitutive expression of GPR30, while ER-α could not be detected between D6 and D11. Erk1/2 was activated by phosphorylation with a

  6. A systems level strategy for analyzing the cell death network: implication in exploring the apoptosis/autophagy connection.

    Science.gov (United States)

    Zalckvar, E; Yosef, N; Reef, S; Ber, Y; Rubinstein, A D; Mor, I; Sharan, R; Ruppin, E; Kimchi, A

    2010-08-01

    The mammalian cell death network comprises three distinct functional modules: apoptosis, autophagy and programmed necrosis. Currently, the field lacks systems level approaches to assess the extent to which the intermodular connectivity affects cell death performance. Here, we developed a platform that is based on single and double sets of RNAi-mediated perturbations targeting combinations of apoptotic and autophagic genes. The outcome of perturbations is measured both at the level of the overall cell death responses, using an unbiased quantitative reporter, and by assessing the molecular responses within the different functional modules. Epistatic analyses determine whether seemingly unrelated pairs of proteins are genetically linked. The initial running of this platform in etoposide-treated cells, using a few single and double perturbations, identified several levels of connectivity between apoptosis and autophagy. The knock down of caspase3 turned on a switch toward autophagic cell death, which requires Atg5 or Beclin-1. In addition, a reciprocal connection between these two autophagic genes and apoptosis was identified. By applying computational tools that are based on mining the protein-protein interaction database, a novel biochemical pathway connecting between Atg5 and caspase3 is suggested. Scaling up this platform into hundreds of perturbations potentially has a wide, general scope of applicability, and will provide the basis for future modeling of the cell death network. PMID:20150916

  7. Burkholderia cenocepacia J2315 escapes to the cytosol and actively subverts autophagy in human macrophages.

    Science.gov (United States)

    Al-Khodor, Souhaila; Marshall-Batty, Kimberly; Nair, Vinod; Ding, Li; Greenberg, David E; Fraser, Iain D C

    2014-03-01

    Selective autophagy functions to specifically degrade cellular cargo tagged by ubiquitination, including bacteria. Strains of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that cause life-threatening infections in patients with cystic fibrosis (CF) and chronic granulomatous disease (CGD). While there is evidence that defective macrophage autophagy in a mouse model of CF can influence B. cenocepacia susceptibility, there have been no comprehensive studies on how this bacterium is sensed and targeted by the host autophagy response in human macrophages. Here, we describe the intracellular life cycle of B. cenocepacia J2315 and its interaction with the autophagy pathway in human cells. Electron and confocal microscopy analyses demonstrate that the invading bacteria interact transiently with the endocytic pathway before escaping to the cytosol. This escape triggers theselective autophagy pathway, and the recruitment of ubiquitin, the ubiquitin-binding adaptors p62 and NDP52 and the autophagosome membrane-associated protein LC3B, to the bacterial vicinity. However, despite recruitment of these key autophagy pathway effectors, B. cenocepacia blocks autophagosome completion and replicates in the host cytosol. We find that a pre-infection increase in cellular autophagy flux can significantly inhibit B. cenocepacia replication and that lower autophagy flux in macrophages from immunocompromised CGD patients could contribute to increased B. cenocepacia susceptibility, identifying autophagy manipulation as a potential therapeutic approach to reduce bacterial burden in B. cenocepacia infections. PMID:24119232

  8. Role of autophagy in disease resistance and hypersensitive response-associated cell death

    DEFF Research Database (Denmark)

    Hofius, Daniel; Munch, David; Bressendorff, Simon;

    2011-01-01

    documented, but how autophagy contributes to plant innate immunity and cell death is not that clear. A few research reports have appeared recently to shed light on the roles of autophagy in plant-pathogen interactions and in disease-associated host cell death. We present a first attempt to reconcile the......Ancient autophagy pathways are emerging as key defense modules in host eukaryotic cells against microbial pathogens. Apart from actively eliminating intracellular intruders, autophagy is also responsible for cell survival, for example by reducing the deleterious effects of endoplasmic reticulum...

  9. Survival and death of endoplasmic-reticulum-stressed cells:Role of autophagy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Accumulation of unfolded proteins in the endoplasmic reticulum (ER) results in ER stress, which subsequently activates the unfolded protein response that induces a transcriptional program to alleviate the stress. Another cellular process that is activated during ER stress is autophagy, a mechanism of enclosing intracellular compo- nents in a double-membrane autophagosome, and then delivering it to the lysosome for degradation. Here, we discuss the role of autophagy in cellular response to ER stress, the signaling pathways linking ER stress to autophagy, and the possible implication of modulating autophagy in treatment of diseases such as cancer.

  10. Impaired Autophagy in the Lipid-Storage Disorder Niemann-Pick Type C1 Disease

    Directory of Open Access Journals (Sweden)

    Sovan Sarkar

    2013-12-01

    Full Text Available Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1 disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal proteolytic function remains unaffected. Expression of functional NPC1 protein rescues this defect. Inhibition of autophagy also causes cholesterol accumulation. Compromised autophagy was seen in disease-affected organs of Npc1 mutant mice. Of potential therapeutic relevance is that HP-β-cyclodextrin, which is used for cholesterol-depletion treatment, impedes autophagy, whereas stimulating autophagy restores its function independent of amphisome formation. Our data suggest that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may provide a rational treatment strategy for NPC1 disease.

  11. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    OpenAIRE

    Yongke Lu; Cederbaum, Arthur I.

    2015-01-01

    Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current re...

  12. Deconvoluting the relationships between autophagy and metastasis for potential cancer therapy.

    Science.gov (United States)

    Yao, Dahong; Wang, Peiqi; Zhang, Jin; Fu, Leilei; Ouyang, Liang; Wang, Jinhui

    2016-06-01

    Autophagy is a highly conserved lysosome-dependent degradation process that may digest some long-lived proteins and damaged organelles. As an essential homeostasis maintaining system in normal cells, autophagy plays a key role in several pathological settings, especially cancer. Metastasis, known as a crucial hallmark of cancer progression, is the primary cause of cancer lethality. The role of autophagy in metastasis is quite complex as supportive evidence has indicated both pro-metastatic and anti-metastatic functions of autophagy. Autophagy can inhibit metastasis by restricting necrosis and mediating autophagic cell death, whereas it may also promote metastasis by enhancing cancer cell fitness in response to stress. Moreover, the function of autophagy is context- and stage-dependent. Specifically, during the early steps of metastasis, autophagy mainly serves as a suppressor, while it plays a pro-metastatic role in the later steps. Here, we focus on highlighting the dual roles of autophagy in metastasis and address the molecular mechanisms involved in this process, which may provide a new insight into cancer biology. While, we also summarize several anti-metastatic agents manipulating autophagy, in the hope of shedding light on exploration of potential novel drugs for future cancer therapy. PMID:27003389

  13. Effectors of mTOR-autophagy pathway: targeting cancer, affecting the skeleton.

    Science.gov (United States)

    Chagin, Andrei S

    2016-06-01

    Although some modulators of autophagy are emerging as drugs or supplements for anti-cancer therapy, the effects of these compounds on normal tissues must be examined carefully. Here, I review the role of autophagy in skeletal tissues in this context. First, I briefly review preclinical studies indicating the role of autophagy in cancer, as well as related on-going clinical trials. Thereafter, the role of autophagy in the physiology of skeletal tissues is discussed, with a focus on recent genetic preclinical studies. Specifically, I discuss the mTOR-autophagy pathway in relationship to epiphyseal chondrocytes, articular chondrocytes, osteoblasts, osteocytes and osteoclasts and potential side effects of targeting either mTOR pathway or autophagy in general in connection with anti-cancer therapy. Current preclinical findings indicate that inhibiting autophagy will not seriously reduce bone mass and enhance osteoporosis. However, inhibition of autophagy might damage articular cartilage and cause osteoarthritis, whereas treatment with rapalogs might result in relatively beneficial effects on articular cartilage. Modulation of the mTOR pathway or autophagy during childhood may have an undesirable influence on adult height, as well as acquisition of bone mass. PMID:26921601

  14. There is more to autophagy than induction: regulating the roller coaster.

    Science.gov (United States)

    Klionsky, Daniel J; Nemchenko, Andriy

    2011-08-01

    Considerable attention has been paid to the topic of autophagy induction. In part, this is because of the potential for modulating this process for therapeutic purposes. Of course we know that induced autophagy can also be problematic--for example, when trying to eliminate an established tumor that might be relying on autophagy for its own cytoprotective uses. Accordingly, inhibitory mechanisms have been considered; however, the corresponding studies have tended to focus on the pathways that block autophagy under non-inducing conditions, such as when nutrients are available. In contrast, relatively little is known about the mechanisms for inhibiting autophagy under inducing conditions. Yet, this type of regulation must be occurring on a routine basis. We know that dysregulation of autophagy, e.g., due to improper activation of Beclin 1 leading to excessive autophagy activity, can cause cell death. Accordingly, we assume that during starvation or other inducing conditions there must be a mechanism to modulate autophagy. That is, once you turn it on, you do not want to let it continue unchecked. But how is autophagy downregulated when the inducing conditions still exist? PMID:21636971

  15. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway.

    Science.gov (United States)

    Lu, Chi; Xie, Conghua

    2016-06-01

    Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy. PMID:27109915

  16. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    International Nuclear Information System (INIS)

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy

  17. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xueming; Chen, Aihua, E-mail: aihuachen2012@sina.com; Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng

    2013-11-29

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  18. STAT3-dependent TXNDC17 expression mediates Taxol resistance through inducing autophagy in human colorectal cancer cells.

    Science.gov (United States)

    Zhang, Zhongde; Wang, Aihua; Li, Hui; Zhi, Hui; Lu, Feng

    2016-06-10

    Taxol (paclitaxel) is one of the taxane class of anticancer drugs as a first-line chemotherapeutic agent against many cancers including colorectal cancer, breast cancer, non-small cell lung cancer, ovarian cancer and so on. It is verified to induce cytotoxicity in a concentration and time-dependent manner. Numerous novel formulations of Taxol have been remanufactured for better therapeutic effect. Though Taxol works as a common anticancer drug for a long time in clinical practice, drug resistance is a major limitation of its long-term administration. In-depth research on drug resistance is still in progress and researchers have made some achievements, however, the mechanism or key molecule related to Taxol resistance in colorectal cancer still remains to be explored. In the present study, we observed that the high expression of TXNDC17 (thioredoxin domain containing 17) was associated with Taxol resistance in colorectal cancer cells. And TXNDC17 mediated Taxol resistance was related with increased basal autophagy level. Taxol exposure induced high levels of phospho-STAT3 (Tyr 705) and TXNDC17; and increase of basal autophagy in colorectal cancer cells. TXNDC17 overexpression cells obtained Taxol resistance and a high level of autophagy, and it is not surprising that stable downregulation of TXNDC17 accordingly reversed these phenomena. Interestingly, STAT3 could similarly work as TXNDC17 in spite of slighter effect compared to TXNDC17. And it has been proved that phospho-STAT3 (Tyr 705) possesses transcriptional regulation activity through forming dimmers. Many research revealed that transcription factor STAT3 affected more than 1000 gene products, and TXNDC17 is predicted to be a target gene of STAT3 at UCSC database. For the first time, we found STAT3 could bind promoter region of TXNDC17 (-623bp to -58bp relative to the transcription start site (TSS)) for regulating its expression. These results suggest the possibility that TXNDC17 could play an important role

  19. Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy

    Directory of Open Access Journals (Sweden)

    María Muriach

    2014-01-01

    Full Text Available Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB, a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.

  20. Membrane proteomics of phagosomes suggests a connection to autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Wenqing; Sheu, Leslie; Liu, Jun; Smart, Brian; Petzold, Christopher J.; Hsieh, Tsung-yen; Pitcher, Austin; Keasling*, Jay D.; Bertozzi*, Carolyn R.

    2008-11-25

    Phagocytosis is the central process by which macrophage cellsinternalize and eliminate infectious microbes as well as apoptoticcells. During maturation, phagosomes containing engulfed particlesfuse with various endosomal compartments through theaction of regulatory molecules on the phagosomal membrane. Inthis study, we performed a proteomic analysis of the membranefraction from latex bead-containing (LBC) phagosomes isolatedfrom macrophages. The profile, which comprised 546 proteins,suggests diverse functions of the phagosome and potential connectionsto secretory processes, toll-like receptor signaling, andautophagy. Many identified proteins were not previously knownto reside in the phagosome. We characterized several proteins inLBC phagosomes that change in abundance on induction of autophagy,a process that has been previously implicated in the hostdefense against microbial pathogens. These observations suggestcrosstalk between autophagy and phagocytosis that may be relevantto the innate immune response of macrophages.

  1. Autophagy-A free meal in sickness-associated anorexia.

    Science.gov (United States)

    van Niekerk, Gustav; Loos, Ben; Nell, Theo; Engelbrecht, Anna-Mart

    2016-04-01

    Activation of the immune system is metabolically costly, yet a hallmark of an infection is a reduction in appetite with a subsequent reduction in metabolite provision. What is the functional value of decreasing nutrient intake when an infection imposes large demands on metabolic parameters? Here, we propose that sickness-associated anorexia (SAA) upregulates the ancient process of autophagy systemically, thereby profoundly controlling not only immune- but also nonimmune-competent cells. This allows an advanced impact on the resolution of an infection through direct pathogen killing, enhancement of epitope presentation and the contribution toward the clearance of noxious factors. By rendering a 'free meal,' autophagy is thus most fundamentally harnessed during an anorexic response in order to promote both host tolerance and resistance. These findings strongly suggest a reassessment of numerous SAA-related clinical applications and a re-evaluation of current efforts in patient care. PMID:27050464

  2. Deficient autophagy unravels the ROS paradox in chronic granulomatous disease

    OpenAIRE

    Van De Veerdonk, Frank L.; Dinarello, Charles A.

    2014-01-01

    Autophagy defects resulting in inflammation appear to be a key feature in the pathogenesis of Crohn colitis. An inflammatory colitis indistinguishable from Crohn disease is described in patients with chronic granulomatous disease (CGD). Patients with CGD have a mutated NADPH complex and are therefore deficient in reactive oxygen species (ROS) production; however, the underlying mechanism for the inflammatory colitis in CGD remained unknown. In a recent study, our group reported that NADPH-dep...

  3. A Lysosome-Targeting AIEgen for Autophagy Visualization.

    Science.gov (United States)

    Leung, Chris Wai Tung; Wang, Zhiming; Zhao, Engui; Hong, Yuning; Chen, Sijie; Kwok, Ryan Tsz Kin; Leung, Anakin Chun Sing; Wen, Rongsen; Li, Bingshi; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2016-02-18

    In this work, a morpholine-functionalized aggregation-induced emission luminogen (AIEgen), AIE-LysoY, is reported for lysosomal imaging and autophagy visualization. To attain outstanding imaging contrast, AIE-LysoY is equipped with excited state intramolecular proton transfer (ESIPT) characteristic. AIE-LysoY provides a new platform for lysosome visualization with good biocompatibility, large Stokes shift, superior signal-to-noise ratio, and high photostability. PMID:26688031

  4. Autophagy is a protective response to ethanol neurotoxicity

    OpenAIRE

    Chen, Gang; Ke, Zunji; Xu, Mei; Liao, Mingjun; Wang, Xin; Qi, Yuanlin; Zhang,Tao; Frank, Jacqueline A.; Bower, Kimberly A.; Shi, Xianglin; Luo, Jia

    2012-01-01

    Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to alleviate oxidative stress and neurotoxicity. Our results indicated that ethanol increased the level of the autophagic marker Map1lc3-II (LC3-II...

  5. Emerging nexus between RAB GTPases, autophagy and neurodegeneration.

    Science.gov (United States)

    Jain, Navodita; Ganesh, Subramaniam

    2016-05-01

    The RAB class of small GTPases includes the major regulators of intracellular communication, which are involved in vesicle generation through fusion and fission, and vesicular trafficking. RAB proteins also play an imperative role in neuronal maintenance and survival. Recent studies in the field of neurodegeneration have also highlighted the process of autophagy as being essential for neuronal maintenance. Here we review the emerging roles of RAB proteins in regulating macroautophagy and its impact in the context of neurodegenerative diseases. PMID:26985808

  6. Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers

    OpenAIRE

    Mariño, Guillermo; Pietrocola, Federico; Madeo, Frank; Kroemer, Guido

    2014-01-01

    Nutrient depletion, which is one of the physiological triggers of autophagy, results in the depletion of intracellular acetyl coenzyme A (AcCoA) coupled to the deacetylation of cellular proteins. We surmise that there are 3 possibilities to mimic these effects, namely (i) the depletion of cytosolic AcCoA by interfering with its biosynthesis, (ii) the inhibition of acetyltransferases, which are enzymes that transfer acetyl groups from AcCoA to other molecules, mostly leucine residues in cellul...

  7. Autophagy regulates Wolbachia populations across diverse symbiotic associations

    OpenAIRE

    Voronin, Denis; Cook, Darren A. N.; Steven, Andrew; Taylor, Mark J

    2012-01-01

    Wolbachia are widespread and abundant intracellular symbionts of arthropods and filarial nematodes. Their symbiotic relationships encompass obligate mutualism, commensalism, parasitism, and pathogenicity. A consequence of these diverse associations is that Wolbachia encounter a wide range of host cells and intracellular immune defense mechanisms of invertebrates, which they must evade to maintain their populations and spread to new hosts. Here we show that autophagy, a conserved intracellular...

  8. Intestinal Epithelium and Autophagy: Partners in Gut Homeostasis

    OpenAIRE

    Randall-Demllo, Sarron; Chieppa, Marcello; Eri, Rajaraman

    2013-01-01

    One of the most significant challenges of cell biology is to understand how each type of cell copes with its specific workload without suffering damage. Among the most intriguing questions concerns intestinal epithelial cells in mammals; these cells act as a barrier between the internally protected region and the external environment that is exposed constantly to food and microbes. A major process involved in the processing of microbes is autophagy. In the intestine, through multiple, complex...

  9. The late stage of autophagy: cellular events and molecular regulation

    OpenAIRE

    Tong, Jingjing; Yan, Xianghua; Yu, Li

    2010-01-01

    Autophagy is an intracellular degradation system that delivers cytoplasmic contents to the lysosome for degradation. It is a “self-eating” process and plays a “house-cleaner” role in cells. The complex process consists of several sequential steps—induction, autophagosome formation, fusion of lysosome and autophagosome, degradation, efflux transportation of degradation products, and autophagic lysosome reformation. In this review, the cellular and molecular regulations of late stage of autopha...

  10. Apoptosis, autophagy and unfolded proteinresponse pathways in Arbovirus replicationand pathogenesis

    OpenAIRE

    Iranpour, Mahmoud; Moghadam, Adel R; Yazdi, Mina; Ande, Sudharsana R; Alizadeh, Javad; Wiechec, Emilia; Lindsay, Robbin; Drebot, Michael; Coombs, Kevin M; Ghavami, Saeid

    2016-01-01

    Arboviruses are pathogens that widely affect the health of people in different communities around the world. Recently, a few successful approaches toward production of effective vaccines against some of these pathogens have been developed, but treatment and prevention of the resulting diseases remain a major health and research concern. The arbovirus infection and replication processes are complex, and many factors are involved in their regulation. Apoptosis, autophagy and the unfolded protei...

  11. Wogonoside induces autophagy-related apoptosis in human glioblastoma cells.

    Science.gov (United States)

    Zhang, Li; Wang, Handong; Cong, Zixiang; Xu, Jianguo; Zhu, Jianhong; Ji, Xiangjun; Ding, Ke

    2014-09-01

    Wogonoside, a bioactive flavonoid extracted from the root of Scutellaria baicalensis Georgi, has shown preclinical anticancer efficacy in various cancer models. However, the effects of wogonoside on glioblastoma cells remain unclear. In the present study, we found that wogonoside exhibited a cytotoxic effect on human glioblastoma cells. The suppression of cell viability was due to the induction of mitochondrial apoptosis. Furthermore, the presence of autophagic hallmarks, including an increase in punctate microtubule associated protein 1 light chain 3 (LC3) dots, changes in cellular morphology and increased levels of autophagy-related proteins were observed in the wogonoside-treated cells. Wogonoside treatment also enhanced autophagic flux as reflected by the increased acidic vesicular organelle (AVO) formation, p62 degradation and LC3 turnover. Notably, blockade of autophagy by a chemical inhibitor or RNA interference decreased the anticancer effect of wogonoside. In addition, the p38 mitogen-activated protein kinase (MAPK) signaling pathway, the phosphatidylinositide 3-kinase/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) signaling pathway and reactive oxygen species (ROS) participated in wogonoside-induced autophagy and apoptosis. These findings support the initiation of further studies of wogonoside as a candidate for the treatment of human malignant glioma. PMID:24970553

  12. Environmental enrichment enhances autophagy signaling in the rat hippocampus.

    Science.gov (United States)

    Takahashi, Tomohisa; Shimizu, Kunio; Shimazaki, Kuniko; Toda, Hiroyuki; Nibuya, Masashi

    2014-12-10

    The findings that antidepressive treatments increase hippocampal neurotrophins have led researchers to emphasize the importance of neurogenesis, formation of new dendrites, and survival of neurons in the brain. However, it is difficult to maintain neural plasticity just by enriching the environment to facilitate formation of new networks. Neural plasticity also requires a degradation process that clears off unnecessary and undesirable components. We have recently reported an increase in autophagy signaling (wherein the cell digests components of itself) that has the potential of enhancing neuronal and synaptic plasticity after multiple sessions of electroconvulsive seizure treatment. The present study revealed an increase in autophagy signaling in the rat hippocampus following 2 weeks of environmental enrichment (EE), a procedure known to elicit antidepressive and anxiolytic behavioral changes in various animal paradigms. Western blot analysis showed an increase in hippocampal expression of microtubule-associated protein light chain 3-II (LC3-II), which is lipidated from LC3-I, in rats in the EE group. The effectiveness of the 2-week EE housing condition was validated by anxiolytic effects observed in the elevated plus maze test, enhanced habituation in the open field test, and elevation of hippocampal brain-derived neurotrophic factor expression. In addition, we showed that the EE housing condition ameliorated numbing/avoidance behaviors, but not hypervigilant behaviors, in an animal model of post-traumatic stress disorder (PTSD). This is the first report to show that EE can increase autophagy signaling and improve numbing/avoidance behaviors in an animal model of PTSD. PMID:25451096

  13. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Science.gov (United States)

    Duann, Pu; Lianos, Elias A.; Ma, Jianjie; Lin, Pei-Hui

    2016-01-01

    Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI) is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed. PMID:27153058

  14. Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers.

    Science.gov (United States)

    Mariño, Guillermo; Pietrocola, Federico; Madeo, Frank; Kroemer, Guido

    2014-01-01

    Nutrient depletion, which is one of the physiological triggers of autophagy, results in the depletion of intracellular acetyl coenzyme A (AcCoA) coupled to the deacetylation of cellular proteins. We surmise that there are 3 possibilities to mimic these effects, namely (i) the depletion of cytosolic AcCoA by interfering with its biosynthesis, (ii) the inhibition of acetyltransferases, which are enzymes that transfer acetyl groups from AcCoA to other molecules, mostly leucine residues in cellular proteins, or (iii) the stimulation of deacetylases, which catalyze the removal of acetyl groups from leucine residues. There are several examples of rather nontoxic natural compounds that act as AcCoA depleting agents (e.g., hydroxycitrate), acetyltransferase inhibitors (e.g., anacardic acid, curcumin, epigallocatechin-3-gallate, garcinol, spermidine) or deacetylase activators (e.g., nicotinamide, resveratrol), and that are highly efficient inducers of autophagy in vitro and in vivo, in rodents. Another common characteristic of these agents is their capacity to reduce aging-associated diseases and to confer protective responses against ischemia-induced organ damage. Hence, we classify them as "caloric restriction mimetics" (CRM). Here, we speculate that CRM may mediate their broad health-improving effects by triggering the same molecular pathways that usually are elicited by long-term caloric restriction or short-term starvation and that imply the induction of autophagy as an obligatory event conferring organismal, organ- or cytoprotection. PMID:25484097

  15. Macrophage migration inhibitory factor induces vascular leakage via autophagy

    Directory of Open Access Journals (Sweden)

    Hong-Ru Chen

    2015-01-01

    Full Text Available Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF, we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA, a ROS scavenger (NAC or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

  16. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  17. Legionella pneumophila restrains autophagy by modulating the host's sphingolipid metabolism.

    Science.gov (United States)

    Rolando, Monica; Escoll, Pedro; Buchrieser, Carmen

    2016-06-01

    Sphingolipids are bioactive molecules playing a key role as membrane components, but they are also central regulators of many intracellular processes including macroautophagy/autophagy. In particular, sphingosine-1-phosphate (S1P) is a critical mediator that controls the balance between sphingolipid-induced autophagy and cell death. S1P levels are adjusted via S1P synthesis, dephosphorylation or degradation, catalyzed by SGPL1 (sphingosine-1-phosphate lyase 1). Intracellular pathogens are able to modulate many different host cell pathways to allow their replication. We have found that infection of eukaryotic cells with the human pathogen Legionella pneumophila triggers a change in the host cell sphingolipid metabolism and specifically affects the levels of sphingosine. Indeed, L. pneumophila secretes a protein highly homologous to eukaryotic SGPL1 (named LpSPL). We solved the crystal structure of LpSPL and showed that it encodes lyase activity, targets the host's sphingolipid metabolism, and plays a role in starvation-induced autophagy during L. pneumophila infection to promote intracellular survival. PMID:27191778

  18. Autophagy regulates odontoblast differentiation by suppressing NF-κB activation in an inflammatory environment.

    Science.gov (United States)

    Pei, F; Wang, H S; Chen, Z; Zhang, L

    2016-01-01

    Odontoblasts are derived from dental papilla mesenchymal cells and have an important role in defense against bacterial infection, whereas autophagy can recycle long-lived proteins and damaged organelles to sustain cellular homeostasis. Thus, this study explores the role of autophagy in odontoblast differentiation with lipopolysaccharide (LPS) stimulation in vitro and the colocalization of p-NF-κB and LC3 in caries teeth. The odontoblasts differentiation was enhanced through LPS stimulation, and this outcome was reflected in the increased number of mineralized nodules and alkaline phosphatase (ALP) activity. The expression levels of the autophagy markers LC3, Atg5, Beclin1 and TFE3 increased time dependently, as well along with the amount of autophagosomes and autophagy fluxes. This result suggests that autophagy was enhanced in odontoblasts cultured with mineralized-induced media containing LPS. To confirm the role of autophagy in differentiated odontoblasts with LPS stimulation, chloroquine (CQ) or rapamycin were used to either block or enhance autophagy. The number of mineralized nodules decreased when autophagy was inhibited, but this number increased with rapamycin treatment. Phosphorylated nuclear factor-κB (NF-κB) expression was negatively related to autophagy and could inhibit odontoblast differentiation. Furthermore, p-NF-κB and LC3 colocalization could be detected in cells stimulated with LPS. The nucleus translocation of p-NF-κB in odontoblasts was enhanced when autophagy was inhibited by Atg5 small interfering RNA. In addition, the colocalization of p-NF-κB and LC3 in odontoblasts and sub-odontoblastic layers was observed in caries teeth with reactionary dentin. Therefore, our findings provide a novel insight into the role of autophagy in regulating odontoblast differentiation by suppressing NF-κB activation in inflammatory environments. PMID:26938294

  19. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    International Nuclear Information System (INIS)

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  20. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  1. 自噬在肥胖中的研究进展%Research advance in autophagy in obesity

    Institute of Scientific and Technical Information of China (English)

    王李洁; 杨怡; 孙永红; 郑筱祥

    2012-01-01

    Obesity is a harmful nutritional metabolic disorder to human health. Autophagy is a catabolic mechanism whereby cells degrade intracellular substances. Recent studies show that autophagy was closely correlated with insulin resistance, fat composing, and lipid droplet and triglyceride accumulation. Here, we review the association between autophagy and obesity, which may provide theoretical and experimental evidence for prevention of obesity and related diseases.

  2. Autophagy Induced by Intracellular Infection of Propionibacterium acnes

    Science.gov (United States)

    Nakamura, Teruko; Furukawa, Asuka; Uchida, Keisuke; Ogawa, Tomohisa; Tamura, Tomoki; Sakonishi, Daisuke; Wada, Yuriko; Suzuki, Yoshimi; Ishige, Yuki; Minami, Junko; Akashi, Takumi

    2016-01-01

    Background Sarcoidosis is caused by Th1-type immune responses to unknown agents, and is linked to the infectious agent Propionibacterium acnes. Many strains of P. acnes isolated from sarcoid lesions cause intracellular infection and autophagy may contribute to the pathogenesis of sarcoidosis. We examined whether P. acnes induces autophagy. Methods Three cell lines from macrophages (Raw264.7), mesenchymal cells (MEF), and epithelial cells (HeLa) were infected by viable or heat-killed P. acnes (clinical isolate from sarcoid lymph node) at a multiplicity of infection (MOI) of 100 or 1000 for 1 h. Extracellular bacteria were killed by washing and culturing infected cells with antibiotics. Samples were examined by colony assay, electron-microscopy, and fluorescence-microscopy with anti-LC3 and anti-LAMP1 antibodies. Autophagy-deficient (Atg5-/-) MEF cells were also used. Results Small and large (≥5 μm in diameter) LC3-positive vacuoles containing few or many P. acnes cells (LC3-positive P. acnes) were frequently found in the three cell lines when infected by viable P. acnes at MOI 1000. LC3-positive large vacuoles were mostly LAMP1-positive. A few small LC3-positive/LAMP1-negative vacuoles were consistently observed in some infected cells for 24 h postinfection. The number of LC3-positive P. acnes was decreased at MOI 100 and completely abolished when heat-killed P. acnes was used. LC3-positive P. acnes was not found in autophagy-deficient Atg5-/- cells where the rate of infection was 25.3 and 17.6 times greater than that in wild-type Atg5+/+ cells at 48 h postinfection at MOI 100 and 1000, respectively. Electron-microscopic examination revealed bacterial cells surrounded mostly by a single-membrane including the large vacuoles and sometimes a double or multi-layered membrane, with occasional undigested bacterial cells in ruptured late endosomes or in the cytoplasm. Conclusion Autophagy was induced by intracellular P. acnes infection and contributed to intracellular

  3. Intensified autophagy compromises the efficacy of radiotherapy against prostate cancer

    International Nuclear Information System (INIS)

    Introduction: Radiotherapy is an equivalent alternative or complement to radical prostatectomy, with high therapeutic efficacy. High risk patients, however, experience high relapse rates, so that research on radio-sensitization is the most evident route to improve curability of this common disease. Materials and methods: In the current study we investigated the autophagic activity in a series of patients with localized prostate tumors treated with radical radiotherapy, using the LC3A and the LAMP2a proteins as markers of autophagosome and lysosome cellular content, respectively. The role of autophagy on prostate cancer cell line resistance to radiation was also examined. Results: Using confocal microscopy on tissue biopsies, we showed that prostate cancer cells have, overall, high levels of LC3A and low levels of LAMP2a compared to normal prostate glands. Tumors with a ‘highLC3A/lowLAMP2a’ phenotype, suggestive of intensified lysosomal consumption, had a significantly poorer biochemical relapse free survival. The PC3 radioresistant cell line sustained remarkably its autophagic flux ability after radiation, while the DU145 radiosensitive one experiences a prolonged blockage of the autophagic process. This was assessed with aggresome accumulation detection and LC3A/LAMP2a double immunofluorescence, as well as with sequestrosome/p62 protein detection. By silencing the LC3A or LAMP2a expression, both cell lines became more sensitive to escalated doses of radiation. Conclusions: High base line autophagy activity and cell ability to sustain functional autophagy define resistance of prostate cancer cells to radiotherapy. This can be reversed by blocking up-regulated components of the autophagy pathway, which may prove of importance in the field of clinical radiotherapy. - Highlights: • High LC3A and low LAMP2a levels is a frequent expression pattern of prostate carcinoma. • This pattern of intensified autophagic flux relates with high relapse rates after

  4. Intensified autophagy compromises the efficacy of radiotherapy against prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Koukourakis, Michael I., E-mail: targ@her.forthnet.gr [Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis, 68100 (Greece); Kalamida, Dimitra; Mitrakas, Achilleas; Pouliliou, Stamatia; Kalamida, Sofia [Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis, 68100 (Greece); Sivridis, Efthimios; Giatromanolaki, Alexandra [Department of Pathology, Democritus University of Thrace, Alexandroupolis, 68100 (Greece)

    2015-05-29

    Introduction: Radiotherapy is an equivalent alternative or complement to radical prostatectomy, with high therapeutic efficacy. High risk patients, however, experience high relapse rates, so that research on radio-sensitization is the most evident route to improve curability of this common disease. Materials and methods: In the current study we investigated the autophagic activity in a series of patients with localized prostate tumors treated with radical radiotherapy, using the LC3A and the LAMP2a proteins as markers of autophagosome and lysosome cellular content, respectively. The role of autophagy on prostate cancer cell line resistance to radiation was also examined. Results: Using confocal microscopy on tissue biopsies, we showed that prostate cancer cells have, overall, high levels of LC3A and low levels of LAMP2a compared to normal prostate glands. Tumors with a ‘highLC3A/lowLAMP2a’ phenotype, suggestive of intensified lysosomal consumption, had a significantly poorer biochemical relapse free survival. The PC3 radioresistant cell line sustained remarkably its autophagic flux ability after radiation, while the DU145 radiosensitive one experiences a prolonged blockage of the autophagic process. This was assessed with aggresome accumulation detection and LC3A/LAMP2a double immunofluorescence, as well as with sequestrosome/p62 protein detection. By silencing the LC3A or LAMP2a expression, both cell lines became more sensitive to escalated doses of radiation. Conclusions: High base line autophagy activity and cell ability to sustain functional autophagy define resistance of prostate cancer cells to radiotherapy. This can be reversed by blocking up-regulated components of the autophagy pathway, which may prove of importance in the field of clinical radiotherapy. - Highlights: • High LC3A and low LAMP2a levels is a frequent expression pattern of prostate carcinoma. • This pattern of intensified autophagic flux relates with high relapse rates after

  5. Autophagy in Natural History and After ERT in Glycogenosis Type II

    OpenAIRE

    Angelini, Corrado; Nascimbeni, Anna C.; Fanin, Marina

    2015-01-01

    We studied the role of autophagy in a series of 10 infantile-, juvenile-, and adult-onset GSDII patients and investigated autophagy blockade in successive biopsies of adult cases during disease natural history. We also correlated the autophagosome accumulation and efficiency of enzyme replacement therapy (ERT) in four treated cases (two infantile and two juvenile-adult onsets).

  6. Autophagy- An emerging target for melanoma therapy [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Abibatou Ndoye

    2016-07-01

    Full Text Available Melanoma accounts for only 5% of all cancers but is the leading cause of skin cancer death due to its high metastatic potential. Patients with metastatic melanoma have a 10-year survival rate of less than 10%. While the clinical landscape for melanoma is evolving rapidly, lack of response to therapies, as well as resistance to therapy remain critical obstacles for treatment of this disease. In recent years, a myriad of therapy resistance mechanisms have been unravelled, one of which is autophagy, the focus of this review. In advanced stages of malignancy, melanoma cells hijack the autophagy machinery in order to alleviate drug-induced and metabolic stress in the tumor microenvironment, thereby promoting resistance to multiple therapies, tumor cell survival, and progression.  Autophagy is an essential cellular process that maintains cellular homeostasis through the recycling of intracellular constituents. Early studies on the role of autophagy in cancer generated controversy as to whether autophagy was pro- or anti-tumorigenic. Currently, there is a consensus that autophagy is tumor-suppressive in the early stages of cancer and tumor-promoting in established tumors.  This review aims to highlight current understandings on the role of autophagy in melanoma malignancy, and specifically therapy resistance; as well as to evaluate recent strategies for therapeutic autophagy modulation.

  7. Protective autophagy antagonizes oxaliplatin-induced apoptosis in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Ling Xu; Xiu-Juan Qu; Yun-Peng Liu; Ying-Ying Xu; Jing Liu; Ke-Zuo Hou; Ye Zhang

    2011-01-01

    Oxaliplatin-based chemotherapy is used for treating gastric cancer. Autophagy has been extensively implicated in cancer cells; however, its function is not fully understood. Our study aimed to determine if oxaliplatin induce autophagy in gastric cancer MGC803 cells and to assess the effect of autophagy on apoptosis induced by oxaliplatin. MGC803 cells were cultured with oxaliplatin. Cell proliferation was measured using MTT assay, and apoptosis was determined by flow cytometry. Protein expression was detected by Western blot. Autophagy was observed using fluorescent microscopy. Our results showed that the rate of apoptosis was 9.73% and 16.36% when MGC803 cells were treated with 5 and 20 μg/mL oxaliplatin for 24 h, respectively. In addition, caspase activation and poly ADP-ribose polymerase (PARP)cleavage were detected. Furthermore, when MGC803 cells were treated with oxaliplatin for 24 h, an accumulation of punctate LC3 and an increase of LC3-Ⅱ protein were also detected, indicating the activation of autophagy. Phosphorylation of Akt and mTOR were inhibited by oxaliplatin. Compared to oxaliplatin alone, the combination of autophagy inhibitor chlorochine and oxaliplatin significantly enhanced the inhibition of cell proliferation and the induction of cell apoptosis. In conclusion, oxaliplatin-induced protective autophagy partially prevents apoptosis in gastric cancer MGC803 cells. The combination of autophagy inhibitor and oxaliplatin may be a new therapeutic option for gastric cancer.