WorldWideScience

Sample records for autonomous self-reconfigurable robots

  1. Elements of Autonomous Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan

    In this thesis, we study several central elements of autonomous self-reconfigurable modular robots. Unlike conventional robots such robots are: i) Modular, since robots are assembled from numerous robotic modules. ii) Reconfigurable, since the modules can be combined in a variety of ways. iii) Self......-reconfigurable, since the modules themselves are able to change how they are combined. iv) Autonomous, since robots control themselves without human guidance. Such robots are attractive to study since they in theory have several desirable characteristics, such as versatility, reliability and cheapness. In practice...... robots: design, scalability, self-reconfiguration and adaptation. The first element we consider is the design of systems, modules, robots, and behaviors. We introduce a number of design principles that will guide our designs throughout the thesis. The design principles advocate simple, extendable...

  2. Roles and Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Dvinge, Nicolai; Schultz, Ulrik Pagh; Christensen, David Johan

    2007-01-01

    A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape....... Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular......, self-reconfigurable robots, we have developed a declarative, role-based language that allows the programmer to associate roles and behavior to structural elements in a modular robot. Based on the role declarations, a dedicated middleware for high-level distributed communication is generated...

  3. A mobile self-reconfigurable robot based on modularity

    Institute of Scientific and Technical Information of China (English)

    Zhong Ming; Guo Wei; Xu Ji'an; Sun Lining

    2009-01-01

    A novel mobile self-reconfigurable robot is presented. This robot consists of several independent units. Each unit is composed of modular components including ultrasonic sensor, camera, communication, computation, and mobility parts, and is capable of simple self-reconfiguring to enhance its mobility by expanding itself. Several units can not only link into a train or other shapes autonomously via camera and sensors to be a united whole robot for obstacle clearing, but also disjoin to be separate units under control after missions. To achieve small overall size, compact mechanical structures are adopted in modular components design, and a miniature advanced RISC machines (ARM) based embedded controller is developed for minimal power consumption and efficient global control. The docking experiment between two units has also been implemented.

  4. Lattice Automata for Control of Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Støy, Kasper

    2015-01-01

    Self-reconfigurable robots are built from robotic modules typically organised in a lattice. The robotic modules themselves are complete, although simple, robots and have onboard batteries, actuators, sensors, processing power, and communication capabilities. The modules can automatically connect...... to and disconnect from neighbour modules and move around in the lattice of modules. The self-reconfigurable robot as a whole can, through this automatic rearrangement of modules, change its own shape to adapt to the environment or as a response to new tasks. Potential advantages of self-reconfigurable robots...... are extreme versatility and robustness. The organisation of self-reconfigurable robots in a lattice structure and the emphasis on local communication between modules mean that lattice automata are a useful basis for control of self-reconfigurable robots. However, there are significant differences which arise...

  5. Configuration information acquisition and matching in self-reconfiguring process of modular self-reconfigurable robots

    Institute of Scientific and Technical Information of China (English)

    Ren Zongwei; Zang Xizhe; Zhu Yanhe; Zhang Yuhua; Zhao Jie

    2008-01-01

    Configuration information acquisition and matching are two important steps in the self-reconfiguring process of self-reconfigurable robots. The process of configuration information acquisition was introduced, and a self-reconfiguring configuration matching strategy based on graded optimization mechanism was proposed. The first-grade optimization was to search common connection between matching scheme and goal configuration. The second-grade optimization, whose object function was constructed in terms of configuration connectivity, was to search common topology according to the results of the first-grade optimization. The entire process of configuration information acquisition and matching was verified by an experiment and genetic algorithm (GA). The result shows the accuracy of the configuration information acquisition and the effectiveness of the configuration matching method.

  6. Modular structure of a self-reconfigurable robot

    Institute of Scientific and Technical Information of China (English)

    FEI Yanqiong; DONG Qinglei; ZHAO Xifang

    2007-01-01

    This paper proposes a novel, hermaphroditic, and lattice self-reconfigurable modular robot. Each module is composed of a center body--a cubic part and six sides that can rotate independently. There are two holes and two exten- sible pegs on each side. The rotary motion of each side and the extensible motion of the pegs are generated by a motor connected to a reducer, using a cone-shaped gear, belt, clutch, etc. The structure of the module is compact, and has space to extend further.

  7. A Domain-Specific Language for Programming Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Christensen, David Johan; Støy, Kasper

    2007-01-01

    A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape....... Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular......, self-reconfigurable robots, we have developed a declarative, role-based language that allows the programmer to define roles and behavior independently of the concrete physical structure of the robot. Roles are compiled to mobile code fragments that distribute themselves over the physical structure...

  8. Metamorphic Algorithm of Self-reconfigurable Modular Robotic System

    Institute of Scientific and Technical Information of China (English)

    徐威; 王高中; 李倩; 王石刚

    2004-01-01

    A self-reconfigurable robot is a non-linear complex system composed of a large number of modules. The complexity caused by non-linearity makes it difficult to solve the problem of module motion planning and shape-changing control with the traditional algorithm. In this paper, a full-discrete metamorphic algorithm is proposed. The modules concurrently process the local sensing information, update their eigenvector, and act by the same predetermined logical rules. Then a reasonable motion sequence for modules and the global metamorphosis can be obtained. Therefore, the complexity of metamorphic algorithm is reduced, the metamorphic procedure is simplified, and the self-organizing metamorphosis can be obtained. The algorithm cases of several typical systems are studied and evaluated through simulation program of 2-D planar homogeneous modular systems.

  9. Design and Implementation of a Modular Self-reconfigurable Robot

    Directory of Open Access Journals (Sweden)

    Guifang Qiao

    2014-03-01

    Full Text Available This paper presents the design and implementation of a new modular self-reconfigurable robot. The single module has three joints and can perform rectilinear motion, lateral shift, lateral rolling, and rotation. A flexible pin-hole-based docking mechanism is designed for self-assembly. With the proposed infrared-sensor-based docking method, multiple modules can be self-assembled to form versatile configurations. The modules communicate with each other through ZigBee protocols. The locomotion planning and geometry analysis of the single module are presented in detail and the efficiency of the single module’s mobility is also demonstrated by experimental results. In automatic docking experiments with two modules, the proposed method is shown to be able to achieve an average success rate of 78% within the effective region. The average time of the docking process is reduced to 75 s. The maximum velocity of the I-shaped robot is up to 3.6 cm/s and the maximum velocity of the X-shaped robot is 4.8 cm/s. The detach-dock method for I-to-X transformation planning is also verified. The ZigBee-based communication system can achieve 100% receiving rate at 55 ms transformation interval.

  10. Network-based reconfiguration routes for a self-reconfigurable robot

    Institute of Scientific and Technical Information of China (English)

    LIU JinGuo; MA ShuGen; WANG YueChao; LI Bin

    2008-01-01

    This paper presents a network-based analysis approach for the reconfiguration problem of a self-reconfigurable robot.The self-reconfigurable modular robot named "AMOEBA-Ⅰ" has nine kinds of non-isomorphic configurations that consist of a configuration network.Each configuration of the robot is defined to be a node in the weighted and directed configuration network.The transformation from one configuration to another is represented by a directed path with nonnegative weight.Graph theory is applied in the reconfiguration analysis,where reconfiguration route,reconfigurable matrix and route matrix are defined according to the topological information of these configurations.Algorithms in graph theory have been used in enumerating the available reconfiguration routes and deciding the best reconfiguration route.Numerical analysis and experimental simulation results prove the validity of the approach proposed in this paper.And it is potentially suitable for other self-reconfigurable robots' configuration control and reconfiguration planning.

  11. Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    DEFF Research Database (Denmark)

    Moghadam, Mikael; Johan Christensen, David; Brandt, David

    2013-01-01

    This paper explores the role of operating system and high-level languages in the development of software and domain-specific languages (DSLs) for self-reconfigurable robotics. We review some of the current trends in self-reconfigurable robotics and describe the development of a software system...... for ATRON II which utilizes Linux and Python to significantly improve software abstraction and portability while providing some basic features which could prove useful when using Python, either stand-alone or via a DSL, on a self-reconfigurable robot system. These features include transparent socket...... communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages....

  12. Self-Reconfiguration Planning of Robot Embodiment for Inherent Safe Performance

    Science.gov (United States)

    Uchida, Masafumi; Nozawa, Akio; Asano, Hirotoshi; Onogaki, Hitoshi; Mizuno, Tota; Park, Young-Il; Ide, Hideto; Yokoyama, Shuichi

    In the situation in which a robot and a human work together by collaborating with each other, a robot and a human share one working environment, and each interferes in each other. In other ward, it is impossible to avoid the physical contact and the interaction of force between a robot and a human. The boundary of each complex dynamic occupation area changes in the connection movement which is the component of collaborative works at this time. The main restraint condition which relates to the robustness of that connection movement is each physical charactristics, that is, the embodiment. A robot body is variability though the embodiment of a human is almost fixed. Therefore, the safe and the robust connection movement is brought when a robot has the robot body which is well suitable for the embodiment of a human. A purpose for this research is that the colaboration works between the self-reconfiguration robot and a human is realized. To achieve this purpose, a self-reconfiguration algorithm based on some indexes to evaluate a robot body in the macroscopic point of view was examined on a modular robot system of the 2-D lattice structure. In this paper, it investigated effect specially that the object of learning of each individual was limited to the cooperative behavior between the adjoining modules toward the macroscopic evaluation index.

  13. External Environment Sensing by a Module on Self-reconfiguration Robot

    Science.gov (United States)

    Goto, Tomotsugu; Uchida, Masafumi; Onogaki, Hitoshi

    In the situation in which a robot and a human work together by collaborating with each other, a robot and a human share one working environment, and each interferes in each other. The boundary of each complex dynamic occupation area changes in the connection movement which is the component of collaborative works at this time. The main restraint condition which relates to the robustness of that connection movement is each physical charactristics, that is, the embodiment. A robot body is variability though the embodiment of a human is almost fixed. Therefore, the safe and the robust connection movement is brought when a robot has the robot body which is well suitable for the embodiment of a human. A purpose for this research is that the colaboration works between the self-reconfiguration robot and a human is realized. To achieve this purpose, sensing function of external environment on a module was examined. A module is a component of the self-reconfiguration robot. A robot body vibrates when a module actuates an arm actively. This vibration is observed by using some acceleration sensors. Measured datas reflects a difference of objects that it touches a robot body. In this paper, the sensing technique of external environment which identifies this difference by using the neural network is proposed.

  14. Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    DEFF Research Database (Denmark)

    Moghadam, Mikael; Christensen, David Johan; Brandt, David

    2011-01-01

    This paper explores the role of operating system and high-level languages in the development of software and domain-specific languages (DSLs) for self-reconfigurable robotics. We review some of the current trends in selfreconfigurable robotics and describe the development of a software system...... for ATRON II which utilizes Linux and Python to significantly improve software abstraction and portability while providing some basic features which could prove useful when using Python, either stand-alone or via a DSL, on a selfreconfigurable robot system. These features include transparent socket...... communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages....

  15. Two-dimensional PSD based automatic docking of self-reconfiguration modular exploration robot system

    Institute of Scientific and Technical Information of China (English)

    Zhang Liping; Ma Shugen; Li Bin; Zhang Zheng; Cao Binggang

    2007-01-01

    Based on the design of a docking mechanism, this paper thoroughly investigates the space automatic docking of self-reconfiguration modular exploration robot system (RMERS). The method that leads robot to achieve space docking by using two-dimensional PSD is put forward innovatively for the median size robot system. At the same time, in order to enlarge the detecting extension and the precision of PSD and reduce its dependence on lighting signal, the PSD was remade by increasing the optical device over its light-sensitive surface. The emission board and LED light scheduling were designed according to docking arithmetic, and the operating principle of docking process was analyzed based on these. The simulation experiments were carried out and their results are presented.

  16. Metamorphic strategy based on dynamic meta-modules for a self-reconfigurable robot

    Institute of Scientific and Technical Information of China (English)

    Zhang Yuhua; Zhu Yanhe; Zhao Jie; Ren Zongwei

    2008-01-01

    For a self-reconfigurable robot, how to metamorphose to adapt itself to environment is a difficult problem.To solve this problem, a new relative orientation model which describes modules and their surrounding grids was given, a module motion rules database which enables the robot to avoid obstacles was established, and finally a three-layer planner based on dynamic meta-medules was developed.The firstlayer planner designates the category of each module in robot by evaluation functions and picks out the modules in dynamic meta-modules.The second-layer planner plans the dynamic meta-module path according to output parameters of the first-layer planner.The third-layer planner plans the motion of the modules in dynamic meta-medule using topology variation oriented methods.To validate the efficiency of the three-layer planner, two simulations were given.One is the simulation of a single dynamic meta-module, the other is the simulation of planning with an initial configuration composed of 8 modules in complicated environment.Results show that the methods can make robot with any initial configuration move through metamorphosis in complicated environment efficiently.

  17. Autonomous vehicle platforms from modular robotic components

    Science.gov (United States)

    Schonlau, William J.

    2004-09-01

    A brief survey of current autonomous vehicle (AV) projects is presented with intent to find common infrastructure or subsystems that can be configured from commercially available modular robotic components, thereby providing developers with greatly reduced timelines and costs and encouraging focus on the selected problem domain. The Modular Manipulator System (MMS) robotic system, based on single degree of freedom rotary and linear modules, is introduced and some approaches to autonomous vehicle configuration and deployment are examined. The modules may be configured to provide articulated suspensions for very rugged terrain and fall recovery, articulated sensors and tooling plus a limited capacity for self repair and self reconfiguration. The MMS on-board visually programmed control software (Model Manager) supports experimentation with novel physical configurations and behavior algorithms via real-time 3D graphics for operations simulation and provides useful subsystems for vision, learning and planning to host intelligent behavior.

  18. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    Science.gov (United States)

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-01

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.

  19. A distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Schultz, Ulrik Pagh; Stoy, Kasper

    2013-01-01

    In this paper, we present a distributed reinforcement learning strategy for morphology-independent lifelong gait learning for modular robots. All modules run identical controllers that locally and independently optimize their action selection based on the robot’s velocity as a global, shared reward...

  20. Autonomous robotic sweeper

    OpenAIRE

    Kržišnik, Domen

    2015-01-01

    There is already a wide range of personal/domestic robots on the market capable of performing various tasks. We haven't however been able to find any commercially available robots designed for effectively performing the task of backyard sweeping. This thesis presents the process and end result of planning, assembly and programming of an autonomous robot, capable of performing the above mentioned task. We first analyze robots with similar functions, including robotic vacuum cleaners and lawn m...

  1. Autonomous Hexapod Spider Robot

    DEFF Research Database (Denmark)

    Pandey, Nisha; Pandey, Bishwajeet; Hussain, Dil muhammed Akbar

    2017-01-01

    of a hexapod robot. It is controlled through Arduino-unoR3 based SSC servo control module. Servos of torque 2.5kg-cm are used in robot to show different working movements including back and forth movement and sitting posture. Another trending technology i.e. Bluetooth is used to control autonomous feature...

  2. Autonomous mobile robot teams

    Science.gov (United States)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  3. Autonomous military robotics

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This SpringerBrief reveals the latest techniques in computer vision and machine learning on robots that are designed as accurate and efficient military snipers. Militaries around the world are investigating this technology to simplify the time, cost and safety measures necessary for training human snipers. These robots are developed by combining crucial aspects of computer science research areas including image processing, robotic kinematics and learning algorithms. The authors explain how a new humanoid robot, the iCub, uses high-speed cameras and computer vision algorithms to track the objec

  4. Motion error calbiration of modular self-reconfigurable robot M-Cubes based on POE%基于指数积的自重构机器人的运动误差校准

    Institute of Scientific and Technical Information of China (English)

    吴秋轩; 罗艳斌; 迟晓妮; 楼晓春

    2011-01-01

    In the process of self-Reconfigurable for modular robot, the module's assembly, connection, transmission, cantilever deformation and joint flexibility would affect the pose error of the execution module in the end, which would cause the adjacent module not to be properly connected, so the position and orientation of the end module must be calibrated. On the "L" structure of the modular reconfigurable robot M-Cubes, the forward product of exponential error calibration model was derived by the nominal coordinate system built on the link coordinate system, in which the rotation coordinate transformation and the translation coordinate transformation caused by the error factors to the nominal coordinate system was amended. The calibrated model would be applied to the "L" structure of the self-reconfigurable robot M-Cubes, which properly calibrate the pose error of the rotary joint axis and hole in the end execution module, and ensure properly connected with the adjacent joints. The foundation was laid for the self-reconfigurable robot.%模块化自重构机器人在重构过程中,由于模块的装配、连接、传动、悬臂变形、关节柔性都会影响末端执行模块的位姿误差,导致相邻模块不能正常连接,必须对末端模块位姿进行校准.为此,在模块化自重构机器人M-Cubes的“L”结构上,利用建立在连杆坐标系上的名义坐标系,将误差因素引起的旋转坐标变换和平移坐标变换对名义坐标系进行修正,推导出正向指数积误差校准模型.将此校准模型运用到自重构机器人M-Cubes的“L”结构中,很好地校准了末端执行模块旋转关节轴和孔的位姿误差,保证了和相邻关节的正确连接,为自重构奠定了基础.

  5. Autonomous mobile robots: Vehicles with cognitive control

    Energy Technology Data Exchange (ETDEWEB)

    Meystel, A.

    1987-01-01

    This book explores a new rapidly developing area of robotics. It describes the state-of-the-art intelligence control, applied machine intelligence, and research and initial stages of manufacturing of autonomous mobile robots. A complete account of the theoretical and experimental results obtained during the last two decades together with some generalizations on Autonomous Mobile Systems are included in this book. Contents: Introduction; Requirements and Specifications; State-of-the-art in Autonomous Mobile Robots Area; Structure of Intelligent Mobile Autonomous System; Planner, Navigator; Pilot; Cartographer; Actuation Control; Computer Simulation of Autonomous Operation; Testing the Autonomous Mobile Robot; Conclusions; Bibliography.

  6. Autonomous caregiver following robotic wheelchair

    Science.gov (United States)

    Ratnam, E. Venkata; Sivaramalingam, Sethurajan; Vignesh, A. Sri; Vasanth, Elanthendral; Joans, S. Mary

    2011-12-01

    In the last decade, a variety of robotic/intelligent wheelchairs have been proposed to meet the need in aging society. Their main research topics are autonomous functions such as moving toward some goals while avoiding obstacles, or user-friendly interfaces. Although it is desirable for wheelchair users to go out alone, caregivers often accompany them. Therefore we have to consider not only autonomous functions and user interfaces but also how to reduce caregivers' load and support their activities in a communication aspect. From this point of view, we have proposed a robotic wheelchair moving with a caregiver side by side based on the MATLAB process. In this project we discussing about robotic wheel chair to follow a caregiver by using a microcontroller, Ultrasonic sensor, keypad, Motor drivers to operate robot. Using camera interfaced with the DM6437 (Davinci Code Processor) image is captured. The captured image are then processed by using image processing technique, the processed image are then converted into voltage levels through MAX 232 level converter and given it to the microcontroller unit serially and ultrasonic sensor to detect the obstacle in front of robot. In this robot we have mode selection switch Automatic and Manual control of robot, we use ultrasonic sensor in automatic mode to find obstacle, in Manual mode to use the keypad to operate wheel chair. In the microcontroller unit, c language coding is predefined, according to this coding the robot which connected to it was controlled. Robot which has several motors is activated by using the motor drivers. Motor drivers are nothing but a switch which ON/OFF the motor according to the control given by the microcontroller unit.

  7. An Autonomous Omnidirectional Robot

    Directory of Open Access Journals (Sweden)

    Yanfei Liu

    2010-01-01

    Full Text Available RoboCup is an international research and education initiative, which aims to foster artificial intelligence and robotics research by using competitive soccer as a standard problem. This paper presents a detailed engineering design process and the outcome for an omni-directional mobile robot platform for the Robocup Middle Size League competition. A prototype that can move omnidirectionally with kicking capability was designed, built, and tested by a group of senior students. The design included a mechanical base, pneumatic kicking mechanism, a DSP microcontroller-based control system, various sensor interfacing units, and the analysis of omnidirectional motions. The testing results showed that the system was able to move omnidirectionally with a speed of ∼2 m/s and able to kick a size 5 FIFA soccer ball for a distance of at least 5 meters.

  8. Autonomous Mobile Robots.

    Science.gov (United States)

    1986-01-30

    The latter corresponds to physicall delimited spaces such as labs or offices, which define a connected region of visibility. Global Alaps are sets...Planning for a Mobile Robot Charles E. Thorpe Computer Science Department, Carnegie-Mellon University Abstrcit Path Relaxation is a method of planning safe...Uncertainty in 3D Stereo Navigation Larry Matthies Computer Science Department Carnegie-Mellon University Abstract 0 We are studying the accuracy with

  9. Autonomous flying robots

    CERN Document Server

    Nonami, Kenzo; Suzuki, Satoshi; Wang, Wei; Nakazawa, Daisuke

    2010-01-01

    Worldwide demand for robotic aircraft such as unmanned aerial vehicles (UAVs) and micro aerial vehicles (MAVs) is surging. Not only military but especially civil applications are being developed at a rapid pace. Unmanned vehicles offer major advantages when used for aerial surveillance, reconnaissance, and inspection in complex and inhospitable environments. UAVs are better suited for dirty or dangerous missions than manned aircraft and are more cost-effective. UAVs can operate in contaminated environments, for example, and at altitudes both lower and higher than those typically traversed by m

  10. Plant Watering Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Hema Nagaraja

    2012-07-01

    Full Text Available Now days, due to busy routine life, people forget to water their plants. In this paper, we present a completely autonomous and a cost-effective system for watering indoor potted plants placed on an even surface. The system comprises of a mobile robot and a temperature-humidity sensing module. The system is fully adaptive to any environment and takes into account the watering needs of the plants using the temperature-humidity sensing module. The paper describes the hardware architecture of the fully automated watering system, which uses wireless communication to communicate between the mobile robot and the sensing module. This gardening robot is completely portable and is equipped with a Radio Frequency Identification (RFID module, a microcontroller, an on-board water reservoir and an attached water pump. It is capable of sensing the watering needs of the plants, locating them and finally watering them autonomously without any human intervention. Mobilization of the robot to the potted plant is achieved by using a predefined path. For identification, an RFID tag is attached to each potted plant. The paper also discusses the detailed implementation of the system supported with complete circuitry. Finally, the paper concludes with system performance including the analysis of the water carrying capacity and time requirements to water a set of plants.

  11. Information Engineering in Autonomous Robot Software

    NARCIS (Netherlands)

    Ziafati, P.

    2015-01-01

    In order to engage and help in our daily life, autonomous robots are to operate in dynamic and unstructured environments and interact with people. As the robot's environment and its behaviour are getting more complex, so are the robot's software and the knowledge that the robot needs to carry out it

  12. Autonomous Robotic Inspection in Tunnels

    Science.gov (United States)

    Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.

    2016-06-01

    In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.

  13. Autonomous Dome for Robotic Telescope

    CERN Document Server

    Kumar, Akash; Ganesh, Shashikiran

    2016-01-01

    Physical Research Laboratory operates a 50cm robotic observatory at Mount Abu. This Automated Telescope for Variability Studies (ATVS) makes use of Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  14. Spatial abstraction for autonomous robot navigation.

    Science.gov (United States)

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel.

  15. Distributed formation control for autonomous robots

    NARCIS (Netherlands)

    Garcia de Marina Peinado, Hector Jesús

    2016-01-01

    This thesis addresses several theoretical and practical problems related to formation-control of autonomous robots. Formation-control aims to simultaneously accomplish the tasks of forming a desired shape by the robots and controlling their coordinated collective motion. This kind of robot performan

  16. Design of a Miniature Autonomous Surveillance Robot

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chang-e; HUANG Qiang; HUANG Yuan-can

    2009-01-01

    The small size of miniature robots poses great challenges for the mechanical and deetrieal design and the implementation of autonomous capabilities.In this paper,the mechanical and electrical design for a twowheeled cylindrical miniature autonomous robot ("BMS-1",BIT MicroScout-1) is presented and some autonomous capabilities are implemented by multiple sensors and some arithmetic models.Several experimental results show that BMS-1 is useful for surveillance in confined spaces and suitable for large-scale surveillance due to some autonomous capabilities.

  17. Autonomous Robot Navigation In Public Nature Park

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole;

    2005-01-01

    This extended abstract describes a project to make a robot travel autonomously across a public nature park. The challenge is to detect and follow the right path across junctions and open squares avoiding people and obstacles. The robot is equipped with a laser scanner, a (low accuracy) GPS, wheel...

  18. Control algorithms for autonomous robot navigation

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  19. An autonomous weeding robot for organic farming

    NARCIS (Netherlands)

    Bakker, T.; Asselt, van C.J.; Bontsema, J.; Müller, J.; Straten, van G.

    2006-01-01

    The objective of this research is the replacement of hand weeding in organic farming by a device working autonomously at ¯eld level. The autonomous weeding robot was designed using a structured design approach, giving a good overview of the total design. A vehicle was developed with a diesel engine,

  20. Robots Social Embodiment in Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  1. Development of autonomous grasping and navigating robot

    Science.gov (United States)

    Kudoh, Hiroyuki; Fujimoto, Keisuke; Nakayama, Yasuichi

    2015-01-01

    The ability to find and grasp target items in an unknown environment is important for working robots. We developed an autonomous navigating and grasping robot. The operations are locating a requested item, moving to where the item is placed, finding the item on a shelf or table, and picking the item up from the shelf or the table. To achieve these operations, we designed the robot with three functions: an autonomous navigating function that generates a map and a route in an unknown environment, an item position recognizing function, and a grasping function. We tested this robot in an unknown environment. It achieved a series of operations: moving to a destination, recognizing the positions of items on a shelf, picking up an item, placing it on a cart with its hand, and returning to the starting location. The results of this experiment show the applicability of reducing the workforce with robots.

  2. Colias: An Autonomous Micro Robot for Swarm Robotic Applications

    Directory of Open Access Journals (Sweden)

    Farshad Arvin

    2014-07-01

    Full Text Available Robotic swarms that take inspiration from nature are becoming a fascinating topic for multi-robot researchers. The aim is to control a large number of simple robots in order to solve common complex tasks. Due to the hardware complexities and cost of robot platforms, current research in swarm robotics is mostly performed by simulation software. The simulation of large numbers of these robots in robotic swarm applications is extremely complex and often inaccurate due to the poor modelling of external conditions. In this paper, we present the design of a low-cost, open-platform, autonomous micro-robot (Colias for robotic swarm applications. Colias employs a circular platform with a diameter of 4 cm. It has a maximum speed of 35 cm/s which enables it to be used in swarm scenarios very quickly over large arenas. Long-range infrared modules with an adjustable output power allow the robot to communicate with its direct neighbours at a range of 0.5 cm to 2 m. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. It has been tested in both individual and swarm scenarios, and the observed results demonstrate its feasibility for use as a micro-sized mobile robot and as a low-cost platform for robot swarm applications.

  3. Evaluating Autonomous Ground-Robots

    Science.gov (United States)

    2012-06-14

    range from robot soccer (football) to measuring the performance of a robot in computer simulations. However, many resultant designs are narrowly focused...from robot soccer (football) to measuring the performance of a robot in computer simulations. However, many resultant designs are narrowly focused or...Predicting Operator Capacity for Supervisory Control of Multiple UAVs, Innovations in Intelligent Machines, Springer , 2009 [5] Davidson, E.J., Evaluation

  4. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...... update of the estimated robot position while the robot is moving. In order to make the system autonomous, both acquisition and observation of landmarks have to be carried out automatically. The thesis consequently proposes a method for learning and navigation of a working environment and it explores...... of the proposed method is based on a system with a simple setup. The novelty and potentiality, are in combining algorithms for panoramic view-synthesis, attention selection, stereo reconstruction, triangulation, optimal triplet selection, and image-based rendering. Experiments demonstrate that the system can...

  5. Tracked robot controllers for climbing obstacles autonomously

    Science.gov (United States)

    Vincent, Isabelle

    2009-05-01

    Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.

  6. Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots

    Science.gov (United States)

    2003-01-01

    Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots Donald Sofge, Magdalena Bugajska, William Adams, Dennis...computing paradigm for integrated distributed artificial intelligence systems on autonomous mobile robots (Figure 1). Figure 1 – CoABS Grid...Architecture for Dynamically Autonomous Mobile Robots The remainder of the paper is organized as follows. Section 2 describes our integrated AI

  7. Autonomous Environment Recognition by Robotic Manipulators

    OpenAIRE

    Senda, Kei; Okano, Yuzo

    2001-01-01

    This paper discusses methods of autonomus environment recognition and action by a robotic manipulator working with dynamic interaction to the enviroment, e.g., assembling. A method automatically recognizes the contacting situation with the work site from the sensor outputs and the robotic manipulator motion. The autonomous recognition then discriminates the constraint conditions at manopulator hand using the self-organizing map that is a kind of unsupervisedlearning of neural networks. The di...

  8. Autonomous robotics and deep learning

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This Springer Brief examines the combination of computer vision techniques and machine learning algorithms necessary for humanoid robots to develop "true consciousness." It illustrates the critical first step towards reaching "deep learning," long considered the holy grail for machine learning scientists worldwide. Using the example of the iCub, a humanoid robot which learns to solve 3D mazes, the book explores the challenges to create a robot that can perceive its own surroundings. Rather than relying solely on human programming, the robot uses physical touch to develop a neural map of its en

  9. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  10. TIGRE - An autonomous ground robot for outdoor exploration

    OpenAIRE

    Martins, Alfredo; Amaral, Guilherme; Dias, André; Almeida, Carlos; Almeida, José; Silva, Eduardo

    2013-01-01

    13th International Conference on Autonomous Robot Systems (Robotica), 2013 In this paper we present an autonomous ground robot developed for outdoor applications in unstructured scenarios. The robot was developed as a versatile robotics platform for development, test and validation of research in navigation, control, perception and multiple robot coordination on all terrain scenarios. The hybrid systems approach to the control architecture is discussed in the context of multiple robot coor...

  11. Applying energy autonomous robots for dike inspection

    NARCIS (Netherlands)

    Dresscher, Douwe; Vries, de Theo J.A.; Stramigioli, Stefano

    2015-01-01

    This article presents an exploratory study of an energy-autonomous robot that can be deployed on the Dutch dykes. Based on theory in energy harvesting from sun and wind and the energy-cost of locomotion an analytic expression to determine the feasible daily operational time of such a vehicle is comp

  12. Advanced manipulation for autonomous mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, S.M.; Hamel, W.R.; Killough, S.M.

    1986-01-01

    This paper describes the development, mechanical configuration, and control system architecture of a lightweight, high performance, seven-degree-of-freedom manipulator at the Center for Engineering Systems Advanced Research (CESAR). Current activities focusing on modeling and parameter identification will provide a well-characterized manipulator for analytical and experimental research in manipulator dynamics and controls, coordinated manipulation, and autonomous mobile robotics.

  13. Diagnosing faults in autonomous robot plan execution

    Science.gov (United States)

    Lam, Raymond K.; Doshi, Rajkumar S.; Atkinson, David J.; Lawson, Denise M.

    1988-01-01

    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment.

  14. 一种新型模块化自重构机器人的运动仿真和试验%Motion simulation and experiment of a novel modular self-reconfigurable robot

    Institute of Scientific and Technical Information of China (English)

    吴秋轩; 曹广益; 费燕琼

    2006-01-01

    根据自重构机器人的特点,设计了一种新型的同构阵列式自重构机器人M-Cubes,其每个单元模块由6个旋转关节和1个立方体连杆组成,具有12个自由度,旋转关节上设计了一种机械式的连接分离机构,连杆内部设计了一种空间传动系统,用一个电机分别带动6个空间均布的关节旋转,机构整体结构上更加简洁、紧凑.对设计的模块进行的基本运动试验表明:传动更加高效,连接分离更加可靠,控制更加简单方便.同时开发了一个自重构机器人仿真平台,可以图形化地设计系统的构型、模块的运动和系统的重构过程.利用元胞自动机的局部作用特性,将每个单元模块简化为元胞,结合遗传算法来进化元胞自动机的转移规则,将转移规则作用于每个单元模块,实现分布式控制,仿真结果表明该方法是有效和可行的.%Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure,highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA)and applied

  15. Embodied cognition for autonomous interactive robots.

    Science.gov (United States)

    Hoffman, Guy

    2012-10-01

    In the past, notions of embodiment have been applied to robotics mainly in the realm of very simple robots, and supporting low-level mechanisms such as dynamics and navigation. In contrast, most human-like, interactive, and socially adept robotic systems turn away from embodiment and use amodal, symbolic, and modular approaches to cognition and interaction. At the same time, recent research in Embodied Cognition (EC) is spanning an increasing number of complex cognitive processes, including language, nonverbal communication, learning, and social behavior. This article suggests adopting a modern EC approach for autonomous robots interacting with humans. In particular, we present three core principles from EC that may be applicable to such robots: (a) modal perceptual representation, (b) action/perception and action/cognition integration, and (c) a simulation-based model of top-down perceptual biasing. We describe a computational framework based on these principles, and its implementation on two physical robots. This could provide a new paradigm for embodied human-robot interaction based on recent psychological and neurological findings.

  16. Autonomous Mobile Robot That Can Read

    Science.gov (United States)

    Létourneau, Dominic; Michaud, François; Valin, Jean-Marc

    2004-12-01

    The ability to read would surely contribute to increased autonomy of mobile robots operating in the real world. The process seems fairly simple: the robot must be capable of acquiring an image of a message to read, extract the characters, and recognize them as symbols, characters, and words. Using an optical Character Recognition algorithm on a mobile robot however brings additional challenges: the robot has to control its position in the world and its pan-tilt-zoom camera to find textual messages to read, potentially having to compensate for its viewpoint of the message, and use the limited onboard processing capabilities to decode the message. The robot also has to deal with variations in lighting conditions. In this paper, we present our approach demonstrating that it is feasible for an autonomous mobile robot to read messages of specific colors and font in real-world conditions. We outline the constraints under which the approach works and present results obtained using a Pioneer 2 robot equipped with a Pentium 233 MHz and a Sony EVI-D30 pan-tilt-zoom camera.

  17. Autonomous Mobile Robot That Can Read

    Directory of Open Access Journals (Sweden)

    Létourneau Dominic

    2004-01-01

    Full Text Available The ability to read would surely contribute to increased autonomy of mobile robots operating in the real world. The process seems fairly simple: the robot must be capable of acquiring an image of a message to read, extract the characters, and recognize them as symbols, characters, and words. Using an optical Character Recognition algorithm on a mobile robot however brings additional challenges: the robot has to control its position in the world and its pan-tilt-zoom camera to find textual messages to read, potentially having to compensate for its viewpoint of the message, and use the limited onboard processing capabilities to decode the message. The robot also has to deal with variations in lighting conditions. In this paper, we present our approach demonstrating that it is feasible for an autonomous mobile robot to read messages of specific colors and font in real-world conditions. We outline the constraints under which the approach works and present results obtained using a Pioneer 2 robot equipped with a Pentium 233 MHz and a Sony EVI-D30 pan-tilt-zoom camera.

  18. An architecture for an autonomous learning robot

    Science.gov (United States)

    Tillotson, Brian

    1988-01-01

    An autonomous learning device must solve the example bounding problem, i.e., it must divide the continuous universe into discrete examples from which to learn. We describe an architecture which incorporates an example bounder for learning. The architecture is implemented in the GPAL program. An example run with a real mobile robot shows that the program learns and uses new causal, qualitative, and quantitative relationships.

  19. Evolutionary neurocontrollers for autonomous mobile robots.

    Science.gov (United States)

    Floreano, D; Mondada, F

    1998-10-01

    In this article we describe a methodology for evolving neurocontrollers of autonomous mobile robots without human intervention. The presentation, which spans from technological and methodological issues to several experimental results on evolution of physical mobile robots, covers both previous and recent work in the attempt to provide a unified picture within which the reader can compare the effects of systematic variations on the experimental settings. After describing some key principles for building mobile robots and tools suitable for experiments in adaptive robotics, we give an overview of different approaches to evolutionary robotics and present our methodology. We start reviewing two basic experiments showing that different environments can shape very different behaviours and neural mechanisms under very similar selection criteria. We then address the issue of incremental evolution in two different experiments from the perspective of changing environments and robot morphologies. Finally, we investigate the possibility of evolving plastic neurocontrollers and analyse an evolved neurocontroller that relies on fast and continuously changing synapses characterized by dynamic stability. We conclude by reviewing the implications of this methodology for engineering, biology, cognitive science and artificial life, and point at future directions of research.

  20. Behavior-Based Power Management in Autonomous Mobile Robots

    Science.gov (United States)

    2008-03-27

    Behavior-Based Power Management In Autonomous Mobile Robots THESIS Charles A. Fetzek, First Lieutenant, USAF AFIT/GCE/ENG/08-05 DEPARTMENT OF THE AIR...of Defense, or the United States Government. AFIT/GCE/ENG/08-05 Behavior-Based Power Management In Autonomous Mobile Robots THESIS Presented to the...Management In Autonomous Mobile Robots Charles A. Fetzek, B.S.C.E. First Lieutenant, USAF Approved: /signed/ 4 Mar 2008 Dr. Gilbert L. Peterson (Chairman

  1. Experiences in Deploying Test Arenas for Autonomous Mobile Robots

    Science.gov (United States)

    2001-09-01

    Experiences in Deploying Test Arenas for Autonomous Mobile Robots Adam Jacoff, Elena Messina, John Evans Intelligent Systems Division National...test arenas for autonomous mobile robots . The first set of arenas was modeled after the Urban Search and Rescue (USAR) application and was designed to...00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE Experiences in Deploying Test Arenas for Autonomous Mobile Robots 5a. CONTRACT NUMBER 5b. GRANT

  2. An autonomous vision-based mobile robot

    Science.gov (United States)

    Baumgartner, Eric Thomas

    This dissertation describes estimation and control methods for use in the development of an autonomous mobile robot for structured environments. The navigation of the mobile robot is based on precise estimates of the position and orientation of the robot within its environment. The extended Kalman filter algorithm is used to combine information from the robot's drive wheels with periodic observations of small, wall-mounted, visual cues to produce the precise position and orientation estimates. The visual cues are reliably detected by at least one video camera mounted on the mobile robot. Typical position estimates are accurate to within one inch. A path tracking algorithm is also developed to follow desired reference paths which are taught by a human operator. Because of the time-independence of the tracking algorithm, the speed that the vehicle travels along the reference path is specified independent from the tracking algorithm. The estimation and control methods have been applied successfully to two experimental vehicle systems. Finally, an analysis of the linearized closed-loop control system is performed to study the behavior and the stability of the system as a function of various control parameters.

  3. PRIMUS: autonomous driving robot for military applications

    Science.gov (United States)

    Schwartz, Ingo

    2000-07-01

    This article describes the government experimental program PRIMUS (PRogram of Intelligent Mobile Unmanned Systems) and the achieved results of phase C demonstrated in summer 1999 on a military prooving ground. In this program there shall be shown the autonomous driving on an unmanned robot in open terrain. The most possible degree of autonomy shall be reached with today's technology to get a platform for different missions. The goal is to release the soldier from high dangerous tasks, to increase the performance and to come to a reduction of personnel and costs with unmanned systems. In phase C of the program two small tracked vehicles (Digitized Wiesel 2, airtransportable by CH53) are used. One as a robot vehicle the other as a command & control system. The Wiesel 2 is configured as a drive by wire-system and therefore well suited for the adaption of control computers. The autonomous detection and avoidance of obstacles in unknown, not cooperative environment is the main task. For navigation and orientation a sensor package is integrated. To detect obstacles the scene in the driving corridor of the robot is scanned 4 times per second by a 3D- Range image camera (LADAR). The measured 3D-range image is converted into a 2D-obstacle map and used as input for calculation of an obstacle free path. The combination of local navigation (obstacle avoidance) and global navigation leads to a collission free driving in open terrain to a predefined goal point with a velocity of up to 25km/h. A contour tracker with a TV-camera as sensor is also implemented which allows to follow contours (e.g. edge of a meadow) or to drive on paved or unpaved roads with a velocity up to 50km/h. In addition to these autonomous driving modes the operator in the command & control station can drive the robot by remote control. All the functions were successfully demonstrated in the summer 1999 on a military prooving ground. During a mission example the robot vehicle covered a distance of several

  4. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  5. Autonomous biomorphic robots as platforms for sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-10-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.

  6. Strategy in the Robotic Age: A Case for Autonomous Warfare

    Science.gov (United States)

    2014-09-01

    question legal, ethical , and moral standings about lethal robotic systems. Foreign policy options may be altered because new military options become... ROBOTIC AGE: A CASE FOR AUTONOMOUS WARFARE by Barry S. Scott September 2014 Thesis Advisor: Donald Abenheim Co-Advisor: James Wirtz THIS...Master’s Thesis 4. TITLE AND SUBTITLE STRATEGY IN THE ROBOTIC AGE: A CASE FOR AUTONOMOUS WARFARE 5. FUNDING NUMBERS 6. AUTHOR(S) Barry S. Scott

  7. Autonomous Coordination and Online Motion Modeling for Mobile Robots

    Science.gov (United States)

    2007-09-01

    COORDINATION AND ONLINE MOTION MODELING FOR MOBILE ROBOTS by Eric Sjoberg September 2007 Co-Advisors: Kevin Squire Craig Martell...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Autonomous Coordination and Online Motion Modeling for Mobile Robots 6. AUTHOR Eric J...unlimited AUTONOMOUS COORDINATION AND ONLINE MOTION MODELING FOR MOBILE ROBOTS Eric J. Sjoberg Captain, United States Marine Corps B.S

  8. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    Science.gov (United States)

    2005-01-01

    Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots B. Sightsa, H.R. Everetta, E. Biagtan Pacisa, G. Koguta M...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots 5a...calculation methods using encoder counts, wheel radius, and the robot’s wheelbase, as described in Sensors For Mobile Robots [5]. On top of this

  9. Towards Competitive Commercial Autonomous Robots: The Configuration Problem

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole

    2011-01-01

    This article presents a framework for configuring the individual components used in component based robot control systems. Using smart parameters that adapt to the respective robot system makes it possible to obtain optimal parameter values while reusing the software components, without expert...... knowledge about the underlying algorithms. The framework also makes it possible for the robot to autonomously calibrate itself, resulting in higher stability of the robot and less development time required. The work is a result of an industrial research project aimed at lowering development costs...... and improving robustness of autonomous robot applications....

  10. An autonomous robot for harvesting cucumbers in greenhouses

    NARCIS (Netherlands)

    Henten, van E.J.; Hemming, J.; Tuijl, van B.A.J.; Kornet, J.G.; Meuleman, J.; Bontsema, J.; Os, van E.A.

    2002-01-01

    This paper describes the concept of an autonomous robot for harvesting cucumbers in greenhouses. A description is given of the working environment of the robot and the logistics of harvesting. It is stated that for a 2 ha Dutch nursery, 4 harvesting robots and one docking station are needed during t

  11. Enabling technologies for the prassi autonomous robot

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S.; Nanni, V. [ENEA, Robotics and Information Technology Division, Rome (Italy)

    2001-07-01

    In this book are summarised some of the results of the PRASSI project as presented by the different partners of the effort. PRASSI is an acronym which stands for Autonomous Robotic Platform for the Security and Surveillance of plants, the Italian for it is 'Piattaforma Robotica per la Sorveglianza e Sicurezza d'Impianto'. This project has been funded by the Italian Ministry for the Education, the University and the Research (MIUR) in the framework of the project High Performance Computing Applied to Robotics (Calcolo Parallelo con Applicazioni alla Robotica) of the law 95/1995. The idea behind such an initiative is that of fostering the knowledge and possibly the use of high performance computing in the research and industrial community. In other words, robotic scientists are always simplifying their algorithms or using particular approaches (e.g. soft computing) in order to use standard processors for difficult sensorial data processing; well, what if an embedded parallel computer were available, with at least one magnitude more of computing power?.

  12. Object recognition for autonomous robot utilizing distributed knowledge database

    Science.gov (United States)

    Takatori, Jiro; Suzuki, Kenji; Hartono, Pitoyo; Hashimoto, Shuji

    2003-10-01

    In this paper we present a novel method of object recognition utilizing a remote knowledge database for an autonomous robot. The developed robot has three robot arms with different sensors; two CCD cameras and haptic sensors. It can see, touch and move the target object from different directions. Referring to remote knowledge database of geometry and material, the robot observes and handles the objects to understand them including their physical characteristics.

  13. Object guided autonomous exploration for mobile robots in indoor environments

    Science.gov (United States)

    Nieto-Granda, Carlos; Choudhary, Siddarth; Rogers, John G.; Twigg, Jeff; Murali, Varun; Christensen, Henrik I.

    2014-06-01

    Autonomous mobile robotic teams are increasingly used in exploration of indoor environments. Accurate modeling of the world around the robot and describing the interaction of the robot with the world greatly increases the ability of the robot to act autonomously. This paper demonstrates the ability of autonomous robotic teams to find objects of interest. A novel feature of our approach is the object discovery and the use of it to augment the mapping and navigation process. The generated map can then be decomposed into semantic regions while also considering the distance and line of sight to anchor points. The advantage of this approach is that the robot can return a dense map of the region around an object of interest. The robustness of this approach is demonstrated in indoor environments with multiple platforms with the objective of discovering objects of interest.

  14. Reactive navigational controller for autonomous mobile robots

    Science.gov (United States)

    Hawkins, Scott

    1993-12-01

    Autonomous mobile robots must respond to external challenges and threats in real time. One way to satisfy this requirement is to use a fast low level intelligence to react to local environment changes. A fast reactive controller has been implemented which performs the task of real time local navigation by integrating primitive elements of perception, planning, and control. Competing achievement and constraint behaviors are used to allow abstract qualitative specification of navigation goals. An interface is provided to allow a higher level deliberative intelligence with a more global perspective to set local goals for the reactive controller. The reactive controller's simplistic strategies may not always succeed, so a means to monitor and redirect the reactive controller is provided.

  15. Quantifying Emergent Behavior of Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Georg Martius

    2015-10-01

    Full Text Available Quantifying behaviors of robots which were generated autonomously from task-independent objective functions is an important prerequisite for objective comparisons of algorithms and movements of animals. The temporal sequence of such a behavior can be considered as a time series and hence complexity measures developed for time series are natural candidates for its quantification. The predictive information and the excess entropy are such complexity measures. They measure the amount of information the past contains about the future and thus quantify the nonrandom structure in the temporal sequence. However, when using these measures for systems with continuous states one has to deal with the fact that their values will depend on the resolution with which the systems states are observed. For deterministic systems both measures will diverge with increasing resolution. We therefore propose a new decomposition of the excess entropy in resolution dependent and resolution independent parts and discuss how they depend on the dimensionality of the dynamics, correlations and the noise level. For the practical estimation we propose to use estimates based on the correlation integral instead of the direct estimation of the mutual information based on next neighbor statistics because the latter allows less control of the scale dependencies. Using our algorithm we are able to show how autonomous learning generates behavior of increasing complexity with increasing learning duration.

  16. Ant Colony Based Path Planning Algorithm for Autonomous Robotic Vehicles

    Directory of Open Access Journals (Sweden)

    Yogita Gigras

    2012-11-01

    Full Text Available The requirement of an autonomous robotic vehicles demand highly efficient algorithm as well as software. Today’s advanced computer hardware technology does not provide these types of extensive processing capabilities, so there is still a major space and time limitation for the technologies that are available for autonomous robotic applications. Now days, small to miniature mobile robots are required for investigation, surveillance and hazardous material detection for military and industrial applications. But these small sized robots have limited power capacity as well as memory and processing resources. A number of algorithms exist for producing optimal path for dynamically cost. This paper presents a new ant colony based approach which is helpful in solving path planning problem for autonomous robotic application. The experiment of simulation verified its validity of algorithm in terms of time.

  17. Software framework for off-road autonomous robot navigation system

    Institute of Scientific and Technical Information of China (English)

    WU Er-yong; ZHOU Wen-hui; ZHANG Li; DAI Guo-jun

    2009-01-01

    This paper presents a software framework for off-road autonomous robot navigation system. With the requirements of accurate terrain perception and instantaneous obstacles detection, one navigation software framework was advanced based on the principles of "three layer architecture" of intelligence system. Utilized the technologies of distributed system, machine learning and multiple sensor fusion, individual functional module was discussed. This paper aims to provide a framework reference for autonomous robot navigation system design.

  18. 11th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Chirikjian, Gregory

    2014-01-01

    Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot com...

  19. Monte Carlo Registration and Its Application with Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Christian Rink

    2016-01-01

    Full Text Available This work focuses on Monte Carlo registration methods and their application with autonomous robots. A streaming and an offline variant are developed, both based on a particle filter. The streaming registration is performed in real-time during data acquisition with a laser striper allowing for on-the-fly pose estimation. Thus, the acquired data can be instantly utilized, for example, for object modeling or robot manipulation, and the laser scan can be aborted after convergence. Curvature features are calculated online and the estimated poses are optimized in the particle weighting step. For sampling the pose particles, uniform, normal, and Bingham distributions are compared. The methods are evaluated with a high-precision laser striper attached to an industrial robot and with a noisy Time-of-Flight camera attached to service robots. The shown applications range from robot assisted teleoperation, over autonomous object modeling, to mobile robot localization.

  20. An Autonomous Mobile Robot for Tsukuba Challenge: JW-Future

    Science.gov (United States)

    Fujimoto, Katsuharu; Kaji, Hirotaka; Negoro, Masanori; Yoshida, Makoto; Mizutani, Hiroyuki; Saitou, Tomoya; Nakamura, Katsu

    “Tsukuba Challenge” is the only of its kind to require mobile robots to work autonomously and safely on public walkways. In this paper, we introduce the outline of our robot “JW-Future”, developed for this experiment based on an electric wheel chair. Additionally, the significance of participation to such a technical trial is discussed from the viewpoint of industries.

  1. Systematic design of an autonomous platform for robotic weeding

    NARCIS (Netherlands)

    Bakker, T.; Asselt, van C.J.; Bontsema, J.; Müller, J.; Straten, van G.

    2010-01-01

    The systematic design of an autonomous platform for robotic weeding research in arable farming is described. The long term objective of the project is the replacement of hand weeding in organic farming by a device working autonomously at field level. The distinguishing feature of the described desig

  2. Navigation strategies for multiple autonomous mobile robots moving in formation

    Science.gov (United States)

    Wang, P. K. C.

    1991-01-01

    The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.

  3. Sensory architectures for biologically inspired autonomous robotics.

    Science.gov (United States)

    Higgins, C M

    2001-04-01

    Engineers have a lot to gain from studying biology. The study of biological neural systems alone provides numerous examples of computational systems that are far more complex than any man-made system and perform real-time sensory and motor tasks in a manner that humbles the most advanced artificial systems. Despite the evolutionary genesis of these systems and the vast apparent differences between species, there are common design strategies employed by biological systems that span taxa, and engineers would do well to emulate these strategies. However, biologically-inspired computational architectures, which are continuous-time and parallel in nature, do not map well onto conventional processors, which are discrete-time and serial in operation. Rather, an implementation technology that is capable of directly realizing the layered parallel structure and nonlinear elements employed by neurobiology is required for power- and space-efficient implementation. Custom neuromorphic hardware meets these criteria and yields low-power dedicated sensory systems that are small, light, and ideal for autonomous robot applications. As examples of how this technology is applied, this article describes both a low-level neuromorphic hardware emulation of an elementary visual motion detector, and a large-scale, system-level spatial motion integration system.

  4. Artificial Pheromone System Using RFID for Navigation of Autonomous Robots

    Institute of Scientific and Technical Information of China (English)

    Herianto; Toshiki Sakakibara; Daisuke Kurabayashi

    2007-01-01

    Navigation system based on the animal behavior has received a growing attention in the past few years. The navigation systems using artificial pheromone are still few so far. For this reason, this paper presents our research that aim to implement autonomous navigation with artificial pheromone system. By introducing artificial pheromone system composed of data carriers and autonomous robots, the robotic system creates a potential field to navigate their group. We have developed a pheromone density model to realize the function of pheromones with the help of data carriers. We intend to show the effectiveness of the proposed system by performing simulations and realization using modified mobile robot. The pheromone potential field system can be used for navigation of autonomous robots.

  5. 10th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Mondada, Francesco; Correll, Nikolaus; Mermoud, Grégory; Egerstedt, Magnus; Hsieh, M; Parker, Lynne; Støy, Kasper

    2013-01-01

    Distributed robotics is a rapidly growing, interdisciplinary research area lying at the intersection of computer science, communication and control systems, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 43 original contributions presented at the Tenth International Symposium on Distributed Autonomous Robotic Systems (DARS 2010), which was held in November 2010 at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The selected papers in this volume are authored by leading researchers from Asia, Australia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into four parts, each representing one critical and long-term research thru...

  6. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-09-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  7. Towards Principled Experimental Study of Autonomous Mobile Robots

    Science.gov (United States)

    Gat, Erann

    1995-01-01

    We review the current state of research in autonomous mobile robots and conclude that there is an inadequate basis for predicting the reliability and behavior of robots operating in unengineered environments. We present a new approach to the study of autonomous mobile robot performance based on formal statistical analysis of independently reproducible experiments conducted on real robots. Simulators serve as models rather than experimental surrogates. We demonstrate three new results: 1) Two commonly used performance metrics (time and distance) are not as well correlated as is often tacitly assumed. 2) The probability distributions of these performance metrics are exponential rather than normal, and 3) a modular, object-oriented simulation accurately predicts the behavior of the real robot in a statistically significant manner.

  8. ARK: Autonomous mobile robot in an industrial environment

    Science.gov (United States)

    Nickerson, S. B.; Jasiobedzki, P.; Jenkin, M.; Jepson, A.; Milios, E.; Down, B.; Service, J. R. R.; Terzopoulos, D.; Tsotsos, J.; Wilkes, D.

    1994-01-01

    This paper describes research on the ARK (Autonomous Mobile Robot in a Known Environment) project. The technical objective of the project is to build a robot that can navigate in a complex industrial environment using maps with permanent structures. The environment is not altered in any way by adding easily identifiable beacons and the robot relies on naturally occurring objects to use as visual landmarks for navigation. The robot is equipped with various sensors that can detect unmapped obstacles, landmarks and objects. In this paper we describe the robot's industrial environment, it's architecture, a novel combined range and vision sensor and our recent results in controlling the robot in the real-time detection of objects using their color and in the processing of the robot's range and vision sensor data for navigation.

  9. Design and Implementation of an Autonomous Robot Soccer System

    Directory of Open Access Journals (Sweden)

    Ching-Chang Wong

    2013-05-01

    Full Text Available A design and implementation method of a robot soccer system with three vision‐based autonomous robots is proposed in this paper. A hierarchical architecture with four independent layers: (a information layer, (b strategy layer, (c tactics layer, and (d execution layer, is proposed to construct a flexible and robust vision‐based autonomous robot soccer system efficiently. Five mechanisms, including (a a two‐dimensional neck mechanism, (b dribbling mechanism, (c shooting mechanism, (d aiming mechanism, and (e flexible movement mechanism, are proposed to mean the robot with multiple functions can win the game. A method based on data obtained from a compass and a vision sensor is proposed to determine the location of the robot on the field. In the strategy design, a hierarchical architecture of decision based on the finite‐state transition mechanism for the field players and the goalkeeper is proposed to solve varied situations in the robot soccer game. Three vision‐based robots are implemented and some real competition results in the FIRA Cup are presented to illustrate the validity and feasibility of the proposed method in autonomous robot soccer system design.

  10. Autonomous navigation strategy for robot swarms using local communication

    Directory of Open Access Journals (Sweden)

    Fredy Hernán Martínez Sarmiento

    2014-01-01

    Full Text Available Our motivation focuses on answering a simple question: What is the minimum robotic structure necessary to solve a navigation problem? Our research deals with environments that are unknown, dynamic, and denied to sensors. In particular, the paper addresses problems concerning how to coordinate the navigation of multi-ple autonomous mobile robots without requiring system identification, geometric map building, localization or state estimation. The proposed navigation algorithm uses the gradient of the environment to set the navigation control. This gradient is continuously modified by all the robots in the form of local communication. The design scheme, both for the algorithm and for its implementation on robots, searches for a minimal approximation, in which it minimizes the requirements of the robot (processing power, communication and kind of sensors. Besides, our research finds autonomous navigation for each robot, and also scales the system to any number of agents. The navigation algorithm is formulated for a grouping task, where the robots form autonomous groups without any external interaction or prior information of the environment or information from other robots. Finally, task performance is verified through simulation for the laboratory prototypes of the group.

  11. Concept of Intelligent Mechanical Design for Autonomous Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    Amir A. F. Nassiraei; Kazuo Ishii

    2007-01-01

    The concept of Intelligent Mechanical Design (IMD) is presented to show how a mechanical structure can be designed to affect robot controllability, simplification and task performance. Exploring this concept produces landmarks in the territory of mechanical robot design in the form of seven design principles. The design principles, which we call the Mecha-Telligence Principles (MTP), provide guidance on how to design mechanics for autonomous mobile robots. These principles guide us to ask the right questions when investigating issues concerning self-controllable, reliable, feasible, and compatible mechanics for autonomous mobile robots. To show how MTP can be applied in the design process we propose a novel methodology, named as Mecha-Telligence Methodology (MTM). Mechanical design by the proposed methodology is based on preference classification of the robot specification described by interaction of the robot with its environment and the physical parameters of the robot mechatronics. After defining new terms, we investigate the feasibility of the proposed methodology to the mechanical design of an autonomous mobile sewer inspection robot. In this industrial project we show how a passive-active intelligent moving mechanism can be designed using the MTM and employed in the field.

  12. Navigation Method for Autonomous Robots in a Dynamic Indoor Environment

    Directory of Open Access Journals (Sweden)

    Stanislav Věchet

    2013-11-01

    Full Text Available The present paper considers issues related to navigation by autonomous mobile robots in overcrowded dynamic indoor environments (e.g., shopping malls, exhibition halls or convention centers. For robots moving among potentially unaware bystanders, safety is a key issue. A navigation method based on mixed potential field path planning is proposed, in cooperation with active artificial landmarks-based localization, in particular the bearing of infrared beacons placed in known coordinates processed via particle filters. Simulation experiments and tests in unmodified real-world environments with the actual robot show the proposed navigation system allows the robot to successfully navigate safely among bystanders.

  13. QFD-based conceptual design of an autonomous underwater robot

    Directory of Open Access Journals (Sweden)

    Thip Pasawang

    2015-12-01

    Full Text Available Autonomous underwater robots in the past few years have been designed according to the individual concepts and experiences of the researchers. To design a robot, which meets all the requirements of potential users, is an advanced work. Hence, a systematic design method that could include users’ preferences and requirements is needed. This paper presents the quality function deployment (QFD technique to design an autonomous underwater robot focusing on the Thai Navy military mission. Important user requirements extracted from the QFD method are the ability to record videos, operating at depth up to 10 meters, the ability to operate remotely with cable and safety concerns related to water leakages. Less important user requirements include beauty, using renewable energy, operating remotely with radio and ability to work during night time. The important design parameters derived from the user requirements are a low cost-controller, an autonomous control algorithm, a compass sensor and vertical gyroscope, and a depth sensor. Of low-importance ranked design parameters include the module design, use clean energy, a low noise electric motor, remote surveillance design, a pressure hull, and a beautiful hull form design. The study results show the feasibility of using QFD techniques to systematically design the autonomous underwater robot to meet user requirements. Mapping between the design and expected parameters and a conceptual drafting design of an autonomous underwater robot are also presented.

  14. Autonomous Mobile Robot That Can Read

    OpenAIRE

    Létourneau Dominic; Michaud François; Valin Jean-Marc

    2004-01-01

    The ability to read would surely contribute to increased autonomy of mobile robots operating in the real world. The process seems fairly simple: the robot must be capable of acquiring an image of a message to read, extract the characters, and recognize them as symbols, characters, and words. Using an optical Character Recognition algorithm on a mobile robot however brings additional challenges: the robot has to control its position in the world and its pan-tilt-zoom camera to find textual me...

  15. Three-dimensional vision sensors for autonomous robots

    Science.gov (United States)

    Uchiyama, Takashi; Okabayashi, Keizyu; Wakitani, Jun

    1993-09-01

    A three dimensional measurement system, which is important for developing autonomous robots is described. Industrial robots used in today's plants are of the preprogrammed teaching playback type. It is necessary to develop autonomous robots which can work based on sensor information for intelligent manufacturing systems. Moreover, practical use of robots which work in unstructured environments such as outdoors and in space is expected. To realize this, a function to measure objects and the environment three-dimensionally is a key technology. Additional important requirements for robotic sensors are real-time processing and compactness. We have developed smart 3-D vision sensors for the purpose of realizing autonomous robots. These are two kinds of sensors with different functions corresponding to the application. One is a slitted light range finder ( SLRF ) to measure stationary objects. The other is a real-time tracking vision ( RTTV ) which can measure moving objects at high speed. SLRF uses multiple slitted lights which are generated by a semiconductor laser through an interference filter and a cylindrical lens. Furthermore, we developed a liquid crystal shutter with multiple electrodes. We devised a technique to make coded slitted light by putting this shutter in front of the light source. As a result, using the principle of triangulation, objects can be measured in three dimensions. In addition, high-speed image input was enabled by projecting multiple slitted light at the same time. We have confirmed the effectiveness of the SLRF applied to a hand-eye system using a robot.

  16. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  17. Online Tracking Control of Autonomous Mobile Robot Utilizing Optimal Formulation

    Science.gov (United States)

    Hirakoso, Nobuto; Takizawa, Takahiro; Ishihara, Masaaki; Aoki, Kouzou

    In this study, the objective is to build a wheeled mobile robot which can move independently avoiding obstacles. To move autonomously, this robot is enabled to detect obstacles' shapes and conduct self-localization. Also, this robot can move by tracking trajectories designed by the robot itself, based on the information about the obstacles' shapes and the robot's position and attitude angle. The optimal trajectories which lead the robot to its destination are designed by using a unique optimization method. As convergent calculation is performed by setting the variables within a certain range in this proposed optimization method, the optimal solutions can be obtained approximately, even in cases where there is a difference between the number of input and output variables, and when the nonlinearity is strong with restraint conditions. In this thesis, the effectiveness of the optimal track designing method used is proven and the method deemed as appropriate.

  18. Design and Implementation of Autonomous Sonar Based Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Ansari

    2011-07-01

    Full Text Available Autonomous robots are intelligent machines that are capable of performing desired tasks by themselves, without explicit human control. This paper presents design and implementation of the ASVR (Autonomous Sonar Based Vehicle Robot. ASVR is a microcontroller based, programmable mobile robot that can sense and react to its environment and can work in partially known and unpredictable environments. A novel algorithm based on ultrasonic sensors and simple calculations for real-time obstacle detection and avoidance that is intended for mobile robots is also outlined. Also a novel technique is proposed and implemented for steering referencing of vehicle. The design is implemented in air using ultrasonic sensors but can be adapted using sonar to underwater environments where it has important applications such as deep sea maintenance and reconnaissance tasks. The paper also presents performance results of a prototype developed to prove the design concept.

  19. Managing Risk in Disaster Scenarios with Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Daniel P. Stormont

    2009-08-01

    Full Text Available Disaster areas are one of the most challenging environments faced by mankind. Uncertainty, hazards, and limited availability of rescuers all impact the ability to save lives. Prepositioned autonomous rescue robots offer promise in assisting the first responders to a disaster site, but there is a challenge to using robots in hazardous environments: numerous studies have shown that human rescuers lack trust in fully autonomous systems. This paper introduces the aspects of disaster areas that make them so challenging. The use of robots as a risk management tool for human rescuers is introduced. Then some of the factors that limit human trust in robots are addressed – including one of the key factors: reliability. The design of a computer model used to investigate issues of trust and the impact of reliability in a firefighting scenario is discussed and the results are analyzed. Finally, some preliminary conclusions and plans for further work in this area are presented.

  20. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  1. Autonomous assistance navigation for robotic wheelchairs in confined spaces.

    Science.gov (United States)

    Cheein, Fernando Auat; Carelli, Ricardo; De la Cruz, Celso; Muller, Sandra; Bastos Filho, Teodiano F

    2010-01-01

    In this work, a visual interface for the assistance of a robotic wheelchair's navigation is presented. The visual interface is developed for the navigation in confined spaces such as narrows corridors or corridor-ends. The interface performs two navigation modus: non-autonomous and autonomous. The non-autonomous driving of the robotic wheelchair is made by means of a hand-joystick. The joystick directs the motion of the vehicle within the environment. The autonomous driving is performed when the user of the wheelchair has to turn (90, 90 or 180 degrees) within the environment. The turning strategy is performed by a maneuverability algorithm compatible with the kinematics of the wheelchair and by the SLAM (Simultaneous Localization and Mapping) algorithm. The SLAM algorithm provides the interface with the information concerning the environment disposition and the pose -position and orientation-of the wheelchair within the environment. Experimental and statistical results of the interface are also shown in this work.

  2. Distributed Autonomous Robotic Systems : the 12th International Symposium

    CERN Document Server

    Cho, Young-Jo

    2016-01-01

    This volume of proceedings includes 32 original contributions presented at the 12th International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), held in November 2014. The selected papers in this volume are authored by leading researchers from Asia, Europe, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. .

  3. Line and Circle Formation of Distributed Autonomous Mobile Robots with Limited Sensor Range.

    Science.gov (United States)

    1996-06-01

    In the literature, formation problems for idealized distributed autonomous mobile robots were studied. Idealized robots are represented by a...problems of distributed mobile robots that are subjected to physical constraints are addressed. It is assumed that mobile robots have physical...consideration of physical robots and realistic sensors, and are validated through extensive simulations. Formation problems for mobile robots with limited

  4. Brain, mind, body and society: autonomous system in robotics.

    Science.gov (United States)

    Shimoda, Motomu

    2013-12-01

    In this paper I examine the issues related to the robot with mind. To create a robot with mind aims to recreate neuro function by engineering. The robot with mind is expected not only to process external information by the built-in program and behave accordingly, but also to gain the consciousness activity responding multiple conditions and flexible and interactive communication skills coping with unknown situation. That prospect is based on the development of artificial intelligence in which self-organizing and self-emergent functions have been available in recent years. To date, controllable aspects in robotics have been restricted to data making and programming of cognitive abilities, while consciousness activities and communication skills have been regarded as uncontrollable aspects due to their contingency and uncertainty. However, some researchers of robotics claim that every activity of the mind can be recreated by engineering and is therefore controllable. Based on the development of the cognitive abilities of children and the findings of neuroscience, researchers have attempted to produce the latest artificial intelligence with autonomous learning systems. I conclude that controllability is inconsistent with autonomy in the genuine sense and autonomous robots recreated by engineering cannot be autonomous partners of humans.

  5. A New Kind of Art [Based on Autonomous Collective Robotics

    Directory of Open Access Journals (Sweden)

    Leonel Moura

    2014-11-01

    Full Text Available The paper addresses the rationale of a process that produces artworks made by a swarm of robots. This process relies on the interaction, though the environment, of a set of robots designed to create spatiotemporal patterns from an initial homogeneous medium (the canvas. Inspired by social insect societies, the approach presented here exploits robot-robot and robot-environment interactions to develop emergent behaviour. The swarm intelligence concept is crucial to this approach because the viability of the team (group of robots is required in order to achieve the viability of the individual. Without any central coordination or plan, the group of robots produces its artworks on the basis of a data-driven (bottom-up process. Moreover, each robot can be viewed as an autonomous agent because it has on board all the resources required to provide the global outcome of the experiment, including sensors, actuators, and the controller, which demonstrates a reactive behaviour by reinforcing a previously made signal (positive feedback. The process is also presented in the context of Machine Art, and a detailed technical description of each robot is given, as well as an example of artworks produced by the collective behaviour of the set of robots.

  6. Micro-Controller Based Obstacle Avoiding Autonomous Robot

    Directory of Open Access Journals (Sweden)

    Subhranil Som

    2014-06-01

    Full Text Available Main aim of this paperwork is to study development of the obstacle avoiding spy robot, which can be operated manually as per the operator wants to take control of the robot himself, it also can be autonomous in its actions while intelligently moving itself by detecting the obstacles in front of it by the help of the obstacle detectable circuit. The robot is in form of a vehicle mounted with a web cam, which acquires and sends video as per the robots eye view to a TV or PC via a TV tuner card. The microcontroller chip ATMEGA 328 present on the microcontroller board ARDUINO controls the movements of the robot. In manual operating conditions the user will have a radio transmitter (tx via which the user will send signal to the radio receiver (rx present inside the robot which accordingly will pass on the signal to the microcontroller board, and as per the coding of the signal signatures burnt inside the microcontroller chip the robot will complete its movements. In Autonomous operating conditions the user will have no control on the robot that is the robot cannot be operated via any external controls, it will only function as per the data received from the obstacle detection circuits to the microcontroller which will make the robot motors move accordingly as per the code written in it. The idea is to make a robot to tackle the hostage situations & cope up with the worst conditions, which can be quiet a matter of risk to be handled by human being.

  7. Robustness inembedded software for autonomous robots

    NARCIS (Netherlands)

    Broenink, Jan; Brodskiy, Yury; Dresscher, Douwe; Stramigioli, Stefano

    2014-01-01

    The European BRICS project aims to bring about a long-lasting change in robotics research and development in industry as well as in academia. It wants to change the current situation of non-interoperable, monolithic and single-sourcing robotic components into a situation that other domains have alre

  8. Main Strategies for Autonomous Robotic Controller Design

    OpenAIRE

    Paterega, I.

    2011-01-01

    This review gives an overall introduction to the artificial evolution mechanism. It presents the main strategies for robotic controller design. It gives a review of the pertinent literature, focusing on approaches that use neural networks, evolutionary computing, and fuzzy logic. Various applications of artificial evolution in robotics are surveyed and classified.

  9. Reinforcement Learning on autonomous humanoid robots

    NARCIS (Netherlands)

    Schuitema, E.

    2012-01-01

    Service robots have the potential to be of great value in households, health care and other labor intensive environments. However, these environments are typically unique, not very structured and frequently changing, which makes it difficult to make service robots robust and versatile through manual

  10. Biologically Inspired Behaviour Design for Autonomous Robotic Fish

    Institute of Scientific and Technical Information of China (English)

    Jin-Dong Liu; Huosheng Hu

    2006-01-01

    Behaviour-based approach plays a key role for mobile robots to operate safely in unknown or dynamically changing environments. We have developed a hybrid control architecture for our autonomous robotic fish that consists of three layers: cognitive, behaviour and swim pattern. In this paper, we describe some main design issues of the behaviour layer, which is the centre of the layered control architecture of our robotic fish. Fuzzy logic control (FLC) is adopted here to design individual behaviours. Simulation and real experiments are presented to show the feasibility and the performance of the designed behaviour layer.

  11. Adaptive Fuzzy Knowledge Based Controller for Autonomous Robot Motion Control

    Directory of Open Access Journals (Sweden)

    Mbaitiga Zacharie

    2010-01-01

    Full Text Available Problem statement: Research into robot motion control offers research opportunities that will change scientists and engineers for year to come. Autonomous robots are increasingly evident in many aspects of industry and everyday life and a robust robot motion control can be used for homeland security and many consumer applications. This study discussed the adaptive fuzzy knowledge based controller for robot motion control in indoor and outdoor environment. Approach: The proposed method consisted of two components: the process monitor that detects changes in the process characteristics and the adaptation mechanism that used information passed to it by the process monitor to update the controller parameters. Results: Experimental evaluation had been done in both indoor and outdoor environment where the robot communicates with the base station through its Wireless fidelity antenna and the performance monitor used a set of five performance criteria to access the fuzzy knowledge based controller. Conclusion: The proposed method had been found to be robust.

  12. Autonomous Navigation of Mobile Robot Based on Flood Fill Algorithm

    Directory of Open Access Journals (Sweden)

    Ayad Mohammed Jabbar

    2016-06-01

    Full Text Available The autonomous navigation of robots is an important area of research. It can intelligently navigate itself from source to target within an environment without human interaction. Recently, algorithms and techniques have been made and developed to improve the performance of robots. It’s more effective and has high precision tasks than before. This work proposed to solve a maze using a Flood fill algorithm based on real time camera monitoring the movement on its environment. Live video streaming sends an obtained data to be processed by the server. The server sends back the information to the robot via wireless radio. The robot works as a client device moves from point to point depends on server information. Using camera in this work allows voiding great time that needs it to indicate the route by the robot.

  13. The ARK (Autonomous Robot for a Known environment) project

    Science.gov (United States)

    Nickerson, S. B.; Camacho, F.; Mader, D. L.; Milios, E. E.; Jenkin, M. R. M.; Bains, N.; Braun, P.; Green, D.; Hung, S.; Korba, L.

    1991-05-01

    The main goal of the project is to build a mobile robot that can navigate in a known indoor environment using computer vision as its main sensor, with the aid of an internal geometric model of its environment. A second goal is to explore the technology in such a way as to best illustrate its usefulness and commercial potential. The theory will focus on the development and testing of computer vision algorithms as aids for robot navigation. Two robots will be built: ARK-1 (autonomous robot for a known environment); and ARK-2. ARK-1 will be tethered and will be used to test the vision algorithms. ARK-2 will be untethered, will use other sensors in addition to vision, will have a real-time operating system and will operate in an industrial environment. The platforms for both ARK- 1 and ARK-2 will be the same as that of a robot being developed at NRC for industrial applications.

  14. Development of a Commercially Viable, Modular Autonomous Robotic Systems for Converting any Vehicle to Autonomous Control

    Science.gov (United States)

    Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.

    1994-01-01

    A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.

  15. Task Refinement for Autonomous Robots using Complementary Corrective Human Feedback

    Directory of Open Access Journals (Sweden)

    Cetin Mericli

    2011-06-01

    Full Text Available A robot can perform a given task through a policy that maps its sensed state to appropriate actions. We assume that a hand-coded controller can achieve such a mapping only for the basic cases of the task. Refining the controller becomes harder and gets more tedious and error prone as the complexity of the task increases. In this paper, we present a new learning from demonstration approach to improve the robot's performance through the use of corrective human feedback as a complement to an existing hand-coded algorithm. The human teacher observes the robot as it performs the task using the hand-coded algorithm and takes over the control to correct the behavior when the robot selects a wrong action to be executed. Corrections are captured as new state-action pairs and the default controller output is replaced by the demonstrated corrections during autonomous execution when the current state of the robot is decided to be similar to a previously corrected state in the correction database. The proposed approach is applied to a complex ball dribbling task performed against stationary defender robots in a robot soccer scenario, where physical Aldebaran Nao humanoid robots are used. The results of our experiments show an improvement in the robot's performance when the default hand-coded controller is augmented with corrective human demonstration.

  16. Adaptive Leader-Follower Formation Control for Autonomous Mobile Robots

    NARCIS (Netherlands)

    Guo, Jing; Lin, Zhiyun; Cao, Ming; Yan, Gangfeng

    2010-01-01

    In this paper, adaptive formation control is addressed for a network of autonomous mobile robots in which there are only two leaders knowing the prescribed reference velocity while the others just play the role of followers. Assuming that each follower has only two neighbors to form a cascade interc

  17. Modeling and Implementation of PID Control for Autonomous Robots

    Science.gov (United States)

    2007-06-01

    Richard Dorf . Modern Control Systems. New York, New York: Addison-Wesley Publishing, 1995. Cabezas, Rodrigo. Design of A Bore Sight Camera For The...IMPLEMENTATION OF PID CONTROL FOR AUTONOMOUS ROBOTS by Todd A. Williamson June 2007 Thesis Advisor: Richard Harkins Second Reader: Peter...Author: Todd A. Williamson Approved by: Richard Harkins Thesis Advisor Peter Crooker Second Reader James Luscombe

  18. An Adaptive Game Algorithm for an Autonomous, Mobile Robot

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Bak, Thomas; Risager, Claus

    2012-01-01

    This paper presents a field study of a physical ball game for elderly based on an autonomous, mobile robot. The game algorithm is based on Case Based Reasoning and adjusts the game challenge to the player’s mobility skills by registering the spatio-temporal behaviour of the player using an on boa...

  19. Adaptive Visual Face Tracking for an Autonomous Robot

    NARCIS (Netherlands)

    van Hoof, Herke; van der Zant, Tijn; Wiering, Marco

    2011-01-01

    Perception is an essential ability for autonomous robots in non-standardized conditions. However, the appearance of objects can change between different conditions. A system visually tracking a target based on its appearance could lose its target in those cases. A tracker learning the appearance of

  20. Sensor Fusion for Autonomous Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Plascencia, Alfredo

    Multi-sensor data fusion is a broad area of constant research which is applied to a wide variety of fields such as the field of mobile robots. Mobile robots are complex systems where the design and implementation of sensor fusion is a complex task. But research applications are explored constantl....... The scope of the thesis is limited to building a map for a laboratory robot by fusing range readings from a sonar array with landmarks extracted from stereo vision images using the (Scale Invariant Feature Transform) SIFT algorithm....

  1. 自主机器人伦理%Autonomous Robot Ethics

    Institute of Scientific and Technical Information of China (English)

    徐大庆

    2016-01-01

    In order to protect the human being and let robots and mankind harmonious get along,we study the ethics of autonomous ro-bot.This paper expounds the autonomous robot ethics at first;then seven laws which robot must abide by as well as ethics rules of hu-man behaviors on robot are proposed;at last,the preliminary planning of autonomous robot ethics to be realized is made.%为了保护人类,让机器人与人类和谐相处,自主机器人的伦理问题值得研究。首先,阐述了自主机器人应有的伦理道德;然后,提出了自主机器人必须遵守的七大法则,以及关于机器人的人类行为准则;最后,制定了自主机器人伦理实现的初步规划。

  2. Defining proprioceptive behaviors for autonomous mobile robots

    Science.gov (United States)

    Overholt, James L.; Hudas, Greg R.; Gerhart, Grant R.

    2002-07-01

    Proprioception is a sense of body position and movement that supports the control of many automatic motor functions such as posture and locomotion. This concept, normally relegated to the fields of neural physiology and kinesiology, is being utilized in the field of unmanned mobile robotics. This paper looks at developing proprioceptive behaviors for use in controlling an unmanned ground vehicle. First, we will discuss the field of behavioral control of mobile robots. Next, a discussion of proprioception and the development of proprioceptive sensors will be presented. We will then focus on the development of a unique neural-fuzzy architecture that will be used to incorporate the control behaviors coming directly from the proprioceptive sensors. Finally we will present a simulation experiment where a simple multi-sensor robot, utilizing both external and proprioceptive sensors, is presented with the task of navigating an unknown terrain to a known target position. Results of the mobile robot utilizing this unique fusion methodology will be discussed.

  3. Autonomous learning in humanoid robotics through mental imagery.

    Science.gov (United States)

    Di Nuovo, Alessandro G; Marocco, Davide; Di Nuovo, Santo; Cangelosi, Angelo

    2013-05-01

    In this paper we focus on modeling autonomous learning to improve performance of a humanoid robot through a modular artificial neural networks architecture. A model of a neural controller is presented, which allows a humanoid robot iCub to autonomously improve its sensorimotor skills. This is achieved by endowing the neural controller with a secondary neural system that, by exploiting the sensorimotor skills already acquired by the robot, is able to generate additional imaginary examples that can be used by the controller itself to improve the performance through a simulated mental training. Results and analysis presented in the paper provide evidence of the viability of the approach proposed and help to clarify the rational behind the chosen model and its implementation.

  4. A novel autonomous self-assembly distributed swarm flying robot

    Institute of Scientific and Technical Information of China (English)

    Wei Hongxing; Li Ning; Liu Miao; Tan Jindong

    2013-01-01

    Swarm intelligence embodied by many species such as ants and bees has inspired scholars in swarm robotic researches.This paper presents a novel autonomous self-assembly distributed swarm flying robot-DSFR,which can drive on the ground,autonomously accomplish self-assembly and then fly in the air coordinately.Mechanical and electrical designs ofa DSFR module,as well as the kinematics and dynamics analysis,are specifically investigated.Meanwhile,this paper brings forward a generalized adjacency matrix to describe configurations of DSFR structures.Also,the distributed flight control model is established for vertical taking-off and horizontal hovering,which can be applied to control of DSFR systems with arbitrary configurations.Finally,some experiments are carried out to testify and validate the DSFR design,the autonomous self-assembly strategy and the distributed flight control laws.

  5. Mapping planetary caves with an autonomous, heterogeneous robot team

    Science.gov (United States)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  6. A NEW MODEL OF AUTONOMOUS MOBILE ROBOTS WITH LIGHTS AND ITS COMPUTATIONAL POWER

    OpenAIRE

    寺井, 智史

    2016-01-01

    We study gathering problem for robots that move on a two dimensional plane. Robots are autonomous, anonymous, and have light that represents robot’s state. Gathering algorithm for n=2 robots is proposed in previous research. We propose a new model of robots with lights and athering algorithm. Key Words :distributed , mobile robots , light

  7. A Distributed Hunting Approach for Multiple Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Zhiqiang Cao

    2013-04-01

    Full Text Available A novel distributed hunting approach for multiple autonomous robots in unstructured mode‐free environments, which is based on effective sectors and local sensing, is proposed in this paper. The visual information, encoder and sonar data are integrated in the robot’s local frame, and the effective sector is introduced. The hunting task is modelled as three states: search state, round‐obstacle state, and hunting state, and the corresponding switching conditions and control strategies are given. A form of cooperation will emerge where the robots interact only locally with each other. The evader, whose motion is a priori unknown to the robots, adopts an escape strategy to avoid being captured. The approach is scalable and may cope with problems of communication and wheel slippage. The effectiveness of the proposed approach is verified through experiments with a team of wheeled robots.

  8. Autonomous kinematic calibration for robot with force sensor

    Science.gov (United States)

    Zhao, Dongbo; Xiong, Youlun

    1995-08-01

    This paper presents an autonomous calibration procedure for identifying robot geometric parameters using a wrist force sensor, which guides the robot end effector to track the section contour of an accurately cylindrical workpiece and to find its center. The information from the wrist sensor is needed to determine the motion direction for the end effector and to generate control strategy (hybrid control law of position and force), meanwhile the force vector is required to correct the deformation of the manipulator, which maps in turn into the joint differential vector. The system of constraint equation is in fact nonlinear, and can be linearized for the constraint surface of the cylinder. Simulation has been performed for a PUMA 760 robot and the result shows that the robot positioning accuracy can be improved to the level of the repeatability by the proposed calibration method.

  9. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-02-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  10. Robotic Autonomous Observatories: A Historical Perspective

    OpenAIRE

    Alberto Javier Castro-Tirado

    2010-01-01

    This paper presents a historical introduction to the field of Robotic Astronomy, from the point of view of a scientist working in this field for more than a decade. The author discusses the basic definitions, the differing telescope control operating systems, observatory managers, as well as a few current scientific applications.

  11. Robotic Autonomous Observatories: A Historical Perspective

    Directory of Open Access Journals (Sweden)

    Alberto Javier Castro-Tirado

    2010-01-01

    Full Text Available This paper presents a historical introduction to the field of Robotic Astronomy, from the point of view of a scientist working in this field for more than a decade. The author discusses the basic definitions, the differing telescope control operating systems, observatory managers, as well as a few current scientific applications.

  12. Mobile autonomous robotic apparatus for radiologic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

    1999-08-10

    A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

  13. Mobile autonomous robotic apparatus for radiologic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dudar, Aed M. (Dearborn, MI); Ward, Clyde R. (Aiken, SC); Jones, Joel D. (Aiken, SC); Mallet, William R. (Cowichan Bay, CA); Harpring, Larry J. (North Augusta, SC); Collins, Montenius X. (Blackville, SC); Anderson, Erin K. (Pleasanton, CA)

    1999-01-01

    A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

  14. Towards Autonomous Operations of the Robonaut 2 Humanoid Robotic Testbed

    Science.gov (United States)

    Badger, Julia; Nguyen, Vienny; Mehling, Joshua; Hambuchen, Kimberly; Diftler, Myron; Luna, Ryan; Baker, William; Joyce, Charles

    2016-01-01

    The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012. Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators ("legs"), more capable processors, and new sensors, as shown in Figure 1. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions. Technology development has thus far followed two main paths, autonomous climbing and efficient tool manipulation. Central to both technologies has been the incorporation of a human robotic interaction paradigm that involves the visualization of sensory and pre-planned command data with models of the robot and its environment. Figure 2 shows screenshots of these interactive tools, built in rviz, that are used to develop and implement these technologies on R2. Robonaut 2 is designed to move along the handrails and seat track around the US lab inside the ISS. This is difficult for many reasons, namely the environment is cluttered and constrained, the robot has many degrees of freedom (DOF) it can utilize for climbing, and remote commanding for precision tasks such as grasping handrails is time-consuming and difficult. Because of this, it is important to develop the technologies needed to allow the robot to reach operator-specified positions as

  15. Autonomous stair-climbing with miniature jumping robots.

    Science.gov (United States)

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed.

  16. Research on stereo vision path-planning algorithms for mobile robots autonomous navigation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-wei; LU Qiu-hong

    2009-01-01

    Using stereo vision for autonomous mobile robot path-planning is a hot technology. The environment mapping and path-planning algorithms were introduced, and they were applied in the autonomous mobile robot experiment platform. Through experiments in the robot platform, the effectiveness of these algorithms was verified.

  17. Autonomous Robot System for Sensor Characterization

    Energy Technology Data Exchange (ETDEWEB)

    David Bruemmer; Douglas Few; Frank Carney; Miles Walton; Heather Hunting; Ron Lujan

    2004-03-01

    This paper discusses an innovative application of new Markov localization techniques that combat the problem of odometry drift, allowing a novel control architecture developed at the Idaho National Engineering and Environmental Laboratory (INEEL) to be utilized within a sensor characterization facility developed at the Remote Sensing Laboratory (RSL) in Nevada. The new robotic capability provided by the INEEL will allow RSL to test and evaluate a wide variety of sensors including radiation detection systems, machine vision systems, and sensors that can detect and track heat sources (e.g. human bodies, machines, chemical plumes). By accurately moving a target at varying speeds along designated paths, the robotic solution allows the detection abilities of a wide variety of sensors to be recorded and analyzed.

  18. Learning Long-range Terrain Perception for Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Mingjun Wang

    2010-02-01

    Full Text Available Long-range terrain perception has a high value in performing efficient autonomous navigation and risky intervention tasks for field robots, such as earlier recognition of hazards, better path planning, and higher speeds. However, Stereo-based navigation systems can only perceive near-field terrain due to the nearsightedness of stereo vision. Many near-to-far learning methods, based on regions' appearance features, are proposed to predict the far-field terrain. We proposed a statistical prediction framework to enhance long-range terrain perception for autonomous mobile robots. The main difference between our solution and other existing methods is that our framework not only includes appearance features as its prediction basis, but also incorporates spatial relationships between terrain regions in a principled way. The experiment results show that our framework outperforms other existing approaches in terms of accuracy, robustness and adaptability to dynamic unstructured outdoor environments.

  19. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  20. Sliding-Mode Formation Control for Cooperative Autonomous Mobile Robots

    OpenAIRE

    Defoort, Michael; Floquet, Thierry; Kökösy, Annemarie; Perruquetti, Wilfrid

    2008-01-01

    International audience; This paper considers the control of a group of autonomous mobile robots. A coordinated control scheme based on a leader-follower approach is developed to achieve formation maneuvers. First and second order sliding mode controllers are proposed for asymptotically stabilizing the vehicles to a time-varying desired formation. The latter controller, based on the relative motion states, eliminates the need for measurement or estimation of the leader velocity. It enables for...

  1. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  2. A fuzzy logic controller for an autonomous mobile robot

    Science.gov (United States)

    Yen, John; Pfluger, Nathan

    1993-01-01

    The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.

  3. A Perception-aware Architecture for Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Luis J. Manso

    2015-12-01

    Full Text Available Service robots are required to operate in indoor environments to help humans in their daily lives. To achieve the tasks that they might be assigned, the robots must be able to autonomously model and interact with the elements in it. Even in homes, which are usually more predictable than outdoor scenarios, robot perception is an extremely challenging task. Clutter, distance and partial views complicate modelling the environment, making it essential for robots to approach the objects to perceive in order to gain favourable points of view. This article proposes a novel grammar-based distributed architecture, designed with reusability and scalability in mind, which enables robots not only to find and execute the perception aware plans they need to achieve their goals, but also to verify that the world representation they build is valid according to a set of grammatical rules for the world model. Additionally, it describes a real-world example of use, providing qualitative results, in which a robot successfully models the room in which it is located and finds a coffee mug.

  4. Geometric Analysis of the Formation Problem for Autonomous Robots

    CERN Document Server

    Dorfler, Florian

    2010-01-01

    In the formation control problem for autonomous robots a distributed control law steers the robots to the desired target formation. A local stability result of the target formation can be derived by methods of linearization and center manifold theory or via a Lyapunov-based approach. It is well known that there are various other undesired invariant sets of the robots' closed-loop dynamics. This paper addresses a global stability analysis by a differential geometric approach considering invariant manifolds and their local stability properties. The theoretical results are then applied to the well-known example of a cyclic triangular formation and result in instability of all invariant sets other than the target formation.

  5. An autonomous miniature wheeled robot based on visual feedback control

    Institute of Scientific and Technical Information of China (English)

    CHEN Haichu

    2007-01-01

    Using two micro-motors,a novel omni-direction miniature wheeled robot is designed on the basis of the bi-corner driving principle.The robot takes advantage of the Bluetooth technology to wirelessly transmit data at a short distance.Its position and omni-direction motion are precise.A Charge Coupled Device(CCD)camera is used for measuring and for visual navigation.A control system is developed.The precision of the position is 0.5 mm,the resolution is about 0.05 mm,and the maximum velocity is about 52 mm/s.The visual navigation and control system allow the robot to navigate and track the target and to accomplish autonomous locomotion.

  6. Autonomous robotic platforms for locating radio sources buried under rubble

    Science.gov (United States)

    Tasu, A. S.; Anchidin, L.; Tamas, R.; Paun, M.; Danisor, A.; Petrescu, T.

    2016-12-01

    This paper deals with the use of autonomous robotic platforms able to locate radio signal sources such as mobile phones, buried under collapsed buildings as a result of earthquakes, natural disasters, terrorism, war, etc. This technique relies on averaging position data resulting from a propagation model implemented on the platform and the data acquired by robotic platforms at the disaster site. That allows us to calculate the approximate position of radio sources buried under the rubble. Based on measurements, a radio map of the disaster site is made, very useful for locating victims and for guiding specific rubble lifting machinery, by assuming that there is a victim next to a mobile device detected by the robotic platform; by knowing the approximate position, the lifting machinery does not risk to further hurt the victims. Moreover, by knowing the positions of the victims, the reaction time is decreased, and the chances of survival for the victims buried under the rubble, are obviously increased.

  7. Landmark Finding Algorithms for Indoor Autonomous Mobile Robot Localization

    Directory of Open Access Journals (Sweden)

    L. Tóth

    2015-12-01

    Full Text Available This contribution is oriented to ways of computer vision algorithms for mobile robot localization in internal and external agricultural environment. The main aim of this work was to design, create, verify and evaluate speed and functionality of computer vision localization algorithm. An input colour camera data and depth data were captured by MS® Kinect sensor that was mounted on 6-wheel-drive mobile robot chassis. The design of the localization algorithm was focused to the most significant blobs and points (landmarks on the colour picture. Actual coordinates of autonomous mobile robot were calculated out from measured distances (depth sensor and calculated angles (RGB camera with respect to landmark points. Time measurement script was used to compare the speed of landmark finding algorithm for localization in case of one and more landmarks on picture. The main source code was written in MS Visual studio C# programming language with Microsoft.Kinect.1.7.dll on Windows based PC. Algorithms described in this article were created for a future development of an autonomous agronomical m obile robot localization and control.

  8. Autonomous robotic operations for on-orbit satellite servicing

    Science.gov (United States)

    Ogilvie, Andrew; Allport, Justin; Hannah, Michael; Lymer, John

    2008-04-01

    The Orbital Express Demonstration System (OEDS) flight test successfully demonstrated technologies required to autonomously service satellites on-orbit. The mission's integrated robotics solution, the Orbital Express Demonstration Manipulator System (OEDMS) developed by MDA, performed critical flight test operations. The OEDMS comprised a six-jointed robotic manipulator arm and its avionics, non-proprietary servicing and ORU (Orbital Replacement Unit) interfaces, a vision and arm control system for autonomous satellite capture, and a suite of Ground Segment and Flight Segment software allowing script generation and execution under supervised or full autonomy. The arm was mounted on ASTRO, the servicer spacecraft developed by Boeing. The NextSat, developed by Ball Aerospace, served as the client satellite. The OEDMS demonstrated two key goals of the OEDS flight test: autonomous free-flyer capture and berthing of a client satellite, and autonomous transfer of ORUs from servicer to client and back. The paper provides a description of the OEDMS and the key operations it performed.

  9. Omnivision-based autonomous mobile robotic platform

    Science.gov (United States)

    Cao, Zuoliang; Hu, Jun; Cao, Jin; Hall, Ernest L.

    2001-10-01

    As a laboratory demonstration platform, TUT-I mobile robot provides various experimentation modules to demonstrate the robotics technologies that are involved in remote control, computer programming, teach-and-playback operations. Typically, the teach-and-playback operation has been proved to be an effective solution especially in structured environments. The path generated in the teach mode and path correction in real-time using path error detecting in the playback mode are demonstrated. The vision-based image database is generated as the given path representation in the teaching procedure. The algorithm of an online image positioning is performed for path following. Advanced sensory capability is employed to provide environment perception. A unique omni directional vision (omni-vision) system is used for localization and navigation. The omni directional vision involves an extremely wide-angle lens, which has the feature that a dynamic omni-vision image is processed in real time to respond the widest view during the movement. The beacon guidance is realized by observing locations of points derived from over-head features such as predefined light arrays in a building. The navigation approach is based upon the omni-vision characteristics. A group of ultrasonic sensors is employed for obstacle avoidance.

  10. Active objects programming for military autonomous mobile robots software prototyping

    Science.gov (United States)

    Cozien, Roger F.

    2001-09-01

    While designing mobile robots, we do think that the prototyping phase is really critical. Good and clever choices have to be made. Indeed, we may not easily upgrade such robots, and most of all, when the robot is on its own, any change in both the software and the physical body is going to be very difficult, if not impossible. Thus, a great effort has to be made when prototyping the robot. Furthermore, I think that the kind of programming is very important. If your programming model is not expressive enough, you may experience a great deal of difficulties to add all the features you want, in order to give your robot reactiveness and decision making autonomy. Moreover, designing, and prototyping the on-board software of a reactive robot brings other difficulties. A reactive robot does not include any matter of rapidity. A reactive system is a system able to respond to a huge pannel of situations of which it does not have the schedule. In other words, for instance, the robot does not know when a particular situation may occur, and overall, what it would be doing at this time, and what would be its internal state. This kind of robot must be able to take a decision and to act even if they do not have all the contextual information. To do so, we use a computer language named oRis featuring object and active object oriented programming, but also parallel and dynamic code, (the code can be changed during its own execution). This last point has been made possible because oRis is fully interpreted. However oRis may call fully compiled code, but also Prolog and Java code. An oRis program may be distributed on several computers using TCP/IP network connections. The main issue in this paper is to show how active objet oriented programming, as a modern extension of object oriented programming, may help us in designing autonomous mobile robots. Based on a fully parallel software programming, an active object code allows us to give many features to a robot, and to easily solve

  11. Active object programming for military autonomous mobile robot software prototyping

    Science.gov (United States)

    Cozien, Roger F.

    2001-10-01

    While designing mobile robots, we do think that the prototyping phase is really critical. Good and clever choices have to be made. Indeed, we may not easily upgrade such robots, and most of all, when the robot is on its own, any change in both the software and the physical body is going to be very difficult, if not impossible. Thus, a great effort has to be made when prototyping the robot. Furthermore, I think that the kind of programming is very important. If your programming model is not expressive enough, you may experience a great deal of difficulties to add all the features you want, in order to give your robot reactiveness and decision making autonomy. Moreover, designing, and prototyping the on-board software of a reactive robot brings other difficulties. A reactive robot does not include any matter of rapidity. A reactive system is a system able to respond to a huge panel of situations of which it does not have the schedule. In other words, for instance, the robot does not know when a particular situation may occur, and overall, what it would be doing at this time, and what would be its internal state. This kind of robot must be able to take a decision and to act even if they do not have all the contextual information. To do so, we use a computer language named oRis featuring object and active object oriented programming, but also parallel and dynamic code, (the code can be changed during its own execution). This last point has been made possible because oRis is fully interpreted. However oRis may call fully compiled code, but also Prolog and Java code. An oRis program may be distributed on several computers using TCP/IP network connections. The main issue in this paper is to show how active objet oriented programming, as a modern extension of object oriented programming, may help us in designing autonomous mobile robots. Based on a fully parallel software programming, an active object code allows us to give many features to a robot, and to easily solve

  12. Autonomous Rule Based Robot Navigation In Orchards

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Ravn, Ole; Andersen, Nils Axel

    2010-01-01

    Orchard navigation using sensor-based localization and exible mission management facilitates successful missions independent of the Global Positioning System (GPS). This is especially important while driving between tight tree rows where the GPS coverage is poor. This paper suggests localization ......, obstacle avoidance, path planning and drive control. The system is tested successfully using a Hako 20 kW tractor during autonomous missions in both cherry and apple orchards with mission length of up to 2.3 km including the headland turns.......Orchard navigation using sensor-based localization and exible mission management facilitates successful missions independent of the Global Positioning System (GPS). This is especially important while driving between tight tree rows where the GPS coverage is poor. This paper suggests localization...

  13. An Agent Driven Human-centric Interface for Autonomous Mobile Robots

    Science.gov (United States)

    2003-01-01

    An Agent Driven Human-centric Interface for Autonomous Mobile Robots Donald Sofge, Dennis Perzanowski, Magdalena Bugajska, William Adams...Human-centric, Multimodal, Dynamic Autonomy, CoABS Grid, Mobile Robots 1. INTRODUCTION One of the challenges in implementing dynamically...autonomous behaviors in mobile robots is achieving a truly human-centric interface so that human operators can interact with the robots as naturally as they

  14. Autonomous intelligent robotic manipulator for on-orbit servicing

    Science.gov (United States)

    Larouche, Benoit P.

    The doctoral research is to develop an autonomous intelligent robotic manipulator technology for on-orbit servicing (OOS). More specifically, the research is focused on one of the most critical tasks in OOS- the capture of a non-cooperative object whilst minimizing impact forces and accelerations. The objective of the research is: the development of a vision-based control theory, and the implementation and testing of the developed theory by designing and constructing a custom non-redundant holonomic robotic manipulator. The research validated the newly developed control theory and its ability to (i) capture a moving target autonomously and (ii) minimize unfavourable contact dynamics during the most critical parts of the capture operations between the capture satellite and a non-cooperative/tumbling object. A custom robotic manipulator functional prototype has been designed, assembled, constructed, and programmed from concept to completion in order to provide full customizability and controllability in both the hardware and the software. Based on the test platform, a thorough experimental investigation has been conducted to validate the newly developed control methodologies to govern the behaviour of the robotic manipulators (RM) in an autonomous capture. The capture itself is effected on non-cooperative targets in zero-gravity simulated environment. The RM employs a vision system, force sensors, and encoders in order to sense its environment. The control is effected through position and pseudo-torque inputs to three stepper motors and three servo motors. The controller is a modified hybrid force/neural network impedance controller based on N. Hogan's original work. The experimental results demonstrate the set objectives of this thesis have been successfully achieved.

  15. Introduction to autonomous manipulation case study with an underwater robot, SAUVIM

    CERN Document Server

    Marani, Giacomo

    2014-01-01

    Autonomous manipulation” is a challenge in robotic technologies. It refers to the capability of a mobile robot system with one or more manipulators that performs intervention tasks requiring physical contacts in unstructured environments and without continuous human supervision. Achieving autonomous manipulation capability is a quantum leap in robotic technologies as it is currently beyond the state of the art in robotics. This book addresses issues with the complexity of the problems encountered in autonomous manipulation including representation and modeling of robotic structures, kinematic and dynamic robotic control, kinematic and algorithmic singularity avoidance, dynamic task priority, workspace optimization and environment perception. Further development in autonomous manipulation should be able to provide robust improvements of the solutions for all of the above issues. The book provides an extensive tract on sensory-based autonomous manipulation for intervention tasks in unstructured environment...

  16. Classifying and recovering from sensing failures in autonomous mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R.R.; Hershberger, D. [Colorado School of Mines, Golden, CO (United States)

    1996-12-31

    This paper presents a characterization of sensing failures in autonomous mobile robots, a methodology for classification and recovery, and a demonstration of this approach on a mobile robot performing landmark navigation. A sensing failure is any event leading to defective perception, including sensor malfunctions, software errors, environmental changes, and errant expectations. The approach demonstrated in this paper exploits the ability of the robot to interact with its environment to acquire additional information for classification (i.e., active perception). A Generate and Test strategy is used to generate hypotheses to explain the symptom resulting from the sensing failure. The recovery scheme replaces the affected sensing processes with an alternative logical sensor. The approach is implemented as the Sensor Fusion Effects Exception Handling (SFX-EH) architecture. The advantages of SFX-EH are that it requires only a partial causal model of sensing failure, the control scheme strives for a fast response, tests are constructed so as to prevent confounding from collaborating sensors which have also failed, and the logical sensor organization allows SFX-EH to be interfaced with the behavioral level of existing robot architectures.

  17. Using Robotic Operating System (ROS) to control autonomous observatories

    Science.gov (United States)

    Vilardell, Francesc; Artigues, Gabriel; Sanz, Josep; García-Piquer, Álvaro; Colomé, Josep; Ribas, Ignasi

    2016-07-01

    Astronomical observatories are complex systems requiring the integration of numerous devices into a common platform. We are presenting here the firsts steps to integrate the popular Robotic Operating System (ROS) into the control of a fully autonomous observatory. The observatory is also equipped with a decision-making procedure that can automatically react to a changing environment (like weather events). The results obtained so far have shown that the automation of a small observatory can be greatly simplified when using ROS, as well as robust, with the implementation of our decision-making algorithms.

  18. Design of a Micro-Autonomous Robot for Use in Astronomical Instruments

    Science.gov (United States)

    Cochrane, W. A.; Luo, X.; Lim, T.; Taylor, W. D.; Schnetler, H.

    2012-07-01

    A Micro-Autonomous Positioning System (MAPS) has been developed using micro-autonomous robots for the deployment of small mirrors within multi-object astronomical instruments for use on the next generation ground-based telescopes. The micro-autonomous robot is a two-wheel differential drive robot with a footprint of approximately 20 × 20 mm. The robot uses two brushless DC Smoovy motors with 125:1 planetary gearheads for positioning the mirror. This article describes the various elements of the overall system and in more detail the various robot designs. Also described in this article is the build and test of the most promising design, proving that micro-autonomous robot technology can be used in precision controlled applications.

  19. Using insect electroantennogram sensors on autonomous robots for olfactory searches.

    Science.gov (United States)

    Martinez, Dominique; Arhidi, Lotfi; Demondion, Elodie; Masson, Jean-Baptiste; Lucas, Philippe

    2014-08-04

    Robots designed to track chemical leaks in hazardous industrial facilities or explosive traces in landmine fields face the same problem as insects foraging for food or searching for mates: the olfactory search is constrained by the physics of turbulent transport. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells or toxic and illicit substances. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration or using nanostructured gas sensors that mimic insect antennae.

  20. Terpsichore. ENEA's autonomous robotics project; Progetto Tersycore, la robotica autonoma

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S.; Zanela, S.; Santini, A.; Nanni, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Div. Robotica e Informatica Avanzata

    1999-10-01

    The article presents some of the Terpsichore project's results aimed to developed and test algorithms and applications for autonomous robotics. Four applications are described: dynamic mapping of a building's interior through the use of ultrasonic sensors; visual drive of an autonomous robot via a neural network controller; a neural network-based stereo vision system that steers a robot through unknown indoor environments; and the evolution of intelligent behaviours via the genetic algorithm approach.

  1. Study on a human guidance method for autonomous cruise of indoor robot

    Science.gov (United States)

    Jia, Bao-Zhi; Zhu, Ming

    2011-12-01

    This paper describes a method of human guidance for autonomous cruise of indoor robot. A low-cost robot follows a person in a room and notes the path for autonomous cruise using its monocular vision. A method of video-based object detection and tracking is taken to detect the target by the video received from the robot's camera. The validity of the human guidance method is proved by the experiment.

  2. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens;

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...... tools and robots, and recharge their batteries while underwater. These properties will provide the system, when fully developed, with unique capabilities such as ability to adapt robotic morphology and function to the current task and tolerate failures leading to long-term autonomous operations....

  3. The Intellectualized Architecture of the Autonomous Micro-Mobile Robot Based-Behavior

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Given the difficulty in hand-coding task schemes, an intellectualized architecture of the autonomous micro-mobile robot based-behavior for fault-repair was presented. Integrating the reinforcement learning and the group behavior evolution simulating the human's learning and evolution, the autonomous micro-mobile robot will automatically generate the suited actions satisfied the environment. However, the designer only devises some basic behaviors, which decreases the workload of the designer and cognitive deficiency of the robot to the environment. The results of simulation have shown that the architecture endows micro robot with the ability of learning, adaptation and robustness, also with the ability of accomplishing the given task.

  4. Integration of a mobile autonomous robot in a surveillance multi-agent system

    OpenAIRE

    Dias, Bruno Miguel Morais

    2014-01-01

    This dissertation aims to guarantee the integration of a mobile autonomous robot equipped with many sensors in a multi-agent distributed and georeferenced surveillance system. The integration of a mobile autonomous robot in this system leads to new features that will be available to clients of surveillance system may use. These features may be of two types: using the robot as an agent that will act in the environment or by using the robot as a mobile set of sensors. As an agent in the syst...

  5. Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains

    Science.gov (United States)

    Wang, P. K. C.

    1989-01-01

    A general navigation strategy for multiple autonomous robots in a bounded domain is developed analytically. Each robot is modeled as a spherical particle (i.e., an effective spatial domain about the center of mass); its interactions with other robots or with obstacles and domain boundaries are described in terms of the classical many-body problem; and a collision-avoidance strategy is derived and combined with homing, robot-robot, and robot-obstacle collision-avoidance strategies. Results from homing simulations involving (1) a single robot in a circular domain, (2) two robots in a circular domain, and (3) one robot in a domain with an obstacle are presented in graphs and briefly characterized.

  6. A survey on pattern formation of autonomous mobile robots: asynchrony, obliviousness and visibility

    Science.gov (United States)

    Yamauchi, Yukiko

    2013-12-01

    A robot system consists of autonomous mobile robots each of which repeats Look-Compute-Move cycles, where the robot observes the positions of other robots (Look phase), computes the track to the next location (Compute phase), and moves along the track (Move phase). In this survey, we focus on self-organization of mobile robots, especially their power of forming patterns. The formation power of a robot system is the class of patterns that the robots can form, and existing results show that the robot system's formation power is determined by their asynchrony, obliviousness, and visibility. We briefly survey existing results, with impossibilities and pattern formation algorithms. Finally, we present several open problems related to the pattern formation problem of mobile robots.

  7. An Energetically-Autonomous Robotic Tadpole with Single Membrane Stomach and Tail

    OpenAIRE

    2015-01-01

    We present an energetically autonomous robotic tadpole that uses a single membrane component for both electrical energy generation and propulsive actuation. The coupling of this small bio-inspired power source to a bio-inspired actuator demonstrates the first generation design for an energetically autonomous swimming robot consisting of a single membrane. An ionic polymer metal composite (IPMC) with a Nafion polymer layer is demonstrated in a novel application as the ion exchange membrane and...

  8. An effective trace-guided wavefront navigation and map-building approach for autonomous mobile robots

    Science.gov (United States)

    Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Jan, Gene Eu

    2013-12-01

    This paper aims to address a trace-guided real-time navigation and map building approach of an autonomous mobile robot. Wave-front based global path planner is developed to generate a global trajectory for an autonomous mobile robot. Modified Vector Field Histogram (M-VFH) is employed based on the LIDAR sensor information to guide the robot locally to be autonomously traversed with obstacle avoidance by following traces provided by the global path planner. A local map composed of square grids is created through the local navigator while the robot traverses with limited LIDAR sensory information. From the measured sensory information, a map of the robot's immediate limited surroundings is dynamically built for the robot navigation. The real-time wave-front based navigation and map building methodology has been successfully demonstrated in a Player/Stage simulation environment. With the wave-front-based global path planner and M-VFH local navigator, a safe, short, and reasonable trajectory is successfully planned in a majority of situations without any templates, without explicitly optimizing any global cost functions, and without any learning procedures. Its effectiveness, feasibility, efficiency and simplicity of the proposed real-time navigation and map building of an autonomous mobile robot have been successfully validated by simulation and comparison studies. Comparison studies of the proposed approach with the other path planning approaches demonstrate that the proposed method is capable of planning more reasonable and shorter collision-free trajectories autonomously.

  9. Test of a vision-based autonomous space station robotic task

    Science.gov (United States)

    Castellano, Anthony R.; Hwang, Vincent S. S.; Stoney, William E.

    1991-02-01

    An area of increasing interest in Al Robotics and Computer Vision is integrating techniques from these fields to the problem of controlling autonomous systems. Space-based systems such as NASA''s robotic assembly of Orbital Replacement Units (ORU''s) provide a complex realistic domain for this integration research. In this paper we report on current MITRE research in the use of situated control for autonomous robotic assembly of ORUs. A wrist-mounted camera is used to acquire the pose of ORU''s. An on-line control module uses the pose data to refine the on-going robot actions so that the planned task can be executed both safely and robustly. Experimental results on a Cincinnati Milacron T3 Industrial robot at Goddard Space Right Center (GSFC) Intelligent Robotic Laboratory will be included.

  10. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    Science.gov (United States)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  11. Planetary exploration by a mobile robot: mission teleprogramming and autonomous navigation.

    Science.gov (United States)

    Chatila, R.; Lacroix, S.; Simeon, T.; Herrb, M.

    Sending mobile robots to accomplish planetary exploration missions is scientifically promising and technologically challenging. The authors present a complete approach that encompasses the major aspects involved in the design of a robotic system for planetary exploration. It includes mission teleprogramming and supervision at a ground station, and autonomous mission execution by the remote mobile robot. They have partially implemented and validated these concepts. Experimental results illustrate the approach and the results.

  12. Control of autonomous mobile robots using custom-designed qualitative reasoning VLSI chips and boards

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Pattay, R.S.

    1991-01-01

    Two types of computer boards including custom-designed VLSI chips have been developed to provide a qualitative reasoning capability for the real-time control of autonomous mobile robots. The design and operation of these boards are described and an example of application of qualitative reasoning for the autonomous navigation of a mobile robot in a-priori unknown environments is presented. Results concerning consistency and modularity in the development of qualitative reasoning schemes as well as the general applicability of these techniques to robotic control domains are also discussed. 17 refs., 4 figs.

  13. Autonomous multi-robot exploration in communication-limited environments

    NARCIS (Netherlands)

    de Hoog, J.; Cameron, S.; Visser, A.; Belpaeme, T.; Bugmann, G.; Melhuish, C.; Witkowski, M.

    2010-01-01

    Teams of communicating robots are likely to be used for a wide range of applications in the near future, such as robotic search and rescue or robotic exploration of hostile and remote environments. In such scenarios, environments are likely to contain significant interference and multi-robot systems

  14. Creating a Mobile Autonomous Robot Research System (MARRS)

    Science.gov (United States)

    1984-12-01

    However, there is no standard or universal robot programming language. For every unique robot, there is a 11-14 If.r\\ <..’. ■f...alternative to the nonexistent universal robot programming language was to develop a library of robot software routines. These are generic in nature so

  15. Advances in Autonomous Mini Robots : Proceedings of the 6-th AMiRE Symposium

    CERN Document Server

    Joaquin, Sitte; Felix, Werner

    2012-01-01

    Autonomous robots must carry out useful tasks all by themselves relying entirely on their own perceptions of their environment. The cognitive abilities required for autonomous action are largely independent of robot size, which makes mini robots attractive as artefacts for research, education and entertainment. Autonomous mini robots must be small enough for experimentation on a desktop or a small laboratory.  They must be easy to carry and safe for interaction with humans. They must not be expensive. Mini robot designers have to work at the leading edge of technology so that their creations can carry out purposeful autonomic action under these constraints. Since 2001 researchers have met every two years for an international symposium to report on the advances achieved in Autonomous Mini  Robots for Research and Edutainment (AMiRE). The AMiRE Symposium is a single track conference that offers ample opportunities for discussion and exchange of ideas. This volume contains the contributed papers of the 2011 AM...

  16. Positioning challenges in reconfigurable semi-autonomous robotic NDE inspection

    Science.gov (United States)

    Pierce, S. Gareth; Dobie, Gordon; Summan, Rahul; Mackenzie, Liam; Hensman, James; Worden, Keith; Hayward, Gordon

    2010-03-01

    This paper describes work conducted into mobile, wireless, semi-autonomous NDE inspection robots developed at The University of Strathclyde as part of the UK Research Centre for Non Destructive Evaluation (RCNDE). The inspection vehicles can incorporate a number of different NDE payloads including ultrasonic, eddy current, visual and magnetic based payloads, and have been developed to try and improve NDE inspection techniques in challenging inspection areas (for example oil, gas, and nuclear structures). A significant research challenge remains in the accurate positioning and guidance of such vehicles for real inspection tasks. Employing both relative and absolute position measurements, we discuss a number of approaches to position estimation including Kalman and particle filtering. Using probabilistic approaches enables a common mathematical framework to be employed for both positioning and data fusion from different NDE sensors. In this fashion the uncertainties in both position and defect identification and classification can be dealt with using a consistent approach. A number of practical constraints and considerations to different precision positioning techniques are discussed, along with NDE applications and the potential for improved inspection capabilities by utilising the inherent reconfigurable capabilities of the inspection vehicles.

  17. An intelligent hybrid behavior coordination system for an autonomous mobile robot

    Science.gov (United States)

    Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Fallouh, Samer

    2013-12-01

    In this paper, development of a low-cost PID controller with an intelligent behavior coordination system for an autonomous mobile robot is described that is equipped with IR sensors, ultrasonic sensors, regulator, and RC filters on the robot platform based on HCS12 microcontroller and embedded systems. A novel hybrid PID controller and behavior coordination system is developed for wall-following navigation and obstacle avoidance of an autonomous mobile robot. Adaptive control used in this robot is a hybrid PID algorithm associated with template and behavior coordination models. Software development contains motor control, behavior coordination intelligent system and sensor fusion. In addition, the module-based programming technique is adopted to improve the efficiency of integrating the hybrid PID and template as well as behavior coordination model algorithms. The hybrid model is developed to synthesize PID control algorithms, template and behavior coordination technique for wall-following navigation with obstacle avoidance systems. The motor control, obstacle avoidance, and wall-following navigation algorithms are developed to propel and steer the autonomous mobile robot. Experiments validate how this PID controller and behavior coordination system directs an autonomous mobile robot to perform wall-following navigation with obstacle avoidance. Hardware configuration and module-based technique are described in this paper. Experimental results demonstrate that the robot is successfully capable of being guided by the hybrid PID controller and behavior coordination system for wall-following navigation with obstacle avoidance.

  18. Design and Implementation an Autonomous Humanoid Robot Based on Fuzzy Rule-Based Motion Controller

    Directory of Open Access Journals (Sweden)

    Mohsen Taheri

    2010-04-01

    Full Text Available Research on humanoid robotics in Mechatronics and Automation Laboratory, Electrical and Computer Engineering, Islamic Azad University Khorasgan branch (Isfahan of Iran was started at
    the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. This paper describes the hardware and software design of the kid size humanoid robot systems of the PERSIA Team in 2009. The robot has 20 actuated degrees of freedom based on Hitec HSR898. In this paper we have tried to focus on areas such as mechanical structure, Image processing unit, robot controller, Robot AI and behavior
    learning. In 2009, our developments for the Kid size humanoid robot include: (1 the design and construction of our new humanoid robots (2 the design and construction of a new hardware and software controller to be used in our robots. The project is described in two main parts: Hardware and Software. The software is developed a robot application which consists walking controller, autonomous motion robot, self localization base on vision and Particle Filter, local AI, Trajectory Planning, Motion Controller and Network. The hardware consists of the mechanical structure and the driver circuit board. Each robot is able to walk, fast walk, pass, kick and dribble when it catches
    the ball. These humanoids have been successfully participating in various robotic soccer competitions. This project is still in progress and some new interesting methods are described in the current report.

  19. On the Use of Safety Certification Practices in Autonomous Field Robot Software Development

    DEFF Research Database (Denmark)

    Mogensen, Johann Thor Ingibergsson; Schultz, Ulrik Pagh; Kuhrmann, Marco

    2015-01-01

    Robotics has recently seen an increasing development, and the areas addressed within robotics has extended into domains we consider safety-critical, fostering the development of standards that facilitate the development of safe robots. Safety standards describe concepts to maintain desired...... reactions or performance in malfunctioning systems, and influence industry regarding software development and project management. However, academia seemingly did not reach the same degree of utilisation of standards. This paper presents the findings from a systematic mapping study in which we study...... the state-of-the-art in developing software for safety-critical software for autonomous field robots. The purpose of the study is to identify practices used for the development of autonomous field robots and how these practices relate to available safety standards. Our findings from reviewing 49 papers show...

  20. Multi-robot terrain coverage and task allocation for autonomous detection of landmines

    Science.gov (United States)

    Dasgupta, Prithviraj; Muñoz-Meléndez, Angélica; Guruprasad, K. R.

    2012-06-01

    Multi-robot systems comprising of heterogeneous autonomous vehicles on land, air, water are being increasingly used to assist or replace humans in different hazardous missions. Two crucial aspects in such multi-robot systems are to: a) explore an initially unknown region of interest to discover tasks, and, b) allocate and share the discovered tasks between the robots in a coordinated manner using a multi-robot task allocation (MRTA) algorithm. In this paper, we describe results from our research on multi-robot terrain coverage and MRTA algorithms within an autonomous landmine detection scenario, done as part of the COMRADES project. Each robot is equipped with a different type of landmine detection sensor and different sensors, even of the same type, can have different degrees of accuracy. The landmine detection-related operations performed by each robot are abstracted as tasks and multiple robots are required to complete a single task. First, we describe a distributed and robust terrain coverage algorithm that employs Voronoi partitions to divide the area of interest among the robots and then uses a single-robot coverage algorithm to explore each partition for potential landmines. Then, we describe MRTA algorithms that use the location information of discovered potential landmines and employ either a greedy strategy, or, an opportunistic strategy to allocate tasks among the robots while attempting to minimize the time (energy) expended by the robots to perform the tasks. We report experimental results of our algorithms using accurately-simulated Corobot robots within the Webots simulator performing a multi-robot, landmine detection operation.

  1. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    OpenAIRE

    Brandon Sights; H.R. Everett; Estrellina Pacis; Greg Kogut; Michael Thompson

    2006-01-01

    High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the ...

  2. Remote wave measurements using autonomous mobile robotic systems

    Science.gov (United States)

    Kurkin, Andrey; Zeziulin, Denis; Makarov, Vladimir; Belyakov, Vladimir; Tyugin, Dmitry; Pelinovsky, Efim

    2016-04-01

    The project covers the development of a technology for monitoring and forecasting the state of the coastal zone environment using radar equipment transported by autonomous mobile robotic systems (AMRS). Sought-after areas of application are the eastern and northern coasts of Russia, where continuous collection of information on topographic changes of the coastal zone and carrying out hydrodynamic measurements in inaccessible to human environment are needed. The intensity of the reflection of waves, received by radar surveillance, is directly related to the height of the waves. Mathematical models and algorithms for processing experimental data (signal selection, spectral analysis, wavelet analysis), recalculation of landwash from data on heights of waves far from the shore, determination of the threshold values of heights of waves far from the shore have been developed. There has been developed the program complex for functioning of the experimental prototype of AMRS, comprising the following modules: data loading module, reporting module, module of georeferencing, data analysis module, monitoring module, hardware control module, graphical user interface. Further work will be connected with carrying out tests of manufactured experimental prototype in conditions of selected routes coastline of Sakhalin Island. Conducting field tests will allow to reveal the shortcomings of development and to identify ways of optimization of the structure and functioning algorithms of AMRS, as well as functioning the measuring equipment. The presented results have been obtained in Nizhny Novgorod State Technical University n.a. R. Alekseev in the framework of the Federal Target Program «Research and development on priority directions of scientific-technological complex of Russia for 2014 - 2020 years» (agreement № 14.574.21.0089 (unique identifier of agreement - RFMEFI57414X0089)).

  3. An integrated design and fabrication strategy for entirely soft, autonomous robots

    Science.gov (United States)

    Wehner, Michael; Truby, Ryan L.; Fitzgerald, Daniel J.; Mosadegh, Bobak; Whitesides, George M.; Lewis, Jennifer A.; Wood, Robert J.

    2016-08-01

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

  4. An integrated design and fabrication strategy for entirely soft, autonomous robots.

    Science.gov (United States)

    Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J

    2016-08-25

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

  5. Autonomous navigation of a mobile robot using custom-designed qualitative reasoning VLSI chips and boards

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Pattay, R.S. (Oak Ridge National Lab., TN (United States)); Watanabe, H.; Symon, J. (North Carolina Univ., Chapel Hill, NC (United States). Dept. of Computer Science)

    1991-01-01

    Two types of computer boards including custom-designed VLSI chips have been developed to add a qualitative reasoning capability to the real-time control of autonomous mobile robots. The design and operation of these boards are first described and an example of their use for the autonomous navigation of a mobile robot is presented. The development of qualitative reasoning schemes emulating human-like navigation is a-priori unknown environments is discussed. The efficiency of such schemes, which can consist of as little as a dozen qualitative rules, is illustrated in experiments involving an autonomous mobile robot navigating on the basis of very sparse inaccurate sensor data. 17 refs., 6 figs.

  6. Using custom-designed VLSI fuzzy inferencing chips for the autonomous navigation of a mobile robot

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Pattay, R.S. (Oak Ridge National Lab., TN (United States)); Watanabe, Hiroyuki; Symon, J. (North Carolina Univ., Chapel Hill, NC (United States). Dept. of Computer Science)

    1991-01-01

    Two types of computer boards including custom-designed VLSI fuzzy inferencing chips have been developed to add a qualitative reasoning capability to the real-time control of autonomous mobile robots. The design and operation of these boards are first described and an example of their use for the autonomous navigation of mobile robot is presented. The development of qualitative reasoning schemes emulating human-like navigation in apriori unknown environments is discussed. An approach using superposition of elemental sensor-based behaviors is shown to alloy easy development and testing of the inferencing rule base, while providing for progressive addition of behaviors to resolve situations of increasing complexity. The efficiency of such schemes, which can consist of as little as a dozen qualitative rules, is illustrated in experiments involving an autonomous mobile robot navigating on the basis of very sparse and inaccurate sensor data. 17 refs., 6 figs.

  7. A testbed for a unified teleoperated-autonomous dual-arm robotic system

    Science.gov (United States)

    Hayati, S.; Lee, T.; Tso, K.; Backes, P.; Lloyd, J.

    1990-01-01

    This paper describes a complete robot control facility built at the Jet Propulsion Laboratory as part of NASA a telerobotics program to develop a state-of-the-art robot control environment for laboratory based space-like experiments. This system, which is now fully operational, has the following features: separation of the computing facilities into local and remote sites, autonomous motion generation in joint or Cartesian coordinates, dual-arm force reflecting teleoperation with voice interaction between the operator and the robots, shared control between the autonomously generated motions and operator controlled teleoperation, and dual-arm coordinated trajectory generation. The system has been used to carry out realistic experiments such as the exchange of an Orbital Replacement Unit (ORU), bolt turning, and door opening, using a mixture of autonomous actions and teleoperation, with either a single arm or two cooperating arms.

  8. The experimental humanoid robot H7: a research platform for autonomous behaviour.

    Science.gov (United States)

    Nishiwaki, Koichi; Kuffner, James; Kagami, Satoshi; Inaba, Masayuki; Inoue, Hirochika

    2007-01-15

    This paper gives an overview of the humanoid robot 'H7', which was developed over several years as an experimental platform for walking, autonomous behaviour and human interaction research at the University of Tokyo. H7 was designed to be a human-sized robot capable of operating autonomously in indoor environments designed for humans. The hardware is relatively simple to operate and conduct research on, particularly with respect to the hierarchical design of its control architecture. We describe the overall design goals and methodology, along with a summary of its online walking capabilities, autonomous vision-based behaviours and automatic motion planning. We show experimental results obtained by implementations running within a simulation environment as well as on the actual robot hardware.

  9. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.

    Science.gov (United States)

    Onal, Cagdas D; Rus, Daniela

    2013-06-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s(-1).

  10. Research and development of Ro-boat: an autonomous river cleaning robot

    Science.gov (United States)

    Sinha, Aakash; Bhardwaj, Prashant; Vaibhav, Bipul; Mohommad, Noor

    2013-12-01

    Ro-Boat is an autonomous river cleaning intelligent robot incorporating mechanical design and computer vision algorithm to achieve autonomous river cleaning and provide a sustainable environment. Ro-boat is designed in a modular fashion with design details such as mechanical structural design, hydrodynamic design and vibrational analysis. It is incorporated with a stable mechanical system with air and water propulsion, robotic arms and solar energy source and it is proceed to become autonomous by using computer vision. Both "HSV Color Space" and "SURF" are proposed to use for measurements in Kalman Filter resulting in extremely robust pollutant tracking. The system has been tested with successful results in the Yamuna River in New Delhi. We foresee that a system of Ro-boats working autonomously 24x7 can clean a major river in a city on about six months time, which is unmatched by alternative methods of river cleaning.

  11. Vision-based semi-autonomous outdoor robot system to reduce soldier workload

    Science.gov (United States)

    Richardson, Al; Rodgers, Michael H.

    2001-09-01

    Sensors and computational capability have not reached the point to enable small robots to navigate autonomously in unconstrained outdoor environments at tactically useful speeds. This problem is greatly reduced, however, if a soldier can lead the robot through terrain that he knows it can traverse. An application of this concept is a small pack-mule robot that follows a foot soldier over outdoor terrain. The solder would be responsible to avoid situations beyond the robot's limitations when encountered. Having learned the route, the robot could autonomously retrace the path carrying supplies and munitions. This would greatly reduce the soldier's workload under normal conditions. This paper presents a description of a developmental robot sensor system using low-cost commercial 3D vision and inertial sensors to address this application. The robot moves at fast walking speed and requires only short-range perception to accomplish its task. 3D-feature information is recorded on a composite route map that the robot uses to negotiate its local environment and retrace the path taught by the soldier leader.

  12. LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval

    Science.gov (United States)

    Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan

    2013-01-01

    As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.

  13. MECHANICAL DESIGN OF AN AUTONOMOUS MARINE ROBOTIC SYSTEM FOR INTERACTION WITH DIVERS

    Directory of Open Access Journals (Sweden)

    Nikola Stilinović

    2016-09-01

    Full Text Available SCUBA diving, professional or recreational, remains one of the most hazardous activities known by man, mostly due to the fact that the human survival in the underwater environment requires use of technical equipment such as breathing regulators. Loss of breathing gas supply, burst eardrum, decompression sickness and nitrogen narcosis are just a few problems which can occur during an ordinary dive and result in injuries, long-term illnesses or even death. Most common way to reduce the risk of diving is to dive in pairs, thus allowing divers to cooperate with each other and react when uncommon situation occurs. Having the ability to react before an unwanted situation happens would improve diver safety. This paper describes an autonomous marine robotic system that replaces a human dive buddy. Such a robotic system, developed within an FP7 project “CADDY – Cognitive Autonomous Diving Buddy” provides a symbiotic link between robots and human divers in the underwater. The proposed concept consists of a diver, an autonomous underwater vehicle (AUV Buddy and an autonomous surface vehicle (ASV PlaDyPos, acting within a cooperative network linked via an acoustic communication channel. This is a first time that an underwater human-robot system of such a scale has ever been developed. In this paper, focus is put on mechanical characteristics of the robotic vehicles.

  14. Autonomous Navigation, Dynamic Path and Work Flow Planning in Multi-Agent Robotic Swarms Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Leucht, Kurt; Stolleis, Karl

    2015-01-01

    Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots, called Swarmies, to be used as a ground-based research platform for in-situ resource utilization missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in an unknown environment and return those resources to a central site.

  15. A real-time image understanding system for an autonomous mobile robot

    OpenAIRE

    Remias, Leonard V.

    1996-01-01

    Approved for public release, distribution is unlimited Yamabico-11 is an autonomous mobile robot used as a research platform with one area in image understanding. Previous work focused on edge detection analysis on a Silicon Graphics Iris (SGI) workstation with no method for implementation on the robot. Yamabico-11 does not have an on-board image processing capability to detect straight edges in a grayscale image and a method for allowing the user to analyze the data. The approach taken fo...

  16. Autonomous Mobile Platform for Research in Cooperative Robotics

    Science.gov (United States)

    Daemi, Ali; Pena, Edward; Ferguson, Paul

    1998-01-01

    This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.

  17. Introduction to autonomous mobile robotics using Lego Mindstorms NXT

    Science.gov (United States)

    Akın, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-12-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the Lego Mindstorms NXT kits are used as the robot platform. The aims, scope and contents of the course are presented, and the design of the laboratory sessions as well as the term projects, which address several core problems of robotics and artificial intelligence simultaneously, are explained in detail.

  18. Feature-Based Localization in Sonar-Equipped Autonomous Mobile Robots Through Hough Transform and Unsupervised Learning Network,

    Science.gov (United States)

    1998-06-01

    research has focused on the development of autonomous mobile robots - robots that can move about without human supervision. This brings with it several...around it? Various methods of localization in mobile robots have been explored. Most of these methods, however, assume some a priori knowledge of the

  19. On autonomous and teleoperated aerial service robots: theory and application

    NARCIS (Netherlands)

    Mersha, Abeye Yenehun

    2014-01-01

    Traditionally, aerial robots have been used in applications that do not require physical interaction with the environment. Recently, however, there is a growing interest in using aerial robots for applications that involve active but nondestructive interaction with the environment, especially in the

  20. An Autonomous Robotic System for Mapping Weeds in Fields

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær; Garcia Ruiz, Francisco Jose; Kazmi, Wajahat

    2013-01-01

    The ASETA project develops theory and methods for robotic agricultural systems. In ASETA, unmanned aircraft and unmanned ground vehicles are used to automate the task of identifying and removing weeds in sugar beet fields. The framework for a working automatic robotic weeding system is presented...

  1. Introduction to Autonomous Mobile Robotics Using "Lego Mindstorms" NXT

    Science.gov (United States)

    Akin, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-01-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the…

  2. Manifold traversing as a model for learning control of autonomous robots

    Science.gov (United States)

    Szakaly, Zoltan F.; Schenker, Paul S.

    1992-01-01

    This paper describes a recipe for the construction of control systems that support complex machines such as multi-limbed/multi-fingered robots. The robot has to execute a task under varying environmental conditions and it has to react reasonably when previously unknown conditions are encountered. Its behavior should be learned and/or trained as opposed to being programmed. The paper describes one possible method for organizing the data that the robot has learned by various means. This framework can accept useful operator input even if it does not fully specify what to do, and can combine knowledge from autonomous, operator assisted and programmed experiences.

  3. Autonomous Mobile Robot Navigation Using Harmonic Potential Field

    Science.gov (United States)

    Panati, Subbash; Baasandorj, Bayanjargal; Chong, Kil To

    2015-05-01

    Mobile robot navigation has been an area of robotics which has gained massive attention among the researchers of robotics community. Path planning and obstacle avoidance are the key aspects of mobile robot navigation. This paper presents harmonic potential field based navigation algorithm for mobile robots. Harmonic potential field method overcomes the issue of local minima which was a major bottleneck in the case of artificial potential field method. The harmonic potential field is calculated using harmonic functions and Dirichlet boundary conditions are used for the obstacles, goal and initial position. The simulation results shows that the proposed method is able to overcome the local minima issue and navigate successfully from initial position to the goal without colliding into obstacles in static environment.

  4. Self-sufficiency of an autonomous reconfigurable modular robotic organism

    CERN Document Server

    Qadir, Raja Humza

    2015-01-01

    This book describes how the principle of self-sufficiency can be applied to a reconfigurable modular robotic organism. It shows the design considerations for a novel REPLICATOR robotic platform, both hardware and software, featuring the behavioral characteristics of social insect colonies. Following a comprehensive overview of some of the bio-inspired techniques already available, and of the state-of-the-art in re-configurable modular robotic systems, the book presents a novel power management system with fault-tolerant energy sharing, as well as its implementation in the REPLICATOR robotic modules. In addition, the book discusses, for the first time, the concept of “artificial energy homeostasis” in the context of a modular robotic organism, and shows its verification on a custom-designed simulation framework in different dynamic power distribution and fault tolerance scenarios. This book offers an ideal reference guide for both hardware engineers and software developers involved in the design and implem...

  5. Remote Teleoperated and Autonomous Mobile Security Robot Development in Ship Environment

    Directory of Open Access Journals (Sweden)

    Long-Yeu Chung

    2013-01-01

    Full Text Available We propose a wireless remote teleoperated and autonomous mobile security robot based on a multisensor system to monitor the ship/cabin environment. By doing this, pilots in charge of monitoring can be away from the scene and feel like being at the site monitoring and responding to any potential safety problems. Also, this robot can be a supplementary device for safety cabin crew members who are very busy and/or very tired of properly responding to crises. This can make one crew member on duty at the cabin a possible option. In fact, when the robot detects something unusual in the cabin, it can also notify the pilot so that the pilot can teleoperate the robot to response to whatever is needed. As a result, a cabin without any crew members on duty can be achieved through this type of robot/system.

  6. Traversable terrain classification for outdoor autonomous robots using single 2D laser scans

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Blas, Morten Rufus; Andersen, Nils Axel;

    2006-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses seven distinctly different classifiers: raw height, roughness, step size...

  7. Terrain Classification for Outdoor Autonomous Robots using 2D Laser Scans

    DEFF Research Database (Denmark)

    Rufus Blas, Morten; Riisgaard, Søren; Ravn, Ole;

    2005-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses four distinctly different classifiers: raw height, step size, slope...

  8. An autonomous robot for de-leafing cucumber plants in a high-wire cultivation system

    NARCIS (Netherlands)

    Henten, van E.J.; Tuijl, van B.A.J.; Hoogakker, G.J.; Weerd, van der M.J.; Hemming, J.; Kornet, J.G.; Bontsema, J.

    2005-01-01

    The paper presents an autonomous robot for removing the leaves from cucumber plants grown in a high-wire cultivation system. Leaves at the lower end of the plants are removed because of their reduced vitality, their negligible contribution to canopy photosynthesis and their increased sensitivity for

  9. SELF-RECONFIGURATION OF UNDERACTUATED REDUNDANT MANIPULATORS WITH OPTIMIZING THE FLEXIBILITY ELLIPSOID

    Institute of Scientific and Technical Information of China (English)

    He Guangping; Lu Zhen

    2005-01-01

    The multi-modes feature, the measure of the manipulating flexibility, and self-reconfiguration control method of the underactuated redundant manipulators are investigated based on the optimizing technology. The relationship between the configuration of the joint space and the manipulating flexibility of the underactuated redundant manipulator is analyzed, a new measure of manipulating flexibility ellipsoid for the underactuated redundant manipulator with passive joints in locked mode is proposed, which can be used to get the optimal configuration for the realization of the self-reconfiguration control. Furthermore, a time-varying nonlinear control method based on harmonic inputs is suggested for fulfilling the self-reconfiguration. A simulation example of a three-DOFs underactuated manipulator with one passive joint features some aspects of the investigations.

  10. A game-theoretic formulation of the homogeneous self-reconfiguration problem

    KAUST Repository

    Pickem, Daniel

    2015-12-15

    In this paper we formulate the homogeneous two- and three-dimensional self-reconfiguration problem over discrete grids as a constrained potential game. We develop a game-theoretic learning algorithm based on the Metropolis-Hastings algorithm that solves the self-reconfiguration problem in a globally optimal fashion. Both a centralized and a fully decentralized algorithm are presented and we show that the only stochastically stable state is the potential function maximizer, i.e. the desired target configuration. These algorithms compute transition probabilities in such a way that even though each agent acts in a self-interested way, the overall collective goal of self-reconfiguration is achieved. Simulation results confirm the feasibility of our approach and show convergence to desired target configurations.

  11. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    Directory of Open Access Journals (Sweden)

    Brandon Sights

    2006-10-01

    Full Text Available High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the trend toward relieving the human of the low-level control burden advances, the ability to combine the functionalities of several critical control systems on a single platform becomes imperative.

  12. Adaptive artificial neural network for autonomous robot control

    Science.gov (United States)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  13. Detection of Water Hazards for Autonomous Robotic Vehicles

    Science.gov (United States)

    Matthes, Larry; Belluta, Paolo; McHenry, Michael

    2006-01-01

    Four methods of detection of bodies of water are under development as means to enable autonomous robotic ground vehicles to avoid water hazards when traversing off-road terrain. The methods involve processing of digitized outputs of optoelectronic sensors aboard the vehicles. It is planned to implement these methods in hardware and software that would operate in conjunction with the hardware and software for navigation and for avoidance of solid terrain obstacles and hazards. The first method, intended for use during the day, is based on the observation that, under most off-road conditions, reflections of sky from water are easily discriminated from the adjacent terrain by their color and brightness, regardless of the weather and of the state of surface waves on the water. Accordingly, this method involves collection of color imagery by a video camera and processing of the image data by an algorithm that classifies each pixel as soil, water, or vegetation according to its color and brightness values (see figure). Among the issues that arise is the fact that in the presence of reflections of objects on the opposite shore, it is difficult to distinguish water by color and brightness alone. Another issue is that once a body of water has been identified by means of color and brightness, its boundary must be mapped for use in navigation. Techniques for addressing these issues are under investigation. The second method, which is not limited by time of day, is based on the observation that ladar returns from bodies of water are usually too weak to be detected. In this method, ladar scans of the terrain are analyzed for returns and the absence thereof. In appropriate regions, the presence of water can be inferred from the absence of returns. Under some conditions in which reflections from the bottom are detectable, ladar returns could, in principle, be used to determine depth. The third method involves the recognition of bodies of water as dark areas in short

  14. Remote Sensing of Radiation Dose Rate by Customizing an Autonomous Robot

    Science.gov (United States)

    Kobayashi, T.; Nakahara, M.; Morisato, K.; Takashina, T.; Kanematsu, H.

    2012-03-01

    Distribution of radiation dose was measured by customizing an autonomous cleaning robot "Roomba" and a scintillation counter. The robot was used as a vehicle carrying the scintillation survey meter, and was additionally equipped with an H8 micro computer to remote-control the vehicle and to send measured data. The data obtained were arranged with position data, and then the distribution map of the radiation dose rate was produced. Manual, programmed and autonomous driving tests were conducted, and all performances were verified. That is, for each operational mode, the measurements both with moving and with discrete moving were tried in and outside of a room. Consequently, it has been confirmed that remote sensing of radiation dose rate is possible by customizing a robot on market.

  15. Autonomous Navigation of a Surveillance Robot in Harsh Outdoor Road Environments

    Directory of Open Access Journals (Sweden)

    Youjin Shin

    2013-01-01

    Full Text Available This paper deals with the autonomous navigation problem of a mobile robot in outdoor road environments. The target application is surveillance in petroleum storage bases. Although there have been remarkable technological achievements recently in the area of outdoor navigation, robotic systems are still expensive due to a large number of high cost sensors. This paper proposes the reliable extraction algorithm of traversable regions using a single onboard Laser Range Finder (LRF in outdoor road environments. The traversable regions are derived from the classifications of the road surfaces, curbs, and obstacles. The proposed scheme was experimentally tested in success. Since there are many potential applications that require autonomous service robots to move in semistructured road environments, the proposed scheme can be widely used as a low-cost practical solution.

  16. An Adaptive Memory Model for Long-Term Navigation of Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    M. Hentschel

    2011-01-01

    Full Text Available This paper introduces an environmental representation for autonomous mobile robots that continuously adapts over time. The presented approach is inspired by human memory information processing and stores the current as well as past knowledge of the environment. In this paper, the memory model is applied to time-variant information about obstacles and driveable routes in the workspace of the autonomous robot and used for solving the navigation cycle of the robot. This includes localization and path planning as well as vehicle control. The presented approach is evaluated in a real-world experiment within changing indoor environment. The results show that the environmental representation is stable, improves its quality over time, and adapts to changes.

  17. Challenging of path planning algorithms for autonomous robot in known environment

    Science.gov (United States)

    Farah, R. N.; Irwan, N.; Zuraida, Raja Lailatul; Shaharum, Umairah; Hanafi@Omar, Hafiz Mohd

    2014-06-01

    Most of the mobile robot path planning is estimated to reach its predetermined aim through the shortest path and avoiding the obstacles. This paper is a survey on path planning algorithms of various current research and existing system of Unmanned Ground Vehicles (UGV) where their challenging issues to be intelligent autonomous robot. The focuses are some short reviews on individual papers for UGV in the known environment. Methods and algorithms in path planning for the autonomous robot had been discussed. From the reviews, we obtained that the algorithms proposed are appropriate for some cases such as single or multiple obstacles, static or movement obstacle and optimal shortest path. This paper also describes some pros and cons for every reviewed paper toward algorithms improvement for further work.

  18. Emergence of Cooperative Behavior based on Learning and Evolution in Collective Autonomous Mobile Robots

    Energy Technology Data Exchange (ETDEWEB)

    Jun, H.B.; Sim, K.B. [Chungang University, Seoul (Korea, Republic of)

    1998-12-01

    In this paper, we propose a behavior learning algorithm of the collective autonomous mobile robots based on the reinforcement learning and conditional evolution. The cooperative behavior is a high level phenomenon observed in the society of social animals and, recently the emergence of cooperative behavior in collective autonomous mobile robots becomes an interesting field in artificial life. In our system each robot with simple behavior strategies can adapt to its environment by means of the reinforcement learning. The internal reinforcement signal for the reinforcement learning is generated by fuzzy interference engine, and dynamic recurrent neural networks are used as an action generation module. We propose conditional evolution for the emergence of cooperative behavior. The evolutionary conditions are spatio-temporal limitations to the occurrence of genetic operations. We show the validity of the proposed learning and evolutionary algorithm through several computer simulations. (author). 22 refs., 9 figs.

  19. Autonomous robot for detecting subsurface voids and tunnels using microgravity

    Science.gov (United States)

    Wilson, Stacy S.; Crawford, Nicholas C.; Croft, Leigh Ann; Howard, Michael; Miller, Stephen; Rippy, Thomas

    2006-05-01

    Tunnels have been used to evade security of defensive positions both during times of war and peace for hundreds of years. Tunnels are presently being built under the Mexican Border by drug smugglers and possibly terrorists. Several have been discovered at the border crossing at Nogales near Tucson, Arizona, along with others at other border towns. During this war on terror, tunnels under the Mexican Border pose a significant threat for the security of the United States. It is also possible that terrorists will attempt to tunnel under strategic buildings and possibly discharge explosives. The Center for Cave and Karst Study (CCKS) at Western Kentucky University has a long and successful history of determining the location of caves and subsurface voids using microgravity technology. Currently, the CCKS is developing a remotely controlled robot which will be used to locate voids underground. The robot will be a remotely controlled vehicle that will use microgravity and GPS to accurately detect and measure voids below the surface. It is hoped that this robot will also be used in military applications to locate other types of voids underground such as tunnels and bunkers. It is anticipated that the robot will be able to function up to a mile from the operator. This paper will describe the construction of the robot and the use of microgravity technology to locate subsurface voids with the robot.

  20. A traffic priority language for collision-free navigation of autonomous mobile robots in dynamic environments.

    Science.gov (United States)

    Bourbakis, N G

    1997-01-01

    This paper presents a generic traffic priority language, called KYKLOFORTA, used by autonomous robots for collision-free navigation in a dynamic unknown or known navigation space. In a previous work by X. Grossmman (1988), a set of traffic control rules was developed for the navigation of the robots on the lines of a two-dimensional (2-D) grid and a control center coordinated and synchronized their movements. In this work, the robots are considered autonomous: they are moving anywhere and in any direction inside the free space, and there is no need of a central control to coordinate and synchronize them. The requirements for each robot are i) visual perception, ii) range sensors, and iii) the ability of each robot to detect other moving objects in the same free navigation space, define the other objects perceived size, their velocity and their directions. Based on these assumptions, a traffic priority language is needed for each robot, making it able to decide during the navigation and avoid possible collision with other moving objects. The traffic priority language proposed here is based on a set of primitive traffic priority alphabet and rules which compose pattern of corridors for the application of the traffic priority rules.

  1. Autonomous Navigation Motion Control of Mobile Robots using Hybrid System Control Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.M. [Samsung Electronics Co., Ltd., Seoul (Korea); Lim, M.S. [Kyonggi Institute of Technology, Shihung (Korea); Lim, J.H. [Hanyang University, Seoul (Korea)

    2002-05-01

    This paper presents a framework of hybrid dynamic control systems for the motion control of wheeled mobile robot systems with nonholonomic constraints. The hybrid control system has the 3-layered hierarchical structure: digital automata for the higher process, mobile robot system for the lower process, and the interface as the interaction process between the continuous dynamics and the discrete dynamics. In the hybrid control architecture of mobile robot, the continuous dynamics of mobile robots are modeled by the switched systems. The abstract model and digital automata for the motion control are developed. In high level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot in low level are specified in the abstracted motions. The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments. (author). 13 refs., 13 figs., 1 tab.

  2. Bio-inspired motion planning algorithms for autonomous robots facilitating greater plasticity for security applications

    Science.gov (United States)

    Guo, Yi; Hohil, Myron; Desai, Sachi V.

    2007-10-01

    Proposed are techniques toward using collaborative robots for infrastructure security applications by utilizing them for mobile sensor suites. A vast number of critical facilities/technologies must be protected against unauthorized intruders. Employing a team of mobile robots working cooperatively can alleviate valuable human resources. Addressed are the technical challenges for multi-robot teams in security applications and the implementation of multi-robot motion planning algorithm based on the patrolling and threat response scenario. A neural network based methodology is exploited to plan a patrolling path with complete coverage. Also described is a proof-of-principle experimental setup with a group of Pioneer 3-AT and Centibot robots. A block diagram of the system integration of sensing and planning will illustrate the robot to robot interaction to operate as a collaborative unit. The proposed approach singular goal is to overcome the limits of previous approaches of robots in security applications and enabling systems to be deployed for autonomous operation in an unaltered environment providing access to an all encompassing sensor suite.

  3. Evaluation of a Home Biomonitoring Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Enrique Dorronzoro Zubiete

    2016-01-01

    Full Text Available Increasing population age demands more services in healthcare domain. It has been shown that mobile robots could be a potential solution to home biomonitoring for the elderly. Through our previous studies, a mobile robot system that is able to track a subject and identify his daily living activities has been developed. However, the system has not been tested in any home living scenarios. In this study we did a series of experiments to investigate the accuracy of activity recognition of the mobile robot in a home living scenario. The daily activities tested in the evaluation experiment include watching TV and sleeping. A dataset recorded by a distributed distance-measuring sensor network was used as a reference to the activity recognition results. It was shown that the accuracy is not consistent for all the activities; that is, mobile robot could achieve a high success rate in some activities but a poor success rate in others. It was found that the observation position of the mobile robot and subject surroundings have high impact on the accuracy of the activity recognition, due to the variability of the home living daily activities and their transitional process. The possibility of improvement of recognition accuracy has been shown too.

  4. A Grammatical Approach to the Modeling of an Autonomous Robot

    Directory of Open Access Journals (Sweden)

    Gabriel López-García

    2012-06-01

    Full Text Available Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot. The result is an instance of the model grammar that implements the robotic system and is independent of the sensing devices used for perception and interaction. As a conclusion the Virtual Worlds Generator adds value in the simulation of virtual worlds since the definition can be done formally and independently of the peculiarities of the supporting devices

  5. Modelling and Scheduling Autonomous Mobile Robot for a Real-World Industrial Application

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Bøgh, Simon;

    2013-01-01

    The paper deals with a real-world implementation of autonomous industrial mobile robot performing an industrial application at a factory of a pump manufacturer. In the implementation, the multi-criteria optimization problem of scheduling tasks of a mobile robot is also taken into account. The paper...... proposes an approach composing of: a mobile robot system design (“Little Helper”), an appropriate and comprehensive industrial application (multiple-part feeding tasks), an implementation concept for industrial environments (the bartender concept), and a real-time heuristics integrated into Mission...... Planning and Control software to schedule the mobile robot in the industrial application. Results from the real-world implementation show that “Little Helper” is capable of successfully serving four part feeders in three production cells within a given planning horizon using the best schedule generated...

  6. A Behavior-Based Strategy for Single and Multi-Robot Autonomous Exploration

    Directory of Open Access Journals (Sweden)

    José L. Gordillo

    2012-09-01

    Full Text Available In this paper, we consider the problem of autonomous exploration of unknown environments with single and multiple robots. This is a challenging task, with several potential applications. We propose a simple yet effective approach that combines a behavior-based navigation with an efficient data structure to store previously visited regions. This allows robots to safely navigate, disperse and efficiently explore the environment. A series of experiments performed using a realistic robotic simulator and a real testbed scenario demonstrate that our technique effectively distributes the robots over the environment and allows them to quickly accomplish their mission in large open spaces, narrow cluttered environments, dead-end corridors, as well as rooms with minimum exits.

  7. Design of a Remote-controlled and GPS-guided Autonomous Robot for Precision Farming

    Directory of Open Access Journals (Sweden)

    İlker Ünal

    2015-12-01

    Full Text Available Determining variations in fields is important for precision farming applications. Precision farming is used to determine, analyse, and manage factors such as temporal and spatial variability to obtain maximum profit, sustainability, and environmental protection. However, precision farming is excessively dependent on soil and plant test processes. Furthermore, test processes are time-consuming, laborious and expensive. These processes also cannot be performed quickly by humans. For these reasons, autonomous robots should be designed and developed for the detection of field variations and variable-rate applications. In this study, a remote-controlled and GPS-guided autonomous robot was designed and developed, which can be controlled via the 3G internet and is suitable for image-processing applications. The joystick is used to manually remotely control the robot movements in any direction or speed. Real-time video transmission to the remote computer can be accomplished with a camera placed on the vehicle. Navigation software was developed for steering the robot autonomously. In the results of the field test for the navigation software, it was found that the linear target point precision ranged from 10 to 12 cm and the distributed target point precision ranged from 15 to 17 cm.

  8. AltiVec performance increases for autonomous robotics for the MARSSCAPE architecture program

    Science.gov (United States)

    Gothard, Benny M.

    2002-02-01

    One of the main tall poles that must be overcome to develop a fully autonomous vehicle is the inability of the computer to understand its surrounding environment to a level that is required for the intended task. The military mission scenario requires a robot to interact in a complex, unstructured, dynamic environment. Reference A High Fidelity Multi-Sensor Scene Understanding System for Autonomous Navigation The Mobile Autonomous Robot Software Self Composing Adaptive Programming Environment (MarsScape) perception research addresses three aspects of the problem; sensor system design, processing architectures, and algorithm enhancements. A prototype perception system has been demonstrated on robotic High Mobility Multi-purpose Wheeled Vehicle and All Terrain Vehicle testbeds. This paper addresses the tall pole of processing requirements and the performance improvements based on the selected MarsScape Processing Architecture. The processor chosen is the Motorola Altivec-G4 Power PC(PPC) (1998 Motorola, Inc.), a highly parallized commercial Single Instruction Multiple Data processor. Both derived perception benchmarks and actual perception subsystems code will be benchmarked and compared against previous Demo II-Semi-autonomous Surrogate Vehicle processing architectures along with desktop Personal Computers(PC). Performance gains are highlighted with progress to date, and lessons learned and future directions are described.

  9. Simulation, modeling, and programming for autonomous robots : preface

    NARCIS (Netherlands)

    Brugali, Davide; Broenink, Jan F.; Kroeger, Torsten; MacDonald, Bruce A.

    2014-01-01

    Robots are versatile machines that are increasingly being used not only to per- form dirty, dangerous, and dull tasks in manufacturing industries, but also to achieve societal objectives, such as enhancing safety in transportation, reducing the use of pesticide in agriculture, helping people with he

  10. Localization Using Magnetic Patterns for Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Won Suk You

    2014-03-01

    Full Text Available In this paper, we present a method of localization using magnetic landmarks. With this method, it is possible to compensate the pose error (xe, ye, θe of a mobile robot correctly and localize its current position on a global coordinate system on the surface of a structured environment with magnetic landmarks. A set of four magnetic bars forms total six different patterns of landmarks and these patterns can be read by the mobile robot with magnetic hall sensors. A sequential motion strategy for a mobile robot is proposed to find the geometric center of magnetic landmarks by reading the nonlinear magnetic field.The mobile robot first moves into the center region of the landmark where it can read the magnetic pattern, after which tracking and global localization can be easily achieved by recognizing the patterns of neighboring landmarks. Experimental results show the effectiveness of the sequential motion strategy for estimating the center of the first encountered landmark as well as the performance of tracking and global localization of the proposed system.

  11. Low power and self-reconfigurable WBAN controller for continuous bio-signal monitoring system

    NARCIS (Netherlands)

    Lee, S.; Yoo, H.J.

    2013-01-01

    The WBAN controller with Branched Bus (BB) topology and Continuous Data Transmission (CDT) protocol with low power consumption and self- reconfigurability is proposed for wearable healthcare applications. The BB topology and CDT protocol is a combination of conventional Bus and Star topology and a v

  12. Hybrid Kalman Filter/Fuzzy Logic based Position Control of Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Nitin Afzulpurkar

    2008-11-01

    Full Text Available This paper describes position control of autonomous mobile robot using combination of Kalman filter and Fuzzy logic techniques. Both techniques have been used to fuse information from internal and external sensors to navigate a typical mobile robot in an unknown environment. An obstacle avoidance algorithm utilizing stereo vision technique has been implemented for obstacle detection. The odometry errors due to systematic-errors (such as unequal wheel diameter, the effect of the encoder resolution etc. and/or non-systematic errors (ground plane, wheel-slip etc. contribute to various motion control problems of the robot. During the robot moves, whether straight-line and/or arc, create the position and orientation errors which depend on systematic and/or non-systematic odometry errors. The main concern in most of the navigating systems is to achieve the real-time and robustness performances to precisely control the robot movements. The objective of this research is to improve the position and the orientation of robot motion. From the simulation and experiments, we prove that the proposed mobile robot moves from start position to goal position with greater accuracy avoiding obstacles.

  13. R-MASTIF: robotic mobile autonomous system for threat interrogation and object fetch

    Science.gov (United States)

    Das, Aveek; Thakur, Dinesh; Keller, James; Kuthirummal, Sujit; Kira, Zsolt; Pivtoraiko, Mihail

    2013-01-01

    Autonomous robotic "fetch" operation, where a robot is shown a novel object and then asked to locate it in the field, re- trieve it and bring it back to the human operator, is a challenging problem that is of interest to the military. The CANINE competition presented a forum for several research teams to tackle this challenge using state of the art in robotics technol- ogy. The SRI-UPenn team fielded a modified Segway RMP 200 robot with multiple cameras and lidars. We implemented a unique computer vision based approach for textureless colored object training and detection to robustly locate previ- ously unseen objects out to 15 meters on moderately flat terrain. We integrated SRI's state of the art Visual Odometry for GPS-denied localization on our robot platform. We also designed a unique scooping mechanism which allowed retrieval of up to basketball sized objects with a reciprocating four-bar linkage mechanism. Further, all software, including a novel target localization and exploration algorithm was developed using ROS (Robot Operating System) which is open source and well adopted by the robotics community. We present a description of the system, our key technical contributions and experimental results.

  14. Remote Teleoperated and Autonomous Mobile Security Robot Development in Ship Environment

    OpenAIRE

    Long-Yeu Chung

    2013-01-01

    We propose a wireless remote teleoperated and autonomous mobile security robot based on a multisensor system to monitor the ship/cabin environment. By doing this, pilots in charge of monitoring can be away from the scene and feel like being at the site monitoring and responding to any potential safety problems. Also, this robot can be a supplementary device for safety cabin crew members who are very busy and/or very tired of properly responding to crises. This can make one crew member on duty...

  15. Welding torch trajectory generation for hull joining using autonomous welding mobile robot

    Science.gov (United States)

    Hascoet, J. Y.; Hamilton, K.; Carabin, G.; Rauch, M.; Alonso, M.; Ares, E.

    2012-04-01

    Shipbuilding processes involve highly dangerous manual welding operations. Welding of ship hulls presents a hazardous environment for workers. This paper describes a new robotic system, developed by the SHIPWELD consortium, that moves autonomously on the hull and automatically executes the required welding processes. Specific focus is placed on the trajectory control of such a system and forms the basis for the discussion in this paper. It includes a description of the robotic hardware design as well as some methodology used to establish the torch trajectory control.

  16. Autonomous navigation vehicle system based on robot vision and multi-sensor fusion

    Science.gov (United States)

    Wu, Lihong; Chen, Yingsong; Cui, Zhouping

    2011-12-01

    The architecture of autonomous navigation vehicle based on robot vision and multi-sensor fusion technology is expatiated in this paper. In order to acquire more intelligence and robustness, accurate real-time collection and processing of information are realized by using this technology. The method to achieve robot vision and multi-sensor fusion is discussed in detail. The results simulated in several operating modes show that this intelligent vehicle has better effects in barrier identification and avoidance and path planning. And this can provide higher reliability during vehicle running.

  17. Temporal Memory Reinforcement Learning for the Autonomous Micro-mobile Robot Based-behavior

    Institute of Scientific and Technical Information of China (English)

    Yang Yujun(杨玉君); Cheng Junshi; Chen Jiapin; Li Xiaohai

    2004-01-01

    This paper presents temporal memory reinforcement learning for the autonomous micro-mobile robot based-behavior. Human being has a memory oblivion process, i.e. the earlier to memorize, the earlier to forget, only the repeated thing can be remembered firmly. Enlightening forms this, and the robot need not memorize all the past states, at the same time economizes the EMS memory space, which is not enough in the MPU of our AMRobot. The proposed algorithm is an extension of the Q-learning, which is an incremental reinforcement learning method. The results of simulation have shown that the algorithm is valid.

  18. The concept and architecture of data communication in autonomous cleaning robots

    Science.gov (United States)

    Paczesny, Daniel; Nowak, Bartosz; Tarapata, Grzegorz; Marzecki, Michał

    2016-09-01

    The paper presents description of concept of hardware and software architecture which can be easy implemented in autonomous cleaning robots. The requirement for such system is its reliability but still offering free and simple expansions and modifications. The paper describes considerations of the control and communication system, the date frame configuration and the software architecture. To show results of presented control and development system the specialised measurement stand was also proposed and described. All performed tests passed successfully and as a consequence the system architecture was implemented on dedicated cleaning robots.

  19. A ToF-camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    OpenAIRE

    Sobers Lourdu Xavier Francis; Sreenatha G. Anavatti; Matthew Garratt; Hyunbgo Shim

    2015-01-01

    The aim of this paper is to deploy a time-of-flight (ToF) based photonic mixer device (PMD) camera on an Autonomous Ground Vehicle (AGV) whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D) information at a low computationa...

  20. Autonomous navigation system for mobile robots of inspection; Sistema de navegacion autonoma para robots moviles de inspeccion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo S, P. [ITT, Metepec, Estado de Mexico (Mexico); Segovia de los Rios, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: pedrynteam@hotmail.com

    2005-07-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  1. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation

    Science.gov (United States)

    Masmoudi, Mohamed Slim; Masmoudi, Mohamed

    2016-01-01

    This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path. PMID:27688748

  2. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation.

    Science.gov (United States)

    Omrane, Hajer; Masmoudi, Mohamed Slim; Masmoudi, Mohamed

    This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path.

  3. Learning Preference Models for Autonomous Mobile Robots in Complex Domains

    Science.gov (United States)

    2010-12-01

    T sf = T s o = T s w = ∅; U = U+ − U−; foreach F t,is such that U(F t,is ) 6= 0 do T sf = T s f ⋃ F t,is ; T so = T s o ⋃ sgn(U(F t,is )); T sw = T s...International Symposium of Robotics Research, 2003. 17 [30] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong , J. Gale, M

  4. An Approach to Autonomous Operations for Remote Mobile Robotic Exploration

    Science.gov (United States)

    Chouinard, Caroline M.; Fisher, Forest W.; Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steve R.

    2003-01-01

    This viewgraph presentation addresses the use of autonomy for remote mobile robotic exploration. The contents include; 1) Why Use Autonomy?; 2) What Are Some Options? JPL (Reasoning); 3) More Options.. . (Modeling); 4) The CLEaR Control System (Closed Loop Execution and Recovery); 5) Method of Response; 6) Overall Goal; 7) CLEaR in Action; 8) Initial Scenario; 9) Initial Scenario - Planned; 10) Unforeseen Events; and 11) Ongoing Research.

  5. Needle Path Planning for Autonomous Robotic Surgical Suturing.

    Science.gov (United States)

    Jackson, Russell C; Cavuşoğlu, M Cenk

    2013-12-31

    This paper develops a path plan for suture needles used with solid tissue volumes in endoscopic surgery. The path trajectory is based on the best practices that are used by surgeons. The path attempts to minimize the interaction forces between the tissue and the needle. Using surgical guides as a basis, two different techniques for driving a suture needle are developed. The two techniques are compared in hardware experiments by robotically driving the suture needle using both of the motion plans.

  6. Lighter than Air Robots Guidance and Control of Autonomous Airships

    CERN Document Server

    Bestaoui Sebbane, Yasmina

    2012-01-01

    An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient autonomy. Lighter than air systems are particularly appealing since the energy to keep them airborne is small. They are increasingly considered for various tasks such as monitoring, surveillance, advertising, freight carrier, transportation. This book familiarizes readers with a hierarchical decoupled planning and control strategy that has been proven efficient through research. It is made up of a hierarchy of modules with well defined functions operating at a variety of rates, linked together from top to bottom. The outer loop, closed periodically, consists of a discrete search that produces a set of waypoints leading to the goal while avoiding obstacles and weighed regions. The sec...

  7. Path tracking control of autonomous agricultural mobile robots

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In a tractor automatic navigation system, path planning plays a significant role in improving operation efficiency. This study aims to create a suboptimal reference course for headland turning of a robot tractor and design a path-tracking controller to guide the robot tractor along the reference course. A time-minimum suboptimal control method was used to generate the reference turning course based on the mechanical parameters of the test tractor. A path-tracking controller consisting of both feedforward and feedback component elements was also proposed. The feedforward component was directly determined by the desired steering angle of the current navigation point on the reference course, whereas the feedback component was derived from the designed optimal controller. Computer simulation and field tests were performed to validate the path-tracking performance. Field test results indicated that the robot tractor followed the reference courses precisely on flat meadow, with average and standard lateral deviations being 0.031 m and 0.086 m, respectively. However, the tracking error increased while operating on sloping meadow due to the employed vehicle kinematic model.

  8. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Tuvshinjargal, Doopalam; Lee, Deok Jin [Kunsan National University, Gunsan (Korea, Republic of)

    2015-06-15

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

  9. Vers des robots collaboratifs autonomes sûrs de fonctionnement

    OpenAIRE

    Guiochet, Jérémie

    2015-01-01

    This manuscript of HDR (Habilitation à Diriger des Recherches, french accreditation to supervise research) presents research work of Jérémie Guiochet carried out at LAAS-CNRS in the Dependable computing and Fault Tolerance (TSF) team. His research work is mainly related to the dependability of collaborative autonomous robotic systems. Specific challenges raised by these systems, including human-system physical interactions and the presence of uncertainties in the perception and decision mecha...

  10. Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter

    NARCIS (Netherlands)

    Hiremath, S.A.; Heijden, van der G.W.A.M.; Evert, van F.K.; Stein, A.; Braak, ter C.J.F.

    2014-01-01

    Autonomous navigation of robots in an agricultural environment is a difficult task due to the inherent uncertainty in the environment. Many existing agricultural robots use computer vision and other sensors to supplement Global Positioning System (GPS) data when navigating. Vision based methods are

  11. Modelling and controlling of behaviour for autonomous mobile robots

    CERN Document Server

    Skubch, Hendrik

    2012-01-01

    As research progresses, it enables multi-robot systems to be used in more and more complex and dynamic scenarios. Hence, the question arises how different modelling and reasoning paradigms can be utilised to describe the intended behaviour of a team and execute it in a robust and adaptive manner. Hendrik Skubch presents a solution, ALICA (A Language for Interactive Cooperative Agents) which combines modelling techniques drawn from different paradigms in an integrative fashion. Hierarchies of finite state machines are used to structure the behaviour of the team such that temporal and causal re

  12. Toward a mobile autonomous robotic system for Mars exploration

    Science.gov (United States)

    Arena, P.; Di Giamberardino, P.; Fortuna, L.; La Gala, F.; Monaco, S.; Muscato, G.; Rizzo, A.; Ronchini, R.

    2004-01-01

    The paper deals with the results obtained up to now in the design and realization of mobile platforms, wheeled and legged ones, for autonomous deployment in unknown and hostile environments: a work developed in the framework of a project supported by the Italian Space Agency. The paper is focused on the description of the hierarchical architecture adopted for the planning, the supervision and the control of their mobility. Experimental results validate the solutions proposed, evidencing the capabilities of the platforms to explore environments in presence of irregular ground shape and obstacles of different dimensions.

  13. Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty

    Science.gov (United States)

    Armah, Stephen Kofi

    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized

  14. The investigation of an autonomous intelligent mobile robot system for indoor environment navigation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The autonomous mobile robotics system designed and implemented for indoor environment navigation is a nonholonomic differential drive system with two driving wheels mounted on the same axis driven by two PID controlled motors and two caster wheels mounted in the front and back respectively. It is furnished with multiple kinds of sensors such as IR detectors, ultrasonic sensors, laser line generators and cameras, constituting a per ceiving system for exploring its surroundings. Its computation source is a simultaneously running system com posed of multiprocessor with multitask and multiprocessing programming. Hybrid control architecture is em ployed on the mobile robot to perform complex tasks. The mobile robot system is implemented at the Center for Intelligent Design, Automation and Manufacturing of City University of Hong Kong.

  15. Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan.

    Science.gov (United States)

    Shiomi, Masahiro; Iio, Takamasa; Kamei, Koji; Sharma, Chandraprakash; Hagita, Norihiro

    2015-01-01

    We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items.

  16. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    Science.gov (United States)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  17. A control structure for the autonomous locomotion on rough terrain with a hexapod robot

    Institute of Scientific and Technical Information of China (English)

    Chen Fu; Zang Xizhe; Yan Jihong; Zhao Jie

    2010-01-01

    A motion control structure used for autonomous walking on uneven terrain with a hexapod biomimetic robot is proposed based on function-behavior-integration.In the gait planning level, a set of local rules operating between adjacent legs were put forward and the theory of finite state machine was employed to model them; further, a distributed network of local rules was constructed to adaptively adjust the fluctuation of inter-leg phase sequence.While in the leg-end trajectory planning level, combined polynomial curve was adopted to generate foot trajectory, which could realize real-time control of robot posture and accommodation to terrain conditions.In the simulation experiments, adaptive regulation of inter-leg phase sequence, omnidirectional locomotion and ground accommodation were realized, moreover, statically stable free gait was obtained simultaneously, which provided hexapod robot with the capability of walking on slightly irregular terrain reliably and expeditiously.

  18. Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan.

    Directory of Open Access Journals (Sweden)

    Masahiro Shiomi

    Full Text Available We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items.

  19. Command and Control Architectures for Autonomous Micro-Robotic Forces - FY-2000 Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean

    2001-04-01

    Advances in Artificial Intelligence (AI) and micro-technologies will soon give rise to production of large-scale forces of autonomous micro-robots with systems of innate behaviors and with capabilities of self-organization and real world tasking. Such organizations have been compared to schools of fish, flocks of birds, herds of animals, swarms of insects, and military squadrons. While these systems are envisioned as maintaining a high degree of autonomy, it is important to understand the relationship of man with such machines. In moving from research studies to the practical deployment of large-scale numbers of robots, one of critical pieces that must be explored is the command and control architecture for humans to re-task and also inject global knowledge, experience, and intuition into the force. Tele-operation should not be the goal, but rather a level of adjustable autonomy and high-level control. If a herd of sheep is comparable to the collective of robots, then the human element is comparable to the shepherd pulling in strays and guiding the herd in the direction of greener pastures. This report addresses the issues and development of command and control for largescale numbers of autonomous robots deployed as a collective force.

  20. Monocular SLAM for Autonomous Robots with Enhanced Features Initialization

    Directory of Open Access Journals (Sweden)

    Edmundo Guerra

    2014-04-01

    Full Text Available This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM, a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax. These depth estimations are used to solve a related problem with DI-D monocular SLAM, namely, the requirement of a metric scale initialization through known artificial landmarks. The same process is used to improve the performance of the technique when introducing new landmarks into the map. The convenience of the approach taken to the stereo estimation, based on SURF features matching, is discussed. Experimental validation is provided through results from real data with results showing the improvements in terms of more features correctly initialized, with reduced uncertainty, thus reducing scale and orientation drift. Additional discussion in terms of how a real-time implementation could take advantage of this approach is provided.

  1. Monocular SLAM for autonomous robots with enhanced features initialization.

    Science.gov (United States)

    Guerra, Edmundo; Munguia, Rodrigo; Grau, Antoni

    2014-04-02

    This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second camera is worn by a human. The human explores an unknown environment with the robot, and when their fields of view coincide, the cameras are considered a pseudo-calibrated stereo rig to produce estimations for depth through parallax. These depth estimations are used to solve a related problem with DI-D monocular SLAM, namely, the requirement of a metric scale initialization through known artificial landmarks. The same process is used to improve the performance of the technique when introducing new landmarks into the map. The convenience of the approach taken to the stereo estimation, based on SURF features matching, is discussed. Experimental validation is provided through results from real data with results showing the improvements in terms of more features correctly initialized, with reduced uncertainty, thus reducing scale and orientation drift. Additional discussion in terms of how a real-time implementation could take advantage of this approach is provided.

  2. Self Reconfigurable Wireless Networks With Dsdv Protocol Implementation

    Directory of Open Access Journals (Sweden)

    K. Muthulakshmi

    2014-03-01

    Full Text Available In multi hop wireless networks experience frequent link failures caused by channel interference, dynamic obstacles, and/or applications’ bandwidth demands. These failures cause severe performance degradation in wireless networks or require expensive manual network management for their real-time recovery. This paper presents an autonomous network reconfiguration system (ARS with destination sequence distance vector (DSDV protocol that enables a multi radio Wireless network to autonomously recover from local link failures to preserve network performance. By using channel and radio diversities in Wireless networks, ARS generates necessary changes in local radio and channel assignments in order to recover from failures. Next, based on the thus-generated configuration changes, the system cooperatively reconfigures network settings among local mesh router. In this concept during the data transmission if the link fails in between the nodes, the previous node act as the header node. The header node, creating the loop around the neighboring nodes and find the energy efficient path, after finding the path send the data’s towards it to reach the destination. Because of this there is no chance for data losing, Here ARS has been implemented and evaluated extensively on through ns2-based simulation. Our evaluation results show that ARS outperforms existing failure recovery schemes in improving channel-efficiency .

  3. Emergence of Leadership in a Group of Autonomous Robots.

    Directory of Open Access Journals (Sweden)

    Francesco Pugliese

    Full Text Available In this paper we examine the factors contributing to the emergence of leadership in a group, and we explore the relationship between the role of the leader and the behavioural capabilities of other individuals. We use a simulation technique where a group of foraging robots must coordinate to choose between two identical food zones in order to forage collectively. Behavioural and quantitative analysis indicate that a form of leadership emerges, and that groups with a leader are more effective than groups without. Moreover, we show that the most skilled individuals in a group tend to be the ones that assume a leadership role, supporting biological findings. Further analysis reveals the emergence of different "styles" of leadership (active and passive.

  4. Specific and Class Object Recognition for Service Robots through Autonomous and Interactive Methods

    Science.gov (United States)

    Mansur, Al; Kuno, Yoshinori

    Service robots need to be able to recognize and identify objects located within complex backgrounds. Since no single method may work in every situation, several methods need to be combined and robots have to select the appropriate one automatically. In this paper we propose a scheme to classify situations depending on the characteristics of the object of interest and user demand. We classify situations into four groups and employ different techniques for each. We use Scale-invariant feature transform (SIFT), Kernel Principal Components Analysis (KPCA) in conjunction with Support Vector Machine (SVM) using intensity, color, and Gabor features for five object categories. We show that the use of appropriate features is important for the use of KPCA and SVM based techniques on different kinds of objects. Through experiments we show that by using our categorization scheme a service robot can select an appropriate feature and method, and considerably improve its recognition performance. Yet, recognition is not perfect. Thus, we propose to combine the autonomous method with an interactive method that allows the robot to recognize the user request for a specific object and class when the robot fails to recognize the object. We also propose an interactive way to update the object model that is used to recognize an object upon failure in conjunction with the user's feedback.

  5. Cartographie 3D et localisation par vision monoculaire pour la navignation autonome d'un robot mobile

    OpenAIRE

    Royer, Eric

    2006-01-01

    This thesis presents the realization of a localization system for a mobile robot relying on monocular vision. The aim of this project is to be able to make a robot follow a path in autonomous navigation in an urban environment. First, the robot is driven manually. During this learning step, the on board camera records a video sequence. After an off-line processing step, an image taken with the same hardware allows to compute the pose of the robot in real-time. This localization can be used to...

  6. Autonomous Mobile Robot Locomotion by Multifunctional Use of Wide Angle Fovea Sensor

    Science.gov (United States)

    Shimizu, Sota

    The wide-angle fovea (WAF) sensor comprises a specially made wide-angle fovea lens and a commercially available CCD/CMOS camera with photosensitive elements of uniform size. The sensor realizes a 120-degree-wide field of view (FOV) and high magnification in the central FOV without increasing the number of pixels per image. This paper focuses on the multifunctional use of an input image with space-variant spatial resolution that enables an autonomous mobile robot to avoid obstacles during locomotion. In order to use the WAF-input image efficiently, image processing for central vision, i.e., detection of 3D obstacles, and image processing for peripheral vision, i.e., self-localization of the mobile robot, are performed simultaneously and cooperatively. The comparison of the simulation results of spatial resolutions of the WAF lens and a pinhole camera (PHC) lens shows that the WAF lens can be used for depth measurement in the central FOV and self-localization in the peripheral FOV by the parallel stereo method and the two-parallel-line algorithm, respectively. The results obtained by the WAF lens are more accurate than those obtained by the PHC lens. Autonomous locomotion of the mobile robot has been demonstrated by performing two obstacle avoidance experiments.

  7. Autonomous robot navigation based on the evolutionary multi-objective optimization of potential fields

    Science.gov (United States)

    Herrera Ortiz, Juan Arturo; Rodríguez-Vázquez, Katya; Padilla Castañeda, Miguel A.; Arámbula Cosío, Fernando

    2013-01-01

    This article presents the application of a new multi-objective evolutionary algorithm called RankMOEA to determine the optimal parameters of an artificial potential field for autonomous navigation of a mobile robot. Autonomous robot navigation is posed as a multi-objective optimization problem with three objectives: minimization of the distance to the goal, maximization of the distance between the robot and the nearest obstacle, and maximization of the distance travelled on each field configuration. Two decision makers were implemented using objective reduction and discrimination in performance trade-off. The performance of RankMOEA is compared with NSGA-II and SPEA2, including both decision makers. Simulation experiments using three different obstacle configurations and 10 different routes were performed using the proposed methodology. RankMOEA clearly outperformed NSGA-II and SPEA2. The robustness of this approach was evaluated with the simulation of different sensor masks and sensor noise. The scheme reported was also combined with the wavefront-propagation algorithm for global path planning.

  8. Reliability of EUCLIDIAN: An autonomous robotic system for image-guided prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Podder, Tarun K.; Buzurovic, Ivan; Huang Ke; Showalter, Timothy; Dicker, Adam P.; Yu, Yan [Department of Radiation Oncology, Kimmel Cancer Center (NCI-designated), Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States)

    2011-01-15

    Purpose: Recently, several robotic systems have been developed to perform accurate and consistent image-guided brachytherapy. Before introducing a new device into clinical operations, it is important to assess the reliability and mean time before failure (MTBF) of the system. In this article, the authors present the preclinical evaluation and analysis of the reliability and MTBF of an autonomous robotic system, which is developed for prostate seed implantation. Methods: The authors have considered three steps that are important in reliability growth analysis. These steps are: Identification and isolation of failures, classification of failures, and trend analysis. For any one-of-a-kind product, the reliability enhancement is accomplished through test-fix-test. The authors have used failure mode and effect analysis for collection and analysis of reliability data by identifying and categorizing the failure modes. Failures were classified according to severity. Failures that occurred during the operation of this robotic system were considered as nonhomogenous Poisson process. The failure occurrence trend was analyzed using Laplace test. For analyzing and predicting reliability growth, commonly used and widely accepted models, Duane's model and the Army Material Systems Analysis Activity, i.e., Crow's model, were applied. The MTBF was used as an important measure for assessing the system's reliability. Results: During preclinical testing, 3196 seeds (in 53 test cases) were deposited autonomously by the robot and 14 critical failures were encountered. The majority of the failures occurred during the first few cases. The distribution of failures followed Duane's postulation as well as Crow's postulation of reliability growth. The Laplace test index was -3.82 (<0), indicating a significant trend in failure data, and the failure intervals lengthened gradually. The continuous increase in the failure occurrence interval suggested a trend toward

  9. A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.

    Science.gov (United States)

    Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie

    2014-12-01

    Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.

  10. Squad-Level Soldier-Robot Dynamics: Exploring Future Concepts Involving Intelligent Autonomous Robots

    Science.gov (United States)

    2015-02-01

    Tracker and GPS to navigate route successfully. 1 Multiple language translation capability – speak in English and robot translates. 1 Recharging...C HERNANDEZ 3040 NW AUSTIN RD RM 221 FORT SILL OK 73503-9043 1 ARMY RSCH LABORATORY – HRED (PDF) RDRL HRM AV W CULBERTSON 91012

  11. RHINO–an autonomous interactive surveillance robot for the needed ones: design and study case

    Directory of Open Access Journals (Sweden)

    Ochoa Michel

    2016-01-01

    Full Text Available Healthcare services are in need of new tools and gadgets that could provide surveillance and people interaction of the needed ones with their surrounding environment. In order to address this problematic, an autonomous-interactive surveillance robot system is proposed in this research. RHINO (Robotic-Human Interface for the Needed Ones was designed under particular normative and will provide commonly needed features in the healthcare field. One of the principal aspects of the device is its particular design which allows the patient to have some privacy under a surveilled environment and without causing any interference in their daily lives. Another main factor is the ability of notifying the care provider or the family of the patient with e-mail or text-sms notifications in case of abnormal activities; so that video access by provider or Skype calls by family relatives could be performed throughout RHINO.

  12. Automatic detection and classification of obstacles with applications in autonomous mobile robots

    Science.gov (United States)

    Ponomaryov, Volodymyr I.; Rosas-Miranda, Dario I.

    2016-04-01

    Hardware implementation of an automatic detection and classification of objects that can represent an obstacle for an autonomous mobile robot using stereo vision algorithms is presented. We propose and evaluate a new method to detect and classify objects for a mobile robot in outdoor conditions. This method is divided in two parts, the first one is the object detection step based on the distance from the objects to the camera and a BLOB analysis. The second part is the classification step that is based on visuals primitives and a SVM classifier. The proposed method is performed in GPU in order to reduce the processing time values. This is performed with help of hardware based on multi-core processors and GPU platform, using a NVIDIA R GeForce R GT640 graphic card and Matlab over a PC with Windows 10.

  13. Optical 3D laser measurement system for navigation of autonomous mobile robot

    Science.gov (United States)

    Básaca-Preciado, Luis C.; Sergiyenko, Oleg Yu.; Rodríguez-Quinonez, Julio C.; García, Xochitl; Tyrsa, Vera V.; Rivas-Lopez, Moises; Hernandez-Balbuena, Daniel; Mercorelli, Paolo; Podrygalo, Mikhail; Gurko, Alexander; Tabakova, Irina; Starostenko, Oleg

    2014-03-01

    In our current research, we are developing a practical autonomous mobile robot navigation system which is capable of performing obstacle avoiding task on an unknown environment. Therefore, in this paper, we propose a robot navigation system which works using a high accuracy localization scheme by dynamic triangulation. Our two main ideas are (1) integration of two principal systems, 3D laser scanning technical vision system (TVS) and mobile robot (MR) navigation system. (2) Novel MR navigation scheme, which allows benefiting from all advantages of precise triangulation localization of the obstacles, mostly over known camera oriented vision systems. For practical use, mobile robots are required to continue their tasks with safety and high accuracy on temporary occlusion condition. Presented in this work, prototype II of TVS is significantly improved over prototype I of our previous publications in the aspects of laser rays alignment, parasitic torque decrease and friction reduction of moving parts. The kinematic model of the MR used in this work is designed considering the optimal data acquisition from the TVS with the main goal of obtaining in real time, the necessary values for the kinematic model of the MR immediately during the calculation of obstacles based on the TVS data.

  14. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo

    Science.gov (United States)

    Dong, Gangqi; Zhu, Zheng H.

    2016-05-01

    This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.

  15. Localization of non-linearly modeled autonomous mobile robots using out-of-sequence measurements.

    Science.gov (United States)

    Besada-Portas, Eva; Lopez-Orozco, Jose A; Lanillos, Pablo; de la Cruz, Jesus M

    2012-01-01

    This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.

  16. Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements

    Directory of Open Access Journals (Sweden)

    Jesus M. de la Cruz

    2012-02-01

    Full Text Available This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.

  17. Navigation of Autonomous Mobile Robot under Decision-making Strategy tuned by Genetic Algorithm

    Science.gov (United States)

    Wang, Fei; Kamano, Takuya; Yasuno, Takashi; Suzuki, Takayuki; Harada, Hironobu

    This paper describes a novel application of genetic algorithm for navigation of an autonomous mobile robot (AMR) under unknown environments. In the navigation system, the AMR is controlled by the decision-making block, which consists of neural network. To achieve both successful navigation to the goal and the suitable obstacle avoidance, the connection weights of the neural network and speed gains for predefined actions are encoded as genotypes and are tuned simultaneously by genetic algorithm so that the static and dynamic danger-degrees, the energy consumption and the distance and direction errors decrease during the navigation. Experimental results demonstrate the validity of the proposed navigation system.

  18. Autonomous global sky monitoring with real-time robotic follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Vestrand, W Thomas [Los Alamos National Laboratory; Davis, H [Los Alamos National Laboratory; Wren, J [Los Alamos National Laboratory; Wozniak, P [Los Alamos National Laboratory; Norman, B [Los Alamos National Laboratory; White, R [Los Alamos National Laboratory; Bloch, J [Los Alamos National Laboratory; Fenimore, E [Los Alamos National Laboratory; Hodge, Barry [AFRL; Jah, Moriba [AFRL; Rast, Richard [AFRL

    2008-01-01

    We discuss the development of prototypes for a global grid of advanced 'thinking' sky sentinels and robotic follow-up telescopes that observe the full night sky to provide real-time monitoring of the night sky by autonomously recognizing anomalous behavior, selecting targets for detailed investigation, and making real-time anomaly detection to enable rapid recognition and a swift response to transients as they emerge. This T3 global EO grid avoids the limitations imposed by geography and weather to provide persistent monitoring of the night sky.

  19. Concepts of the Internet of Things from the Aspect of the Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Janos Simon

    2015-01-01

    Full Text Available The Internet of Things (IoT is slowly gaining grounds and through the properties of barcodes, QR codes, RFID, active sensors and IPv6, objects are fitted with some form of readability and traceability. People are becoming part of digital global network driven by personal interests. The feeling being part of a community and the constant drive of getting connected from real life finds it continuation in digital networks. This article investigates the concepts of the internet of things from the aspect of the autonomous mobile robots with an overview of the performances of the currently available database systems.

  20. An enhanced dynamic Delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation

    Science.gov (United States)

    Chen, Jun; Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Tang, Yipeng

    2010-01-01

    An enhanced dynamic Delaunay Triangulation-based (DT) path planning approach is proposed for mobile robots to plan and navigate a path successfully in the context of the Autonomous Challenge of the Intelligent Ground Vehicle Competition (www.igvc.org). The Autonomous Challenge course requires the application of vision techniques since it involves path-based navigation in the presence of a tightly clustered obstacle field. Course artifacts such as switchbacks, ramps, dashed lane lines, trap etc. are present which could turn the robot around or cause it to exit the lane. The main contribution of this work is a navigation scheme based on dynamic Delaunay Triangulation (DDT) that is heuristically enhanced on the basis of a sense of general lane direction. The latter is computed through a "GPS (Global Positioning System) tail" vector obtained from the immediate path history of the robot. Using processed data from a LADAR, camera, compass and GPS unit, a composite local map containing both obstacles and lane line segments is built up and Delaunay Triangulation is continuously run to plan a path. This path is heuristically corrected, when necessary, by taking into account the "GPS tail" . With the enhancement of the Delaunay Triangulation by using the "GPS tail", goal selection is successfully achieved in a majority of situations. The robot appears to follow a very stable path while navigating through switchbacks and dashed lane line situations. The proposed enhanced path planning and GPS tail technique has been successfully demonstrated in a Player/Stage simulation environment. In addition, tests on an actual course are very promising and reveal the potential for stable forward navigation.

  1. Implementation of Obstacle-Avoidance Control for an Autonomous Omni-Directional Mobile Robot Based on Extension Theory

    Directory of Open Access Journals (Sweden)

    Yi-Chung Lai

    2012-10-01

    Full Text Available The paper demonstrates a following robot with omni-directional wheels, which is able to take action to avoid obstacles. The robot design is based on both fuzzy and extension theory. Fuzzy theory was applied to tune the PMW signal of the motor revolution, and correct path deviation issues encountered when the robot is moving. Extension theory was used to build a robot obstacle-avoidance model. Various mobile models were developed to handle different types of obstacles. The ultrasonic distance sensors mounted on the robot were used to estimate the distance to obstacles. If an obstacle is encountered, the correlation function is evaluated and the robot avoids the obstacle autonomously using the most appropriate mode. The effectiveness of the proposed approach was verified through several tracking experiments, which demonstrates the feasibility of a fuzzy path tracker as well as the extensible collision avoidance system.

  2. Implementation of obstacle-avoidance control for an autonomous omni-directional mobile robot based on extension theory.

    Science.gov (United States)

    Pai, Neng-Sheng; Hsieh, Hung-Hui; Lai, Yi-Chung

    2012-10-16

    The paper demonstrates a following robot with omni-directional wheels, which is able to take action to avoid obstacles. The robot design is based on both fuzzy and extension theory. Fuzzy theory was applied to tune the PMW signal of the motor revolution, and correct path deviation issues encountered when the robot is moving. Extension theory was used to build a robot obstacle-avoidance model. Various mobile models were developed to handle different types of obstacles. The ultrasonic distance sensors mounted on the robot were used to estimate the distance to obstacles. If an obstacle is encountered, the correlation function is evaluated and the robot avoids the obstacle autonomously using the most appropriate mode. The effectiveness of the proposed approach was verified through several tracking experiments, which demonstrates the feasibility of a fuzzy path tracker as well as the extensible collision avoidance system.

  3. Umgebungserfassungssystem fuer mobile Roboter (environment logging system for mobile autonomous robots)

    CERN Document Server

    Hesselbach, Dirk

    2012-01-01

    This diploma thesis describes the theoretical bases, the conception of the module and the final result of the development process in application. for the environment logging with a small mobile robot for interiors should be sketched an economical alternative to the expensive laser scanners. the structure, color or the material of the objects in the radius of action, as well as the environment brightness and illuminating are to have thereby no influence on the results of measurement.

  4. Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection.

    OpenAIRE

    Girard, B.; Tabareau, N.; Pham, Q. C.; Berthoz, A.; Slotine, J.-J.

    2008-01-01

    Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computation...

  5. Recognition of 3D objects for autonomous mobile robot's navigation in automated shipbuilding

    Science.gov (United States)

    Lee, Hyunki; Cho, Hyungsuck

    2007-10-01

    Nowadays many parts of shipbuilding process are automated, but the painting process is not, because of the difficulty of automated on-line painting quality measurement, harsh painting environment and the difficulty of robot navigation. However, the painting automation is necessary, because it can provide consistent performance of painting film thickness. Furthermore, autonomous mobile robots are strongly required for flexible painting work. However, the main problem of autonomous mobile robot's navigation is that there are many obstacles which are not expressed in the CAD data. To overcome this problem, obstacle detection and recognition are necessary to avoid obstacles and painting work effectively. Until now many object recognition algorithms have been studied, especially 2D object recognition methods using intensity image have been widely studied. However, in our case environmental illumination does not exist, so these methods cannot be used. To overcome this, to use 3D range data must be used, but the problem of using 3D range data is high computational cost and long estimation time of recognition due to huge data base. In this paper, we propose a 3D object recognition algorithm based on PCA (Principle Component Analysis) and NN (Neural Network). In the algorithm, the novelty is that the measured 3D range data is transformed into intensity information, and then adopts the PCA and NN algorithm for transformed intensity information to reduce the processing time and make the data easy to handle which are disadvantages of previous researches of 3D object recognition. A set of experimental results are shown to verify the effectiveness of the proposed algorithm.

  6. Low power and self-reconfigurable WBAN controller for continuous bio-signal monitoring system.

    Science.gov (United States)

    Lee, Seulki; Yoo, Hoi-Jun

    2013-04-01

    The WBAN controller with Branched Bus (BB) topology and Continuous Data Transmission (CDT) protocol with low power consumption and self-reconfigurability is proposed for wearable healthcare applications. The BB topology and CDT protocol is a combination of conventional Bus and Star topology and a variation from TDMA protocol, respectively, while they are able to compensate for the electrical fault in bio-signal monitoring system caused by the electrode deformation. Thanks to them, the proposed WBAN controller enables more reliable operation in continuous bio-signal monitoring applications such as sleep monitoring.

  7. A Novel Robust Scene Change Detection Algorithm for Autonomous Robots Using Mixtures of Gaussians

    Directory of Open Access Journals (Sweden)

    Luis J. Manso

    2014-02-01

    Full Text Available Interest in change detection techniques has considerably increased during recent years in the field of autonomous robotics. This is partly because changes in a robot’s working environment are useful for several robotic skills (e.g., spatial cognition, modelling or navigation and applications (e.g., surveillance or guidance robots. Changes are usually detected by comparing current data provided by the robot’s sensors with a previously known map or model of the environment. When the data consists of a large point cloud, dealing with it is a computationally expensive task, mainly due to the amount of points and the redundancy. Using Gaussian Mixture Models (GMM instead of raw point clouds leads to a more compact feature space that can be used to efficiently process the input data. This allows us to successfully segment the set of 3D points acquired by the sensor and reduce the computational load of the change detection algorithm. However, the segmentation of the environment as a Mixture of Gaussians has some problems that need to be properly addressed. In this paper, a novel change detection algorithm is described in order to improve the robustness and computational cost of previous approaches. The proposal is based on the classic Expectation Maximization (EM algorithm, for which different selection criteria are evaluated. As demonstrated in the experimental results section, the proposed change detection algorithm achieves the detection of changes in the robot’s working environment faster and more accurately than similar approaches.

  8. GNC architecture for autonomous robotic capture of a non-cooperative target: Preliminary concept design

    Science.gov (United States)

    Jankovic, Marko; Paul, Jan; Kirchner, Frank

    2016-04-01

    Recent studies of the space debris population in low Earth orbit (LEO) have concluded that certain regions have already reached a critical density of objects. This will eventually lead to a cascading process called the Kessler syndrome. The time may have come to seriously consider active debris removal (ADR) missions as the only viable way of preserving the space environment for future generations. Among all objects in the current environment, the SL-8 (Kosmos 3M second stages) rocket bodies (R/Bs) are some of the most suitable targets for future robotic ADR missions. However, to date, an autonomous relative navigation to and capture of an non-cooperative target has never been performed. Therefore, there is a need for more advanced, autonomous and modular systems that can cope with uncontrolled, tumbling objects. The guidance, navigation and control (GNC) system is one of the most critical ones. The main objective of this paper is to present a preliminary concept of a modular GNC architecture that should enable a safe and fuel-efficient capture of a known but uncooperative target, such as Kosmos 3M R/B. In particular, the concept was developed having in mind the most critical part of an ADR mission, i.e. close range proximity operations, and state of the art algorithms in the field of autonomous rendezvous and docking. In the end, a brief description of the hardware in the loop (HIL) testing facility is made, foreseen for the practical evaluation of the developed architecture.

  9. Robust Planning for Autonomous Navigation of Mobile Robots in Unstructured, Dynamic Environments: An LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    EISLER, G. RICHARD

    2002-08-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Robust Planning for Autonomous Navigation of Mobile Robots In Unstructured, Dynamic Environments (AutoNav)''. The project goal was to develop an algorithmic-driven, multi-spectral approach to point-to-point navigation characterized by: segmented on-board trajectory planning, self-contained operation without human support for mission duration, and the development of appropriate sensors and algorithms to navigate unattended. The project was partially successful in achieving gains in sensing, path planning, navigation, and guidance. One of three experimental platforms, the Minimalist Autonomous Testbed, used a repetitive sense-and-re-plan combination to demonstrate the majority of elements necessary for autonomous navigation. However, a critical goal for overall success in arbitrary terrain, that of developing a sensor that is able to distinguish true obstacles that need to be avoided as a function of vehicle scale, still needs substantial research to bring to fruition.

  10. An Autonomous Robot for De-leafing Cumcumber Plants grown in a High-wire Cultivation System

    NARCIS (Netherlands)

    Henten, van E.J.; Tuijl, van B.A.J.; Hoogakker, G.J.; Weerd, van der M.J.; Hemming, J.; Kornet, J.G.; Bontsema, J.

    2006-01-01

    The paper presents an autonomous robot for removing the leaves from cucumber plants grown in a high-wire cultivation system. Leaves at the lower end of the plants are removed because of their reduced vitality, their negligible contribution to canopy photosynthesis and their increased sensitivity to

  11. Autonomous charging to enable long-endurance missions for small aerial robots

    Science.gov (United States)

    Mulgaonkar, Yash; Kumar, Vijay

    2014-06-01

    The past decade has seen an increased interest towards research involving Autonomous Micro Aerial Vehicles (MAVs). The predominant reason for this is their agility and ability to perform tasks too difficult or dangerous for their human counterparts and to navigate into places where ground robots cannot reach. Among MAVs, rotary wing aircraft such as quadrotors have the ability to operate in confined spaces, hover at a given point in space and perch1 or land on a flat surface. This makes the quadrotor a very attractive aerial platform giving rise to a myriad of research opportunities. The potential of these aerial platforms is severely limited by the constraints on the flight time due to limited battery capacity. This in turn arises from limits on the payload of these rotorcraft. By automating the battery recharging process, creating autonomous MAVs that can recharge their on-board batteries without any human intervention and by employing a team of such agents, the overall mission time can be greatly increased. This paper describes the development, testing, and implementation of a system of autonomous charging stations for a team of Micro Aerial Vehicles. This system was used to perform fully autonomous long-term multi-agent aerial surveillance experiments with persistent station keeping. The scalability of the algorithm used in the experiments described in this paper was also tested by simulating a persistence surveillance scenario for 10 MAVs and charging stations. Finally, this system was successfully implemented to perform a 9½ hour multi-agent persistent flight test. Preliminary implementation of this charging system in experiments involving construction of cubic structures with quadrotors showed a three-fold increase in effective mission time.

  12. A field robot for autonomous laser-based N2O flux measurements

    Science.gov (United States)

    Molstad, Lars; Reent Köster, Jan; Bakken, Lars; Dörsch, Peter; Lien, Torgrim; Overskeid, Øyvind; Utstumo, Trygve; Løvås, Daniel; Brevik, Anders

    2014-05-01

    N2O measurements in multi-plot field trials are usually carried out by chamber-based manual gas sampling and subsequent laboratory-based gas chromatographic N2O determination. Spatial and temporal resolution of these measurements are commonly limited by available manpower. However, high spatial and temporal variability of N2O fluxes within individual field plots can add large uncertainties to time- and area-integrated flux estimates. Detailed mapping of this variability would improve these estimates, as well as help our understanding of the factors causing N2O emissions. An autonomous field robot was developed to increase the sampling frequency and to operate outside normal working hours. The base of this system was designed as an open platform able to carry versatile instrumentation. It consists of an electrically motorized platform powered by a lithium-ion battery pack, which is capable of autonomous navigation by means of a combined high precision real-time kinematic (RTK) GPS and an inertial measurement unit (IMU) system. On this platform an elevator is mounted, carrying a lateral boom with a static chamber on each side of the robot. Each chamber is equipped with a frame of plastic foam to seal the chamber when lowered onto the ground by the elevator. N2O flux from the soil covered by the two chambers is sequentially determined by circulating air between each chamber and a laser spectrometer (DLT-100, Los Gatos Research, Mountain View, CA, USA), which monitors the increase in N2O concentration. The target enclosure time is 1 - 2 minutes, but may be longer when emissions are low. CO2 concentrations are determined by a CO2/H2O gas analyzer (LI-840A, LI-COR Inc., Lincoln, NE, USA). Air temperature and air pressure inside both chambers are continuously monitored and logged. Wind speed and direction are monitored by a 3D sonic anemometer on top of the elevator boom. This autonomous field robot can operate during day and night time, and its working hours are only

  13. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection.

    Science.gov (United States)

    Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J

    2008-05-01

    Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.

  14. Active model-based balancing strategy for self-reconfigurable batteries

    Science.gov (United States)

    Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter

    2016-08-01

    This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.

  15. Self-localization for an autonomous mobile robot based on an omni-directional vision system

    Science.gov (United States)

    Chiang, Shu-Yin; Lin, Kuang-Yu; Chia, Tsorng-Lin

    2013-12-01

    In this study, we designed an autonomous mobile robot based on the rules of the Federation of International Robotsoccer Association (FIRA) RoboSot category, integrating the techniques of computer vision, real-time image processing, dynamic target tracking, wireless communication, self-localization, motion control, path planning, and control strategy to achieve the contest goal. The self-localization scheme of the mobile robot is based on the algorithms featured in the images from its omni-directional vision system. In previous works, we used the image colors of the field goals as reference points, combining either dual-circle or trilateration positioning of the reference points to achieve selflocalization of the autonomous mobile robot. However, because the image of the game field is easily affected by ambient light, positioning systems exclusively based on color model algorithms cause errors. To reduce environmental effects and achieve the self-localization of the robot, the proposed algorithm is applied in assessing the corners of field lines by using an omni-directional vision system. Particularly in the mid-size league of the RobotCup soccer competition, selflocalization algorithms based on extracting white lines from the soccer field have become increasingly popular. Moreover, white lines are less influenced by light than are the color model of the goals. Therefore, we propose an algorithm that transforms the omni-directional image into an unwrapped transformed image, enhancing the extraction features. The process is described as follows: First, radical scan-lines were used to process omni-directional images, reducing the computational load and improving system efficiency. The lines were radically arranged around the center of the omni-directional camera image, resulting in a shorter computational time compared with the traditional Cartesian coordinate system. However, the omni-directional image is a distorted image, which makes it difficult to recognize the

  16. 自主Robot系统软件%Autonomous Robot System Software

    Institute of Scientific and Technical Information of China (English)

    赵永滨; 骆云志

    2011-01-01

    Aiming at the complexity of autonomous robot software design, the module design method is proposed. The system architecture design is introduced, and the detailed scheme of perception system and plan and decision system are designed. The experiments verify that the complexity of the system software realized is reduced, and the reusing rate of the code is improved, and the system cost is reduced.%针对自主Robot软件设计的复杂性,提出模块化设计思路.介绍系统体系结构设计,设计感知系统、规划与决策系统的具体方案.结果表明,该设计能降低系统软件实现的复杂度,提高代码的复用率、节省系统开销.

  17. Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

    Science.gov (United States)

    Lacaze, Alberto; Meystel, Michael; Meystel, Alex

    1994-01-01

    This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.

  18. Construction of Fuzzy Map for Autonomous Mobile Robots Based on Fuzzy Confidence Model

    Directory of Open Access Journals (Sweden)

    Jung-Fu Hou

    2014-01-01

    Full Text Available This paper presents the use of fuzzy models to explicitly consider sensor uncertainty and finite resolution in solving the SLAM (simultaneous localization and mapping problem for autonomous mobile robots. The approach establishes fuzzy confidence models in describing occupied obstacles and available space. The problem is transformed into an optimization task of minimizing the alignment error between newly scanned local fuzzy maps and selected parts of a developing global fuzzy map. In aligning local fuzzy maps into a global fuzzy map, we developed a prediction strategy to crop the most potential part from the sensed local fuzzy maps to be overlapped with the global fuzzy map. A mobile vehicle equipped with a laser range finder, the Hokuyo URG-04LX, is used to demonstrate the procedure of fuzzy map building. Experimental results show that the proposed architecture is effective in generating a comprehensive global fuzzy map, which is suitable for both human comprehension and path design during real-time navigation.

  19. An algorithm for image clusters detection and identification based on color for an autonomous mobile robot

    Energy Technology Data Exchange (ETDEWEB)

    Uy, D.L.

    1996-02-01

    An algorithm for detection and identification of image clusters or {open_quotes}blobs{close_quotes} based on color information for an autonomous mobile robot is developed. The input image data are first processed using a crisp color fuszzyfier, a binary smoothing filter, and a median filter. The processed image data is then inputed to the image clusters detection and identification program. The program employed the concept of {open_quotes}elastic rectangle{close_quotes}that stretches in such a way that the whole blob is finally enclosed in a rectangle. A C-program is develop to test the algorithm. The algorithm is tested only on image data of 8x8 sizes with different number of blobs in them. The algorithm works very in detecting and identifying image clusters.

  20. Autonomous trajectory generation for mobile robots with non-holonomic and steering angle constraints

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Vasseur, H.A.

    1990-01-01

    This paper presents an approach to the trajectory planning of mobile platforms characterized by non-holonomic constraints and constraints on the steering angle and steering angle rate. The approach is based on geometric reasoning and provides deterministic trajectories for all pairs of initial and final configurations (position x, y, and orientation {theta}) of the robot. Furthermore, the method generates trajectories taking into account the forward and reverse mode of motion of the vehicle, or combination of these when complex maneuvering is involved or when the environment is obstructed with obstacles. The trajectory planning algorithm is described, and examples of trajectories generated for a variety of environmental conditions are presented. The generation of the trajectories only takes a few milliseconds of run time on a micro Vax, making the approach quite attractive for use as a real-time motion planner for teleoperated or sensor-based autonomous vehicles in complex environments. 10 refs., 11 figs.

  1. An Improved Chaotic Motion Path Planner for Autonomous Mobile Robots based on a Logistic Map

    Directory of Open Access Journals (Sweden)

    Caihong Li

    2013-06-01

    Full Text Available This paper presents a chaotic motion path planner based on a Logistic Map (SCLCP for an autonomous mobile robot to cover an unknown terrain randomly, namely entirely, unpredictably and evenly. The path planner has been improved by arcsine and arccosine transformation. A motion path planner based only on the Logistic Chaotic Map (LCP can show chaotic behaviour, which possesses the chaotic characteristics of topological transitivity and unpredictability, but lacks better evenness. Therefore, the arcsine and arccosine transformations are used to enhance the randomness of LCP. The randomness of the followed path planner, LCP, the improved path planner SCLCP and the commonly used Random Path Planner (RP are discussed and compared under different sets of initial conditions and different iteration rounds. Simulation results confirm that a better evenness index of SCLCP can be obtained with regard to previous works.

  2. A ToF-camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing, and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera’s performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  3. A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Tae-Jae Lee

    2016-03-01

    Full Text Available This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%.

  4. A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots

    Science.gov (United States)

    Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il “Dan”

    2016-01-01

    This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%. PMID:26938540

  5. Teaching and implementing autonomous robotic lab walkthroughs in a biotech laboratory through model-based visual tracking

    Science.gov (United States)

    Wojtczyk, Martin; Panin, Giorgio; Röder, Thorsten; Lenz, Claus; Nair, Suraj; Heidemann, Rüdiger; Goudar, Chetan; Knoll, Alois

    2010-01-01

    After utilizing robots for more than 30 years for classic industrial automation applications, service robots form a constantly increasing market, although the big breakthrough is still awaited. Our approach to service robots was driven by the idea of supporting lab personnel in a biotechnology laboratory. After initial development in Germany, a mobile robot platform extended with an industrial manipulator and the necessary sensors for indoor localization and object manipulation, has been shipped to Bayer HealthCare in Berkeley, CA, USA, a global player in the sector of biopharmaceutical products, located in the San Francisco bay area. The determined goal of the mobile manipulator is to support the off-shift staff to carry out completely autonomous or guided, remote controlled lab walkthroughs, which we implement utilizing a recent development of our computer vision group: OpenTL - an integrated framework for model-based visual tracking.

  6. Mechanism design and motion planning of M-Cubes robot

    Institute of Scientific and Technical Information of China (English)

    Xia Ping; Zhu Xinjian; Fei Yanqiong; Xu Bing

    2007-01-01

    A homogeneous and lattice self-reconfigurable robot module is designed, and each module is composed of a center body and six connection planes which can independently rotate. A module can independently connect or disconnect with other modules, and then change its connection by collaborating with other modules. We discuss how to describe and discover configuration of robot. Furthermore, we describe its motion planning based on the appraisal function and the adjacency matrix which is effective to solve the computationally difficult problem and optimize the system motion path during the self-reconfiguration process. Finally, a simulation experiment is demonstrated, which verifies the correctness of locomotion method.

  7. The design and implementation of a semi-autonomous surf-zone robot using advanced sensors and a common robot operating system

    OpenAIRE

    Hickle, Jason.; Halle, Steven

    2011-01-01

    Approved for public release; distribution is unlimited. A semi-autonomous vehicle, MONTe, was designed, modeled and tested for deployment and operation in a surf-zone coastal environment. The MONTe platform was designed to use unique land based locomotion that incorporates wheel-legs(WhegsTM) and a tail. Semi-autonomy was realized with data from onboard sensors and implemented through open source Robot Operating System (ROS), hosted on an Ubuntu Linux based processor. Communications vi...

  8. Distributed Robotics Education

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept...... of a distributed educational system as a valuable tool for introducing students to interactive parallel and distributed processing programming as the foundation for distributed robotics and human-robot interaction development. This is done by providing an educational tool that enables problem representation...... to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity...

  9. Robust Intelligence (RI) under uncertainty: Mathematical foundations of autonomous hybrid (human-machine-robot) teams, organizations and systems

    OpenAIRE

    Lawless, William F.

    2013-01-01

    To develop a theory of Robust Intelligence (RI), we continue to advance our theory of interdependence on the efficient and effective control of systems of autonomous hybrid teams composed of robots, machines and humans working interchangeably. As is the case with humans, we believe that RI is less likely to be achieved by individual computational agents; instead, we propose that a better path to RI is with interdependent agents. However, unlike conventional computational models where agents a...

  10. Evaluation of the autonomic response in healthy subjects during treadmill training with assistance of a robot-driven gait orthosis.

    Science.gov (United States)

    Magagnin, Valentina; Porta, Alberto; Fusini, Laura; Licari, Vittorio; Bo, Ivano; Turiel, Maurizio; Molteni, Franco; Cerutti, Sergio; Caiani, Enrico G

    2009-04-01

    Body weight supported treadmill training assisted with a robotic driven gait orthosis is an emerging clinical tool helpful to restore gait in individuals with loss of motor skills. However, the autonomic response during this rehabilitation protocol is not known. The aim of the study was to evaluate the autonomic response during a routine protocol of motor rehabilitation through spectral and symbolic analyses of short-term heart rate variability in a group of 20 healthy subjects (11 men, mean age 25+/-3.8 years). The protocol included the following phases: (1) sitting position; (2) standing position; (3) suspension during subject instrumentation; (4 and 5) robotic-assisted treadmill locomotion at 1.5km/h and 2.5km/h respectively with partial body weight support; (6) standing recovery after exercise. Results showed a significant tachycardia associated with the reduction in variance during the suspended phase of the protocol compared to the sitting position. Spectral analysis did not demonstrate any significant autonomic response during the entire protocol, while symbolic analysis detected an increase in sympathetic modulation during body suspension and an increase of vagal modulation during walking. These results could be used to improve understanding of the cardiovascular effects of rehabilitation in subjects undergoing robotic driven gait orthosis treadmill training.

  11. Modélisation incrémentale et localisation par amers pour la navigation d'un robot mobile autonome en environnement naturel

    OpenAIRE

    Betge-Brezetz, Stéphane

    1996-01-01

    This thesis deals with natural environment modelling and autonomous mobile robot localisation. The environment, unknown or partially known, is incrementally perceived by the robot with a 3D sensor (laser range finder or stereovision). Application of this work are intervention mobile robotics and planetary exploration. A first part specifies the properties that the environment model should possess and provides a critical analysis of the different representations studied in the litterature. The...

  12. Evolutionary Autonomous Health Monitoring System (EAHMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's Robotics, Tele-Robotics and Autonomous Systems Roadmap, we are proposing the "Evolutionary Autonomous Health Monitoring System" (EAHMS) for...

  13. Adjustably Autonomous Multi-agent Plan Execution with an Internal Spacecraft Free-Flying Robot Prototype

    Science.gov (United States)

    Dorais, Gregory A.; Nicewarner, Keith

    2006-01-01

    We present an multi-agent model-based autonomy architecture with monitoring, planning, diagnosis, and execution elements. We discuss an internal spacecraft free-flying robot prototype controlled by an implementation of this architecture and a ground test facility used for development. In addition, we discuss a simplified environment control life support system for the spacecraft domain also controlled by an implementation of this architecture. We discuss adjustable autonomy and how it applies to this architecture. We describe an interface that provides the user situation awareness of both autonomous systems and enables the user to dynamically edit the plans prior to and during execution as well as control these agents at various levels of autonomy. This interface also permits the agents to query the user or request the user to perform tasks to help achieve the commanded goals. We conclude by describing a scenario where these two agents and a human interact to cooperatively detect, diagnose and recover from a simulated spacecraft fault.

  14. Autonomous Scheduling of the 1.3-meter Robotically Controlled Telescope (RCT)

    Science.gov (United States)

    Strolger, Louis-Gregory; Gelderman, Richard; Carini, Michael T.; Davis, Donald R.; Engle, Scott G.; Guinan, Edward F.; McGruder, Charles H., III; Tedesco, Edward F.; Walter, Donald K.

    2011-03-01

    The 1.3-meter telescope at Kitt Peak operates as a fully robotic instrument for optical imaging. An autonomous scheduling algorithm is an essential component of this observatory, and has been designed to manage numerous requests in various imaging modes in a manner similar to how requests are managed at queue-scheduled observatories, but with greater efficiency. Built from the INSGEN list generator and process spawner originally developed for the Berkeley Automatic Imaging Telescope, the RCT scheduler manages and integrates multi-user observations in real time, according to target and exposure information and program-specific constraints (e.g., user assigned priority, moon avoidance, airmass, or temporal constraints), while accounting for instrument limitations, meteorologic conditions, and other technical constraints. The robust system supports time-critical requests, such as with coordinated observations, while also providing short-term (hours) and long-term (days) monitoring capabilities, and one-off observations. We discuss the RCT scheduler, its current decision tree, and future prospects including integration with active partner-share monitoring (which factor into future observation requests) to insure fairness and parity of requests.

  15. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    Science.gov (United States)

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a

  16. A self-reconfiguring metamorphic nanoinjector for injection into mouse zygotes

    Energy Technology Data Exchange (ETDEWEB)

    Aten, Quentin T. [Nexus Spine, LLC, Salt Lake City, Utah 84124 (United States); Jensen, Brian D.; Howell, Larry L. [Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84602 (United States); Burnett, Sandra H. [Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602 (United States)

    2014-05-15

    This paper presents a surface-micromachined microelectromechanical system nanoinjector designed to inject DNA into mouse zygotes which are ≈90 μm in diameter. The proposed injection method requires that an electrically charged, DNA coated lance be inserted into the mouse zygote. The nanoinjector's principal design requirements are (1) it must penetrate the lance into the mouse zygote without tearing the cell membranes and (2) maintain electrical connectivity between the lance and a stationary bond pad. These requirements are satisfied through a two-phase, self-reconfiguring metamorphic mechanism. In the first motion subphase a change-point six-bar mechanism elevates the lance to ≈45 μm above the substrate. In the second motion subphase, a compliant folded-beam suspension allows the lance to translate in-plane at a constant height as it penetrates the cell membranes. The viability of embryos following nanoinjection is presented as a metric for quantifying how well the nanoinjector mechanism fulfills its design requirements of penetrating the zygote without causing membrane damage. Viability studies of nearly 3000 nanoinjections resulted in 71.9% of nanoinjected zygotes progressing to the two-cell stage compared to 79.6% of untreated embryos.

  17. The Rise of Robots: The Military’s Use of Autonomous Lethal Force

    Science.gov (United States)

    2015-02-17

    paper is divided into three major areas: the legal implications, ethical implications and professional implications of use of robots in warfare...To facilitate the discussion, the paper is divided into two major areas: the legal and ethical implications of use of robots in warfare...Military Robotics : Risk, Ethics , and Design: Robot : A powered machine that (1) senses, (2) thinks (in a deliberative, non-mechanical sense), and (3

  18. Learning the selection of actions for an autonomous social robot by reinforcement learning based on motivations

    OpenAIRE

    Castro González, Álvaro; Malfaz, María; Miguel A. Salichs

    2011-01-01

    Autonomy is a prime issue on robotics field and it is closely related to decision making. Last researches on decision making for social robots are focused on biologically inspired mechanisms for taking decisions. Following this approach, we propose a motivational system for decision making, using internal (drives) and external stimuli for learning to choose the right action. Actions are selected from a finite set of skills in order to keep robot's needs within an acceptable range. The robot u...

  19. Hand-eye LRF-based Iterative Plane Detection Method for Autonomous Robotic Welding

    Directory of Open Access Journals (Sweden)

    Sungmin Lee

    2015-12-01

    Full Text Available This paper proposes a hand-eye LRF-based (laser range finder welding plane-detection method for autonomous robotic welding in the field of shipbuilding. The hand-eye LRF system consists of a 6 DOF manipulator and an LRF attached to the wrist of the manipulator. The welding plane is detected by the LRF with only the wrist’s rotation to minimize a mechanical error caused by the manipulator’s motion. A position on the plane is determined as an average position of the detected points on the plane, and a normal vector to the plane is determined by applying PCA (principal component analysis to the detected points. In this case, the accuracy of the detected plane is analysed by simulations with respect to the wrist’s angle interval and the plane angle. As a result of the analysis, an iterative plane-detection method with the manipulator’s alignment motion is proposed to improve the performance of plane detection. For verifying the feasibility and effectiveness of the proposed plane-detection method, experiments are carried out with a prototype of the hand-eye LRF-based system, which consists of a 1 DOF wrist’s joint, an LRF system and a rotatable plane. In addition, the experimental results of the PCA-based plane detection method are compared with those of the two representative plane-detection methods, based on RANSAC (RANdom SAmple Consensus and the 3D Hough transform in both accuracy and computation time’s points of view.

  20. Master's in Autonomous Systems: An Overview of the Robotics Curriculum and Outcomes at ISEP, Portugal

    Science.gov (United States)

    Silva, E.; Almeida, J.; Martins, A.; Baptista, J. P.; Campos Neves, B.

    2013-01-01

    Robotics research in Portugal is increasing every year, but few students embrace it as one of their first choices for study. Until recently, job offers for engineers were plentiful, and those looking for a degree in science and technology would avoid areas considered to be demanding, like robotics. At the undergraduate level, robotics programs are…

  1. Assessing the Impact of an Autonomous Robotics Competition for STEM Education

    Science.gov (United States)

    Chung, C. J. ChanJin; Cartwright, Christopher; Cole, Matthew

    2014-01-01

    Robotics competitions for K-12 students are popular, but are students really learning and improving their STEM scores through robotics competitions? If not, why not? If they are, how much more effective is learning through competitions than traditional classes? Is there room for improvement? What is the best robotics competition model to maximize…

  2. Bilateral human-robot control for semi-autonomous UAV navigation

    NARCIS (Netherlands)

    Wopereis, Han W.; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2015-01-01

    This paper proposes a semi-autonomous bilateral control architecture for unmanned aerial vehicles. During autonomous navigation, a human operator is allowed to assist the autonomous controller of the vehicle by actively changing its navigation parameters to assist it in critical situations, such as

  3. 程控自主天文台网络的发展%Robotic Autonomous Observatory Network Review

    Institute of Scientific and Technical Information of China (English)

    崔辰州; 何勃亮; 李长华; 赵永恒; 谌悦; 王传军; 辛玉新; 白金明; 季凯帆; 李建; 蔡栩; 范玉峰; 王锋; 曹子皇; 苏丽颖; 樊东卫; 乔翠兰

    2013-01-01

    Developments in telescopes, detectors and software have greatly enhanced our ability to make astronomical observations. Powerful astronomical observation is very sensitive to its working environment, requiring it to be quiet as much as possible. Rapid urbanization over the past century has impacted this environment such that astronomical observations now suffer from light, air and electromagnetic pollution. To obtain better observational data and generate more scientific discover-ies, astronomical observatories are forced to migrate to remote places or even into space. As a result of the migration, and the global nature of astronomy, observatories and scientific data are widely dis-tributed. Meanwhile, multiband astronomy and time-domain astronomy are becoming popular fields in astronomy in the 21st century, both of which are based on federation of multiband and multi-time scientific datasets. Robotic Autonomous Observatory (RAO) and RAO Network (RAON) provide a science driven and technique enabled way to address the above problem. With the development of information technology and computer science as well as electro-mechanics, the automation of astronomical ob-servation is undergoing rapid development, and consequently long term unsupervised observation is made possible. This becomes what we call “Robotic Autonomous Observatory”. Following from this is the idea of connecting multiple robotic autonomous observatories via a robust computer network and making them interoperate. The connected system, namely “Robotic Autonomous Observatory Network”, will enable observation around the clock in respect to a given object or covering large areas on the sky repeatedly, and the completeness of observations in time and space domains could be largely guaranteed. Time domain astronomy and data intensive astronomy are being enabled by the advent of the new autonomous observation mode and synoptic sky surveys, which brings both new scientific opportunities and fresh

  4. SIMULATION SYSTEM FOR AGENT ORIFNTED AUTONOMOUS ROBOTS UNDER LINUX ENVIRONMENT%Linux环境下基于Agent的自主机器人仿真系统

    Institute of Scientific and Technical Information of China (English)

    刘庆龙; 陈宗海

    2001-01-01

    The Autonomous Robots Simulation System (AR-SIM) is developed forthe purpose of studying various issues concerning autonomous robots under complex indeterminate environment. The design principle, system structure, system feature as well as system implementation under Linux environment are described in this paper. And the paper puts forward the architecture of agent oriented autonomous robots.%针对复杂、不可预测环境下自主机器人系统的特点,研究开发了自主机器人仿真系统(AR-SIM)。本文介绍了AR-SIM的设计目的、系统特点、系统结构,以及在Linux环境下的系统实现,并提出了一种基于Agent的自主机器人控制结构。

  5. 自主移动机器人局部路径规划综述%Survey of local path planning of autonomous mobile robot

    Institute of Scientific and Technical Information of China (English)

    鲍庆勇; 李舜酩; 沈峘; 门秀花

    2009-01-01

    Autonomous mobile robot investigate is an active research society recently. However,mobile robot path planning technology is one of the most important issues in autonomous mobile robot research. The classification of mobile robot path planning method and the importance of local path planning are summarized; the state of the art relative mobile robot local path planning approaches are presented. The advantages and disadvantages of these algorithms are discussed. A conclusion and perspectives of autonomous mobile robot local path planning is addressed.%自主移动机器人技术是近年来的研究热点,而路径规划技术是自主移动机器人技术研究中的一个重要内容.讨论了自主移动机器人路径规划技术的分类和研究局部路径规划的重要性;分析了局部路径规划技术的发展现状;指出了局部路径规划各种方法的优点与不足;对局部路径规划技术今后的发展方向做出了展望.

  6. Flexible, fpga-based electronics for modular robots

    DEFF Research Database (Denmark)

    Brandt, David; Larsen, Jørgen Christian; Christensen, David Johan

    2008-01-01

    In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays (FPGAs). The immediate advantage of using FPGAs is that some of the module’s electronics can be moved into the FPGA, thereby the number of components can be reduced. In the case...... consumption compared to micro-controllers. However, overall FPGAs make the electronics of modular robots more flexible and therefore may make them more suitable for real applications. AB - In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays...... the electronics for specific tasks. The disadvantages of an FPGA-based design include the cost of FPGAs, the extra layer of complexity in programming, and a limited increase in power consumption compared to micro-controllers. However, overall FPGAs make the electronics of modular robots more flexible...

  7. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  8. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  9. Combining a Novel Computer Vision Sensor with a Cleaning Robot to Achieve Autonomous Pig House Cleaning

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Braithwaite, Ian David; Blanke, Mogens

    2005-01-01

    Cleaning of livestock buildings is the single most health-threatening task in the agricultural industry and a transition to robot-based cleaning would be instrumental to improving working conditions for employees. Present cleaning robots fall short on cleanness quality, as they cannot perform...

  10. Posture estimation for autonomous weeding robots navigation in nursery tree plantations

    DEFF Research Database (Denmark)

    Khot, Law Ramchandra; Tang, Lie; Blackmore, Simon

    2005-01-01

    The presented research aims at developing a sensor fusion technique for navigational posture estimation for a skid-steered mobile robot vehicle in nursery tree plantations. RTK-GPS and Fiber Optic Gyroscope sensors were used for determining the position and orientation of the robot vehicle...

  11. Mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, W.J.; Marquina, N.

    1986-01-01

    This book presents papers given at a conference on mobile robots. Topics the conference included are the following: mobility systems for robotic vehicles; detection and control of mobile robot motion by real-time computer vision, obstacle avoidance algorithms for an autonomous land vehicle; hierarchical processor and matched filters for range image processing; asynchronous distributed control system for a mobile robot, and, planning in a hierarchical nested autonomous control system.

  12. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  13. Automated Cartography by an Autonomous Mobile Robot Using Ultrasonic Range Finders

    Science.gov (United States)

    1993-09-01

    allows the user to see a complete plot of the most recent robot mission. This button invokes the " gnuplot " program [Williams 92] which plots the...button runs the smm. sim.info - Output of reference posture by the simulation program. axis-data - Data for " gnuplot " program. B. Operations for the...the program has finished, gnuplot is automatically called to plot the robot’s whole trajectory to the screen or to the "ssl" printer. The robot’s

  14. Regulation on Safety and civil Liability of intelligent autonomous Robots: the case of smart Cars

    OpenAIRE

    Cappelli, Maria Assunta

    2015-01-01

    Nowadays science and technology offer us artificial intelligence (AI) “embodied” in robots. They are able to self-learn, self-organize and self-reproduce, thanks to genetic algorithms, artificial neural networks and other tools. The focus of this research includes results from the diffusion of a social phenomenon consisting in the application of robots in the most disparate realities (industrial and domestic). Robotics is the AI branch whose aim is to build machines that are able “to feel, to...

  15. Field Study of a Physical Game for Older Adults Based on an Autonomous, Mobile Robot

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Rasmussen, Dorte Malig; Bak, Thomas

    2012-01-01

    This paper presents an initial, qualitative study on how a game based on a mobile robot with an expressive head can be used as a physical activity for elderly. The game is investigated in two independent field studies - one in a nursing home and one in a rehabilitation centre for elderly using...... an open, exploratory approach. An analysis of the interaction is made based on video recordings, observations and qualitative interviews focusing on the potential of the robot as a rehabilitative application. The primary goal of the study is to observe seniors’ acceptance of the robot, to obtain knowledge...

  16. The Embudito Mission: A Case Study of the Systematics of Autonomous Ground Mobile Robots

    Energy Technology Data Exchange (ETDEWEB)

    EICKER,PATRICK J.

    2001-02-01

    Ground mobile robots are much in the mind of defense planners at this time, being considered for a significant variety of missions with a diversity ranging from logistics supply to reconnaissance and surveillance. While there has been a very large amount of basic research funded in the last quarter century devoted to mobile robots and their supporting component technologies, little of this science base has been fully developed and deployed--notable exceptions being NASA's Mars rover and several terrestrial derivatives. The material in this paper was developed as a first exemplary step in the development of a more systematic approach to the R and D of ground mobile robots.

  17. IMPLEMENTATION OF AUTONOMOUS NAVIGATION ALGORITHMS ON TWO-WHEELED GROUND MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    Stephen Armah

    2014-01-01

    Full Text Available This study presents an effective navigation architecture that combines ‘go-to-goal’, ‘avoid-obstacle’ and ‘follow-wall’ controllers into a full navigation system. A MATLAB robot simulator is used to implement this navigation control algorithm. The robot in the simulator moves to a goal in the presence of convex and non-convex obstacles. Experiments are carried out using a ground mobile robot, Dr Robot X80SV, in a typical office environment to verify successful implementation of the navigation architecture algorithm programmed in MATLAB. The research paper also demonstrates algorithms to achieve tasks such as ‘move to a point’, ‘move to a pose’, ‘follow a line’, ‘move in a circle’ and ‘avoid obstacles’. These control algorithms are simulated using Simulink models.

  18. Research project RoboGas{sup Inspector}. Gas leak detection with autonomous mobile robots; Forschungsprojekt RoboGas{sup Inspector}. Gaslecksuche mit autonomen mobilen Robotern

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Abdelkarim [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Bonow, Gero; Kroll, Andreas [Fachgebiet Mess- und Regelungstechnik, Universitaet Kassel, Kassel (Germany); Hegenberg, Jens; Schmidt, Ludger [Fachgebiet Mensch-Maschine-Systemtechnik, Universitaet Kassel, Kassel (Germany); Barz, Thomas; Schulz, Dirk [Fraunhofer FKIE, Unbemannte Systeme, Wachtberg (Germany)

    2013-05-15

    As part of the promotional program AUTONOMIK of the Federal Ministry of Economics and Technology (Berlin, Federal Republic of Germany) a consortium of nine project partners developed a prototype of an autonomous mobile robot looking for gas leaks in extended industrial equipment. The autonomous mobility of the system for any systems was implemented using different types of sensors for self-localization and navigation. The tele-operation enables a manual intervention in the process. The robot performs inspection tasks in industrial plants by means of video technology and remote gas measurement technology without driving into the possible risk areas and without the presence of humans. The robot can be used for routine inspections of facilities or for the targeted inspection of specific plant components. Thanks to the remote sensing technique also plant components can be inspected which are difficult to be inspected due to their limited accessibility by conventional measurement techniques.

  19. Optimization of Clustering Time by a Group of Autonomous Robots Making Use of an Exclusive Multi-Marking

    Directory of Open Access Journals (Sweden)

    Mohamed R. Abdessemed

    2010-01-01

    Full Text Available Problem statement: For solving complex issues, the current tendency goes towards the swarms behaviors, realized on a basis of collective interactions, which results from a cooperative work favoring exchanges between individuals of a same group at microscopic level and allowing the emergence of complex collective behaviors at macroscopic level. Many models were inspired by these attitudes to find simple rules, guiding mobile, autonomous robots with limited capacities in their environment in order to achieve tasks like those of exploration, self-assembly and gathering. Multimarking technique as indirect communication inside the same robots group can optimize time of such achievements Approach: A method based on the reversed emergence principle combined to a genetic algorithm is presented here, making evolve a global behavior inside simulated robots group called agent-robots, with an aim to find the micro-rules forming a heap according to two approaches. The first approach accomplishes an ordinary grouping and the second one, which we propose, based on the exclusive multi-marking principle. The control device, guiding these robots-agent to succeed this task, functions on a basis of sensor-motor rules being used to arbitrate between a given number of elementary behaviors with which we equip each one of them initially. Results: Simulation results, implemented according to a reactive agent’s model, making it possible to show the consistency of the detected rules and the efficient of the proposed approach in comparison with the ordinary one, are provided and commented. The time optimization of grouping by robots like these can have a huge economic and strategic impact in sectors as important as industry, agriculture and military domain. Conclusion: Like examples, we can quote the grouping of goods in a warehouse, the grouping of ores from mines, the grouping of vegetables and fruits in gardens and the recovery of weapons, in real

  20. Real-time Obstacle Avoidance for a Swarm of Autonomous Mobile Robots

    OpenAIRE

    Hedjar, Ramdane; Bounkhel, Messaoud

    2014-01-01

    In this paper, we propose a computational trajectory generation algorithm for swarm mobile robots using local information in a dynamic environment. The algorithm plans a reference path based on constrained convex nonlinear optimization which avoids both static and dynamic obstacles. This algorithm is combined with one-step-ahead predictive control for a swarm of mobile robots to track the generated paths and reach the goals without collision. The numerical simulations and experimental results...

  1. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2011-01-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  2. Robotic Architectures

    Directory of Open Access Journals (Sweden)

    Mbali Mtshali

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging and complex task. With a number of existing architectures and tools to choose from, a review of the existing robotic architecture is essential. This paper surveys the different paradigms in robotic architectures. A classification of the existing robotic architectures and comparison of different proposals attributes and properties have been carried out. The paper also provides a view on the current state of designing robot architectures. It also proposes a conceptual model of a generalised robotic architecture for mobile autonomous robots.Defence Science Journal, 2010, 60(1, pp.15-22, DOI:http://dx.doi.org/10.14429/dsj.60.96

  3. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Vision The Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  4. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  5. Virtual Simulator for Autonomous Mobile Robots Navigation System Using Concepts of Control Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Leonimer Flavio de Melo

    2013-09-01

    Full Text Available This work presents the proposal of virtual environment implementation for project simulation and conception of supervision and control systems for mobile robots, that are capable to operate and adapting in different environments and conditions. This virtual system has as purpose to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with real time monitoring of all important system points. For this, open control architecture is proposal, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module and of a analysis module of results and errors. The kinematic and dynamic simulator module makes all simulation of the mobile robot following the pre-determined trajectory of the trajectory generator. All the kinematic and dynamic results shown during the simulation can be evaluated and visualized in graphs and tables formats, in the results analysis module, allowing an improvement in the system, minimizing the errors with the necessary adjustments optimization. For controller implementation in the embedded system, it uses the rapid prototyping, which is the technology that allows, in set with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplishing with nonholonomics mobile robots models with differential transmission.

  6. Mechanical Design and Dynamcis of an Autonomous Climbing Robot for Elliptic Half-shell Cleaning

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2008-11-01

    Full Text Available This paper presents an auto-climbing robot for cleaning the elliptic half-shell of National Grand Theatre in China. The robot consists of a climbing mechanism, a moving mechanism, two cleaning brushes and supporting mechanisms. The mechanism and unique aspects are presented in detail. A distributed control system based on CAN bus is designed to meet the requirements of controlling the robot. After that the emphasis for discussion is on the motion realization which includes climbing and cleaning movements. The robot independently climbs and descends in the vertical direction and cleans in the horizontal direction. It takes the circling tracks as supports for climbing up and down between strips and moving horizontally along one strip around the ellipsoid. For system design and control purposes, the dynamic models of the climbing and cleaning processes are given applying of the Lagrange equation. Furthermore the force distribution of the front and rear supporting mechanisms is computed in a way that ensures the safety of the climbing process. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  7. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    Science.gov (United States)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  8. Generating Self-Reliant Teams of Autonomous Cooperating Robots: Desired design Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1999-05-01

    The difficulties in designing a cooperative team are significant. Several of the key questions that must be resolved when designing a cooperative control architecture include: How do we formulate, describe, decompose, and allocate problems among a group of intelligent agents? How do we enable agents to communicate and interact? How do we ensure that agents act coherently in their actions? How do we allow agents to recognize and reconcile conflicts? However, in addition to these key issues, the software architecture must be designed to enable multi-robot teams to be robust, reliable, and flexible. Without these capabilities, the resulting robot team will not be able to successfully deal with the dynamic and uncertain nature of the real world. In this extended abstract, we first describe these desired capabilities. We then briefly describe the ALLIANCE software architecture that we have previously developed for multi-robot cooperation. We then briefly analyze the ALLIANCE architecture in terms of the desired design qualities identified.

  9. Auto Landing Process for Autonomous Flying Robot by Using Image Processing Based on Edge Detection

    Directory of Open Access Journals (Sweden)

    Bahram Lavi Sefidgari

    2014-01-01

    Full Text Available In today’s technological life, everyone is quite familiar with the importance of security measures in our lives. So in this regard, many attempts have been made by researchers and one of them is flying robots technology. One well-known usage of flying robot, perhaps, is its capability in security and care measurements which made this device extremely practical, not only for its unmanned movement, but also for the unique manoeuvre during flight over the arbitrary areas. In this research, the automatic landing of a flying robot is discussed. The system is based on the frequent interruptions that is sent from main microcontroller to camera module in order to take images; these images have been distinguished by image processing system based on edge detection, after analysing the image the system can tell whether or not to land on the ground. This method shows better performance in terms of precision as well as experimentally.

  10. Behavior generation strategy of artificial behavioral system by self-learning paradigm for autonomous robot tasks

    Science.gov (United States)

    Dağlarli, Evren; Temeltaş, Hakan

    2008-04-01

    In this study, behavior generation and self-learning paradigms are investigated for the real-time applications of multi-goal mobile robot tasks. The method is capable to generate new behaviors and it combines them in order to achieve multi goal tasks. The proposed method is composed from three layers: Behavior Generating Module, Coordination Level and Emotion -Motivation Level. Last two levels use Hidden Markov models to manage dynamical structure of behaviors. The kinematics and dynamic model of the mobile robot with non-holonomic constraints are considered in the behavior based control architecture. The proposed method is tested on a four-wheel driven and four-wheel steered mobile robot with constraints in simulation environment and results are obtained successfully.

  11. Creative Engineering Based Education with Autonomous Robots Considering Job Search Support

    Science.gov (United States)

    Takezawa, Satoshi; Nagamatsu, Masao; Takashima, Akihiko; Nakamura, Kaeko; Ohtake, Hideo; Yoshida, Kanou

    The Robotics Course in our Mechanical Systems Engineering Department offers “Robotics Exercise Lessons” as one of its Problem-Solution Based Specialized Subjects. This is intended to motivate students learning and to help them acquire fundamental items and skills on mechanical engineering and improve understanding of Robotics Basic Theory. Our current curriculum was established to accomplish this objective based on two pieces of research in 2005: an evaluation questionnaire on the education of our Mechanical Systems Engineering Department for graduates and a survey on the kind of human resources which companies are seeking and their expectations for our department. This paper reports the academic results and reflections of job search support in recent years as inherited and developed from the previous curriculum.

  12. Design and modeling of an autonomous multi-link snake robot, capable of 3D-motion

    Directory of Open Access Journals (Sweden)

    Rizkallah Rabel

    2016-01-01

    Full Text Available The paper presents the design of an autonomous, wheeless, mechanical snake robot that was modeled and built at Notre Dame University – Louaize. The robot is also capable of 3D motion with an ability to climb in the z-direction. The snake is made of a series links, each containing one to three high torque DC motors and a gearing system. They are connected to each other through Aluminum hollow rods that can be rotated through a 180° span. This allows the snake to move in various environments including unfriendly and cluttered ones. The front link has a proximity sensor used to map the environment. This mapping is sent to a microcontroller which controls and adapts the motion pattern of the snake. The snake can therefore choose to avoid obstacles, or climb over them if their height is within its range. The presented model is made of five links, but this number can be increased as their role is repetitive. The novel design is meant to overcome previous limitations by allowing 3D motion through electric actuators and low energy consumption.

  13. Real-time Needle Steering in Response to Rolling Vein Deformation by a 9-DOF Image-Guided Autonomous Venipuncture Robot.

    Science.gov (United States)

    Chen, Alvin I; Balter, Max L; Maguire, Timothy J; Yarmush, Martin L

    2015-01-01

    Venipuncture is the most common invasive medical procedure performed in the United States and the number one cause of hospital injury. Failure rates are particularly high in pediatric and elderly patients, whose veins tend to deform, move, or roll as the needle is introduced. To improve venipuncture accuracy in challenging patient populations, we have developed a portable device that autonomously servos a needle into a suitable vein under image guidance. The device operates in real time, combining near-infrared and ultrasound imaging, computer vision software, and a 9 degrees-of-freedom robot that servos the needle. In this paper, we present the kinematic and mechanical design of the latest generation robot. We then investigate in silico and in vitro the mechanics of vessel rolling and deformation in response to needle insertions performed by the robot. Finally, we demonstrate how the robot can make real-time adjustments under ultrasound image guidance to compensate for subtle vessel motions during venipuncture.

  14. ONLINE MODEL AND ACTUATOR FAULT TOLERANT CONTROL FOR AUTONOMOUS MOBILE ROBOT

    Institute of Scientific and Technical Information of China (English)

    SONG Qi; JIANG Zhe; HAN Jianda

    2007-01-01

    A novel fault-tolerant adaptive control methodology against the actuator faults is proposed.The actuator effectiveness factors (AEFs) are introduced to denote the healthy of actuator, and the unscented Kalman filter (UKF) is employed for online estimation of both the motion states and the AEFs of mobile robot. A square root version of the UKF is introduced to improve efficiency and numerical stability. Using the information from the UKF, the reconfigurable controller is designed automatically based on an enhancement inverse dynamic control (IDC) methodology. The experiment on a 3-DOF omni-directional mobile robot is performed, and the effectiveness of the proposed method is demonstrated.

  15. Real-time Obstacle Avoidance for a Swarm of Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Ramdane Hedjar

    2014-04-01

    Full Text Available In this paper, we propose a computational trajectory generation algorithm for swarm mobile robots using local information in a dynamic environment. The algorithm plans a reference path based on constrained convex nonlinear optimization which avoids both static and dynamic obstacles. This algorithm is combined with one-step-ahead predictive control for a swarm of mobile robots to track the generated paths and reach the goals without collision. The numerical simulations and experimental results demonstrate the effectiveness of the proposed free-collision path planning algorithm.

  16. Fusing Laser Reflectance and Image Data for Terrain Classification for Small Autonomous Robots

    Science.gov (United States)

    2014-12-01

    Recognition Conference, vol. 2, 2005, pp. 169–176 vol. 2. [12] C. Weiss , H. Frohlich, and A. Zell, “Vibration-based terrain classification using support...Advanced Robotics, O. Khatib, V. Kumar, and G. Pappas, Eds. Springer Berlin Heidelberg, 2009, vol. 54, pp. 319– 328. [18] J. Rebula, P. Neuhaus, B

  17. Navy Requirements for Controlling Multiple Off-Board Robots Using the Autonomous Unmanned Vehicle Workbench

    Science.gov (United States)

    2007-06-01

    I18N ) .................................................................9 3. Java Look + Feel...User Interface GWOT Global War on Terror xx HSI Human-Systems Integration HTML Hypertext Markup Language I18N Internationalization ID...without legal restrictions. 9 2. Internationalization ( I18N ) The United States is not the only country using AUVs. When robots from the US

  18. Obstacles Avoidance Method for an Autonomous Mobile Robot using Two IR Sensors

    OpenAIRE

    A. Gacsadi; V. Tiponut; I. Gavrilut; L. Tepelea

    2008-01-01

    The paper presents a local navigationmethod for mobile robot, based on sensorial informationgiven by two IR sensors. These types of sensors aresimple and relatively low-cost sensing modalities toperform navigation tasks in environments with obstacles.On the other hand, IR sensors may be preferable due totheir faster response time and can be integrated instructure with microcontroller.

  19. Chaotic Path Planner of Autonomous Mobile Robots Based on the Standard Map for Surveillance Missions

    Directory of Open Access Journals (Sweden)

    Caihong Li

    2015-01-01

    Full Text Available This paper proposes a fusion iterations strategy based on the Standard map to generate a chaotic path planner of the mobile robot for surveillance missions. The distances of the chaotic trajectories between the adjacent iteration points which are produced by the Standard map are too large for the robot to track. So a fusion iterations strategy combined with the large region iterations and the small grids region iterations is designed to resolve the problem. The small region iterations perform the iterations of the Standard map in the divided small grids, respectively. It can reduce the adjacent distances by dividing the whole surveillance workspace into small grids. The large region iterations combine all the small grids region iterations into a whole, switch automatically among the small grids, and maintain the chaotic characteristics of the robot to guarantee the surveillance missions. Compared to simply using the Standard map in the whole workspace, the proposed strategy can decrease the adjacent distances according to the divided size of the small grids and is convenient for the robot to track.

  20. Autonomous Power: From War to Peace in the I-Robot Millennium

    Science.gov (United States)

    2015-02-25

    Order Defense (500) Labor (130) Justice (50) State (15) Veterans Affairs (100) Agriculture (130) Transportation (70) Interior (90) Homeland...of Autonomous Weapons, Farnham, UK: Ashgate, 2009. 166. 22 market today. The search for top commercial quad-copter/ drone manufacturers...results in a list of companies dominated by China.2 Table 3: Quad-Copter/ Drone Manufacturers Manufacturer Headquarters Manufacturer Headquarters DJI

  1. Autonomous navigation using a robot platform in a sugar beet field

    NARCIS (Netherlands)

    Bakker, T.; Asselt, van C.J.; Bontsema, J.; Müller, J.; Straten, van G.

    2011-01-01

    An RTK-DGPS (Real Time Kinematic Differential Global Positioning System) based autonomous field navigation system including automated headland turns was developed to provide a method for crop row mapping combining machine vision, and to evaluate the benefits of a behaviour based reactive layer in a

  2. Enhancement Performance of Road Recognition System of Autonomous Robots in Shadow Scenario

    Directory of Open Access Journals (Sweden)

    Olusanya Y. Agunbiade

    2013-12-01

    Full Text Available Road region recognition is a main feature that is g aining increasing attention from intellectuals beca use it helps autonomous vehicle to achieve a successful na vigation without accident. However, different techniques based on camera sensor have been used by various researchers and outstanding results have been achieved. Despite their success, environmental noise like shadow leads to inaccurate recognition of road region which eventually leads to accident for autonomous vehicle. In this research, we conducted an investigation on shadow and its effects, optimized the road region recognition system of autonomous vehicle by introducing an algorithm capable of dete cting and eliminating the effects of shadow. The experimental performance of our system was tested a nd compared using the following schemes: Total Positive Rate (TPR, False Negative Rate (FNR, Tot al Negative Rate (TNR, Error Rate (ERR and False Positive Rate (FPR. The performance result of the system improved on road recognition in shadow scenario and this advancement has added tremendousl y to successful navigation approaches for autonomous vehicle

  3. Pirate, the development of an autonomous gas distribution system inspection robot

    NARCIS (Netherlands)

    Pulles, C.; Dertien, E.; Pol, van de H.J.; Nispeling, R.

    2008-01-01

    A consortium of four companies is developing an autonomous inspection system for small diameter, low pressure gas distribution mains. Such a system could eventually replace the current practice of leak survey and improve the assessment of the quality of the mains, being able to investigate the mains

  4. The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration

    Science.gov (United States)

    Zhao, Ming; Han, Baoling

    2016-11-01

    The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.

  5. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking

    Institute of Scientific and Technical Information of China (English)

    Hamza KHAN; Jamshed IQBAL; Khelifa BAIZID; Teresa ZIELINSKA

    2015-01-01

    This research formulates a path-following control problem subjected to wheel slippage and skid and solves it using a logic-based control scheme for a wheeled mobile robot (WMR). The novelty of the proposed scheme lies in its methodology that considers both longitudinal and lateral slip components. Based on the derived slip model, the controller for longitudinal motion slip has been synthesized. Various control parameters have been studied to investigate their effects on the performance of the controller resulting in selection of their optimum values. The designed controller for lateral slip or skid is based on the proposed side friction model and skid check condition. Considering a car-like WMR, simulation results demonstrate the effectiveness of the proposed control scheme. The robot successfully followed the desired circular trajectory in the presence of wheel slippage and skid. This research finds its potential in various applications involving WMR navigation and control.

  6. Design of a Prototype Autonomous Amphibious WHEGS(Trademark) Robot for Surf-Zone Operations

    Science.gov (United States)

    2005-06-01

    screws that are in line with the slotted holes. Once assembled, orthodontic rubber bands are stretched between the fixed screws in the outer shell, and...is received from the user on port 4001. It extracts the information about the required speed and servo position, transmits that directly to the pulse...doesn’t have any errors, it extracts the robots current heading, pitch, and roll information. d. GPS Costatement The GPS costatement is also

  7. A Concept of Dynamically Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics.

    OpenAIRE

    De Cabrol, Aymeric; Garcia, Thibault; Bonnin, Patrick; Chetto, Maryline

    2007-01-01

    International audience; Abstract: In this article, we describe specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC based hardware architecture is convenient in this field because of its versatility, its flexibility, its performance and its cost, current real-time operating systems are not completely adapted to long processings with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions...

  8. Anthropocentric-based robotic and autonomous systems: assessment for new organisational options

    OpenAIRE

    Moniz, António

    2010-01-01

    Text based on the paper presented at the Conference "Autonomous systems: inter-relations of technical and societal issues" held at Monte de Caparica (Portugal), Universidade Nova de Lisboa, November, 5th and 6th 2009 and organized by IET-Research Centre on Enterprise and Work Innovation Research activities at European level on the concept of new working environments offers considerable attention to the challenges of the increased competencies of people working together with automated techn...

  9. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.

    Science.gov (United States)

    Manfredi, L; Assaf, T; Mintchev, S; Marrazza, S; Capantini, L; Orofino, S; Ascari, L; Grillner, S; Wallén, P; Ekeberg, O; Stefanini, C; Dario, P

    2013-10-01

    The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neuroscience. In this article, we present a biomimetic system inspired by the lamprey, an early vertebrate that locomotes using anguilliform swimming. The artefact possesses extra- and proprioceptive sensory receptors, muscle-like actuation, distributed embedded control and a vision system. Experiments on optimised swimming and on goal-directed locomotion are reported, as well as the assessment of the performance of the system, which shows high energy efficiency and adaptive behaviour. While the focus is on providing a robotic platform for testing biological models, the reported system can also be of major relevance for the development of engineering system applications.

  10. A Concept of Dynamically Reconfigurable Real-time Vision System for Autonomous Mobile Robotics

    Institute of Scientific and Technical Information of China (English)

    Aymeric De Cabrol; Thibault Garcia; Patrick Bonnin; Maryline Chetto

    2008-01-01

    This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cleopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing chain to an exceptional everlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.

  11. An Extremely Low Power Quantum Optical Communication Link for Autonomous Robotic Explorers

    Science.gov (United States)

    Lekki, John; Nguyen, Quang-Viet; Bizon, Tom; Nguyen, Binh; Kojima, Jun

    2007-01-01

    One concept for planetary exploration involves using many small robotic landers that can cover more ground than a single conventional lander. In addressing this vision, NASA has been challenged in the National Nanotechnology Initiative to research the development of miniature robots built from nano-sized components. These robots have very significant challenges, such as mobility and communication, given the small size and limited power generation capability. The research presented here has been focused on developing a communications system that has the potential for providing ultra-low power communications for robots such as these. In this paper an optical communications technique that is based on transmitting recognizable sets of photons is presented. Previously pairs of photons that have an entangled quantum state have been shown to be recognizable in ambient light. The main drawback to utilizing entangled photons is that they can only be generated through a very energy inefficient nonlinear process. In this paper a new technique that generates sets of photons from pulsed sources is described and an experimental system demonstrating this technique is presented. This technique of generating photon sets from pulsed sources has the distinct advantage in that it is much more flexible and energy efficient, and is well suited to take advantage of the very high energy efficiencies that are possible when using nano scale sources. For these reasons the communication system presented in this paper is well suited for use in very small, low power landers and rovers. In this paper a very low power optical communications system for miniature robots, as small as 1 cu cm is addressed. The communication system is a variant of photon counting communications. Instead of counting individual photons the system only counts the arrival of time coincident sets of photons. Using sets of photons significantly decreases the bit error rate because they are highly identifiable in the

  12. RESEARCH ON THE ARCHITECTURE OF AUTONOMOUS DEVELOPMENTAL ROBOT%自主发育智能机器人体系结构研究

    Institute of Scientific and Technical Information of China (English)

    王作为; 张汝波

    2011-01-01

    传统的机器人系统范式分类已经无法将新出现的方法和理论纳入其中.为此,首先从认知的角度重新对机器人的范式进行分类.新的范式分类涵盖了传统的系统范式,明确了自主发育在机器人系统范式中的地位.在此基础上,提出了自主发育智能机器人体系结构.该结构只需利用基本的感知能力和行动能力,分别利用感知发育模块、认知发育模块和行为发育模块实现自主感知分类、时空经验知识以及反应式行为的逐层发育.各发育模块之间互相依赖并可以同时学习,具有实时的自主发育能力.%Traditional robot classification paradigm can no longer cover new emerging methods and theories. For this reason, the paper firstly reclassifies the paradigm of robot architecture from the cognitive point of view. New paradigm classification not only covers the traditional paradigm, but also specifies the importance of autonomous development in the paradigm of robot architecture. On this basis, autonomous developmental robot architecture is proposed. The architecture only needs such fundamental capabilities as perception and action in order to achieve the hierarchical development of autonomous perception classification, spatio-temporal experience and reactive behavior with development modules for perception, cognitive and behavior separately. Development modules are interdependent and can learn synchronously so as to possess the capability of real-time autonomous development.

  13. Dissociated Emergent-Response System and Fine-Processing System in Human Neural Network and a Heuristic Neural Architecture for Autonomous Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Xiaodan Yan

    2010-01-01

    Full Text Available The current study investigated the functional connectivity of the primary sensory system with resting state fMRI and applied such knowledge into the design of the neural architecture of autonomous humanoid robots. Correlation and Granger causality analyses were utilized to reveal the functional connectivity patterns. Dissociation was within the primary sensory system, in that the olfactory cortex and the somatosensory cortex were strongly connected to the amygdala whereas the visual cortex and the auditory cortex were strongly connected with the frontal cortex. The posterior cingulate cortex (PCC and the anterior cingulate cortex (ACC were found to maintain constant communication with the primary sensory system, the frontal cortex, and the amygdala. Such neural architecture inspired the design of dissociated emergent-response system and fine-processing system in autonomous humanoid robots, with separate processing units and another consolidation center to coordinate the two systems. Such design can help autonomous robots to detect and respond quickly to danger, so as to maintain their sustainability and independence.

  14. SLAM for drones : simultaneous localization and mapping for autonomous flying robots

    OpenAIRE

    González de Rueda Ramos, José Manuel

    2012-01-01

    The main objective of this thesis is to be a reference in SLAM for future work in robotics. It goes from almost a zero-point for a non-expert in the field until a revision of the SoA methods. It has been carefully divided into four parts: - The first one is a compilation of the basis in computer vision. If you are new into the field, it is recommended to read it carefully to really understand the most important concepts that will be applied in further sections. - The second part will be a ful...

  15. Kinematics Modeling of an Omnidirectional Autonomous Mobile Robot with Castor Wheels

    Institute of Scientific and Technical Information of China (English)

    Peng Yiqiang

    2006-01-01

    The kinematics model of an omnidirectional wheeled mobile robot (WMR) platform with 3 castor wheels was built, which includes the actuated inverse solution and the sensed forward solution. Motion simulations verify the consistency between the actuated inverse solution and the sensed forward solution. Analysis results show that the WMR possesses 3 degrees of freedom, and its motion trajectory is a straight line. The "pushing" and "pulling" motion patterns of the WMR can be generated by using different wheel orientations. It can be used in the places where the space is limited.

  16. Autonomous navigation and mapping of mobile robots based on 2D/3D cameras combination

    OpenAIRE

    Joochim, Chanin

    2011-01-01

    Aufgrund der tendenziell zunehmenden Nachfrage an Systemen zur Unterstützung des alltäglichen Lebens gibt es derzeit ein großes Interesse an autonomen Systemen. Autonome Systeme werden in Häusern, Büros, Museen sowie in Fabriken eingesetzt. Sie können verschiedene Aufgaben erledigen, beispielsweise beim Reinigen, als Helfer im Haushalt, im Bereich der Sicherheit und Bildung, im Supermarkt sowie im Empfang als Auskunft, weil sie dazu verwendet werden können, die Verarbeitungszeit zu kontrollie...

  17. 基于模糊控制的自主寻迹机器人研究%Study on Autonomous Tracing Robot Based on Fuzzy Control

    Institute of Scientific and Technical Information of China (English)

    黄大志; 张元良; 陈劲松

    2012-01-01

    Kinematics analysis about autonomous tracing robot was made. The relationship between robot speed and DC motors speed was build. Tracing sensors were symmetrically laid on the robot. The path was recognized using fuzzy control algorithm. It's proved by experiment that the system performance is good.%通过对自主寻迹机器人进行运动学分析,建立起机器人线速度、角速度与驱动电机速度的关系,设计了前后对称的寻迹传感器阵列,提出用模糊控制算法来进行运动路径的识别.经试验验证,该方法效果良好.

  18. CYCLOPS: A mobile robotic platform for testing and validating image processing and autonomous navigation algorithms in support of artificial vision prostheses.

    Science.gov (United States)

    Fink, Wolfgang; Tarbell, Mark A

    2009-12-01

    While artificial vision prostheses are quickly becoming a reality, actual testing time with visual prosthesis carriers is at a premium. Moreover, it is helpful to have a more realistic functional approximation of a blind subject. Instead of a normal subject with a healthy retina looking at a low-resolution (pixelated) image on a computer monitor or head-mounted display, a more realistic approximation is achieved by employing a subject-independent mobile robotic platform that uses a pixelated view as its sole visual input for navigation purposes. We introduce CYCLOPS: an AWD, remote controllable, mobile robotic platform that serves as a testbed for real-time image processing and autonomous navigation systems for the purpose of enhancing the visual experience afforded by visual prosthesis carriers. Complete with wireless Internet connectivity and a fully articulated digital camera with wireless video link, CYCLOPS supports both interactive tele-commanding via joystick, and autonomous self-commanding. Due to its onboard computing capabilities and extended battery life, CYCLOPS can perform complex and numerically intensive calculations, such as image processing and autonomous navigation algorithms, in addition to interfacing to additional sensors. Its Internet connectivity renders CYCLOPS a worldwide accessible testbed for researchers in the field of artificial vision systems. CYCLOPS enables subject-independent evaluation and validation of image processing and autonomous navigation systems with respect to the utility and efficiency of supporting and enhancing visual prostheses, while potentially reducing to a necessary minimum the need for valuable testing time with actual visual prosthesis carriers.

  19. Vector Field Driven Design for Lightweight Signal Processing and Control Schemes for Autonomous Robotic Navigation

    Science.gov (United States)

    Mathai, Nebu John; Zourntos, Takis; Kundur, Deepa

    2009-12-01

    We address the problem of realizing lightweight signal processing and control architectures for agents in multirobot systems. Motivated by the promising results of neuromorphic engineering which suggest the efficacy of analog as an implementation substrate for computation, we present the design of an analog-amenable signal processing scheme. We use control and dynamical systems theory both as a description language and as a synthesis toolset to rigorously develop our computational machinery; these mechanisms are mated with structural insights from behavior-based robotics to compose overall algorithmic architectures. Our perspective is that robotic behaviors consist of actions taken by an agent to cause its sensory perception of the environment to evolve in a desired manner. To provide an intuitive aid for designing these behavioral primitives we present a novel visual tool, inspired vector field design, that helps the designer to exploit the dynamics of the environment. We present simulation results and animation videos to demonstrate the signal processing and control architecture in action.

  20. Vector Field Driven Design for Lightweight Signal Processing and Control Schemes for Autonomous Robotic Navigation

    Directory of Open Access Journals (Sweden)

    Nebu John Mathai

    2009-01-01

    Full Text Available We address the problem of realizing lightweight signal processing and control architectures for agents in multirobot systems. Motivated by the promising results of neuromorphic engineering which suggest the efficacy of analog as an implementation substrate for computation, we present the design of an analog-amenable signal processing scheme. We use control and dynamical systems theory both as a description language and as a synthesis toolset to rigorously develop our computational machinery; these mechanisms are mated with structural insights from behavior-based robotics to compose overall algorithmic architectures. Our perspective is that robotic behaviors consist of actions taken by an agent to cause its sensory perception of the environment to evolve in a desired manner. To provide an intuitive aid for designing these behavioral primitives we present a novel visual tool, inspired vector field design, that helps the designer to exploit the dynamics of the environment. We present simulation results and animation videos to demonstrate the signal processing and control architecture in action.

  1. Autonomous Marine Robotic Technology Reveals an Expansive Benthic Bacterial Community Relevant to Regional Nitrogen Biogeochemistry.

    Science.gov (United States)

    Valentine, David L; Fisher, G Burch; Pizarro, Oscar; Kaiser, Carl L; Yoerger, Dana; Breier, John A; Tarn, Jonathan

    2016-10-06

    Benthic accumulations of filamentous, mat-forming bacteria occur throughout the oceans where bisulfide mingles with oxygen or nitrate, providing key but poorly quantified linkages between elemental cycles of carbon, nitrogen and sulfur. Here we used the autonomous underwater vehicle Sentry to conduct a contiguous, 12.5 km photoimaging survey of sea-floor colonies of filamentous bacteria between 80 and 579 m water depth, spanning the continental shelf to the deep suboxic waters of the Santa Barbara Basin (SBB). The survey provided >31 000 images and revealed contiguous, white-colored bacterial colonization coating > ∼80% of the ocean floor and spanning over 1.6 km, between 487 and 523 m water depth. Based on their localization within the stratified waters of the SBB we hypothesize a dynamic and annular biogeochemical zonation by which the bacteria capitalize on periodic flushing events to accumulate and utilize nitrate. Oceanographic time series data bracket the imaging survey and indicate rapid and contemporaneous nitrate loss, while autonomous capture of microbial communities from the benthic boundary layer concurrent with imaging provides possible identities for the responsible bacteria. Based on these observations we explore the ecological context of such mats and their possible importance in the nitrogen cycle of the SBB.

  2. Vertical stream curricula integration of problem-based learning using an autonomous vacuum robot in a mechatronics course

    Science.gov (United States)

    Chin, Cheng; Yue, Keng

    2011-10-01

    Difficulties in teaching a multi-disciplinary subject such as the mechatronics system design module in Departments of Mechatronics Engineering at Temasek Polytechnic arise from the gap in experience and skill among staff and students who have different backgrounds in mechanical, computer and electrical engineering within the Mechatronics Department. The departments piloted a new vertical stream curricula model (VSCAM) to enhance student learning in mechatronics system design through integration of educational activities from the first to the second year of the course. In this case study, a problem-based learning (PBL) method on an autonomous vacuum robot in the mechatronics systems design module was proposed to allow the students to have hands-on experience in the mechatronics system design. The proposed works included in PBL consist of seminar sessions, weekly works and project presentation to provide holistic assessment on teamwork and individual contributions. At the end of VSCAM, an integrative evaluation was conducted using confidence logs, attitude surveys and questionnaires. It was found that the activities were quite appreciated by the participating staff and students. Hence, PBL has served as an effective pedagogical framework for teaching multidisciplinary subjects in mechatronics engineering education if adequate guidance and support are given to staff and students.

  3. [Robotics].

    Science.gov (United States)

    Bier, J

    2000-05-01

    Content of this paper is the current state of the art of robots in surgery and the ongoing work on the field of surgical robotics at the Clinic for Maxillofacial Surgery at the Charité. Robots in surgery allows the surgeon to transform the accuracy of the imaging systems directly during the intervention and to plan an intervention beforehand. In this paper firstly the state of the art is described. Subsequently the scientific work at the clinic is described in detail. The paper closes with a outlook for future applications of robotics systems in maxillofacial surgery.

  4. RAFI - A Stereo Vision Based Autonomous Mobile Area Mapping Robot with 16 DOF

    Directory of Open Access Journals (Sweden)

    Md. Shafayat Hossain

    2013-02-01

    Full Text Available RAFI is a self-driven mapping robot with 16 Degrees-of-Freedom (DOF. Its software development,structural and electrical design and mechanical construction are presented in this paper. RAFI moves withwheels having differential type motion with 2DOF. The head has 3 DOF sufficient for volumetric mappingby rotating the head in different directions and both hands have 5 DOF to empower its grip and carrying.An 8-bit microcontroller is used to control all the motors. 4 Ultrasonic-rangefinders have been used forobstacle-detection and avoidance which are also interfaced with the same microcontroller. Its head isequipped with two identical webcams for stereoscopic vision for generating 3D map of the field of viewafter generating disparity map. To optimize the computational speed and mapping accuracy images of640×480 resolution are 85% compressed and dynamic programming with image pyramiding by quadpyramidwithout sub-pixel estimation is pursued.

  5. A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics

    Science.gov (United States)

    Jaffe, Jules S.; Franks, Peter J. S.; Roberts, Paul L. D.; Mirza, Diba; Schurgers, Curt; Kastner, Ryan; Boch, Adrien

    2017-01-01

    Measuring the ever-changing 3-dimensional (3D) motions of the ocean requires simultaneous sampling at multiple locations. In particular, sampling the complex, nonlinear dynamics associated with submesoscales (swarm of 16 independent vehicles whose 3D trajectories are measured near-continuously, underwater. As the vehicles drift with the ambient flow or execute preprogrammed vertical behaviours, the simultaneous measurements at multiple, known locations resolve the details of the flow within the swarm. We describe the design, construction, control and underwater navigation of the M-AUE. A field programme in the coastal ocean using a swarm of these robots programmed with a depth-holding behaviour provides a unique test of a physical-biological interaction leading to plankton patch formation in internal waves. The performance of the M-AUE vehicles illustrates their novel capability for measuring submesoscale dynamics.

  6. A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers.

    Science.gov (United States)

    Stefanini, C; Orofino, S; Manfredi, L; Mintchev, S; Marrazza, S; Assaf, T; Capantini, L; Sinibaldi, E; Grillner, S; Wallén, P; Dario, P

    2012-06-01

    This paper describes the development of a new biorobotic platform inspired by the lamprey. Design, fabrication and implemented control are all based on biomechanical and neuroscientific findings on this eel-like fish. The lamprey model has been extensively studied and characterized in recent years because it possesses all basic functions and control mechanisms of higher vertebrates, while at the same time having fewer neurons and simplified neural structures. The untethered robot has a flexible body driven by compliant actuators with proprioceptive feedback. It also has binocular vision for vision-based navigation. The platform has been successfully and extensively experimentally tested in aquatic environments, has high energy efficiency and is ready to be used as investigation tool for high level motor tasks.

  7. Effects of robot-driven gait orthosis treadmill training on the autonomic response in rehabilitation-responsive stroke and cervical spondylotic myelopathy patients.

    Science.gov (United States)

    Magagnin, Valentina; Bo, Ivano; Turiel, Maurizio; Fornari, Maurizio; Caiani, Enrico G; Porta, Alberto

    2010-06-01

    Body weight supported treadmill training (BWSTT) assisted with a robotic-driven gait orthosis is utilized in rehabilitation of individuals with lost motor skills. A typical rehabilitation session included: sitting, standing, suspension, robotic-assisted walking at 1.5 and 2.5km/h, respectively with 50% body weight support and recovery. While the effects of robotic-assisted BWSTT on motor performances were deeply studied, the influences on the cardiovascular control are still unknown. The aim of the study was to evaluate in stroke (ST) and cervical spondylotic myelopathy (CSM) patients: (1) the autonomic response during a traditional robotic-assisted BWSTT session of motor rehabilitation; (2) the effects of 30 daily sessions of BWSTT on cardiovascular regulation. The autonomic response was assessed through symbolic analysis of short-term heart rate variability in 11 pathologic subjects (5 ST and 6 CSM patients) whose motor skills were improved as a result of the rehabilitation therapy. Results showed variable individual responses to the rehabilitation session in ST patients at the beginning of the therapy. At the end of the rehabilitation process, the responses of ST patients were less variable and more similar to those previously observed in healthy subjects. CSM patients exhibited an exaggerated vagal response to the fastest walking phase during the first rehabilitative session. This abnormal response was limited after the last rehabilitative session. We conclude that robotic-assisted BWSTT is helpful in restoring cardiovascular control in rehabilitation-responsive ST patients and limiting vagal responses in rehabilitation-responsive CSM patients.

  8. Automatic learning rate adjustment for self-supervising autonomous robot control

    Science.gov (United States)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    Described is an application in which an Artificial Neural Network (ANN) controls the positioning of a robot arm with five degrees of freedom by using visual feedback provided by two cameras. This application and the specific ANN model, local liner maps, are based on the work of Ritter, Martinetz, and Schulten. We extended their approach by generating a filtered, average positioning error from the continuous camera feedback and by coupling the learning rate to this error. When the network learns to position the arm, the positioning error decreases and so does the learning rate until the system stabilizes at a minimum error and learning rate. This abolishes the need for a predetermined cooling schedule. The automatic cooling procedure results in a closed loop control with no distinction between a learning phase and a production phase. If the positioning error suddenly starts to increase due to an internal failure such as a broken joint, or an environmental change such as a camera moving, the learning rate increases accordingly. Thus, learning is automatically activated and the network adapts to the new condition after which the error decreases again and learning is 'shut off'. The automatic cooling is therefore a prerequisite for the autonomy and the fault tolerance of the system.

  9. Image processing for navigation on a mobile embedded platform: design of an autonomous mobile robot

    Science.gov (United States)

    Loose, Harald; Lemke, Christiane; Papazov, Chavdar

    2006-02-01

    This paper deals with intelligent mobile platforms connected to a camera controlled by a small hardware-platform called RCUBE. This platform is able to provide features of a typical actuator-sensor board with various inputs and outputs as well as computing power and image recognition capabilities. Several intelligent autonomous RCBUE devices can be equipped and programmed to participate in the BOSPORUS network. These components form an intelligent network for gathering sensor and image data, sensor data fusion, navigation and control of mobile platforms. The RCUBE platform provides a standalone solution for image processing, which will be explained and presented. It plays a major role for several components in a reference implementation of the BOSPORUS system. On the one hand, intelligent cameras will be positioned in the environment, analyzing the events from a fixed point of view and sharing their perceptions with other components in the system. On the other hand, image processing results will contribute to a reliable navigation of a mobile system, which is crucially important. Fixed landmarks and other objects appropriate for determining the position of a mobile system can be recognized. For navigation other methods are added, i.e. GPS calculations and odometers.

  10. LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies

    Science.gov (United States)

    Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.

    2010-01-01

    Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.

  11. Ultra-miniature omni-directional camera for an autonomous flying micro-robot

    Science.gov (United States)

    Ferrat, Pascal; Gimkiewicz, Christiane; Neukom, Simon; Zha, Yingyun; Brenzikofer, Alain; Baechler, Thomas

    2008-04-01

    CSEM presents a highly integrated ultra-miniature camera module with omni-directional view dedicated to autonomous micro flying devices. Very tight design and integration requirements (related to size, weight, and power consumption) for the optical, microelectronic and electronic components are fulfilled. The presented ultra-miniature camera platform is based on two major components: a catadioptric lens system and a dedicated image sensor. The optical system consists of a hyperbolic mirror and an imaging lens. The vertical field of view is +10° to -35°.The CMOS image sensor provides a polar pixel field with 128 (horizontal) by 64 (vertical) pixels. Since the number of pixels for each circle is constant, the unwrapped panoramic image achieves a constant resolution in polar direction for all image regions. The whole camera module, delivering 40 frames per second, contains optical image preprocessing for effortless re-mapping of the acquired image into undistorted cylindrical coordinates. The total weight of the complete camera is less than 5 g. The system's outer dimensions are 14.4 mm in height, with a 11.4 mm x 11.4 mm foot print. Thanks to the innovative PROGLOGTM, a dynamic range of over 140 dB is achieved.

  12. An Improved FastSLAM System Based on Distributed Structure for Autonomous Robot Navigation

    Directory of Open Access Journals (Sweden)

    Fu-jun Pei

    2014-01-01

    Full Text Available Fast simultaneous localization and mapping (FastSLAM is an efficient algorithm for autonomous navigation of mobile vehicle. However, FastSLAM must reconfigure the entire vehicle state equation when the feature points change, which causes an exponential growth in quantities of computation and difficulties in isolating potential faults. In order to overcome these limitations, an improved FastSLAM, based on the distributed structure, is developed in this paper. There are two state estimation parts designed in this improved FastSLAM. Firstly, a distributed unscented particle filter is used to avoid reconfiguring the entire system equation in the vehicle state estimation part. Secondly, in the landmarks estimation part, the observation model is designed as a linear one to update the landmarks states by using the linear observation errors. Then, the convergence of the proposed and improved FastSLAM algorithm is given in the sense of mean square. Finally, the simulation results show that the proposed distributed algorithm could reduce the computational complexity with high accuracy and high fault-tolerance performance.

  13. Robotics_MobileRobot Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Robots and rovers exploring planets need to autonomously navigate to specified locations. Advanced Scientific Concepts, Inc. (ASC) and the University of Minnesota...

  14. Biomass feeds vegetarian robot; Biomassa voedt vegetarische robot

    Energy Technology Data Exchange (ETDEWEB)

    Van den Brandt, M. [Office for Science and Technology, Embassy of the Kingdom of the Netherlands, Washington (United States)

    2009-09-15

    This brief article addresses the EATR robot (Energetically Autonomous Tactical Robot) that was developed by Cyclone Power and uses biomass as primary source of energy for propulsion. [Dutch] Een kort artikel over de door Cyclone Power ontwikkelde EATR-robot (Energetically Autonomous Tactical Robot) die voor de voortdrijving biomassa gebruikt als primaire energiebron.

  15. Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot

    Science.gov (United States)

    Jacob, John S.; Gunderson, Robert W.; Fullmer, R. R.

    1998-08-01

    A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle.

  16. Low Cost Semi-Autonomous Agricultural Robots In Pakistan-Vision Based Navigation Scalable methodology for wheat harvesting

    OpenAIRE

    Ahmad, Muhammad Zubair; Akhtar, Ayyaz; Khan, Abdul Qadeer; Khan, Amir Ali; Khan, Muhammad Murtaza

    2015-01-01

    Robots have revolutionized our way of life in recent years.One of the domains that has not yet completely benefited from the robotic automation is the agricultural sector. Agricultural Robotics should complement humans in the arduous tasks during different sub-domains of this sector. Extensive research in Agricultural Robotics has been carried out in Japan, USA, Australia and Germany focusing mainly on the heavy agricultural machinery. Pakistan is an agricultural rich country and its economy ...

  17. Master's in Autonomous Systems: An Overview of the Robotics Curriculum and Outcomes at ISEP, Portugal

    Science.gov (United States)

    Silva, E.; Almeida, J.; Martins, A.; Baptista, J. P.; Campos Neves, B.

    2013-01-01

    Robotics research in Portugal is increasing every year, but few students embrace it as one of their first choices for study. Until recently, job offers for engineers were plentiful, and those looking for a degree in science and technology would avoid areas considered to be demanding, like robotics. At the undergraduate level, robotics programs are…

  18. Research on Random Rotating Angle of Autonomous Mobile Robot%自主式移动机器人任意转角运动研究

    Institute of Scientific and Technical Information of China (English)

    翟永君

    2012-01-01

    文章结合AS-UII型自主移动机器人的结构,针对其任意角实现的困难,给出任意转角运动的算法思想,并进行实现,通过测试表明本文给出的算法切实可行。%Based on the structure of the autonomous mobile robot of AS-UII and the difficulties in realizing random rotating angle,the algorithm thinking of random rotating angle is given and achieved.The paper shows the algorithm is feasible through the test.

  19. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  20. Robots

    Institute of Scientific and Technical Information of China (English)

    驷萍

    1997-01-01

    一篇介绍机器人的文章写得如此耐读,如此清新! 首先.我们弄清了robot一词的来历: It was used first in 1920 in a play by Czcchoslovak writer Karel Capek.The wordrobot comes from the Czech word for slave. 上句提供了一个时间:1920。文章接着便抓住这个时间做文章: 且The word robot.and robots themselves are less than 100 years old.But humanshave been dreaming of real and imaginary copies of themselves for thousands of years. 文章就这样写出了波澜,1920年和 thousands of years自然而然构成了强烈对比。1954年和1960s是两个谈及机器人时不得不一提的时间: In 1954,the world’s first robot was produced in the United States. During the 1960s,the first industrial robots appeared beside human workers infactories.下面这句让我们体味到 the Czech word for slave中的 slave不仅言之有理,而且影视和小说里的机器人“造反”,进而 killed the humans who made them的情节也“事出有因”: What do today’s robots do?Robots do work.Work that human consideruninteresting or dangerous.…do many jobs that people consider tiring. 本文将机器人的“功过”放在一起写,笔

  1. Evolutionary humanoid robotics

    CERN Document Server

    Eaton, Malachy

    2015-01-01

    This book examines how two distinct strands of research on autonomous robots, evolutionary robotics and humanoid robot research, are converging. The book will be valuable for researchers and postgraduate students working in the areas of evolutionary robotics and bio-inspired computing.

  2. Hybridation GPS/Vision monoculaire pour la navigation autonome d'un robot en milieu extérieur

    OpenAIRE

    Codol, Jean-Marie

    2012-01-01

    We are witnessing nowadays the importation of ICT (Information and Communications Technology) in robotics. These technologies will give birth, in upcoming years, to the general public service robotics. This future, if realised, shall be the result of many research conducted in several domains: mechatronics, telecommunications, automatics, signal and image processing, artificial intelligence ... One particularly interesting aspect in mobile robotics is hence the simultaneous localisation and m...

  3. 遥自主移动机器人系统设计及实现%System design and implementation of tele-autonomous mobile robot

    Institute of Scientific and Technical Information of China (English)

    夏桂华; 杨晟; 蔡成涛

    2011-01-01

    Teleoperation control system of autonomous mobile robot was established to solve the incomplete autonomy level of the mobile robots in some specific circumstances. The transmission of panoramic images based on perspective decoding and multi-functional remote control platform based on USB joystick were both developed by the way of wireless networks communication. The fuzzy algorithm for the robot to avoid obstacles independently via ultrasonic sensors, the programme of remote operation of the robot by USB joystick as well as panoramic camera perspective solving principles and video compression were elaborately described in this paper. The experimental results show that the construction of the teleoperation control system can realize a good human-machine interaction, make autonomy of the mobile robot much stronger and more intelligent.%为了解决移动机器人在特定环境下自主性不强的问题,构建了自主移动机器人的遥操作控制系统.通过无线网络传输的通信方式实现了经过透视解算展开后的全景图像的传输和基于USB操纵杆的多功能远程控制平台的开发.详细介绍了机器人利用超声波传感器进行自主模糊避障的算法,利用USB操纵杆对机器人遥操作的程序实现,以及全景摄像头透视解算和视频压缩的方法.实验结果表明,构建的遥操作控制系统可以实现良好的人机交互,使移动机器人的自主性更强,更加智能化.

  4. 一种自主研磨作业机器人动力学仿真%The dynamics simulation of an autonomous grinding robot

    Institute of Scientific and Technical Information of China (English)

    王文忠

    2014-01-01

    研究了一种由直角坐标机构、转动机构和摆动机构构成的自主研磨作业机器人的运动学和动力学分析,以支链构件相对坐标和动平台绝对坐标作为广义坐标,结合Lagrange方法建立了运动学和动力学模型,并利用M atlab软件平台进行了运动学及动力学仿真,仿真结果说明了该模型的正确性与实效性,进而为自主作业机器人的轨迹规划及控制研究提供参考。%T he kinematics and dynamics analysis of an autonomous grinding robot consisted by rectangular coordinates agencies ,rotating mechanism ,and swing mechanism in this paper .The branched-chain member coordinates and moving platform absolute coordinates are used as generalized coordinates .T he kinematics and dynamics models combining with Lagrange method ,and kinematics and dynamics simulations have been made to by using Matlab software platform .The simulation results show the correctness and the effective-ness of the proposed models .Furthermore ,they are the very valuable references for contrail plan and mo-tion control design of the autonomous robot .

  5. 基于光流的自主移动机器人避障系统%Autonomous Mobile Robot Obstacle Avoidance System Based on Optical Flow

    Institute of Scientific and Technical Information of China (English)

    肖雪; 秦贵和; 陈筠翰

    2013-01-01

    Since real-time obstacle avoidance is a key part of mobile robot autonomous navigation, an autonomous mobile robot obstacle avoidance system based on optical flow is proposed. This system’s input is the image sequence grabbed by the camera on the robot in motion. The optical flow information is extracted by Pyramid Lucas-Kanade method to calculate focus of expansion and time to contact. The possible position of the obstacle is estimated with improved balance strategy. Experimental results show that this system can detect and avoid obstacles with the width larger than 10 centimeters but not cover the camera view correctly, which validates the method’s feasibility.%自主移动机器人的导航要求能实时规避障碍物。为解决该问题,提出一种基于光流的自主移动机器人避障系统。将机器人在运动过程中通过摄像头拍摄的连续图像序列作为输入,使用金字塔Lucas-Kanade方法在角点处提取光流信息求解延伸焦点和接近时间,并通过改进的平衡策略估计障碍物可能存在的位置。实验结果表明,该系统在静态场景中能正确地检测并规避宽度大于10 cm,且不完全遮挡摄像头视角的障碍物,可行性较高。

  6. Effects of automation and task load on task switching during human supervision of multiple semi-autonomous robots in a dynamic environment.

    Science.gov (United States)

    Squire, P N; Parasuraman, R

    2010-08-01

    The present study assessed the impact of task load and level of automation (LOA) on task switching in participants supervising a team of four or eight semi-autonomous robots in a simulated 'capture the flag' game. Participants were faster to perform the same task than when they chose to switch between different task actions. They also took longer to switch between different tasks when supervising the robots at a high compared to a low LOA. Task load, as manipulated by the number of robots to be supervised, did not influence switch costs. The results suggest that the design of future unmanned vehicle (UV) systems should take into account not simply how many UVs an operator can supervise, but also the impact of LOA and task operations on task switching during supervision of multiple UVs. The findings of this study are relevant for the ergonomics practice of UV systems. This research extends the cognitive theory of task switching to inform the design of UV systems and results show that switching between UVs is an important factor to consider.

  7. Proceedings of the 1989 CESAR/CEA (Center for Engineering Systems Advanced Research/Commissariat a l'Energie Atomique) workshop on autonomous mobile robots (May 30--June 1, 1989)

    Energy Technology Data Exchange (ETDEWEB)

    Harber, K.S.; Pin, F.G. (Oak Ridge National Lab., TN (USA). Center for Engineering Systems Advanced Research)

    1990-03-01

    The US DOE Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) and the Commissariat a l'Energie Atomique's (CEA) Office de Robotique et Productique within the Directorat a la Valorization are working toward a long-term cooperative agreement and relationship in the area of Intelligent Systems Research (ISR). This report presents the proceedings of the first CESAR/CEA Workshop on Autonomous Mobile Robots which took place at ORNL on May 30, 31 and June 1, 1989. The purpose of the workshop was to present and discuss methodologies and algorithms under development at the two facilities in the area of perception and navigation for autonomous mobile robots in unstructured environments. Experimental demonstration of the algorithms and comparison of some of their features were proposed to take place within the framework of a previously mutually agreed-upon demonstration scenario or base-case.'' The base-case scenario described in detail in Appendix A, involved autonomous navigation by the robot in an a priori unknown environment with dynamic obstacles, in order to reach a predetermined goal. From the intermediate goal location, the robot had to search for and locate a control panel, move toward it, and dock in front of the panel face. The CESAR demonstration was successfully accomplished using the HERMIES-IIB robot while subsets of the CEA demonstration performed using the ARES robot simulation and animation system were presented. The first session of the workshop focused on these experimental demonstrations and on the needs and considerations for establishing benchmarks'' for testing autonomous robot control algorithms.

  8. Autonomous Robot Skill Acquisition

    Science.gov (United States)

    2011-05-01

    once a year: George, Lucy and Clara; Dyl; Andrea and Joanna; Gregor and Becky; Paul and Anjie; Asher ; Fisco; Piet, Wes, James and Blaski; Lauren and...J., Osentoski, S., Jay , G., and Jenkins, O. (2010). Learning from demonstration using a multi-valued function regressor for time-series data. In

  9. Research on the Decision - making of Autonomous Robots Based on the Self - awareness%基于自我意识的自主机器人决策研究

    Institute of Scientific and Technical Information of China (English)

    祝宇虹; 魏金海

    2012-01-01

    研究复杂多变环境下自主机器人的决策控制.为了提高机器人的适应能力,对机器人特性进行了深入分析,提出了通过模拟人类自我意识在机器人上面建立自我意识来提高机器人的自主性的新思路.首先建立机器人自我意识的模糊推理模型,输出就是当前状态下机器人的自我意识,然后输入到CMAC网络中进行学习,最终改善机器人的综合性能.通过对建立的模型进行Matlab仿真实验证明了这种方法的有效性,为提高自主机器人的控制性能提供了新的方法.%This paper focuses on the decision -making of autonomous robots in complex and changeable environment. In order to improve the a-daptability of the robots, the paper analyzes the characteristics of autonomous robots in depth,and presents an new idea about improving the autonomy of the robot by building self - awareness through the simulation human consciousness. First, the robot self - awareness fuzzy reasoning model is established, the output is the robot self -awareness of the current state, then input it to the CMAC network for learning, eventually the comprehensive performance of the robot can be improved. The effectiveness of the approach is proved through the Matlab simulation results of the model, and provides a new method for improving the control performance of autonomous robot.

  10. Fuzzy control coordination based hunting of multiple autonomous robots%基于模糊控制协调策略的多自主机器人围捕

    Institute of Scientific and Technical Information of China (English)

    袁瑗; 焦继乐; 曹志强; 周超

    2011-01-01

    In order to reduce communication and improve the adaptability to unknown environments of multi-robot system, a fuzzy control coordination based hunting approach of multiple autonomous robots was proposed. According to the local sensing information of target and the angle-minimal neighbor teammates, each predator robot chooses the proper one from L-fuzzy controller, R-fuzzy controller and M-fuzzy controller to control the angle between the teammates and itself. With the help of local sensing based target tracking, the predator robots keep a certain angle or move round obstacles properly to pursue the invader cooperatively. Experiments results show the validity of the proposed approach.%为了降低多机器入围捕中的通信量,提高多机器人系统对未知环境的适应性,提出了一种基于模糊控制协调策略的多自主机器入围捕方法.围捕机器人根据感知范围内同伴和目标的分布,从L模糊控制器、R模糊控制器和M模糊控制器中选取合适的一个用以控制和最邻角同伴之间的夹角,进而实现多机器人之间的局部协调,结合基于局部感知的目标跟踪,在围捕过程中保持一定夹角或者以较合适的方式绕过障碍物,完成对智能入侵者的围捕.实验结果验证了该方法的可行性.

  11. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot.

    Science.gov (United States)

    Kitson, Philip J; Glatzel, Stefan; Cronin, Leroy

    2016-01-01

    An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic 'programs' which can run on similar low cost, user-constructed robotic platforms towards an 'open-source' regime in the area of chemical synthesis.

  12. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot

    Science.gov (United States)

    Kitson, Philip J; Glatzel, Stefan

    2016-01-01

    An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis. PMID:28144350

  13. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot

    Directory of Open Access Journals (Sweden)

    Philip J. Kitson

    2016-12-01

    Full Text Available An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis.

  14. 全自主机器人足球系统的全局地图构建研究%Building global map in autonomous robot soccer system

    Institute of Scientific and Technical Information of China (English)

    张学习; 杨宜民; 谢云

    2011-01-01

    This paper is concerned with the cooperation between robots in building a global map. Based on the local map-building through multi-sensors carried by a single robot, this paper studies the monocular front-vision modeling method. Meanwhile, we elaborate two information fusion methods: density-based spatial clustering of applications with noise(DBSCAN) clustering algorithm and maximum likelihood estimate fusion algorithm. By these two methods, the in- formation about the location of opponent robots and the information about the location of the ball are fused, thus, a global map is built. Experimental results show that through the cooperation of robots, a global map can be accurately built, which compensates the information limitation in sensors of each single robot, and meets requirements in map-building in the dynamic environment of autonomous robot soccer tournament.%研究和讨论了如何通过多机器人的协作,实现全局地图的构建.在单个机器人通过自身携带的多传感器进行局部地图构建的基础上,研究了前向单目视觉传感器的建模方法,在此观测模型的基础上,用极大似然融合算法对球的位置信息进行融合,而对于多机器人返回的对方机器人位置信息,使用基于密度的空间聚类算法(DBSCAN)进行信息融合,从而实现全局地图构建.实验结果表明,通过多机器人的协作,可以准确地构建出全局地图,弥补了单个机器人自身传感器的有限感知范围,本文研究的方法完全满足全自主机器人足球比赛中动态环境地图构建的需要.

  15. RESEARCH ON KEY TECHNIQUES AND DEVELOPMENT OF OUTDOOR INTELLIGENT AUTONOMOUS MOBILE ROBOT%室外智能移动机器人的发展及其关键技术研究

    Institute of Scientific and Technical Information of China (English)

    欧青立; 何克忠

    2000-01-01

    Outdoor intelligent autonomous mobile robot that will be applied widely is one of hotspots in theresearch of the robot. This paper analyzes some representative outdoor mobile robots, and surveys the studystatus and the development of the key techniques in the research of the outdoor autonomous mobile robots.The key techniques include the control architecture of mobile robots, the real-time processing of robot visualinformations, the position system of the vehicle, the integration and fusion of multisensor informations, thepath planning and the vehicle control.%室外智能移动机器人有着广泛的应用前景,是机器人研究中的热点之一.本文分析了在室外移动机器人发展中有着代表意义的几个典型系统,进而论述了室外移动机器人研究中的若干关键技术的研究现状及发展水平.这些关键技术包括移动机器人的控制体系结构、机器人视觉信息的实时处理技术、车体的定位系统、多传感器信息的集成与融合技术以及路径规划技术与车体控制技术等.

  16. Stratégies de perception et de déplacement pour la navigation d'un robot mobile autonome en environnement naturel

    OpenAIRE

    Lacroix, Simon

    1995-01-01

    Cette thèse porte sur la détermination autonome de stratégies de navigation pour un robot mobile évoluant dans un environnement extérieur initialement inconnu et non structuré. Ces stratégies concernent le choix de buts intermédiaires à rallier pour atteindre un but final, d'un mode de déplacement à appliquer, et de la prochaine tâche de perception à effectuer. Le mémoire est composé de deux parties: la première présente les algorithmes développés afin de construire une représentation topolog...

  17. Habituation: a non-associative learning rule design for spiking neurons and an autonomous mobile robots implementation.

    Science.gov (United States)

    Cyr, André; Boukadoum, Mounir

    2013-03-01

    This paper presents a novel bio-inspired habituation function for robots under control by an artificial spiking neural network. This non-associative learning rule is modelled at the synaptic level and validated through robotic behaviours in reaction to different stimuli patterns in a dynamical virtual 3D world. Habituation is minimally represented to show an attenuated response after exposure to and perception of persistent external stimuli. Based on current neurosciences research, the originality of this rule includes modulated response to variable frequencies of the captured stimuli. Filtering out repetitive data from the natural habituation mechanism has been demonstrated to be a key factor in the attention phenomenon, and inserting such a rule operating at multiple temporal dimensions of stimuli increases a robot's adaptive behaviours by ignoring broader contextual irrelevant information.

  18. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.

    Science.gov (United States)

    McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-07-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.

  19. Research of Path Planning of Autonomous Robot in Dynamic Environment%一种移动机器人动态环境下的路径规划

    Institute of Scientific and Technical Information of China (English)

    唐建平; 宋红生; 王东署

    2012-01-01

    一种动态环境下自主机器人路径规划的方法由趋于目标的全局运动规划和躲避障碍物的局部运动规划两部分组成.首先通过栅格法建立机器人的工作环境,利用蚁群算法初步规划出机器人的全局优化路径;在此基础上,采用滚动窗口的方法进行局部环境探测和碰撞预测,对动态障碍物实行局部避碰,使机器人安全顺利地到达目的地.该方法适用于环境中同时存在静止和动态障碍物的情况.仿真结果证明该方法有效.%A method of path planning for autonomous robot was proposed. The method had two parts including global path planning towards target and local path planning for obstacles avoidance. First, the work environment for the robot was established with grid method. Then a global path was planned using ant colony algorithm, and rolling windows which predicted collision in dynamic environment was adopted to avoid the robot obstacles. The method applied to the circumstances existing static and dynamic obstacles. Finally, the simulation results showed the effectiveness of the method.

  20. Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Andersen, Jens Christian

    2007-01-01

    Abstract Robots will soon take part in everyone’s daily life. In industrial production this has been the case for many years, but up to now the use of mobile robots has been limited to a few and isolated applications like lawn mowing, surveillance, agricultural production and military applications....... The research is now progressing towards autonomous robots which will be able to assist us in our daily life. One of the enabling technologies is navigation, and navigation is the subject of this thesis. Navigation of an autonomous robot is concerned with the ability of the robot to direct itself from...

  1. Behavior-Based Approach for the Detection of Land Mines Utilizing off the Shelf Low Cost Autonomous Robot

    Directory of Open Access Journals (Sweden)

    Abdel Ilah Nour Alshbatat

    2013-03-01

    Full Text Available Several countries all of the world are affected by landmines. The presence of mines represents a major threat to lives and causes economic problems. Currently, detecting and clearing mines demand specific expertise with special equipment. In this context, this paper offers the design and development of an intelligent controller which can control and enable the robot to detect mines by means of sensors and of processing the fused information to guide soldiers when passing landmines.  This is accomplished by broken down the overall system into two subsystems: sensor technologies and robotic device. Sensors devices include infrared distance sensor, metal detector, ultrasonic range finder, accelerometer sensor, while the structure of the robot in our case consists mainly  of a commercial  off-the-shelf  parts which  are  available  at  low  costs. The proposed controller is mainly based on creating fuzzy rules that reflect the behaviors of soldier beings in controlling a robot in a well known landmine. Simulation and experimental results are presented her to prove the efficiency of the proposed approach. The results show that the system is able to detect landmines and guide soldiers while crossing mines area.

  2. Robotics

    Science.gov (United States)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  3. 自主导航避障移动机器人仿真软件设计%The design of simulation software for autonomous navigation and obstacle avoidance mobile robot

    Institute of Scientific and Technical Information of China (English)

    刘磊; 许晓鸣

    2011-01-01

    设计了一款可实现移动机器人自主导航避障的仿真软件,该软件包括机器人运行环境仿真与机器人运动控制仿真2部分.其中运行环境仿真部分提供了机器人的障碍环境即运行地图,机器人运动控制仿真部分分别模拟了机器人雷达、导航避障算法及机器人运动.首先讨论了软件框架,实现了机器人“传感-思考-执行”的运行机制;然后详细介绍了机器人雷达仿真的软件原理;再利用矢量场直方图算法控制机器人自主导航避障;最后利用龙格库塔四阶方法对机器人线性模型进行运动仿真解算.实验结果证明了该软件方案的有效性与可行性.%A software was designed to implement autonomous navigation and obstacle avoidance mobile robot simulation. The software includes robot environment and robot motion control simulation. The robot environment simulation provides the obstacle environment, I. E. The map. The robot motion control simulation program simulates the robot radar, navigation algorithm, obstacle avoidance algorithm and robot motion. Firstly, the framework of the software was discussed, which can implement robot sense-think-act operation mechanism. Then, it described the software principle of robot radar simulation in detail and used vector field histogram algorithm to control robot for autonomous navigation and obstacle avoidance. Finally, the paper used Runge-Kutta 4th method to solve robot linear model for simulating robot motion. The validity and feasibility of this software method was confirmed by the experiments.

  4. Walking control of small size humanoid robot: HAJIME ROBOT 18

    Science.gov (United States)

    Sakamoto, Hajime; Nakatsu, Ryohei

    2007-12-01

    HAJIME ROBOT 18 is a fully autonomous biped robot. It has been developed for RoboCup which is a worldwide soccer competition of robots. It is necessary for a robot to have high mobility to play soccer. High speed walking and all directional walking are important to approach and to locate in front of a ball. HAJIME ROBOT achieved these walking. This paper describes walking control of a small size humanoid robot 'HAJIME ROBOT 18' and shows the measurement result of ZMP (Zero Moment Point). HAJIME ROBOT won the Robotics Society of Japan Award in RoboCup 2005 and in RoboCup 2006 Japan Open.

  5. The research of mobile robot's infrared remote control and autonomous obstacle avoidance technology%移动机器人红外遥控及自主避障技术研究

    Institute of Scientific and Technical Information of China (English)

    孙俊焘

    2014-01-01

    The infrared remote control and autonomous obstacle avoidance technology of the mobile robot platform was researched. The technic of the infrared sending and incepting which was controlled by microcontroller was used to control the mobile robot remotely.Microcontroller was used as the examination and the control core of the remote controlled mobile robot platform. We will research Mobile robot's autonomous obstacle avoidance use of infrared sensing technology. The experiments show that robot infrared remote control platform to achieve control of the microcontroller features and remote control functions.%本文针对移动机器人平台特别是机械手的红外。控以及自主避障技术进行了初步研究。采用单片机的红外线编码和解码技术来实现该移动机器人平台的。控。使用单片机作为。控机器人的平台的检测和控制核心,并且基于红外传感技术研究其实现自主避障的可行方法。实验证明,移动机器人的红外。控平台能够实现单片机控制的多种功能和。控功能。

  6. 自主式追踪机器人终端行为的 Petri 网建模%Terminal behavior modeling for autonomous tracking robots using Petri nets

    Institute of Scientific and Technical Information of China (English)

    孔庆艳; 袁杰; 郭俊辉

    2016-01-01

    针对含有资源流动和信息交互的终端行为建模问题,提出了一种混合Petri网行为建模方法。引入活性变迁和惰性变迁两种变迁模式,描述终端行为的耦合、制约、异步关系。建立混合Petri网模型,揭示化学羽流追踪终端各行为之间的交互关系,以Robotics模块为验证与分析工具,仿真机器人终端运动过程,同时获得六个关节角度变化的平稳曲线。最后,在六自由度串联机器人平台加以验证。实验结果表明,该混合Petri网模型客观真实地表达对象内部逻辑关系与交互作用机制,对自主式羽流追踪机器人终端行为建模是有效可行的。%Focused on the issue that the terminal behavior modeling contains resource flowing and information interaction,this paper proposed a behavior modeling method of hybrid Petri net.Firstly,it introduced the active transitions and inertia transi-tions and described the coupling,restriction,and asynchronous relationships among behaviors.Secondly,the hybrid Petri net model showed the interactions among the various terminal behaviors during a chemical plume tracking process.It used a Robo-tics module as the verification and analysis tools for simulating the robot terminal movements,and obtained the smooth curves of six joints angle changes.Finally,it verified the method in a 6-DOF industrial robot platform.The results show that the hy-brid Petri nets model can truly express the internal logical relationships and the interaction mechanisms of objects.Terminal behavior models are effective and feasible for autonomous robots to track plumes.

  7. An architecture for ethical robots

    OpenAIRE

    2016-01-01

    Robots are becoming ever more autonomous. This expanding ability to take unsupervised decisions renders it imperative that mechanisms are in place to guarantee the safety of behaviours executed by the robot. Moreover, smart autonomous robots should be more than safe; they should also be explicitly ethical -- able to both choose and justify actions that prevent harm. Indeed, as the cognitive, perceptual and motor capabilities of robots expand, they will be expected to have an improved capacity...

  8. Development of an Accurate Low-cost Ultrasonic Localization System for Autonomous Mobile Robots in Indoor Environments

    Institute of Scientific and Technical Information of China (English)

    Yong-hwi KIM; Ui-kyu SONG; Byung-kook KIM

    2010-01-01

    An accurate low-cost ultrasonic localization system is developed for automated nobile robots in indoor environments,which is essential for automatic navigation of mobile robots with various tasks.Although ultrasonic sensors are more cost-effective than other sensors such as Laser Range Finder(LR F)and visit,but they are inaccurate and directionally ambiguous.First,the matched filter is used to measure the distance accurately.For resolving the computational complexity of the matched filter,a new matched filter algorithm with simple computation is proposed.Then,an ultrasonic localization system is peoposed which consists of three ultrasonic receivers and two or more transmitters for improving position and orientation accuracy was developed.Finally,an extended Kalman filter is designed to estimate both the static and dynamic positions and orientations.Various simulations and experimental results show that the proposed system is effective.

  9. The Autonomous Robot Competition of FIRA' 2001%FIRA'2001全自主式机器人竞赛系统

    Institute of Scientific and Technical Information of China (English)

    梁冰; 洪炳熔

    2003-01-01

    详细介绍了国际机器人足球联盟FIRA(Federation of International Robot-soccer Association)于2001年在北京举办的全自主机器人比赛系统.详细描述了该类机器人的技术特点、工作方式,以及比赛中涉及到的一些关键性技术.

  10. Wall Sensing for an Autonomous Robot With a Three-Dimensional Time-of-Flight (3-D TOF) Camera

    Science.gov (United States)

    2011-02-01

    extensively in the realm of extracting planes from point clouds . One group works out of Jacobs University, Bremen, and is anchored by Andreas Birk...Extracted From Range Sensor Point - Clouds . Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, 2009...Birk, A.; Pathak, K.; Poppinga, J. Fast Detection of Polygons in 3-D Point Clouds From Noise-Prone Range Sensors. Proceedings of the International

  11. Toward Integrated Soccer Robots

    OpenAIRE

    Shen, Wei-Min; Adibi, Jafar; Adobbati, Rogelio; Cho, Bonghan; Erdem, Ali; Moradi, Hadi; Salemi, Behnam; Tejada, Sheila

    1998-01-01

    Robot soccer competition provides an excellent opportunity for integrated robotics research. In particular, robot players in a soccer game must recognize and track objects in real time, navigate in a dynamic field, collaborate with teammates, and strike the ball in the correct direction. All these tasks demand robots that are autonomous (sensing, thinking, and acting as independent creatures), efficient (functioning under time and resource constraints), cooperative (collaborating with each ot...

  12. Niche pseudo-parallel genetic algorithms for path optimization of autonomous mobile robot%小生境伪并行遗传算法在全自主移动机器人路径规划中的应用

    Institute of Scientific and Technical Information of China (English)

    沈志华; 赵英凯; 吴炜炜

    2006-01-01

    A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic op timization of autonomous mobile robot. The NPPGA is an effective improvement to maintain the population diversity as well for the sake of avoiding premature and strengthen parallelism of the population to accelerate the search process combined with niche genetic algorithms and pseudo-parallel genetic algorithms. The proposed approach is evaluated by robotic path optimization, which is a specific application of traveler salesman problem (TSP). Experimental results indicated that a shortest path could be obtained in the practical traveling salesman problem named "Robot tour around Pekin", and the performance conducted by NPPGA is better than simple genetic algorithm (SGA) and distributed paralell genetic algorithms (DPGA).

  13. Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot.

    Science.gov (United States)

    Amador-Angulo, Leticia; Mendoza, Olivia; Castro, Juan R; Rodríguez-Díaz, Antonio; Melin, Patricia; Castillo, Oscar

    2016-09-09

    A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm.

  14. Autonomous Integrated Navigation for Indoor Robots Utilizing On-Line Iterated Extended Rauch-Tung-Striebel Smoothing

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2013-11-01

    Full Text Available In order to reduce the estimated errors of the inertial navigation system (INS/Wireless sensor network (WSN-integrated navigation for mobile robots indoors, this work proposes an on-line iterated extended Rauch-Tung-Striebel smoothing (IERTSS utilizing inertial measuring units (IMUs and an ultrasonic positioning system. In this mode, an iterated Extended Kalman filter (IEKF is used in forward data processing of the Extended Rauch-Tung-Striebel smoothing (ERTSS to improve the accuracy of the filtering output for the smoother. Furthermore, in order to achieve the on-line smoothing, IERTSS is embedded into the average filter. For verification, a real indoor test has been done to assess the performance of the proposed method. The results show that the proposed method is effective in reducing the errors compared with the conventional schemes.

  15. Survey on research and development of reconfigurable modular robots

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-08-01

    Full Text Available This article presents a comprehensive survey of reconfigurable modular robots, which covers the origin, history, the state of the art, key technologies, challenges, and applications of reconfigurable modular robots. An elaborative classification of typical reconfigurable modular robots is proposed based on the characteristics of the modules and the reconfiguration mechanism. As the system characteristics of reconfigurable modular robots are mainly dependent on the functions of modules, the mechanical and electrical design features of modules of typical reconfigurable modular robots are discussed in detail. Furthermore, an in-depth comparison analysis is conducted, which encompasses discussions of module shape, module degrees of freedom, module attribute, connection mechanisms, interface autonomy, locomotion modes, and workspace. Meanwhile, many reconfigurable modular robot researches focus on the study of self-X capabilities (i.e. self-reconfiguration, self-assembly, self-adaption, etc., which embodies autonomy performance of reconfigurable modular robots in certain extent. An evolutionary cobweb evaluation model is proposed in this article to evaluate the autonomy level of reconfigurable modular robots. Although various reconfigurable modular robots have been developed and some of them have been put into practical applications such as search and rescue missions, there still exist many open theoretical, technical, and practical challenges in this field. This work is hopefully to offer a reference for the further developments of reconfigurable modular robots.

  16. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J.

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  17. Sample Return Robot Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Challenge requires demonstration of an autonomous robotic system to locate and collect a set of specific sample types from a large planetary analog area and...

  18. A Path Planning Algorithm Based on Convex Hull for Autonomous Service Robot%一种基于凸壳的智能服务机器人路径规划算法

    Institute of Scientific and Technical Information of China (English)

    杨毅; 刘亚辰; 刘明阳; 付梦印

    2011-01-01

    A path planning algorithm based on convex hull is applied to autonomous service robot in this paper. Firstly, the coordinates of ball positions are determined by using Haar-like features classifier, the coordinate of robot's position and its heading are determined by using the method based on color model. According to the features of the robot itself, the balls in a certain range can be treated as one target point. Then a better ball-picking path is elaborated with a path planning algorithm based on convex hull, which takes the target points as the input of algorithm. The algorithm alleviates the robot's motion cost and improves the ball-picking efficiency of the autonomous service robot obviously.%将一种基于凸壳的路径规划算法应用于体育场智能服务机器人,首先采用基于Haar特征分类器的方法确定球的坐标,采用基于颜色模型的方法确定机器人的位置及航向,并根据机器人的自身特点,将一定范围内的多个球视为一个目标点处理;然后以目标点坐标作为算法输入,采用基于凸壳的路径规划算法得到一条较优的捡球路径.该算法可以降低机器人的捡球运动代价,有效提高机器人的捡球效率.

  19. Hybrid Motion Planning Method for Autonomous Robots Using Kinect Based Sensor Fusion and Virtual Plane Approach in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Doopalam Tuvshinjargal

    2015-01-01

    Full Text Available A new reactive motion planning method for an autonomous vehicle in dynamic environments is proposed. The new dynamic motion planning method combines a virtual plane based reactive motion planning technique with a sensor fusion based obstacle detection approach, which results in improving robustness and autonomy of vehicle navigation within unpredictable dynamic environments. The key feature of the new reactive motion planning method is based on a local observer in the virtual plane which allows the effective transformation of complex dynamic planning problems into simple stationary in the virtual plane. In addition, a sensor fusion based obstacle detection technique provides the pose estimation of moving obstacles by using a Kinect sensor and a sonar sensor, which helps to improve the accuracy and robustness of the reactive motion planning approach in uncertain dynamic environments. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles even in hostile environments where conventional method failed.

  20. Autonomous surveillance for biosecurity.

    Science.gov (United States)

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance.

  1. Programming and Realization of Collaboration Functions of Self-reconfigurable Robots%自重构机器人协作功能的规划与实现

    Institute of Scientific and Technical Information of China (English)

    姚俊武

    2010-01-01

    自重构机器人是一组具有重构功能的自主微小型机器人团队,具有较强的灵活性和隐蔽性,在军事侦察、灾情救助、空间作业等场合具有广阔的应用前景.因单个机器人的环境信息感知能力、越障能力等都较差,使微小型机器人的应用受到了很大制约.通过自重构机器人协作决策、协作定位、地形侦察、重构与越障等协作功能的规划并实现,有效地增强机器人系统适应动态环境的能力,提高多机器人系统的整体性能,拓展了机器人的应用领域.

  2. Toward robot ethics through the ethics of autism

    OpenAIRE

    2011-01-01

    The aim of this chapter is to present an ethical landscape for humans and autonomous robots in the future of a physicalistic world, and which will touch mainly on a framework of robot ethics rather than the concrete ethical problems possibly caused by recent robot technologies. It might be difficult to find sufficient answers to such ethical problems as those occurring with future military robots unless we understand what autonomy in autonomous robots exactly implies for robot ethics. This ch...

  3. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  4. Robotic transportation.

    Science.gov (United States)

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions.

  5. Self-localization for middle autonomous soccer robot%一种中型自主足球机器人自定位方法

    Institute of Scientific and Technical Information of China (English)

    丘柳东; 王牛; 李祖枢

    2011-01-01

    针对RoboCup中型自主足球机器人比赛中的自定位要求,提出了一种新的自定位方法.利用电子罗盘获取航向角度,根据航向角度将全向视觉获取的白线初始信息转换为白线的半全局信息;利用白线实垂交类型、辅助白线的距离与角度信息,结合定位区域优先度算法确定机器人所在的最终定位区域;根据定位区域内两条实垂交白线的交点位置关系得到机器人在场地中的位置,实现自定位,并讨论该方法对全向视觉观测范围的要求.实际场地的实验结果,验证了该方法的有效性.%According to the self-localization requirement of RoboCup middle autonomous soccer robot, this paper presents a new self-localization method.Obtain the orientation by electronic compass,and change the white line information gained by all-directional vision, to past-global information through the orientation.Use the while line true vertical intersection type, the length and distance of assistant white line, localization area priority algorithm to identify the best area for localization. Obtaine the pose by the information of the intersection point, which belongs to the true vertical intersection while line.This paper discusses the observation range of all-directional vision for this method.The experiments show the validity for the presented method.

  6. 基于里程计和PTZ视觉的移动机器人自定位%Autonomous localization of mobile robot based on odometer and PTZ vision

    Institute of Scientific and Technical Information of China (English)

    牛国臣; 徐萍; 冯琦

    2011-01-01

    针对机器人长距离运行时里程计定位存在累积误差问题,提出一种基于里程计和PTZ视觉的移动机器人自定位算法.提出了中断式S形搜索策略的概念,设计了基于有限自动机的视觉定位方法;分析了里程计和视觉定位误差来源,分别建立了其定位信度模型;并基于该模型建立里程计和PTZ视觉定位的框架.针对视觉定位及里程计视觉复合定位分别进行了实验,结果验证了该方法的有效性和实用性.%To reduce the influence of cumulative odometer localization error, an autonomous localization approach for mobile robot based on odometer and Pan-Tilt-Zoom (PTZ) vision was presented. Interrupt S-shaped searching strategy was put forward, as well as a vision localization approach based on finite automaton. The position credibility models of odometer and PTZ vision were established according to their positioning error sources. A localization framework combining odometer and PTZ vision based on real-time position credibility was designed. An application experiment of vision localization and localization using odometer and PTZ vision was carried out. The validity and practicability of the method are confirmed.

  7. Heterogeneous Multi-Robot Cooperation

    Science.gov (United States)

    1994-02-01

    the objects the robots manipulate are hazardous waste. I have not actually applied the robots to reA toxic waste spills, since they are simply small...1993] Bruce Randall Donald, James Jennings, and Daniela Rus. To- wards a theory of information invariants for cooperating autonomous mobile robots

  8. Sensor fusion for social robotics

    OpenAIRE

    Duffy, Brian R.; Garcia, C; Rooney, Colm, (Thesis); O'Hare, G.M.P.

    2000-01-01

    This paper advocates the application of sensor fusion for the visualisation of social robotic behaviour. Experiments with the Virtual Reality Workbench integrate the key elements of Virtual Reality and robotics in a coherent and systematic manner. The deliberative focusing of attention and sensor fusion between vision systems and sonar sensors is implemented on autonomous mobile robots functioning in standard office environments

  9. Mobile Autonomous Humanoid Assistant

    Science.gov (United States)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  10. Implémentation d'un estimateur de la pose d'un robot mobile type voiture (Car-like) pour la navigation autonome à l'extérieur

    OpenAIRE

    R. CHEMALI; S. MENICHE; T. CHETTIBI

    2015-01-01

    Ce document présente une étude sur l'estimation de la pose des robots mobiles type voiture (Car-like), afin de l'exploiter dans la navigation autonome à l'extérieur, en utilisant le GPS standard comme capteur extéroceptif et l'odomètre comme un capteur proprioceptif. Une architecture d'estimation de la position et de l'orientation est proposée, elle consiste à fusionner les informations issues des capteurs (GPS, odomètre) en utilisant le filtre de Kalman étendu en présence du signal GPS, et ...

  11. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  12. Mobile Intelligent Autonomous Systems

    Directory of Open Access Journals (Sweden)

    Jitendra R. Raol

    2010-01-01

    Full Text Available Mobile intelligent autonomous systems (MIAS is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i perception and reasoning, (ii mobility and navigation,(iii haptics and teleoperation, (iv image fusion/computervision, (v modelling of manipulators, (vi hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii vehicle-robot path and motionplanning/control, (viii human-machine interfaces for interaction between humans and robots, and (ix application of artificial neural networks (ANNs, fuzzy logic/systems (FLS,probabilistic/approximate reasoning (PAR, Bayesian networks(BN and genetic algorithms (GA to the above-mentioned problems. Also, multi-sensor data fusion (MSDF playsvery crucial role at many levels of the data fusion process:(i kinematic fusion (position/bearing tracking, (ii imagefusion (for scene recognition, (iii information fusion (forbuilding world models, and (iv decision fusion (for tracking,control actions. The MIAS as a technology is useful for automation of complex tasks, surveillance in a hazardousand hostile environment, human-assistance in very difficultmanual works, medical robotics, hospital systems, autodiagnosticsystems, and many other related civil and military systems. Also, other important research areas for MIAScomprise sensor/actuator modelling, failure management/reconfiguration, scene understanding, knowledge representation, learning and decision-making. Examples ofdynamic systems considered within the MIAS would be:autonomous systems (unmanned ground vehicles, unmannedaerial vehicles, micro/mini air vehicles, and autonomousunder water vehicles, mobile/fixed robotic systems, dexterousmanipulator robots, mining robots, surveillance systems,and networked/multi-robot systems, to name a few.Defence Science Journal, 2010, 60(1, pp.3-4,

  13. Utilizing Robot Operating System (ROS) in robot vision and control

    OpenAIRE

    Lum, Joshua S.

    2015-01-01

    Approved for public release; distribution is unlimited The Robot Operating System (ROS) is an open-source framework that allows robot developers to create robust software for a wide variety of robot platforms, sensors, and effectors. The study in this thesis encompassed the integration of ROS and the Microsoft Kinect for simultaneous localization and mapping and autonomous navigation on a mobile robot platform in an unknown and dynamic environment. The Microsoft Kinect was utilized for thi...

  14. 一种高精度自主导航定位的葡萄采摘机器人设计%A High Precision Autonomous Navigation Positioning Grape Picking Robot Design

    Institute of Scientific and Technical Information of China (English)

    郭素娜; 张丽; 刘志刚

    2016-01-01

    为了提高葡萄采摘机器人自主导航能力,增强对葡萄成熟度的准确识别功能,降低漏采率和误采率,设计了一种新式的基于RSSI 自主导航和颜色特征提取的葡萄采摘机器人. 该机器人使用 RSSI 定位技术,首先对装有无线传感器的葡萄树进行定位,然后利用机器视觉系统对葡萄的成熟度进行判断,并对满足采摘条件的葡萄使用机械手进行采摘. 对葡萄采摘机器人的性能进行了测试,通过测试发现:机器人对装有传感器的葡萄树的准确识别率达到了95%以上,对葡萄成熟度的判断达到了98%以上,是一种相对高效的葡萄采摘机器人.%In order to improve the autonomous navigation capability of grape picking robot, and strengthen the function of accurate identification of the grape maturity, lower leakage rate and error rate, a new type of autonomous navigation and color feature extraction based on RSSI grape picking robot has been designed.Grape picking robot using RSSI positioning technology first fixing the vine with wireless sensors, then use the machine vision system on grape maturity of judgment, and to meet the use conditions of the grapes picked for picking manipulator.Grape picking robot performance was tested, by testing found that the robot with sensors of vine of accurate recognition rate reached more than 95%, their appreciation of the grape maturity reached more than 98%, high recognition rate,which is a relatively efficient grape picking robot.

  15. Strategy of autonomous visual serving control for space robots%空间机器人自主视觉伺服控制策略

    Institute of Scientific and Technical Information of China (English)

    张国亮

    2012-01-01

    针对传统的空间机器人遥操作控制方法受时延影响严重的问题,基于最新研制的4自由度空间机器人,提出一种基于多目相机的自主复合控制策略.该策略包含了眼在手和眼到手2种相机配置结构,每个相机均具有独立的位姿计算能力,前者保证了伺服控制的精度以及操作的灵活性,后者能够在观察到全局视景的情况下做出伺服控制.为满足机器人视觉实时控制的需求,对视觉处理算法进行了特别考虑.首先,设计了基于多边形形状拟合的特征识别方法,提出曲线矢量数据贪婪算法来处理图像遍历拟合过程中计算密集的问题;其次,结合特征识别结果和模型目标的空间信息,提出基于弱透视模型的单目位姿估算及优化算法;最后,依据所提策略在实验室环境中完成了自主导航及捕获任务,验证了在较低层次进行这种复合控制的可行性和有效性.%As time delay will affect the control of teleopration for traditional space robots,a multi-camera hybrid visual serving control method was present based on the newest developed 4DOF space robot.The hybrid scheme consists of an eye-in-hand camera and eye-to-hand camera configuration and each camera has the capability of determining pose of target independently.The first one guarantees good accuracy and the ability to explore the workspace;the second one ensures a panoramic sight of the workspace.Suitable vision process algorithm was studied to realize the real-time visual serving control.Firstly,based on polygonal fitting method,the object feature recognition was designed.Furthermore,a greedy algorithm based on curve vector was proposed to reduce the calculation time of Traversal fitting.Secondly,by integrating feature recognition and modular object,monocular pose estimation and optimization algorithm were studied.Finally,an experiment of autonomous navigation and grasp verified the feasibility and effectiveness of proposed

  16. New Progress in the Autonomous Navigation Study of Self-Mobile Robot%自移动式机器人自主导航研究的新进展

    Institute of Scientific and Technical Information of China (English)

    谢伟枫

    2015-01-01

    自移动式机器人的自主导航技术已经取代动作技术,成为机器人研究的核心领域,并涉及到多个学科领域。在定位研究、地图构建和路径规划等关键技术方面,近年来取得了长足进步,为机器在更加复杂的环境下实现自主和智慧移动提供了坚实的基础。文章主要探讨了自移动式机器人自主导航研究的新进展。%The autonomous navigation technology in self-mobile robot has substituted the motion technology to become the core field of robotics research, involving many disciplines. Key technologies such as localization research, map building and path planning, have made considerable progress in recent years, providing a solid foundation for achiev⁃ing Autonomous and sapiential motion in a more complex environment.

  17. Rehearsal for the Robot Revolution

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Goldberg, Ken

    theatre do not allow for editing or special effects. Unlike film, robots onstage must be highly calibrated and run the risk of appearing like over-rehearsed actors. How do artists create engaging performances while ensuring reliable and robust performances? What can robot designers and researchers learn......This paper considers the use of tele-operated and autonomous robots in live performance. Theatre is a conducive to studying what makes robots compelling and engaging. Because theatre is a narrowly defined domain in which robots can excel, it is a useful test bed for exploring issues...... from robot peformances? This paper considers the design and staging of robots in live theatre. Citing examples of machinic performances absent of human actors, interactive robotic art works, human-robot opera, puppetry and traditional spoken-word plays, we demonstrate how creative approaches to robot...

  18. A reconfigurable robot with tensegrity structure using nylon artificial muscle

    Science.gov (United States)

    Wu, Lianjun; de Andrade, Monica Jung; Brahme, Tarang; Tadesse, Yonas; Baughman, Ray H.

    2016-04-01

    This paper describes the design and experimental investigation of a self-reconfigurable icosahedral robot for locomotion. The robot consists of novel and modular tensegrity structures, which can potentially maneuver in unstructured environments while carrying a payload. Twisted and Coiled Polymer (TCP) muscles were utilized to actuate the tensegrity structure as needed. The tensegrity system has rigid struts and flexible TCP muscles that allow keeping a payload in the central region. The TCP muscles provide large actuation stroke, high mechanical power per fiber mass and can undergo millions of highly reversible cycles. The muscles are electrothermally driven, and, upon stimulus, the heated muscles reconfigure the shape of the tensegrity structure. Here, we present preliminary experimental results that determine the rolling motion of the structure.

  19. An Adaptive Robot Game

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Svenstrup, Mikael; Dalgaard, Lars

    2010-01-01

    The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal...... is to improve the mental and physical state of the user by playing a physical game with the robot. Ideally, a robot game should be simple to learn but difficult to master, providing an appropriate degree of challenge for players with different skills. In order to achieve that, the robot should be able to adapt...... to the behavior of the interacting person. This paper presents a simple ball game between a single player and a mobile robot platform. The algorithm has been validated using simulation and real world experiments....

  20. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  1. 在线重力补偿下工程机器人自主作业轨迹跟踪性能分析%Analysis on autonomous task trajectory tracking performance of construction robot with online gravity compensation

    Institute of Scientific and Technical Information of China (English)

    唐新星; 侯敬巍; 倪涛; 张邦成

    2013-01-01

    By the visual feedback and the space position information of the target object of stereo vision camera, the construction robot can realize the autonomous task according to the kinematics analysis and trajectory planning. However, in the process of the autonomous task, because the link mass of construction robot is big, the driving force of the cylinder calculated by the pressure sensors attached at the cylinders will be divided into two parts, one is used for balancing the link gravity, and the other is used for driving the moving of the cylinder. Therefore, the construction robot will overcome the gravity to work in the process of gravity rising along with the lift of boom and swing of arm, and the links gravity of boom and arm will participate in working in the process of gravity fall along with the dropping of boom and swing of arm, this phenomena will influence the moving velocity of construction robot and the effect of the effect of trajectory tracking, especially in the lifting process, moreover, in the process of the links dropping of construction robot, it is dangerous to the construction robot because of the bigger links masses. Aiming at this problem, the dynamics models of construction robot were deduced followed by kinematics analysis, and the least squares method was used for identifying the dynamics parameters, and then online gravity offset method was purposed based on the dynamics parameters, which was used for eliminating the gravity impact from the driving force of the cylinders, and improving the trajectory tracking effect in autonomous task. Finally, experiment was finished on the construction robot test bench, and the experimental results show that the online gravity compensation algorithm could compensate the gravity of construction robot effectively, and eliminate the influence of gravity working to the trajectory planning of construction robot, and the tracking errors under online gravity compensation are smaller than no gravity compensation

  2. 自主移动机器人巡线控制系统设计与实现%Design and implementation on line-tracking control of autonomous mobile robot

    Institute of Scientific and Technical Information of China (English)

    姜华; 王金波; 徐鹏

    2012-01-01

    针对自主移动机器人传统巡线控制中存在的不足,主要完成了机器人控制系统的设计.在使用灰度传感器采集地面轨迹信息的同时,引入角度传感器对行进方向的角度信息进行采集;设计了PID控制加模糊控制的复合控制器,并给出复合控制器算法.在此基础上建立实验系统,仿真结果证明:该控制系统不仅克服了传统巡线控制中单一传感器采集信息不全的缺点,而且有效解决了机器人在遇到大信号时传统PID控制响应时间长、系统不稳定的问题.%Aimed at deficiencies the traditional line-tracking control of autonomous mobile robot, the paper designed mainly the control system of autonomous mobile robot, the gray-scale sensors collect ground tracking information, while angle-sensor is added into collect angle information of traveling direction , proposed a composite controller based on PID and fuzzy control, and the algorithm of composite controller is given. An experimental system is established on this basis, the simulation results show that the shortcoming is overcomed on gathering incomplete information by the single-sensor of the traditional linetracking control, and effectively improved the disadvantages by PID controlling when the robot is in the face of large-signal, for example, a long response time and the instability system.

  3. Autonomous Mapping for Robot Using a Combination of Binocular Stereo Vision and GSOM Algorithm%双目立体视觉和GSOM相结合的机器自主地图构建方法

    Institute of Scientific and Technical Information of China (English)

    于乃功; 王丽

    2011-01-01

    双目立体视觉和自组织可增长特征映射图GSOM (Growing Self-organizing Map)相结合的机器人地图构建方法首先利用双目立体摄像机采集图像,借助双目立体视觉处理技术,将采集到的图像信息转化成神经网络的训练样本;然后利用GSOM的地图绘制算法,通过不断增加新的神经元实现网络规模的增长,用441个SOM神经元便表示了2000个样本点的环境特征信息的拓扑地图,体现了对输入样本分布的逼近特性;实验结果表明双目立体视觉和GSOM相结合的机器人自主地图构建方法可行,并表现出类似生物的自主智能行为.%Autonomous mapping for robot using a combination of binocular stereo vision and GSOM (Growing Self-organizing Map) Algorithm collects images using a binocular stereo camera. After treatment of binocular stereo vision technology, image information generates neural network training samples. Appling GSOM algorithm by continuously increasing new neurons in the growth of network scale, the algorithm uses 441 SOM neurons generate a topologic map which describes 2000 sample' s environmental information and reflects the approximation characteristics of input data distribution. Through testing GSOM mapping algorithm, the experimental results show that autonomous mapping for robot using a combination of binocular stereo vision and GSOM algorithm is feasible; and the system shows similar biological behaviours of autonomous intelligence.

  4. (Mobile robots and intelligent motion control)

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.

    1990-09-07

    The traveler attended the IEEE International Workshop on Intelligent Motion Control, presented a paper entitled Autonomous Trajectory Generation for Mobile Robots with Non-Holonomic and Steering Angel Constraints,'' and chaired the session on mobile robots. Sessions of particular interests to ONRL/CESAR included Mobile Robots 1, 2, and 3, Motion Planning 1 and 2, Flexible Robots, Knowledge-Based Robotics Systems, Multi-Robot Systems, Redundant Robots, and Learning and Fuzzy Control 1 and 2. The traveler also visited the robotics laboratory of Bogazici University and held several discussions on design on redundant, compliant, reconfigurable, and dynamically balanced manipulators.

  5. Intelligent autonomous systems 12. Vol. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukhan [Sungkyunkwan Univ., Gyeonggi-Do (Korea, Republic of). College of Information and Communication Engineering; Yoon, Kwang-Joon [Konkuk Univ., Seoul (Korea, Republic of); Cho, Hyungsuck [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Lee, Jangmyung (eds.) [Pusan National Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2013-02-01

    Recent research in Intelligent and Autonomous Systems. Volume 2 of the proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, jeju Island, Korea. Written by leading experts in the field. Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of ''Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 2 includes contributions devoted to Service Robotics and Human-Robot Interaction and Autonomous Multi-Agent Systems and Life Engineering.

  6. Autonomous Industrial Mobile Manipulation (AIMM)

    DEFF Research Database (Denmark)

    Hvilshøj, Mads; Bøgh, Simon; Nielsen, Oluf Skov

    2012-01-01

    Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper investiga......Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper...... investigates the missing links and gaps between the research and developments efforts and the real-world application requirements, in order to bring the AIMM technology from laboratories to manufacturing environments. The investigation is based on 12 general application requirements for robotics......; sustainability, configuration, adaptation, autonomy, positioning, manipulation and grasping, robot-robot interaction, human-robot interaction, process quality, dependability, and physical properties. Findings - The concise yet comprehensive review provides both researchers (academia) and practitioners (industry...

  7. Autonomous Task Control System of Construction Tele-robot Based on Stereo Vision%基于立体视觉的遥操作工程机器人自主作业系统

    Institute of Scientific and Technical Information of China (English)

    唐新星; 倪涛; 何丽鹏; 张邦成; 高金库

    2012-01-01

    建立了基于立体视觉技术的遥操作工程机器人自主作业控制系统.采用立体视觉技术实现对目标物体的形状自动识别与空间定位,进行了遥操作工程机器人运动学方程求解、运动轨迹规划与控制的研究.针对液压伺服控制系统具有非线性、参数不确定的特点,设计了模糊控制器.最后,在遥操作工程机器人实验台上进行了自主作业控制实验.实验结果表明,所构建的基于立体视觉技术的工程机器人自主作业控制系统,能够完成初步的自主作业任务,且作业过程比较流畅.%In order to enhance the autonomy of construction tele-robot ( CTR) , a complete autonomous task control system of CTR based on stereo vision technology was established. Firstly, automation recognition and space location of the target object were studied by stereo vision and image processing technology. And then, forward and reverse kinematics equations, trajectory planning and control were discussed. To make the autonomous movement smoothly, trajectory function must be continuous and smooth, and expectation joint displacement and velocity would be obtained by forward kinematics equation. A fuzzy controller was designed. Finally, experiments of the autonomous task control were carried out on CTR test-bed. The experiments results indicated that autonomous task control system of CTR based on stereo vision technology was reliable and safe to complete their task, and task process was smooth.

  8. Teleautonomous guidance for mobile robots

    Science.gov (United States)

    Borenstein, J.; Koren, Y.

    1990-01-01

    Teleautonomous guidance (TG), a technique for the remote guidance of fast mobile robots, has been developed and implemented. With TG, the mobile robot follows the general direction prescribed by an operator. However, if the robot encounters an obstacle, it autonomously avoids collision with that obstacle while trying to match the prescribed direction as closely as possible. This type of shared control is completely transparent and transfers control between teleoperation and autonomous obstacle avoidance gradually. TG allows the operator to steer vehicles and robots at high speeds and in cluttered environments, even without visual contact. TG is based on the virtual force field (VFF) method, which was developed earlier for autonomous obstacle avoidance. The VFF method is especially suited to the accommodation of inaccurate sensor data (such as that produced by ultrasonic sensors) and sensor fusion, and allows the mobile robot to travel quickly without stopping for obstacles.

  9. Autonomous Experimentation of Carbon Nanotube Using Response Surface Methods

    Science.gov (United States)

    2015-03-26

    on the unique challenges of creating autonomous research robots . v Table of Contents Page Abstract...direction could represent a small region where a local maximum exists. If outliers or other nuisance factors are continually problematic , experiment...materials research technology, detailed discussion is also provided on the unique challenges of creating autonomous research robots . 15. SUBJECT

  10. OCPA仿生自主学习系统及在机器人姿态平衡控制上的应用%OCPA Bionic Autonomous Learning System and Its Application to Robot Poster Balance Control

    Institute of Scientific and Technical Information of China (English)

    蔡建羡; 阮晓钢

    2011-01-01

    An operant conditioning probabilistic automation (OCPA) bionic autonomous learning system is constructed according to nonlinear, strong-coupling and complex two-wheeled self-balancing robot dynamic system.The OCPA bionic autonomous learning system is a probabilistic automaton based on Skinner operant conditioning whose main character lies in simulating the operant conditioning mechanism of biology.And it has bionic serf-organization function which contains the self-learning and adaptive functions, and thus the OCPA automaton can be used to describe, simulate and design various serf-organization systems.The convergence of operant conditioning learning algorithm of OCPA learning system is proved theoretically.The results of both simulation and experiment applied to two-wheeled robot poster balance control indicate that the OCPA learning system does not require the robot model, and the motion balanced skills of robot are formed, developed and perfected gradually by simulating the operant conditioning mechanism of biology.%针对本质上非线性、强耦合的两轮自平衡机器人复杂动态系统,构造操作条件反射概率自动机(OCPA)仿生自主学习系统.OCPA仿生自主学习系统是一个基于Skinner操作条件反射的概率自动机,主要特征在于模拟生物的操作条件反射机制,具有仿生的自组织功能,包括自学习和自适应功能,可用于描述、模拟、设计各种自组织系统.从理论上分析OCPA学习系统的操作条件反射学习机制的收敛性.应用于两轮机器人姿态平衡控制的仿真和实验结果均表明,设计的OCPA仿生自主学习系统不需要系统的模型,通过模拟生物的操作条件反射机制,自组织地渐进形成、发展和完善其姿态平衡控制技能.

  11. Semi autonomous mine detection system

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.

  12. Semi autonomous mine detection system

    Science.gov (United States)

    Few, Doug; Versteeg, Roelof; Herman, Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude - from an autonomous robotic perspective - the rapid development and deployment of fieldable systems.

  13. Robotics for Learning

    CERN Document Server

    Toh, Dennis; Lim, Matthew; Wee, Loo Kang; Ong, Matthew

    2015-01-01

    Teaching Robotics is about empowering students to create and configure robotics devices and program computers to nurture in students the skill sets necessary to play an active role in society. The robot in Figure 1 focuses on the design of scaffolds and physical assembly methods, coupled with a computer logic program to make that makes it move or behave in a very precise (remote controlled or autonomous) manner. This enables students to investigate, explore and refine the program to affect the robots. The Robotics approach takes into account the increasing popularity of Computer Science and the learning by doing (Schank, Berman, & Macpherson, 1999) approach to solve complex problems and use computers meaningfully in learning (Barron & Darling-Hammond, 2008; Jonassen, Howland, Marra, & Crismond, 2008). In Singapore, teachers and students in Woodlands Ring Secondary and Rulang Primary have incorporated robotics to varying extents into formal and informal curricula. In addition, other less expensive ...

  14. Robotic Surveying

    Energy Technology Data Exchange (ETDEWEB)

    Suzy Cantor-McKinney; Michael Kruzic

    2007-03-01

    ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine

  15. Door Detection Algorithm for Autonomous Navigation Robot Based on Computer Vision%基于计算机视觉的自主导航机器人门检测算法

    Institute of Scientific and Technical Information of China (English)

    陈祥

    2012-01-01

    Door detection problem in Autonomous navigation robot was studied. For robot autonomous navigation area, no - visual sensor is not suitable for closed door detection, so the major work is how to effectively improve the indoor door detection's location. According to indoor door shape characteristic, this paper put forward a computer vision based autonomous navigation robot door detection algorithm. Algorithm only needs monocular vision image collection. According to the height, width and the characteristics of the shape of the door, the door detection can be realized. In the detecting process of, of the door features, the improved linear detection algorithm was used with high detection speed and high efficiency. The experimental results show that this method can be applied in not only a single background of doors, but also the more complex background. The door detection is effective and more robust. Therefore, it has great application value for robot autonomous navigation of home intelligence service.%研究了自主导航机器人中如何有效提高室内房门检测定位的问题.针对导航中非视觉传感器通过探测距离来判断门的位置,而关闭状态的门和周边的墙几乎处于同一平面无法定位,导致检测不准.可根据室内房门的形状特点,提出了一种计算机视觉的自主导航机器人门检测算法,能在单且视觉下进行图像采集,并根据房门的高度、宽度比以及门的形状特征,进而实现图像中门的检测.由于在检测门特征过程中使用了改进了的直线检测算法,因此具有检测速度快、效率高的特点.实验结果表明,与传统非视觉距离探测方法相比,改进方案不仅适用于单一背景下开状态的门检测,更对关闭状态门的检测具有有效性,完成导航平均处理时间约为2.2s,速度较高,对于家庭智能服务机器人的自主导航具有很大的应用价值.

  16. 基于单目视觉的微型空中机器人自主悬停控制%Autonomous hovering control based on monocular vision for micro aerial robot

    Institute of Scientific and Technical Information of China (English)

    张洪涛; 李隆球; 张广玉; 王武义

    2014-01-01

    针对微型空中机器人在室内环境下无法借助外部定位系统实现自主悬停的问题,提出一种基于单目视觉的自主悬停控制方法。采用一种四成分特征点描述符和一个多级筛选器进行特征点跟踪。根据单目视觉运动学估计机器人水平位置;根据低雷诺数下的空气阻力估计机器人飞行速度;结合位置和速度信息对机器人进行悬停控制。实验结果验证了该方法的有效性。%A hovering control method based on onboard monocular vision is proposed to hover a micro aerial robot autonomously, in which there is no external positioning system in indoor environments. A descriptor with four components and a multi-stage filter are used for feature tracking. Horizontal position is estimated according to monocular vision kinematics. Flight speed is estimated according to aerodynamic drag at low Reynolds number. Position and velocity informations are fused to hover the robot. Experimental results show the effectiveness of the proposed approach.

  17. Autonomous navigation system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  18. Autonomous navigation system and method

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  19. 06421 Executive Summary -- Robot Navigation

    OpenAIRE

    Fekete, Sándor; Fleischer, Rudolf; Klein, Rolf; Lopez-Ortiz, Alejandro

    2007-01-01

    For quite a number of years, researchers from various fields have studied problems motivated by Robot Navigation. People in Online Algorithms have developed strategies that can deal with the inherent lack of information an autonomous robot encounters, as it sets out to perform a task in an unknown environment. Computational Geometers have obtained many results on the efficient planning of collision-free motions, and on visibility problems. Scientists and engineers in Robotics have perfected r...

  20. 基于开放式多智能体结构的分布式自主机器人系统%AN OPEN MULTI-AGENT ARCHITECTURE FOR DISTRIBUTED AUTONOMOUS ROBOT SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    陈卫东; 董胜龙; 席裕庚

    2001-01-01

    针对多机器人系统的分布式自主控制,本文首先提出了一种开放式的多智能体结构,给出了设计原则和技术特点.然后面向真实世界的多机器人实时协作任务,采用多台自主移动机器人构造了一个多机器人系统,该系统集成了包括机器人视觉、传感器融合、无线通讯网络以及基于行为控制等多项技术.最后采用基于行为融合的加权方法,实现了多机器人的编队控制,实验结果表明了上述体系结构与方案的有效性.%Focusing on distributed autonomous control of multi-robot system, an open multi-agent architecture (OMAA) is presented. Based on the designing principle and techniques of the OMAA, a multiple mobile robot system is established to perform the cooperative tasks in real time and real world. Some agent technologies have been integrated in the system such as machine vision, sensor fusion, wireless network communication, behavior-based control, etc. Experiment results of multi-robot formation control demonstrate the validity of our scheme.

  1. Robot fish bio-inspired fishlike underwater robots

    CERN Document Server

    Li, Zheng; Youcef-Toumi, Kamal; Alvarado, Pablo

    2015-01-01

    This book provides a comprehensive coverage on robot fish including design, modeling and optimization, control, autonomous control and applications. It gathers contributions by the leading researchers in the area. Readers will find the book very useful for designing and building robot fish, not only in theory but also in practice. Moreover, the book discusses various important issues for future research and development, including design methodology, control methodology, and autonomous control strategy. This book is intended for researchers and graduate students in the fields of robotics, ocean engineering and related areas.

  2. [Autonomic neuropathies].

    Science.gov (United States)

    Siepmann, T; Penzlin, A I; Illigens, B M W

    2013-07-01

    Autonomic neuropathies are a heterogeneous group of diseases that involve damage of small peripheral autonomic Aδ- and C-fibers. Causes of autonomic nerve fiber damage are disorders such as diabetes mellitus and HIV-infection. Predominant symptoms of autonomic neuropathy are orthostatic hypotension, gastro-intestinal problems, urogenital dysfunction, and cardiac arrhythmia, which can severely impair the quality of life in affected patients. Furthermore, autonomic neuropathies can be induced by autoimmune diseases such as acute inflammatory demyelinating polyneuropathy, hereditary disorders such as the lysosomal storage disorder Fabry disease and hereditary sensory and autonomic neuropathies, as well as certain toxins and drugs.

  3. Real Time Behavior-Based Control on a Mobile Robot

    Institute of Scientific and Technical Information of China (English)

    KootaMuzyamba; 钱晋武; 沈林勇; 章亚男

    2003-01-01

    This paper discusses and compares some common architectures used in autonomous mobile robotics. Then it describes a behavior-based autonomous mobile robot that was implemented successfully in the Robotics of the Department of Precision Mechanical Engineering. Fuzzy controller was used to implement the emergency behavior, the t~uiviors arbitration was implemented using the subsumption architecture. In an tmknown dynamic indoor environment, the robot achieved real-time obstacle avoidance properties that are cruel for mobile robolics.

  4. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  5. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  6. 5th International Robotic Sailing Conference

    CERN Document Server

    Finnis, James

    2013-01-01

    Robotic sailing offers the potential of wind propelled vehicles which are sufficiently autonomous to remain at sea for months at a time. These could replace or augment existing oceanographic sampling systems, be used in border surveillance and security or offer a means of carbon neutral transportation. To achieve this represents a complex, multi-disciplinary challenge to boat designers and naval architects, systems/electrical engineers and computer scientists.  Since 2004 a series of competitions in the form of the Sailbot, World Robotic Sailing Championship and Microtransat competitions have sparked an explosion in the number of groups working on autonomous sailing robots. Despite this interest the longest distance sailed autonomously remains only a few hundred miles. Many of the challenges in building truly autonomous sailing robots still remain unsolved. These proceedings present the cutting edge of work in a variety of fields related to robotic sailing. They will be presented during the 5th International...

  7. Modular Platform for Commercial Mobile Robots

    OpenAIRE

    Kjærgaard, Morten; Ravn, Ole; Andersen, Nils Axel; Koed, Kakob

    2013-01-01

    Despite a rapid development in computers and sensor technologies, surprisingly few autonomous robot systems have successfully made it to the consumer market and into people's homes. Robotics is a popular topic in research circles, but focus is often on ground-breaking technologies, and not on putting the robots on the commercial market. At the time when this research project was started in May 2010, the amount of successful commercial applications based on mobile robots was very limited. The ...

  8. [Robots and intellectual property].

    Science.gov (United States)

    Larrieu, Jacques

    2013-12-01

    This topic is part of the global issue concerning the necessity to adapt intellectual property law to constant changes in technology. The relationship between robots and IP is dual. On one hand, the robots may be regarded as objects of intellectual property. A robot, like any new machine, could qualify for a protection by a patent. A copyright may protect its appearance if it is original. Its memory, like a database, could be covered by a sui generis right. On the other hand, the question of the protection of the outputs of the robot must be raised. The robots, as the physical embodiment of artificial intelligence, are becoming more and more autonomous. Robot-generated works include less and less human inputs. Are these objects created or invented by a robot copyrightable or patentable? To whom the ownership of these IP rights will be allocated? To the person who manufactured the machine ? To the user of the robot? To the robot itself? All these questions are worth discussing.

  9. Path node coding and recognition for autonomous robot vision navigation%机器人视觉导航路径节点的编码与识别

    Institute of Scientific and Technical Information of China (English)

    厉广伟; 夏英杰; 王宁; 李金屏

    2015-01-01

    为了解决视觉导航机器人利用九宫格进行自主定位时,存在的识别算法的鲁棒性较差和实际操作繁杂等问题,实现视觉导航机器人的自主定位,设计一种路径节点的二进制圆环编码方案并进行解码识别研究.实验表明,机器人能够准确识别各个路径节点,有效地解决了机器人视觉导航中路径节点的编码和识别问题.%To solve the problems of poor robustness and complicated operation when the vision navigation robot determines its position by using nine-rectangle-grid.A binary ring coding scheme of path node was designed and decoding recognized.Experiments show that the robot can recognize path nodes correctly and solve the problem about the path node coding and recognition of the vision navigation robot.

  10. Soft Modular Robotic Cubes: Toward Replicating Morphogenetic Movements of the Embryo

    Science.gov (United States)

    Mendoza-Garcia, Ricardo-Franco; Zagal, Juan Cristóbal

    2017-01-01

    In this paper we present a new type of simple, pneumatically actuated, soft modular robotic system that can reproduce fundamental cell behaviors observed during morphogenesis; the initial shaping stage of the living embryo. The fabrication method uses soft lithography for producing composite elastomeric hollow cubes and permanent magnets as passive docking mechanism. Actuation is achieved by controlling the internal pressurization of cubes with external micro air pumps. Our experiments show how simple soft robotic modules can serve to reproduce to great extend the overall mechanics of collective cell migration, delamination, invagination, involution, epiboly and even simple forms of self-reconfiguration. Instead of relying in complex rigid onboard docking hardware, we exploit the coordinated inflation/deflation of modules as a simple mechanism to detach/attach modules and even rearrange the spatial position of components. Our results suggest new avenues for producing inexpensive, yet functioning, synthetic morphogenetic systems and provide new tangible models of cell behavior. PMID:28060878

  11. Mobile Robots for Hospital Logistics

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan

    be and will be automated using mobile robots. This talk consequently addresses the key technical issues of implementing service robots in hospitals. In simple terms, a robotic system for automating hospital logistics has to be reliable, adaptable and scalable. Robots have to be semi-autonomous, and should reliably...... for localization. The system features automatic annotation, which significantly reduces manual work and offer many advantages beyond robotics. A case study on logistics solutions is finally presented. A robotic solution is tested in a hospital to handle the transportation of blood samples between the clinic...... and the lab. Without any environmental modification; it is shown that lab turnover time can be reduced from hours to minutes; by simply replacing the human porter with a mobile robot....

  12. Collective Energy Foraging of Robot Swarms and Robot Organisms

    CERN Document Server

    Kernbach, Serge

    2011-01-01

    Cooperation and competition among stand-alone swarm agents increase collective fitness of the whole system. A principally new kind of collective systems is demonstrated by some bacteria and fungi, when they build symbiotic organisms. Symbiotic life forms emerge new functional and self-developmental capabilities, which allow better survival of swarm agents in different environments. In this paper we consider energy foraging scenario for two robotic species, swarm robots and symbiotic robot organism. It is indicated that aggregation of microrobots into a robot organism can provide better functional fitness for the whole group. A prototype of microrobots capable of autonomous aggregation and disaggregation are shown.

  13. Coordinated intelligent adaptive control of legged robots

    Science.gov (United States)

    McLauchlan, Lifford; Mehrübeoğlu, Mehrübe

    2006-05-01

    In planetary or hazardous environment exploration, there will be unforseen environmental circumstances which can not be planned. To overcome telerobotic control issues due to communication delays, autonomous robot control becomes necessary. Autonomously controlled landers and instrumentation can be used in exploration, such as lunar and martian missions. However, wheeled robots have difficulty in exploring uneven terrain; thus, legged robots can be used in such situations. This research develops intelligent and adaptive control of mobile robots to perform functions such as environmental exploration in coordination and obstacle avoidance. The coordinated control is demonstrated in simulations.

  14. 空间机器人自主定位定向方法研究%Autonomous Position and Orientation Method for Space Mobile Robot

    Institute of Scientific and Technical Information of China (English)

    刘欣; 张常云; 申功璋

    2001-01-01

    针对机器人在月球或火星上进行采矿的应用背景,研究了切平面捷联惯导方案、视觉定位方案、静态和动态的视觉/惯性组合定位定向方案.所提出的视觉/惯性组合导航系统使惯导系统的导航精度有很大的提高,同时只要求机器人携带很少的设备,大大降低了系统的成本.仿真结果表示该方案可行.%Aiming at the space mobile robot employed in lunar exploration, the scheme of strapdown inertial navigation on tangent plane, the position and orientation method using computer vision are studied in this paper. Also a new inertial/computer vision integrated navigation system is proposed. Static and dynamic algorithms of the integrated navigation system are given. In this system, high precision of navigation is gained while the robot is required to carry fewer devices, which can cut down the cost. Result of simulation is shown at the end of the paper.

  15. Man-Machine Control of Space Robots under Uncertainty

    OpenAIRE

    Kanata, S.

    2008-01-01

    Control problem of space robots is characterized by several challenges. The first one is that the area is full of uncertainties due to lack of information. Another difficulty is tasksharing between an operator and a partly autonomous robot. Moreover, there are several constrains on the robot operations, including communication delay and an appropriate temperature at which robot can work. Design of the robots navigation should be based on consideration of trade-offs between several conf...

  16. Robot maps, robot moves, robot avoids

    OpenAIRE

    Farrugia, Claire; Duca, Edward

    2014-01-01

    Robotics is a cornerstone for this century’s innovations. From robot nurses to your own personal assistant, most robots need to know: ‘where is it?’ ‘Where should it go?’ And ‘how to get there?’ Without answers to these questions a robot cannot do much. http://www.um.edu.mt/think/robot-maps-robot-moves-robot-avoids/

  17. 25th Conference on Robotics in Alpe-Adria-Danube Region

    CERN Document Server

    Borangiu, Theodor

    2017-01-01

    This book presents the proceedings of the 25th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2016 held in Belgrade, Serbia, on June 30th–July 2nd, 2016. In keeping with the tradition of the event, RAAD 2016 covered all the important areas of research and innovation in new robot designs and intelligent robot control, with papers including Intelligent robot motion control; Robot vision and sensory processing; Novel design of robot manipulators and grippers; Robot applications in manufacturing and services; Autonomous systems, humanoid and walking robots; Human–robot interaction and collaboration; Cognitive robots and emotional intelligence; Medical, human-assistive robots and prosthetic design; Robots in construction and arts, and Evolution, education, legal and social issues of robotics. For the first time in RAAD history, the themes cloud robots, legal and ethical issues in robotics as well as robots in arts were included in the technical program. The book is a valuable resource f...

  18. Autonomous Lawnmower using FPGA implementation.

    Science.gov (United States)

    Ahmad, Nabihah; Lokman, Nabill bin; Helmy Abd Wahab, Mohd

    2016-11-01

    Nowadays, there are various types of robot have been invented for multiple purposes. The robots have the special characteristic that surpass the human ability and could operate in extreme environment which human cannot endure. In this paper, an autonomous robot is built to imitate the characteristic of a human cutting grass. A Field Programmable Gate Array (FPGA) is used to control the movements where all data and information would be processed. Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) is used to describe the hardware using Quartus II software. This robot has the ability of avoiding obstacle using ultrasonic sensor. This robot used two DC motors for its movement. It could include moving forward, backward, and turning left and right. The movement or the path of the automatic lawn mower is based on a path planning technique. Four Global Positioning System (GPS) plot are set to create a boundary. This to ensure that the lawn mower operates within the area given by user. Every action of the lawn mower is controlled by the FPGA DE' Board Cyclone II with the help of the sensor. Furthermore, Sketch Up software was used to design the structure of the lawn mower. The autonomous lawn mower was able to operate efficiently and smoothly return to coordinated paths after passing the obstacle. It uses 25% of total pins available on the board and 31% of total Digital Signal Processing (DSP) blocks.

  19. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  20. Types of verbal interaction with instructable robots

    Science.gov (United States)

    Crangle, C.; Suppes, P.; Michalowski, S.

    1987-01-01

    An instructable robot is one that accepts instruction in some natural language such as English and uses that instruction to extend its basic repertoire of actions. Such robots are quite different in conception from autonomously intelligent robots, which provide the impetus for much of the research on inference and planning in artificial intelligence. Examined here are the significant problem areas in the design of robots that learn from vebal instruction. Examples are drawn primarily from our earlier work on instructable robots and recent work on the Robotic Aid for the physically disabled. Natural-language understanding by machines is discussed as well as in the possibilities and limits of verbal instruction. The core problem of verbal instruction, namely, how to achieve specific concrete action in the robot in response to commands that express general intentions, is considered, as are two major challenges to instructability: achieving appropriate real-time behavior in the robot, and extending the robot's language capabilities.