WorldWideScience

Sample records for autonomous self-reconfigurable robots

  1. Elements of Autonomous Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan

    In this thesis, we study several central elements of autonomous self-reconfigurable modular robots. Unlike conventional robots such robots are: i) Modular, since robots are assembled from numerous robotic modules. ii) Reconfigurable, since the modules can be combined in a variety of ways. iii) Self......-reconfigurable, since the modules themselves are able to change how they are combined. iv) Autonomous, since robots control themselves without human guidance. Such robots are attractive to study since they in theory have several desirable characteristics, such as versatility, reliability and cheapness. In practice...... however, it is challenging to realize such characteristics since state-of-the-art systems and solutions suffer from several inherent technical and theoretical problems and limitations. In this thesis, we address these challenges by exploring four central elements of autonomous self-reconfigurable modular...

  2. Roles and Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Dvinge, Nicolai; Schultz, Ulrik Pagh; Christensen, David Johan

    2007-01-01

    A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape......., significantly simplifying the task of programming self-reconfigurable robots. Our language fully supports programming the ATRON self-reconfigurable robot, and has been used to implement several controllers running both on the physical modules and in simulation......., self-reconfigurable robots, we have developed a declarative, role-based language that allows the programmer to associate roles and behavior to structural elements in a modular robot. Based on the role declarations, a dedicated middleware for high-level distributed communication is generated...

  3. Lattice Automata for Control of Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Støy, Kasper

    Self-reconfigurable robots are built from robotic modules typically organised in a lattice. The robotic modules themselves are complete, although simple, robots and have onboard batteries, actuators, sensors, processing power, and communication capabilities. The modules can automatically connect to...... and disconnect from neighbour modules and move around in the lattice of modules. The self-reconfigurable robot as a whole can, through this automatic rearrangement of modules, change its own shape to adapt to the environment or as a response to new tasks. Potential advantages of self......-reconfigurable robots are extreme versatility and robustness. The organisation of self-reconfigurable robots in a lattice structure and the emphasis on local communication between modules mean that lattice automata are a useful basis for control of self-reconfigurable robots. However, there are significant differences...

  4. Docking Design of Self-Reconfigurable Robot

    OpenAIRE

    Fei, Yanqiong

    2011-01-01

    Docking design of self‐reconfigurable robots is studied. Firstly, the self‐reconfigurable robot is presented. Its basic module is designed, which is composed of a central cube and six rotary arms. Then, the novel docking mechanism of each module is designed. It is critical for the self‐reconfigurable robot to discard any faulty modules for the self‐repairing actions. The docking process is analyzed with the geometric method. The docking forces between two modules are d...

  5. Modular structure of a self-reconfigurable robot

    Institute of Scientific and Technical Information of China (English)

    FEI Yanqiong; DONG Qinglei; ZHAO Xifang

    2007-01-01

    This paper proposes a novel, hermaphroditic, and lattice self-reconfigurable modular robot. Each module is composed of a center body--a cubic part and six sides that can rotate independently. There are two holes and two exten- sible pegs on each side. The rotary motion of each side and the extensible motion of the pegs are generated by a motor connected to a reducer, using a cone-shaped gear, belt, clutch, etc. The structure of the module is compact, and has space to extend further.

  6. Self-Reconfigurable Modular Robots Adaptively Transforming a Mechanical Structure: Algorithm for Adaptive Transformation to Load Condition

    Directory of Open Access Journals (Sweden)

    Yosuke Suzuki

    2011-01-01

    Full Text Available Self-reconfigurable modular robots are composed of modules which are able to autonomously change the way they are connected. An appropriate control algorithm enables the modular robots to change their shape in order to adapt to their immediate environment. In this paper, we propose an algorithm for adaptive transformation to load condition of the modular robots. The algorithm is based on a simple idea that modules have tendency to gather around stress-concentrated parts and reinforce the parts. As a result of the self-reconfiguration rule, the modular robots form an appropriate structure to stand for the load condition. Applying the algorithm to our modular robot named “CHOBIE II,” we show by computer simulation that the modules are able to construct a cantilever structure with avoiding overstressed states.

  7. Metamorphic Algorithm of Self-reconfigurable Modular Robotic System

    Institute of Scientific and Technical Information of China (English)

    徐威; 王高中; 李倩; 王石刚

    2004-01-01

    A self-reconfigurable robot is a non-linear complex system composed of a large number of modules. The complexity caused by non-linearity makes it difficult to solve the problem of module motion planning and shape-changing control with the traditional algorithm. In this paper, a full-discrete metamorphic algorithm is proposed. The modules concurrently process the local sensing information, update their eigenvector, and act by the same predetermined logical rules. Then a reasonable motion sequence for modules and the global metamorphosis can be obtained. Therefore, the complexity of metamorphic algorithm is reduced, the metamorphic procedure is simplified, and the self-organizing metamorphosis can be obtained. The algorithm cases of several typical systems are studied and evaluated through simulation program of 2-D planar homogeneous modular systems.

  8. Design and Implementation of a Modular Self-reconfigurable Robot

    Directory of Open Access Journals (Sweden)

    Guifang Qiao

    2014-03-01

    Full Text Available This paper presents the design and implementation of a new modular self-reconfigurable robot. The single module has three joints and can perform rectilinear motion, lateral shift, lateral rolling, and rotation. A flexible pin-hole-based docking mechanism is designed for self-assembly. With the proposed infrared-sensor-based docking method, multiple modules can be self-assembled to form versatile configurations. The modules communicate with each other through ZigBee protocols. The locomotion planning and geometry analysis of the single module are presented in detail and the efficiency of the single module’s mobility is also demonstrated by experimental results. In automatic docking experiments with two modules, the proposed method is shown to be able to achieve an average success rate of 78% within the effective region. The average time of the docking process is reduced to 75 s. The maximum velocity of the I-shaped robot is up to 3.6 cm/s and the maximum velocity of the X-shaped robot is 4.8 cm/s. The detach-dock method for I-to-X transformation planning is also verified. The ZigBee-based communication system can achieve 100% receiving rate at 55 ms transformation interval.

  9. A Domain-Specific Language for Programming Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Christensen, David Johan; Støy, Kasper

    2007-01-01

    . Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular......, self-reconfigurable robots, we have developed a declarative, role-based language that allows the programmer to define roles and behavior independently of the concrete physical structure of the robot. Roles are compiled to mobile code fragments that distribute themselves over the physical structure...

  10. Network-based reconfiguration routes for a self-reconfigurable robot

    Institute of Scientific and Technical Information of China (English)

    LIU JinGuo; MA ShuGen; WANG YueChao; LI Bin

    2008-01-01

    This paper presents a network-based analysis approach for the reconfiguration problem of a self-reconfigurable robot.The self-reconfigurable modular robot named "AMOEBA-Ⅰ" has nine kinds of non-isomorphic configurations that consist of a configuration network.Each configuration of the robot is defined to be a node in the weighted and directed configuration network.The transformation from one configuration to another is represented by a directed path with nonnegative weight.Graph theory is applied in the reconfiguration analysis,where reconfiguration route,reconfigurable matrix and route matrix are defined according to the topological information of these configurations.Algorithms in graph theory have been used in enumerating the available reconfiguration routes and deciding the best reconfiguration route.Numerical analysis and experimental simulation results prove the validity of the approach proposed in this paper.And it is potentially suitable for other self-reconfigurable robots' configuration control and reconfiguration planning.

  11. Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    DEFF Research Database (Denmark)

    Moghadam, Mikael; Johan Christensen, David; Brandt, David;

    2013-01-01

    This paper explores the role of operating system and high-level languages in the development of software and domain-specific languages (DSLs) for self-reconfigurable robotics. We review some of the current trends in self-reconfigurable robotics and describe the development of a software system...... for ATRON II which utilizes Linux and Python to significantly improve software abstraction and portability while providing some basic features which could prove useful when using Python, either stand-alone or via a DSL, on a self-reconfigurable robot system. These features include transparent socket...... communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages....

  12. Collective Displacement of Modular Robots Using Self-Reconfiguration

    OpenAIRE

    Elian, Carrillo; Duhaut, Dominique

    2007-01-01

    Bioinspiration and Robotics Walking and Climbing Robots, Book edited by: Maki K. Habib , ISBN: 978-3-902613-15-8, Publisher: I-Tech Education and Publishing, Austria, Collective displacement is a very useful behaviour for living creatures. This behaviour can appear in a flock of birds, a school of fish, or a swarm of insects. Flocking behaviour is a common demonstration of the power of simple rules in collective displacement emergence by (Reynolds, 2007). The study of the displacement of a...

  13. Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    DEFF Research Database (Denmark)

    Moghadam, Mikael; Christensen, David Johan; Brandt, David;

    2011-01-01

    This paper explores the role of operating system and high-level languages in the development of software and domain-specific languages (DSLs) for self-reconfigurable robotics. We review some of the current trends in selfreconfigurable robotics and describe the development of a software system...... for ATRON II which utilizes Linux and Python to significantly improve software abstraction and portability while providing some basic features which could prove useful when using Python, either stand-alone or via a DSL, on a selfreconfigurable robot system. These features include transparent socket...... communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages....

  14. Two-dimensional PSD based automatic docking of self-reconfiguration modular exploration robot system

    Institute of Scientific and Technical Information of China (English)

    Zhang Liping; Ma Shugen; Li Bin; Zhang Zheng; Cao Binggang

    2007-01-01

    Based on the design of a docking mechanism, this paper thoroughly investigates the space automatic docking of self-reconfiguration modular exploration robot system (RMERS). The method that leads robot to achieve space docking by using two-dimensional PSD is put forward innovatively for the median size robot system. At the same time, in order to enlarge the detecting extension and the precision of PSD and reduce its dependence on lighting signal, the PSD was remade by increasing the optical device over its light-sensitive surface. The emission board and LED light scheduling were designed according to docking arithmetic, and the operating principle of docking process was analyzed based on these. The simulation experiments were carried out and their results are presented.

  15. Study on Distributed Motion of Self-Reconfigurable Robot Based on Local Rules

    Institute of Scientific and Technical Information of China (English)

    WU Qiu-xuan; CAO Guang-yi; TIAN Hua-ying; FEI Yan-qiong

    2007-01-01

    The eigenvector of a module with six adjacent module's state was constructed according to self-reconfigurable robot M-Cubes and the configuration of system was expressed with the eigenvectors of all modules. According to the configuration and motion characteristics of the modules, a 3-dimension motion rule set was provided.The rule sets of each module was run according to eigenvector of the module after the motion direction of system decided and motion rules were selected. At last, the rapid and effective motion and metamorphosis were realized in system. The rule sets are operated on three systems and the distributed motion of system is fully realized. The result of simulation shows that the 3-dimension motion rule sets has perfect applicability and extensibility. The motion steps and communication load of the modules increase with the module number in linear.

  16. A distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Schultz, Ulrik Pagh; Stoy, Kasper

    2013-01-01

    In this paper, we present a distributed reinforcement learning strategy for morphology-independent lifelong gait learning for modular robots. All modules run identical controllers that locally and independently optimize their action selection based on the robot’s velocity as a global, shared reward...... physical robots with a comparable performance, (iii) can be applied to learn simple gait control tables for both M-TRAN and ATRON robots, (iv) enables an 8-module robot to adapt to faults and changes in its morphology, and (v) can learn gaits for up to 60 module robots but a divergence effect becomes...... substantial from 20–30 modules. These experiments demonstrate the advantages of a distributed learning strategy for modular robots, such as simplicity in implementation, low resource requirements, morphology independence, reconfigurability, and fault tolerance....

  17. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    Science.gov (United States)

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-01

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.

  18. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion.

    Science.gov (United States)

    Kuksenok, Olga; Balazs, Anna C

    2015-01-01

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks. PMID:25924823

  19. Autonomous packaging robot

    OpenAIRE

    Vo, Van Thanh

    2010-01-01

    The objective of the autonomous packaging robot application is to replace manual product packaging in food industry with a fully automatic robot. The objective is achieved by using the combination of machine vision, central computer, sensors, microcontroller and a typical ABB robot. The method is to equip the robot with different sensors: camera as “eyes” of robot, distance sensor and microcontroller as “sense of touch” of the robot, central computer as “brain” of the robot. Because the ro...

  20. Autonomous mobile robot teams

    Science.gov (United States)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  1. Autonomous Home Automated Hexapod Robot

    Directory of Open Access Journals (Sweden)

    Addanki Purna Ramesh,

    2010-12-01

    Full Text Available This paper focuses on design and implementation of six legged robot that is capable of monitoring and performing house hold works independently. The Autonomous Home Automated Hexapod is developed with three AT89C52 microcontrollers which functions as brain of the robot to which all operating functions of each module are chronologically programmed in it. The legs of the robot were developed with 2 servo motors to provide two degree for each leg. Several additional sensors like TSOP1738 (IR, RF transmitter andreceiver, DS1307 (Real Time Clock have been embedded into robot in modular form to make it work autonomously.

  2. Fuzzy control of autonomous robot

    International Nuclear Information System (INIS)

    An autonomous robot which can move and find its own route to a destination by means of fuzzy control is under development. An AI technique is utilized to determine the route to a destination from geographical information gathered through an ITV camera mounted on the robot. Information on robot location is also gained through an ITV camera, and, by applying fuzzy inference operation, the robot's movement is controlled. This paper describes the methods that are used for finding a route and controlling movement. Effectiveness of the proposed methods has been confirmed through actual robot movement tests and through computer simulations. (author)

  3. Autonomous military robotics

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This SpringerBrief reveals the latest techniques in computer vision and machine learning on robots that are designed as accurate and efficient military snipers. Militaries around the world are investigating this technology to simplify the time, cost and safety measures necessary for training human snipers. These robots are developed by combining crucial aspects of computer science research areas including image processing, robotic kinematics and learning algorithms. The authors explain how a new humanoid robot, the iCub, uses high-speed cameras and computer vision algorithms to track the objec

  4. An Autonomous Omnidirectional Robot

    Directory of Open Access Journals (Sweden)

    Yanfei Liu

    2010-01-01

    Full Text Available RoboCup is an international research and education initiative, which aims to foster artificial intelligence and robotics research by using competitive soccer as a standard problem. This paper presents a detailed engineering design process and the outcome for an omni-directional mobile robot platform for the Robocup Middle Size League competition. A prototype that can move omnidirectionally with kicking capability was designed, built, and tested by a group of senior students. The design included a mechanical base, pneumatic kicking mechanism, a DSP microcontroller-based control system, various sensor interfacing units, and the analysis of omnidirectional motions. The testing results showed that the system was able to move omnidirectionally with a speed of ∼2 m/s and able to kick a size 5 FIFA soccer ball for a distance of at least 5 meters.

  5. Robotic perception for autonomous navigation

    OpenAIRE

    Furlan,

    2014-01-01

    This thesis presents the research work the author carried on during his PhD on the topic of robotic perception for autonomous navigation. In particular, the efforts focus on the Self-Localization, Scene Understanding and Object Detection and Tracking problems, proposing for each of these three topics one or more approaches that present an improvement over the state-of-the-art. In some cases the proposed approaches mutually exploit the generated information to improve the quality of the final ...

  6. Autonomous flying robots

    CERN Document Server

    Nonami, Kenzo; Suzuki, Satoshi; Wang, Wei; Nakazawa, Daisuke

    2010-01-01

    Worldwide demand for robotic aircraft such as unmanned aerial vehicles (UAVs) and micro aerial vehicles (MAVs) is surging. Not only military but especially civil applications are being developed at a rapid pace. Unmanned vehicles offer major advantages when used for aerial surveillance, reconnaissance, and inspection in complex and inhospitable environments. UAVs are better suited for dirty or dangerous missions than manned aircraft and are more cost-effective. UAVs can operate in contaminated environments, for example, and at altitudes both lower and higher than those typically traversed by m

  7. Plant Watering Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Hema Nagaraja

    2012-07-01

    Full Text Available Now days, due to busy routine life, people forget to water their plants. In this paper, we present a completely autonomous and a cost-effective system for watering indoor potted plants placed on an even surface. The system comprises of a mobile robot and a temperature-humidity sensing module. The system is fully adaptive to any environment and takes into account the watering needs of the plants using the temperature-humidity sensing module. The paper describes the hardware architecture of the fully automated watering system, which uses wireless communication to communicate between the mobile robot and the sensing module. This gardening robot is completely portable and is equipped with a Radio Frequency Identification (RFID module, a microcontroller, an on-board water reservoir and an attached water pump. It is capable of sensing the watering needs of the plants, locating them and finally watering them autonomously without any human intervention. Mobilization of the robot to the potted plant is achieved by using a predefined path. For identification, an RFID tag is attached to each potted plant. The paper also discusses the detailed implementation of the system supported with complete circuitry. Finally, the paper concludes with system performance including the analysis of the water carrying capacity and time requirements to water a set of plants.

  8. Structured control for autonomous robots

    International Nuclear Information System (INIS)

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator

  9. Information Engineering in Autonomous Robot Software

    NARCIS (Netherlands)

    Ziafati, P.

    2015-01-01

    In order to engage and help in our daily life, autonomous robots are to operate in dynamic and unstructured environments and interact with people. As the robot's environment and its behaviour are getting more complex, so are the robot's software and the knowledge that the robot needs to carry out it

  10. Autonomous Robotic Inspection in Tunnels

    Science.gov (United States)

    Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.

    2016-06-01

    In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.

  11. Autonomous Dome for Robotic Telescope

    CERN Document Server

    Kumar, Akash; Ganesh, Shashikiran

    2016-01-01

    Physical Research Laboratory operates a 50cm robotic observatory at Mount Abu. This Automated Telescope for Variability Studies (ATVS) makes use of Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  12. Development of an Autonomous Mobile Robot

    OpenAIRE

    Niewada, Valentin

    2015-01-01

    Although the robotics community did a lot of research in the field of autonomous mobile robotics, there are still many unsolved challenges. With this dynamic, the European Robotics Challenges (EUROC) aim at enhancing mobile robotics research by building concrete projects with industrial applications. During my final year internship for the Télécom Physique Strasbourg’s Engineering Degree which has taken place in the Robotics and Mechatronics Institute at the DLR Oberpfaffenhofen (Germany),...

  13. Distributed formation control for autonomous robots

    NARCIS (Netherlands)

    Garcia de Marina Peinado, Hector Jesús

    2016-01-01

    This thesis addresses several theoretical and practical problems related to formation-control of autonomous robots. Formation-control aims to simultaneously accomplish the tasks of forming a desired shape by the robots and controlling their coordinated collective motion. This kind of robot performan

  14. Spatial abstraction for autonomous robot navigation.

    Science.gov (United States)

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel. PMID:26227680

  15. Design of a Miniature Autonomous Surveillance Robot

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chang-e; HUANG Qiang; HUANG Yuan-can

    2009-01-01

    The small size of miniature robots poses great challenges for the mechanical and deetrieal design and the implementation of autonomous capabilities.In this paper,the mechanical and electrical design for a twowheeled cylindrical miniature autonomous robot ("BMS-1",BIT MicroScout-1) is presented and some autonomous capabilities are implemented by multiple sensors and some arithmetic models.Several experimental results show that BMS-1 is useful for surveillance in confined spaces and suitable for large-scale surveillance due to some autonomous capabilities.

  16. Tele-robotic/autonomous control using controlshell

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmsen, K.C.; Hurd, R.L.; Couture, S.

    1996-12-10

    A tele-robotic and autonomous controller architecture for waste handling and sorting has been developed which uses tele-robotics, autonomous grasping and image processing. As a starting point, prior work from LLNL and ORNL was restructured and ported to a special real-time development environment. Significant improvements in collision avoidance, force compliance, and shared control aspects were then developed. Several orders of magnitude improvement were made in some areas to meet the speed and robustness requirements of the application.

  17. Information Engineering in Autonomous Robot Software

    OpenAIRE

    Ziafati, P.

    2015-01-01

    In order to engage and help in our daily life, autonomous robots are to operate in dynamic and unstructured environments and interact with people. As the robot's environment and its behaviour are getting more complex, so are the robot's software and the knowledge that the robot needs to carry out its operations. In collaborating with a human to bake a cake, for instance, the robot needs a large number of components to perceive and manipulate the objects and to communicate and coordinate the t...

  18. Autonomous Robot Navigation In Public Nature Park

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole; Blas, Morten Rufus

    2005-01-01

    This extended abstract describes a project to make a robot travel autonomously across a public nature park. The challenge is to detect and follow the right path across junctions and open squares avoiding people and obstacles. The robot is equipped with a laser scanner, a (low accuracy) GPS, wheel...

  19. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  20. Control algorithms for autonomous robot navigation

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  1. Tele/Autonomous Robot For Nuclear Facilities

    Science.gov (United States)

    Backes, Paul G.; Tso, Kam S.

    1994-01-01

    Fail-safe tele/autonomous robotic system makes it unnecessary for human technicians to enter nuclear-fuel-reprocessing facilities and other high-radiation or otherwise hazardous industrial environments. Used to carry out experiments as exchanging equipment modules, turning bolts, cleaning surfaces, and grappling turning objects by use of mixture of autonomous actions and teleoperation with either single arm or two cooperating arms. System capable of fully autonomous operation, teleoperation or shared control.

  2. Reference test courses for autonomous mobile robots

    Science.gov (United States)

    Jacoff, Adam; Messina, Elena; Evans, John

    2001-09-01

    One approach to measuring the performance of intelligent systems is to develop standardized or reproducible tests. These tests may be in a simulated environment or in a physical test course. The National Institute of Standards and Technology has developed a test course for evaluating the performance of mobile autonomous robots operating in an urban search and rescue mission. The test course is designed to simulate a collapsed building structure at various levels of fidelity. The course will be used in robotic competitions, such as the American Association for Artificial Intelligence (AAAI) Mobile Robot Competition and the RoboCup Rescue. Designed to be repeatable and highly reconfigurable, the test course challenges a robot's cognitive capabilities such as perception, knowledge representation, planning, autonomy and collaboration. The goal of the test course is to help define useful performance metrics for autonomous mobile robots which, if widely accepted, could accelerate development of advanced robotic capabilities by promoting the re-use of algorithms and system components. The course may also serve as a prototype for further development of performance testing environments which enable robot developers and purchasers to objectively evaluate robots for a particular application. In this paper we discuss performance metrics for autonomous mobile robots, the use of representative urban search and rescue scenarios as a challenge domain, and the design criteria for the test course.

  3. Extended architecture for autonomous robots (architecture for robotic autonomy functionality)

    Czech Academy of Sciences Publication Activity Database

    Březina, Tomáš; Ehrenberger, Zdeněk; Houška, P.; Singule, V.

    Brno : VUT, 2003 - (Březina, T.; Ehrenberger, Z.; Houška, P.; Singule, V.), s. 1-2 ISBN 80-214-2312-9. [Mechanortonics, robotisc and biomechanics 2003. Hrotovice (CZ), 24.03.2003-27.03.2003] Institutional research plan: CEZ:AV0Z2076919 Keywords : mobile robots * autonomous operation * control Subject RIV: JD - Computer Applications, Robotics

  4. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...... update of the estimated robot position while the robot is moving. In order to make the system autonomous, both acquisition and observation of landmarks have to be carried out automatically. The thesis consequently proposes a method for learning and navigation of a working environment and it explores......The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully...

  5. Robots Social Embodiment in Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  6. Development of autonomous grasping and navigating robot

    Science.gov (United States)

    Kudoh, Hiroyuki; Fujimoto, Keisuke; Nakayama, Yasuichi

    2015-01-01

    The ability to find and grasp target items in an unknown environment is important for working robots. We developed an autonomous navigating and grasping robot. The operations are locating a requested item, moving to where the item is placed, finding the item on a shelf or table, and picking the item up from the shelf or the table. To achieve these operations, we designed the robot with three functions: an autonomous navigating function that generates a map and a route in an unknown environment, an item position recognizing function, and a grasping function. We tested this robot in an unknown environment. It achieved a series of operations: moving to a destination, recognizing the positions of items on a shelf, picking up an item, placing it on a cart with its hand, and returning to the starting location. The results of this experiment show the applicability of reducing the workforce with robots.

  7. Colias: An Autonomous Micro Robot for Swarm Robotic Applications

    Directory of Open Access Journals (Sweden)

    Farshad Arvin

    2014-07-01

    Full Text Available Robotic swarms that take inspiration from nature are becoming a fascinating topic for multi-robot researchers. The aim is to control a large number of simple robots in order to solve common complex tasks. Due to the hardware complexities and cost of robot platforms, current research in swarm robotics is mostly performed by simulation software. The simulation of large numbers of these robots in robotic swarm applications is extremely complex and often inaccurate due to the poor modelling of external conditions. In this paper, we present the design of a low-cost, open-platform, autonomous micro-robot (Colias for robotic swarm applications. Colias employs a circular platform with a diameter of 4 cm. It has a maximum speed of 35 cm/s which enables it to be used in swarm scenarios very quickly over large arenas. Long-range infrared modules with an adjustable output power allow the robot to communicate with its direct neighbours at a range of 0.5 cm to 2 m. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. It has been tested in both individual and swarm scenarios, and the observed results demonstrate its feasibility for use as a micro-sized mobile robot and as a low-cost platform for robot swarm applications.

  8. Autonomous Navigation for Mobile Robots with Human-Robot Interaction

    Science.gov (United States)

    Ballantyne, James; Johns, Edward; Valibeik, Salman; Wong, Charence; Yang, Guang-Zhong

    Dynamic and complex indoor environments present a challenge for mobile robot navigation. The robot must be able to simultaneously map the environment, which often has repetitive features, whilst keep track of its pose and location. This chapter introduces some of the key considerations for human guided navigation. Rather than letting the robot explore the environment fully autonomously, we consider the use of human guidance for progressively building up the environment map and establishing scene association, learning, as well as navigation and planning. After the guide has taken the robot through the environment and indicated the points of interest via hand gestures, the robot is then able to use the geometric map and scene descriptors captured during the tour to create a high-level plan for subsequent autonomous navigation within the environment. Issues related to gesture recognition, multi-cue integration, tracking, target pursuing, scene association and navigation planning are discussed.

  9. Reflex control for safe autonomous robot operation

    International Nuclear Information System (INIS)

    This paper describes the design of an autonomous, sonar-based world mapping system for collision prevention in robotic systems. Obstacle detection and mapping is performed as a task that competes with higher-level tasks for the robot's attention. All tasks are integrated within a hierarchy, organized and co-ordinated by schemes analogous to biological reflexes and fixed action patterns. It is illustrated how the existence of low-level reflex behaviours can enhance the survivability and autonomy of complex systems and simplify the design of complex higher-level controls like our autonomous sonar-based world mapping system

  10. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  11. Towards Robot Scientists for autonomous scientific discovery

    OpenAIRE

    Sparkes, Andrew; Aubrey, Wayne; Byrne, Emma; Clare, Amanda; Khan, Muhammed N; Liakata, Maria; Markham, Magdalena; Rowland, Jem; Soldatova, Larisa N.; Whelan, Kenneth E; Young, Michael; King, Ross D.

    2010-01-01

    We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two ...

  12. Autonomous robotics and deep learning

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This Springer Brief examines the combination of computer vision techniques and machine learning algorithms necessary for humanoid robots to develop "true consciousness." It illustrates the critical first step towards reaching "deep learning," long considered the holy grail for machine learning scientists worldwide. Using the example of the iCub, a humanoid robot which learns to solve 3D mazes, the book explores the challenges to create a robot that can perceive its own surroundings. Rather than relying solely on human programming, the robot uses physical touch to develop a neural map of its en

  13. Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Science.gov (United States)

    Zornetzer, Steve; Gage, Douglas

    2005-01-01

    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.

  14. TIGRE - An autonomous ground robot for outdoor exploration

    OpenAIRE

    Martins, Alfredo; Amaral, Guilherme; Dias, André; Almeida, Carlos; Almeida, José; Silva, Eduardo

    2013-01-01

    13th International Conference on Autonomous Robot Systems (Robotica), 2013 In this paper we present an autonomous ground robot developed for outdoor applications in unstructured scenarios. The robot was developed as a versatile robotics platform for development, test and validation of research in navigation, control, perception and multiple robot coordination on all terrain scenarios. The hybrid systems approach to the control architecture is discussed in the context of multiple robot coor...

  15. Diagnosing faults in autonomous robot plan execution

    Science.gov (United States)

    Lam, Raymond K.; Doshi, Rajkumar S.; Atkinson, David J.; Lawson, Denise M.

    1989-01-01

    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment.

  16. Supervised autonomous robotic soft tissue surgery.

    Science.gov (United States)

    Shademan, Azad; Decker, Ryan S; Opfermann, Justin D; Leonard, Simon; Krieger, Axel; Kim, Peter C W

    2016-05-01

    The current paradigm of robot-assisted surgeries (RASs) depends entirely on an individual surgeon's manual capability. Autonomous robotic surgery-removing the surgeon's hands-promises enhanced efficacy, safety, and improved access to optimized surgical techniques. Surgeries involving soft tissue have not been performed autonomously because of technological limitations, including lack of vision systems that can distinguish and track the target tissues in dynamic surgical environments and lack of intelligent algorithms that can execute complex surgical tasks. We demonstrate in vivo supervised autonomous soft tissue surgery in an open surgical setting, enabled by a plenoptic three-dimensional and near-infrared fluorescent (NIRF) imaging system and an autonomous suturing algorithm. Inspired by the best human surgical practices, a computer program generates a plan to complete complex surgical tasks on deformable soft tissue, such as suturing and intestinal anastomosis. We compared metrics of anastomosis-including the consistency of suturing informed by the average suture spacing, the pressure at which the anastomosis leaked, the number of mistakes that required removing the needle from the tissue, completion time, and lumen reduction in intestinal anastomoses-between our supervised autonomous system, manual laparoscopic surgery, and clinically used RAS approaches. Despite dynamic scene changes and tissue movement during surgery, we demonstrate that the outcome of supervised autonomous procedures is superior to surgery performed by expert surgeons and RAS techniques in ex vivo porcine tissues and in living pigs. These results demonstrate the potential for autonomous robots to improve the efficacy, consistency, functional outcome, and accessibility of surgical techniques. PMID:27147588

  17. A mobile autonomous robot for radiological surveys

    International Nuclear Information System (INIS)

    The Robotics Development Group at the Savannah River Site is developing an autonomous robot (SIMON) to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The robot, a Cybermotion K2A base, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It uses an ultrasonic ranging system for collision avoidance. In addition, two safety bumpers located in the front and the back of the robot will stop the robots motion when they are depressed. Paths for the robot are preprogrammed and the robots motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/0 interface for remote operation. Up to 30 detectors may be configured with the RM22A

  18. Autonomous mobile robot for radiologic surveys

    Science.gov (United States)

    Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.

    1994-01-01

    An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

  19. Autonomous mobile robot for radiologic surveys

    International Nuclear Information System (INIS)

    An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures

  20. Flocking algorithm for autonomous flying robots.

    Science.gov (United States)

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks. PMID:24852272

  1. Autonomous Mobile Robot That Can Read

    Directory of Open Access Journals (Sweden)

    Létourneau Dominic

    2004-01-01

    Full Text Available The ability to read would surely contribute to increased autonomy of mobile robots operating in the real world. The process seems fairly simple: the robot must be capable of acquiring an image of a message to read, extract the characters, and recognize them as symbols, characters, and words. Using an optical Character Recognition algorithm on a mobile robot however brings additional challenges: the robot has to control its position in the world and its pan-tilt-zoom camera to find textual messages to read, potentially having to compensate for its viewpoint of the message, and use the limited onboard processing capabilities to decode the message. The robot also has to deal with variations in lighting conditions. In this paper, we present our approach demonstrating that it is feasible for an autonomous mobile robot to read messages of specific colors and font in real-world conditions. We outline the constraints under which the approach works and present results obtained using a Pioneer 2 robot equipped with a Pentium 233 MHz and a Sony EVI-D30 pan-tilt-zoom camera.

  2. Autonomous Mobile Robot That Can Read

    Science.gov (United States)

    Létourneau, Dominic; Michaud, François; Valin, Jean-Marc

    2004-12-01

    The ability to read would surely contribute to increased autonomy of mobile robots operating in the real world. The process seems fairly simple: the robot must be capable of acquiring an image of a message to read, extract the characters, and recognize them as symbols, characters, and words. Using an optical Character Recognition algorithm on a mobile robot however brings additional challenges: the robot has to control its position in the world and its pan-tilt-zoom camera to find textual messages to read, potentially having to compensate for its viewpoint of the message, and use the limited onboard processing capabilities to decode the message. The robot also has to deal with variations in lighting conditions. In this paper, we present our approach demonstrating that it is feasible for an autonomous mobile robot to read messages of specific colors and font in real-world conditions. We outline the constraints under which the approach works and present results obtained using a Pioneer 2 robot equipped with a Pentium 233 MHz and a Sony EVI-D30 pan-tilt-zoom camera.

  3. Embodied cognition for autonomous interactive robots.

    Science.gov (United States)

    Hoffman, Guy

    2012-10-01

    In the past, notions of embodiment have been applied to robotics mainly in the realm of very simple robots, and supporting low-level mechanisms such as dynamics and navigation. In contrast, most human-like, interactive, and socially adept robotic systems turn away from embodiment and use amodal, symbolic, and modular approaches to cognition and interaction. At the same time, recent research in Embodied Cognition (EC) is spanning an increasing number of complex cognitive processes, including language, nonverbal communication, learning, and social behavior. This article suggests adopting a modern EC approach for autonomous robots interacting with humans. In particular, we present three core principles from EC that may be applicable to such robots: (a) modal perceptual representation, (b) action/perception and action/cognition integration, and (c) a simulation-based model of top-down perceptual biasing. We describe a computational framework based on these principles, and its implementation on two physical robots. This could provide a new paradigm for embodied human-robot interaction based on recent psychological and neurological findings. PMID:22893571

  4. Design of an autonomous exterior security robot

    Science.gov (United States)

    Myers, Scott D.

    1994-01-01

    This paper discusses the requirements and preliminary design of robotic vehicle designed for performing autonomous exterior perimeter security patrols around warehouse areas, ammunition supply depots, and industrial parks for the U.S. Department of Defense. The preliminary design allows for the operation of up to eight vehicles in a six kilometer by six kilometer zone with autonomous navigation and obstacle avoidance. In addition to detection of crawling intruders at 100 meters, the system must perform real-time inventory checking and database comparisons using a microwave tags system.

  5. ROBERT autonomous navigation robot with artificial vision

    International Nuclear Information System (INIS)

    This work, a joint research between ENEA (the Italian National Agency for Energy, New Technologies and the Environment) and DIGlTAL, presents the layout of the ROBERT project, ROBot with Environmental Recognizing Tools, under development in ENEA laboratories. This project aims at the development of an autonomous mobile vehicle able to navigate in a known indoor environment through the use of artificial vision. The general architecture of the robot is shown together with the data and control flow among the various subsystems. Also the inner structure of the latter complete with the functionalities are given in detail

  6. Autonomous mobile robots behaviour control

    Czech Academy of Sciences Publication Activity Database

    Ehrenberger, Zdeněk; Kratochvíl, Ctirad

    Vol. 1. Varšava : Meander S.C., 2000 - (Jablonski, R.), s. 63-66 ISBN 83-914366-0-8. [International conference Mechatronics 2000. Varšava (PL), 05.11.2000-07.11.2000] Grant ostatní: ÚT AV ČR(XC) 11/1U Keywords : modelling * robots Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  7. An architecture for an autonomous learning robot

    Science.gov (United States)

    Tillotson, Brian

    1988-01-01

    An autonomous learning device must solve the example bounding problem, i.e., it must divide the continuous universe into discrete examples from which to learn. We describe an architecture which incorporates an example bounder for learning. The architecture is implemented in the GPAL program. An example run with a real mobile robot shows that the program learns and uses new causal, qualitative, and quantitative relationships.

  8. Mobile autonomous robot for radiological surveys

    International Nuclear Information System (INIS)

    The robotics development group at the Savannah River Laboratory (SRL) is developing a mobile autonomous robot that performs radiological surveys of potentially contaminated floors. The robot is called SIMON, which stands for Semi-Intelligent Mobile Observing Navigator. Certain areas of SRL are classified as radiologically controlled areas (RCAs). In an RCA, radioactive materials are frequently handled by workers, and thus, the potential for contamination is ever present. Current methods used for floor radiological surveying includes labor-intensive manual scanning or random smearing of certain floor locations. An autonomous robot such as SIMON performs the surveying task in a much more efficient manner and will track down contamination before it is contacted by humans. SIMON scans floors at a speed of 1 in./s and stops and alarms upon encountering contamination. Its environment is well defined, consisting of smooth building floors with wide corridors. The kind of contaminations that SIMON is capable of detecting are alpha and beta-gamma. The contamination levels of interest are low to moderate

  9. Autonomous Mobile Robots: Past, Present and Future of SLAM 2013

    OpenAIRE

    Hamid D. Taghirad

    2013-01-01

    Autonomous Mobile Robots: Past, Present and Future of SLAM” 2013. In:Workshop at the First RSI/ISM International Conference on Robotics and Mechatronics by Sharif University of Technology. Presenter: Prof. Hamid D. Taghirad, 2013.

  10. An autonomous vision-based mobile robot

    Science.gov (United States)

    Baumgartner, Eric Thomas

    This dissertation describes estimation and control methods for use in the development of an autonomous mobile robot for structured environments. The navigation of the mobile robot is based on precise estimates of the position and orientation of the robot within its environment. The extended Kalman filter algorithm is used to combine information from the robot's drive wheels with periodic observations of small, wall-mounted, visual cues to produce the precise position and orientation estimates. The visual cues are reliably detected by at least one video camera mounted on the mobile robot. Typical position estimates are accurate to within one inch. A path tracking algorithm is also developed to follow desired reference paths which are taught by a human operator. Because of the time-independence of the tracking algorithm, the speed that the vehicle travels along the reference path is specified independent from the tracking algorithm. The estimation and control methods have been applied successfully to two experimental vehicle systems. Finally, an analysis of the linearized closed-loop control system is performed to study the behavior and the stability of the system as a function of various control parameters.

  11. Autonomous Navigation by a Mobile Robot

    Science.gov (United States)

    Huntsberger, Terrance; Aghazarian, Hrand

    2005-01-01

    ROAMAN is a computer program for autonomous navigation of a mobile robot on a long (as much as hundreds of meters) traversal of terrain. Developed for use aboard a robotic vehicle (rover) exploring the surface of a remote planet, ROAMAN could also be adapted to similar use on terrestrial mobile robots. ROAMAN implements a combination of algorithms for (1) long-range path planning based on images acquired by mast-mounted, wide-baseline stereoscopic cameras, and (2) local path planning based on images acquired by body-mounted, narrow-baseline stereoscopic cameras. The long-range path-planning algorithm autonomously generates a series of waypoints that are passed to the local path-planning algorithm, which plans obstacle-avoiding legs between the waypoints. Both the long- and short-range algorithms use an occupancy-grid representation in computations to detect obstacles and plan paths. Maps that are maintained by the long- and short-range portions of the software are not shared because substantial localization errors can accumulate during any long traverse. ROAMAN is not guaranteed to generate an optimal shortest path, but does maintain the safety of the rover.

  12. Task-level control for autonomous robots

    Science.gov (United States)

    Simmons, Reid

    1994-01-01

    Task-level control refers to the integration and coordination of planning, perception, and real-time control to achieve given high-level goals. Autonomous mobile robots need task-level control to effectively achieve complex tasks in uncertain, dynamic environments. This paper describes the Task Control Architecture (TCA), an implemented system that provides commonly needed constructs for task-level control. Facilities provided by TCA include distributed communication, task decomposition and sequencing, resource management, monitoring and exception handling. TCA supports a design methodology in which robot systems are developed incrementally, starting first with deliberative plans that work in nominal situations, and then layering them with reactive behaviors that monitor plan execution and handle exceptions. To further support this approach, design and analysis tools are under development to provide ways of graphically viewing the system and validating its behavior.

  13. Development of autonomous eating mechanism for biomimetic robots

    Science.gov (United States)

    Jeong, Kil-Woong; Cho, Ik-Jin; Lee, Yun-Jung

    2005-12-01

    Most of the recently developed robots are human friendly robots which imitate animals or humans such as entertainment robot, bio-mimetic robot and humanoid robot. Interest for these robots are being increased because the social trend is focused on health, welfare, and graying. Autonomous eating functionality is most unique and inherent behavior of pets and animals. Most of entertainment robots and pet robots make use of internal-type battery. Entertainment robots and pet robots with internal-type battery are not able to operate during charging the battery. Therefore, if a robot has an autonomous function for eating battery as its feeds, the robot is not only able to operate during recharging energy but also become more human friendly like pets. Here, a new autonomous eating mechanism was introduced for a biomimetic robot, called ELIRO-II(Eating LIzard RObot version 2). The ELIRO-II is able to find a food (a small battery), eat and evacuate by itself. This work describe sub-parts of the developed mechanism such as head-part, mouth-part, and stomach-part. In addition, control system of autonomous eating mechanism is described.

  14. Autonomous biomorphic robots as platforms for sensors

    International Nuclear Information System (INIS)

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology

  15. Autonomous biomorphic robots as platforms for sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-10-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.

  16. Computer vision for autonomous robotics in space

    Science.gov (United States)

    Wong, Andrew K. C.

    1993-08-01

    This paper presents a computer vision system being developed at the Pattern Analysis and Machine Intelligence (PAMI) Lab of the University of Waterloo and at the Vision, Intelligence and Robotics Technologies Corporation (VIRTEK) in support of the Canadian Space Autonomous Robotics Project. This system was originally developed for flexible manufacturing and guidance of autonomous roving vehicles. In the last few years, it has been engineered to support the operations of the Mobile Service System (MSS) (or its equivalence) for the Space Station Project. In the near term, this vision system will provide vision capability for the recognition, location and tracking of payloads as well as for relating the spatial information to the manipulator for capturing, manipulating and berthing payloads. In the long term, it will serve in the role of inspection, surveillance and servicing of the Station. Its technologies will be continually expanded and upgraded to meet the demand as the needs of the Space Station evolve and grow. Its spin-off technologies will benefit the industrial sectors as well.

  17. Towards Competitive Commercial Autonomous Robots: The Configuration Problem

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole;

    2011-01-01

    knowledge about the underlying algorithms. The framework also makes it possible for the robot to autonomously calibrate itself, resulting in higher stability of the robot and less development time required. The work is a result of an industrial research project aimed at lowering development costs......This article presents a framework for configuring the individual components used in component based robot control systems. Using smart parameters that adapt to the respective robot system makes it possible to obtain optimal parameter values while reusing the software components, without expert...... and improving robustness of autonomous robot applications....

  18. Autonomous robot behavior based on neural networks

    Science.gov (United States)

    Grolinger, Katarina; Jerbic, Bojan; Vranjes, Bozo

    1997-04-01

    The purpose of autonomous robot is to solve various tasks while adapting its behavior to the variable environment, expecting it is able to navigate much like a human would, including handling uncertain and unexpected obstacles. To achieve this the robot has to be able to find solution to unknown situations, to learn experienced knowledge, that means action procedure together with corresponding knowledge on the work space structure, and to recognize working environment. The planning of the intelligent robot behavior presented in this paper implements the reinforcement learning based on strategic and random attempts for finding solution and neural network approach for memorizing and recognizing work space structure (structural assignment problem). Some of the well known neural networks based on unsupervised learning are considered with regard to the structural assignment problem. The adaptive fuzzy shadowed neural network is developed. It has the additional shadowed hidden layer, specific learning rule and initialization phase. The developed neural network combines advantages of networks based on the Adaptive Resonance Theory and using shadowed hidden layer provides ability to recognize lightly translated or rotated obstacles in any direction.

  19. Enabling technologies for the prassi autonomous robot

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S.; Nanni, V. [ENEA, Robotics and Information Technology Division, Rome (Italy)

    2001-07-01

    In this book are summarised some of the results of the PRASSI project as presented by the different partners of the effort. PRASSI is an acronym which stands for Autonomous Robotic Platform for the Security and Surveillance of plants, the Italian for it is 'Piattaforma Robotica per la Sorveglianza e Sicurezza d'Impianto'. This project has been funded by the Italian Ministry for the Education, the University and the Research (MIUR) in the framework of the project High Performance Computing Applied to Robotics (Calcolo Parallelo con Applicazioni alla Robotica) of the law 95/1995. The idea behind such an initiative is that of fostering the knowledge and possibly the use of high performance computing in the research and industrial community. In other words, robotic scientists are always simplifying their algorithms or using particular approaches (e.g. soft computing) in order to use standard processors for difficult sensorial data processing; well, what if an embedded parallel computer were available, with at least one magnitude more of computing power?.

  20. Middleware for Efficient Programming of Autonomous Mobile Robots

    OpenAIRE

    Thomas, Dirk

    2010-01-01

    Programming of autonomous mobile robots is subject to a set of unique requirements, which differ significantly from pure software projects and programming of stationary robots. Despite severe constraint on the payload and thereby limited available computational power, real-time constraints for physical interaction of the robot with its environment must be satisfied. Furthermore, the complexity of robots, the uncertainties in sensors and the interaction with the environment and the cooperation...

  1. Robot vision for autonomous object learning and tracking

    OpenAIRE

    Sanfeliu Cortés, Alberto

    2003-01-01

    In this paper we present a summary of some of the research that we are developing in the Institute of Robotics of the CSIC-UPC, in the field of Learning and Robot Vision for autonomous mobile robots. We describe the problems that we have found and some solutions that have been applied in two issues: tracking objects and learning and recognition of 3D objects in robotic environments. We will explain some of the results accomplished.

  2. Performance Evaluation of Autonomous Contour Following Algorithms for Industrial Robot

    OpenAIRE

    Prabuwono, Anton Satria; Said, Samsi; Burhanuddin; Sulaiman, Riza

    2010-01-01

    In this study, the performance evaluations of autonomous contour following task with three different algorithms have been performed for Adept SCARA robot. A prototype of smart tool integrated with sensor has been designed. It can be attached and reattached into robot gripper and interfaced through I/O pins of Adept robot controller for automated robot teaching operation. The algorithms developed were tested on a semicircle object of 40 millimeter radius. The semicircle object was selected bec...

  3. Adaptive navigation and motion planning for autonomous mobile robots

    OpenAIRE

    Aboshosha, Ashraf

    2004-01-01

    Exploring autonomy in robotics is a meaningful task. The intuitive definition of autonomy is the capability of a robot to make a decision based on its own knowledge, acquired by its distributed sensors, without any human interference. Throughout this framework we discuss some algorithms and techniques underlying the subjects of adaptive navigation and motion planning for autonomous mobile robots. Mobile Robots will play an important role in many future applications, such as ...

  4. Reactive navigational controller for autonomous mobile robots

    Science.gov (United States)

    Hawkins, Scott

    1993-12-01

    Autonomous mobile robots must respond to external challenges and threats in real time. One way to satisfy this requirement is to use a fast low level intelligence to react to local environment changes. A fast reactive controller has been implemented which performs the task of real time local navigation by integrating primitive elements of perception, planning, and control. Competing achievement and constraint behaviors are used to allow abstract qualitative specification of navigation goals. An interface is provided to allow a higher level deliberative intelligence with a more global perspective to set local goals for the reactive controller. The reactive controller's simplistic strategies may not always succeed, so a means to monitor and redirect the reactive controller is provided.

  5. Quantifying Emergent Behavior of Autonomous Robots

    Science.gov (United States)

    Martius, Georg; Olbrich, Eckehard

    2015-10-01

    Quantifying behaviors of robots which were generated autonomously from task-independent objective functions is an important prerequisite for objective comparisons of algorithms and movements of animals. The temporal sequence of such a behavior can be considered as a time series and hence complexity measures developed for time series are natural candidates for its quantification. The predictive information and the excess entropy are such complexity measures. They measure the amount of information the past contains about the future and thus quantify the nonrandom structure in the temporal sequence. However, when using these measures for systems with continuous states one has to deal with the fact that their values will depend on the resolution with which the systems states are observed. For deterministic systems both measures will diverge with increasing resolution. We therefore propose a new decomposition of the excess entropy in resolution dependent and resolution independent parts and discuss how they depend on the dimensionality of the dynamics, correlations and the noise level. For the practical estimation we propose to use estimates based on the correlation integral instead of the direct estimation of the mutual information using the algorithm by Kraskov et al. (2004) which is based on next neighbor statistics because the latter allows less control of the scale dependencies. Using our algorithm we are able to show how autonomous learning generates behavior of increasing complexity with increasing learning duration.

  6. Quantifying Emergent Behavior of Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Georg Martius

    2015-10-01

    Full Text Available Quantifying behaviors of robots which were generated autonomously from task-independent objective functions is an important prerequisite for objective comparisons of algorithms and movements of animals. The temporal sequence of such a behavior can be considered as a time series and hence complexity measures developed for time series are natural candidates for its quantification. The predictive information and the excess entropy are such complexity measures. They measure the amount of information the past contains about the future and thus quantify the nonrandom structure in the temporal sequence. However, when using these measures for systems with continuous states one has to deal with the fact that their values will depend on the resolution with which the systems states are observed. For deterministic systems both measures will diverge with increasing resolution. We therefore propose a new decomposition of the excess entropy in resolution dependent and resolution independent parts and discuss how they depend on the dimensionality of the dynamics, correlations and the noise level. For the practical estimation we propose to use estimates based on the correlation integral instead of the direct estimation of the mutual information based on next neighbor statistics because the latter allows less control of the scale dependencies. Using our algorithm we are able to show how autonomous learning generates behavior of increasing complexity with increasing learning duration.

  7. Ant Colony Based Path Planning Algorithm for Autonomous Robotic Vehicles

    Directory of Open Access Journals (Sweden)

    Yogita Gigras

    2012-11-01

    Full Text Available The requirement of an autonomous robotic vehicles demand highly efficient algorithm as well as software. Today’s advanced computer hardware technology does not provide these types of extensive processing capabilities, so there is still a major space and time limitation for the technologies that are available for autonomous robotic applications. Now days, small to miniature mobile robots are required for investigation, surveillance and hazardous material detection for military and industrial applications. But these small sized robots have limited power capacity as well as memory and processing resources. A number of algorithms exist for producing optimal path for dynamically cost. This paper presents a new ant colony based approach which is helpful in solving path planning problem for autonomous robotic application. The experiment of simulation verified its validity of algorithm in terms of time.

  8. Map format for mobile robot map-based autonomous navigation

    OpenAIRE

    Corominas Murtra, Andreu; Mirats-Tur, Josep M.

    2007-01-01

    This technical report defines the spatial representation and the map file format used in a mobile robot map-based autonomous navigation system designed to be deployed in urban areas. After a discussion about common requirements of spatial representations for map-based mobile robot autonomous navigation, a proposed environment model that fulfills previously discussed requirements is formally presented. An example of a map representing an outdoor area of an university campus of about 10000m2 is...

  9. Software framework for off-road autonomous robot navigation system

    Institute of Scientific and Technical Information of China (English)

    WU Er-yong; ZHOU Wen-hui; ZHANG Li; DAI Guo-jun

    2009-01-01

    This paper presents a software framework for off-road autonomous robot navigation system. With the requirements of accurate terrain perception and instantaneous obstacles detection, one navigation software framework was advanced based on the principles of "three layer architecture" of intelligence system. Utilized the technologies of distributed system, machine learning and multiple sensor fusion, individual functional module was discussed. This paper aims to provide a framework reference for autonomous robot navigation system design.

  10. An Autonomous Mobile Robot for Tsukuba Challenge: JW-Future

    Science.gov (United States)

    Fujimoto, Katsuharu; Kaji, Hirotaka; Negoro, Masanori; Yoshida, Makoto; Mizutani, Hiroyuki; Saitou, Tomoya; Nakamura, Katsu

    “Tsukuba Challenge” is the only of its kind to require mobile robots to work autonomously and safely on public walkways. In this paper, we introduce the outline of our robot “JW-Future”, developed for this experiment based on an electric wheel chair. Additionally, the significance of participation to such a technical trial is discussed from the viewpoint of industries.

  11. Navigation Method for Autonomous Robots in a Dynamic Indoor Environment

    Czech Academy of Sciences Publication Activity Database

    Věchet, Stanislav; Chen, K.-S.; Krejsa, Jiří

    2013-01-01

    Roč. 3, č. 4 (2013), s. 273-277. ISSN 2223-9766 Institutional support: RVO:61388998 Keywords : particle filters * autonomous mobile robot s * mixed potential fields Subject RIV: JD - Computer Applications, Robot ics http://www.ausmt.org/index.php/AUSMT/article/view/214/239

  12. 11th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Chirikjian, Gregory

    2014-01-01

    Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot com...

  13. Monte Carlo Registration and Its Application with Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Christian Rink

    2016-01-01

    Full Text Available This work focuses on Monte Carlo registration methods and their application with autonomous robots. A streaming and an offline variant are developed, both based on a particle filter. The streaming registration is performed in real-time during data acquisition with a laser striper allowing for on-the-fly pose estimation. Thus, the acquired data can be instantly utilized, for example, for object modeling or robot manipulation, and the laser scan can be aborted after convergence. Curvature features are calculated online and the estimated poses are optimized in the particle weighting step. For sampling the pose particles, uniform, normal, and Bingham distributions are compared. The methods are evaluated with a high-precision laser striper attached to an industrial robot and with a noisy Time-of-Flight camera attached to service robots. The shown applications range from robot assisted teleoperation, over autonomous object modeling, to mobile robot localization.

  14. A machine consciousness approach to autonomous mobile robotics

    OpenAIRE

    Arrabales, Raúl; Sanchis, Araceli

    2006-01-01

    In this paper we argue that machine consciousness can be successfully modelled to be the base of a control system for an autonomous mobile robot. Such a bio-inspired system provides the robot with cognitive benefits the same way that consciousness does for humans and other higher mammals. The key functions of consciousness are identified and partially applied to an original computational model, which is implemented in a software simulated mobile robot. We use a simulator to prove our assumpti...

  15. Development of Prometeu autonomous robot for ball handling in Eurobot

    OpenAIRE

    Ribeiro, António Fernando; Monteiro, Jorge; Silva, Pedro; Silva, Victor; Braga, Paulo

    2008-01-01

    Eurobot is a robotics European challenge for the young generation (university and technical schools) which is held annually, with a different challenge in every edition, and participate around about 200 teams every year. Each game comprises two teams competing against each other and does not allow draws. This work describes the design, development and building up of an autonomous mobile robot to fulfill this challenge. This paper includes the challenge description, robot design, sensors...

  16. Testing Different Evolutionary Neural Networks for Autonomous Robot Control

    Czech Academy of Sciences Publication Activity Database

    Slušný, Stanislav; Vidnerová, Petra; Neruda, Roman

    Seňa: PONT, 2007 - (Vojtáš, P.), s. 103-108 ISBN 978-80-969184-7-8. [ITAT 2007. Conference on Theory and Practice of Information Theory. Poľana (SK), 21.09.2007-27.09.2007] Grant ostatní: GA UK(CZ) 184/2002 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary robotics * neural networks * autonomous robot * robot control Subject RIV: IN - Informatics, Computer Science

  17. A study on an autonomous pipeline maintenance robot, 8

    International Nuclear Information System (INIS)

    This paper deals with the path planning and sensing planning expert system with learning functions for the pipeline inspection and maintenance robot, Mark IV. The robot can carry out inspection tasks to autonomously detect malfunctions in a plant pipeline system. Furthermore, the robot becomes more intelligent by adding the following functions: (1) the robot, Mark IV, is capable of inspecting surfaces of storage tanks as well as pipeline outer surfaces; (2) in path planning, the robot has a learning function using information generated in the past such as a moving path, task level and control commands of the robot; (3) in inspecting a pipeline system with plant equipment such as valves, franges, T- and L-joints, the robot is capable of inspecting continuous surfaces in pipeline. Thus, together with the improved path planning expert system (PPES) and the sensing planning expert system (SPES), the Mark IV robot becomes intelligent enough to automatically carry out given inspection tasks. (author)

  18. Navigation strategies for multiple autonomous mobile robots moving in formation

    Science.gov (United States)

    Wang, P. K. C.

    1991-01-01

    The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.

  19. Tele-assistance for semi-autonomous robots

    Science.gov (United States)

    Rogers, Erika; Murphy, Robin R.

    1994-01-01

    This paper describes a new approach in semi-autonomous mobile robots. In this approach the robot has sufficient computerized intelligence to function autonomously under a certain set of conditions, while the local system is a cooperative decision making unit that combines human and machine intelligence. Communication is then allowed to take place in a common mode and in a common language. A number of exception-handling scenarios that were constructed as a result of experiments with actual sensor data collected from two mobile robots were presented.

  20. Artificial Pheromone System Using RFID for Navigation of Autonomous Robots

    Institute of Scientific and Technical Information of China (English)

    Herianto; Toshiki Sakakibara; Daisuke Kurabayashi

    2007-01-01

    Navigation system based on the animal behavior has received a growing attention in the past few years. The navigation systems using artificial pheromone are still few so far. For this reason, this paper presents our research that aim to implement autonomous navigation with artificial pheromone system. By introducing artificial pheromone system composed of data carriers and autonomous robots, the robotic system creates a potential field to navigate their group. We have developed a pheromone density model to realize the function of pheromones with the help of data carriers. We intend to show the effectiveness of the proposed system by performing simulations and realization using modified mobile robot. The pheromone potential field system can be used for navigation of autonomous robots.

  1. 10th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Mondada, Francesco; Correll, Nikolaus; Mermoud, Grégory; Egerstedt, Magnus; Hsieh, M; Parker, Lynne; Støy, Kasper

    2013-01-01

    Distributed robotics is a rapidly growing, interdisciplinary research area lying at the intersection of computer science, communication and control systems, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 43 original contributions presented at the Tenth International Symposium on Distributed Autonomous Robotic Systems (DARS 2010), which was held in November 2010 at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The selected papers in this volume are authored by leading researchers from Asia, Australia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into four parts, each representing one critical and long-term research thru...

  2. Towards Principled Experimental Study of Autonomous Mobile Robots

    Science.gov (United States)

    Gat, Erann

    1995-01-01

    We review the current state of research in autonomous mobile robots and conclude that there is an inadequate basis for predicting the reliability and behavior of robots operating in unengineered environments. We present a new approach to the study of autonomous mobile robot performance based on formal statistical analysis of independently reproducible experiments conducted on real robots. Simulators serve as models rather than experimental surrogates. We demonstrate three new results: 1) Two commonly used performance metrics (time and distance) are not as well correlated as is often tacitly assumed. 2) The probability distributions of these performance metrics are exponential rather than normal, and 3) a modular, object-oriented simulation accurately predicts the behavior of the real robot in a statistically significant manner.

  3. Design and Implementation of an Autonomous Robot Soccer System

    Directory of Open Access Journals (Sweden)

    Ching-Chang Wong

    2013-05-01

    Full Text Available A design and implementation method of a robot soccer system with three vision‐based autonomous robots is proposed in this paper. A hierarchical architecture with four independent layers: (a information layer, (b strategy layer, (c tactics layer, and (d execution layer, is proposed to construct a flexible and robust vision‐based autonomous robot soccer system efficiently. Five mechanisms, including (a a two‐dimensional neck mechanism, (b dribbling mechanism, (c shooting mechanism, (d aiming mechanism, and (e flexible movement mechanism, are proposed to mean the robot with multiple functions can win the game. A method based on data obtained from a compass and a vision sensor is proposed to determine the location of the robot on the field. In the strategy design, a hierarchical architecture of decision based on the finite‐state transition mechanism for the field players and the goalkeeper is proposed to solve varied situations in the robot soccer game. Three vision‐based robots are implemented and some real competition results in the FIRA Cup are presented to illustrate the validity and feasibility of the proposed method in autonomous robot soccer system design.

  4. Concept of Intelligent Mechanical Design for Autonomous Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    Amir A. F. Nassiraei; Kazuo Ishii

    2007-01-01

    The concept of Intelligent Mechanical Design (IMD) is presented to show how a mechanical structure can be designed to affect robot controllability, simplification and task performance. Exploring this concept produces landmarks in the territory of mechanical robot design in the form of seven design principles. The design principles, which we call the Mecha-Telligence Principles (MTP), provide guidance on how to design mechanics for autonomous mobile robots. These principles guide us to ask the right questions when investigating issues concerning self-controllable, reliable, feasible, and compatible mechanics for autonomous mobile robots. To show how MTP can be applied in the design process we propose a novel methodology, named as Mecha-Telligence Methodology (MTM). Mechanical design by the proposed methodology is based on preference classification of the robot specification described by interaction of the robot with its environment and the physical parameters of the robot mechatronics. After defining new terms, we investigate the feasibility of the proposed methodology to the mechanical design of an autonomous mobile sewer inspection robot. In this industrial project we show how a passive-active intelligent moving mechanism can be designed using the MTM and employed in the field.

  5. Autonomous navigation strategy for robot swarms using local communication

    Directory of Open Access Journals (Sweden)

    Fredy Hernán Martínez Sarmiento

    2014-01-01

    Full Text Available Our motivation focuses on answering a simple question: What is the minimum robotic structure necessary to solve a navigation problem? Our research deals with environments that are unknown, dynamic, and denied to sensors. In particular, the paper addresses problems concerning how to coordinate the navigation of multi-ple autonomous mobile robots without requiring system identification, geometric map building, localization or state estimation. The proposed navigation algorithm uses the gradient of the environment to set the navigation control. This gradient is continuously modified by all the robots in the form of local communication. The design scheme, both for the algorithm and for its implementation on robots, searches for a minimal approximation, in which it minimizes the requirements of the robot (processing power, communication and kind of sensors. Besides, our research finds autonomous navigation for each robot, and also scales the system to any number of agents. The navigation algorithm is formulated for a grouping task, where the robots form autonomous groups without any external interaction or prior information of the environment or information from other robots. Finally, task performance is verified through simulation for the laboratory prototypes of the group.

  6. Autonomous Evolution of Dynamic Gaits with Two Quadruped Robots

    Science.gov (United States)

    Hornby, Gregory S.; Takamura, Seichi; Yamamoto, Takashi; Fujita, Masahiro

    2004-01-01

    A challenging task that must be accomplished for every legged robot is creating the walking and running behaviors needed for it to move. In this paper we describe our system for autonomously evolving dynamic gaits on two of Sony's quadruped robots. Our evolutionary algorithm runs on board the robot and uses the robot's sensors to compute the quality of a gait without assistance from the experimenter. First we show the evolution of a pace and trot gait on the OPEN-R prototype robot. With the fastest gait, the robot moves at over 10/min/min., which is more than forty body-lengths/min. While these first gaits are somewhat sensitive to the robot and environment in which they are evolved, we then show the evolution of robust dynamic gaits, one of which is used on the ERS-110, the first consumer version of AIBO.

  7. ARK: Autonomous mobile robot in an industrial environment

    Science.gov (United States)

    Nickerson, S. B.; Jasiobedzki, P.; Jenkin, M.; Jepson, A.; Milios, E.; Down, B.; Service, J. R. R.; Terzopoulos, D.; Tsotsos, J.; Wilkes, D.

    1994-01-01

    This paper describes research on the ARK (Autonomous Mobile Robot in a Known Environment) project. The technical objective of the project is to build a robot that can navigate in a complex industrial environment using maps with permanent structures. The environment is not altered in any way by adding easily identifiable beacons and the robot relies on naturally occurring objects to use as visual landmarks for navigation. The robot is equipped with various sensors that can detect unmapped obstacles, landmarks and objects. In this paper we describe the robot's industrial environment, it's architecture, a novel combined range and vision sensor and our recent results in controlling the robot in the real-time detection of objects using their color and in the processing of the robot's range and vision sensor data for navigation.

  8. Navigation Method for Autonomous Robots in a Dynamic Indoor Environment

    Directory of Open Access Journals (Sweden)

    Stanislav Věchet

    2013-11-01

    Full Text Available The present paper considers issues related to navigation by autonomous mobile robots in overcrowded dynamic indoor environments (e.g., shopping malls, exhibition halls or convention centers. For robots moving among potentially unaware bystanders, safety is a key issue. A navigation method based on mixed potential field path planning is proposed, in cooperation with active artificial landmarks-based localization, in particular the bearing of infrared beacons placed in known coordinates processed via particle filters. Simulation experiments and tests in unmodified real-world environments with the actual robot show the proposed navigation system allows the robot to successfully navigate safely among bystanders.

  9. Autonomous navigation framework for a car-like robot

    OpenAIRE

    Hernádez Juan, Sergi; Herrero Cotarelo, Fernando

    2015-01-01

    This technical report describes the work done to develop a new navigation scheme for an autonomous car-like robot available at the Mobile Robotics Laboratory at IRI. To plan the general path the robot should follow (i.e. the global planner), a search based planner algorithm, with motion primitives which take into account the kinematic constraints of the robot, is used. To actually execute the path and avoid dynamic obstacles (i.e the local planner) a modification of the DWA algorithm is used,...

  10. Multisensory autonomous robotic inspection and manipulation in an unstructured environment

    International Nuclear Information System (INIS)

    In this paper we demonstrate the feasibility of an autonomous robotics inspection and manipulation in an unstructured environment, using information coming from a multisensory integrated system. The task is to perform a real operation, such as adjusting a valve, on a testbed representing an hydraulic circuit. The robotics system, made up of a mobile crawling robot and of an anthropomorphous, six-degree-of-freedom industrial robot, can achieve the goal by the joint use of vision, range and force/torque sensors. (author)

  11. Micro-Controller Based Obstacle Avoiding Autonomous Robot

    OpenAIRE

    Subhranil Som; Arjun Shome

    2014-01-01

    Main aim of this paperwork is to study development of the obstacle avoiding spy robot, which can be operated manually as per the operator wants to take control of the robot himself, it also can be autonomous in its actions while intelligently moving itself by detecting the obstacles in front of it by the help of the obstacle detectable circuit. The robot is in form of a vehicle mounted with a web cam, which acquires and sends video as per the robots eye view to a TV or PC via ...

  12. QFD-based conceptual design of an autonomous underwater robot

    Directory of Open Access Journals (Sweden)

    Thip Pasawang

    2015-12-01

    Full Text Available Autonomous underwater robots in the past few years have been designed according to the individual concepts and experiences of the researchers. To design a robot, which meets all the requirements of potential users, is an advanced work. Hence, a systematic design method that could include users’ preferences and requirements is needed. This paper presents the quality function deployment (QFD technique to design an autonomous underwater robot focusing on the Thai Navy military mission. Important user requirements extracted from the QFD method are the ability to record videos, operating at depth up to 10 meters, the ability to operate remotely with cable and safety concerns related to water leakages. Less important user requirements include beauty, using renewable energy, operating remotely with radio and ability to work during night time. The important design parameters derived from the user requirements are a low cost-controller, an autonomous control algorithm, a compass sensor and vertical gyroscope, and a depth sensor. Of low-importance ranked design parameters include the module design, use clean energy, a low noise electric motor, remote surveillance design, a pressure hull, and a beautiful hull form design. The study results show the feasibility of using QFD techniques to systematically design the autonomous underwater robot to meet user requirements. Mapping between the design and expected parameters and a conceptual drafting design of an autonomous underwater robot are also presented.

  13. Autonomous Mobile Robot That Can Read

    OpenAIRE

    Létourneau Dominic; Michaud François; Valin Jean-Marc

    2004-01-01

    The ability to read would surely contribute to increased autonomy of mobile robots operating in the real world. The process seems fairly simple: the robot must be capable of acquiring an image of a message to read, extract the characters, and recognize them as symbols, characters, and words. Using an optical Character Recognition algorithm on a mobile robot however brings additional challenges: the robot has to control its position in the world and its pan-tilt-zoom camera to find textual me...

  14. Autonomous Mobile Robot That Can Read

    OpenAIRE

    Dominic Létourneau; François Michaud; Jean-Marc Valin

    2004-01-01

    The ability to read would surely contribute to increased autonomy of mobile robots operating in the real world. The process seems fairly simple: the robot must be capable of acquiring an image of a message to read, extract the characters, and recognize them as symbols, characters, and words. Using an optical Character Recognition algorithm on a mobile robot however brings additional challenges: the robot has to control its position in the world and its pan-tilt-zoom camera to find textual mes...

  15. A study on autonomous maintenance robot, 7

    International Nuclear Information System (INIS)

    This paper deals with the new mechanism of a new maintenance robot, Mark IV, following the previous reports on pipeline inspection and maintenance robots of Mark I, II, and III. The Mark IV has a mechanism capable of inspecting surfaces of storage tanks as well as pipeline outer surfaces, which is another capability of the maintenance robots, different from the previous ones. The main features of Mark IV are as follows, (i) The robot has a multijoint structure, so that it has better adaptability to the curvartures of pipelines and storage tanks. (ii) The joint of the robot has SMA actuators to make the robot lighter in weight. Some actuator shape characteristics are also examined for the robot structure and control. (iii) The robot has suckers at both ends so that the robot can climb up along the wall from the ground. (iv) A robot with the inch worm mechanisms has many functional motions, such that it can pass over flanges and T-joints, and transfer to adjacent pipelines with a wider range of pipe diameters. (v) A control method is given for the mobile motion control. Thus, the functional level of the maintenance robot has been greatly improved by the introduction of the Mark IV robot. (author)

  16. Interactive animated displayed of man-controlled and autonomous robots

    International Nuclear Information System (INIS)

    An interactive computer graphics program has been developed which allows an operator to more readily control robot motions in two distinct modes; viz., man-controlled and autonomous. In man-controlled mode, the robot is guided by a joystick or similar device. As the robot moves, actual joint angle information is measured and supplied to a graphics system which accurately duplicates the robot motion. Obstacles are placed in the actual and animated workspace and the operator is warned of imminent collisions by sight and sound via the graphics system. Operation of the system in man-controlled mode is shown. In autonomous mode, a collision-free path between specified points is obtained by previewing robot motions on the graphics system. Once a satisfactory path is selected, the path characteristics are transmitted to the actual robot and the motion is executed. The telepresence system developed at the University of Florida has been successful in demonstrating that the concept of controlling a robot manipulator with the aid of an interactive computer graphics system is feasible and practical. The clarity of images coupled with real-time interaction and real-time determination of imminent collision with obstacles has resulted in improved operator performance. Furthermore, the ability for an operator to preview and supervise autonomous operations is a significant attribute when operating in a hazardous environment

  17. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  18. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  19. Design and Implementation of Autonomous Sonar Based Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Ansari

    2011-07-01

    Full Text Available Autonomous robots are intelligent machines that are capable of performing desired tasks by themselves, without explicit human control. This paper presents design and implementation of the ASVR (Autonomous Sonar Based Vehicle Robot. ASVR is a microcontroller based, programmable mobile robot that can sense and react to its environment and can work in partially known and unpredictable environments. A novel algorithm based on ultrasonic sensors and simple calculations for real-time obstacle detection and avoidance that is intended for mobile robots is also outlined. Also a novel technique is proposed and implemented for steering referencing of vehicle. The design is implemented in air using ultrasonic sensors but can be adapted using sonar to underwater environments where it has important applications such as deep sea maintenance and reconnaissance tasks. The paper also presents performance results of a prototype developed to prove the design concept.

  20. Design of refuelling robot for autonomous driving

    OpenAIRE

    Ramis Trubat, Àfrica

    2013-01-01

    The rapid development of 3D computer graphics and virtual environments has allowed the researchers to avoid working with physical robotic systems. These require specialised knowledge, a very complex construction, a huge time-consuming and it may not be financially feasible. Therefore, an alternative approach would be to use robot simulations which allow researchers to carry out experiments on the computer. Ideally one would first prototype a robot, then controls its algorithms ...

  1. Image Processing Using Pearson's Correlation Coefficient: Applications on Autonomous Robotics

    OpenAIRE

    Miranda Neto, Arthur; Corrêa Victorino, Alessandro; Fantoni, Isabelle; Zampieri, Douglas Eduardo; Ferreira, Janito Vaqueiro; Lima, Danilo Alves

    2013-01-01

    International audience Autonomous robots have motivated researchers from different groups due to the challenge that it represents. Many applications for control of autonomous platform are being developed and one important aspect is the excess of information, frequently redundant, that imposes a great computational cost in data processing. Taking into account the temporal coherence between consecutive frames, we have proposed a set of tools based on Pearson's Correlation Coefficient (PCC): ...

  2. Outdoor flocking and formation flight with autonomous aerial robots

    OpenAIRE

    Vásárhelyi, Gábor; Virágh, Csaba; Somorjai, Gergő; Tarcai, Norbert; Szörényi, Tamás; Nepusz, Tamás; Vicsek, Tamás

    2014-01-01

    We present the first decentralized multi-copter flock that performs stable autonomous outdoor flight with up to 10 flying agents. By decentralized and autonomous we mean that all members navigate themselves based on the dynamic information received from other robots in the vicinity. We do not use central data processing or control; instead, all the necessary computations are carried out by miniature on-board computers. The only global information the system exploits is from GPS receivers, whi...

  3. Vision and distance integrated sensor (Kinect) for an autonomous robot

    OpenAIRE

    Ribeiro, Paulo Rogério de Almeida; Ribeiro, António Fernando; Lopes, Gil

    2011-01-01

    This work presents an application of the Microsoft Kinect camera for an autonomous mobile robot. In order to drive autonomously one main issue is the ability to recognize signalling panels positioned overhead. The Kinect camera can be applied in this task due to its double integrated sensor, namely vision and distance. The vision sensor is used to perceive the signalling panel, while the distance sensor is applied as a segmentation filter, by eliminating pixels by their depth in the object’s ...

  4. Autonomous navigation for mobile service robots in urban pedestrian environments

    OpenAIRE

    Trulls, Eduard; Corominas Murtra, Andreu; Pérez-Ibarz, J.; Ferrer, Gonzalo; Vasquez, D.; Mirats-Tur, Josep M.; Sanfeliu, Alberto

    2011-01-01

    This paper presents a fully autonomous navigation solution for urban, pedestrian environments. The task at hand, undertaken within the context of the European project URUS, was to enable two urban service robots, based on Segway RMP200 platforms and using planar lasers as primary sensors, to navigate around a known, large (10,000 m2), pedestrian-only environment with poor global positioning system coverage. Special consideration is given to the nature of our robots, highly mobile but two-whee...

  5. Distributed Autonomous Robotic Systems : the 12th International Symposium

    CERN Document Server

    Cho, Young-Jo

    2016-01-01

    This volume of proceedings includes 32 original contributions presented at the 12th International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), held in November 2014. The selected papers in this volume are authored by leading researchers from Asia, Europe, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. .

  6. Remote radioactive waste drum inspection with an autonomous mobile robot

    International Nuclear Information System (INIS)

    An autonomous mobile robot is being developed to perform remote surveillance and inspection task on large numbers of stored radioactive waste drums. The robot will be self guided through narrow storage aisles and record the visual image of each viewable drum for subsequent off line analysis and archiving. The system will remove the personnel from potential exposure to radiation, perform the require inspections, and improve the ability to assess the long term trends in drum conditions

  7. Safety oriented software engineering process for autonomous robots

    OpenAIRE

    Gribov, Vladislav; Voos, Holger

    2013-01-01

    In this paper, a safety oriented model based software engineering process for autonomous robots is proposed. Herein, the main focus is on the modeling of the safety case based on the standard ISO/DIS 13482. Combined with a safe multilayer robot software architecture it allows to trace the safety requirements and to model safety relevant properties on the early design stages in order to build a reliable chain of evidence. The introduced engineering processes consist of the Domain Engineering, ...

  8. Brain, mind, body and society: autonomous system in robotics.

    Science.gov (United States)

    Shimoda, Motomu

    2013-12-01

    In this paper I examine the issues related to the robot with mind. To create a robot with mind aims to recreate neuro function by engineering. The robot with mind is expected not only to process external information by the built-in program and behave accordingly, but also to gain the consciousness activity responding multiple conditions and flexible and interactive communication skills coping with unknown situation. That prospect is based on the development of artificial intelligence in which self-organizing and self-emergent functions have been available in recent years. To date, controllable aspects in robotics have been restricted to data making and programming of cognitive abilities, while consciousness activities and communication skills have been regarded as uncontrollable aspects due to their contingency and uncertainty. However, some researchers of robotics claim that every activity of the mind can be recreated by engineering and is therefore controllable. Based on the development of the cognitive abilities of children and the findings of neuroscience, researchers have attempted to produce the latest artificial intelligence with autonomous learning systems. I conclude that controllability is inconsistent with autonomy in the genuine sense and autonomous robots recreated by engineering cannot be autonomous partners of humans. PMID:24558734

  9. A New Kind of Art [Based on Autonomous Collective Robotics

    Directory of Open Access Journals (Sweden)

    Leonel Moura

    2014-11-01

    Full Text Available The paper addresses the rationale of a process that produces artworks made by a swarm of robots. This process relies on the interaction, though the environment, of a set of robots designed to create spatiotemporal patterns from an initial homogeneous medium (the canvas. Inspired by social insect societies, the approach presented here exploits robot-robot and robot-environment interactions to develop emergent behaviour. The swarm intelligence concept is crucial to this approach because the viability of the team (group of robots is required in order to achieve the viability of the individual. Without any central coordination or plan, the group of robots produces its artworks on the basis of a data-driven (bottom-up process. Moreover, each robot can be viewed as an autonomous agent because it has on board all the resources required to provide the global outcome of the experiment, including sensors, actuators, and the controller, which demonstrates a reactive behaviour by reinforcing a previously made signal (positive feedback. The process is also presented in the context of Machine Art, and a detailed technical description of each robot is given, as well as an example of artworks produced by the collective behaviour of the set of robots.

  10. FPGA implementation of vision algorithms for small autonomous robots

    Science.gov (United States)

    Anderson, J. D.; Lee, D. J.; Archibald, J. K.

    2005-10-01

    The use of on-board vision with small autonomous robots has been made possible by the advances in the field of Field Programmable Gate Array (FPGA) technology. By connecting a CMOS camera to an FPGA board, on-board vision has been used to reduce the computation time inherent in vision algorithms. The FPGA board allows the user to create custom hardware in a faster, safer, and more easily verifiable manner that decreases the computation time and allows the vision to be done in real-time. Real-time vision tasks for small autonomous robots include object tracking, obstacle detection and avoidance, and path planning. Competitions were created to demonstrate that our algorithms work with our small autonomous vehicles in dealing with these problems. These competitions include Mouse-Trapped-in-a-Box, where the robot has to detect the edges of a box that it is trapped in and move towards them without touching them; Obstacle Avoidance, where an obstacle is placed at any arbitrary point in front of the robot and the robot has to navigate itself around the obstacle; Canyon Following, where the robot has to move to the center of a canyon and follow the canyon walls trying to stay in the center; the Grand Challenge, where the robot had to navigate a hallway and return to its original position in a given amount of time; and Stereo Vision, where a separate robot had to catch tennis balls launched from an air powered cannon. Teams competed on each of these competitions that were designed for a graduate-level robotic vision class, and each team had to develop their own algorithm and hardware components. This paper discusses one team's approach to each of these problems.

  11. Micro-Controller Based Obstacle Avoiding Autonomous Robot

    Directory of Open Access Journals (Sweden)

    Subhranil Som

    2014-06-01

    Full Text Available Main aim of this paperwork is to study development of the obstacle avoiding spy robot, which can be operated manually as per the operator wants to take control of the robot himself, it also can be autonomous in its actions while intelligently moving itself by detecting the obstacles in front of it by the help of the obstacle detectable circuit. The robot is in form of a vehicle mounted with a web cam, which acquires and sends video as per the robots eye view to a TV or PC via a TV tuner card. The microcontroller chip ATMEGA 328 present on the microcontroller board ARDUINO controls the movements of the robot. In manual operating conditions the user will have a radio transmitter (tx via which the user will send signal to the radio receiver (rx present inside the robot which accordingly will pass on the signal to the microcontroller board, and as per the coding of the signal signatures burnt inside the microcontroller chip the robot will complete its movements. In Autonomous operating conditions the user will have no control on the robot that is the robot cannot be operated via any external controls, it will only function as per the data received from the obstacle detection circuits to the microcontroller which will make the robot motors move accordingly as per the code written in it. The idea is to make a robot to tackle the hostage situations & cope up with the worst conditions, which can be quiet a matter of risk to be handled by human being.

  12. High Level Software for Autonomous Racing Robot

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Věchet, Stanislav; Ondroušek, V.

    Praha: Institute of Thermomechanics AS CR, v. v. i., 2007 - (Zolotarev, I.), s. 139-140 ISBN 978-80-87012-06-2. [Engineering Mechanics 2007: national conference with international participation. Svratka (CZ), 14.05.2007-17.05.2007] Institutional research plan: CEZ:AV0Z20760514 Keywords : mobile robot * navigation * localization Subject RIV: JD - Computer Applications, Robot ics

  13. Sensor Fusion for Autonomous Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Plascencia, Alfredo

    Multi-sensor data fusion is a broad area of constant research which is applied to a wide variety of fields such as the field of mobile robots. Mobile robots are complex systems where the design and implementation of sensor fusion is a complex task. But research applications are explored constantl....... The scope of the thesis is limited to building a map for a laboratory robot by fusing range readings from a sonar array with landmarks extracted from stereo vision images using the (Scale Invariant Feature Transform) SIFT algorithm.......Multi-sensor data fusion is a broad area of constant research which is applied to a wide variety of fields such as the field of mobile robots. Mobile robots are complex systems where the design and implementation of sensor fusion is a complex task. But research applications are explored constantly...

  14. Biologically Inspired Behaviour Design for Autonomous Robotic Fish

    Institute of Scientific and Technical Information of China (English)

    Jin-Dong Liu; Huosheng Hu

    2006-01-01

    Behaviour-based approach plays a key role for mobile robots to operate safely in unknown or dynamically changing environments. We have developed a hybrid control architecture for our autonomous robotic fish that consists of three layers: cognitive, behaviour and swim pattern. In this paper, we describe some main design issues of the behaviour layer, which is the centre of the layered control architecture of our robotic fish. Fuzzy logic control (FLC) is adopted here to design individual behaviours. Simulation and real experiments are presented to show the feasibility and the performance of the designed behaviour layer.

  15. ODYSSEUS autonomous walking robot: The leg/arm design

    Science.gov (United States)

    Bourbakis, N. G.; Maas, M.; Tascillo, A.; Vandewinckel, C.

    1994-01-01

    ODYSSEUS is an autonomous walking robot, which makes use of three wheels and three legs for its movement in the free navigation space. More specifically, it makes use of its autonomous wheels to move around in an environment where the surface is smooth and not uneven. However, in the case that there are small height obstacles, stairs, or small height unevenness in the navigation environment, the robot makes use of both wheels and legs to travel efficiently. In this paper we present the detailed hardware design and the simulated behavior of the extended leg/arm part of the robot, since it plays a very significant role in the robot actions (movements, selection of objects, etc.). In particular, the leg/arm consists of three major parts: The first part is a pipe attached to the robot base with a flexible 3-D joint. This pipe has a rotated bar as an extended part, which terminates in a 3-D flexible joint. The second part of the leg/arm is also a pipe similar to the first. The extended bar of the second part ends at a 2-D joint. The last part of the leg/arm is a clip-hand. It is used for selecting several small weight and size objects, and when it is in a 'closed' mode, it is used as a supporting part of the robot leg. The entire leg/arm part is controlled and synchronized by a microcontroller (68CH11) attached to the robot base.

  16. Development of a Commercially Viable, Modular Autonomous Robotic Systems for Converting any Vehicle to Autonomous Control

    Science.gov (United States)

    Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.

    1994-01-01

    A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.

  17. Adaptive Fuzzy Knowledge Based Controller for Autonomous Robot Motion Control

    Directory of Open Access Journals (Sweden)

    Mbaitiga Zacharie

    2010-01-01

    Full Text Available Problem statement: Research into robot motion control offers research opportunities that will change scientists and engineers for year to come. Autonomous robots are increasingly evident in many aspects of industry and everyday life and a robust robot motion control can be used for homeland security and many consumer applications. This study discussed the adaptive fuzzy knowledge based controller for robot motion control in indoor and outdoor environment. Approach: The proposed method consisted of two components: the process monitor that detects changes in the process characteristics and the adaptation mechanism that used information passed to it by the process monitor to update the controller parameters. Results: Experimental evaluation had been done in both indoor and outdoor environment where the robot communicates with the base station through its Wireless fidelity antenna and the performance monitor used a set of five performance criteria to access the fuzzy knowledge based controller. Conclusion: The proposed method had been found to be robust.

  18. The ARK (Autonomous Robot for a Known environment) project

    Science.gov (United States)

    Nickerson, S. B.; Camacho, F.; Mader, D. L.; Milios, E. E.; Jenkin, M. R. M.; Bains, N.; Braun, P.; Green, D.; Hung, S.; Korba, L.

    1991-05-01

    The main goal of the project is to build a mobile robot that can navigate in a known indoor environment using computer vision as its main sensor, with the aid of an internal geometric model of its environment. A second goal is to explore the technology in such a way as to best illustrate its usefulness and commercial potential. The theory will focus on the development and testing of computer vision algorithms as aids for robot navigation. Two robots will be built: ARK-1 (autonomous robot for a known environment); and ARK-2. ARK-1 will be tethered and will be used to test the vision algorithms. ARK-2 will be untethered, will use other sensors in addition to vision, will have a real-time operating system and will operate in an industrial environment. The platforms for both ARK- 1 and ARK-2 will be the same as that of a robot being developed at NRC for industrial applications.

  19. Autonomous Navigation of Mobile Robot Based on Flood Fill Algorithm

    Directory of Open Access Journals (Sweden)

    Ayad Mohammed Jabbar

    2016-06-01

    Full Text Available The autonomous navigation of robots is an important area of research. It can intelligently navigate itself from source to target within an environment without human interaction. Recently, algorithms and techniques have been made and developed to improve the performance of robots. It’s more effective and has high precision tasks than before. This work proposed to solve a maze using a Flood fill algorithm based on real time camera monitoring the movement on its environment. Live video streaming sends an obtained data to be processed by the server. The server sends back the information to the robot via wireless radio. The robot works as a client device moves from point to point depends on server information. Using camera in this work allows voiding great time that needs it to indicate the route by the robot.

  20. An Adaptive Game Algorithm for an Autonomous, Mobile Robot

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Bak, Thomas; Risager, Claus

    2012-01-01

    This paper presents a field study of a physical ball game for elderly based on an autonomous, mobile robot. The game algorithm is based on Case Based Reasoning and adjusts the game challenge to the player’s mobility skills by registering the spatio-temporal behaviour of the player using an on boa...

  1. Adaptive Visual Face Tracking for an Autonomous Robot

    NARCIS (Netherlands)

    van Hoof, Herke; van der Zant, Tijn; Wiering, Marco

    2011-01-01

    Perception is an essential ability for autonomous robots in non-standardized conditions. However, the appearance of objects can change between different conditions. A system visually tracking a target based on its appearance could lose its target in those cases. A tracker learning the appearance of

  2. Task Refinement for Autonomous Robots using Complementary Corrective Human Feedback

    Directory of Open Access Journals (Sweden)

    Cetin Mericli

    2011-06-01

    Full Text Available A robot can perform a given task through a policy that maps its sensed state to appropriate actions. We assume that a hand-coded controller can achieve such a mapping only for the basic cases of the task. Refining the controller becomes harder and gets more tedious and error prone as the complexity of the task increases. In this paper, we present a new learning from demonstration approach to improve the robot's performance through the use of corrective human feedback as a complement to an existing hand-coded algorithm. The human teacher observes the robot as it performs the task using the hand-coded algorithm and takes over the control to correct the behavior when the robot selects a wrong action to be executed. Corrections are captured as new state-action pairs and the default controller output is replaced by the demonstrated corrections during autonomous execution when the current state of the robot is decided to be similar to a previously corrected state in the correction database. The proposed approach is applied to a complex ball dribbling task performed against stationary defender robots in a robot soccer scenario, where physical Aldebaran Nao humanoid robots are used. The results of our experiments show an improvement in the robot's performance when the default hand-coded controller is augmented with corrective human demonstration.

  3. A study on autonomous pipeline maintenance robots, 6

    International Nuclear Information System (INIS)

    This paper deals with the sensing planning for a pipeline inspection and the maintenance robot, by which the robot can carry out inspection tasks to detect a malfunction location in a plant pipeline system autonomously. For this purpose, the robot needs knowledge of the plant map, plant function and plant diagnosis. In the previous report, the path planning expert system (PPES) was reported; if the plant map is given, the robot can automatically produce the path to reach a location from another location within the robot task level. In this paper, PPES is modified to adapt the sensing planning expert system (SPES) and generates executable robot commands for motion control. In addition, the plant knowledge system requires more information concerning plant operation states, such as standard value/status and up/down stream. Furthermore, the robot needs knowledge on inspection/repair and diagnosis, so that the robot can estimate the malfunction candidates and select one individually after some inspection trials. Together with PPES and SPES, the robot becomes intelligent enough to carry out given inspection tasks automatically. (author)

  4. Defining proprioceptive behaviors for autonomous mobile robots

    Science.gov (United States)

    Overholt, James L.; Hudas, Greg R.; Gerhart, Grant R.

    2002-07-01

    Proprioception is a sense of body position and movement that supports the control of many automatic motor functions such as posture and locomotion. This concept, normally relegated to the fields of neural physiology and kinesiology, is being utilized in the field of unmanned mobile robotics. This paper looks at developing proprioceptive behaviors for use in controlling an unmanned ground vehicle. First, we will discuss the field of behavioral control of mobile robots. Next, a discussion of proprioception and the development of proprioceptive sensors will be presented. We will then focus on the development of a unique neural-fuzzy architecture that will be used to incorporate the control behaviors coming directly from the proprioceptive sensors. Finally we will present a simulation experiment where a simple multi-sensor robot, utilizing both external and proprioceptive sensors, is presented with the task of navigating an unknown terrain to a known target position. Results of the mobile robot utilizing this unique fusion methodology will be discussed.

  5. Autonomous robot vision software design using Matlab toolboxes

    Science.gov (United States)

    Tedder, Maurice; Chung, Chan-Jin

    2004-10-01

    The purpose of this paper is to introduce a cost-effective way to design robot vision and control software using Matlab for an autonomous robot designed to compete in the 2004 Intelligent Ground Vehicle Competition (IGVC). The goal of the autonomous challenge event is for the robot to autonomously navigate an outdoor obstacle course bounded by solid and dashed lines on the ground. Visual input data is provided by a DV camcorder at 160 x 120 pixel resolution. The design of this system involved writing an image-processing algorithm using hue, satuaration, and brightness (HSB) color filtering and Matlab image processing functions to extract the centroid, area, and orientation of the connected regions from the scene. These feature vectors are then mapped to linguistic variables that describe the objects in the world environment model. The linguistic variables act as inputs to a fuzzy logic controller designed using the Matlab fuzzy logic toolbox, which provides the knowledge and intelligence component necessary to achieve the desired goal. Java provides the central interface to the robot motion control and image acquisition components. Field test results indicate that the Matlab based solution allows for rapid software design, development and modification of our robot system.

  6. Concurrent planning and execution for autonomous robots

    Science.gov (United States)

    Simmons, Reid G.

    1992-01-01

    The Task Control Architecture (TCA) provides communication and coordination facilities to construct distributed, concurrent robotic systems. The use of TCA in a system that walks a legged robot through rugged terrain is described. The walking system, as originally implemented, had a sequential sense-plan-act control cycle. Utilizing TCA features for task sequencing and monitoring, the system was modified to concurrently plan and execute steps. Walking speed improved by over 30 percent, with only a relatively modest conversion effort.

  7. A novel autonomous self-assembly distributed swarm flying robot

    Institute of Scientific and Technical Information of China (English)

    Wei Hongxing; Li Ning; Liu Miao; Tan Jindong

    2013-01-01

    Swarm intelligence embodied by many species such as ants and bees has inspired scholars in swarm robotic researches.This paper presents a novel autonomous self-assembly distributed swarm flying robot-DSFR,which can drive on the ground,autonomously accomplish self-assembly and then fly in the air coordinately.Mechanical and electrical designs ofa DSFR module,as well as the kinematics and dynamics analysis,are specifically investigated.Meanwhile,this paper brings forward a generalized adjacency matrix to describe configurations of DSFR structures.Also,the distributed flight control model is established for vertical taking-off and horizontal hovering,which can be applied to control of DSFR systems with arbitrary configurations.Finally,some experiments are carried out to testify and validate the DSFR design,the autonomous self-assembly strategy and the distributed flight control laws.

  8. Autonomous navigation system for mobile robots of inspection

    International Nuclear Information System (INIS)

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  9. Autonomous learning in humanoid robotics through mental imagery.

    Science.gov (United States)

    Di Nuovo, Alessandro G; Marocco, Davide; Di Nuovo, Santo; Cangelosi, Angelo

    2013-05-01

    In this paper we focus on modeling autonomous learning to improve performance of a humanoid robot through a modular artificial neural networks architecture. A model of a neural controller is presented, which allows a humanoid robot iCub to autonomously improve its sensorimotor skills. This is achieved by endowing the neural controller with a secondary neural system that, by exploiting the sensorimotor skills already acquired by the robot, is able to generate additional imaginary examples that can be used by the controller itself to improve the performance through a simulated mental training. Results and analysis presented in the paper provide evidence of the viability of the approach proposed and help to clarify the rational behind the chosen model and its implementation. PMID:23122490

  10. Applications of concurrent neuromorphic algorithms for autonomous robots

    Science.gov (United States)

    Barhen, J.; Dress, W. B.; Jorgensen, C. C.

    1988-01-01

    This article provides an overview of studies at the Oak Ridge National Laboratory (ORNL) of neural networks running on parallel machines applied to the problems of autonomous robotics. The first section provides the motivation for our work in autonomous robotics and introduces the computational hardware in use. Section 2 presents two theorems concerning the storage capacity and stability of neural networks. Section 3 presents a novel load-balancing algorithm implemented with a neural network. Section 4 introduces the robotics test bed now in place. Section 5 concerns navigation issues in the test-bed system. Finally, Section 6 presents a frequency-coded network model and shows how Darwinian techniques are applied to issues of parameter optimization and on-line design.

  11. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  12. Biomimetic smart sensors for autonomous robotic behavior II: vestibular processing

    Science.gov (United States)

    Xue, Shuwan; Deligeorges, Socrates; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Limited autonomous behaviors are fast becoming a critical capability in the field of robotics as robotic applications are used in more complicated and interactive environments. As additional sensory capabilities are added to robotic platforms, sensor fusion to enhance and facilitate autonomous behavior becomes increasingly important. Using biology as a model, the equivalent of a vestibular system needs to be created in order to orient the system within its environment and allow multi-modal sensor fusion. In mammals, the vestibular system plays a central role in physiological homeostasis and sensory information integration (Fuller et al, Neuroscience 129 (2004) 461-471). At the level of the Superior Colliculus in the brain, there is multimodal sensory integration across visual, auditory, somatosensory, and vestibular inputs (Wallace et al, J Neurophysiol 80 (1998) 1006-1010), with the vestibular component contributing a strong reference frame gating input. Using a simple model for the deep layers of the Superior Colliculus, an off-the-shelf 3-axis solid state gyroscope and accelerometer was used as the equivalent representation of the vestibular system. The acceleration and rotational measurements are used to determine the relationship between a local reference frame of a robotic platform (an iRobot Packbot®) and the inertial reference frame (the outside world), with the simulated vestibular input tightly coupled with the acoustic and optical inputs. Field testing of the robotic platform using acoustics to cue optical sensors coupled through a biomimetic vestibular model for "slew to cue" gunfire detection have shown great promise.

  13. Mapping planetary caves with an autonomous, heterogeneous robot team

    Science.gov (United States)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  14. A Distributed Hunting Approach for Multiple Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Zhiqiang Cao

    2013-04-01

    Full Text Available A novel distributed hunting approach for multiple autonomous robots in unstructured mode‐free environments, which is based on effective sectors and local sensing, is proposed in this paper. The visual information, encoder and sonar data are integrated in the robot’s local frame, and the effective sector is introduced. The hunting task is modelled as three states: search state, round‐obstacle state, and hunting state, and the corresponding switching conditions and control strategies are given. A form of cooperation will emerge where the robots interact only locally with each other. The evader, whose motion is a priori unknown to the robots, adopts an escape strategy to avoid being captured. The approach is scalable and may cope with problems of communication and wheel slippage. The effectiveness of the proposed approach is verified through experiments with a team of wheeled robots.

  15. Rice-obot 1: An intelligent autonomous mobile robot

    Science.gov (United States)

    Defigueiredo, R.; Ciscon, L.; Berberian, D.

    1989-01-01

    The Rice-obot I is the first in a series of Intelligent Autonomous Mobile Robots (IAMRs) being developed at Rice University's Cooperative Intelligent Mobile Robots (CIMR) lab. The Rice-obot I is mainly designed to be a testbed for various robotic and AI techniques, and a platform for developing intelligent control systems for exploratory robots. Researchers present the need for a generalized environment capable of combining all of the control, sensory and knowledge systems of an IAMR. They introduce Lisp-Nodes as such a system, and develop the basic concepts of nodes, messages and classes. Furthermore, they show how the control system of the Rice-obot I is implemented as sub-systems in Lisp-Nodes.

  16. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-02-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  17. Mobile autonomous robotic apparatus for radiologic characterization

    International Nuclear Information System (INIS)

    A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs

  18. Design of the human-robot interaction for a semi-autonomous service robot to assist elderly people

    OpenAIRE

    Mast, Marcus; Burmester, Michael; Graf, Birgit; Weisshardt, Florian; Arbeiter, Georg; Španel, Michal; Zdenek, Materna; Smrz, Pavel; Kronreif, Gernot

    2015-01-01

    Service robots could support elderly people's activities of daily living and enable them to live in their own residences independently as long as possible. Current robot technology does not allow reliable fully autonomous operation of service robots with manipulation capabilities in the heterogeneous environments of private homes. We developed and evaluated a usage concept for semi-autonomous robot control as well as user interfaces for three user groups. Elderly people are provided with simp...

  19. Towards Autonomous Operations of the Robonaut 2 Humanoid Robotic Testbed

    Science.gov (United States)

    Badger, Julia; Nguyen, Vienny; Mehling, Joshua; Hambuchen, Kimberly; Diftler, Myron; Luna, Ryan; Baker, William; Joyce, Charles

    2016-01-01

    The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012. Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators ("legs"), more capable processors, and new sensors, as shown in Figure 1. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions. Technology development has thus far followed two main paths, autonomous climbing and efficient tool manipulation. Central to both technologies has been the incorporation of a human robotic interaction paradigm that involves the visualization of sensory and pre-planned command data with models of the robot and its environment. Figure 2 shows screenshots of these interactive tools, built in rviz, that are used to develop and implement these technologies on R2. Robonaut 2 is designed to move along the handrails and seat track around the US lab inside the ISS. This is difficult for many reasons, namely the environment is cluttered and constrained, the robot has many degrees of freedom (DOF) it can utilize for climbing, and remote commanding for precision tasks such as grasping handrails is time-consuming and difficult. Because of this, it is important to develop the technologies needed to allow the robot to reach operator-specified positions as

  20. Autonomous stair-climbing with miniature jumping robots.

    Science.gov (United States)

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed. PMID:15828659

  1. A study on autonomous pipeline maintenance robot, 3

    International Nuclear Information System (INIS)

    A new type of mobile robots with a looping movement mechanism in the lateral and circular direction of a pipeline is presented in this paper for pipeline maintenance operations. This robot has four degrees of freedom and more flexibility than the first and the second prototype robots, which have the wheel type of mobile mechanism for horizontally located pipelines. This robot can pass over obstacles such as flanges and also T-joint pipelines, which the previously reported robots can do, and furthermore has more pipeline maintenance adaptabilities such that the new robot can move along vertically located pipelines and that it can move to an adjacently located pipeline. Therefore, the control must be so complicated that the dual mode control is introduced by employing the coordinate transformation matrix. To detect flanges, T-joints and pipelines in the neighbourhood, ultrasonic sensors as well as infra ray sensors are installed as the short and the long range sensors, so that the robot can autonomously move along pipelines. (author)

  2. A Voice Operated Tour Planning System for Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Charles V. Smith Iii

    2010-06-01

    Full Text Available Control systems driven by voice recognition software have been implemented before but lacked the context driven approach to generate relevant responses and actions. A partially voice activated control system for mobile robotics is presented that allows an autonomous robot to interact with people and the environment in a meaningful way, while dynamically creating customized tours. Many existing control systems also require substantial training for voice application. The system proposed requires little to no training and is adaptable to chaotic environments. The traversable area is mapped once and from that map a fully customized route is generated to the user

  3. Autonomous robots and the SP theory of intelligence

    OpenAIRE

    Wolff, J. Gerard

    2014-01-01

    This article is about how the "SP theory of intelligence" and its realisation in the "SP machine" (both outlined in the article) may help to solve computer-related problems in the design of autonomous robots, meaning robots that do not depend on external intelligence or power supplies, are mobile, and are designed to exhibit as much human-like intelligence as possible. The article is about: how to increase the computational and energy efficiency of computers and reduce their bulk; how to achi...

  4. A task control architecture for autonomous robots

    Science.gov (United States)

    Simmons, Reid; Mitchell, Tom

    1990-01-01

    An architecture is presented for controlling robots that have multiple tasks, operate in dynamic domains, and require a fair degree of autonomy. The architecture is built on several layers of functionality, including a distributed communication layer, a behavior layer for querying sensors, expanding goals, and executing commands, and a task level for managing the temporal aspects of planning and achieving goals, coordinating tasks, allocating resources, monitoring, and recovering from errors. Application to a legged planetary rover and an indoor mobile manipulator is described.

  5. AMiRESot - A New Robot Soccer League with Autonomous Miniature Robots

    Science.gov (United States)

    Witkowski, Ulf; Sitte, Joaquin; Herbrechtsmeier, Stefan; Rückert, Ulrich

    AMiRESot is a new robot soccer league that is played with small autonomous miniature robots. Team sizes are defined with one, two, and three robots per team. Special to the AMiRESot league are the fully autonomous behavior of the robots and their small size. For the matches, the rules mainly follow the FIFA laws with some modifications being useful for robot soccer. The new AMiRESot soccer robot is small in size (maximum 110 mm diameter) but a powerful vehicle, equipped with a differential drive system. For sensing, the robots in their basic configuration are equipped with active infrared sensors and a color image sensor. For information processing a powerful mobile processor and reconfigurable hardware resources (FPGA) are available. Due to the robot’s modular structure it can be easily extended by additional sensing and processing resources. This paper gives an overview of the AMiRESot rules and presents details of the new robot platform used for AMiRESot.

  6. Research on stereo vision path-planning algorithms for mobile robots autonomous navigation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-wei; LU Qiu-hong

    2009-01-01

    Using stereo vision for autonomous mobile robot path-planning is a hot technology. The environment mapping and path-planning algorithms were introduced, and they were applied in the autonomous mobile robot experiment platform. Through experiments in the robot platform, the effectiveness of these algorithms was verified.

  7. Autonomous navigation of a robot with computer vision

    OpenAIRE

    Magallón Hernández, Ignacio

    2011-01-01

    This TCC (Undergraduate Course Final Project) aims to develop a solution for intelligent autonomous navigation with mobile robots using computer vision. Using C language and OpenCV, an image processing library, the generated code applies different filters and convolutions in the input image obtained by webcam in order to reduce input noise, homogenize regions and detect borders. The program, which can be adapted to different environments by regulating four parameters, allows th...

  8. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation. PMID:20365620

  9. Learning Long-range Terrain Perception for Autonomous Mobile Robots

    OpenAIRE

    Mingjun Wang; Jun Zhou; Jun Tu; Chengliang Liu

    2010-01-01

    Long-range terrain perception has a high value in performing efficient autonomous navigation and risky intervention tasks for field robots, such as earlier recognition of hazards, better path planning, and higher speeds. However, Stereo-based navigation systems can only perceive near-field terrain due to the nearsightedness of stereo vision. Many near-to-far learning methods, based on regions' appearance features, are proposed to predict the far-field terrain. We p...

  10. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  11. Autonomous Rule Based Robot Navigation In Orchards

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Ravn, Ole; Andersen, Nils Axel

    2010-01-01

    Orchard navigation using sensor-based localization and exible mission management facilitates successful missions independent of the Global Positioning System (GPS). This is especially important while driving between tight tree rows where the GPS coverage is poor. This paper suggests localization ......, obstacle avoidance, path planning and drive control. The system is tested successfully using a Hako 20 kW tractor during autonomous missions in both cherry and apple orchards with mission length of up to 2.3 km including the headland turns....

  12. A fuzzy logic controller for an autonomous mobile robot

    Science.gov (United States)

    Yen, John; Pfluger, Nathan

    1993-01-01

    The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.

  13. Omnivision-based autonomous mobile robotic platform

    Science.gov (United States)

    Cao, Zuoliang; Hu, Jun; Cao, Jin; Hall, Ernest L.

    2001-10-01

    As a laboratory demonstration platform, TUT-I mobile robot provides various experimentation modules to demonstrate the robotics technologies that are involved in remote control, computer programming, teach-and-playback operations. Typically, the teach-and-playback operation has been proved to be an effective solution especially in structured environments. The path generated in the teach mode and path correction in real-time using path error detecting in the playback mode are demonstrated. The vision-based image database is generated as the given path representation in the teaching procedure. The algorithm of an online image positioning is performed for path following. Advanced sensory capability is employed to provide environment perception. A unique omni directional vision (omni-vision) system is used for localization and navigation. The omni directional vision involves an extremely wide-angle lens, which has the feature that a dynamic omni-vision image is processed in real time to respond the widest view during the movement. The beacon guidance is realized by observing locations of points derived from over-head features such as predefined light arrays in a building. The navigation approach is based upon the omni-vision characteristics. A group of ultrasonic sensors is employed for obstacle avoidance.

  14. Landmark Finding Algorithms for Indoor Autonomous Mobile Robot Localization

    Directory of Open Access Journals (Sweden)

    L. Tóth

    2015-12-01

    Full Text Available This contribution is oriented to ways of computer vision algorithms for mobile robot localization in internal and external agricultural environment. The main aim of this work was to design, create, verify and evaluate speed and functionality of computer vision localization algorithm. An input colour camera data and depth data were captured by MS® Kinect sensor that was mounted on 6-wheel-drive mobile robot chassis. The design of the localization algorithm was focused to the most significant blobs and points (landmarks on the colour picture. Actual coordinates of autonomous mobile robot were calculated out from measured distances (depth sensor and calculated angles (RGB camera with respect to landmark points. Time measurement script was used to compare the speed of landmark finding algorithm for localization in case of one and more landmarks on picture. The main source code was written in MS Visual studio C# programming language with Microsoft.Kinect.1.7.dll on Windows based PC. Algorithms described in this article were created for a future development of an autonomous agronomical m obile robot localization and control.

  15. Head mounted display technology for non-autonomous nuclear robotics

    International Nuclear Information System (INIS)

    This paper suggests an alternative to the current approach to visual feedback for common robotic tasks in the nuclear industry, particularly those under the direct supervision of an operator. The concept depends on the use of head mounted displays (HMD's), capable of presenting real-time video imagery from gimbaled cameras, whose pointing direction is slaved to the head position of the operator wearing the HMD. Tasks ranging from simple inspection to visualization of extreme, unexpected situations could benefit from greatly improved flexibility through this concept; this natural, autonomous visual feedback loop allows the operator to concentrate on the actual robotic manipulation, in addition to improving positional awareness of his robotic tools with respect to their surroundings. 1 fig

  16. Acquisition of Autonomous Behaviors by Robotic Assistants

    Science.gov (United States)

    Peters, R. A., II; Sarkar, N.; Bodenheimer, R. E.; Brown, E.; Campbell, C.; Hambuchen, K.; Johnson, C.; Koku, A. B.; Nilas, P.; Peng, J.

    2005-01-01

    Our research achievements under the NASA-JSC grant contributed significantly in the following areas. Multi-agent based robot control architecture called the Intelligent Machine Architecture (IMA) : The Vanderbilt team received a Space Act Award for this research from NASA JSC in October 2004. Cognitive Control and the Self Agent : Cognitive control in human is the ability to consciously manipulate thoughts and behaviors using attention to deal with conflicting goals and demands. We have been updating the IMA Self Agent towards this goal. If opportunity arises, we would like to work with NASA to empower Robonaut to do cognitive control. Applications 1. SES for Robonaut, 2. Robonaut Fault Diagnostic System, 3. ISAC Behavior Generation and Learning, 4. Segway Research.

  17. Semi-autonomous robots for reactor containments

    International Nuclear Information System (INIS)

    During 1993, the activity at the University was split into two primary groups. One group provided direct support for the development and testing of the RVIR vehicle. This effort culminated in a demonstration of the vehicle at ORNL during December. The second group of researchers focused attention on pushing the technology forward in the areas of radiation imaging, navigation, and sensing modalities. A major effort in technology transfer took place during this year. All of these efforts reflected in the periodic progress reports which are attached. During 1994, our attention will change from the Nuclear Energy program to the Environmental Restoration and Waste Management office. The immediate needs of the Robotics Technology Development Program within the Office of Technology Development of EM drove this change in target applications. The University will be working closely with the national laboratories to further develop and transfer existing technologies to mobile platforms which are currently being designed and employed in seriously hazardous environments

  18. Autonomous intelligent robotic manipulator for on-orbit servicing

    Science.gov (United States)

    Larouche, Benoit P.

    The doctoral research is to develop an autonomous intelligent robotic manipulator technology for on-orbit servicing (OOS). More specifically, the research is focused on one of the most critical tasks in OOS- the capture of a non-cooperative object whilst minimizing impact forces and accelerations. The objective of the research is: the development of a vision-based control theory, and the implementation and testing of the developed theory by designing and constructing a custom non-redundant holonomic robotic manipulator. The research validated the newly developed control theory and its ability to (i) capture a moving target autonomously and (ii) minimize unfavourable contact dynamics during the most critical parts of the capture operations between the capture satellite and a non-cooperative/tumbling object. A custom robotic manipulator functional prototype has been designed, assembled, constructed, and programmed from concept to completion in order to provide full customizability and controllability in both the hardware and the software. Based on the test platform, a thorough experimental investigation has been conducted to validate the newly developed control methodologies to govern the behaviour of the robotic manipulators (RM) in an autonomous capture. The capture itself is effected on non-cooperative targets in zero-gravity simulated environment. The RM employs a vision system, force sensors, and encoders in order to sense its environment. The control is effected through position and pseudo-torque inputs to three stepper motors and three servo motors. The controller is a modified hybrid force/neural network impedance controller based on N. Hogan's original work. The experimental results demonstrate the set objectives of this thesis have been successfully achieved.

  19. Knowledge/geometry-based Mobile Autonomous Robot Simulator (KMARS)

    Science.gov (United States)

    Cheng, Linfu; Mckendrick, John D.; Liu, Jeffrey

    1990-01-01

    Ongoing applied research is focused on developing guidance system for robot vehicles. Problems facing the basic research needed to support this development (e.g., scene understanding, real-time vision processing, etc.) are major impediments to progress. Due to the complexity and the unpredictable nature of a vehicle's area of operation, more advanced vehicle control systems must be able to learn about obstacles within the range of its sensor(s). A better understanding of the basic exploration process is needed to provide critical support to developers of both sensor systems and intelligent control systems which can be used in a wide spectrum of autonomous vehicles. Elcee Computek, Inc. has been working under contract to the Flight Dynamics Laboratory, Wright Research and Development Center, Wright-Patterson AFB, Ohio to develop a Knowledge/Geometry-based Mobile Autonomous Robot Simulator (KMARS). KMARS has two parts: a geometry base and a knowledge base. The knowledge base part of the system employs the expert-system shell CLIPS ('C' Language Integrated Production System) and necessary rules that control both the vehicle's use of an obstacle detecting sensor and the overall exploration process. The initial phase project has focused on the simulation of a point robot vehicle operating in a 2D environment.

  20. Introduction to autonomous manipulation case study with an underwater robot, SAUVIM

    CERN Document Server

    Marani, Giacomo

    2014-01-01

    Autonomous manipulation” is a challenge in robotic technologies. It refers to the capability of a mobile robot system with one or more manipulators that performs intervention tasks requiring physical contacts in unstructured environments and without continuous human supervision. Achieving autonomous manipulation capability is a quantum leap in robotic technologies as it is currently beyond the state of the art in robotics. This book addresses issues with the complexity of the problems encountered in autonomous manipulation including representation and modeling of robotic structures, kinematic and dynamic robotic control, kinematic and algorithmic singularity avoidance, dynamic task priority, workspace optimization and environment perception. Further development in autonomous manipulation should be able to provide robust improvements of the solutions for all of the above issues. The book provides an extensive tract on sensory-based autonomous manipulation for intervention tasks in unstructured environment...

  1. Autonomous robot navigation using vision- and sensor-based algorithm

    Science.gov (United States)

    Bhandari, Susmita; Mathis, Allison; Mohiuddin, Kashif; Pietrocola, David; Restrepo, Maria; Ahlgren, David J.

    2006-10-01

    ALVIN-VII is an autonomous vehicle designed to compete in the AUVSI Intelligent Ground Vehicle Competition (IGVC). The competition consists of two events, the Autonomous Challenge and Navigation Challenge. Using tri-processor control architecture the information from sonar sensors, cameras, GPS and compass is effectively integrated to map out the path of the robot. In the Autonomous Challenge, the real time data from two Firewire web cameras and an array of four sonar sensors are plotted on a custom-defined polar grid to identify the position of the robot with respect to the obstacles in its path. Depending on the position of the obstacles in the grid, a state number is determined and a command of action is retrieved from the state table. The image processing algorithm comprises a series of steps involving plane extraction, morphological analysis, edge extraction and interpolation, all of which are statistically based allowing optimum operation at varying ambient conditions. In the Navigation Challenge, data from GPS and sonar sensors are integrated on a polar grid with flexible distance thresholds and a state table approach is used to drive the vehicle to the next waypoint while avoiding obstacles. Both algorithms are developed and implemented using National Instruments (NI) hardware and LabVIEW software. The task of collecting and processing information in real time can be time consuming and hence not reactive enough for moving robots. Using three controllers, the image processing is done separately for each camera while a third controller integrates the data received through an Ethernet connection.

  2. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  3. 2D navigation and pilotage of an autonomous mobile robot

    International Nuclear Information System (INIS)

    The contribution of this thesis deals with the navigation and the piloting of an autonomous robot, in a known or weakly known environment of dimension two without constraints. This leads to generate an optimal path to a given goal and then to compute the commands to follow this path. Several constraints are taken into account (obstacles, geometry and kinematic of the robot, dynamic effects). The first part defines the problem and presents the state of the art. The three following parts present a set of complementary solutions according to the knowledge level of the environment and to the space constraints: - Case of a known environment: generation and following of a trajectory with respect to given path points. - Case of a weakly known environment: coupling of a command module interacting with the environment perception, and a path planner. This allows a fast motion of the robot. - Case of a constrained environment: planner enabling the taking into account of many constraints as the robot's shape, turning radius limitation, backward motion and orientation. (author)

  4. On autonomous terrain model acquistion by a mobile robot

    Science.gov (United States)

    Rao, N. S. V.; Iyengar, S. S.; Weisbin, C. R.

    1987-01-01

    The following problem is considered: A point robot is placed in a terrain populated by an unknown number of polyhedral obstacles of varied sizes and locations in two/three dimensions. The robot is equipped with a sensor capable of detecting all the obstacle vertices and edges that are visible from the present location of the robot. The robot is required to autonomously navigate and build the complete terrain model using the sensor information. It is established that the necessary number of scanning operations needed for complete terrain model acquisition by any algorithm that is based on scan from vertices strategy is given by the summation of i = 1 (sup n) N(O sub i)-n and summation of i = 1 (sup n) N(O sub i)-2n in two- and three-dimensional terrains respectively, where O = (O sub 1, O sub 2,....O sub n) set of the obstacles in the terrain, and N(O sub i) is the number of vertices of the obstacle O sub i.

  5. Catastrophic Fault Recovery with Self-Reconfigurable Chips

    Science.gov (United States)

    Zheng, Will Hua; Marzwell, Neville I.; Chau, Savio N.

    2006-01-01

    Mission critical systems typically employ multi-string redundancy to cope with possible hardware failure. Such systems are only as fault tolerant as there are many redundant strings. Once a particular critical component exhausts its redundant spares, the multi-string architecture cannot tolerate any further hardware failure. This paper aims at addressing such catastrophic faults through the use of 'Self-Reconfigurable Chips' as a last resort effort to 'repair' a faulty critical component.

  6. Design of a Micro-Autonomous Robot for Use in Astronomical Instruments

    Science.gov (United States)

    Cochrane, W. A.; Luo, X.; Lim, T.; Taylor, W. D.; Schnetler, H.

    2012-07-01

    A Micro-Autonomous Positioning System (MAPS) has been developed using micro-autonomous robots for the deployment of small mirrors within multi-object astronomical instruments for use on the next generation ground-based telescopes. The micro-autonomous robot is a two-wheel differential drive robot with a footprint of approximately 20 × 20 mm. The robot uses two brushless DC Smoovy motors with 125:1 planetary gearheads for positioning the mirror. This article describes the various elements of the overall system and in more detail the various robot designs. Also described in this article is the build and test of the most promising design, proving that micro-autonomous robot technology can be used in precision controlled applications.

  7. Using insect electroantennogram sensors on autonomous robots for olfactory searches.

    Science.gov (United States)

    Martinez, Dominique; Arhidi, Lotfi; Demondion, Elodie; Masson, Jean-Baptiste; Lucas, Philippe

    2014-01-01

    Robots designed to track chemical leaks in hazardous industrial facilities or explosive traces in landmine fields face the same problem as insects foraging for food or searching for mates: the olfactory search is constrained by the physics of turbulent transport. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells or toxic and illicit substances. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration or using nanostructured gas sensors that mimic insect antennae. PMID:25145980

  8. Terpsichore. ENEA's autonomous robotics project; Progetto Tersycore, la robotica autonoma

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S.; Zanela, S.; Santini, A.; Nanni, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Div. Robotica e Informatica Avanzata

    1999-10-01

    The article presents some of the Terpsichore project's results aimed to developed and test algorithms and applications for autonomous robotics. Four applications are described: dynamic mapping of a building's interior through the use of ultrasonic sensors; visual drive of an autonomous robot via a neural network controller; a neural network-based stereo vision system that steers a robot through unknown indoor environments; and the evolution of intelligent behaviours via the genetic algorithm approach.

  9. Design and Implementation of Autonomous Stair Climbing with Nao Humanoid Robot

    OpenAIRE

    Lu, Wei

    2015-01-01

    With the development of humanoid robots, autonomous stair climbing is an important capability. Humanoid robots will play an important role in helping people tackle some basic problems in the future. The main contribution of this thesis is that the NAO humanoid robot can climb the spiral staircase autonomously. In the vision module, the algorithm of image filtering and detecting the contours of the stair contributes to calculating the location of the stairs accurately. Additionally, the st...

  10. Study on a human guidance method for autonomous cruise of indoor robot

    Science.gov (United States)

    Jia, Bao-Zhi; Zhu, Ming

    2011-12-01

    This paper describes a method of human guidance for autonomous cruise of indoor robot. A low-cost robot follows a person in a room and notes the path for autonomous cruise using its monocular vision. A method of video-based object detection and tracking is taken to detect the target by the video received from the robot's camera. The validity of the human guidance method is proved by the experiment.

  11. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens;

    tools and robots, and recharge their batteries while underwater. These properties will provide the system, when fully developed, with unique capabilities such as ability to adapt robotic morphology and function to the current task and tolerate failures leading to long-term autonomous operations.......This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...

  12. Human-robot collaborative navigation for autonomous maintenance management of nuclear installation

    International Nuclear Information System (INIS)

    Development of human and robot collaborative navigation for autonomous maintenance management of nuclear installation has been conducted. The human-robot collaborative system is performed using a switching command between autonomous navigation and manual navigation that incorporate a human intervention. The autonomous navigation path is conducted using a novel algorithm of MLG method based on Lozano-Perezs visibility graph. The MLG optimizes the shortest distance and safe constraints. While the manual navigation is performed using manual robot tele operation tools. Experiment in the MLG autonomous navigation system is conducted for six times with 3-D starting point and destination point coordinate variation. The experiment shows a good performance of autonomous robot maneuver to avoid collision with obstacle. The switching navigation is well interpreted using open or close command to RS-232C constructed using LabVIEW

  13. Robot soccer anywhere: achieving persistent autonomous navigation, mapping and object vision tracking in dynamic environments

    OpenAIRE

    Dragone, Mauro; O'Donaghue, Ruadhan; Leonard, John J.; O'Hare, G. M. P.; Duffy, Brian R.; Patrikalakis, Andrew; Leederkerken, Jacques

    2005-01-01

    The paper describes an ongoing effort to enable autonomous mobile robots to play soccer in unstructured, everyday environments. Unlike conventional robot soccer competitions that are usually held on purpose-built robot soccer "fields", in our work we seek to develop the capability for robots to demonstrate aspects of soccer-playing in more diverse environments, such as schools, hospitals, or shopping malls, with static obstacles (furniture) and dynamic natural obstacles (people). This problem...

  14. Assessment of a visually guided autonomous exploration robot

    Science.gov (United States)

    Harris, C.; Evans, R.; Tidey, E.

    2008-10-01

    A system has been developed to enable a robot vehicle to autonomously explore and map an indoor environment using only visual sensors. The vehicle is equipped with a single camera, whose output is wirelessly transmitted to an off-board standard PC for processing. Visual features within the camera imagery are extracted and tracked, and their 3D positions are calculated using a Structure from Motion algorithm. As the vehicle travels, obstacles in its surroundings are identified and a map of the explored region is generated. This paper discusses suitable criteria for assessing the performance of the system by computer-based simulation and practical experiments with a real vehicle. Performance measures identified include the positional accuracy of the 3D map and the vehicle's location, the efficiency and completeness of the exploration and the system reliability. Selected results are presented and the effect of key system parameters and algorithms on performance is assessed. This work was funded by the Systems Engineering for Autonomous Systems (SEAS) Defence Technology Centre established by the UK Ministry of Defence.

  15. Mechanical deployment system on aries an autonomous mobile robot

    International Nuclear Information System (INIS)

    ARIES (Autonomous Robotic Inspection Experimental System) is under development for the Department of Energy (DOE) to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. This paper focuses on the mechanical deployment system-referred to as the camera positioning system (CPS)-used in the project. The CPS is used for positioning four identical but separate camera packages consisting of vision cameras and other required sensors such as bar-code readers and light stripe projectors. The CPS is attached to the top of a mobile robot and consists of two mechanisms. The first is a lift mechanism composed of 5 interlocking rail-elements which starts from a retracted position and extends upward to simultaneously position 3 separate camera packages to inspect the top three drums of a column of four drums. The second is a parallelogram special case Grashof four-bar mechanism which is used for positioning a camera package on drums on the floor. Both mechanisms are the subject of this paper, where the lift mechanism is discussed in detail

  16. The Intellectualized Architecture of the Autonomous Micro-Mobile Robot Based-Behavior

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Given the difficulty in hand-coding task schemes, an intellectualized architecture of the autonomous micro-mobile robot based-behavior for fault-repair was presented. Integrating the reinforcement learning and the group behavior evolution simulating the human's learning and evolution, the autonomous micro-mobile robot will automatically generate the suited actions satisfied the environment. However, the designer only devises some basic behaviors, which decreases the workload of the designer and cognitive deficiency of the robot to the environment. The results of simulation have shown that the architecture endows micro robot with the ability of learning, adaptation and robustness, also with the ability of accomplishing the given task.

  17. Integration of a mobile autonomous robot in a surveillance multi-agent system

    OpenAIRE

    Dias, Bruno Miguel Morais

    2014-01-01

    This dissertation aims to guarantee the integration of a mobile autonomous robot equipped with many sensors in a multi-agent distributed and georeferenced surveillance system. The integration of a mobile autonomous robot in this system leads to new features that will be available to clients of surveillance system may use. These features may be of two types: using the robot as an agent that will act in the environment or by using the robot as a mobile set of sensors. As an agent in the syst...

  18. A survey on pattern formation of autonomous mobile robots: asynchrony, obliviousness and visibility

    International Nuclear Information System (INIS)

    A robot system consists of autonomous mobile robots each of which repeats Look-Compute-Move cycles, where the robot observes the positions of other robots (Look phase), computes the track to the next location (Compute phase), and moves along the track (Move phase). In this survey, we focus on self-organization of mobile robots, especially their power of forming patterns. The formation power of a robot system is the class of patterns that the robots can form, and existing results show that the robot system's formation power is determined by their asynchrony, obliviousness, and visibility. We briefly survey existing results, with impossibilities and pattern formation algorithms. Finally, we present several open problems related to the pattern formation problem of mobile robots

  19. Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains

    Science.gov (United States)

    Wang, P. K. C.

    1989-01-01

    A general navigation strategy for multiple autonomous robots in a bounded domain is developed analytically. Each robot is modeled as a spherical particle (i.e., an effective spatial domain about the center of mass); its interactions with other robots or with obstacles and domain boundaries are described in terms of the classical many-body problem; and a collision-avoidance strategy is derived and combined with homing, robot-robot, and robot-obstacle collision-avoidance strategies. Results from homing simulations involving (1) a single robot in a circular domain, (2) two robots in a circular domain, and (3) one robot in a domain with an obstacle are presented in graphs and briefly characterized.

  20. Robotics and autonomous systems in the 50th anniversary of artificial intelligence

    OpenAIRE

    Casals, Alicia; Fernández Caballero, Antonio

    2007-01-01

    The special issue on ?Robotics and Autonomous Systems in the 50th Anniversary of Artificial Intelligence? collects a subset of the best papers in the fields of Robotics and Autonomous Systems presented at the Campus Multidisciplinary in Perception and Intelligence, CMPI-2006. The CMPI-2006 international conference, held in Albacete, Spain, from July 10 to 14, 2006, resulted in a forum for scientists in commemoration of the 50th Anniversary of Artificial Intelligence, which successfully report...

  1. An effective trace-guided wavefront navigation and map-building approach for autonomous mobile robots

    Science.gov (United States)

    Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Jan, Gene Eu

    2013-12-01

    This paper aims to address a trace-guided real-time navigation and map building approach of an autonomous mobile robot. Wave-front based global path planner is developed to generate a global trajectory for an autonomous mobile robot. Modified Vector Field Histogram (M-VFH) is employed based on the LIDAR sensor information to guide the robot locally to be autonomously traversed with obstacle avoidance by following traces provided by the global path planner. A local map composed of square grids is created through the local navigator while the robot traverses with limited LIDAR sensory information. From the measured sensory information, a map of the robot's immediate limited surroundings is dynamically built for the robot navigation. The real-time wave-front based navigation and map building methodology has been successfully demonstrated in a Player/Stage simulation environment. With the wave-front-based global path planner and M-VFH local navigator, a safe, short, and reasonable trajectory is successfully planned in a majority of situations without any templates, without explicitly optimizing any global cost functions, and without any learning procedures. Its effectiveness, feasibility, efficiency and simplicity of the proposed real-time navigation and map building of an autonomous mobile robot have been successfully validated by simulation and comparison studies. Comparison studies of the proposed approach with the other path planning approaches demonstrate that the proposed method is capable of planning more reasonable and shorter collision-free trajectories autonomously.

  2. Terrain Classification for Outdoor Autonomous Robots using 2D Laser Scans

    DEFF Research Database (Denmark)

    Rufus Blas, Morten; Riisgaard, Søren; Ravn, Ole;

    2005-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses four distinctly different classifiers: raw height, step size, slope, and...... department developed Medium Mobile Robot and tests conducted in a national park environment....

  3. Terrain Classification for Outdoor Autonomous Robots using 2D Laser Scans

    DEFF Research Database (Denmark)

    Rufus Blas, Morten; Riisgaard, Søren; Ravn, Ole;

    2005-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses four distinctly different classifiers: raw height, step size, slope...... with a department developed Medium Mobile Robot and tests conducted in a national park environment....

  4. Motion Planning Of an Autonomous Mobile Robot Using Artificial Neural Network

    OpenAIRE

    Tripathi, G. N.; Rihani, V.

    2012-01-01

    The paper presents the electronic design and motion planning of a robot based on decision making regarding its straight motion and precise turn using Artificial Neural Network (ANN). The ANN helps in learning of robot so that it performs motion autonomously. The weights calculated are implemented in microcontroller. The performance has been tested to be excellent.

  5. Distributed Robotics Education

    OpenAIRE

    LUND, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distributed educational system as a valuable tool for introducing students to interactive parallel and distributed processing programming as the foundation for distributed robotics and human-robot interaction...

  6. Behavior-based multi-robot collaboration for autonomous construction tasks

    Science.gov (United States)

    Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghazarian, Hrand; Robinson, Matthew

    2005-01-01

    The Robot Construction Crew (RCC) is a heterogeneous multi-robot system for autonomous construction of a structure through assembly of Long components. The two robot team demonstrates component placement into an existing structure in a realistic environment. The task requires component acquisition, cooperative transport, and cooperative precision manipulation. A behavior-based architecture provides adaptability. The RCC approach minimizes computation, power, communication, and sensing for applicability to space-related construction efforts, but the techniques are applicable to terrestrial construction tasks.

  7. Autonomous robot systems and competitions : proceedings of the 12th International Conference

    OpenAIRE

    Bicho, E.; Ribeiro, Fernando; Louro, Luis, ed. lit.; International Conference on Autonomous Robot Systems and Competitions, 12, Guimarães, 2012; Robotica’2012

    2012-01-01

    This is the 2012’s edition of the scientific meeting of the Portuguese Robotics Open (ROBOTICA’ 2012). It aims to disseminate scientific contributions and to promote discussion of theories, methods and experiences in areas of relevance to Autonomous Robotics and Robotic Competitions. All accepted contributions are included in this proceedings book. The conference program has also included an invited talk by Dr.ir. Raymond H. Cuijpers, from the Department of Human Technology Interacti...

  8. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    Science.gov (United States)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  9. Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro)

    International Nuclear Information System (INIS)

    A biomimetic robot inspired by Cyanea capillata, termed as ‘Cyro’, was developed to meet the functional demands of underwater surveillance in defense and civilian applications. The vehicle was designed to mimic the morphology and swimming mechanism of the natural counterpart. The body of the vehicle consists of a rigid support structure with linear DC motors which actuate eight mechanical arms. The mechanical arms in conjunction with artificial mesoglea create the hydrodynamic force required for propulsion. The full vehicle measures 170 cm in diameter and has a total mass of 76 kg. An analytical model of the mechanical arm kinematics was developed. The analytical and experimental bell kinematics were analyzed and compared to the C. capillata. Cyro was found to reach the water surface untethered and autonomously from a depth of 182 cm in five actuation cycles. It achieved an average velocity of 8.47 cm s−1 while consuming an average power of 70 W. A two-axis thrust stand was developed to calculate the thrust directly from a single bell segment yielding an average thrust of 27.9 N for the whole vehicle. Steady state velocity during Cyro's swimming test was not reached but the measured performance during its last swim cycle resulted in a cost of transport of 10.9 J (kg ⋅ m)−1 and total efficiency of 0.03. (paper)

  10. Application of autonomous robotized systems for the collection of nearshore topographic changing and hydrodynamic measurements

    Science.gov (United States)

    Belyakov, Vladimir; Makarov, Vladimir; Zezyulin, Denis; Kurkin, Andrey; Pelinovsky, Efim

    2015-04-01

    Hazardous phenomena in the coastal zone lead to the topographic changing which are difficulty inspected by traditional methods. It is why those autonomous robots are used for collection of nearshore topographic and hydrodynamic measurements. The robot RTS-Hanna is well-known (Wubbold, F., Hentschel, M., Vousdoukas, M., and Wagner, B. Application of an autonomous robot for the collection of nearshore topographic and hydrodynamic measurements. Coastal Engineering Proceedings, 2012, vol. 33, Paper 53). We describe here several constructions of mobile systems developed in Laboratory "Transported Machines and Transported Complexes", Nizhny Novgorod State Technical University. They can be used in the field surveys and monitoring of wave regimes nearshore.

  11. Autonomous multi-robot exploration in communication-limited environments

    NARCIS (Netherlands)

    J. de Hoog; S. Cameron; A. Visser

    2010-01-01

    Teams of communicating robots are likely to be used for a wide range of applications in the near future, such as robotic search and rescue or robotic exploration of hostile and remote environments. In such scenarios, environments are likely to contain significant interference and multi-robot systems

  12. Advances in Autonomous Mini Robots : Proceedings of the 6-th AMiRE Symposium

    CERN Document Server

    Joaquin, Sitte; Felix, Werner

    2012-01-01

    Autonomous robots must carry out useful tasks all by themselves relying entirely on their own perceptions of their environment. The cognitive abilities required for autonomous action are largely independent of robot size, which makes mini robots attractive as artefacts for research, education and entertainment. Autonomous mini robots must be small enough for experimentation on a desktop or a small laboratory.  They must be easy to carry and safe for interaction with humans. They must not be expensive. Mini robot designers have to work at the leading edge of technology so that their creations can carry out purposeful autonomic action under these constraints. Since 2001 researchers have met every two years for an international symposium to report on the advances achieved in Autonomous Mini  Robots for Research and Edutainment (AMiRE). The AMiRE Symposium is a single track conference that offers ample opportunities for discussion and exchange of ideas. This volume contains the contributed papers of the 2011 AM...

  13. Autonomous multi-robot exploration in communication-limited environments

    OpenAIRE

    Hoog, de, G.S.; Cameron, S.; de Visser, A.

    2010-01-01

    Teams of communicating robots are likely to be used for a wide range of applications in the near future, such as robotic search and rescue or robotic exploration of hostile and remote environments. In such scenarios, environments are likely to contain significant interference and multi-robot systems must be able to cope with loss of communication. We propose a novel multi-robot exploration approach, role-based exploration, in which members of the team explicitly plan to explore beyond communi...

  14. An intelligent hybrid behavior coordination system for an autonomous mobile robot

    Science.gov (United States)

    Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Fallouh, Samer

    2013-12-01

    In this paper, development of a low-cost PID controller with an intelligent behavior coordination system for an autonomous mobile robot is described that is equipped with IR sensors, ultrasonic sensors, regulator, and RC filters on the robot platform based on HCS12 microcontroller and embedded systems. A novel hybrid PID controller and behavior coordination system is developed for wall-following navigation and obstacle avoidance of an autonomous mobile robot. Adaptive control used in this robot is a hybrid PID algorithm associated with template and behavior coordination models. Software development contains motor control, behavior coordination intelligent system and sensor fusion. In addition, the module-based programming technique is adopted to improve the efficiency of integrating the hybrid PID and template as well as behavior coordination model algorithms. The hybrid model is developed to synthesize PID control algorithms, template and behavior coordination technique for wall-following navigation with obstacle avoidance systems. The motor control, obstacle avoidance, and wall-following navigation algorithms are developed to propel and steer the autonomous mobile robot. Experiments validate how this PID controller and behavior coordination system directs an autonomous mobile robot to perform wall-following navigation with obstacle avoidance. Hardware configuration and module-based technique are described in this paper. Experimental results demonstrate that the robot is successfully capable of being guided by the hybrid PID controller and behavior coordination system for wall-following navigation with obstacle avoidance.

  15. Design and Implementation an Autonomous Humanoid Robot Based on Fuzzy Rule-Based Motion Controller

    Directory of Open Access Journals (Sweden)

    Mohsen Taheri

    2010-04-01

    Full Text Available Research on humanoid robotics in Mechatronics and Automation Laboratory, Electrical and Computer Engineering, Islamic Azad University Khorasgan branch (Isfahan of Iran was started at
    the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. This paper describes the hardware and software design of the kid size humanoid robot systems of the PERSIA Team in 2009. The robot has 20 actuated degrees of freedom based on Hitec HSR898. In this paper we have tried to focus on areas such as mechanical structure, Image processing unit, robot controller, Robot AI and behavior
    learning. In 2009, our developments for the Kid size humanoid robot include: (1 the design and construction of our new humanoid robots (2 the design and construction of a new hardware and software controller to be used in our robots. The project is described in two main parts: Hardware and Software. The software is developed a robot application which consists walking controller, autonomous motion robot, self localization base on vision and Particle Filter, local AI, Trajectory Planning, Motion Controller and Network. The hardware consists of the mechanical structure and the driver circuit board. Each robot is able to walk, fast walk, pass, kick and dribble when it catches
    the ball. These humanoids have been successfully participating in various robotic soccer competitions. This project is still in progress and some new interesting methods are described in the current report.

  16. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  17. Remote wave measurements using autonomous mobile robotic systems

    Science.gov (United States)

    Kurkin, Andrey; Zeziulin, Denis; Makarov, Vladimir; Belyakov, Vladimir; Tyugin, Dmitry; Pelinovsky, Efim

    2016-04-01

    The project covers the development of a technology for monitoring and forecasting the state of the coastal zone environment using radar equipment transported by autonomous mobile robotic systems (AMRS). Sought-after areas of application are the eastern and northern coasts of Russia, where continuous collection of information on topographic changes of the coastal zone and carrying out hydrodynamic measurements in inaccessible to human environment are needed. The intensity of the reflection of waves, received by radar surveillance, is directly related to the height of the waves. Mathematical models and algorithms for processing experimental data (signal selection, spectral analysis, wavelet analysis), recalculation of landwash from data on heights of waves far from the shore, determination of the threshold values of heights of waves far from the shore have been developed. There has been developed the program complex for functioning of the experimental prototype of AMRS, comprising the following modules: data loading module, reporting module, module of georeferencing, data analysis module, monitoring module, hardware control module, graphical user interface. Further work will be connected with carrying out tests of manufactured experimental prototype in conditions of selected routes coastline of Sakhalin Island. Conducting field tests will allow to reveal the shortcomings of development and to identify ways of optimization of the structure and functioning algorithms of AMRS, as well as functioning the measuring equipment. The presented results have been obtained in Nizhny Novgorod State Technical University n.a. R. Alekseev in the framework of the Federal Target Program «Research and development on priority directions of scientific-technological complex of Russia for 2014 - 2020 years» (agreement № 14.574.21.0089 (unique identifier of agreement - RFMEFI57414X0089)).

  18. Concept of Intelligent Mechanical Design for Autonomous Mobile Robots

    OpenAIRE

    Nassiraei, Amir Ali Forough

    2007-01-01

    (Abstract) During the 21st century, it is expected that the robots with different degrees of autonomy and mobility will play an increasingly important role in all side of human life. Thus these kinds of robots will become much more complex than today, and the development of such robots present a great challenge for researchers. However, drawbacks of robot complexity, necessity of more complex hardware, software and mechanical structure may lead to low reliability and increasing...

  19. Towards adaptive and autonomous humanoid robots: from vision to actions

    OpenAIRE

    Leitner, Jürgen; Schmidhuber, Jürgen; Förster, Alexander

    2015-01-01

    Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus...

  20. An integrated design and fabrication strategy for entirely soft, autonomous robots.

    Science.gov (United States)

    Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J

    2016-08-25

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots. PMID:27558065

  1. The experimental humanoid robot H7: a research platform for autonomous behaviour.

    Science.gov (United States)

    Nishiwaki, Koichi; Kuffner, James; Kagami, Satoshi; Inaba, Masayuki; Inoue, Hirochika

    2007-01-15

    This paper gives an overview of the humanoid robot 'H7', which was developed over several years as an experimental platform for walking, autonomous behaviour and human interaction research at the University of Tokyo. H7 was designed to be a human-sized robot capable of operating autonomously in indoor environments designed for humans. The hardware is relatively simple to operate and conduct research on, particularly with respect to the hierarchical design of its control architecture. We describe the overall design goals and methodology, along with a summary of its online walking capabilities, autonomous vision-based behaviours and automatic motion planning. We show experimental results obtained by implementations running within a simulation environment as well as on the actual robot hardware. PMID:17148051

  2. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot

    International Nuclear Information System (INIS)

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s−1. (paper)

  3. Research and development of Ro-boat: an autonomous river cleaning robot

    Science.gov (United States)

    Sinha, Aakash; Bhardwaj, Prashant; Vaibhav, Bipul; Mohommad, Noor

    2013-12-01

    Ro-Boat is an autonomous river cleaning intelligent robot incorporating mechanical design and computer vision algorithm to achieve autonomous river cleaning and provide a sustainable environment. Ro-boat is designed in a modular fashion with design details such as mechanical structural design, hydrodynamic design and vibrational analysis. It is incorporated with a stable mechanical system with air and water propulsion, robotic arms and solar energy source and it is proceed to become autonomous by using computer vision. Both "HSV Color Space" and "SURF" are proposed to use for measurements in Kalman Filter resulting in extremely robust pollutant tracking. The system has been tested with successful results in the Yamuna River in New Delhi. We foresee that a system of Ro-boats working autonomously 24x7 can clean a major river in a city on about six months time, which is unmatched by alternative methods of river cleaning.

  4. Combining a Novel Computer Vision Sensor with a Cleaning Robot to Achieve Autonomous Pig House Cleaning

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Braithwaite, Ian David; Blanke, Mogens;

    2005-01-01

    condition based cleaning. This paper describes how a novel sensor, developed for the purpose, and algorithms for classification and learning are combined with a commercial robot to obtain an autonomous system which meets the necessary quality attributes. These include features to make selective cleaning...... where dirty areas are detected, that operator assistance is called only when cleanness hypothesis cannot be made with confidence. The paper describes the design of the system where learning from experience maps and operator instructions are combined to obtain a smart and autonomous cleaning robot.......Cleaning of livestock buildings is the single most health-threatening task in the agricultural industry and a transition to robot-based cleaning would be instrumental to improving working conditions for employees. Present cleaning robots fall short on cleanness quality, as they cannot perform...

  5. An architectural approach to create self organizing control systems for practical autonomous robots

    Science.gov (United States)

    Greiner, Helen

    1991-01-01

    For practical industrial applications, the development of trainable robots is an important and immediate objective. Therefore, the developing of flexible intelligence directly applicable to training is emphasized. It is generally agreed upon by the AI community that the fusion of expert systems, neural networks, and conventionally programmed modules (e.g., a trajectory generator) is promising in the quest for autonomous robotic intelligence. Autonomous robot development is hindered by integration and architectural problems. Some obstacles towards the construction of more general robot control systems are as follows: (1) Growth problem; (2) Software generation; (3) Interaction with environment; (4) Reliability; and (5) Resource limitation. Neural networks can be successfully applied to some of these problems. However, current implementations of neural networks are hampered by the resource limitation problem and must be trained extensively to produce computationally accurate output. A generalization of conventional neural nets is proposed, and an architecture is offered in an attempt to address the above problems.

  6. Autonomous Mobile Platform for Research in Cooperative Robotics

    Science.gov (United States)

    Daemi, Ali; Pena, Edward; Ferguson, Paul

    1998-01-01

    This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.

  7. Traversable terrain classification for outdoor autonomous robots using single 2D laser scans

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Blas, Morten Rufus; Andersen, Nils Axel; Ravn, Ole; Blanke, Mogens

    2006-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses seven distinctly different classifiers: raw height, roughness, step size......, curvature, slope, width and invalid data. These are then used to extract road borders, traversable terrain and identify obstacles. Experimental results are shown and discussed. The results were obtained using a DTU developed mobile robot, and the autonomous tests were conducted in a national park...

  8. Vision-based semi-autonomous outdoor robot system to reduce soldier workload

    Science.gov (United States)

    Richardson, Al; Rodgers, Michael H.

    2001-09-01

    Sensors and computational capability have not reached the point to enable small robots to navigate autonomously in unconstrained outdoor environments at tactically useful speeds. This problem is greatly reduced, however, if a soldier can lead the robot through terrain that he knows it can traverse. An application of this concept is a small pack-mule robot that follows a foot soldier over outdoor terrain. The solder would be responsible to avoid situations beyond the robot's limitations when encountered. Having learned the route, the robot could autonomously retrace the path carrying supplies and munitions. This would greatly reduce the soldier's workload under normal conditions. This paper presents a description of a developmental robot sensor system using low-cost commercial 3D vision and inertial sensors to address this application. The robot moves at fast walking speed and requires only short-range perception to accomplish its task. 3D-feature information is recorded on a composite route map that the robot uses to negotiate its local environment and retrace the path taught by the soldier leader.

  9. LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval

    Science.gov (United States)

    Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan

    2013-01-01

    As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.

  10. Algorithms for VLSI stereo vision circuits applied to autonomous robots

    OpenAIRE

    Lopez de Meneses Novosilzov, Yuri; Nicoud, Jean-Daniel

    2005-01-01

    Since the inception of Robotics, visual information has been incorporated in order to allow the robots to perform tasks that require an interaction with their environment, particularly when it is a changing environment. Depth perception is a most useful information for a mobile robot to navigate in its environment and interact with its surroundings. Among the different methods capable of measuring the distance to the objects in the scene, stereo vision is the most advantageous for a small, mo...

  11. Algorithms for VLSI stereo vision circuits applied to autonomous robots

    OpenAIRE

    Lopez de Meneses Novosilzov, Yuri

    1999-01-01

    Since the inception of Robotics, visual information has been incorporated in order to allow the robots to perform tasks that require an interaction with their environment, particularly when it is a changing environment. Depth perception is a most useful information for a mobile robot to navigate in its environment and interact with its surroundings. Among the different methods capable of measuring the distance to the objects in the scene, stereo vision is the most advantageous for a small, mo...

  12. Building a Fully Autonomous Tour Guide Robot: Where Academic Research Meets Industry

    OpenAIRE

    Tomatis, Nicola; Philippsen, Roland; Jensen, Björn; Arras, Kai Oliver; Terrien, G.; Piguet, Ralph; Siegwart, Roland

    2002-01-01

    This paper presents the effort that has been undertaken in designing and building both hardware and software for a fully autonomous navigating vehicle aimed for a tour guide application. The challenge for such a project is to combine industrial high quality production for the mobile platforms with techniques for mobile robot navigation and interaction which are currently best available in academic research. For this the experience and technology of the Autonomous Systems Lab at EPFL has been ...

  13. The implementation and testing of a robotic arm on an autonomous vehicle

    OpenAIRE

    Jun, Hyun Il.

    2007-01-01

    An articulated arm with three degrees of freedom is implemented and tested on an autonomous robot. Kinematic equations of motion for the arm are modeled and tested. A communication architecture is successfully implemented for wireless manual control of the arm. Visual and thermal cues are realized with an onboard camera and a collocated thermal sensor. Future work suggests investigations for full autonomous arm control without manual operator intervention based on sensor cues and visual s...

  14. A real-time image understanding system for an autonomous mobile robot

    OpenAIRE

    Remias, Leonard V.

    1996-01-01

    Approved for public release, distribution is unlimited Yamabico-11 is an autonomous mobile robot used as a research platform with one area in image understanding. Previous work focused on edge detection analysis on a Silicon Graphics Iris (SGI) workstation with no method for implementation on the robot. Yamabico-11 does not have an on-board image processing capability to detect straight edges in a grayscale image and a method for allowing the user to analyze the data. The approach taken fo...

  15. A Control Strategy for an Autonomous Robotic Vacuum Cleaner for Solar Panels

    OpenAIRE

    Aravind, G; Gautham, Vasan; Kumar, T. S. B Gowtham; Naresh, Balaji

    2014-01-01

    Accumulation of dust on the surface of solar panels reduces the amount of radiation reaching it. This leads to loss in generated electric power and formation of hotspots which would permanently damage the solar panel. This project aims at developing an autonomous vacuum cleaning method which can be used on a regular basis to maximize the lifetime and efficiency of a solar panel. This system is implemented using two subsystems namely a Robotic Vacuum Cleaner and a Docking Station. The Robotic ...

  16. Autonomous Navigation of a Surveillance Robot in Harsh Outdoor Road Environments

    OpenAIRE

    Youjin Shin; Donghyeon Kim; Hyunsuk Lee; Jooyoung Park; Woojin Chung

    2013-01-01

    This paper deals with the autonomous navigation problem of a mobile robot in outdoor road environments. The target application is surveillance in petroleum storage bases. Although there have been remarkable technological achievements recently in the area of outdoor navigation, robotic systems are still expensive due to a large number of high cost sensors. This paper proposes the reliable extraction algorithm of traversable regions using a single onboard Laser Range Finder (LRF) in outdoor roa...

  17. Autonomous Navigation, Dynamic Path and Work Flow Planning in Multi-Agent Robotic Swarms Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Leucht, Kurt; Stolleis, Karl

    2015-01-01

    Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots, called Swarmies, to be used as a ground-based research platform for in-situ resource utilization missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in an unknown environment and return those resources to a central site.

  18. Cartographie et estimation globale de la position pour un robot mobile autonome

    OpenAIRE

    Filliat, David

    2001-01-01

    Managing the movements of an autonomous mobile robot in its environment is a problem that has been tackled since the early integration of arti ficial intelligence and robotics. However, this problem remains di fficult and no general solution has been devised. Among existing navigation strategies, we will focus on those that use a map to represent the spatial layout of the environment and that allow to plan movements toward distant goals. Map-building and self-positioning within these maps are...

  19. Autonomous Motion Learning for Intra-Vehicular Activity Space Robot

    Science.gov (United States)

    Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo

    Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.

  20. Vision Assisted Laser Scanner Navigation for Autonomous Robots

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole

    2008-01-01

    This paper describes a navigation method based on road detection using both a laser scanner and a vision sensor. The method is to classify the surface in front of the robot into traversable segments (road) and obstacles using the laser scanner, this classifies the area just in front of the robot (2...

  1. An Autonomous Robotic System for Mapping Weeds in Fields

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær; Garcia Ruiz, Francisco Jose; Kazmi, Wajahat;

    2013-01-01

    The ASETA project develops theory and methods for robotic agricultural systems. In ASETA, unmanned aircraft and unmanned ground vehicles are used to automate the task of identifying and removing weeds in sugar beet fields. The framework for a working automatic robotic weeding system is presented...... along with the implemented computer vision systems....

  2. Introduction to Autonomous Mobile Robotics Using "Lego Mindstorms" NXT

    Science.gov (United States)

    Akin, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-01-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the…

  3. Autonomous Mobile Robot Navigation Using Harmonic Potential Field

    Science.gov (United States)

    Panati, Subbash; Baasandorj, Bayanjargal; Chong, Kil To

    2015-05-01

    Mobile robot navigation has been an area of robotics which has gained massive attention among the researchers of robotics community. Path planning and obstacle avoidance are the key aspects of mobile robot navigation. This paper presents harmonic potential field based navigation algorithm for mobile robots. Harmonic potential field method overcomes the issue of local minima which was a major bottleneck in the case of artificial potential field method. The harmonic potential field is calculated using harmonic functions and Dirichlet boundary conditions are used for the obstacles, goal and initial position. The simulation results shows that the proposed method is able to overcome the local minima issue and navigate successfully from initial position to the goal without colliding into obstacles in static environment.

  4. Self-sufficiency of an autonomous reconfigurable modular robotic organism

    CERN Document Server

    Qadir, Raja Humza

    2015-01-01

    This book describes how the principle of self-sufficiency can be applied to a reconfigurable modular robotic organism. It shows the design considerations for a novel REPLICATOR robotic platform, both hardware and software, featuring the behavioral characteristics of social insect colonies. Following a comprehensive overview of some of the bio-inspired techniques already available, and of the state-of-the-art in re-configurable modular robotic systems, the book presents a novel power management system with fault-tolerant energy sharing, as well as its implementation in the REPLICATOR robotic modules. In addition, the book discusses, for the first time, the concept of “artificial energy homeostasis” in the context of a modular robotic organism, and shows its verification on a custom-designed simulation framework in different dynamic power distribution and fault tolerance scenarios. This book offers an ideal reference guide for both hardware engineers and software developers involved in the design and implem...

  5. Manifold traversing as a model for learning control of autonomous robots

    Science.gov (United States)

    Szakaly, Zoltan F.; Schenker, Paul S.

    1992-01-01

    This paper describes a recipe for the construction of control systems that support complex machines such as multi-limbed/multi-fingered robots. The robot has to execute a task under varying environmental conditions and it has to react reasonably when previously unknown conditions are encountered. Its behavior should be learned and/or trained as opposed to being programmed. The paper describes one possible method for organizing the data that the robot has learned by various means. This framework can accept useful operator input even if it does not fully specify what to do, and can combine knowledge from autonomous, operator assisted and programmed experiences.

  6. A Prototype Novel Sensor for Autonomous, Space Based Robots - Phase 2

    Science.gov (United States)

    Squillante, M. R.; Derochemont, L. P.; Cirignano, L.; Lieberman, P.; Soller, M. S.

    1990-01-01

    The goal of this program was to develop new sensing capabilities for autonomous robots operating in space. Information gained by the robot using these new capabilities would be combined with other information gained through more traditional capabilities, such as video, to help the robot characterize its environment as well as to identify known or unknown objects that it encounters. Several sensing capabilities using nuclear radiation detectors and backscatter technology were investigated. The result of this research has been the construction and delivery to NASA of a prototype system with three capabilities for use by autonomous robots. The primary capability was the use of beta particle backscatter measurements to determine the average atomic number (Z) of an object. This gives the robot a powerful tool to differentiate objects which may look the same, such as objects made out of different plastics or other light weight materials. In addition, the same nuclear sensor used in the backscatter measurement can be used as a nuclear spectrometer to identify sources of nuclear radiation that may be encountered by the robot, such as nuclear powered satellites. A complete nuclear analysis system is included in the software and hardware of the prototype system built in phase 2 of this effort. Finally, a method to estimate the radiation dose in the environment of the robot has been included as a third capability. Again, the same nuclear sensor is used in a different operating mode and with different analysis software. Each of these capabilities are described.

  7. Modular neural network and classical reinforcement learning for autonomous robot navigation: inhibiting undesirable behaviors

    OpenAIRE

    Antonelo, Eric; Baerveldt, Albert-Jan; Rögnvaldsson, Thorsteinn; Figueiredo, Mauricio

    2006-01-01

    Classical reinforcement learning mechanisms and a modular neural network are unified for conceiving an intelligent autonomous system for mobile robot navigation. The conception aims at inhibiting two common navigation deficiencies: generation of unsuitable cyclic trajectories and ineffectiveness in risky configurations. Distinct design apparatuses are considered for tackling these navigation difficulties, for instance: 1) neuron parameter for memorizing neuron activities (also functioning as ...

  8. Detection of Water Hazards for Autonomous Robotic Vehicles

    Science.gov (United States)

    Matthes, Larry; Belluta, Paolo; McHenry, Michael

    2006-01-01

    Four methods of detection of bodies of water are under development as means to enable autonomous robotic ground vehicles to avoid water hazards when traversing off-road terrain. The methods involve processing of digitized outputs of optoelectronic sensors aboard the vehicles. It is planned to implement these methods in hardware and software that would operate in conjunction with the hardware and software for navigation and for avoidance of solid terrain obstacles and hazards. The first method, intended for use during the day, is based on the observation that, under most off-road conditions, reflections of sky from water are easily discriminated from the adjacent terrain by their color and brightness, regardless of the weather and of the state of surface waves on the water. Accordingly, this method involves collection of color imagery by a video camera and processing of the image data by an algorithm that classifies each pixel as soil, water, or vegetation according to its color and brightness values (see figure). Among the issues that arise is the fact that in the presence of reflections of objects on the opposite shore, it is difficult to distinguish water by color and brightness alone. Another issue is that once a body of water has been identified by means of color and brightness, its boundary must be mapped for use in navigation. Techniques for addressing these issues are under investigation. The second method, which is not limited by time of day, is based on the observation that ladar returns from bodies of water are usually too weak to be detected. In this method, ladar scans of the terrain are analyzed for returns and the absence thereof. In appropriate regions, the presence of water can be inferred from the absence of returns. Under some conditions in which reflections from the bottom are detectable, ladar returns could, in principle, be used to determine depth. The third method involves the recognition of bodies of water as dark areas in short

  9. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    Directory of Open Access Journals (Sweden)

    Brandon Sights

    2006-10-01

    Full Text Available High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the trend toward relieving the human of the low-level control burden advances, the ability to combine the functionalities of several critical control systems on a single platform becomes imperative.

  10. Adaptive artificial neural network for autonomous robot control

    Science.gov (United States)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  11. A Feature Based Navigation System for an Autonomous Underwater Robot

    OpenAIRE

    Folkesson, John; Leederkerken, Jacques; Williams, Rob; Patrikalakis, Andrew; Leonard, John,

    2008-01-01

    International audience We present a system for autonomous underwater navigation as implemented on a Nekton Ranger autonomous underwater vehicle, AUV. This is one of the first implementations of a practical application for simultaneous localization and mapping on an AUV. Besides being an application of real-time SLAM, the implemtation demonstrates a novel data fusion solution where data from 7 sources are fused at different time scales in 5 separate estimators. By modularizing the data fusi...

  12. Monocular SLAM for Autonomous Robots with Enhanced Features Initialization

    OpenAIRE

    Edmundo Guerra; Rodrigo Munguia; Antoni Grau

    2014-01-01

    This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fiel...

  13. Remote Sensing of Radiation Dose Rate by Customizing an Autonomous Robot

    International Nuclear Information System (INIS)

    Distribution of radiation dose was measured by customizing an autonomous cleaning robot 'Roomba' and a scintillation counter. The robot was used as a vehicle carrying the scintillation survey meter, and was additionally equipped with an H8 micro computer to remote-control the vehicle and to send measured data. The data obtained were arranged with position data, and then the distribution map of the radiation dose rate was produced. Manual, programmed and autonomous driving tests were conducted, and all performances were verified. That is, for each operational mode, the measurements both with moving and with discrete moving were tried in and outside of a room. Consequently, it has been confirmed that remote sensing of radiation dose rate is possible by customizing a robot on market.

  14. Robot

    OpenAIRE

    Flek, O.

    2015-01-01

    The objective of this paper is to design and produce a robot based on a four wheel chassis equipped with a robotic arm capable of manipulating small objects. The robot should be able to operate in an autonomous mode controlled by a microcontroller and in a mode controlled wirelessly by an operator in real time. Precision and accuracy of the robotic arm should be sufficient for the collection of small objects, such as syringes and needles. The entire robot should be easy to operate user-friend...

  15. Development of an Interactive Augmented Environment and Its Application to Autonomous Learning for Quadruped Robots

    Science.gov (United States)

    Kobayashi, Hayato; Osaki, Tsugutoyo; Okuyama, Tetsuro; Gramm, Joshua; Ishino, Akira; Shinohara, Ayumi

    This paper describes an interactive experimental environment for autonomous soccer robots, which is a soccer field augmented by utilizing camera input and projector output. This environment, in a sense, plays an intermediate role between simulated environments and real environments. We can simulate some parts of real environments, e.g., real objects such as robots or a ball, and reflect simulated data into the real environments, e.g., to visualize the positions on the field, so as to create a situation that allows easy debugging of robot programs. The significant point compared with analogous work is that virtual objects are touchable in this system owing to projectors. We also show the portable version of our system that does not require ceiling cameras. As an application in the augmented environment, we address the learning of goalie strategies on real quadruped robots in penalty kicks. We make our robots utilize virtual balls in order to perform only quadruped locomotion in real environments, which is quite difficult to simulate accurately. Our robots autonomously learn and acquire more beneficial strategies without human intervention in our augmented environment than those in a fully simulated environment.

  16. Toward semi-autonomous control of mobile robots for constrained environments

    International Nuclear Information System (INIS)

    Drawing from long-time experience in nuclear maintenance robotics, FRAMATOME leads with several partners an important effort with the goal of developing the decision and operator assistance capabilities of mobile robots. Future robots shall be better adapted (in size and configuration) to the operational requirements of nuclear plants work than current demonstrators. Due regards shall be paid to safety aspects and qualification procedure shall be specified soon. Also, dosimetry gains (e.g. as evaluated by DOSIANA) shall be evaluated to establish further the advantages of robotic solutions. Current achievements and plans for the next two years are expected to provide the necessary know-how for semi-autonomous control of various mobile robots in actual missions in nuclear plant environment. These advances in many closely connected disciplines and technologies should put FRAMATOME in a leader position as systems integrator or as developer for future markets in autonomous mobile robotics, not only in the nuclear field but in other domains as well. (author)

  17. Evaluation of a Home Biomonitoring Autonomous Mobile Robot.

    Science.gov (United States)

    Dorronzoro Zubiete, Enrique; Nakahata, Keigo; Imamoglu, Nevrez; Sekine, Masashi; Sun, Guanghao; Gomez, Isabel; Yu, Wenwei

    2016-01-01

    Increasing population age demands more services in healthcare domain. It has been shown that mobile robots could be a potential solution to home biomonitoring for the elderly. Through our previous studies, a mobile robot system that is able to track a subject and identify his daily living activities has been developed. However, the system has not been tested in any home living scenarios. In this study we did a series of experiments to investigate the accuracy of activity recognition of the mobile robot in a home living scenario. The daily activities tested in the evaluation experiment include watching TV and sleeping. A dataset recorded by a distributed distance-measuring sensor network was used as a reference to the activity recognition results. It was shown that the accuracy is not consistent for all the activities; that is, mobile robot could achieve a high success rate in some activities but a poor success rate in others. It was found that the observation position of the mobile robot and subject surroundings have high impact on the accuracy of the activity recognition, due to the variability of the home living daily activities and their transitional process. The possibility of improvement of recognition accuracy has been shown too. PMID:27212940

  18. Evaluation of a Home Biomonitoring Autonomous Mobile Robot

    Science.gov (United States)

    Dorronzoro Zubiete, Enrique; Nakahata, Keigo; Imamoglu, Nevrez; Sekine, Masashi; Sun, Guanghao; Gomez, Isabel; Yu, Wenwei

    2016-01-01

    Increasing population age demands more services in healthcare domain. It has been shown that mobile robots could be a potential solution to home biomonitoring for the elderly. Through our previous studies, a mobile robot system that is able to track a subject and identify his daily living activities has been developed. However, the system has not been tested in any home living scenarios. In this study we did a series of experiments to investigate the accuracy of activity recognition of the mobile robot in a home living scenario. The daily activities tested in the evaluation experiment include watching TV and sleeping. A dataset recorded by a distributed distance-measuring sensor network was used as a reference to the activity recognition results. It was shown that the accuracy is not consistent for all the activities; that is, mobile robot could achieve a high success rate in some activities but a poor success rate in others. It was found that the observation position of the mobile robot and subject surroundings have high impact on the accuracy of the activity recognition, due to the variability of the home living daily activities and their transitional process. The possibility of improvement of recognition accuracy has been shown too. PMID:27212940

  19. A Grammatical Approach to the Modeling of an Autonomous Robot

    Directory of Open Access Journals (Sweden)

    Gabriel López-García

    2012-06-01

    Full Text Available Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot. The result is an instance of the model grammar that implements the robotic system and is independent of the sensing devices used for perception and interaction. As a conclusion the Virtual Worlds Generator adds value in the simulation of virtual worlds since the definition can be done formally and independently of the peculiarities of the supporting devices

  20. SELF-RECONFIGURATION OF UNDERACTUATED REDUNDANT MANIPULATORS WITH OPTIMIZING THE FLEXIBILITY ELLIPSOID

    Institute of Scientific and Technical Information of China (English)

    He Guangping; Lu Zhen

    2005-01-01

    The multi-modes feature, the measure of the manipulating flexibility, and self-reconfiguration control method of the underactuated redundant manipulators are investigated based on the optimizing technology. The relationship between the configuration of the joint space and the manipulating flexibility of the underactuated redundant manipulator is analyzed, a new measure of manipulating flexibility ellipsoid for the underactuated redundant manipulator with passive joints in locked mode is proposed, which can be used to get the optimal configuration for the realization of the self-reconfiguration control. Furthermore, a time-varying nonlinear control method based on harmonic inputs is suggested for fulfilling the self-reconfiguration. A simulation example of a three-DOFs underactuated manipulator with one passive joint features some aspects of the investigations.

  1. A game-theoretic formulation of the homogeneous self-reconfiguration problem

    KAUST Repository

    Pickem, Daniel

    2015-12-15

    In this paper we formulate the homogeneous two- and three-dimensional self-reconfiguration problem over discrete grids as a constrained potential game. We develop a game-theoretic learning algorithm based on the Metropolis-Hastings algorithm that solves the self-reconfiguration problem in a globally optimal fashion. Both a centralized and a fully decentralized algorithm are presented and we show that the only stochastically stable state is the potential function maximizer, i.e. the desired target configuration. These algorithms compute transition probabilities in such a way that even though each agent acts in a self-interested way, the overall collective goal of self-reconfiguration is achieved. Simulation results confirm the feasibility of our approach and show convergence to desired target configurations.

  2. An autonomous mobil robot to perform waste drum inspections

    International Nuclear Information System (INIS)

    A mobile robot is being developed by the Savannah River Technology Center (SRTC) Robotics Group of Westinghouse Savannah River company (WSRC) to perform mandated inspections of waste drums stored in warehouse facilities. The system will reduce personnel exposure and create accurate, high quality documentation to ensure regulatory compliance. Development work is being coordinated among several DOE, academic and commercial entities in accordance with DOE's technology transfer initiative. The prototype system was demonstrated in November of 1993. A system is now being developed for field trails at the Fernald site

  3. Modelling and Scheduling Autonomous Mobile Robot for a Real-World Industrial Application

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Bøgh, Simon; Bocewicz, Grzegorz

    The paper deals with a real-world implementation of autonomous industrial mobile robot performing an industrial application at a factory of a pump manufacturer. In the implementation, the multi-criteria optimization problem of scheduling tasks of a mobile robot is also taken into account. The paper...... proposes an approach composing of: a mobile robot system design (“Little Helper”), an appropriate and comprehensive industrial application (multiple-part feeding tasks), an implementation concept for industrial environments (the bartender concept), and a real-time heuristics integrated into Mission...... Planning and Control software to schedule the mobile robot in the industrial application. Results from the real-world implementation show that “Little Helper” is capable of successfully serving four part feeders in three production cells within a given planning horizon using the best schedule generated...

  4. Modelling and Scheduling Autonomous Mobile Robot for a Real-World Industrial Application

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Bøgh, Simon;

    2013-01-01

    The paper deals with a real-world implementation of autonomous industrial mobile robot performing an industrial application at a factory of a pump manufacturer. In the implementation, the multi-criteria optimization problem of scheduling tasks of a mobile robot is also taken into account. The paper...... proposes an approach composing of: a mobile robot system design (“Little Helper”), an appropriate and comprehensive industrial application (multiple-part feeding tasks), an implementation concept for industrial environments (the bartender concept), and a real-time heuristics integrated into Mission...... Planning and Control software to schedule the mobile robot in the industrial application. Results from the real-world implementation show that “Little Helper” is capable of successfully serving four part feeders in three production cells within a given planning horizon using the best schedule generated...

  5. AltiVec performance increases for autonomous robotics for the MARSSCAPE architecture program

    Science.gov (United States)

    Gothard, Benny M.

    2002-02-01

    One of the main tall poles that must be overcome to develop a fully autonomous vehicle is the inability of the computer to understand its surrounding environment to a level that is required for the intended task. The military mission scenario requires a robot to interact in a complex, unstructured, dynamic environment. Reference A High Fidelity Multi-Sensor Scene Understanding System for Autonomous Navigation The Mobile Autonomous Robot Software Self Composing Adaptive Programming Environment (MarsScape) perception research addresses three aspects of the problem; sensor system design, processing architectures, and algorithm enhancements. A prototype perception system has been demonstrated on robotic High Mobility Multi-purpose Wheeled Vehicle and All Terrain Vehicle testbeds. This paper addresses the tall pole of processing requirements and the performance improvements based on the selected MarsScape Processing Architecture. The processor chosen is the Motorola Altivec-G4 Power PC(PPC) (1998 Motorola, Inc.), a highly parallized commercial Single Instruction Multiple Data processor. Both derived perception benchmarks and actual perception subsystems code will be benchmarked and compared against previous Demo II-Semi-autonomous Surrogate Vehicle processing architectures along with desktop Personal Computers(PC). Performance gains are highlighted with progress to date, and lessons learned and future directions are described.

  6. Obstacle avoidance test using a sensor-based autonomous robotic system

    International Nuclear Information System (INIS)

    From a viewpoint of reducing personnel radiation exposure of plant staffs working in the high radiation area of nuclear facilities, it is often said to be necessary to develop remote robotic systems, which have great potential of performing various tasks in nuclear facilities. Hence, we developed an advanced remote robotic system, consisting of redundant manipulator and environment-sensing systems, which can be applied to complicated handling tasks under unstructured environment. In the robotic system, various types of sensors for environment-sensing are mounted on the redundant manipulator and sensor-based autonomous capabilities are incorporated. This report describes the results of autonomous obstacle avoidance test which was carried out as follows: manipulating valves at the rear-side of wall, through a narrow window of the wall, with the redundant manipulator mounted on an x-axis driving mechanism. From this test, it is confirmed that the developed robotic system can autonomously achieve handling tasks in limited space as avoiding obstacles, which is supposed to be difficult by a non-redundant manipulator. (author)

  7. Automatic tracking of laparoscopic instruments for autonomous control of a cameraman robot.

    Science.gov (United States)

    Amini Khoiy, Keyvan; Mirbagheri, Alireza; Farahmand, Farzam

    2016-06-01

    Background An automated instrument tracking procedure was designed and developed for autonomous control of a cameraman robot during laparoscopic surgery. Material and methods The procedure was based on an innovative marker-free segmentation algorithm for detecting the tip of the surgical instruments in laparoscopic images. A compound measure of Saturation and Value components of HSV color space was incorporated that was enhanced further using the Hue component and some essential characteristics of the instrument segment, e.g., crossing the image boundaries. The procedure was then integrated into the controlling system of the RoboLens cameraman robot, within a triple-thread parallel processing scheme, such that the tip is always kept at the center of the image. Results Assessment of the performance of the system on prerecorded real surgery movies revealed an accuracy rate of 97% for high quality images and about 80% for those suffering from poor lighting and/or blood, water and smoke noises. A reasonably satisfying performance was also observed when employing the system for autonomous control of the robot in a laparoscopic surgery phantom, with a mean time delay of 200ms. Conclusion It was concluded that with further developments, the proposed procedure can provide a practical solution for autonomous control of cameraman robots during laparoscopic surgery operations. PMID:26872883

  8. Development of a semi-autonomous service robot with telerobotic capabilities

    Science.gov (United States)

    Jones, J. E.; White, D. R.

    1987-01-01

    The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research.

  9. Design of a Remote-controlled and GPS-guided Autonomous Robot for Precision Farming

    Directory of Open Access Journals (Sweden)

    İlker Ünal

    2015-12-01

    Full Text Available Determining variations in fields is important for precision farming applications. Precision farming is used to determine, analyse, and manage factors such as temporal and spatial variability to obtain maximum profit, sustainability, and environmental protection. However, precision farming is excessively dependent on soil and plant test processes. Furthermore, test processes are time-consuming, laborious and expensive. These processes also cannot be performed quickly by humans. For these reasons, autonomous robots should be designed and developed for the detection of field variations and variable-rate applications. In this study, a remote-controlled and GPS-guided autonomous robot was designed and developed, which can be controlled via the 3G internet and is suitable for image-processing applications. The joystick is used to manually remotely control the robot movements in any direction or speed. Real-time video transmission to the remote computer can be accomplished with a camera placed on the vehicle. Navigation software was developed for steering the robot autonomously. In the results of the field test for the navigation software, it was found that the linear target point precision ranged from 10 to 12 cm and the distributed target point precision ranged from 15 to 17 cm.

  10. Semi-autonomous exploration of multi-floor buildings with a legged robot

    Science.gov (United States)

    Wenger, Garrett J.; Johnson, Aaron M.; Taylor, Camillo J.; Koditschek, Daniel E.

    2015-05-01

    This paper presents preliminary results of a semi-autonomous building exploration behavior using the hexapedal robot RHex. Stairwells are used in virtually all multi-floor buildings, and so in order for a mobile robot to effectively explore, map, clear, monitor, or patrol such buildings it must be able to ascend and descend stairwells. However most conventional mobile robots based on a wheeled platform are unable to traverse stairwells, motivating use of the more mobile legged machine. This semi-autonomous behavior uses a human driver to provide steering input to the robot, as would be the case in, e.g., a tele-operated building exploration mission. The gait selection and transitions between the walking and stair climbing gaits are entirely autonomous. This implementation uses an RGBD camera for stair acquisition, which offers several advantages over a previously documented detector based on a laser range finder, including significantly reduced acquisition time. The sensor package used here also allows for considerable expansion of this behavior. For example, complete automation of the building exploration task driven by a mapping algorithm and higher level planner is presently under development.

  11. Exploring Robotics and Autonomous Capabilities with Dr. George Bekey

    OpenAIRE

    Naval Postgraduate School Public Affairs Office

    2010-01-01

    A captivated audience of NPS students, faculty and staff attended a lecture on Autonomous Systems, presented by George Bekey, Emeritus Professor of Computer Science at the University of Southern California, and the Distinguished Adjunct Professor of Engineering at California Polytechnic University, San Luis Obispo.

  12. Localization Using Magnetic Patterns for Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Won Suk You

    2014-03-01

    Full Text Available In this paper, we present a method of localization using magnetic landmarks. With this method, it is possible to compensate the pose error (xe, ye, θe of a mobile robot correctly and localize its current position on a global coordinate system on the surface of a structured environment with magnetic landmarks. A set of four magnetic bars forms total six different patterns of landmarks and these patterns can be read by the mobile robot with magnetic hall sensors. A sequential motion strategy for a mobile robot is proposed to find the geometric center of magnetic landmarks by reading the nonlinear magnetic field.The mobile robot first moves into the center region of the landmark where it can read the magnetic pattern, after which tracking and global localization can be easily achieved by recognizing the patterns of neighboring landmarks. Experimental results show the effectiveness of the sequential motion strategy for estimating the center of the first encountered landmark as well as the performance of tracking and global localization of the proposed system.

  13. A study on an autonomous pipeline maintenance robot, 5

    International Nuclear Information System (INIS)

    The path planning is very important for the pipeline maintenance robot because there are many obstacles on pipeline such as flanges and T-joints and others, and because pipelines are constructed as a connected network in a very complicated way. Furthermore the maintenance robot Mark III previously reported has the ability to transit from one pipe to another the path planner should consider. The expert system especially aimed for path planning, named PPES (Path Planning Expert System), is described in this paper. A human-operator has only to give some tasks to this system. This system automatically replies with the optimal path, which is based on the calculation of the task levels and list of some control commands. Task level is a criterion to determine one optimal path. It consists of the difference of potential energies, the static joint torques, velocity of the robot, step numbers of the grippers' or body's movement, which the robot requires. This system also has graphic illustrations, so that the operator can easily check and understand the plant map and the result of the path planning. (author)

  14. R-MASTIF: robotic mobile autonomous system for threat interrogation and object fetch

    Science.gov (United States)

    Das, Aveek; Thakur, Dinesh; Keller, James; Kuthirummal, Sujit; Kira, Zsolt; Pivtoraiko, Mihail

    2013-01-01

    Autonomous robotic "fetch" operation, where a robot is shown a novel object and then asked to locate it in the field, re- trieve it and bring it back to the human operator, is a challenging problem that is of interest to the military. The CANINE competition presented a forum for several research teams to tackle this challenge using state of the art in robotics technol- ogy. The SRI-UPenn team fielded a modified Segway RMP 200 robot with multiple cameras and lidars. We implemented a unique computer vision based approach for textureless colored object training and detection to robustly locate previ- ously unseen objects out to 15 meters on moderately flat terrain. We integrated SRI's state of the art Visual Odometry for GPS-denied localization on our robot platform. We also designed a unique scooping mechanism which allowed retrieval of up to basketball sized objects with a reciprocating four-bar linkage mechanism. Further, all software, including a novel target localization and exploration algorithm was developed using ROS (Robot Operating System) which is open source and well adopted by the robotics community. We present a description of the system, our key technical contributions and experimental results.

  15. Kinematics modeling and simulation of an autonomous omni-directional mobile robot

    Directory of Open Access Journals (Sweden)

    Daniel Garcia Sillas

    2015-08-01

    Full Text Available Although robotics has progressed to the extent that it has become relatively accessible with low-cost projects, there is still a need to create models that accurately represent the physical behavior of a robot. Creating a completely virtual platform allows us to test behavior algorithms such as those implemented using artificial intelligence, and additionally, it enables us to find potential problems in the physical design of the robot. The present work describes a methodology for the construction of a kinematic model and a simulation of the autonomous robot, specifically of an omni-directional wheeled robot. This paper presents the kinematic model development and its implementation using several tools. The result is a model that follows the kinematics of a triangular omni-directional mobile wheeled robot, which is then tested by using a 3D model imported from 3D Studio® and Matlab® for the simulation. The environment used for the experiment is very close to the real environment and reflects the kinematic characteristics of the robot.

  16. Exploration of Teisi Knoll by Autonomous Underwater Vehicle "R-One Robot"

    Science.gov (United States)

    Ura, Tamaki; Obara, Takashi; Nagahashi, Kenji; Nakane, Kenji; Sakai, Shoji; Oyabu, Yuji; Sakamaki, Takashi; Takagawa, Shinichi; Kawano, Hiroshi; Gamo, Toshitaka; Takano, Michiaki; Doi, Takashi

    This paper outlines the exploration of Teisi Knoll by the autonomous underwater vehicle the R-One Robot, as carried out October 19-22, 2000, and presents images taken by the sidescan SONAR fitted to the bottom of the vehicle. The R-One Robot was launched from the R/V Kaiyo, started diving near the support ship, followed predetermined tracklines which were defined by waypoints, and finally came back to the destination where it was recovered by the support vessel. In order to minimize positioning error, which is determined by the inertial navigation system and Doppler SONAR, the robot ascended to the surface several times to ascertain its precise position using the global positioning system, the antenna of which is fitted on the vertical fin. Taking advantage of this positioning system, the robot followed the predetermined tracklines with an error of less than 40 meters in 30 minutes of continuous submerging. Disturbance to the robot is small enough compared to towed vehicles that its movement can be regarded as stable. This stability resulted in clear side scanning images of the knoll and surrounding sea floor. The robot stopped at the center of the knoll, and descended vertically into the crater. When the vehicle was in the crater, anomalous manganese ion concentrations were detected by the in situ trace metal micro-analyzer GAMOS, which was loaded in the payload bay at the front of the robot.

  17. A ToF-camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    OpenAIRE

    Sobers Lourdu Xavier Francis; Anavatti, Sreenatha G.; Matthew Garratt; Hyunbgo Shim

    2015-01-01

    The aim of this paper is to deploy a time-of-flight (ToF) based photonic mixer device (PMD) camera on an Autonomous Ground Vehicle (AGV) whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D) information at a low computationa...

  18. Autonomous navigation vehicle system based on robot vision and multi-sensor fusion

    Science.gov (United States)

    Wu, Lihong; Chen, Yingsong; Cui, Zhouping

    2011-12-01

    The architecture of autonomous navigation vehicle based on robot vision and multi-sensor fusion technology is expatiated in this paper. In order to acquire more intelligence and robustness, accurate real-time collection and processing of information are realized by using this technology. The method to achieve robot vision and multi-sensor fusion is discussed in detail. The results simulated in several operating modes show that this intelligent vehicle has better effects in barrier identification and avoidance and path planning. And this can provide higher reliability during vehicle running.

  19. Controlling omni-directional Wheels of a MSL RoboCup autonomous mobile robot

    OpenAIRE

    Ribeiro, António Fernando; Moutinho, Ivo; Silva, Pedro; Fraga, Carlos; Pereira, Nino

    2004-01-01

    Autonomous Mobile Locomotion is of extreme importance in RoboCup robots. Even though in 2050 the robotic team will very likely use legs rather than wheels, at the moment all teams on middle size league use wheels to overcome other problems first. Most teams are using two driving wheels (with one or two cast wheels), four driving wheels and even three driving wheels. The Minho team has been using two driving wheels for the last 5 years (with two caster wheels), but for reaction speed optimi...

  20. Analysis of mutual assured destruction-like scenario with swarms of non-recallable autonomous robots

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    This paper considers the implications of the creation of an autonomous robotic fighting force without recall-ability which could serve as a deterrent to a `total war' magnitude attack. It discusses the technical considerations for this type of robotic system and the limited enhancements required to current technologies (particularly UAVs) needed to create such a system. Particular consideration is paid to how the introduction of this type of technology by one actor could create a need for reciprocal development. Also considered is the prospective utilization of this type of technology by non-state actors and the impact of this on state actors.

  1. Temporal Memory Reinforcement Learning for the Autonomous Micro-mobile Robot Based-behavior

    Institute of Scientific and Technical Information of China (English)

    Yang Yujun(杨玉君); Cheng Junshi; Chen Jiapin; Li Xiaohai

    2004-01-01

    This paper presents temporal memory reinforcement learning for the autonomous micro-mobile robot based-behavior. Human being has a memory oblivion process, i.e. the earlier to memorize, the earlier to forget, only the repeated thing can be remembered firmly. Enlightening forms this, and the robot need not memorize all the past states, at the same time economizes the EMS memory space, which is not enough in the MPU of our AMRobot. The proposed algorithm is an extension of the Q-learning, which is an incremental reinforcement learning method. The results of simulation have shown that the algorithm is valid.

  2. Radio Frequency Mapping using an Autonomous Robot: Application to the 2.4 GHz Band

    Science.gov (United States)

    Lebreton, J. M.; Murad, N. M.; Lorion, R.

    2016-03-01

    Radio signal strength measurement systems are essential to build a Radio Frequency (RF) mapping in indoor and outdoor environments for different application scenarios. This paper presents an autonomous robot making the construction of a radio signal mapping, by collecting and forwarding different useful information related to all access point devices and inherent to the robot towards the base station. A real case scenario is considered by measuring the RF field from our department network. The RF signal mapping consistency is shown by fitting the measurements with the radio signal strength model in two-dimensional area, and a path-loss exponent of 2.3 is estimated for the open corridor environment.

  3. Multisensor robotic system for autonomous space maintenance and repair

    Science.gov (United States)

    Abidi, M. A.; Green, W. L.; Chandra, T.; Spears, J.

    1988-01-01

    The feasibility of realistic autonomous space manipulation tasks using multisensory information is demonstrated. The system is capable of acquiring, integrating, and interpreting multisensory data to locate, mate, and demate a Fluid Interchange System (FIS) and a Module Interchange System (MIS). In both cases, autonomous location of a guiding light target, mating, and demating of the system are performed. Implemented visio-driven techniques are used to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. A force/torque sensor continuously monitors the six components of force and torque exerted on the end-effector. Both FIS and MIS experiments were successfully accomplished on mock-ups built for this purpose. The method is immune to variations in the ambient light, in particular because of the 90-minute day-night shift in space.

  4. A study on autonomous pipeline maintenance robot, 4

    International Nuclear Information System (INIS)

    The pipeline maintenance robot Mark III with the inch worm mechanism, presented in the 3rd report, can pass over obstacles on pipelines, such as flanges and T-joints and others. For this motion control, the joint control methods for Mark III, especially the optimal trajectory generation are shown in this report. First, this robot system has the modified dual control mode, A and B with the transfer matrices different from the previous method. The control mode is changed mutually when the basic arm grasping the pipe is changed. Second, the static joint torques are calculated to determine the desired transfer matrix, and a configuration which has the minimum joint torques is selected. Third, an optimal trajectory is generated by dynamic programming in order to control joints from the present angles to the desired angles. It has two criteria : joint torques and position errors. (author)

  5. Positional estimation techniques for an autonomous mobile robot

    Science.gov (United States)

    Nandhakumar, N.; Aggarwal, J. K.

    1990-01-01

    Techniques for positional estimation of a mobile robot navigation in an indoor environment are described. A comprehensive review of the various positional estimation techniques studied in the literature is first presented. The techniques are divided into four different types and each of them is discussed briefly. Two different kinds of environments are considered for positional estimation; mountainous natural terrain and an urban, man-made environment with polyhedral buildings. In both cases, the robot is assumed to be equipped with single visual camera that can be panned and tilted and also a 3-D description (world model) of the environment is given. Such a description could be obtained from a stereo pair of aerial images or from the architectural plans of the buildings. Techniques for positional estimation using the camera input and the world model are presented.

  6. Depth Estimation for Autonomous Robot Navigation: A Comparative Approach

    OpenAIRE

    Diamantas, Sotirios; Oikonomidis, Anastasios; Crowder, Richard

    2010-01-01

    Depth estimation has long been a fundamental problem both in robotics science and in computer vision. Various methods have been developed and implemented in a large number of applications. Despite the rapid progress in the field the last few years, computation remains a significant issue of the methods employed. In this work, we have implemented two different strategies for inferring depth, both of which are computationally efficient. The first one is inspired by biology, that is optical flow...

  7. Lighter than Air Robots Guidance and Control of Autonomous Airships

    CERN Document Server

    Bestaoui Sebbane, Yasmina

    2012-01-01

    An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient autonomy. Lighter than air systems are particularly appealing since the energy to keep them airborne is small. They are increasingly considered for various tasks such as monitoring, surveillance, advertising, freight carrier, transportation. This book familiarizes readers with a hierarchical decoupled planning and control strategy that has been proven efficient through research. It is made up of a hierarchy of modules with well defined functions operating at a variety of rates, linked together from top to bottom. The outer loop, closed periodically, consists of a discrete search that produces a set of waypoints leading to the goal while avoiding obstacles and weighed regions. The sec...

  8. Path tracking control of autonomous agricultural mobile robots

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In a tractor automatic navigation system, path planning plays a significant role in improving operation efficiency. This study aims to create a suboptimal reference course for headland turning of a robot tractor and design a path-tracking controller to guide the robot tractor along the reference course. A time-minimum suboptimal control method was used to generate the reference turning course based on the mechanical parameters of the test tractor. A path-tracking controller consisting of both feedforward and feedback component elements was also proposed. The feedforward component was directly determined by the desired steering angle of the current navigation point on the reference course, whereas the feedback component was derived from the designed optimal controller. Computer simulation and field tests were performed to validate the path-tracking performance. Field test results indicated that the robot tractor followed the reference courses precisely on flat meadow, with average and standard lateral deviations being 0.031 m and 0.086 m, respectively. However, the tracking error increased while operating on sloping meadow due to the employed vehicle kinematic model.

  9. Autonomous navigation system for mobile robots of inspection; Sistema de navegacion autonoma para robots moviles de inspeccion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo S, P. [ITT, Metepec, Estado de Mexico (Mexico); Segovia de los Rios, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: pedrynteam@hotmail.com

    2005-07-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  10. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Tuvshinjargal, Doopalam; Lee, Deok Jin [Kunsan National University, Gunsan (Korea, Republic of)

    2015-06-15

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

  11. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    International Nuclear Information System (INIS)

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments

  12. Road network modeling in open source GIS to manage the navigation of autonomous robots

    Science.gov (United States)

    Mangiameli, Michele; Muscato, Giovanni; Mussumeci, Giuseppe

    2013-10-01

    The autonomous navigation of a robot can be accomplished through the assignment of a sequence of waypoints previously identified in the territory to be explored. In general, the starting point is a vector graph of the network consisting of possible paths. The vector graph can be directly available in the case of actual road networks, or it can be modeled, i.e. on the basis of cartographic supports or, even better, of a digital terrain model (DTM). In this paper we present software procedures developed in Grass-GIS, PostGIS and QGIS environments to identify, model, and visualize a road graph and to extract and normalize sequence of waypoints which can be transferred to a robot for its autonomous navigation.

  13. A real-time distributed software infrastructure for cooperating mobile autonomous robots

    OpenAIRE

    Frederico Santos; Luis Almeida; Paulo Pedreiras; Luis Seabra Lopes

    2009-01-01

    Cooperating mobile autonomous robots have been generating a growing interest in fields such as rescue, demining and security. These applications require a real time middleware and wireless communication protocol that can effecient and timely support the fusion of the distributed perception and the development of coordinated behaviors. This paper proposes an affordable middleware, based on low-cost and open-source COTS technologies, which relies on a real-time database partially replicated in ...

  14. Automated Analysis of Behavioural Variability and Filial Imprinting of Chicks (G. gallus), using Autonomous Robots

    OpenAIRE

    Gribovskiy, A.; Mondada, F.; Deneubourg, J. L.; Cazenille, L.; Bredeche, N.; Halloy, J.

    2015-01-01

    Inter-individual variability has various impacts in animal social behaviour. This implies that not only collective behaviours have to be studied but also the behavioural variability of each member composing the groups. To understand those effects on group behaviour, we develop a quantitative methodology based on automated ethograms and autonomous robots to study the inter-individual variability among social animals. We choose chicks of \\textit{Gallus gallus domesticus} as a classic social ani...

  15. Vers des robots collaboratifs autonomes sûrs de fonctionnement

    OpenAIRE

    Guiochet, Jérémie

    2015-01-01

    This manuscript of HDR (Habilitation à Diriger des Recherches, french accreditation to supervise research) presents research work of Jérémie Guiochet carried out at LAAS-CNRS in the Dependable computing and Fault Tolerance (TSF) team. His research work is mainly related to the dependability of collaborative autonomous robotic systems. Specific challenges raised by these systems, including human-system physical interactions and the presence of uncertainties in the perception and decision mecha...

  16. Design of a prototype autonomous amphibious WHEGS robot for surf-zone operations

    OpenAIRE

    Ward, Jason L.

    2005-01-01

    The Small Robot Initiative at the Naval Postgraduate School (NPS) has spent several years in development based on the Foster Miller lemmings platform. This platform, in conjunction with a commercial off-the-shelf (COTS) control architecture, is capable of autonomous, land based waypoint navigation, self orientation, and rudimentary obstacle avoidance. It can receive waypoint information, manual control input, and transmit video and audio information back to a control station via 802.11 wirel...

  17. Safety verification of a fault tolerant reconfigurable autonomous goal-based robotic control system

    OpenAIRE

    Braman, Julia M. B.; Murray, Richard M.; Wagner, David A.

    2007-01-01

    Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbo...

  18. A Sensory Input System for Autonomous Mobile Robots

    OpenAIRE

    Bixler, J. Patrick; Miller, David P.

    1987-01-01

    In order to accomplish navigation in an similar world a robot must be able to build and update its own world map continuously and in real time. This paper proposes a sensory input system based on the fusion of simple low-resolution vision with directed high-resolution sonar. The basic idea is to use a simple vision system to locate the position in which an obstacle lies, and then use an ultrasonic rangefinder to determine the depth of the object and to gain clues about its shape. By fusing tw...

  19. Modelling and controlling of behaviour for autonomous mobile robots

    CERN Document Server

    Skubch, Hendrik

    2012-01-01

    As research progresses, it enables multi-robot systems to be used in more and more complex and dynamic scenarios. Hence, the question arises how different modelling and reasoning paradigms can be utilised to describe the intended behaviour of a team and execute it in a robust and adaptive manner. Hendrik Skubch presents a solution, ALICA (A Language for Interactive Cooperative Agents) which combines modelling techniques drawn from different paradigms in an integrative fashion. Hierarchies of finite state machines are used to structure the behaviour of the team such that temporal and causal re

  20. Evolution of Simple Behavior Patterns for Autonomous Robotic Agent

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Slušný, Stanislav; Vidnerová, Petra

    -: WSEAS Press, 2007 - (Revetria, R.; Cecchi, A.; Schenone, M.; Mladenov, V.; Zemiak, A.), s. 411-417. (Electrical and Computer Engineering Series). ISBN 978-960-6766-14-5. [ICOSSSE'07. WSEAS International Conference on System Science and Simulation in Engineering /6./. Venice (IT), 21.11.2007-23.11.2007] R&D Projects: GA MŠk(CZ) 1M0567 Grant ostatní: HPC-Europa(EU) RII3-CT-2003-506079 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary robotics * neural networks * behavior patterns Subject RIV: IN - Informatics, Computer Science

  1. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.

    Science.gov (United States)

    Onal, Cagdas D; Rus, Daniela

    2013-06-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s(-1). PMID:23524383

  2. Monocular SLAM for Autonomous Robots with Enhanced Features Initialization

    Directory of Open Access Journals (Sweden)

    Edmundo Guerra

    2014-04-01

    Full Text Available This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM, a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax. These depth estimations are used to solve a related problem with DI-D monocular SLAM, namely, the requirement of a metric scale initialization through known artificial landmarks. The same process is used to improve the performance of the technique when introducing new landmarks into the map. The convenience of the approach taken to the stereo estimation, based on SURF features matching, is discussed. Experimental validation is provided through results from real data with results showing the improvements in terms of more features correctly initialized, with reduced uncertainty, thus reducing scale and orientation drift. Additional discussion in terms of how a real-time implementation could take advantage of this approach is provided.

  3. Monocular SLAM for autonomous robots with enhanced features initialization.

    Science.gov (United States)

    Guerra, Edmundo; Munguia, Rodrigo; Grau, Antoni

    2014-01-01

    This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax. These depth estimations are used to solve a related problem with DI-D monocular SLAM, namely, the requirement of a metric scale initialization through known artificial landmarks. The same process is used to improve the performance of the technique when introducing new landmarks into the map. The convenience of the approach taken to the stereo estimation, based on SURF features matching, is discussed. Experimental validation is provided through results from real data with results showing the improvements in terms of more features correctly initialized, with reduced uncertainty, thus reducing scale and orientation drift. Additional discussion in terms of how a real-time implementation could take advantage of this approach is provided. PMID:24699284

  4. Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty

    Science.gov (United States)

    Armah, Stephen Kofi

    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized

  5. Command and Control Architectures for Autonomous Micro-Robotic Forces - FY-2000 Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean

    2001-04-01

    Advances in Artificial Intelligence (AI) and micro-technologies will soon give rise to production of large-scale forces of autonomous micro-robots with systems of innate behaviors and with capabilities of self-organization and real world tasking. Such organizations have been compared to schools of fish, flocks of birds, herds of animals, swarms of insects, and military squadrons. While these systems are envisioned as maintaining a high degree of autonomy, it is important to understand the relationship of man with such machines. In moving from research studies to the practical deployment of large-scale numbers of robots, one of critical pieces that must be explored is the command and control architecture for humans to re-task and also inject global knowledge, experience, and intuition into the force. Tele-operation should not be the goal, but rather a level of adjustable autonomy and high-level control. If a herd of sheep is comparable to the collective of robots, then the human element is comparable to the shepherd pulling in strays and guiding the herd in the direction of greener pastures. This report addresses the issues and development of command and control for largescale numbers of autonomous robots deployed as a collective force.

  6. On the development a pneumatic four-legged mechanism autonomous vertical wall climbing robot

    International Nuclear Information System (INIS)

    The paper describes the design of a prototype legged mechanism together with suction mechanism, the mechanical design, on-board controller and an initial performance test. The design is implemented in the form of a pneumatically powered multi-legged robot equipped with suction pads at the sole of the feet for wall climbing purpose. The whole mechanism and suction system is controlled by controller which is housed on-board the robot. The gait of the motion depended on the logic control patterns as dictated by the controller. The robot is equipped with sensors both at the front and rear ends that function as an obstacle avoidance facility. Once objects are detected, signals are sent to the controller to start an evasive action that is to move in the opposite direction. The mechanism has been tested and initial results have shown promising potential for an autonomous mobile. (Author)

  7. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    Science.gov (United States)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  8. A control structure for the autonomous locomotion on rough terrain with a hexapod robot

    Institute of Scientific and Technical Information of China (English)

    Chen Fu; Zang Xizhe; Yan Jihong; Zhao Jie

    2010-01-01

    A motion control structure used for autonomous walking on uneven terrain with a hexapod biomimetic robot is proposed based on function-behavior-integration.In the gait planning level, a set of local rules operating between adjacent legs were put forward and the theory of finite state machine was employed to model them; further, a distributed network of local rules was constructed to adaptively adjust the fluctuation of inter-leg phase sequence.While in the leg-end trajectory planning level, combined polynomial curve was adopted to generate foot trajectory, which could realize real-time control of robot posture and accommodation to terrain conditions.In the simulation experiments, adaptive regulation of inter-leg phase sequence, omnidirectional locomotion and ground accommodation were realized, moreover, statically stable free gait was obtained simultaneously, which provided hexapod robot with the capability of walking on slightly irregular terrain reliably and expeditiously.

  9. Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan.

    Science.gov (United States)

    Shiomi, Masahiro; Iio, Takamasa; Kamei, Koji; Sharma, Chandraprakash; Hagita, Norihiro

    2015-01-01

    We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items. PMID:25993038

  10. Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan.

    Directory of Open Access Journals (Sweden)

    Masahiro Shiomi

    Full Text Available We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items.

  11. The investigation of an autonomous intelligent mobile robot system for indoor environment navigation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The autonomous mobile robotics system designed and implemented for indoor environment navigation is a nonholonomic differential drive system with two driving wheels mounted on the same axis driven by two PID controlled motors and two caster wheels mounted in the front and back respectively. It is furnished with multiple kinds of sensors such as IR detectors, ultrasonic sensors, laser line generators and cameras, constituting a per ceiving system for exploring its surroundings. Its computation source is a simultaneously running system com posed of multiprocessor with multitask and multiprocessing programming. Hybrid control architecture is em ployed on the mobile robot to perform complex tasks. The mobile robot system is implemented at the Center for Intelligent Design, Automation and Manufacturing of City University of Hong Kong.

  12. Emergence of Leadership in a Group of Autonomous Robots.

    Directory of Open Access Journals (Sweden)

    Francesco Pugliese

    Full Text Available In this paper we examine the factors contributing to the emergence of leadership in a group, and we explore the relationship between the role of the leader and the behavioural capabilities of other individuals. We use a simulation technique where a group of foraging robots must coordinate to choose between two identical food zones in order to forage collectively. Behavioural and quantitative analysis indicate that a form of leadership emerges, and that groups with a leader are more effective than groups without. Moreover, we show that the most skilled individuals in a group tend to be the ones that assume a leadership role, supporting biological findings. Further analysis reveals the emergence of different "styles" of leadership (active and passive.

  13. Emergence of Leadership in a Group of Autonomous Robots.

    Science.gov (United States)

    Pugliese, Francesco; Acerbi, Alberto; Marocco, Davide

    2015-01-01

    In this paper we examine the factors contributing to the emergence of leadership in a group, and we explore the relationship between the role of the leader and the behavioural capabilities of other individuals. We use a simulation technique where a group of foraging robots must coordinate to choose between two identical food zones in order to forage collectively. Behavioural and quantitative analysis indicate that a form of leadership emerges, and that groups with a leader are more effective than groups without. Moreover, we show that the most skilled individuals in a group tend to be the ones that assume a leadership role, supporting biological findings. Further analysis reveals the emergence of different "styles" of leadership (active and passive). PMID:26340449

  14. Apprentissage de nouveaux comportements: vers le développement épigénétique d'un robot autonome.

    OpenAIRE

    Lagarde, Matthieu; Gaussier, Philippe; Andry, Pierre

    2010-01-01

    The problem of learning behaviors on an autonomous robot raises many issues related to motor control, behavior encoding, behavioral strategies and action selection. Using a developmental approach is of particular interest in the context of autonomous robotics. The behavior of the robot is based on low level mechanisms that together can make more complex behaviors emerge. Moreover, the robot has no a priori information about its own physical characteristics or on its environment, it must learn...

  15. Self Reconfigurable Wireless Networks With Dsdv Protocol Implementation

    Directory of Open Access Journals (Sweden)

    K. Muthulakshmi

    2014-03-01

    Full Text Available In multi hop wireless networks experience frequent link failures caused by channel interference, dynamic obstacles, and/or applications’ bandwidth demands. These failures cause severe performance degradation in wireless networks or require expensive manual network management for their real-time recovery. This paper presents an autonomous network reconfiguration system (ARS with destination sequence distance vector (DSDV protocol that enables a multi radio Wireless network to autonomously recover from local link failures to preserve network performance. By using channel and radio diversities in Wireless networks, ARS generates necessary changes in local radio and channel assignments in order to recover from failures. Next, based on the thus-generated configuration changes, the system cooperatively reconfigures network settings among local mesh router. In this concept during the data transmission if the link fails in between the nodes, the previous node act as the header node. The header node, creating the loop around the neighboring nodes and find the energy efficient path, after finding the path send the data’s towards it to reach the destination. Because of this there is no chance for data losing, Here ARS has been implemented and evaluated extensively on through ns2-based simulation. Our evaluation results show that ARS outperforms existing failure recovery schemes in improving channel-efficiency .

  16. Reliability of EUCLIDIAN: An autonomous robotic system for image-guided prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Podder, Tarun K.; Buzurovic, Ivan; Huang Ke; Showalter, Timothy; Dicker, Adam P.; Yu, Yan [Department of Radiation Oncology, Kimmel Cancer Center (NCI-designated), Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States)

    2011-01-15

    Purpose: Recently, several robotic systems have been developed to perform accurate and consistent image-guided brachytherapy. Before introducing a new device into clinical operations, it is important to assess the reliability and mean time before failure (MTBF) of the system. In this article, the authors present the preclinical evaluation and analysis of the reliability and MTBF of an autonomous robotic system, which is developed for prostate seed implantation. Methods: The authors have considered three steps that are important in reliability growth analysis. These steps are: Identification and isolation of failures, classification of failures, and trend analysis. For any one-of-a-kind product, the reliability enhancement is accomplished through test-fix-test. The authors have used failure mode and effect analysis for collection and analysis of reliability data by identifying and categorizing the failure modes. Failures were classified according to severity. Failures that occurred during the operation of this robotic system were considered as nonhomogenous Poisson process. The failure occurrence trend was analyzed using Laplace test. For analyzing and predicting reliability growth, commonly used and widely accepted models, Duane's model and the Army Material Systems Analysis Activity, i.e., Crow's model, were applied. The MTBF was used as an important measure for assessing the system's reliability. Results: During preclinical testing, 3196 seeds (in 53 test cases) were deposited autonomously by the robot and 14 critical failures were encountered. The majority of the failures occurred during the first few cases. The distribution of failures followed Duane's postulation as well as Crow's postulation of reliability growth. The Laplace test index was -3.82 (<0), indicating a significant trend in failure data, and the failure intervals lengthened gradually. The continuous increase in the failure occurrence interval suggested a trend toward

  17. Cartographie 3D et localisation par vision monoculaire pour la navignation autonome d'un robot mobile

    OpenAIRE

    Royer, Eric

    2006-01-01

    This thesis presents the realization of a localization system for a mobile robot relying on monocular vision. The aim of this project is to be able to make a robot follow a path in autonomous navigation in an urban environment. First, the robot is driven manually. During this learning step, the on board camera records a video sequence. After an off-line processing step, an image taken with the same hardware allows to compute the pose of the robot in real-time. This localization can be used to...

  18. A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.

    Science.gov (United States)

    Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie

    2014-12-01

    Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations. PMID:24760949

  19. Practical, redundant, failure-tolerant, self-reconfiguring embedded system architecture

    Science.gov (United States)

    Klarer, Paul R.; Hayward, David R.; Amai, Wendy A.

    2006-10-03

    This invention relates to system architectures, specifically failure-tolerant and self-reconfiguring embedded system architectures. The invention provides both a method and architecture for redundancy. There can be redundancy in both software and hardware for multiple levels of redundancy. The invention provides a self-reconfiguring architecture for activating redundant modules whenever other modules fail. The architecture comprises: a communication backbone connected to two or more processors and software modules running on each of the processors. Each software module runs on one processor and resides on one or more of the other processors to be available as a backup module in the event of failure. Each module and backup module reports its status over the communication backbone. If a primary module does not report, its backup module takes over its function. If the primary module becomes available again, the backup module returns to its backup status.

  20. Automatic detection and classification of obstacles with applications in autonomous mobile robots

    Science.gov (United States)

    Ponomaryov, Volodymyr I.; Rosas-Miranda, Dario I.

    2016-04-01

    Hardware implementation of an automatic detection and classification of objects that can represent an obstacle for an autonomous mobile robot using stereo vision algorithms is presented. We propose and evaluate a new method to detect and classify objects for a mobile robot in outdoor conditions. This method is divided in two parts, the first one is the object detection step based on the distance from the objects to the camera and a BLOB analysis. The second part is the classification step that is based on visuals primitives and a SVM classifier. The proposed method is performed in GPU in order to reduce the processing time values. This is performed with help of hardware based on multi-core processors and GPU platform, using a NVIDIA R GeForce R GT640 graphic card and Matlab over a PC with Windows 10.

  1. Autonomous robot using infrared thermal camera to discriminate objects in outdoor scene

    Science.gov (United States)

    Caillas, C.

    1990-01-01

    A complete autonomous legged robot is beig designed at Carnegie Mellon University to perform planetary exploration without human supervision. This robot must traverse unknown and geographically diverse areas in order to collect samples of materials. This paper describes how thermal imaging can be used to identify materials in order to find good footfall positions and collection sites of material. First, a model developed for determining the temperature of materials in an outdoor scene is presented. By applying this model, it is shown that it is possible to determine a physical characteristic of the material: thermal inertia. Second, experimental results are described that consist in recording thermal images of an outdoor scene constituted with sand and rock. Third, results and limitations of applying the model to experimental images are analyzed. Finally, the paper analyzes how basic segmentation algorithms can be combined with the thermal inertia segmentation in order to improve the discrimination of different kinds of materials.

  2. RHINO–an autonomous interactive surveillance robot for the needed ones: design and study case

    Directory of Open Access Journals (Sweden)

    Ochoa Michel

    2016-01-01

    Full Text Available Healthcare services are in need of new tools and gadgets that could provide surveillance and people interaction of the needed ones with their surrounding environment. In order to address this problematic, an autonomous-interactive surveillance robot system is proposed in this research. RHINO (Robotic-Human Interface for the Needed Ones was designed under particular normative and will provide commonly needed features in the healthcare field. One of the principal aspects of the device is its particular design which allows the patient to have some privacy under a surveilled environment and without causing any interference in their daily lives. Another main factor is the ability of notifying the care provider or the family of the patient with e-mail or text-sms notifications in case of abnormal activities; so that video access by provider or Skype calls by family relatives could be performed throughout RHINO.

  3. Investigation and development of visual analysis and environment description systems for autonomous manipulative robots

    International Nuclear Information System (INIS)

    This article describes how hardware and software facilities developed for the analysis and description of the environment of autonomous manipulative robots are being used in the development of practical technical vision systems for robots manipulating industrial parts in partially organized environments and with arbitrary three-dimensional scenes. Topics considered include a prototype image input device (IID), an active description system for a limited range of components, and the development of systems for the visual analysis and description of arbitrary three-dimensional scenes consisting of objects of admissible classes (a universal filter for processing brightness and depth images, the representation of a contour image by straight line segments using a Bell approximation, approximation of a collection of points of a depth image by quadratic surfaces)

  4. Concepts of the Internet of Things from the Aspect of the Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Janos Simon

    2015-01-01

    Full Text Available The Internet of Things (IoT is slowly gaining grounds and through the properties of barcodes, QR codes, RFID, active sensors and IPv6, objects are fitted with some form of readability and traceability. People are becoming part of digital global network driven by personal interests. The feeling being part of a community and the constant drive of getting connected from real life finds it continuation in digital networks. This article investigates the concepts of the internet of things from the aspect of the autonomous mobile robots with an overview of the performances of the currently available database systems.

  5. Concept for practical exercises for studying autonomous flying robots in a university environment: part II

    Science.gov (United States)

    Gageik, Nils; Dilger, Erik; Montenegro, Sergio; Schön, Stefan; Wildenhein, Rico; Creutzburg, Reiner; Fischer, Arno

    2015-03-01

    The present paper demonstrates the application of quadcopters as educational material for students in aerospace computer science, as it is already in usage today. The work with quadrotors teaches students theoretical and practical knowledge in the fields of robotics, control theory, aerospace and electrical engineering as well as embedded programming and computer science. For this the material, concept, realization and future view of such a course is discussed in this paper. Besides that, the paper gives a brief overview of student research projects following the course, which are related to the research and development of fully autonomous quadrotors.

  6. Autonomous global sky monitoring with real-time robotic follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Vestrand, W Thomas [Los Alamos National Laboratory; Davis, H [Los Alamos National Laboratory; Wren, J [Los Alamos National Laboratory; Wozniak, P [Los Alamos National Laboratory; Norman, B [Los Alamos National Laboratory; White, R [Los Alamos National Laboratory; Bloch, J [Los Alamos National Laboratory; Fenimore, E [Los Alamos National Laboratory; Hodge, Barry [AFRL; Jah, Moriba [AFRL; Rast, Richard [AFRL

    2008-01-01

    We discuss the development of prototypes for a global grid of advanced 'thinking' sky sentinels and robotic follow-up telescopes that observe the full night sky to provide real-time monitoring of the night sky by autonomously recognizing anomalous behavior, selecting targets for detailed investigation, and making real-time anomaly detection to enable rapid recognition and a swift response to transients as they emerge. This T3 global EO grid avoids the limitations imposed by geography and weather to provide persistent monitoring of the night sky.

  7. Towards Routing for Autonomous Robots - Using Constraint Programming in an Anytime Path Planner

    Czech Academy of Sciences Publication Activity Database

    Barták, R.; Zerola, M.; Slušný, Stanislav

    Vol. 1. Setúbal: SciTePress, 2011 - (Filipe, J.; Fred, A.), s. 313-320 ISBN 978-989-8425-40-9. [ICAART 2011. International Conference on Agents and Artificial Intelligence /3./. Rome (IT), 19.01.2011-21.01.2011] R&D Projects: GA AV ČR KJB100300804 Grant ostatní: GA ČR(CZ) GAP202/10/1188; GA MŠk(CZ) LC07048; GA MŠk(CZ) LA09013 Institutional research plan: CEZ:AV0Z10300504 Keywords : vehicle rouiting * autonomous robot s * constraint programming * optimisation Subject RIV: IN - Informatics, Computer Science

  8. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo

    Science.gov (United States)

    Dong, Gangqi; Zhu, Zheng H.

    2016-05-01

    This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.

  9. Optical 3D laser measurement system for navigation of autonomous mobile robot

    Science.gov (United States)

    Básaca-Preciado, Luis C.; Sergiyenko, Oleg Yu.; Rodríguez-Quinonez, Julio C.; García, Xochitl; Tyrsa, Vera V.; Rivas-Lopez, Moises; Hernandez-Balbuena, Daniel; Mercorelli, Paolo; Podrygalo, Mikhail; Gurko, Alexander; Tabakova, Irina; Starostenko, Oleg

    2014-03-01

    In our current research, we are developing a practical autonomous mobile robot navigation system which is capable of performing obstacle avoiding task on an unknown environment. Therefore, in this paper, we propose a robot navigation system which works using a high accuracy localization scheme by dynamic triangulation. Our two main ideas are (1) integration of two principal systems, 3D laser scanning technical vision system (TVS) and mobile robot (MR) navigation system. (2) Novel MR navigation scheme, which allows benefiting from all advantages of precise triangulation localization of the obstacles, mostly over known camera oriented vision systems. For practical use, mobile robots are required to continue their tasks with safety and high accuracy on temporary occlusion condition. Presented in this work, prototype II of TVS is significantly improved over prototype I of our previous publications in the aspects of laser rays alignment, parasitic torque decrease and friction reduction of moving parts. The kinematic model of the MR used in this work is designed considering the optimal data acquisition from the TVS with the main goal of obtaining in real time, the necessary values for the kinematic model of the MR immediately during the calculation of obstacles based on the TVS data.

  10. Localization of non-linearly modeled autonomous mobile robots using out-of-sequence measurements.

    Science.gov (United States)

    Besada-Portas, Eva; Lopez-Orozco, Jose A; Lanillos, Pablo; de la Cruz, Jesus M

    2012-01-01

    This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost. PMID:22736962

  11. Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements

    Directory of Open Access Journals (Sweden)

    Jesus M. de la Cruz

    2012-02-01

    Full Text Available This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.

  12. An enhanced dynamic Delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation

    Science.gov (United States)

    Chen, Jun; Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Tang, Yipeng

    2010-01-01

    An enhanced dynamic Delaunay Triangulation-based (DT) path planning approach is proposed for mobile robots to plan and navigate a path successfully in the context of the Autonomous Challenge of the Intelligent Ground Vehicle Competition (www.igvc.org). The Autonomous Challenge course requires the application of vision techniques since it involves path-based navigation in the presence of a tightly clustered obstacle field. Course artifacts such as switchbacks, ramps, dashed lane lines, trap etc. are present which could turn the robot around or cause it to exit the lane. The main contribution of this work is a navigation scheme based on dynamic Delaunay Triangulation (DDT) that is heuristically enhanced on the basis of a sense of general lane direction. The latter is computed through a "GPS (Global Positioning System) tail" vector obtained from the immediate path history of the robot. Using processed data from a LADAR, camera, compass and GPS unit, a composite local map containing both obstacles and lane line segments is built up and Delaunay Triangulation is continuously run to plan a path. This path is heuristically corrected, when necessary, by taking into account the "GPS tail" . With the enhancement of the Delaunay Triangulation by using the "GPS tail", goal selection is successfully achieved in a majority of situations. The robot appears to follow a very stable path while navigating through switchbacks and dashed lane line situations. The proposed enhanced path planning and GPS tail technique has been successfully demonstrated in a Player/Stage simulation environment. In addition, tests on an actual course are very promising and reveal the potential for stable forward navigation.

  13. Behaviorist-based control of an autonomous skid-steer robot using threshold fuzzy systems

    Science.gov (United States)

    Overholt, James L.; Cheok, K. C.; Smid, G. Edzko

    2001-09-01

    This paper describes a method of acquiring behaviorist-based reactive control strategies for an autonomous skid-steer robot operating in an unknown environment. First, a detailed interactive simulation of the robot (including simplified vehicle kinematics, sensors and a randomly generated environment) is developed with the capability of a human driver supplying all control actions. We then introduce a new modular, neural-fuzzy system called Threshold Fuzzy Systems (TFS). A TFS has two unique features that distinguish it from traditional fuzzy logic and neural network systems; (1) the rulebase of a TFS contains only single antecedent, single consequence rules, called a Behaviorist Fuzzy Rulebase (BFR) and (2) a highly structured adaptive node network, called a Rule Dominance Network (RDN), is added to the fuzzy logic inference engine. Each rule in the BFR is a direct mapping of an input sensor to a system output. Connection nodes in the RDN occur when rules in the BFR are conflicting. The nodes of the RDN contain functions that are used to suppress the output of other conflicting rules in the BFR. Supervised training, using error backpropagation, is used to find the optimal parameters of the dominance functions. The usefulness of the TFS approach becomes evident when examining an autonomous vehicle system (AVS). In this paper, a TFS controller is developed for a skid-steer AVS. Several hundred simulations are conducted and results for the AVS with a traditional fuzzy controller and with a TFS controller are compared.

  14. Demonstration of a Spoken Dialogue Interface for Planning Activities of a Semi-autonomous Robot

    Science.gov (United States)

    Dowding, John; Frank, Jeremy; Hockey, Beth Ann; Jonsson, Ari; Aist, Gregory

    2002-01-01

    Planning and scheduling in the face of uncertainty and change pushes the capabilities of both planning and dialogue technologies by requiring complex negotiation to arrive at a workable plan. Planning for use of semi-autonomous robots involves negotiation among multiple participants with competing scientific and engineering goals to co-construct a complex plan. In NASA applications this plan construction is done under severe time pressure so having a dialogue interface to the plan construction tools can aid rapid completion of the process. But, this will put significant demands on spoken dialogue technology, particularly in the areas of dialogue management and generation. The dialogue interface will need to be able to handle the complex dialogue strategies that occur in negotiation dialogues, including hypotheticals and revisions, and the generation component will require an ability to summarize complex plans. This demonstration will describe a work in progress towards building a spoken dialogue interface to the EUROPA planner for the purposes of planning and scheduling the activities of a semi-autonomous robot. A prototype interface has been built for planning the schedule of the Personal Satellite Assistant (PSA), a mobile robot designed for micro-gravity environments that is intended for use on the Space Shuttle and International Space Station. The spoken dialogue interface gives the user the capability to ask for a description of the plan, ask specific questions about the plan, and update or modify the plan. We anticipate that a spoken dialogue interface to the planner will provide a natural augmentation or alternative to the visualization interface, in situations in which the user needs very targeted information about the plan, in situations where natural language can express complex ideas more concisely than GUI actions, or in situations in which a graphical user interface is not appropriate.

  15. GNC architecture for autonomous robotic capture of a non-cooperative target: Preliminary concept design

    Science.gov (United States)

    Jankovic, Marko; Paul, Jan; Kirchner, Frank

    2016-04-01

    Recent studies of the space debris population in low Earth orbit (LEO) have concluded that certain regions have already reached a critical density of objects. This will eventually lead to a cascading process called the Kessler syndrome. The time may have come to seriously consider active debris removal (ADR) missions as the only viable way of preserving the space environment for future generations. Among all objects in the current environment, the SL-8 (Kosmos 3M second stages) rocket bodies (R/Bs) are some of the most suitable targets for future robotic ADR missions. However, to date, an autonomous relative navigation to and capture of an non-cooperative target has never been performed. Therefore, there is a need for more advanced, autonomous and modular systems that can cope with uncontrolled, tumbling objects. The guidance, navigation and control (GNC) system is one of the most critical ones. The main objective of this paper is to present a preliminary concept of a modular GNC architecture that should enable a safe and fuel-efficient capture of a known but uncooperative target, such as Kosmos 3M R/B. In particular, the concept was developed having in mind the most critical part of an ADR mission, i.e. close range proximity operations, and state of the art algorithms in the field of autonomous rendezvous and docking. In the end, a brief description of the hardware in the loop (HIL) testing facility is made, foreseen for the practical evaluation of the developed architecture.

  16. Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms

    Science.gov (United States)

    Wong, Edmond; Saad, Ashraf; Litt, Jonathan S.

    2007-01-01

    The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms.

  17. Design and simulation of a motion controller for a wheeled mobile-robot autonomous navigation

    Science.gov (United States)

    Alhaj Ali, Souma M.; Hall, Ernest L.

    2005-10-01

    This paper describes the development of PD, PID Computed-Torque (CT), and a PD digital motion controller for the autonomous navigation of a Wheeled Mobile Robot (WMR) in outdoor environments. The controllers select the suitable control torques, so that the WMR follows the desired path produced from a navigation algorithm described in a previous paper. PD CT, PID CT, and PD digital controllers were developed using a linear system design procedure to select the feedback control signal that stabilizes the tracking error equation. The torques needed for the motors were computed by using the inverse of the dynamic equation for the WMR. Simulation software was developed to simulate the performance and efficiency of the controllers. Simulation results verified the effectiveness of the controllers under different motion trajectories, comparing the performance of the three controllers shows that the PD digital controller was the best where the tracking error did not exceed .05 using 20 msec sample period. The significance of this work lies in the development of CT and digital controllers for WMR navigation, instead of robot manipulators. These CT controllers will facilitate the use of WMRs in many applications including defense, industrial, personal, and medical robots.

  18. A Novel Robust Scene Change Detection Algorithm for Autonomous Robots Using Mixtures of Gaussians

    Directory of Open Access Journals (Sweden)

    Luis J. Manso

    2014-02-01

    Full Text Available Interest in change detection techniques has considerably increased during recent years in the field of autonomous robotics. This is partly because changes in a robot’s working environment are useful for several robotic skills (e.g., spatial cognition, modelling or navigation and applications (e.g., surveillance or guidance robots. Changes are usually detected by comparing current data provided by the robot’s sensors with a previously known map or model of the environment. When the data consists of a large point cloud, dealing with it is a computationally expensive task, mainly due to the amount of points and the redundancy. Using Gaussian Mixture Models (GMM instead of raw point clouds leads to a more compact feature space that can be used to efficiently process the input data. This allows us to successfully segment the set of 3D points acquired by the sensor and reduce the computational load of the change detection algorithm. However, the segmentation of the environment as a Mixture of Gaussians has some problems that need to be properly addressed. In this paper, a novel change detection algorithm is described in order to improve the robustness and computational cost of previous approaches. The proposal is based on the classic Expectation Maximization (EM algorithm, for which different selection criteria are evaluated. As demonstrated in the experimental results section, the proposed change detection algorithm achieves the detection of changes in the robot’s working environment faster and more accurately than similar approaches.

  19. Recognition and automatic tracking of weld line in fringe welding by autonomous mobile robot with visual sensor

    International Nuclear Information System (INIS)

    An autonomous mobile robot with visual sensor and four driving axes for welding of pipe and fringe was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to perform welding automatically, the tip of welding torch can track the weld line of the joint by rotating the robot head. In the case of welding of pipe and fringe, the robot can detect the contact angle between the two base metals to be welded, and the torch angle changes according to the contact angle. As the result of tracking test by the robot system, it was made clear that the recognition of geometry of the joint by the laser lighting method and automatic tracking of weld line were possible. The average tracking error was ±0.3 mm approximately and the torch angle could be always kept at the optimum angle. (author)

  20. A Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Aizzat Zakaria

    2013-08-01

    Full Text Available Trajectory tracking is an important aspect of autonomous vehicles. The idea behind trajectory tracking is the ability of the vehicle to follow a predefined path with zero steady state error. The difficulty arises due to the nonlinearity of vehicle dynamics. Therefore, this paper proposes a stable tracking control for an autonomous vehicle. An approach that consists of steering wheel control and lateral control is introduced. This control algorithm is used for a non-holonomic navigation problem, namely tracking a reference trajectory in a closed loop form. A proposed future prediction point control algorithm is used to calculate the vehicle’s lateral error in order to improve the performance of the trajectory tracking. A feedback sensor signal from the steering wheel angle and yaw rate sensor is used as feedback information for the controller. The controller consists of a relationship between the future point lateral error, the linear velocity, the heading error and the reference yaw rate. This paper also introduces a spike detection algorithm to track the spike error that occurs during GPS reading. The proposed idea is to take the advantage of the derivative of the steering rate. This paper aims to tackle the lateral error problem by applying the steering control law to the vehicle, and proposes a new path tracking control method by considering the future coordinate of the vehicle and the future estimated lateral error. The effectiveness of the proposed controller is demonstrated by a simulation and a GPS experiment with noisy data. The approach used in this paper is not limited to autonomous vehicles alone since the concept of autonomous vehicle tracking can be used in mobile robot platforms, as the kinematic model of these two platforms is similar.

  1. Autonomous charging to enable long-endurance missions for small aerial robots

    Science.gov (United States)

    Mulgaonkar, Yash; Kumar, Vijay

    2014-06-01

    The past decade has seen an increased interest towards research involving Autonomous Micro Aerial Vehicles (MAVs). The predominant reason for this is their agility and ability to perform tasks too difficult or dangerous for their human counterparts and to navigate into places where ground robots cannot reach. Among MAVs, rotary wing aircraft such as quadrotors have the ability to operate in confined spaces, hover at a given point in space and perch1 or land on a flat surface. This makes the quadrotor a very attractive aerial platform giving rise to a myriad of research opportunities. The potential of these aerial platforms is severely limited by the constraints on the flight time due to limited battery capacity. This in turn arises from limits on the payload of these rotorcraft. By automating the battery recharging process, creating autonomous MAVs that can recharge their on-board batteries without any human intervention and by employing a team of such agents, the overall mission time can be greatly increased. This paper describes the development, testing, and implementation of a system of autonomous charging stations for a team of Micro Aerial Vehicles. This system was used to perform fully autonomous long-term multi-agent aerial surveillance experiments with persistent station keeping. The scalability of the algorithm used in the experiments described in this paper was also tested by simulating a persistence surveillance scenario for 10 MAVs and charging stations. Finally, this system was successfully implemented to perform a 9½ hour multi-agent persistent flight test. Preliminary implementation of this charging system in experiments involving construction of cubic structures with quadrotors showed a three-fold increase in effective mission time.

  2. A field robot for autonomous laser-based N2O flux measurements

    Science.gov (United States)

    Molstad, Lars; Reent Köster, Jan; Bakken, Lars; Dörsch, Peter; Lien, Torgrim; Overskeid, Øyvind; Utstumo, Trygve; Løvås, Daniel; Brevik, Anders

    2014-05-01

    N2O measurements in multi-plot field trials are usually carried out by chamber-based manual gas sampling and subsequent laboratory-based gas chromatographic N2O determination. Spatial and temporal resolution of these measurements are commonly limited by available manpower. However, high spatial and temporal variability of N2O fluxes within individual field plots can add large uncertainties to time- and area-integrated flux estimates. Detailed mapping of this variability would improve these estimates, as well as help our understanding of the factors causing N2O emissions. An autonomous field robot was developed to increase the sampling frequency and to operate outside normal working hours. The base of this system was designed as an open platform able to carry versatile instrumentation. It consists of an electrically motorized platform powered by a lithium-ion battery pack, which is capable of autonomous navigation by means of a combined high precision real-time kinematic (RTK) GPS and an inertial measurement unit (IMU) system. On this platform an elevator is mounted, carrying a lateral boom with a static chamber on each side of the robot. Each chamber is equipped with a frame of plastic foam to seal the chamber when lowered onto the ground by the elevator. N2O flux from the soil covered by the two chambers is sequentially determined by circulating air between each chamber and a laser spectrometer (DLT-100, Los Gatos Research, Mountain View, CA, USA), which monitors the increase in N2O concentration. The target enclosure time is 1 - 2 minutes, but may be longer when emissions are low. CO2 concentrations are determined by a CO2/H2O gas analyzer (LI-840A, LI-COR Inc., Lincoln, NE, USA). Air temperature and air pressure inside both chambers are continuously monitored and logged. Wind speed and direction are monitored by a 3D sonic anemometer on top of the elevator boom. This autonomous field robot can operate during day and night time, and its working hours are only

  3. Low power and self-reconfigurable WBAN controller for continuous bio-signal monitoring system.

    Science.gov (United States)

    Lee, Seulki; Yoo, Hoi-Jun

    2013-04-01

    The WBAN controller with Branched Bus (BB) topology and Continuous Data Transmission (CDT) protocol with low power consumption and self-reconfigurability is proposed for wearable healthcare applications. The BB topology and CDT protocol is a combination of conventional Bus and Star topology and a variation from TDMA protocol, respectively, while they are able to compensate for the electrical fault in bio-signal monitoring system caused by the electrode deformation. Thanks to them, the proposed WBAN controller enables more reliable operation in continuous bio-signal monitoring applications such as sleep monitoring. PMID:23853300

  4. Self-localization for an autonomous mobile robot based on an omni-directional vision system

    Science.gov (United States)

    Chiang, Shu-Yin; Lin, Kuang-Yu; Chia, Tsorng-Lin

    2013-12-01

    In this study, we designed an autonomous mobile robot based on the rules of the Federation of International Robotsoccer Association (FIRA) RoboSot category, integrating the techniques of computer vision, real-time image processing, dynamic target tracking, wireless communication, self-localization, motion control, path planning, and control strategy to achieve the contest goal. The self-localization scheme of the mobile robot is based on the algorithms featured in the images from its omni-directional vision system. In previous works, we used the image colors of the field goals as reference points, combining either dual-circle or trilateration positioning of the reference points to achieve selflocalization of the autonomous mobile robot. However, because the image of the game field is easily affected by ambient light, positioning systems exclusively based on color model algorithms cause errors. To reduce environmental effects and achieve the self-localization of the robot, the proposed algorithm is applied in assessing the corners of field lines by using an omni-directional vision system. Particularly in the mid-size league of the RobotCup soccer competition, selflocalization algorithms based on extracting white lines from the soccer field have become increasingly popular. Moreover, white lines are less influenced by light than are the color model of the goals. Therefore, we propose an algorithm that transforms the omni-directional image into an unwrapped transformed image, enhancing the extraction features. The process is described as follows: First, radical scan-lines were used to process omni-directional images, reducing the computational load and improving system efficiency. The lines were radically arranged around the center of the omni-directional camera image, resulting in a shorter computational time compared with the traditional Cartesian coordinate system. However, the omni-directional image is a distorted image, which makes it difficult to recognize the

  5. Fast mapping of the local environment of an autonomous mobile robot

    International Nuclear Information System (INIS)

    The construction of a map of the local world for the navigation of an autonomous mobile robot leads to the following problem: how to extract among the sensor data information accurate an reliable enough to plan a path, in a way that enables a reasonable displacement speed. Choice has been made not to tele-operate the vehicle nor to design any custom architecture. So the only way to match the computational cost is to look for the most efficient sensor-algorithms-architecture combination. A good solution is described in this study, using a laser range-finder, a grid model of the world and both SIMD and MIMD parallel processors. A short review of some possible approaches is made first; the mapping algorithms are then described as also the parallel implementations with the corresponding speedup and efficiency factors. (author)

  6. Autonomous trajectory generation for mobile robots with non-holonomic and steering angle constraints

    International Nuclear Information System (INIS)

    This paper presents an approach to the trajectory planning of mobile platforms characterized by non-holonomic constraints and constraints on the steering angle and steering angle rate. The approach is based on geometric reasoning and provides deterministic trajectories for all pairs of initial and final configurations (position x, y, and orientation θ) of the robot. Furthermore, the method generates trajectories taking into account the forward and reverse mode of motion of the vehicle, or combination of these when complex maneuvering is involved or when the environment is obstructed with obstacles. The trajectory planning algorithm is described, and examples of trajectories generated for a variety of environmental conditions are presented. The generation of the trajectories only takes a few milliseconds of run time on a micro Vax, making the approach quite attractive for use as a real-time motion planner for teleoperated or sensor-based autonomous vehicles in complex environments. 10 refs., 11 figs

  7. Pseudo-bacterial Potential Field Based Path Planner for Autonomous Mobile Robot Navigation

    Directory of Open Access Journals (Sweden)

    Ulises Orozco-Rosas

    2015-07-01

    Full Text Available This paper introduces the pseudo-bacterial potential field (PBPF as a new path planning method for autonomous mobile robot navigation. The PBPF allows us to obtain an optimal and safe path, in contrast to the classical potential field approach which is not suitable for path planning because it lacks a means of obtaining the optimal proportional gains. The PBPF uses the pseudo-bacterial genetic algorithm (PBGA and a fitness function based on the potential field concepts to construct viable paths in dynamical environments to mostly result in the optimal path being obtained. Comparative experiments of sequential and parallel implementations of the PBPF for off-line and online in structured and unstructured conditions are presented; the results are contrasted with the artificial potential field (APF method to demonstrate how the PBPF proposal overcomes the traditional method.

  8. Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

    Science.gov (United States)

    Lacaze, Alberto; Meystel, Michael; Meystel, Alex

    1994-01-01

    This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.

  9. A ToF-camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing, and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera’s performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  10. A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots

    Science.gov (United States)

    Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il “Dan”

    2016-01-01

    This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%. PMID:26938540

  11. A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots.

    Science.gov (United States)

    Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il Dan

    2016-01-01

    This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%. PMID:26938540

  12. Active model-based balancing strategy for self-reconfigurable batteries

    Science.gov (United States)

    Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter

    2016-08-01

    This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.

  13. Teaching and implementing autonomous robotic lab walkthroughs in a biotech laboratory through model-based visual tracking

    Science.gov (United States)

    Wojtczyk, Martin; Panin, Giorgio; Röder, Thorsten; Lenz, Claus; Nair, Suraj; Heidemann, Rüdiger; Goudar, Chetan; Knoll, Alois

    2010-01-01

    After utilizing robots for more than 30 years for classic industrial automation applications, service robots form a constantly increasing market, although the big breakthrough is still awaited. Our approach to service robots was driven by the idea of supporting lab personnel in a biotechnology laboratory. After initial development in Germany, a mobile robot platform extended with an industrial manipulator and the necessary sensors for indoor localization and object manipulation, has been shipped to Bayer HealthCare in Berkeley, CA, USA, a global player in the sector of biopharmaceutical products, located in the San Francisco bay area. The determined goal of the mobile manipulator is to support the off-shift staff to carry out completely autonomous or guided, remote controlled lab walkthroughs, which we implement utilizing a recent development of our computer vision group: OpenTL - an integrated framework for model-based visual tracking.

  14. On the design of neuro-controllers for individual and social learning behaviour in autonomous robots: an evolutionary approach

    Science.gov (United States)

    Pini, Giovanni; Tuci, Elio

    2008-06-01

    In biology/psychology, the capability of natural organisms to learn from the observation/interaction with conspecifics is referred to as social learning. Roboticists have recently developed an interest in social learning, since it might represent an effective strategy to enhance the adaptivity of a team of autonomous robots. In this study, we show that a methodological approach based on artifcial neural networks shaped by evolutionary computation techniques can be successfully employed to synthesise the individual and social learning mechanisms for robots required to learn a desired action (i.e. phototaxis or antiphototaxis).

  15. Bio-inspired decision making system for an autonomous social robot: the role of fear

    OpenAIRE

    Castro González, Álvaro

    2012-01-01

    Robotics is an emergent field which is currently in vogue. In the near future, many researchers anticipate the spread of robots coexisting with humans in the real world. This requires a considerable level of autonomy in robots. Moreover, in order to provide a proper interaction between robots and humans without technical knowledge, these robots must behave according to the social and cultural norms. This results in social robots with cognitive capabilities inspired by biological organisms suc...

  16. Intelligent behavior generator for autonomous mobile robots using planning-based AI decision making and supervisory control logic

    Science.gov (United States)

    Shah, Hitesh K.; Bahl, Vikas; Martin, Jason; Flann, Nicholas S.; Moore, Kevin L.

    2002-07-01

    In earlier research the Center for Self-Organizing and Intelligent Systems (CSOIS) at Utah State University (USU) have been funded by the US Army Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program to develop and demonstrate enhanced mobility concepts for unmanned ground vehicles (UGVs). One among the several out growths of this work has been the development of a grammar-based approach to intelligent behavior generation for commanding autonomous robotic vehicles. In this paper we describe the use of this grammar for enabling autonomous behaviors. A supervisory task controller (STC) sequences high-level action commands (taken from the grammar) to be executed by the robot. It takes as input a set of goals and a partial (static) map of the environment and produces, from the grammar, a flexible script (or sequence) of the high-level commands that are to be executed by the robot. The sequence is derived by a planning function that uses a graph-based heuristic search (A* -algorithm). Each action command has specific exit conditions that are evaluated by the STC following each task completion or interruption (in the case of disturbances or new operator requests). Depending on the system's state at task completion or interruption (including updated environmental and robot sensor information), the STC invokes a reactive response. This can include sequencing the pending tasks or initiating a re-planning event, if necessary. Though applicable to a wide variety of autonomous robots, an application of this approach is demonstrated via simulations of ODIS, an omni-directional inspection system developed for security applications.

  17. Modélisation incrémentale et localisation par amers pour la navigation d'un robot mobile autonome en environnement naturel

    OpenAIRE

    Betge-Brezetz, Stéphane

    1996-01-01

    This thesis deals with natural environment modelling and autonomous mobile robot localisation. The environment, unknown or partially known, is incrementally perceived by the robot with a 3D sensor (laser range finder or stereovision). Application of this work are intervention mobile robotics and planetary exploration. A first part specifies the properties that the environment model should possess and provides a critical analysis of the different representations studied in the litterature. The...

  18. Evolutionary Autonomous Health Monitoring System (EAHMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's Robotics, Tele-Robotics and Autonomous Systems Roadmap, we are proposing the "Evolutionary Autonomous Health Monitoring System" (EAHMS) for...

  19. Adjustably Autonomous Multi-agent Plan Execution with an Internal Spacecraft Free-Flying Robot Prototype

    Science.gov (United States)

    Dorais, Gregory A.; Nicewarner, Keith

    2006-01-01

    We present an multi-agent model-based autonomy architecture with monitoring, planning, diagnosis, and execution elements. We discuss an internal spacecraft free-flying robot prototype controlled by an implementation of this architecture and a ground test facility used for development. In addition, we discuss a simplified environment control life support system for the spacecraft domain also controlled by an implementation of this architecture. We discuss adjustable autonomy and how it applies to this architecture. We describe an interface that provides the user situation awareness of both autonomous systems and enables the user to dynamically edit the plans prior to and during execution as well as control these agents at various levels of autonomy. This interface also permits the agents to query the user or request the user to perform tasks to help achieve the commanded goals. We conclude by describing a scenario where these two agents and a human interact to cooperatively detect, diagnose and recover from a simulated spacecraft fault.

  20. Agent, autonomous

    OpenAIRE

    Luciani, Annie

    2007-01-01

    The expression autonomous agents, widely used in virtual reality, computer graphics, artificial intelligence and artificial life, corresponds to the simulation of autonomous creatures, virtual (i.e. totally computed by a program), or embodied in a physical envelope, as done in autonomous robots.

  1. Distributed Robotics Education

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept...... of a distributed educational system as a valuable tool for introducing students to interactive parallel and distributed processing programming as the foundation for distributed robotics and human-robot interaction development. This is done by providing an educational tool that enables problem representation...... to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity...

  2. The UJI online robot: a distributed architecture for pattern recognition, autonomous grasping and augmented reality

    OpenAIRE

    Marín Prades, Raúl

    2002-01-01

    The thesis has been developed at the Intelligent Robotics Laboratory of the University Jaume I (Spain). The objectives are focused on the laboratory's interest fields, which are Telerobotics, Human-Robot Interaction, Manipulation, Visual Servoing, and Service Robotics in general.Basically, the work has consisted of designing and implementing a whole vision based robotic system to control an educational robot via web, by using voice commands like "Grasp the object one" or "Grasp the cube". Our...

  3. Architecture Design and Optimization of an On-the-Fly Reconfigurable Parallel Robot

    OpenAIRE

    Finistauri, Allan Daniel; Petz, Brian; Fengfeng,

    2008-01-01

    A novel method for the architecture design of a reconfigurable parallel robot is presented based on common actuation devices. System design techniques are used to classify parallel robot modules and enumeration rules are established to determine the feasible robot architectures. Branch kinematics are developed and a workspace analysis is performed. An optimal design is selected from the remaining discrete robot configurations. The final design is a self-reconfigurable parallel robot that has ...

  4. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    Science.gov (United States)

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a

  5. Control Algorithms and Simulated Environment Developed and Tested for Multiagent Robotics for Autonomous Inspection of Propulsion Systems

    Science.gov (United States)

    Wong, Edmond

    2005-01-01

    The NASA Glenn Research Center and academic partners are developing advanced multiagent robotic control algorithms that will enable the autonomous inspection and repair of future propulsion systems. In this application, on-wing engine inspections will be performed autonomously by large groups of cooperative miniature robots that will traverse the surfaces of engine components to search for damage. The eventual goal is to replace manual engine inspections that require expensive and time-consuming full engine teardowns and allow the early detection of problems that would otherwise result in catastrophic component failures. As a preliminary step toward the long-term realization of a practical working system, researchers are developing the technology to implement a proof-of-concept testbed demonstration. In a multiagent system, the individual agents are generally programmed with relatively simple controllers that define a limited set of behaviors. However, these behaviors are designed in such a way that, through the localized interaction among individual agents and between the agents and the environment, they result in self-organized, emergent group behavior that can solve a given complex problem, such as cooperative inspection. One advantage to the multiagent approach is that it allows for robustness and fault tolerance through redundancy in task handling. In addition, the relatively simple agent controllers demand minimal computational capability, which in turn allows for greater miniaturization of the robotic agents.

  6. Hand-eye LRF-based Iterative Plane Detection Method for Autonomous Robotic Welding

    Directory of Open Access Journals (Sweden)

    Sungmin Lee

    2015-12-01

    Full Text Available This paper proposes a hand-eye LRF-based (laser range finder welding plane-detection method for autonomous robotic welding in the field of shipbuilding. The hand-eye LRF system consists of a 6 DOF manipulator and an LRF attached to the wrist of the manipulator. The welding plane is detected by the LRF with only the wrist’s rotation to minimize a mechanical error caused by the manipulator’s motion. A position on the plane is determined as an average position of the detected points on the plane, and a normal vector to the plane is determined by applying PCA (principal component analysis to the detected points. In this case, the accuracy of the detected plane is analysed by simulations with respect to the wrist’s angle interval and the plane angle. As a result of the analysis, an iterative plane-detection method with the manipulator’s alignment motion is proposed to improve the performance of plane detection. For verifying the feasibility and effectiveness of the proposed plane-detection method, experiments are carried out with a prototype of the hand-eye LRF-based system, which consists of a 1 DOF wrist’s joint, an LRF system and a rotatable plane. In addition, the experimental results of the PCA-based plane detection method are compared with those of the two representative plane-detection methods, based on RANSAC (RANdom SAmple Consensus and the 3D Hough transform in both accuracy and computation time’s points of view.

  7. ARK-2: a mobile robot that navigates autonomously in an industrial environment

    International Nuclear Information System (INIS)

    ARK-2 is a robot that uses a vision system based on a camera and spot laser rangefinder mounted on a pan and tilt unit for navigation. This vision system recognizes known landmarks and computes its position relative to them, thus bounding the error in its position. The vision system is also used to find known gauges, given their approximate locations, and takes readings from them. 'Approximate' in this context means the same sort of accuracy that a human would need: 'down aisle 3 on the right' suffices. ARK-2 is also equipped with the FAD (Floor Anomaly Detector) which is based on the NRC (National Research Council of Canada) BIRIS (Bi-IRIS) sensor, and keeps ARK-2 from failing into open drains or trying to negotiate large cables or pipes on the floor. ARK-2 has also been equipped with a variety of application sensors for security and safety patrol applications. Radiation sensors are used to produce contour maps of radiation levels. In order to detect fires, environmental changes and intruders, ARK-2 is equipped with smoke, temperature, humidity and gas sensors, scanning ultraviolet and infrared detectors and a microwave motion detector. In order to support autonomous, untethered operation for hours at a time, ARK-2 also has onboard systems for power, sonar-based obstacle detection, computation and communications. The project uses a UNIX environment for software development, with the onboard SPARC processor appearing as just another workstation on the LAN. Software modules include the hardware drivers, path planning, navigation, emergency stop, obstacle mapping and status monitoring. ARK-2 may also be controlled from a ROBCAD simulation. (author)

  8. Conception de structures neuronales pour le contrôle de robots mobiles autonomes

    OpenAIRE

    Mondada, Francesco; Nicoud, Jean-Daniel

    2008-01-01

    There is a large number of possible applications in the field of mobile robotics: Mail delivery robots, domestic or industrial vacuum cleaners, surveillance robots, demining robots and many others could be very interesting products. Despite this potential market and the actual technology, only few simple systems are commercially available. This proves that there are several important and problematic issues in this field, mainly at the intelligence level. As a reaction to the failure of the cl...

  9. Off-Shore Robotics: Robust and Optimal Solutions for Autonomous Operation

    OpenAIRE

    From, Pål Johan

    2010-01-01

    The vast majority of research in the field of robotics has over the last few decades shifted from industrial robots—in the sense of robots mounted in a structured environment such as a factory floor—to robots operating in unstructured and harsh environments. Even though industrial robotics has become a mature research field we believe that there is still room for progress and improvement. In fact, we show this through both theoretical advances and experimental results in this thesis. However,...

  10. IMPLEMENTATION OF AUTONOMOUS NAVIGATION ALGORITHMS ON TWO-WHEELED GROUND MOBILE ROBOT

    OpenAIRE

    Stephen Armah; Sun Yi; Taher Abu-Lebdeh

    2014-01-01

    This study presents an effective navigation architecture that combines ‘go-to-goal’, ‘avoid-obstacle’ and ‘follow-wall’ controllers into a full navigation system. A MATLAB robot simulator is used to implement this navigation control algorithm. The robot in the simulator moves to a goal in the presence of convex and non-convex obstacles. Experiments are carried out using a ground mobile robot, Dr Robot X80SV, in a typical office environment to verify success...

  11. Design and Implementation an Autonomous Humanoid Robot Based on Fuzzy Rule-Based Motion Controller

    OpenAIRE

    Mohsen Taheri; S. A. Monadjemi; S. Alireza Mohades Kasaei; S. Mohammadreza Mohades Kasaei; S. Hamidreza Mohades Kasaei

    2010-01-01

    Research on humanoid robotics in Mechatronics and Automation Laboratory, Electrical and Computer Engineering, Islamic Azad University Khorasgan branch (Isfahan) of Iran was started at
    the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. This paper describes the hardware and software design of the kid size humanoid robot systems of the PERSIA Team in 2009. The robot has 20 actuated degrees ...

  12. Bilateral human-robot control for semi-autonomous UAV navigation

    NARCIS (Netherlands)

    Wopereis, Han W.; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2015-01-01

    This paper proposes a semi-autonomous bilateral control architecture for unmanned aerial vehicles. During autonomous navigation, a human operator is allowed to assist the autonomous controller of the vehicle by actively changing its navigation parameters to assist it in critical situations, such as

  13. On the Use of Safety Certification Practices in Autonomous Field Robot Software Development

    DEFF Research Database (Denmark)

    Mogensen, Johann Thor Ingibergsson; Schultz, Ulrik Pagh; Kuhrmann, Marco

    2015-01-01

    Robotics has recently seen an increasing development, and the areas addressed within robotics has extended into domains we consider safety-critical, fostering the development of standards that facilitate the development of safe robots. Safety standards describe concepts to maintain desired reacti...

  14. Assessing the Impact of an Autonomous Robotics Competition for STEM Education

    Science.gov (United States)

    Chung, C. J. ChanJin; Cartwright, Christopher; Cole, Matthew

    2014-01-01

    Robotics competitions for K-12 students are popular, but are students really learning and improving their STEM scores through robotics competitions? If not, why not? If they are, how much more effective is learning through competitions than traditional classes? Is there room for improvement? What is the best robotics competition model to maximize…

  15. The Assemble and Animate Control Framework for Modular Reconfigurable Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Schultz, Ulrik Pagh; Moghadam, Mikael

    2011-01-01

    This paper describes the “Assemble and Animate” (ASE) control framework. The objective of ASE is to provide a flexible and extendable control framework, which facilitates rapid development and deployment of modular reconfigurable robots. ASE includes a simple event-driven application framework, a...... planetary contingency, adaptive locomotion, self-reconfiguration, and tangible behavior-based programming....

  16. Posture estimation for autonomous weeding robots navigation in nursery tree plantations

    DEFF Research Database (Denmark)

    Khot, Law Ramchandra; Tang, Lie; Blackmore, Simon;

    2005-01-01

    The presented research aims at developing a sensor fusion technique for navigational posture estimation for a skid-steered mobile robot vehicle in nursery tree plantations. RTK-GPS and Fiber Optic Gyroscope sensors were used for determining the position and orientation of the robot vehicle. An...

  17. Operator-centered control of a semi-autonomous industrial robot

    Energy Technology Data Exchange (ETDEWEB)

    Spelt, P.F. [Oak Ridge National Lab., TN (United States); Jones, S.L. [REMOTEC, Inc., Oak Ridge, TN (United States)

    1994-12-31

    This paper presents work done by Oak Ridge National Laboratory and Remotec, Inc., to develop a new operator-centered control system for Remotec`s Andros telerobot. Andros robots are presently used by numerous electric utilities, the armed forces, and numerous law enforcement agencies to perform tasks which are hazardous for human operators. This project has automated task components and enhanced the video graphics display of the robot`s position in the environment to significantly reduce operator workload. The procedure of automating a telerobot requires the addition of computer power to the robot, along with a variety of sensors and encoders to provide information about the robots performance in and relationship to its environment The resulting vehicle serves as a platform for research on strategies to integrate automated tasks with those performed by a human operator. The addition of these capabilities will greatly enhance the safety and efficiency of performance in hazardous environments.

  18. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  19. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  20. Application of autonomous robotics to surveillance of waste storage containers for radioactive surface contamination

    International Nuclear Information System (INIS)

    This paper describes a proof-of-principal demonstration performed with the HERMIES-III mobile robot to automate the inspection of waste storage drums for radioactive surface contamination and thereby reduce the human burden of operating a robot and worker exposure to potentially hazardous environments. Software and hardware for the demonstration were developed by a team consisting of Oak Ridge National Laboratory, and the Universities of Florida, Michigan, Tennessee, and Texas. Robot navigation, machine vision, manipulator control, parallel processing and human-machine interface techniques developed by the team were demonstrated utilizing advanced computer architectures. The demonstration consists of over 100,000 lines of computer code executing on nine computers

  1. Regulation on Safety and civil Liability of intelligent autonomous Robots: the case of smart Cars

    OpenAIRE

    Cappelli, Maria Assunta

    2015-01-01

    Nowadays science and technology offer us artificial intelligence (AI) “embodied” in robots. They are able to self-learn, self-organize and self-reproduce, thanks to genetic algorithms, artificial neural networks and other tools. The focus of this research includes results from the diffusion of a social phenomenon consisting in the application of robots in the most disparate realities (industrial and domestic). Robotics is the AI branch whose aim is to build machines that are able “to feel, to...

  2. The Embudito Mission: A Case Study of the Systematics of Autonomous Ground Mobile Robots; TOPICAL

    International Nuclear Information System (INIS)

    Ground mobile robots are much in the mind of defense planners at this time, being considered for a significant variety of missions with a diversity ranging from logistics supply to reconnaissance and surveillance. While there has been a very large amount of basic research funded in the last quarter century devoted to mobile robots and their supporting component technologies, little of this science base has been fully developed and deployed--notable exceptions being NASA's Mars rover and several terrestrial derivatives. The material in this paper was developed as a first exemplary step in the development of a more systematic approach to the R and D of ground mobile robots

  3. Integrated Positioning System of Autonomous Underwater Robot and Its Application in High Latitudes of Arctic Zone

    OpenAIRE

    Inzartsev, Alexander; Kamorniy, Alexander; Kiselyov, Lev; Matviyenko, Yury; Rylov, Nicolay; Rylov, Roman; Vaulin, Yury

    2010-01-01

    1. An autonomous unmanned underwater vehicle for scientific research was used for the first time in the world history under ice in the Arctic polar latitudes. The possibility of its use for bottom characteristics research was practically proved.

  4. Multi-sensor integration for autonomous robots in nuclear power plants

    International Nuclear Information System (INIS)

    As part of a concerted RandD program in advanced robotics for hazardous environments, scientists and engineers at the Oak Ridge National Laboratory (ORNL) are performing research in the areas of systems integration, range-sensor-based 3-D world modeling, and multi-sensor integration. This program features a unique teaming arrangement that involves the universities of Florida, Michigan, Tennessee, and Texas; Odetics Corporation; and ORNL. This paper summarizes work directed at integrating information extracted from data collected with range sensors and CCD cameras on-board a mobile robot, in order to produce reliable descriptions of the robot's environment. Specifically, the paper describes the integration of two-dimensional vision and sonar range information, and an approach to integrate registered luminance and laser range images. All operations are carried out on-board the mobile robot using a 16-processor hypercube computer. 14 refs., 4 figs

  5. Operator-centered control of a semi-autonomous industrial robot

    International Nuclear Information System (INIS)

    This paper presents work done by Oak Ridge National Laboratory and Remotec, Inc., to develop a new operator-centered control system for Remotec's Andros telerobot. Andros robots are presently used by numerous electric utilities, the armed forces, and numerous law enforcement agencies to perform tasks which are hazardous for human operators. This project has automated task components and enhanced the video graphics display of the robot's position in the environment to significantly reduce operator workload. The procedure of automating a telerobot requires the addition of computer power to the robot, along with a variety of sensors and encoders to provide information about the robots performance in and relationship to its environment The resulting vehicle serves as a platform for research on strategies to integrate automated tasks with those performed by a human operator. The addition of these capabilities will greatly enhance the safety and efficiency of performance in hazardous environments

  6. IMPLEMENTATION OF AUTONOMOUS NAVIGATION ALGORITHMS ON TWO-WHEELED GROUND MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    Stephen Armah

    2014-01-01

    Full Text Available This study presents an effective navigation architecture that combines ‘go-to-goal’, ‘avoid-obstacle’ and ‘follow-wall’ controllers into a full navigation system. A MATLAB robot simulator is used to implement this navigation control algorithm. The robot in the simulator moves to a goal in the presence of convex and non-convex obstacles. Experiments are carried out using a ground mobile robot, Dr Robot X80SV, in a typical office environment to verify successful implementation of the navigation architecture algorithm programmed in MATLAB. The research paper also demonstrates algorithms to achieve tasks such as ‘move to a point’, ‘move to a pose’, ‘follow a line’, ‘move in a circle’ and ‘avoid obstacles’. These control algorithms are simulated using Simulink models.

  7. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion

    OpenAIRE

    Manfredi, L.; Assaf, T.; Mintchev, S.; Marrazza, S.; Capantini, L.; Orofino, S.; Ascari, L.; Grillner, Sten; Wallén, Peter; Ekeberg, Örjan; Stefanini, C.; Dario, Paulo

    2013-01-01

    The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neur...

  8. When Children Teach a Robot to Write: An Autonomous Teachable Humanoid Which Uses Simulated Handwriting

    OpenAIRE

    Hood, Deanna; Lemaignan, Séverin; Dillenbourg, Pierre

    2015-01-01

    This article presents a novel robotic partner which children can teach handwriting. The system relies on the learning by teaching paradigm to build an interaction, so as to stimulate meta-cognition, empathy and increased self-esteem in the child user. We hypothesise that use of a humanoid robot in such a system could not just engage an unmotivated student, but could also present the opportunity for children to experience physically-induced benefits encountered during human-led handwriting int...

  9. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2011-01-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  10. Research project RoboGas{sup Inspector}. Gas leak detection with autonomous mobile robots; Forschungsprojekt RoboGas{sup Inspector}. Gaslecksuche mit autonomen mobilen Robotern

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Abdelkarim [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Bonow, Gero; Kroll, Andreas [Fachgebiet Mess- und Regelungstechnik, Universitaet Kassel, Kassel (Germany); Hegenberg, Jens; Schmidt, Ludger [Fachgebiet Mensch-Maschine-Systemtechnik, Universitaet Kassel, Kassel (Germany); Barz, Thomas; Schulz, Dirk [Fraunhofer FKIE, Unbemannte Systeme, Wachtberg (Germany)

    2013-05-15

    As part of the promotional program AUTONOMIK of the Federal Ministry of Economics and Technology (Berlin, Federal Republic of Germany) a consortium of nine project partners developed a prototype of an autonomous mobile robot looking for gas leaks in extended industrial equipment. The autonomous mobility of the system for any systems was implemented using different types of sensors for self-localization and navigation. The tele-operation enables a manual intervention in the process. The robot performs inspection tasks in industrial plants by means of video technology and remote gas measurement technology without driving into the possible risk areas and without the presence of humans. The robot can be used for routine inspections of facilities or for the targeted inspection of specific plant components. Thanks to the remote sensing technique also plant components can be inspected which are difficult to be inspected due to their limited accessibility by conventional measurement techniques.

  11. Robotics.

    Science.gov (United States)

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  12. Self-reconfigurable ship fluid-network modeling for simulation-based design

    Science.gov (United States)

    Moon, Kyungjin

    Our world is filled with large-scale engineering systems, which provide various services and conveniences in our daily life. A distinctive trend in the development of today's large-scale engineering systems is the extensive and aggressive adoption of automation and autonomy that enable the significant improvement of systems' robustness, efficiency, and performance, with considerably reduced manning and maintenance costs, and the U.S. Navy's DD(X), the next-generation destroyer program, is considered as an extreme example of such a trend. This thesis pursues a modeling solution for performing simulation-based analysis in the conceptual or preliminary design stage of an intelligent, self-reconfigurable ship fluid system, which is one of the concepts of DD(X) engineering plant development. Through the investigations on the Navy's approach for designing a more survivable ship system, it is found that the current naval simulation-based analysis environment is limited by the capability gaps in damage modeling, dynamic model reconfiguration, and simulation speed of the domain specific models, especially fluid network models. As enablers of filling these gaps, two essential elements were identified in the formulation of the modeling method. The first one is the graph-based topological modeling method, which will be employed for rapid model reconstruction and damage modeling, and the second one is the recurrent neural network-based, component-level surrogate modeling method, which will be used to improve the affordability and efficiency of the modeling and simulation (M&S) computations. The integration of the two methods can deliver computationally efficient, flexible, and automation-friendly M&S which will create an environment for more rigorous damage analysis and exploration of design alternatives. As a demonstration for evaluating the developed method, a simulation model of a notional ship fluid system was created, and a damage analysis was performed. Next, the models

  13. Information-driven self-organization: the dynamical system approach to autonomous robot behavior.

    Science.gov (United States)

    Ay, Nihat; Bernigau, Holger; Der, Ralf; Prokopenko, Mikhail

    2012-09-01

    In recent years, information theory has come into the focus of researchers interested in the sensorimotor dynamics of both robots and living beings. One root for these approaches is the idea that living beings are information processing systems and that the optimization of these processes should be an evolutionary advantage. Apart from these more fundamental questions, there is much interest recently in the question how a robot can be equipped with an internal drive for innovation or curiosity that may serve as a drive for an open-ended, self-determined development of the robot. The success of these approaches depends essentially on the choice of a convenient measure for the information. This article studies in some detail the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process. The PI of a process quantifies the total information of past experience that can be used for predicting future events. However, the application of information theoretic measures in robotics mostly is restricted to the case of a finite, discrete state-action space. This article aims at applying the PI in the dynamical systems approach to robot control. We study linear systems as a first step and derive exact results for the PI together with explicit learning rules for the parameters of the controller. Interestingly, these learning rules are of Hebbian nature and local in the sense that the synaptic update is given by the product of activities available directly at the pertinent synaptic ports. The general findings are exemplified by a number of case studies. In particular, in a two-dimensional system, designed at mimicking embodied systems with latent oscillatory locomotion patterns, it is shown that maximizing the PI means to recognize and amplify the latent modes of the robotic system. This and many other examples show that the learning rules derived from the maximum PI principle are a versatile tool for the self

  14. Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2008-11-01

    Full Text Available This paper presents an auto-climbing robot for cleaning the elliptic half-shell of National Grand Theatre in China. The robot consists of a climbing mechanism, a moving mechanism, two cleaning brushes and supporting mechanisms. The mechanism and unique aspects are presented in detail. A distributed control system based on CAN bus is designed to meet the requirements of controlling the robot. After that the emphasis for discussion is on the motion realization which includes climbing and cleaning movements. The robot independently climbs and descends in the vertical direction and cleans in the horizontal direction. It takes the circling tracks as supports for climbing up and down between strips and moving horizontally along one strip around the ellipsoid. For system design and control purposes, the dynamic models of the climbing and cleaning processes are given applying of the Lagrange equation. Furthermore the force distribution of the front and rear supporting mechanisms is computed in a way that ensures the safety of the climbing process. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  15. Virtual Simulator for Autonomous Mobile Robots Navigation System Using Concepts of Control Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Leonimer Flavio de Melo

    2013-09-01

    Full Text Available This work presents the proposal of virtual environment implementation for project simulation and conception of supervision and control systems for mobile robots, that are capable to operate and adapting in different environments and conditions. This virtual system has as purpose to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with real time monitoring of all important system points. For this, open control architecture is proposal, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module and of a analysis module of results and errors. The kinematic and dynamic simulator module makes all simulation of the mobile robot following the pre-determined trajectory of the trajectory generator. All the kinematic and dynamic results shown during the simulation can be evaluated and visualized in graphs and tables formats, in the results analysis module, allowing an improvement in the system, minimizing the errors with the necessary adjustments optimization. For controller implementation in the embedded system, it uses the rapid prototyping, which is the technology that allows, in set with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplishing with nonholonomics mobile robots models with differential transmission.

  16. Generating Self-Reliant Teams of Autonomous Cooperating Robots: Desired design Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1999-05-01

    The difficulties in designing a cooperative team are significant. Several of the key questions that must be resolved when designing a cooperative control architecture include: How do we formulate, describe, decompose, and allocate problems among a group of intelligent agents? How do we enable agents to communicate and interact? How do we ensure that agents act coherently in their actions? How do we allow agents to recognize and reconcile conflicts? However, in addition to these key issues, the software architecture must be designed to enable multi-robot teams to be robust, reliable, and flexible. Without these capabilities, the resulting robot team will not be able to successfully deal with the dynamic and uncertain nature of the real world. In this extended abstract, we first describe these desired capabilities. We then briefly describe the ALLIANCE software architecture that we have previously developed for multi-robot cooperation. We then briefly analyze the ALLIANCE architecture in terms of the desired design qualities identified.

  17. Auto Landing Process for Autonomous Flying Robot by Using Image Processing Based on Edge Detection

    Directory of Open Access Journals (Sweden)

    Bahram Lavi Sefidgari

    2014-01-01

    Full Text Available In today’s technological life, everyone is quite familiar with the importance of security measures in our lives. So in this regard, many attempts have been made by researchers and one of them is flying robots technology. One well-known usage of flying robot, perhaps, is its capability in security and care measurements which made this device extremely practical, not only for its unmanned movement, but also for the unique manoeuvre during flight over the arbitrary areas. In this research, the automatic landing of a flying robot is discussed. The system is based on the frequent interruptions that is sent from main microcontroller to camera module in order to take images; these images have been distinguished by image processing system based on edge detection, after analysing the image the system can tell whether or not to land on the ground. This method shows better performance in terms of precision as well as experimentally.

  18. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    Science.gov (United States)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  19. Creative Engineering Based Education with Autonomous Robots Considering Job Search Support

    Science.gov (United States)

    Takezawa, Satoshi; Nagamatsu, Masao; Takashima, Akihiko; Nakamura, Kaeko; Ohtake, Hideo; Yoshida, Kanou

    The Robotics Course in our Mechanical Systems Engineering Department offers “Robotics Exercise Lessons” as one of its Problem-Solution Based Specialized Subjects. This is intended to motivate students learning and to help them acquire fundamental items and skills on mechanical engineering and improve understanding of Robotics Basic Theory. Our current curriculum was established to accomplish this objective based on two pieces of research in 2005: an evaluation questionnaire on the education of our Mechanical Systems Engineering Department for graduates and a survey on the kind of human resources which companies are seeking and their expectations for our department. This paper reports the academic results and reflections of job search support in recent years as inherited and developed from the previous curriculum.

  20. Behavior generation strategy of artificial behavioral system by self-learning paradigm for autonomous robot tasks

    Science.gov (United States)

    Dağlarli, Evren; Temeltaş, Hakan

    2008-04-01

    In this study, behavior generation and self-learning paradigms are investigated for the real-time applications of multi-goal mobile robot tasks. The method is capable to generate new behaviors and it combines them in order to achieve multi goal tasks. The proposed method is composed from three layers: Behavior Generating Module, Coordination Level and Emotion -Motivation Level. Last two levels use Hidden Markov models to manage dynamical structure of behaviors. The kinematics and dynamic model of the mobile robot with non-holonomic constraints are considered in the behavior based control architecture. The proposed method is tested on a four-wheel driven and four-wheel steered mobile robot with constraints in simulation environment and results are obtained successfully.

  1. Toward autonomous car driving by a humanoid robot: A sensor-based framework

    OpenAIRE

    Paolillo, Antonio; Cherubini, Andrea; Keith, François; Kheddar, Abderrahmane; Vendittelli, Marilena

    2014-01-01

    We present results from a car driving experience by humanoid robot HRP-4 within a video game setup. To achieve the complete car driving task with a humanoid robot, it is necessary to develop a set of basic action primitives, including: walking to the vehicle, manually controlling its commands (ignition, accelerator and steering), and moving with the whole-body, for car ingress/egress. In this paper, we propose an approach for realizing the central part of the complete task, consisting in driv...

  2. Embodied, On-line, On-board Evolution for Autonomous Robotics

    OpenAIRE

    Eiben, A.E.; Haasdijk, Evert; Bredeche, Nicolas

    2010-01-01

    Artificial evolution plays an important role in several robotics projects. Most commonly, an evolutionary algorithm (EA) is used as a heuristic optimiser to solve some engineering problem, for instance an EA is used to find good robot controller. In these applications the human designers/experimenters orchestrate and manage the whole evolutionary problem solving process and incorporate the end result –that is, the (near-)optimal solution evolved by the EA– into the system as part of the deploym...

  3. Real-time Needle Steering in Response to Rolling Vein Deformation by a 9-DOF Image-Guided Autonomous Venipuncture Robot

    Science.gov (United States)

    Chen, Alvin I.; Balter, Max L.; Maguire, Timothy J.; Yarmush, Martin L.

    2015-01-01

    Venipuncture is the most common invasive medical procedure performed in the United States and the number one cause of hospital injury. Failure rates are particularly high in pediatric and elderly patients, whose veins tend to deform, move, or roll as the needle is introduced. To improve venipuncture accuracy in challenging patient populations, we have developed a portable device that autonomously servos a needle into a suitable vein under image guidance. The device operates in real time, combining near-infrared and ultrasound imaging, computer vision software, and a 9 degrees-of-freedom robot that servos the needle. In this paper, we present the kinematic and mechanical design of the latest generation robot. We then investigate in silico and in vitro the mechanics of vessel rolling and deformation in response to needle insertions performed by the robot. Finally, we demonstrate how the robot can make real-time adjustments under ultrasound image guidance to compensate for subtle vessel motions during venipuncture. PMID:26779381

  4. Enhancement Performance of Road Recognition System of Autonomous Robots in Shadow Scenario

    Directory of Open Access Journals (Sweden)

    Olusanya Y. Agunbiade

    2013-12-01

    Full Text Available Road region recognition is a main feature that is g aining increasing attention from intellectuals beca use it helps autonomous vehicle to achieve a successful na vigation without accident. However, different techniques based on camera sensor have been used by various researchers and outstanding results have been achieved. Despite their success, environmental noise like shadow leads to inaccurate recognition of road region which eventually leads to accident for autonomous vehicle. In this research, we conducted an investigation on shadow and its effects, optimized the road region recognition system of autonomous vehicle by introducing an algorithm capable of dete cting and eliminating the effects of shadow. The experimental performance of our system was tested a nd compared using the following schemes: Total Positive Rate (TPR, False Negative Rate (FNR, Tot al Negative Rate (TNR, Error Rate (ERR and False Positive Rate (FPR. The performance result of the system improved on road recognition in shadow scenario and this advancement has added tremendousl y to successful navigation approaches for autonomous vehicle

  5. Enhancement Performance of Road Recognition System of Autonomous Robots in Shadow Scenario

    Directory of Open Access Journals (Sweden)

    Olusanya Y. Agunbiade

    2013-12-01

    Full Text Available Road region recognition is a main feature that is g aining increasing attention from intellectuals beca use it helps autonomous vehicle to achieve a successful na vigation without accident. However, different techniques based on camera sensor have been used by various researchers and outstanding results have been achieved. Despite their success, environmental noise like shadow leads to inaccurate recognition of road region which eventually leads to accident for autonomous vehicle. In this research, we conducted an investigation on shadow and its effects, optimized the road region recognition system of autonomous vehicle by introducing an algorithm capable of dete cting and eliminating the effects of shadow. The experimental performance of our system was tested a nd compared using the following schemes: Total Positive Rate (TPR, False Negative Rate (FNR, Tot al Negative Rate (TNR, Error Rate (ERR and False Positive Rate (FPR. The performance result of the system improved on road recognition in shadow scenario and this advancement has added tremendousl y to successful navigation approaches for autonomous vehicle .

  6. Approaching Complexity through Planful Play: Kindergarten Children's Strategies in Constructing an Autonomous Robot's Behavior

    Science.gov (United States)

    Levy, S. T.; Mioduser, D.

    2010-01-01

    This study investigates how young children master, construct and understand intelligent rule-based robot behaviors, focusing on their strategies in gradually meeting the tasks' complexity. The wider aim is to provide a comprehensive map of the kinds of transitions and learning that take place in constructing simple emergent behaviors, particularly…

  7. Flexible, fpga-based electronics for modular robots

    DEFF Research Database (Denmark)

    Brandt, David; Larsen, Jørgen Christian; Christensen, David Johan;

    2008-01-01

    In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays (FPGAs). The immediate advantage of using FPGAs is that some of the module’s electronics can be moved into the FPGA, thereby the number of components can be reduced. In the case...... the FPGA and therefore integrate task-specific electronics without physically changing the electronics or we can reconfigure the electronics for specific tasks. The disadvantages of an FPGA-based design include the cost of FPGAs, the extra layer of complexity in programming, and a limited increase in power...... consumption compared to micro-controllers. However, overall FPGAs make the electronics of modular robots more flexible and therefore may make them more suitable for real applications. AB - In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays...

  8. Artificial cognitive systems: from concept to the development of intelligent behaviours in autonomous robotics

    OpenAIRE

    Sabourin, Christophe

    2016-01-01

    Les travaux présentés dans le cadre de cette habilitation à diriger des recherches s’appuient sur le principe de la robotique développementale et plus particulièrement sur le paradigme de l’énaction. L’idée n’est donc pas de développer un robot intelligent, mais plutôt de concevoir un robot qui soit capable de le devenir. L’originalité du travail présenté dans ce mémoire repose sur le fait que le système cognitif artificiel est décomposé en deux parties distinctes : la première regroupe des p...

  9. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking

    Institute of Scientific and Technical Information of China (English)

    Hamza KHAN; Jamshed IQBAL; Khelifa BAIZID; Teresa ZIELINSKA

    2015-01-01

    This research formulates a path-following control problem subjected to wheel slippage and skid and solves it using a logic-based control scheme for a wheeled mobile robot (WMR). The novelty of the proposed scheme lies in its methodology that considers both longitudinal and lateral slip components. Based on the derived slip model, the controller for longitudinal motion slip has been synthesized. Various control parameters have been studied to investigate their effects on the performance of the controller resulting in selection of their optimum values. The designed controller for lateral slip or skid is based on the proposed side friction model and skid check condition. Considering a car-like WMR, simulation results demonstrate the effectiveness of the proposed control scheme. The robot successfully followed the desired circular trajectory in the presence of wheel slippage and skid. This research finds its potential in various applications involving WMR navigation and control.

  10. 3-D world modeling based on combinatorial geometry for autonomous robot navigation

    International Nuclear Information System (INIS)

    In applications of robotics to surveillance and mapping at nuclear facilities the scene to be described is three-dimensional. Using range data a 3-D model of the environment can be built. First, each measured point on the object surface is surrounded by a solid sphere with a radius determined by the range to that point. Then the 3-D shapes of the visible surfaces are obtained by taking the (Boolean) union of the spheres. Using this representation distances to boundary surfaces can be efficiently calculated. This feature is particularly useful for navigation purposes. The efficiency of the proposed approach is illustrated by a simulation of a spherical robot navigating in a 3-D room with static obstacles

  11. A LabVIEW-based Autonomous Vehicle Navigation System using Robot Vision and Fuzzy Control

    OpenAIRE

    Ramírez-Cortés J.M.; Gómez-Gil P.; Martínez-Carballido J.; López-Larios F.

    2011-01-01

    This paper describes a navigation system for an autonomous vehicle using machine vision techniques applied to real-time captured images of the track, for academic purposes. The experiment consists of the automatic navigation of a remote control car through a closed circuit. Computer vision techniques are used for the sensing of the environment through a wireless camera. The received images are captured into the computer through the acquisition card NI USB-6009, and processed in a system devel...

  12. A Global Navigation Management Architecture Applied to Autonomous Robots in Urban Environments

    OpenAIRE

    Kenmogne, Ide-Flore; Alves De Lima, Danilo; Corrêa Victorino, Alessandro

    2015-01-01

    This paper presents a global behavioral architecture used as a coordinator for the global navigation of an autonomous vehicle in an urban context including traffic laws and other features. As an extension to our previous work, the approach presented here focuses on how this manager uses perceived information (from low cost cameras and laser scanners) combined with digital road-map data to take decisions. This decision consists in retrieving the car's state regarding the global navigation goal...

  13. Anthropocentric-based robotic and autonomous systems: assessment for new organisational options

    OpenAIRE

    Moniz, António

    2010-01-01

    Text based on the paper presented at the Conference "Autonomous systems: inter-relations of technical and societal issues" held at Monte de Caparica (Portugal), Universidade Nova de Lisboa, November, 5th and 6th 2009 and organized by IET-Research Centre on Enterprise and Work Innovation Research activities at European level on the concept of new working environments offers considerable attention to the challenges of the increased competencies of people working together with automated techn...

  14. Representing Patterns of autonomous agent dynamics in multi-robot systems

    OpenAIRE

    Johnson, Jeffrey; Price, Blaine

    2003-01-01

    It is proposed that vocabularies for representing complex systems with interacting agents have a natural lattice hierarchical structure. We investigate this for the example of simulated robot soccer, using data taken from the RoboCup simulation competition. Lattice hierarchies provide symbolic representations for reasoning about systems at appropriate levels. We note the difference between relational constructs being human supplied versus systems that abstract their own constructs autonomo...

  15. Implementation of Directional Control System for Autonomous Robot Based on Voice Command Controller

    OpenAIRE

    Han Nilar Htay; Hla Myo Tun

    2014-01-01

    The main idea of this research is to process analog voice signal. The paper is implemented for controlling the robot by voice command. The implemented system involves voice recognition unit, digital data processing unit with DC switching section. The proposed system consists of a microcontroller and a voice recognition processor that can recognize a limited number of voice patterns. This is voice based guidance system, which uses the special voice recognition IC HM2007 for speech enhancement....

  16. A Concept of Dynamically Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics.

    OpenAIRE

    De Cabrol, Aymeric; Garcia, Thibault; Bonnin, Patrick; Chetto, Maryline

    2007-01-01

    International audience Abstract: In this article, we describe specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC based hardware architecture is convenient in this field because of its versatility, its flexibility, its performance and its cost, current real-time operating systems are not completely adapted to long processings with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactio...

  17. Field Study of a Physical Game for Older Adults Based on an Autonomous, Mobile Robot

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Rasmussen, Dorte Malig; Bak, Thomas

    2012-01-01

    This paper presents an initial, qualitative study on how a game based on a mobile robot with an expressive head can be used as a physical activity for elderly. The game is investigated in two independent field studies - one in a nursing home and one in a rehabilitation centre for elderly using an...... about their game play patterns and get ideas about future improvements of the game....

  18. IkeaBot: An autonomous multi-robot coordinated furniture assembly system

    OpenAIRE

    Knepper, Ross A.; Layton, Todd; Romanishin, John William; Rus, Daniela L.

    2013-01-01

    We present an automated assembly system that directs the actions of a team of heterogeneous robots in the completion of an assembly task. From an initial user-supplied geometric specification, the system applies reasoning about the geometry of individual parts in order to deduce how they fit together. The task is then automatically transformed to a symbolic description of the assembly-a sort of blueprint. A symbolic planner generates an assembly sequence that can be executed by a team of coll...

  19. Novel Microbial Diversity Retrieved by Autonomous Robotic Exploration of the World's Deepest Vertical Phreatic Sinkhole

    Science.gov (United States)

    Sahl, Jason W.; Fairfield, Nathaniel; Harris, J. Kirk; Wettergreen, David; Stone, William C.; Spear, John R.

    2010-03-01

    The deep phreatic thermal explorer (DEPTHX) is an autonomous underwater vehicle designed to navigate an unexplored environment, generate high-resolution three-dimensional (3-D) maps, collect biological samples based on an autonomous sampling decision, and return to its origin. In the spring of 2007, DEPTHX was deployed in Zacatón, a deep (˜318 m), limestone, phreatic sinkhole (cenote) in northeastern Mexico. As DEPTHX descended, it generated a 3-D map based on the processing of range data from 54 onboard sonars. The vehicle collected water column samples and wall biomat samples throughout the depth profile of the cenote. Post-expedition sample analysis via comparative analysis of 16S rRNA gene sequences revealed a wealth of microbial diversity. Traditional Sanger gene sequencing combined with a barcoded-amplicon pyrosequencing approach revealed novel, phylum-level lineages from the domains Bacteria and Archaea; in addition, several novel subphylum lineages were also identified. Overall, DEPTHX successfully navigated and mapped Zacatón, and collected biological samples based on an autonomous decision, which revealed novel microbial diversity in a previously unexplored environment.

  20. Implementation of Directional Control System for Autonomous Robot Based on Voice Command Controller

    Directory of Open Access Journals (Sweden)

    Han Nilar Htay

    2014-10-01

    Full Text Available The main idea of this research is to process analog voice signal. The paper is implemented for controlling the robot by voice command. The implemented system involves voice recognition unit, digital data processing unit with DC switching section. The proposed system consists of a microcontroller and a voice recognition processor that can recognize a limited number of voice patterns. This is voice based guidance system, which uses the special voice recognition IC HM2007 for speech enhancement. It also generates different desired signals according to the spoken words which further used to control the movement of robot. The microcontroller used is PIC16F877A, to give the instructions to the robot for its operation. Backup power is included in this research to retain the voice commands while the system is powered off. The R.F transmitter and receiver are used here, for the wireless transmission purpose. The constructed system can be commanded in the voice of English as well as Myanmar.

  1. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.

    Science.gov (United States)

    Manfredi, L; Assaf, T; Mintchev, S; Marrazza, S; Capantini, L; Orofino, S; Ascari, L; Grillner, S; Wallén, P; Ekeberg, O; Stefanini, C; Dario, P

    2013-10-01

    The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neuroscience. In this article, we present a biomimetic system inspired by the lamprey, an early vertebrate that locomotes using anguilliform swimming. The artefact possesses extra- and proprioceptive sensory receptors, muscle-like actuation, distributed embedded control and a vision system. Experiments on optimised swimming and on goal-directed locomotion are reported, as well as the assessment of the performance of the system, which shows high energy efficiency and adaptive behaviour. While the focus is on providing a robotic platform for testing biological models, the reported system can also be of major relevance for the development of engineering system applications. PMID:24030051

  2. A Concept of Dynamically Reconfigurable Real-time Vision System for Autonomous Mobile Robotics

    Institute of Scientific and Technical Information of China (English)

    Aymeric De Cabrol; Thibault Garcia; Patrick Bonnin; Maryline Chetto

    2008-01-01

    This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cleopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing chain to an exceptional everlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.

  3. An Extremely Low Power Quantum Optical Communication Link for Autonomous Robotic Explorers

    Science.gov (United States)

    Lekki, John; Nguyen, Quang-Viet; Bizon, Tom; Nguyen, Binh; Kojima, Jun

    2007-01-01

    One concept for planetary exploration involves using many small robotic landers that can cover more ground than a single conventional lander. In addressing this vision, NASA has been challenged in the National Nanotechnology Initiative to research the development of miniature robots built from nano-sized components. These robots have very significant challenges, such as mobility and communication, given the small size and limited power generation capability. The research presented here has been focused on developing a communications system that has the potential for providing ultra-low power communications for robots such as these. In this paper an optical communications technique that is based on transmitting recognizable sets of photons is presented. Previously pairs of photons that have an entangled quantum state have been shown to be recognizable in ambient light. The main drawback to utilizing entangled photons is that they can only be generated through a very energy inefficient nonlinear process. In this paper a new technique that generates sets of photons from pulsed sources is described and an experimental system demonstrating this technique is presented. This technique of generating photon sets from pulsed sources has the distinct advantage in that it is much more flexible and energy efficient, and is well suited to take advantage of the very high energy efficiencies that are possible when using nano scale sources. For these reasons the communication system presented in this paper is well suited for use in very small, low power landers and rovers. In this paper a very low power optical communications system for miniature robots, as small as 1 cu cm is addressed. The communication system is a variant of photon counting communications. Instead of counting individual photons the system only counts the arrival of time coincident sets of photons. Using sets of photons significantly decreases the bit error rate because they are highly identifiable in the

  4. Dissociated Emergent-Response System and Fine-Processing System in Human Neural Network and a Heuristic Neural Architecture for Autonomous Humanoid Robots

    OpenAIRE

    Xiaodan Yan

    2010-01-01

    The current study investigated the functional connectivity of the primary sensory system with resting state fMRI and applied such knowledge into the design of the neural architecture of autonomous humanoid robots. Correlation and Granger causality analyses were utilized to reveal the functional connectivity patterns. Dissociation was within the primary sensory system, in that the olfactory cortex and the somatosensory cortex were strongly connected to the amygdala whereas the visual cortex an...

  5. Demonstration of a Semi-Autonomous Hybrid Brain-Machine Interface using Human Intracranial EEG, Eye Tracking, and Computer Vision to Control a Robotic Upper Limb Prosthetic

    OpenAIRE

    McMullen, David P.; Hotson, Guy; Katyal, Kapil D.; Wester, Brock A.; Fifer, Matthew S; McGee, Timothy G.; Harris, Andrew; Johannes, Matthew S; Vogelstein, R. Jacob; Ravitz, Alan D.; Anderson, William S.; Thakor, Nitish V.; Crone, Nathan E.

    2013-01-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the o...

  6. Autonomous navigation and mapping of mobile robots based on 2D/3D cameras combination

    OpenAIRE

    Joochim, Chanin

    2011-01-01

    Aufgrund der tendenziell zunehmenden Nachfrage an Systemen zur Unterstützung des alltäglichen Lebens gibt es derzeit ein großes Interesse an autonomen Systemen. Autonome Systeme werden in Häusern, Büros, Museen sowie in Fabriken eingesetzt. Sie können verschiedene Aufgaben erledigen, beispielsweise beim Reinigen, als Helfer im Haushalt, im Bereich der Sicherheit und Bildung, im Supermarkt sowie im Empfang als Auskunft, weil sie dazu verwendet werden können, die Verarbeitungszeit zu kontrollie...

  7. Kinematics Modeling of an Omnidirectional Autonomous Mobile Robot with Castor Wheels

    Institute of Scientific and Technical Information of China (English)

    Peng Yiqiang

    2006-01-01

    The kinematics model of an omnidirectional wheeled mobile robot (WMR) platform with 3 castor wheels was built, which includes the actuated inverse solution and the sensed forward solution. Motion simulations verify the consistency between the actuated inverse solution and the sensed forward solution. Analysis results show that the WMR possesses 3 degrees of freedom, and its motion trajectory is a straight line. The "pushing" and "pulling" motion patterns of the WMR can be generated by using different wheel orientations. It can be used in the places where the space is limited.

  8. Behavior Emergence in Autonomous Robot control by Means of Feedforward and Reccurent Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Slušný, Stanislav; Vidnerová, Petra; Neruda, Roman

    Hong Kong: IA ENG, 2007 - (Ao, S.; Douglas, C.; Grundfest, W.; Schruben, L.; Wu, X.), s. 518-523. (Lecture Notes in Engineering and Computer Science). ISBN 978-988-98671-6-4. [WCECS 2007. World Congress on Engineering and Computer Science. San Francisco (US), 24.10.2007-26.10.2007] R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : robot control * evolutionary algorithms * neural networks * behavior emergence Subject RIV: IN - Informatics, Computer Science http://www.iaeng.org/publication/WCECS2007/WCECS2007_pp518-523.pdf

  9. SLAM for drones : simultaneous localization and mapping for autonomous flying robots

    OpenAIRE

    González de Rueda Ramos, José Manuel

    2012-01-01

    The main objective of this thesis is to be a reference in SLAM for future work in robotics. It goes from almost a zero-point for a non-expert in the field until a revision of the SoA methods. It has been carefully divided into four parts: - The first one is a compilation of the basis in computer vision. If you are new into the field, it is recommended to read it carefully to really understand the most important concepts that will be applied in further sections. - The second part will be a ful...

  10. Vector Field Driven Design for Lightweight Signal Processing and Control Schemes for Autonomous Robotic Navigation

    Science.gov (United States)

    Mathai, Nebu John; Zourntos, Takis; Kundur, Deepa

    2009-12-01

    We address the problem of realizing lightweight signal processing and control architectures for agents in multirobot systems. Motivated by the promising results of neuromorphic engineering which suggest the efficacy of analog as an implementation substrate for computation, we present the design of an analog-amenable signal processing scheme. We use control and dynamical systems theory both as a description language and as a synthesis toolset to rigorously develop our computational machinery; these mechanisms are mated with structural insights from behavior-based robotics to compose overall algorithmic architectures. Our perspective is that robotic behaviors consist of actions taken by an agent to cause its sensory perception of the environment to evolve in a desired manner. To provide an intuitive aid for designing these behavioral primitives we present a novel visual tool, inspired vector field design, that helps the designer to exploit the dynamics of the environment. We present simulation results and animation videos to demonstrate the signal processing and control architecture in action.

  11. Vector Field Driven Design for Lightweight Signal Processing and Control Schemes for Autonomous Robotic Navigation

    Directory of Open Access Journals (Sweden)

    Nebu John Mathai

    2009-01-01

    Full Text Available We address the problem of realizing lightweight signal processing and control architectures for agents in multirobot systems. Motivated by the promising results of neuromorphic engineering which suggest the efficacy of analog as an implementation substrate for computation, we present the design of an analog-amenable signal processing scheme. We use control and dynamical systems theory both as a description language and as a synthesis toolset to rigorously develop our computational machinery; these mechanisms are mated with structural insights from behavior-based robotics to compose overall algorithmic architectures. Our perspective is that robotic behaviors consist of actions taken by an agent to cause its sensory perception of the environment to evolve in a desired manner. To provide an intuitive aid for designing these behavioral primitives we present a novel visual tool, inspired vector field design, that helps the designer to exploit the dynamics of the environment. We present simulation results and animation videos to demonstrate the signal processing and control architecture in action.

  12. CYCLOPS: A mobile robotic platform for testing and validating image processing and autonomous navigation algorithms in support of artificial vision prostheses.

    Science.gov (United States)

    Fink, Wolfgang; Tarbell, Mark A

    2009-12-01

    While artificial vision prostheses are quickly becoming a reality, actual testing time with visual prosthesis carriers is at a premium. Moreover, it is helpful to have a more realistic functional approximation of a blind subject. Instead of a normal subject with a healthy retina looking at a low-resolution (pixelated) image on a computer monitor or head-mounted display, a more realistic approximation is achieved by employing a subject-independent mobile robotic platform that uses a pixelated view as its sole visual input for navigation purposes. We introduce CYCLOPS: an AWD, remote controllable, mobile robotic platform that serves as a testbed for real-time image processing and autonomous navigation systems for the purpose of enhancing the visual experience afforded by visual prosthesis carriers. Complete with wireless Internet connectivity and a fully articulated digital camera with wireless video link, CYCLOPS supports both interactive tele-commanding via joystick, and autonomous self-commanding. Due to its onboard computing capabilities and extended battery life, CYCLOPS can perform complex and numerically intensive calculations, such as image processing and autonomous navigation algorithms, in addition to interfacing to additional sensors. Its Internet connectivity renders CYCLOPS a worldwide accessible testbed for researchers in the field of artificial vision systems. CYCLOPS enables subject-independent evaluation and validation of image processing and autonomous navigation systems with respect to the utility and efficiency of supporting and enhancing visual prostheses, while potentially reducing to a necessary minimum the need for valuable testing time with actual visual prosthesis carriers. PMID:19651459

  13. K-means Partitioned Space Path Planning (KPSPP for Autonomous Robotic Harvesting

    Directory of Open Access Journals (Sweden)

    Christopher Vincent Meaclem

    2015-11-01

    Full Text Available A three-dimensional coverage path-planning algorithm is proposed for discrete harvesting machines. Although prior research has developed methods for coverage planning in continuous-crop fields, no such algorithm has been developed for discrete crops such as trees. The problem is formulated as a graph traversal problem and solved using graph techniques. Paths to facilitate autonomous operation are generated. A case study is formed around the novel tree-to-tree felling system developed by the University of Canterbury and Scion. This machine is being developed to manoeuvre through New Zealand’s plantation forest to fell Pinus radiata trees on steep ( ≤ 45° terrain. Algorithm performance is evaluated in 14 commercial plantation forests. Results indicate that a mean coverage of 84.43% was achieved.

  14. A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers

    International Nuclear Information System (INIS)

    This paper describes the development of a new biorobotic platform inspired by the lamprey. Design, fabrication and implemented control are all based on biomechanical and neuroscientific findings on this eel-like fish. The lamprey model has been extensively studied and characterized in recent years because it possesses all basic functions and control mechanisms of higher vertebrates, while at the same time having fewer neurons and simplified neural structures. The untethered robot has a flexible body driven by compliant actuators with proprioceptive feedback. It also has binocular vision for vision-based navigation. The platform has been successfully and extensively experimentally tested in aquatic environments, has high energy efficiency and is ready to be used as investigation tool for high level motor tasks. (paper)

  15. A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers.

    Science.gov (United States)

    Stefanini, C; Orofino, S; Manfredi, L; Mintchev, S; Marrazza, S; Assaf, T; Capantini, L; Sinibaldi, E; Grillner, S; Wallén, P; Dario, P

    2012-06-01

    This paper describes the development of a new biorobotic platform inspired by the lamprey. Design, fabrication and implemented control are all based on biomechanical and neuroscientific findings on this eel-like fish. The lamprey model has been extensively studied and characterized in recent years because it possesses all basic functions and control mechanisms of higher vertebrates, while at the same time having fewer neurons and simplified neural structures. The untethered robot has a flexible body driven by compliant actuators with proprioceptive feedback. It also has binocular vision for vision-based navigation. The platform has been successfully and extensively experimentally tested in aquatic environments, has high energy efficiency and is ready to be used as investigation tool for high level motor tasks. PMID:22619181

  16. Design of a dynamic test platform for autonomous robot vision systems

    Science.gov (United States)

    Rich, G. C.

    1980-01-01

    The concept and design of a dynamic test platform for development and evluation of a robot vision system is discussed. The platform is to serve as a diagnostic and developmental tool for future work with the RPI Mars Rover's multi laser/multi detector vision system. The platform allows testing of the vision system while its attitude is varied, statically or periodically. The vision system is mounted on the test platform. It can then be subjected to a wide variety of simulated can thus be examined in a controlled, quantitative fashion. Defining and modeling Rover motions and designing the platform to emulate these motions are also discussed. Individual aspects of the design process are treated separately, as structural, driving linkages, and motors and transmissions.

  17. RAFI - A Stereo Vision Based Autonomous Mobile Area Mapping Robot with 16 DOF

    Directory of Open Access Journals (Sweden)

    Md. Shafayat Hossain

    2013-02-01

    Full Text Available RAFI is a self-driven mapping robot with 16 Degrees-of-Freedom (DOF. Its software development,structural and electrical design and mechanical construction are presented in this paper. RAFI moves withwheels having differential type motion with 2DOF. The head has 3 DOF sufficient for volumetric mappingby rotating the head in different directions and both hands have 5 DOF to empower its grip and carrying.An 8-bit microcontroller is used to control all the motors. 4 Ultrasonic-rangefinders have been used forobstacle-detection and avoidance which are also interfaced with the same microcontroller. Its head isequipped with two identical webcams for stereoscopic vision for generating 3D map of the field of viewafter generating disparity map. To optimize the computational speed and mapping accuracy images of640×480 resolution are 85% compressed and dynamic programming with image pyramiding by quadpyramidwithout sub-pixel estimation is pursued.

  18. RAFI- A STEREO VISION BASED AUTONOMOUS MOBILE AREA MAPPING ROBOT WITH 16 DOF

    Directory of Open Access Journals (Sweden)

    Md. Shafayat Hossain

    2013-01-01

    Full Text Available RAFI is a self-driven mapping robot with 16 Degrees-of-Freedom (DOF. Its software development, structural and electrical design and mechanical construction are presented in this paper. RAFI moves with wheels having differential type motion with 2DOF. The head has 3 DOF sufficient for volumetric mapping by rotating the head in different directions and both hands have 5 DOF to empower its grip and carrying. An 8-bit microcontroller is used to control all the motors. 4 Ultrasonic-rangefinders have been used for obstacle-detection and avoidance which are also interfaced with the same microcontroller. Its head is equipped with two identical webcams for stereoscopic vision for generating 3D map of the field of view after generating disparity map. To optimize the computational speed and mapping accuracy images of 640×480 resolution are 85% compressed and dynamic programming with image pyramiding by quadpyramid without sub-pixel estimation is pursued

  19. Ultra-miniature omni-directional camera for an autonomous flying micro-robot

    Science.gov (United States)

    Ferrat, Pascal; Gimkiewicz, Christiane; Neukom, Simon; Zha, Yingyun; Brenzikofer, Alain; Baechler, Thomas

    2008-04-01

    CSEM presents a highly integrated ultra-miniature camera module with omni-directional view dedicated to autonomous micro flying devices. Very tight design and integration requirements (related to size, weight, and power consumption) for the optical, microelectronic and electronic components are fulfilled. The presented ultra-miniature camera platform is based on two major components: a catadioptric lens system and a dedicated image sensor. The optical system consists of a hyperbolic mirror and an imaging lens. The vertical field of view is +10° to -35°.The CMOS image sensor provides a polar pixel field with 128 (horizontal) by 64 (vertical) pixels. Since the number of pixels for each circle is constant, the unwrapped panoramic image achieves a constant resolution in polar direction for all image regions. The whole camera module, delivering 40 frames per second, contains optical image preprocessing for effortless re-mapping of the acquired image into undistorted cylindrical coordinates. The total weight of the complete camera is less than 5 g. The system's outer dimensions are 14.4 mm in height, with a 11.4 mm x 11.4 mm foot print. Thanks to the innovative PROGLOGTM, a dynamic range of over 140 dB is achieved.

  20. Volumetric mapping of tubeworm colonies in Kagoshima Bay through autonomous robotic surveys

    Science.gov (United States)

    Maki, Toshihiro; Kume, Ayaka; Ura, Tamaki

    2011-07-01

    We developed and tested a comprehensive method for measuring the three-dimensional distribution of tubeworm colonies using an autonomous underwater vehicle (AUV). We derived volumetric measurements such as the volume, area, average height, and number of tubes for colonies of Lamellibrachia satsuma, the world's shallowest-dwelling vestimentiferan tubeworm discovered at a depth of 82 m, at the Haorimushi site in Kagoshima Bay, Japan, by processing geometric and visual data obtained through low-altitude surveys using the AUV Tri-Dog 1. According to the results, the tubeworm colonies cover an area of 151.9 m 2, accounting for 5.8% of the observed area (2600 m 2). The total number of tubes was estimated to be 99,500. Morphological parameters such as area, volume, and average height were estimated for each colony. On the basis of average height, colonies could be clearly separated into two groups, short (0.1-0.3 m) and tall (0.6-0.7 m), independent of the area.

  1. Image processing for navigation on a mobile embedded platform: design of an autonomous mobile robot

    Science.gov (United States)

    Loose, Harald; Lemke, Christiane; Papazov, Chavdar

    2006-02-01

    This paper deals with intelligent mobile platforms connected to a camera controlled by a small hardware-platform called RCUBE. This platform is able to provide features of a typical actuator-sensor board with various inputs and outputs as well as computing power and image recognition capabilities. Several intelligent autonomous RCBUE devices can be equipped and programmed to participate in the BOSPORUS network. These components form an intelligent network for gathering sensor and image data, sensor data fusion, navigation and control of mobile platforms. The RCUBE platform provides a standalone solution for image processing, which will be explained and presented. It plays a major role for several components in a reference implementation of the BOSPORUS system. On the one hand, intelligent cameras will be positioned in the environment, analyzing the events from a fixed point of view and sharing their perceptions with other components in the system. On the other hand, image processing results will contribute to a reliable navigation of a mobile system, which is crucially important. Fixed landmarks and other objects appropriate for determining the position of a mobile system can be recognized. For navigation other methods are added, i.e. GPS calculations and odometers.

  2. Adaptive fuzzy approach to modeling of operational space for autonomous mobile robots

    Science.gov (United States)

    Musilek, Petr; Gupta, Madan M.

    1998-10-01

    Robots operating in an unstructured environment need high level of modeling of their operational space in order to plan a suitable path from an initial position to a desired goal. From this perspective, operational space modeling seems to be crucial to ensure a sufficient level of autonomy. In order to compile the information from various sources, we propose a fuzzy approach to evaluate each unit region on a grid map by a certain value of transition cost. This value expresses the cost of movement over the unit region: the higher the value, the more expensive the movement through the region in terms of energy, time, danger, etc. The approach for modeling, proposed in this paper, employs fuzzy granulation of information on various terrain features and their combination based on a fuzzy neural network. In order to adapt to the changing environmental conditions, and to improve the validity of constructed cost maps on-line, the system can be endowed with learning abilities. The learning subsystem would change parameters of the fuzzy neural network based decision system by reinforcements derived from comparisons of the actual cost of transition with the cost obtained from the model.

  3. Automatic learning rate adjustment for self-supervising autonomous robot control

    Science.gov (United States)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    Described is an application in which an Artificial Neural Network (ANN) controls the positioning of a robot arm with five degrees of freedom by using visual feedback provided by two cameras. This application and the specific ANN model, local liner maps, are based on the work of Ritter, Martinetz, and Schulten. We extended their approach by generating a filtered, average positioning error from the continuous camera feedback and by coupling the learning rate to this error. When the network learns to position the arm, the positioning error decreases and so does the learning rate until the system stabilizes at a minimum error and learning rate. This abolishes the need for a predetermined cooling schedule. The automatic cooling procedure results in a closed loop control with no distinction between a learning phase and a production phase. If the positioning error suddenly starts to increase due to an internal failure such as a broken joint, or an environmental change such as a camera moving, the learning rate increases accordingly. Thus, learning is automatically activated and the network adapts to the new condition after which the error decreases again and learning is 'shut off'. The automatic cooling is therefore a prerequisite for the autonomy and the fault tolerance of the system.

  4. Low Cost Semi-Autonomous Agricultural Robots In Pakistan-Vision Based Navigation Scalable methodology for wheat harvesting

    OpenAIRE

    Ahmad, Muhammad Zubair; Akhtar, Ayyaz; Khan, Abdul Qadeer; Khan, Amir Ali; Khan, Muhammad Murtaza

    2015-01-01

    Robots have revolutionized our way of life in recent years.One of the domains that has not yet completely benefited from the robotic automation is the agricultural sector. Agricultural Robotics should complement humans in the arduous tasks during different sub-domains of this sector. Extensive research in Agricultural Robotics has been carried out in Japan, USA, Australia and Germany focusing mainly on the heavy agricultural machinery. Pakistan is an agricultural rich country and its economy ...

  5. Robotics_MobileRobot Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Robots and rovers exploring planets need to autonomously navigate to specified locations. Advanced Scientific Concepts, Inc. (ASC) and the University of Minnesota...

  6. Master's in Autonomous Systems: An Overview of the Robotics Curriculum and Outcomes at ISEP, Portugal

    Science.gov (United States)

    Silva, E.; Almeida, J.; Martins, A.; Baptista, J. P.; Campos Neves, B.

    2013-01-01

    Robotics research in Portugal is increasing every year, but few students embrace it as one of their first choices for study. Until recently, job offers for engineers were plentiful, and those looking for a degree in science and technology would avoid areas considered to be demanding, like robotics. At the undergraduate level, robotics programs are…

  7. Biomass feeds vegetarian robot; Biomassa voedt vegetarische robot

    Energy Technology Data Exchange (ETDEWEB)

    Van den Brandt, M. [Office for Science and Technology, Embassy of the Kingdom of the Netherlands, Washington (United States)

    2009-09-15

    This brief article addresses the EATR robot (Energetically Autonomous Tactical Robot) that was developed by Cyclone Power and uses biomass as primary source of energy for propulsion. [Dutch] Een kort artikel over de door Cyclone Power ontwikkelde EATR-robot (Energetically Autonomous Tactical Robot) die voor de voortdrijving biomassa gebruikt als primaire energiebron.

  8. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.

    Science.gov (United States)

    McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-07-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p robotics, addresses limitations of current BMIs. PMID:24760914

  9. Mobile Robotics in Precision Agriculture: A CAN bus interface implementation of differential drive and exploration of localization, pose estimation and autonomous navigation.

    OpenAIRE

    Lien, Torgrim Aalvik

    2013-01-01

    A complete setup of sensors, estimators and controllers for autonomous and manual control of an unmanned dierential steered ground vehicle has been implemented in this paper. The entire system is implemented in Robot Operative System (ROS) using the open source ROS software platform FroboMind as a foundation. The system is running on a Ubuntu 12.10 laptop, with the Groovy distribution of ROS.A reliable CANopen communication for real-time control and monitoring of the motors over a single CAN ...

  10. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective of...... roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy and...

  11. Hybridation GPS/Vision monoculaire pour la navigation autonome d'un robot en milieu extérieur

    OpenAIRE

    Codol, Jean-Marie

    2012-01-01

    We are witnessing nowadays the importation of ICT (Information and Communications Technology) in robotics. These technologies will give birth, in upcoming years, to the general public service robotics. This future, if realised, shall be the result of many research conducted in several domains: mechatronics, telecommunications, automatics, signal and image processing, artificial intelligence ... One particularly interesting aspect in mobile robotics is hence the simultaneous localisation and m...

  12. Robotics Horizon

    OpenAIRE

    Penders, Jacques

    2014-01-01

    The Rt Hon David Willets, minister for Universities and Science identified the importance of Robotics and Autonomous Systems as a general technology: 'Robots acting independently of human control - which can learn, adapt and take decisions - will revolutionise our economy and society over the next 20 years' (Willetts 2013). The current report has the focus on the societal aspect of this revolution and briefly sets out the landscape of current and future robotic systems applied in everyday...

  13. Evolutionary humanoid robotics

    CERN Document Server

    Eaton, Malachy

    2015-01-01

    This book examines how two distinct strands of research on autonomous robots, evolutionary robotics and humanoid robot research, are converging. The book will be valuable for researchers and postgraduate students working in the areas of evolutionary robotics and bio-inspired computing.

  14. Does It "Want" or "Was It Programmed to..."? Kindergarten Children's Explanations of an Autonomous Robot's Adaptive Functioning

    Science.gov (United States)

    Levy, Sharona T.; Mioduser, David

    2008-01-01

    This study investigates young children's perspectives in explaining a self-regulating mobile robot, as they learn to program its behaviors from rules. We explore their descriptions of a robot in action to determine the nature of their explanatory frameworks: psychological or technological. We have also studied the role of an adult's intervention…

  15. Self-balance Learning of Two-wheeled Robot Based on Autonomous Operant Conditioning Automata%基于AOCA仿生学习模型的两轮机器人自主平衡学习研究

    Institute of Scientific and Technical Information of China (English)

    戴丽珍; 杨刚; 阮晓钢

    2014-01-01

    Since the gradual learning process like humans or animals of two-wheeled robot cannot be realized by the traditional control methods, an autonomous operant conditioning automaton (AOCA) is established based on Skinner0s theory of operant conditioning for self-balance learning control of robots. A bionic learning algorithm based on AOCA is proposed to balance the two-wheeled robot. The corresponding simulation experiments for self-balance learning control of the two wheeled robot are given, in which the robot effectively realizes autonomous balance. Theoretical analysis and simulation show that the autonomous operant conditioning automata bionic learning model applied to the two-wheeled robot for autonomous balance learning control makes the robot progressive formation of self-organization, development and improvement of its balance.%以两轮机器人的自主平衡学习控制为研究对象,针对传统控制方法无法实现机器人类似人或动物的渐进学习过程,依据斯金纳的操作条件反射理论建立了一种自治操作条件反射自动机(Autonomous operant conditioning automaton, AOCA)模型,设计一种基于AOCA的仿生学习算法,并进行机器人姿态平衡学习实验仿真研究。实验结果表明,基于AOCA的仿生学习方法能有效地实现机器人的自主平衡学习控制,机器人系统的平衡能力在学习控制过程中自组织地渐进形成,并得以发展和完善。

  16. Proceedings of the 1989 CESAR/CEA (Center for Engineering Systems Advanced Research/Commissariat a l'Energie Atomique) workshop on autonomous mobile robots (May 30--June 1, 1989)

    Energy Technology Data Exchange (ETDEWEB)

    Harber, K.S.; Pin, F.G. (Oak Ridge National Lab., TN (USA). Center for Engineering Systems Advanced Research)

    1990-03-01

    The US DOE Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) and the Commissariat a l'Energie Atomique's (CEA) Office de Robotique et Productique within the Directorat a la Valorization are working toward a long-term cooperative agreement and relationship in the area of Intelligent Systems Research (ISR). This report presents the proceedings of the first CESAR/CEA Workshop on Autonomous Mobile Robots which took place at ORNL on May 30, 31 and June 1, 1989. The purpose of the workshop was to present and discuss methodologies and algorithms under development at the two facilities in the area of perception and navigation for autonomous mobile robots in unstructured environments. Experimental demonstration of the algorithms and comparison of some of their features were proposed to take place within the framework of a previously mutually agreed-upon demonstration scenario or base-case.'' The base-case scenario described in detail in Appendix A, involved autonomous navigation by the robot in an a priori unknown environment with dynamic obstacles, in order to reach a predetermined goal. From the intermediate goal location, the robot had to search for and locate a control panel, move toward it, and dock in front of the panel face. The CESAR demonstration was successfully accomplished using the HERMIES-IIB robot while subsets of the CEA demonstration performed using the ARES robot simulation and animation system were presented. The first session of the workshop focused on these experimental demonstrations and on the needs and considerations for establishing benchmarks'' for testing autonomous robot control algorithms.

  17. Autonomous Security Patrol System

    OpenAIRE

    Erramouspe, Jake

    2010-01-01

    This project provides an efficient and cost-effective solution to building security and active monitoring. The security is monitored and controlled by autonomous patrol robots. Any indication of a security breach will result in an immediate alarm and activation of the robot group to subdue and tranquilize the intruder.

  18. 全自主机器人足球系统的全局地图构建研究%Building global map in autonomous robot soccer system

    Institute of Scientific and Technical Information of China (English)

    张学习; 杨宜民; 谢云

    2011-01-01

    This paper is concerned with the cooperation between robots in building a global map. Based on the local map-building through multi-sensors carried by a single robot, this paper studies the monocular front-vision modeling method. Meanwhile, we elaborate two information fusion methods: density-based spatial clustering of applications with noise(DBSCAN) clustering algorithm and maximum likelihood estimate fusion algorithm. By these two methods, the in- formation about the location of opponent robots and the information about the location of the ball are fused, thus, a global map is built. Experimental results show that through the cooperation of robots, a global map can be accurately built, which compensates the information limitation in sensors of each single robot, and meets requirements in map-building in the dynamic environment of autonomous robot soccer tournament.%研究和讨论了如何通过多机器人的协作,实现全局地图的构建.在单个机器人通过自身携带的多传感器进行局部地图构建的基础上,研究了前向单目视觉传感器的建模方法,在此观测模型的基础上,用极大似然融合算法对球的位置信息进行融合,而对于多机器人返回的对方机器人位置信息,使用基于密度的空间聚类算法(DBSCAN)进行信息融合,从而实现全局地图构建.实验结果表明,通过多机器人的协作,可以准确地构建出全局地图,弥补了单个机器人自身传感器的有限感知范围,本文研究的方法完全满足全自主机器人足球比赛中动态环境地图构建的需要.

  19. Self-reconfiguring microservices

    DEFF Research Database (Denmark)

    Gabbrielli, Maurizio; Giallorenzo, Saverio; Guidi, Claudio;

    2016-01-01

    Microservices is an emerging paradigm for the development of distributed systems that, originating from Service-Oriented Architecture, focuses on the small dimension, the loose coupling, and the dynamic topology of services. Microservices are particularly appropriate for the development of distri...

  20. Habituation: a non-associative learning rule design for spiking neurons and an autonomous mobile robots implementation

    International Nuclear Information System (INIS)

    This paper presents a novel bio-inspired habituation function for robots under control by an artificial spiking neural network. This non-associative learning rule is modelled at the synaptic level and validated through robotic behaviours in reaction to different stimuli patterns in a dynamical virtual 3D world. Habituation is minimally represented to show an attenuated response after exposure to and perception of persistent external stimuli. Based on current neurosciences research, the originality of this rule includes modulated response to variable frequencies of the captured stimuli. Filtering out repetitive data from the natural habituation mechanism has been demonstrated to be a key factor in the attention phenomenon, and inserting such a rule operating at multiple temporal dimensions of stimuli increases a robot's adaptive behaviours by ignoring broader contextual irrelevant information. (paper)

  1. Habituation: a non-associative learning rule design for spiking neurons and an autonomous mobile robots implementation.

    Science.gov (United States)

    Cyr, André; Boukadoum, Mounir

    2013-03-01

    This paper presents a novel bio-inspired habituation function for robots under control by an artificial spiking neural network. This non-associative learning rule is modelled at the synaptic level and validated through robotic behaviours in reaction to different stimuli patterns in a dynamical virtual 3D world. Habituation is minimally represented to show an attenuated response after exposure to and perception of persistent external stimuli. Based on current neurosciences research, the originality of this rule includes modulated response to variable frequencies of the captured stimuli. Filtering out repetitive data from the natural habituation mechanism has been demonstrated to be a key factor in the attention phenomenon, and inserting such a rule operating at multiple temporal dimensions of stimuli increases a robot's adaptive behaviours by ignoring broader contextual irrelevant information. PMID:23385344

  2. Behavior-Based Approach for the Detection of Land Mines Utilizing off the Shelf Low Cost Autonomous Robot

    Directory of Open Access Journals (Sweden)

    Abdel Ilah Nour Alshbatat

    2013-03-01

    Full Text Available Several countries all of the world are affected by landmines. The presence of mines represents a major threat to lives and causes economic problems. Currently, detecting and clearing mines demand specific expertise with special equipment. In this context, this paper offers the design and development of an intelligent controller which can control and enable the robot to detect mines by means of sensors and of processing the fused information to guide soldiers when passing landmines.  This is accomplished by broken down the overall system into two subsystems: sensor technologies and robotic device. Sensors devices include infrared distance sensor, metal detector, ultrasonic range finder, accelerometer sensor, while the structure of the robot in our case consists mainly  of a commercial  off-the-shelf  parts which  are  available  at  low  costs. The proposed controller is mainly based on creating fuzzy rules that reflect the behaviors of soldier beings in controlling a robot in a well known landmine. Simulation and experimental results are presented her to prove the efficiency of the proposed approach. The results show that the system is able to detect landmines and guide soldiers while crossing mines area.

  3. Robotics

    Science.gov (United States)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  4. 移动机器人红外遥控及自主避障技术研究%The research of mobile robot's infrared remote control and autonomous obstacle avoidance technology

    Institute of Scientific and Technical Information of China (English)

    孙俊焘

    2014-01-01

    本文针对移动机器人平台特别是机械手的红外。控以及自主避障技术进行了初步研究。采用单片机的红外线编码和解码技术来实现该移动机器人平台的。控。使用单片机作为。控机器人的平台的检测和控制核心,并且基于红外传感技术研究其实现自主避障的可行方法。实验证明,移动机器人的红外。控平台能够实现单片机控制的多种功能和。控功能。%The infrared remote control and autonomous obstacle avoidance technology of the mobile robot platform was researched. The technic of the infrared sending and incepting which was controlled by microcontroller was used to control the mobile robot remotely.Microcontroller was used as the examination and the control core of the remote controlled mobile robot platform. We will research Mobile robot's autonomous obstacle avoidance use of infrared sensing technology. The experiments show that robot infrared remote control platform to achieve control of the microcontroller features and remote control functions.

  5. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  6. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping

    OpenAIRE

    Downey, John E; Weiss, Jeffrey M.; Muelling, Katharina; Venkatraman, Arun; Valois, Jean-Sebastien; Hebert, Martial; Bagnell, J. Andrew; Schwartz, Andrew B.; Collinger, Jennifer L.

    2016-01-01

    Background Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning ...

  7. Autonomous Integrated Navigation for Indoor Robots Utilizing On-Line Iterated Extended Rauch-Tung-Striebel Smoothing

    OpenAIRE

    Yuan Xu; Xiyuan Chen; Qinghua Li

    2013-01-01

    In order to reduce the estimated errors of the inertial navigation system (INS)/Wireless sensor network (WSN)-integrated navigation for mobile robots indoors, this work proposes an on-line iterated extended Rauch-Tung-Striebel smoothing (IERTSS) utilizing inertial measuring units (IMUs) and an ultrasonic positioning system. In this mode, an iterated Extended Kalman filter (IEKF) is used in forward data processing of the Extended Rauch-Tung-Striebel smoothing (ERTSS) to improve the accuracy of...

  8. Walking control of small size humanoid robot: HAJIME ROBOT 18

    Science.gov (United States)

    Sakamoto, Hajime; Nakatsu, Ryohei

    2007-12-01

    HAJIME ROBOT 18 is a fully autonomous biped robot. It has been developed for RoboCup which is a worldwide soccer competition of robots. It is necessary for a robot to have high mobility to play soccer. High speed walking and all directional walking are important to approach and to locate in front of a ball. HAJIME ROBOT achieved these walking. This paper describes walking control of a small size humanoid robot 'HAJIME ROBOT 18' and shows the measurement result of ZMP (Zero Moment Point). HAJIME ROBOT won the Robotics Society of Japan Award in RoboCup 2005 and in RoboCup 2006 Japan Open.

  9. Online Learning for Robot Vision

    OpenAIRE

    Öfjäll, Kristoffer

    2014-01-01

    In tele-operated robotics applications, the primary information channel from the robot to its human operator is a video stream. For autonomous robotic systems however, a much larger selection of sensors is employed, although the most relevant information for the operation of the robot is still available in a single video stream. The issue lies in autonomously interpreting the visual data and extracting the relevant information, something humans and animals perform strikingly well. On the othe...

  10. Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of Autonomous Mobile Robot - A Specific Application of TSP

    OpenAIRE

    Shen, Zhihua; Zhao, Yingkai

    2008-01-01

    The research, based on combination of niche genetic algorithm and pseudo parallel genetic algorithm, comes into being NPPGA technique which both considers the rate of genetic evolution and diversity of population. The strategy seems to be able to restrain the premature among population and closely cooperate with each other to improve the overall search performance. We presented NPPGA and used a single step NPPGA to figure out the optimal paths in “Robot tour around Pekin”, which is a prac...

  11. Autonomous Scheduling and Operation of the 1.3-meter Robotically Controlled Telescope (RCT) at Kitt Peak

    Science.gov (United States)

    Gelderman, Richard; Strolger, L.; Carini, M.; Marchenko, S.; Reddy Yaramala, S.; Rumph, M.; van Fleet, R.; Wood, J. D.

    2007-12-01

    The 1.3-meter (50-inch) telescope at Kitt Peak has been restored to operation as a fully robotic instrument for optical imaging. Once known as the Remotely Controlled Telescope, it is again being called the RCT, now standing for Robotically Controlled Telescope. The automation of the observatory has included development of a computer control system designed to accommodate and appropriately manage the myriad of optical observing modes typically managed at other multi-user, general-purpose observatories, but with much greater efficiency. The observation scheduling routine for the RCT is based on the insgen list generator and process spawner originally developed for the Berkeley Automatic Imaging Telescope (Richmond, Treffers, & Filippenko 1992). The software schedules observation requests according to target information and program-specific technical constraints, such as a user assigned priority, moon avoidance, airmass, seeing, etc.), taking into account telescope limitations, sky conditions, and technical and organizational constraints. The system supports research programs involving time-critical requests, coordinated observations and short-term (hours) and long-term (days) monitoring. We also discuss the execution and storage of the observations, the methods for the periodic accounting of partner shares (which factor into weighting of future observation requests), and our plans for providing public access to the data.

  12. Flip-chip electronic system assembly process and issues for the NanoWalker: a small wireless autonomous instrumented robot

    Science.gov (United States)

    Martel, Sylvain M.; Riley, George A.; Merchant, Monisha; Hunter, Ian W.; Lafontaine, Serge

    1999-08-01

    The integration of complex electronic systems onto small- scale robots requires advanced assembly methods. The NanoWalker is an example of such a robot where a large amount of electronics must be embedded in the smallest possible space. To make a space-efficient implementation, electronic chips are mounted using flip chip technology on a pre-bumped flexible printed circuit (FPC). A 3D structure is obtained by mounting the FPC vertically in a triangular fashion above a tripod built with three small piezo-actuated legs used for the walking and rotational motions. Advanced computer aided design systems are used for the design and to generate manufacturing files. Unlike other commercial products such as cellular phones, watches, pagers, cameras, and disk drives that use flip chip technology to achieve the smallest form factor, the assembly process of the NanoWalker is directly dependent on other characteristics of the system. Minimization of coupling noises through proper FPC layout and die placement within temperature constraints due to the proximity of sensitive instrument was a critical factor. The effect of vibration caused by the piezo- actuators and the weight of each die were also other important issues to consider to determine the final placement in order to maintain proper sub-atomic motion behavior.

  13. Niche pseudo-parallel genetic algorithms for path optimization of autonomous mobile robot%小生境伪并行遗传算法在全自主移动机器人路径规划中的应用

    Institute of Scientific and Technical Information of China (English)

    沈志华; 赵英凯; 吴炜炜

    2006-01-01

    A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic op timization of autonomous mobile robot. The NPPGA is an effective improvement to maintain the population diversity as well for the sake of avoiding premature and strengthen parallelism of the population to accelerate the search process combined with niche genetic algorithms and pseudo-parallel genetic algorithms. The proposed approach is evaluated by robotic path optimization, which is a specific application of traveler salesman problem (TSP). Experimental results indicated that a shortest path could be obtained in the practical traveling salesman problem named "Robot tour around Pekin", and the performance conducted by NPPGA is better than simple genetic algorithm (SGA) and distributed paralell genetic algorithms (DPGA).

  14. Toward Integrated Soccer Robots

    OpenAIRE

    Shen, Wei-Min; Adibi, Jafar; Adobbati, Rogelio; Cho, Bonghan; Erdem, Ali; Moradi, Hadi; Salemi, Behnam; Tejada, Sheila

    1998-01-01

    Robot soccer competition provides an excellent opportunity for integrated robotics research. In particular, robot players in a soccer game must recognize and track objects in real time, navigate in a dynamic field, collaborate with teammates, and strike the ball in the correct direction. All these tasks demand robots that are autonomous (sensing, thinking, and acting as independent creatures), efficient (functioning under time and resource constraints), cooperative (collaborating with each ot...

  15. Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Andersen, Jens Christian

    2007-01-01

    . The research is now progressing towards autonomous robots which will be able to assist us in our daily life. One of the enabling technologies is navigation, and navigation is the subject of this thesis. Navigation of an autonomous robot is concerned with the ability of the robot to direct itself from...... validation of the implemented solutions and the ability of the methods to solve real world problems. The amount of software needed by an autonomous robot can be overwhelming. Software reuse and distributed development are therefore important issues. The thesis describes a new component architecture......Abstract Robots will soon take part in everyone’s daily life. In industrial production this has been the case for many years, but up to now the use of mobile robots has been limited to a few and isolated applications like lawn mowing, surveillance, agricultural production and military applications...

  16. Robot Games for Elderly

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg

    2011-01-01

    improve a person’s overall health, and this thesis investigates how games based on an autonomous, mobile robot platform, can be used to motivate elderly to move physically while playing. The focus of the investigation is on the development of games for an autonomous, mobile robot based on algorithms using...... spatio-temporal information about player behaviour - more specifically, I investigate three types of games each using a different control strategy. The first game is based on basic robot control which allows the robot to detect and follow a person. A field study in a rehabilitation centre and a nursing...... home shows how the robot operates autonomously in in a real-world scenario although the elderly use different assistive tools. The elderly express a low degree of rejection of playing with the robot and tend to treat it as a living creature, i.e. talking to it as if it was a young boy or a dog. The...

  17. Autonomous single camera exploration

    OpenAIRE

    Vidal-Calleja, Teresa A.; Sanfeliu, Alberto; Andrade-Cetto, J.

    2006-01-01

    In this paper we present an active exploration strategy for a mobile robot navigating in 3D. The aim is to control a moving robot that autonomously builds a visual feature map while at the same time optimises its localisation in this map. The technique chooses the most appropriate commands maximising the information gain between prior states and measurements, while performing 6DOF bearing only SLAM at video rate. Maximising the mutual information helps the vehicle avoid ill-conditioned measur...

  18. Mobile Intelligent Autonomous Systems

    OpenAIRE

    Jitendra R. Raol; Ajith Gopal

    2010-01-01

    Mobile intelligent autonomous systems (MIAS) is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i) perception and reasoning, (ii) mobility and navigation,(iii) haptics and teleoperation, (iv) image fusion/computervision, (v) modelling of manipulators, (vi) hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii) ve...

  19. Autonomous Integrated Navigation for Indoor Robots Utilizing On-Line Iterated Extended Rauch-Tung-Striebel Smoothing

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2013-11-01

    Full Text Available In order to reduce the estimated errors of the inertial navigation system (INS/Wireless sensor network (WSN-integrated navigation for mobile robots indoors, this work proposes an on-line iterated extended Rauch-Tung-Striebel smoothing (IERTSS utilizing inertial measuring units (IMUs and an ultrasonic positioning system. In this mode, an iterated Extended Kalman filter (IEKF is used in forward data processing of the Extended Rauch-Tung-Striebel smoothing (ERTSS to improve the accuracy of the filtering output for the smoother. Furthermore, in order to achieve the on-line smoothing, IERTSS is embedded into the average filter. For verification, a real indoor test has been done to assess the performance of the proposed method. The results show that the proposed method is effective in reducing the errors compared with the conventional schemes.

  20. Autonomous surveillance for biosecurity.

    Science.gov (United States)

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance. PMID:25744760

  1. 知识化制造系统产品工艺路线的自重构%Self-reconfiguration of product process routes in knowledgeable manufacturing systems

    Institute of Scientific and Technical Information of China (English)

    万晓琴; 严洪森

    2013-01-01

    To meet dynamic product demand changes,a self-reconfiguration of product process routes in Knowledgeable Manufacturing Systems (KMS) was studied.To minimize the work-in-process level and the number of process operations reassigned among the different machines without violating production rate,a mathematical model of process route self-reconfiguration was constructed on the premise of satisfying operation precedence,complete machining and operation-machine assign feasibility constraints.An Improved Chaotic Non-dominated Sorting Genetic Algorithm (IC-NSGA) was put forward,and a Skew Tent map with random parameters was adopted to perturb chromosome and to avoid the search being trapped in local optimum.A decode algorithm based on operation precedence matrix and candidate machines set was designed to obtain a feasible operation sequence and processing machine sequence A case study was presented to demonstrate the effectiveness of the model and the algorithm,and the results provided the decision maker with several optional process route plans.%为满足动态多变的产品需求,研究了知识化制造产品工艺路线自重构问题.以最小化平均在制品水平和最小化重构后各工序在机器上的分配变动数目为目标,在满足生产率、工序优先顺序、工件加工完整性、机器加工可行性约束的前提下,对产品工艺路线重构问题进行数学建模.提出了改进的混沌非支配排序遗传算法,利用带随机参数的Skew Tent映射对种群个体进行扰动,避免搜索陷入局部最优.设计了基于工序优先约束矩阵和候选机器集的解码方法,可获得产品可行的加工工序序列及加工机器序列.通过实例研究验证了模型和算法的有效性,为决策者提供了多种可选工艺路线重构方案.

  2. Sample Return Robot Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Challenge requires demonstration of an autonomous robotic system to locate and collect a set of specific sample types from a large planetary analog area and...

  3. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J.

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  4. Learning in Large Cooperative Multi-Robot Domains

    OpenAIRE

    Fernández, Fernando; Parker, Lynne E.

    2001-01-01

    The development of mechanisms that enable robot teams to autonomously generate cooperative behaviours is one of the most interesting issues in dis- tributed and autonomous robotic systems. In this paper, the application of reinforcement learning techniques to robot teams is studied, enabling the robot to learn cooperative behaviours based only on local information.

  5. Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping

    Directory of Open Access Journals (Sweden)

    Scott C. Chapman

    2014-06-01

    Full Text Available Plant breeding trials are extensive (100s to 1000s of plots and are difficult and expensive to monitor by conventional means, especially where measurements are time-sensitive. For example, in a land-based measure of canopy temperature (hand-held infrared thermometer at two to 10 plots per minute, the atmospheric conditions may change greatly during the time of measurement. Such sensors measure small spot samples (2 to 50 cm2, whereas image-based methods allow the sampling of entire plots (2 to 30 m2. A higher aerial position allows the rapid measurement of large numbers of plots if the altitude is low (10 to 40 m and the flight control is sufficiently precise to collect high-resolution images. This paper outlines the implementation of a customized robotic helicopter (gas-powered, 1.78-m rotor diameter with autonomous flight control and software to plan flights over experiments that were 0.5 to 3 ha in area and, then, to extract, straighten and characterize multiple experimental field plots from images taken by three cameras. With a capacity to carry 1.5 kg for 30 min or 1.1 kg for 60 min, the system successfully completed >150 flights for a total duration of 40 h. Example applications presented here are estimations of the variation in: ground cover in sorghum (early season; canopy temperature in sugarcane (mid-season; and three-dimensional measures of crop lodging in wheat (late season. Together with this hardware platform, improved software to automate the production of ortho-mosaics and digital elevation models and to extract plot data would further benefit the development of high-throughput field-based phenotyping systems.

  6. 基于里程计和PTZ视觉的移动机器人自定位%Autonomous localization of mobile robot based on odometer and PTZ vision

    Institute of Scientific and Technical Information of China (English)

    牛国臣; 徐萍; 冯琦

    2011-01-01

    针对机器人长距离运行时里程计定位存在累积误差问题,提出一种基于里程计和PTZ视觉的移动机器人自定位算法.提出了中断式S形搜索策略的概念,设计了基于有限自动机的视觉定位方法;分析了里程计和视觉定位误差来源,分别建立了其定位信度模型;并基于该模型建立里程计和PTZ视觉定位的框架.针对视觉定位及里程计视觉复合定位分别进行了实验,结果验证了该方法的有效性和实用性.%To reduce the influence of cumulative odometer localization error, an autonomous localization approach for mobile robot based on odometer and Pan-Tilt-Zoom (PTZ) vision was presented. Interrupt S-shaped searching strategy was put forward, as well as a vision localization approach based on finite automaton. The position credibility models of odometer and PTZ vision were established according to their positioning error sources. A localization framework combining odometer and PTZ vision based on real-time position credibility was designed. An application experiment of vision localization and localization using odometer and PTZ vision was carried out. The validity and practicability of the method are confirmed.

  7. Self-localization for middle autonomous soccer robot%一种中型自主足球机器人自定位方法

    Institute of Scientific and Technical Information of China (English)

    丘柳东; 王牛; 李祖枢

    2011-01-01

    针对RoboCup中型自主足球机器人比赛中的自定位要求,提出了一种新的自定位方法.利用电子罗盘获取航向角度,根据航向角度将全向视觉获取的白线初始信息转换为白线的半全局信息;利用白线实垂交类型、辅助白线的距离与角度信息,结合定位区域优先度算法确定机器人所在的最终定位区域;根据定位区域内两条实垂交白线的交点位置关系得到机器人在场地中的位置,实现自定位,并讨论该方法对全向视觉观测范围的要求.实际场地的实验结果,验证了该方法的有效性.%According to the self-localization requirement of RoboCup middle autonomous soccer robot, this paper presents a new self-localization method.Obtain the orientation by electronic compass,and change the white line information gained by all-directional vision, to past-global information through the orientation.Use the while line true vertical intersection type, the length and distance of assistant white line, localization area priority algorithm to identify the best area for localization. Obtaine the pose by the information of the intersection point, which belongs to the true vertical intersection while line.This paper discusses the observation range of all-directional vision for this method.The experiments show the validity for the presented method.

  8. Clothoid-based Planning and Control in Intelligent Vehicles (Autonomous and Manual-Assisted Driving)

    OpenAIRE

    Girbés Juan, Vicent

    2016-01-01

    [EN] Nowadays, there are many electronic products that incorporate elements and features coming from the research in the field of mobile robotics. For instance, the well-known vacuum cleaning robot Roomba by iRobot, which belongs to the field of service robotics, one of the most active within the sector. There are also numerous autonomous robotic systems in industrial warehouses and plants. It is the case of Autonomous Guided Vehicles (AGVs), which are able to drive completely autonomously in...

  9. Mobile Autonomous Humanoid Assistant

    Science.gov (United States)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  10. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  11. Toward robot ethics through the ethics of autism

    OpenAIRE

    Shibata, Masayoshi

    2011-01-01

    The aim of this chapter is to present an ethical landscape for humans and autonomous robots in the future of a physicalistic world, and which will touch mainly on a framework of robot ethics rather than the concrete ethical problems possibly caused by recent robot technologies. It might be difficult to find sufficient answers to such ethical problems as those occurring with future military robots unless we understand what autonomy in autonomous robots exactly implies for robot ethics. This ch...

  12. Robotic transportation.

    Science.gov (United States)

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions. PMID:2208684

  13. Sensor fusion for social robotics

    OpenAIRE

    Duffy, Brian R.; Garcia, C.; Rooney, Colm, (Thesis); O'Hare, G.M.P.

    2000-01-01

    This paper advocates the application of sensor fusion for the visualisation of social robotic behaviour. Experiments with the Virtual Reality Workbench integrate the key elements of Virtual Reality and robotics in a coherent and systematic manner. The deliberative focusing of attention and sensor fusion between vision systems and sonar sensors is implemented on autonomous mobile robots functioning in standard office environments

  14. Mobile Intelligent Autonomous Systems

    Directory of Open Access Journals (Sweden)

    Jitendra R. Raol

    2010-01-01

    Full Text Available Mobile intelligent autonomous systems (MIAS is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i perception and reasoning, (ii mobility and navigation,(iii haptics and teleoperation, (iv image fusion/computervision, (v modelling of manipulators, (vi hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii vehicle-robot path and motionplanning/control, (viii human-machine interfaces for interaction between humans and robots, and (ix application of artificial neural networks (ANNs, fuzzy logic/systems (FLS,probabilistic/approximate reasoning (PAR, Bayesian networks(BN and genetic algorithms (GA to the above-mentioned problems. Also, multi-sensor data fusion (MSDF playsvery crucial role at many levels of the data fusion process:(i kinematic fusion (position/bearing tracking, (ii imagefusion (for scene recognition, (iii information fusion (forbuilding world models, and (iv decision fusion (for tracking,control actions. The MIAS as a technology is useful for automation of complex tasks, surveillance in a hazardousand hostile environment, human-assistance in very difficultmanual works, medical robotics, hospital systems, autodiagnosticsystems, and many other related civil and military systems. Also, other important research areas for MIAScomprise sensor/actuator modelling, failure management/reconfiguration, scene understanding, knowledge representation, learning and decision-making. Examples ofdynamic systems considered within the MIAS would be:autonomous systems (unmanned ground vehicles, unmannedaerial vehicles, micro/mini air vehicles, and autonomousunder water vehicles, mobile/fixed robotic systems, dexterousmanipulator robots, mining robots, surveillance systems,and networked/multi-robot systems, to name a few.Defence Science Journal, 2010, 60(1, pp.3-4,

  15. A High Precision Autonomous Navigation Positioning Grape Picking Robot Design%一种高精度自主导航定位的葡萄采摘机器人设计

    Institute of Scientific and Technical Information of China (English)

    郭素娜; 张丽; 刘志刚

    2016-01-01

    为了提高葡萄采摘机器人自主导航能力,增强对葡萄成熟度的准确识别功能,降低漏采率和误采率,设计了一种新式的基于RSSI 自主导航和颜色特征提取的葡萄采摘机器人. 该机器人使用 RSSI 定位技术,首先对装有无线传感器的葡萄树进行定位,然后利用机器视觉系统对葡萄的成熟度进行判断,并对满足采摘条件的葡萄使用机械手进行采摘. 对葡萄采摘机器人的性能进行了测试,通过测试发现:机器人对装有传感器的葡萄树的准确识别率达到了95%以上,对葡萄成熟度的判断达到了98%以上,是一种相对高效的葡萄采摘机器人.%In order to improve the autonomous navigation capability of grape picking robot, and strengthen the function of accurate identification of the grape maturity, lower leakage rate and error rate, a new type of autonomous navigation and color feature extraction based on RSSI grape picking robot has been designed.Grape picking robot using RSSI positioning technology first fixing the vine with wireless sensors, then use the machine vision system on grape maturity of judgment, and to meet the use conditions of the grapes picked for picking manipulator.Grape picking robot performance was tested, by testing found that the robot with sensors of vine of accurate recognition rate reached more than 95%, their appreciation of the grape maturity reached more than 98%, high recognition rate,which is a relatively efficient grape picking robot.

  16. 一种高精度自主导航定位的葡萄采摘机器人设计%A High Precision Autonomous Navigation Positioning Grape Picking Robot Design

    Institute of Scientific and Technical Information of China (English)

    郭素娜; 张丽; 刘志刚

    2016-01-01

    为了提高葡萄采摘机器人自主导航能力,增强对葡萄成熟度的准确识别功能,降低漏采率和误采率,设计了一种新式的基于RSSI 自主导航和颜色特征提取的葡萄采摘机器人. 该机器人使用 RSSI 定位技术,首先对装有无线传感器的葡萄树进行定位,然后利用机器视觉系统对葡萄的成熟度进行判断,并对满足采摘条件的葡萄使用机械手进行采摘. 对葡萄采摘机器人的性能进行了测试,通过测试发现:机器人对装有传感器的葡萄树的准确识别率达到了95%以上,对葡萄成熟度的判断达到了98%以上,是一种相对高效的葡萄采摘机器人.%In order to improve the autonomous navigation capability of grape picking robot, and strengthen the function of accurate identification of the grape maturity, lower leakage rate and error rate, a new type of autonomous navigation and color feature extraction based on RSSI grape picking robot has been designed.Grape picking robot using RSSI positioning technology first fixing the vine with wireless sensors, then use the machine vision system on grape maturity of judgment, and to meet the use conditions of the grapes picked for picking manipulator.Grape picking robot performance was tested, by testing found that the robot with sensors of vine of accurate recognition rate reached more than 95%, their appreciation of the grape maturity reached more than 98%, high recognition rate,which is a relatively efficient grape picking robot.

  17. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  18. Strategy of autonomous visual serving control for space robots%空间机器人自主视觉伺服控制策略

    Institute of Scientific and Technical Information of China (English)

    张国亮

    2012-01-01

    针对传统的空间机器人遥操作控制方法受时延影响严重的问题,基于最新研制的4自由度空间机器人,提出一种基于多目相机的自主复合控制策略.该策略包含了眼在手和眼到手2种相机配置结构,每个相机均具有独立的位姿计算能力,前者保证了伺服控制的精度以及操作的灵活性,后者能够在观察到全局视景的情况下做出伺服控制.为满足机器人视觉实时控制的需求,对视觉处理算法进行了特别考虑.首先,设计了基于多边形形状拟合的特征识别方法,提出曲线矢量数据贪婪算法来处理图像遍历拟合过程中计算密集的问题;其次,结合特征识别结果和模型目标的空间信息,提出基于弱透视模型的单目位姿估算及优化算法;最后,依据所提策略在实验室环境中完成了自主导航及捕获任务,验证了在较低层次进行这种复合控制的可行性和有效性.%As time delay will affect the control of teleopration for traditional space robots,a multi-camera hybrid visual serving control method was present based on the newest developed 4DOF space robot.The hybrid scheme consists of an eye-in-hand camera and eye-to-hand camera configuration and each camera has the capability of determining pose of target independently.The first one guarantees good accuracy and the ability to explore the workspace;the second one ensures a panoramic sight of the workspace.Suitable vision process algorithm was studied to realize the real-time visual serving control.Firstly,based on polygonal fitting method,the object feature recognition was designed.Furthermore,a greedy algorithm based on curve vector was proposed to reduce the calculation time of Traversal fitting.Secondly,by integrating feature recognition and modular object,monocular pose estimation and optimization algorithm were studied.Finally,an experiment of autonomous navigation and grasp verified the feasibility and effectiveness of proposed

  19. 在线重力补偿下工程机器人自主作业轨迹跟踪性能分析%Analysis on autonomous task trajectory tracking performance of construction robot with online gravity compensation

    Institute of Scientific and Technical Information of China (English)

    唐新星; 侯敬巍; 倪涛; 张邦成

    2013-01-01

    By the visual feedback and the space position information of the target object of stereo vision camera, the construction robot can realize the autonomous task according to the kinematics analysis and trajectory planning. However, in the process of the autonomous task, because the link mass of construction robot is big, the driving force of the cylinder calculated by the pressure sensors attached at the cylinders will be divided into two parts, one is used for balancing the link gravity, and the other is used for driving the moving of the cylinder. Therefore, the construction robot will overcome the gravity to work in the process of gravity rising along with the lift of boom and swing of arm, and the links gravity of boom and arm will participate in working in the process of gravity fall along with the dropping of boom and swing of arm, this phenomena will influence the moving velocity of construction robot and the effect of the effect of trajectory tracking, especially in the lifting process, moreover, in the process of the links dropping of construction robot, it is dangerous to the construction robot because of the bigger links masses. Aiming at this problem, the dynamics models of construction robot were deduced followed by kinematics analysis, and the least squares method was used for identifying the dynamics parameters, and then online gravity offset method was purposed based on the dynamics parameters, which was used for eliminating the gravity impact from the driving force of the cylinders, and improving the trajectory tracking effect in autonomous task. Finally, experiment was finished on the construction robot test bench, and the experimental results show that the online gravity compensation algorithm could compensate the gravity of construction robot effectively, and eliminate the influence of gravity working to the trajectory planning of construction robot, and the tracking errors under online gravity compensation are smaller than no gravity compensation

  20. Analysis on autonomous task trajectory tracking performance of construction robot with online gravity compensation%在线重力补偿下工程机器人自主作业轨迹跟踪性能分析

    Institute of Scientific and Technical Information of China (English)

    唐新星; 侯敬巍; 倪涛; 张邦成

    2013-01-01

      工程机器人自主作业时,工程机器人动臂举升、前臂摆动重心上升过程中需要克服自身重力做功,而在工程机器人动臂下降、前臂摆动重心下降过程中,自身重力要参与做功,影响工程机器人的运动速度,进而影响工程机器人自主作业的轨迹跟踪效果。针对这一问题,建立了工程机器人动臂、前臂的动力学模型,探讨采用最小二乘拟合法辨识动力学参数,进行工程机器人动臂、前臂的在线重力补偿,以消除在自主作业过程中重力做功对轨迹跟踪的影响。最后,在工程机器人试验台上进行了试验。试验结果表明,在线重力补偿可有效地补偿工程机器人自主作业过程自身重力,消除工程机器人动臂和前臂在运动过程中重力做功对自主作业轨迹跟踪过程的影响,有利于减小轨迹跟踪误差,提高工程机器人自主作业轨迹跟踪的性能。%By the visual feedback and the space position information of the target object of stereo vision camera, the construction robot can realize the autonomous task according to the kinematics analysis and trajectory planning. However, in the process of the autonomous task, because the link mass of construction robot is big, the driving force of the cylinder calculated by the pressure sensors attached at the cylinders will be divided into two parts, one is used for balancing the link gravity, and the other is used for driving the moving of the cylinder. Therefore, the construction robot will overcome the gravity to work in the process of gravity rising along with the lift of boom and swing of arm, and the links gravity of boom and arm will participate in working in the process of gravity fall along with the dropping of boom and swing of arm, this phenomena will influence the moving velocity of construction robot and the effect of the effect of trajectory tracking, especially in the lifting process, moreover, in