WorldWideScience

Sample records for autonomous real-time tracking

  1. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker

    Directory of Open Access Journals (Sweden)

    Liviu Viman

    2016-03-01

    Full Text Available This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet.

  2. Autonomous Real Time Requirements Tracing

    Science.gov (United States)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  3. Hard-real-time resource management for autonomous spacecraft

    Science.gov (United States)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  4. Real Time Eye Template Detection and Tracking

    Directory of Open Access Journals (Sweden)

    Richa Mehta

    2012-06-01

    Full Text Available There has been a growing interest in the field of facial expression recognition especially in the last two decades. An example of such a system is the improvement of driver carefulness and accident reduction. The driver’s face is tracked while he is driving and he is warned if there seems to be an alerting fact that can result in an accident such as sleepy eyes, or looking out of the road. Furthermore, with a facial feature tracker, it becomes possible to play a synthesized avatar so that it imitates the expressions of the performer. Human-Computer Interaction (HCI systems may also be enriched by a facial feature tracker. For a user who is incapable of using her hands, a facial expression controller may be a solution to send limited commands to a computer. Eye blinking is one of the prominent areas to solve many real world problems. The process of blink detection consists of two phases. These are eye tracking followed by detection of blink. The work that has been carried out for eye tracking only is not suitable for eye blink detection. Therefore some approaches had been proposed for eye tracking along with eyes blink detection. In this thesis, real time implementation is done to count number of eye blinks in an image sequence. At last after analyzing all these approaches some of the parameters we obtained on which better performance of eye blink detection algorithm depend. This project focuses on automatic eye blink detection in real time. The aim of this thesis is to count the number of eye blinks in a video. This project will be performed on a video database of the facial expressions.

  5. Printed Tag Real-time Tracking

    KAUST Repository

    Bilal, Rana M.

    2014-09-18

    Disclosed are various embodiments for monitoring tracking devices capable of seamless indoor and outdoor tracking transitions. A tracking device may comprise, for example, printable circuitry and antennas combined with one or more receivers/transceivers on a substrate. The tracking device may be configured, for example, to localize the tracking device via GPS or an alternative localization strategy based on a determination of whether GPS communication is available. A modified RSSI fingerprinting methodology may be used to accurately determine a location of the tracking device using Wi-Fi access points. A device monitoring service may communicate with internal and/or external mapping API\\'s to render a device monitoring user interface comprising a visual representation of the location of the tracking device.

  6. Real Time Eye Template Detection and Tracking

    OpenAIRE

    2012-01-01

    There has been a growing interest in the field of facial expression recognition especially in the last two decades. An example of such a system is the improvement of driver carefulness and accident reduction. The driver’s face is tracked while he is driving and he is warned if there seems to be an alerting fact that can result in an accident such as sleepy eyes, or looking out of the road. Furthermore, with a facial feature tracker, it becomes possible to play a synthesized avatar so that it ...

  7. Handheld portable real-time tracking and communications device

    Energy Technology Data Exchange (ETDEWEB)

    Wiseman, James M [Albuquerque, NM; Riblett, Jr., Loren E. (Edgewood, NM); Green, Karl L [Albuquerque, NM; Hunter, John A [Albuquerque, NM; Cook, III, Robert N. (Rio Rancho, NM); Stevens, James R [Arlington, VA

    2012-05-22

    Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

  8. Real time visual tracking of targets in six dimensions

    Science.gov (United States)

    Walsh, Peter M.; Shawaga, Larry

    1990-01-01

    Six dimensional target information is produced by a target tracking vision system for use in real time target tracking by a robotic system. The vision system described in this paper produces three axes of position data and three axes of orientation data using a single camera which views a three dimensional target. The system performs target detection, target discrimination and determines the target position and orientation relative to the camera. As the target information is determined, it is communicated to a computer which is controlling the robot motion in real time. Details of the image processing algorithms and image processing hardware used in the vision system are discussed in the paper.

  9. Real-time seam tracking for rocket thrust chamber manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, D.J.; Novak, J.L. [Sandia National Labs., Albuquerque, NM (United States); Starr, G.P. [New Mexico Univ., Albuquerque, NM (United States); Maslakowski, J.E. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.

    1993-11-01

    A sensor-based control approach for real-time seam tracking of rocket thrust chamber assemblies has been developed to enable automation of a braze paste dispensing process. This approach utilizes a non-contact Multi-Axis Seam Tracking (MAST) sensor to track the seams. Thee MAST sensor measures capacitance variations between the sensor and the workpiece and produces four varying voltages which are read directly into the robot controller. A PID control algorithm which runs at the application program level has been designed based upon a simple dynamic model of the combined robot and sensor plant. The control algorithm acts on the incoming sensor signals in real-time to guide the robot motion along the seam path. Experiments demonstrate that seams can be tracked at 100 mm/sec within the accuracy required for braze paste dispensing.

  10. Robust Real-Time Tracking for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Martin Kampel

    2007-01-01

    Full Text Available This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i motion detection using a layered background model, (ii object tracking based on local appearance, (iii hierarchical object recognition, and (iv fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed.

  11. Real time markerless motion tracking using linked kinematic chains

    Science.gov (United States)

    Luck, Jason P.; Small, Daniel E.

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  12. A low-cost test-bed for real-time landmark tracking

    Science.gov (United States)

    Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher

    2007-04-01

    A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.

  13. Real-time WAMI streaming target tracking in fog

    Science.gov (United States)

    Chen, Yu; Blasch, Erik; Chen, Ning; Deng, Anna; Ling, Haibin; Chen, Genshe

    2016-05-01

    Real-time information fusion based on WAMI (Wide-Area Motion Imagery), FMV (Full Motion Video), and Text data is highly desired for many mission critical emergency or security applications. Cloud Computing has been considered promising to achieve big data integration from multi-modal sources. In many mission critical tasks, however, powerful Cloud technology cannot satisfy the tight latency tolerance as the servers are allocated far from the sensing platform, actually there is no guaranteed connection in the emergency situations. Therefore, data processing, information fusion, and decision making are required to be executed on-site (i.e., near the data collection). Fog Computing, a recently proposed extension and complement for Cloud Computing, enables computing on-site without outsourcing jobs to a remote Cloud. In this work, we have investigated the feasibility of processing streaming WAMI in the Fog for real-time, online, uninterrupted target tracking. Using a single target tracking algorithm, we studied the performance of a Fog Computing prototype. The experimental results are very encouraging that validated the effectiveness of our Fog approach to achieve real-time frame rates.

  14. A paper based inkjet printed real time location tracking TAG

    KAUST Repository

    Farooqui, Muhammad Fahad

    2013-06-01

    This paper presents, for the first time, an inkjet printed, wearable, low-cost, light weight and miniaturized real time locating TAG on an ordinary photo-paper. The 29 grams, 9 cm×8 cm×0.5 cm TAG integrates a GPS/GSM module, a microcontroller with on-paper GPS and GSM antennas. A novel monopole antenna with an L shaped slit is introduced to achieve the required circular polarization for the GPS band. Issues related to integration of active components (e.g. BGA chip) on inkjet-printed paper substrates are discussed. The system enables location tracking through a user-friendly interface accessible through all internet enabled devices. Field tests show an update interval of 15 sec, stationary position error of 6.2m and real time tracking error of 4.7m which is 4 times better than the state-of-the-art. Due to the flexible nature of the paper substrate, the TAG can be designed for different shapes such as a wrist band for child tracking or a collar band for pet tracking applications. © 2013 IEEE.

  15. Real-time vehicle tracking for driving assistance

    OpenAIRE

    Fossati, Andrea; Schönmann, Patrick; Fua, Pascal

    2010-01-01

    Detecting car taillights at night is a task which can nowadays be accomplished very fast on cheap hardware. We rely on such detections to build a vision-based system that, coupling them in a rule-based fashion, is able to detect and track vehicles. This allows the generation of an interface that informs a driver of the relative distance and velocity of other vehicles in real time and triggers a warning when a potentially dangerous situation arises. We demonstrate the system using sequences sh...

  16. Real-time image processing for particle tracking velocimetry

    Science.gov (United States)

    Kreizer, Mark; Ratner, David; Liberzon, Alex

    2010-01-01

    We present a novel high-speed particle tracking velocimetry (PTV) experimental system. Its novelty is due to the FPGA-based, real-time image processing "on camera". Instead of an image, the camera transfers to the computer using a network card, only the relevant information of the identified flow tracers. Therefore, the system is ideal for the remote particle tracking systems in research and industrial applications, while the camera can be controlled and data can be transferred over any high-bandwidth network. We present the hardware and the open source software aspects of the PTV experiments. The tracking results of the new experimental system has been compared to the flow visualization and particle image velocimetry measurements. The canonical flow in the central cross section of a a cubic cavity (1:1:1 aspect ratio) in our lid-driven cavity apparatus is used for validation purposes. The downstream secondary eddy (DSE) is the sensitive portion of this flow and its size was measured with increasing Reynolds number (via increasing belt velocity). The size of DSE estimated from the flow visualization, PIV and compressed PTV is shown to agree within the experimental uncertainty of the methods applied.

  17. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    Science.gov (United States)

    Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary

    2015-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods. PMID:24166372

  18. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Close, Dan [University of Tennessee, Knoxville (UTK); Sayler, Gary Steven [ORNL; Xu, Tingting [ORNL; Ripp, Steven Anthony [ORNL

    2014-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods.

  19. Dual Tracking Method for Real Time Object Tracking using Moving Camera

    Directory of Open Access Journals (Sweden)

    Shyam Lal

    2013-04-01

    Full Text Available This study presents dual tracking method for real time object tracking using a moving camera. A real time object tracking using self aligning servo mechanism with webcam, dual tracking and effective localization of object is presented. The proposed dual tracking method works in two phases: In first phase tracking is done by joint color texture histogram with mean shift and in second phase tracking is done by servo setup. The proposed dual tracking method enjoys the benefit of double tracking feature, not only tracking but also to find out the coordinates of the tracking object which is of particular interest. The coordinates of a moving object enable us to estimates the real time location of the object which is helpful in surveillance and shooting purposes of suspected person in security area. The tracking of some specific objects in real life is of particular interest. Due to its enhanced automation the proposed dual tracking method can be applied in public security, surveillance, robotics and traffic control etc. The experimental results demonstrate that the proposed dual tracking method improves greatly the tracking area with accuracy and efficiency and also successfully find the coordinates of moving object.

  20. Transient imaging for real-time tracking around a corner

    Science.gov (United States)

    Klein, Jonathan; Laurenzis, Martin; Hullin, Matthias

    2016-10-01

    Non-line-of-sight imaging is a fascinating emerging area of research and expected to have an impact in numerous application fields including civilian and military sensing. Performance of human perception and situational awareness can be extended by the sensing of shapes and movement around a corner in future scenarios. Rather than seeing through obstacles directly, non-line-of-sight imaging relies on analyzing indirect reflections of light that traveled around the obstacle. In previous work, transient imaging was established as the key mechanic to enable the extraction of useful information from such reflections. So far, a number of different approaches based on transient imaging have been proposed, with back projection being the most prominent one. Different hardware setups were used for the acquisition of the required data, however all of them have severe drawbacks such as limited image quality, long capture time or very high prices. In this paper we propose the analysis of synthetic transient renderings to gain more insights into the transient light transport. With this simulated data, we are no longer bound to the imperfect data of real systems and gain more flexibility and control over the analysis. In a second part, we use the insights of our analysis to formulate a novel reconstruction algorithm. It uses an adapted light simulation to formulate an inverse problem which is solved in an analysis-by-synthesis fashion. Through rigorous optimization of the reconstruction, it then becomes possible to track known objects outside the line of side in real time. Due to the forward formulation of the light transport, the algorithm is easily expandable to more general scenarios or different hardware setups. We therefore expect it to become a viable alternative to the classic back projection approach in the future.

  1. Emergency Department Real Time Location System Patient and Equipment Tracking

    Science.gov (United States)

    2014-10-01

    identify key opportunities to drive operational efficiency, improve patient satisfaction , and increase asset utilization. The project will also focus on...operative setting tagging other assets as well as patients and caregivers. Body Background: The Valley Hospital proposes to implement a real time...area to identify key opportunities to drive operational efficiency, improve patient satisfaction , and increase asset utilization. The pilot project

  2. Real Time Surface Registration for PET Motion Tracking

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold

    2011-01-01

    to create point clouds representing parts of the patient's face. The movement is estimated by a rigid registration of the point clouds. The registration should be done using a robust algorithm that can handle partial overlap and ideally operate in real time. We present an optimized Iterative Closest Point...

  3. Emergency Department Real Time Location System Patient and Equipment Tracking

    Science.gov (United States)

    2013-10-01

    solution complies with all RF transmission guidelines to avoid interference with Hospital’s wireless communication systems and clinical...technology path that the messages will follow is, AgileTrac ESB services will capture real time updates of patient locations and push that

  4. Real-time Non-linear Target Tracking Control of Wheeled Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    YU Wenyong

    2006-01-01

    A control strategy for real-time target tracking for wheeled mobile robots is presented. Using a modified Kalman filter for environment perception, a novel tracking control law derived from Lyapunov stability theory is introduced. Tuning of linear velocity and angular velocity with mechanical constraints is applied. The proposed control system can simultaneously solve the target trajectory prediction, real-time tracking, and posture regulation problems of a wheeled mobile robot. Experimental results illustrate the effectiveness of the proposed tracking control laws.

  5. Real-time model for simulating a tracked vehicle on deformable soils

    Directory of Open Access Journals (Sweden)

    Martin Meywerk

    2016-05-01

    Full Text Available Simulation is one possibility to gain insight into the behaviour of tracked vehicles on deformable soils. A lot of publications are known on this topic, but most of the simulations described there cannot be run in real-time. The ability to run a simulation in real-time is necessary for driving simulators. This article describes an approach for real-time simulation of a tracked vehicle on deformable soils. The components of the real-time model are as follows: a conventional wheeled vehicle simulated in the Multi Body System software TRUCKSim, a geometric description of landscape, a track model and an interaction model between track and deformable soils based on Bekker theory and Janosi–Hanamoto, on one hand, and between track and vehicle wheels, on the other hand. Landscape, track model, soil model and the interaction are implemented in MATLAB/Simulink. The details of the real-time model are described in this article, and a detailed description of the Multi Body System part is omitted. Simulations with the real-time model are compared to measurements and to a detailed Multi Body System–finite element method model of a tracked vehicle. An application of the real-time model in a driving simulator is presented, in which 13 drivers assess the comfort of a passive and an active suspension of a tracked vehicle.

  6. Autonomous global sky monitoring with real-time robotic follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Vestrand, W Thomas [Los Alamos National Laboratory; Davis, H [Los Alamos National Laboratory; Wren, J [Los Alamos National Laboratory; Wozniak, P [Los Alamos National Laboratory; Norman, B [Los Alamos National Laboratory; White, R [Los Alamos National Laboratory; Bloch, J [Los Alamos National Laboratory; Fenimore, E [Los Alamos National Laboratory; Hodge, Barry [AFRL; Jah, Moriba [AFRL; Rast, Richard [AFRL

    2008-01-01

    We discuss the development of prototypes for a global grid of advanced 'thinking' sky sentinels and robotic follow-up telescopes that observe the full night sky to provide real-time monitoring of the night sky by autonomously recognizing anomalous behavior, selecting targets for detailed investigation, and making real-time anomaly detection to enable rapid recognition and a swift response to transients as they emerge. This T3 global EO grid avoids the limitations imposed by geography and weather to provide persistent monitoring of the night sky.

  7. Investigations into near-real-time surveying for geophysical data collection using an autonomous ground vehicle

    Science.gov (United States)

    Phelps, Geoffrey A.; Ippolito, C.; Lee, R.; Spritzer, R.; Yeh, Y.

    2014-01-01

    The U.S. Geological Survey and the National Aeronautics and Space Administration are cooperatively investigating the utility of unmanned vehicles for near-real-time autonomous surveys of geophysical data collection. Initially focused on unmanned ground vehicle collection of magnetic data, this cooperative effort has brought unmanned surveying, precision guidance, near-real-time communication, on-the-fly data processing, and near-real-time data interpretation into the realm of ground geophysical surveying, all of which offer advantages over current methods of manned collection of ground magnetic data. An unmanned ground vehicle mission has demonstrated that these vehicles can successfully complete missions to collect geophysical data, and add advantages in data collection, processing, and interpretation. We view the current experiment as an initial phase in further unmanned vehicle data-collection missions, including aerial surveying.

  8. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    OpenAIRE

    Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary

    2014-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular pop...

  9. Real-Time Visual Tracking through Fusion Features.

    Science.gov (United States)

    Ruan, Yang; Wei, Zhenzhong

    2016-06-23

    Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion.

  10. Dynamic Resource Reservation and Connectivity Tracking to Support Real-Time Communication among Mobile Units

    Directory of Open Access Journals (Sweden)

    Almeida Luis

    2005-01-01

    Full Text Available Wireless communication technology is spreading quickly in almost all the information technology areas as a consequence of a gradual enhancement in quality and security of the communication, together with a decrease in the related costs. This facilitates the development of relatively low-cost teams of autonomous (robotic mobile units that cooperate to achieve a common goal. Providing real-time communication among the team units is highly desirable for guaranteeing a predictable behavior in those applications in which the robots have to operate autonomously in unstructured environments. This paper proposes a MAC protocol for wireless communication that supports dynamic resource reservation and topology management for relatively small networks of cooperative units (10–20 units. The protocol uses a slotted time-triggered medium access transmission control that is collision-free, even in the presence of hidden nodes. The transmissions are scheduled according to the earliest deadline first scheduling policy. An adequate admission control guarantees the timing constraints of the team communication requirements, including when new nodes dynamically join or leave the team. The paper describes the protocol focusing on the consensus procedure that supports coherent changes in the global system. We also introduce a distributed connectivity tracking mechanism that is used to detect network partition and absent or crashed nodes. Finally, a set of simulation results are shown that illustrate the effectiveness of the proposed approaches.

  11. Tracking Multiple People Online and in Real Time

    Science.gov (United States)

    2015-12-21

    30 fps (33.26 seconds) and has a resolution of 1920 x 1080 pixels. This sequence is challenging because it is filmed from an oblique angle and several...Multiple Object Tracking Accuracy (MOTA) score [31] to evaluate the performance of our algorithm. This score combines the number of false positives fp...1 6 11 16 21 26 31 36 41 R u n n in g ti m e (s ec o n d s) Appearance groups Runtime Solver Sequence length Fig. 3. MOTA scores (a, c) and running

  12. Real-time skeleton tracking for embedded systems

    Science.gov (United States)

    Coleca, Foti; Klement, Sascha; Martinetz, Thomas; Barth, Erhardt

    2013-03-01

    Touch-free gesture technology is beginning to become more popular with consumers and may have a significant future impact on interfaces for digital photography. However, almost every commercial software framework for gesture and pose detection is aimed at either desktop PCs or high-powered GPUs, making mobile implementations for gesture recognition an attractive area for research and development. In this paper we present an algorithm for hand skeleton tracking and gesture recognition that runs on an ARM-based platform (Pandaboard ES, OMAP 4460 architecture). The algorithm uses self-organizing maps to fit a given topology (skeleton) into a 3D point cloud. This is a novel way of approaching the problem of pose recognition as it does not employ complex optimization techniques or data-based learning. After an initial background segmentation step, the algorithm is ran in parallel with heuristics, which detect and correct artifacts arising from insufficient or erroneous input data. We then optimize the algorithm for the ARM platform using fixed-point computation and the NEON SIMD architecture the OMAP4460 provides. We tested the algorithm with two different depth-sensing devices (Microsoft Kinect, PMD Camboard). For both input devices we were able to accurately track the skeleton at the native framerate of the cameras.

  13. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Amish P., E-mail: Amish.Shah@orlandohealth.com [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States); Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Mañon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L. [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States)

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still

  14. A real-time method for autonomous passive acoustic detection-classification of humpback whales.

    Science.gov (United States)

    Abbot, Ted A; Premus, Vincent E; Abbot, Philip A

    2010-05-01

    This paper describes a method for real-time, autonomous, joint detection-classification of humpback whale vocalizations. The approach adapts the spectrogram correlation method used by Mellinger and Clark [J. Acoust. Soc. Am. 107, 3518-3529 (2000)] for bowhead whale endnote detection to the humpback whale problem. The objective is the implementation of a system to determine the presence or absence of humpback whales with passive acoustic methods and to perform this classification with low false alarm rate in real time. Multiple correlation kernels are used due to the diversity of humpback song. The approach also takes advantage of the fact that humpbacks tend to vocalize repeatedly for extended periods of time, and identification is declared only when multiple song units are detected within a fixed time interval. Humpback whale vocalizations from Alaska, Hawaii, and Stellwagen Bank were used to train the algorithm. It was then tested on independent data obtained off Kaena Point, Hawaii in February and March of 2009. Results show that the algorithm successfully classified humpback whales autonomously in real time, with a measured probability of correct classification in excess of 74% and a measured probability of false alarm below 1%.

  15. Real time tracking with a silicon telescope prototype using the "artificial retina" algorithm

    Science.gov (United States)

    Abba, A.; Bedeschi, F.; Caponio, F.; Cenci, R.; Citterio, M.; Coelli, S.; Fu, J.; Geraci, A.; Grizzuti, M.; Lusardi, N.; Marino, P.; Monti, M.; Morello, M. J.; Neri, N.; Ninci, D.; Petruzzo, M.; Piucci, A.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.; Walsh, J.

    2016-07-01

    We present the first prototype of a silicon tracker using the artificial retina algorithm for fast track finding. The algorithm is inspired by the neurobiological mechanism of recognition of edges in mammals visual cortex. It is based on extensive parallelization and is implemented on commercial FPGAs allowing us to reconstruct real time tracks with offline-like quality and < 1 μs latencies. The practical device consists of a telescope with 8 single-sided silicon strip sensors and custom DAQ boards equipped with Xilinx Kintex 7 FPGAs that perform the readout of the sensors and the track reconstruction in real time.

  16. Real-time seam tracking for robotic laser welding using trajectory-based control

    NARCIS (Netherlands)

    Graaf, de Menno; Aarts, Ronald; Jonker, Ben; Meijer, Johan

    2010-01-01

    In this paper a real-time seam tracking algorithm is proposed that can cope with the accuracy demands of robotic laser welding. A trajectory-based control architecture is presented, which had to be developed for this seam tracking algorithm. Cartesian locations (position and orientation) are added t

  17. CamOn: A Real-Time Autonomous Camera Control System

    DEFF Research Database (Denmark)

    Burelli, Paolo; Jhala, Arnav Harish

    2009-01-01

    contributes to the potential field that is used to determine po- sition and movement of the camera. Composition constraints for the camera are modelled as potential fields for controlling the view target of the camera. CamOn combines the compositional benefits of constraint- based camera systems, and improves......This demonstration presents CamOn, an autonomous cam- era control system for real-time 3D games. CamOn employs multiple Artificial Potential Fields (APFs), a robot motion planning technique, to control both the location and orienta- tion of the camera. Scene geometry from the 3D environment...

  18. A Fast RLE-based Reconstruction Technique for Real-time Robot Tracking

    Institute of Scientific and Technical Information of China (English)

    YU Wenyong; SHI Hui

    2006-01-01

    Wheeled Mobile Robots (WMRs) are more and more widely used in advanced manufacturing. For real time tracking of WMRs, a novel way for real-time color image reconstruction based on Run Length Encoding (RLE) is present. Indexed from a fast look up table (FLUT), color image can be encoded into multiple line structures with different specified colors. Through object-oriented method, the RLE elements reconstruct the image features. Successful application of this technique for mobile robots identification is reported.

  19. A Spatial Reference Grid for Real-Time Autonomous Underwater Modeling using 3-D Sonar

    Energy Technology Data Exchange (ETDEWEB)

    Auran, P.G.

    1996-12-31

    The offshore industry has recognized the need for intelligent underwater robotic vehicles. This doctoral thesis deals with autonomous underwater vehicles (AUVs) and concentrates on a data representation for real-time image formation and analysis. Its main objective is to develop a 3-D image representation suitable for autonomous perception objectives underwater, assuming active sonar as the main sensor for perception. The main contributions are: (1) A dynamical image representation for 3-D range data, (2) A basic electronic circuit and software system for 3-D sonar sampling and amplitude thresholding, (3) A model for target reliability, (4) An efficient connected components algorithm for 3-D segmentation, (5) A method for extracting general 3-D geometrical representations from segmented echo clusters, (6) Experimental results of planar and curved target modeling. 142 refs., 120 figs., 10 tabs.

  20. A real-time cardiac surface tracking system using Subspace Clustering.

    Science.gov (United States)

    Singh, Vimal; Tewfik, Ahmed H; Gowreesunker, B

    2010-01-01

    Catheter based radio frequency ablation of atrial fibrillation requires real-time 3D tracking of cardiac surfaces with sub-millimeter accuracy. To best of our knowledge, there are no commercial or non-commercial systems capable to do so. In this paper, a system for high-accuracy 3D tracking of cardiac surfaces in real-time is proposed and results applied to a real patient dataset are presented. Proposed system uses Subspace Clustering algorithm to identify the potential deformation subspaces for cardiac surfaces during the training phase from pre-operative MRI scan based training set. In Tracking phase, using low-density outer cardiac surface samples, active deformation subspace is identified and complete inner & outer cardiac surfaces are reconstructed in real-time under a least squares formulation.

  1. Real-time surface tracking system using common-path spectral domain optical coherence tomography

    Science.gov (United States)

    Kim, Keo-Sik; Park, Hyoung-Jun; Kang, Hyun Seo; Kang, Jin U.; Song, Chul-Gyu

    2012-11-01

    An enhanced surface tracking system based on optical coherence tomography (OCT) modality has been developed and tested for use in a surgical guidance system. A surface detection algorithm based on a Savitzky-Golay filter of A-scan data and thresholding was applied to real-time depth tracking. The algorithm output controlled a motorized stage to adjust the probe position according to the sample's topological variance in real-time. As a result, the root mean square error (RMSE: 4.2 μm) of our algorithm was relatively lower than the conventional method (RMSE: 16.6 μm). Also, OCT images obtained using the algorithm showed a significantly extended imaging range and active surface tracking in real time. Consequently, the devised method demonstrated potential for use in systems for guiding surgical robots and endoscopic OCT.

  2. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  3. A low cost real-time motion tracking approach using webcam technology.

    Science.gov (United States)

    Krishnan, Chandramouli; Washabaugh, Edward P; Seetharaman, Yogesh

    2015-02-01

    Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject's limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training.

  4. Autonomously Bioluminescent Mammalian Cells for Continuous and Real-time Monitoring of Cytotoxicity

    Science.gov (United States)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Ripp, Steven A.; Sayler, Gary S.

    2013-01-01

    Mammalian cell-based in vitro assays have been widely employed as alternatives to animal testing for toxicological studies but have been limited due to the high monetary and time costs of parallel sample preparation that are necessitated due to the destructive nature of firefly luciferase-based screening methods. This video describes the utilization of autonomously bioluminescent mammalian cells, which do not require the destructive addition of a luciferin substrate, as an inexpensive and facile method for monitoring the cytotoxic effects of a compound of interest. Mammalian cells stably expressing the full bacterial bioluminescence (luxCDABEfrp) gene cassette autonomously produce an optical signal that peaks at 490 nm without the addition of an expensive and possibly interfering luciferin substrate, excitation by an external energy source, or destruction of the sample that is traditionally performed during optical imaging procedures. This independence from external stimulation places the burden for maintaining the bioluminescent reaction solely on the cell, meaning that the resultant signal is only detected during active metabolism. This characteristic makes the lux-expressing cell line an excellent candidate for use as a biosentinel against cytotoxic effects because changes in bioluminescent production are indicative of adverse effects on cellular growth and metabolism. Similarly, the autonomous nature and lack of required sample destruction permits repeated imaging of the same sample in real-time throughout the period of toxicant exposure and can be performed across multiple samples using existing imaging equipment in an automated fashion. PMID:24193545

  5. Real-Time Tracking of Singlet Exciton Diffusion in Organic Semiconductors

    NARCIS (Netherlands)

    Kozlov, Oleg V.; de Haan, Foppe; Kerner, Ross A.; Rand, Barry P.; Cheyns, David; Pshenichnikov, Maxim S.

    2016-01-01

    Exciton diffusion in organic materials provides the operational basis for functioning of such devices as organic solar cells and light-emitting diodes. Here we track the exciton diffusion process in organic semiconductors in real time with a novel technique based on femtosecond photoinduced absorpti

  6. Real-time generic face tracking in the wild with CUDA

    NARCIS (Netherlands)

    Cheng, Shiyang; Asthana, Akshay; Zafeiriou, Stefanos; Shen, Jie; Pantic, Maja

    2014-01-01

    We present a robust real-time face tracking system based on the Constrained Local Models framework by adopting the novel regression-based Discriminative Response Map Fitting (DRMF) method. By exploiting the algorithm’s potential parallelism, we present a hybrid CPU-GPU implementation capable of achi

  7. An Agile Framework for Real-Time Visual Tracking in Videos

    Science.gov (United States)

    2012-09-05

    IMPLEMENTATION OF OUR APPROACH We implemented tracking in C++ using the OpenCV library for real-time computer vision. The ensemble in our case consisted...of the algorithm,” OpenCV Document, Intel, Microprocessor Research Labs, 2000. [6] Kaiki Huang and Tieniu Tan, “Vs-star: A Visual Interpretation

  8. A Real-time Face/Hand Tracking Method for Chinese Sign Language Recognition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper introduces a new Chinese Sign Language recognition (CSLR) system and a method of real-time tracking face and hand applied in the system. In the method, an improved agent algorithm is used to extract the region of face and hand and track them. Kalman filter is introduced to forecast the position and rectangle of search, and self-adapting of target color is designed to counteract the effect of illumination.

  9. Pupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography

    Science.gov (United States)

    Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Viehland, Christian; Keller, Brenton; Izatt, Joseph A.

    2016-01-01

    Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-vasculature maps of the anterior segment. Unfortunately, ASOCT structural and vasculature imaging systems do not capture volumes instantaneously and are subject to motion artifacts due to involuntary eye motion that may hinder their accuracy and repeatability. Several groups have demonstrated real-time tracking for motion-compensated in vivo OCT retinal imaging, but these techniques are not applicable in the anterior segment. In this work, we demonstrate a simple and low-cost pupil tracking system integrated into a custom swept-source OCT system for real-time motion-compensated anterior segment volumetric imaging. Pupil oculography hardware coaxial with the swept-source OCT system enabled fast detection and tracking of the pupil centroid. The pupil tracking ASOCT system with a field of view of 15 x 15 mm achieved diffraction-limited imaging over a lateral tracking range of +/- 2.5 mm and was able to correct eye motion at up to 22 Hz. Pupil tracking ASOCT offers a novel real-time motion compensation approach that may facilitate accurate and reproducible anterior segment imaging. PMID:27574800

  10. Real time explosive hazard information sensing, processing, and communication for autonomous operation

    Energy Technology Data Exchange (ETDEWEB)

    Versteeg, Roelof J.; Few, Douglas A.; Kinoshita, Robert A.; Johnson, Douglas; Linda, Ondrej

    2015-12-15

    Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

  11. Wearable autonomous microsystem with electrochemical gas sensor array for real-time health and safety monitoring.

    Science.gov (United States)

    Li, Haitao; Mu, Xiaoyi; Wang, Zhe; Liu, Xiaowen; Guo, Min; Jin, Rong; Zeng, Xiangqun; Mason, Andrew J

    2012-01-01

    Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high demand for a wearable autonomous multi-analyte gas sensor system for real-time environmental monitoring. This paper presents a system level solution through synergistic integration of sensors, electronics, and data analysis algorithms. Electrochemical sensors featuring ionic liquids were chosen to provide low-power room-temperature operation, rapid response, high sensitivity, good selectivity, and a long operating life with low maintenance. The system utilizes a multi-mode electrochemical instrumentation circuit that combines all signal condition functions within a single microelectronics chip to minimize system cost, size and power consumption. Embedded sensor array signal processing algorithms enable gas classification and concentration estimation within a real-world mixture of analytes. System design and integration methodologies are described, and preliminary results are shown for a first generation SO(2) sensor and a thumb-drive sized prototype system.

  12. Real time explosive hazard information sensing, processing, and communication for autonomous operation

    Energy Technology Data Exchange (ETDEWEB)

    Versteeg, Roelof J; Few, Douglas A; Kinoshita, Robert A; Johnson, Doug; Linda, Ondrej

    2015-02-24

    Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

  13. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines

    Science.gov (United States)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Price, Sarah L.; Ripp, Steven A.; Sayler, Gary S.

    2013-05-01

    Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17β-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety.

  14. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles

    Science.gov (United States)

    2017-01-01

    Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently. PMID:28255297

  15. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines

    Science.gov (United States)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Price, Sarah L.; Ripp, Steven A.; Sayler, Gary S.

    2015-01-01

    Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17β-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety. PMID:26516295

  16. Toward resilient high performance applications through real time reliability metric generaion and autonomous failure correction

    Energy Technology Data Exchange (ETDEWEB)

    Debardeleben, Nathan [Los Alamos National Laboratory; Chandler, Clayton [Los Alamos National Laboratory; Leangsuksun, Chokchai [LOUISIANA TECH UNIV

    2009-01-01

    One predominant barrier encountered in furthering research and development efforts aimed at facilitating resilient HPC applications is a substantial lack of existing reliability and performance data originating from extreme-scale computing distributions. In order to develop an understanding of how and why highly scaled HPC applications are encountering increasingly frequent performance interruptions, one must conduct extensive trending and analysis on contemporary machines and their associated programs. However, existing HPC application log files are labyrinthine documents that, even with the assistance of intelligent data mining algorithms, translate poorly to human discern. In addition, conventional log filtering, processes are limited to execution within a post-mortem, reactive time period, as the enormous size of these documents prevents efficient real time interaction. Thus, there exists a strong need within the HPC field for the provision of accurate-yet-concise real time application information. Moreover, the means of reporting this data must be sufficiently lightweight and non-intrusive, as to successfully-yet-discretely attach itself to the multiple processes running on multiple cores within tens (or in some cases, hundreds) of thousands of compute nodes. Furthermore, this information should in turn be used to facilitate the autonomous correction of application-threatening faults, suspensions, and interruptions. This paper describes a dynamic application instrumentation module (utilizing a combination of Open/SpeedShop software and custom scripting) aimed at successfully achieving these goals.

  17. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles.

    Science.gov (United States)

    Ni, Jianjun; Wu, Liuying; Shi, Pengfei; Yang, Simon X

    2017-01-01

    Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.

  18. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Jianjun Ni

    2017-01-01

    Full Text Available Real-time path planning for autonomous underwater vehicle (AUV is a very difficult and challenging task. Bioinspired neural network (BINN has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.

  19. Error analysis of real time and post processed or bit determination of GFO using GPS tracking

    Science.gov (United States)

    Schreiner, William S.

    1991-01-01

    The goal of the Navy's GEOSAT Follow-On (GFO) mission is to map the topography of the world's oceans in both real time (operational) and post processed modes. Currently, the best candidate for supplying the required orbit accuracy is the Global Positioning System (GPS). The purpose of this fellowship was to determine the expected orbit accuracy for GFO in both the real time and post-processed modes when using GPS tracking. This report presents the work completed through the ending date of the fellowship.

  20. Real-time tracking of deformable objects based on MOK algorithm

    Institute of Scientific and Technical Information of China (English)

    Junhua Yan; Zhigang Wang; Shunfei Wang

    2016-01-01

    Thetraditional oriented FAST and rotated BRIEF (ORB) algorithm has problems of instability and repetition of keypoints and it does not possess scale invariance. In order to deal with these drawbacks, a modified ORB (MORB) algo-rithm is proposed. In order to improve the precision of matching and tracking, this paper puts forward an MOK algo-rithm that fuses MORB and Kanade-Lucas-Tomasi (KLT). By using Kalman, the object’s state in the next frame is predicted in order to reduce the size of search window and improve the real-time performance of object tracking. The experimental results show that the MOK algorithm can accurately track objects with deformation or with background clutters, exhi- biting higher robustness and accuracy on diverse datasets. Also, the MOK algorithm has a good real-time performance with the average frame rate reaching 90.8 fps.

  1. Observation of nuclear track in organic material by atomic force microscopy in real time during etching

    CERN Document Server

    Palmino, F; Labrune, J C

    1999-01-01

    The developments of Atomic Force Microscopy (AFM) allow to investigated solid surfaces with a nanometer scale. These techniques are useful methods allowing direct observation of surface morphologies. Particularly in the nuclear track fields, they offer a new tool to give many new informations on track formation. In this paper we present the preliminary results of a new use of this technique to characterize continuously the formation of the revealed track in a cellulose nitrate detector (LR115) after an alpha particle irradiation. For that, a specific cell has been used to observe, by nano-observations, the evolution of track shapes simultaneously with chemical treatment. Thus, the track shape evolution has been studied; visualizing the evolution of the tracks in real time, in situ during the chemical etching process.

  2. Real-time optical imaging and tracking of micron-sized particles

    Science.gov (United States)

    Qian, Feng; Song, Qi; Tien, En-kuang; Kalyoncu, Salih K.; Boyraz, Ozdal

    2009-12-01

    We report real-time imaging and dynamics monitoring of micrometer predefined and random sized particles by time-space-wavelength mapping technology using a single-detector. Experimentally, we demonstrate real-time line imaging of a 5 μm polystyrene microsphere, glass powder particles and patterns such as fingerprints with up to 5 μm resolution at 1 line/50 ns capture rate. By using the same setup, real-time displacement tracking of micrometer-size glass particles with 50 ns temporal resolution and up to 5 μm spatial resolution is achieved. We also show that existing correlation spectroscopy algorithms can be adopted to extract dynamic information in a complex environment.

  3. Real-time tumor tracking with an artificial neural networks-based method: a feasibility study.

    Science.gov (United States)

    Seregni, Matteo; Pella, Andrea; Riboldi, Marco; Orecchia, Roberto; Cerveri, Pietro; Baroni, Guido

    2013-01-01

    The purpose of this study was to develop and assess the performance of a tumor tracking method designed for application in radiation therapy. This motion compensation strategy is currently applied clinically only in conventional photon radiotherapy but not in particle therapy, as greater accuracy in dose delivery is required. We proposed a tracking method that exploits artificial neural networks to estimate the internal tumor trajectory as a function of external surrogate signals. The developed algorithm was tested by means of a retrospective clinical data analysis in 20 patients, who were treated with state of the art infra-red motion tracking for photon radiotherapy, which is used as a benchmark. Integration into a hardware platform for motion tracking in particle therapy was performed and then tested on a moving phantom, specifically developed for this purpose. Clinical data show that a median tracking error reduction up to 0.7 mm can be achieved with respect to state of the art technologies. The phantom study demonstrates that a real-time tumor position estimation is feasible when the external signals are acquired at 60 Hz. The results of this work show that neural networks can be considered a valuable tool for the implementation of high accuracy real-time tumor tracking methodologies.

  4. Real Time Detection and Tracking of Human Face using Skin Color Segmentation and Region Properties

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar G.

    2014-07-01

    Full Text Available Real time faces detection and face tracking is one of the challenging problems in application like computer human interaction, video surveillance, biometrics etc. In this paper we are presenting an algorithm for real time face detection and tracking using skin color segmentation and region properties. First segmentation of skin regions from an image is done by using different color models. Skin regions are separated from the image by using thresholding. Then to decide whether these regions contain human face or not we used face features. Our procedure is based on skin color segmentation and human face features (knowledge-based approach. We have used RGB, YCbCr, and HSV color models for skin color segmentation. These color models with thresholds, help to remove non skin like pixel from an image. Each segmented skin regions are tested to know whether region is human face or not, by using human face features based on knowledge of geometrical properties of human face.

  5. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    Science.gov (United States)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  6. Real-Time Detection and Tracking of Multiple People in Laser Scan Frames

    Science.gov (United States)

    Cui, J.; Song, X.; Zhao, H.; Zha, H.; Shibasaki, R.

    This chapter presents an approach to detect and track multiple people ro bustly in real time using laser scan frames. The detection and tracking of people in real time is a problem that arises in a variety of different contexts. Examples in clude intelligent surveillance for security purposes, scene analysis for service robot, and crowd behavior analysis for human behavior study. Over the last several years, an increasing number of laser-based people-tracking systems have been developed in both mobile robotics platforms and fixed platforms using one or multiple laser scanners. It has been proved that processing on laser scanner data makes the tracker much faster and more robust than a vision-only based one in complex situations. In this chapter, we present a novel robust tracker to detect and track multiple people in a crowded and open area in real time. First, raw data are obtained that measures two legs for each people at a height of 16 cm from horizontal ground with multiple registered laser scanners. A stable feature is extracted using accumulated distribu tion of successive laser frames. In this way, the noise that generates split and merged measurements is smoothed well, and the pattern of rhythmic swinging legs is uti lized to extract each leg. Second, a probabilistic tracking model is presented, and then a sequential inference process using a Bayesian rule is described. A sequential inference process is difficult to compute analytically, so two strategies are presented to simplify the computation. In the case of independent tracking, the Kalman fil ter is used with a more efficient measurement likelihood model based on a region coherency property. Finally, to deal with trajectory fragments we present a concise approach to fuse just a little visual information from synchronized video camera to laser data. Evaluation with real data shows that the proposed method is robust and effective. It achieves a significant improvement compared with existing laser

  7. GPU-based quasi-real-time Track Recognition in Imaging Devices: from raw Data to Particle Tracks

    CERN Document Server

    Bozza, Cristiano; De Sio, Chiara; Stellacci, Simona Maria

    2015-01-01

    Nuclear emulsions as tracking devices have been used by recent experiments thanks to fast automatic microscopes for emulsion readout. Automatic systems are evolving towards GPU-based solutions. Real-time imaging is needed to drive the motion of the microscope axes and 3D track recognition occurs quasi-online in local GPU clusters. The algorithms implemented in the Quick Scanning System are sketched. Most of them are very general and might turn out useful for other detector

  8. Feedback strategy on real-time multiple target tracking in cognitive vision system

    Science.gov (United States)

    Shao, Jie; Jia, Zhen; Li, Zhipeng; Liu, Fuqiang; Zhao, Jianwei; Peng, Pei-Yuan

    2011-10-01

    Under pedestrian and vehicle mixed traffic conditions, the potential accident rate is high due to a complex traffic environment. In order to solve this problem, we present a real-time cognitive vision system. In the scene-capture level, foreground objects are extracted based on the combination of spatial and temporal information. Then, a coarse-to-fine algorithm is employed in tracking. After filtering-based normal tracking, problems of the target blob missing, merging, and splitting are resolved by the adaptive tracking modification method in fine tracking. For greater robustness, the key idea of our approach is adaptively adjusting the classification sensibility of each pixel by employing tracking results as feedback cues for target detection in the next frame. On the basis of the target trajectories, behavior models are evaluated according to a decision logic table in the behavior-evaluation level. The decision logic table is set based on rules of real scenes. The resulting system interprets different kinds of traffic behavior and warns in advance. Experiments show robust and accurate results of abnormality detection and forewarning under different conditions. All the experimental results run at real-time frame rates (>=25 fps) on standard hardware. Therefore, the system is suitable for actual Intelligent Traffic System applications.

  9. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk [Department of Procurement and Clinical Engineering, Region Midt, Olof Palmes Allé 15, 8200 Aarhus N, Denmark and MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Ringgaard, Steffen [MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Poulsen, Per Rugaard [Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark and Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark)

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  10. Real Time 3D Facial Movement Tracking Using a Monocular Camera.

    Science.gov (United States)

    Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng

    2016-07-25

    The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.

  11. Advanced Automation for Ion Trap Mass Spectrometry-New Opportunities for Real-Time Autonomous Analysis

    Science.gov (United States)

    Palmer, Peter T.; Wong, C. M.; Salmonson, J. D.; Yost, R. A.; Griffin, T. P.; Yates, N. A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    The utility of MS/MS for both target compound analysis and the structure elucidation of unknowns has been described in a number of references. A broader acceptance of this technique has not yet been realized as it requires large, complex, and costly instrumentation which has not been competitive with more conventional techniques. Recent advancements in ion trap mass spectrometry promise to change this situation. Although the ion trap's small size, sensitivity, and ability to perform multiple stages of mass spectrometry have made it eminently suitable for on-line, real-time monitoring applications, advance automation techniques are required to make these capabilities more accessible to non-experts. Towards this end we have developed custom software for the design and implementation of MS/MS experiments. This software allows the user to take full advantage of the ion trap's versatility with respect to ionization techniques, scan proxies, and ion accumulation/ejection methods. Additionally, expert system software has been developed for autonomous target compound analysis. This software has been linked to ion trap control software and a commercial data system to bring all of the steps in the analysis cycle under control of the expert system. These software development efforts and their utilization for a number of trace analysis applications will be described.

  12. Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking

    Science.gov (United States)

    Ruan, Dan; Sawant, Amit

    2016-01-01

    Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for the trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al

  13. Real-time visual tracking system modelling in MPSoC using platform based design

    Science.gov (United States)

    Jia, Zai Jian; Bautista, Tomás; Núñez, Antonio; Guerra, Cayetano; Hernández, Mario

    2009-02-01

    In this paper, we present the modelling of a real-time tracking system on a Multi-Processor System on Chip (MPSoC). Our final goal is to build a more complex computer vision system (CVS) by integrating several applications in a modular way, which performs different kind of data processing issues but sharing a common platform, and this way, a solution for a set of applications using the same architecture is offered and not just for one application. In our current work, a visual tracking system with real-time behaviour (25 frames/sec) is used like a reference application, and also, guidelines for our future CVS applications development. Our algorithm written in C++ is based on correlation technique and the threshold dynamic update approach. After an initial computational complexity analysis, a task-graph was generated from this tracking algorithm. Concurrently with this functionality correctness analysis, a generic model of multi-processor platform was developed. Finally, the tracking system performance mapped onto the proposed architecture and shared resource usage were analyzed to determine the real architecture capacity, and also to find out possible bottlenecks in order to propose new solutions which allow more applications to be mapped on the platform template in the future.

  14. Practical Method of Adaptive Radiotherapy for Prostate Cancer Using Real-Time Electromagnetic Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Jeffrey R.; Noel, Camille E.; Baker, Kenneth; Santanam, Lakshmi; Michalski, Jeff M. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States)

    2012-04-01

    Purpose: We have created an automated process using real-time tracking data to evaluate the adequacy of planning target volume (PTV) margins in prostate cancer, allowing a process of adaptive radiotherapy with minimal physician workload. We present an analysis of PTV adequacy and a proposed adaptive process. Methods and Materials: Tracking data were analyzed for 15 patients who underwent step-and-shoot multi-leaf collimation (SMLC) intensity-modulated radiation therapy (IMRT) with uniform 5-mm PTV margins for prostate cancer using the Calypso Registered-Sign Localization System. Additional plans were generated with 0- and 3-mm margins. A custom software application using the planned dose distribution and structure location from computed tomography (CT) simulation was developed to evaluate the dosimetric impact to the target due to motion. The dose delivered to the prostate was calculated for the initial three, five, and 10 fractions, and for the entire treatment. Treatment was accepted as adequate if the minimum delivered prostate dose (D{sub min}) was at least 98% of the planned D{sub min}. Results: For 0-, 3-, and 5-mm PTV margins, adequate treatment was obtained in 3 of 15, 12 of 15, and 15 of 15 patients, and the delivered D{sub min} ranged from 78% to 99%, 96% to 100%, and 99% to 100% of the planned D{sub min}. Changes in D{sub min} did not correlate with magnitude of prostate motion. Treatment adequacy during the first 10 fractions predicted sufficient dose delivery for the entire treatment for all patients and margins. Conclusions: Our adaptive process successfully used real-time tracking data to predict the need for PTV modifications, without the added burden of physician contouring and image analysis. Our methods are applicable to other uses of real-time tracking, including hypofractionated treatment.

  15. Towards Real-Time Detection and Tracking of Blob-Filaments in Fusion Plasma Big Data

    CERN Document Server

    Wu, Lingfei; Sim, Alex; Churchill, Michael; Choi, Jong Y; Stathopoulos, Andreas; Chang, Cs; Klasky, Scott

    2015-01-01

    Magnetic fusion could provide an inexhaustible, clean, and safe solution to the global energy needs. The success of magnetically-confined fusion reactors demands steady-state plasma confinement which is challenged by the blob-filaments driven by the edge turbulence. Real-time analysis can be used to monitor the progress of fusion experiments and prevent catastrophic events. However, terabytes of data are generated over short time periods in fusion experiments. Timely access to and analyzing this amount of data demands properly responding to extreme scale computing and big data challenges. In this paper, we apply outlier detection techniques to effectively tackle the fusion blob detection problem on extremely large parallel machines. We present a real-time region outlier detection algorithm to efficiently find blobs in fusion experiments and simulations. In addition, we propose an efficient scheme to track the movement of region outliers over time. We have implemented our algorithms with hybrid MPI/OpenMP and ...

  16. Real-time accurate hand path tracking and joint trajectory planning for industrial robots(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 梁丰; 王越超

    2002-01-01

    Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.

  17. Real-time accurate hand path tracking and joint trajectory planning for industrial robots(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 胡生员

    2002-01-01

    Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on-line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.

  18. Implementation of Image Registration Algorithms for Real-time Target Tracking Through Video Sequences

    Directory of Open Access Journals (Sweden)

    Jharna Majumdar

    2002-07-01

    Full Text Available "Automatic detection and tracking of interesting targets from a sequence of images obtained from a reconnaissance platform is an interesting area of research for defence-related applications. Image registration is the basic step used in target tracking application. The paper briefly reviews some of the image registration algorithms, analyse their performance using a suitable image processing hardware, and selects the most suitable algorithm for a real-time target tracking application using cubic-spline model and spline model Kalman filter for the prediction of an occluded target. The algorithms developed are implemented in a ground-based image exploitation system (GIES developed at the Aeronautical Development Establishment for unmanned aerial vehicle application, and the results presented for the images obtained during actual flight trial.

  19. Extended neural network-based scheme for real-time force tracking with magnetorheological dampers

    DEFF Research Database (Denmark)

    Weber, Felix; Bhowmik, Subrata; Høgsberg, Jan Becker

    2014-01-01

    the pre-yield to the post-yield region. A control-oriented approach is presented to compensate for these drawbacks. The resulting control force tracking scheme is validated for the emulation of viscous damping, clipped viscous damping with negative stiffness, and friction damping with negative stiffness......This paper validates numerically and experimentally a new neural network-based real-time force tracking scheme for magnetorheological (MR) dampers on a five-storey shear frame with MR damper. The inverse model is trained with absolute values of measured velocity and force because the targeted....... The tests indicate that the proposed tracking scheme works better when the frequency content of the estimated current is close to that of the training data. Copyright © 2013 John Wiley & Sons, Ltd....

  20. Real-time auto-adaptive margin generation for MLC-tracked radiotherapy

    Science.gov (United States)

    Glitzner, M.; Fast, M. F.; de Senneville, B. Denis; Nill, S.; Oelfke, U.; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2017-01-01

    In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing {{V}90 %} in the underdosed area about 47 % and 41 % , respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.

  1. Strengthening HIV surveillance: measurements to track the epidemic in real time.

    Science.gov (United States)

    Buthelezi, Usangiphile E; Davidson, Candace L; Kharsany, Ayesha Bm

    2016-07-01

    Surveillance for HIV as a public health initiative requires timely, detailed and robust data to systematically understand burden of infection, transmission patterns, direct prevention efforts, guide funding, identify new infections and predict future trends in the epidemic. The methods for HIV surveillance have evolved to reliably track the epidemic and identify new infections in real time. Initially HIV surveillance relied primarily on the reporting of AIDS cases followed by measuring antibodies to HIV to determine prevalence in key populations. With the roll-out of antiretroviral therapy (ART) resulting in better survival and the corresponding increase in HIV prevalence, the landscape of surveillance shifted further to track HIV prevalence and incidence within the context of programmes. Recent developments in laboratory assays that potentially measure and differentiate recent versus established HIV infection offer a cost-effective method for the rapid estimation of HIV incidence. These tests continue to be validated and are increasingly useful in informing the status of the epidemic in real time. Surveillance of heterogeneity of infections contributing to sub-epidemics requires methods to identify affected populations, density, key geographical locations and phylogenetically linked or clustered infections. Such methods could provide a nuanced understanding of the epidemic and prioritise prevention efforts to those most vulnerable. This paper brings together recent developments and challenges facing HIV surveillance, together with the application of newer assays and methods to fast-track the HIV prevention and treatment response.

  2. Fast template matching based on grey prediction for real-time object tracking

    Science.gov (United States)

    Lv, Mingming; Hou, Yuanlong; Liu, Rongzhong; Hou, Runmin

    2017-02-01

    Template matching is a basic algorithm for image processing, and real-time is a crucial requirement of object tracking. For real-time tracking, a fast template matching algorithm based on grey prediction is presented, where computation cost can be reduced dramatically by minimizing search range. First, location of the tracked object in the current image is estimated by Grey Model (GM). GM(1,1), which is the basic model of grey prediction, can use some known information to foretell the location. Second, the precise position of the object in the frame is computed by template matching. Herein, Sequential Similarity Detection Algorithm (SSDA) with a self-adaptive threshold is employed to obtain the matching position in the neighborhood of the predicted location. The role of threshold in SSDA is important, as a proper threshold can make template matching fast and accurate. Moreover, a practical weighted strategy is utilized to handle scale and rotation changes of the object, as well as illumination changes. The experimental results show the superior performance of the proposed algorithm over the conventional full-search method, especially in terms of executive time.

  3. Combined kV and MV imaging for real-time tracking of implanted fiducial markers.

    Science.gov (United States)

    Wiersma, R D; Mao, Weihua; Xing, L

    2008-04-01

    In the presence of intrafraction organ motion, target localization uncertainty can greatly hamper the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT). To minimize the adverse dosimetric effect caused by tumor motion, a real-time knowledge of the tumor position is required throughout the beam delivery process. The recent integration of onboard kV diagnostic imaging together with MV electronic portal imaging devices on linear accelerators can allow for real-time three-dimensional (3D) tumor position monitoring during a treatment delivery. The aim of this study is to demonstrate a near real-time 3D internal fiducial tracking system based on the combined use of kV and MV imaging. A commercially available radiotherapy system equipped with both kV and MV imaging systems was used in this work. A hardware video frame grabber was used to capture both kV and MV video streams simultaneously through independent video channels at 30 frames per second. The fiducial locations were extracted from the kV and MV images using a software tool. The geometric tracking capabilities of the system were evaluated using a pelvic phantom with embedded fiducials placed on a moveable stage. The maximum tracking speed of the kV/MV system is approximately 9 Hz, which is primarily limited by the frame rate of the MV imager. The geometric accuracy of the system is found to be on the order of less than 1 mm in all three spatial dimensions. The technique requires minimal hardware modification and is potentially useful for image-guided radiation therapy systems.

  4. Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder.

    Science.gov (United States)

    Zhao, Zijian

    2014-01-01

    Robotized endoscope holder in laparoscopic surgeries allows surgeons to control the endoscope without the assistants' intervention. In this paper, a new method is proposed for the automatic 3D-tracking of laparoscopic instruments in real-time to provide more convenient interactions between surgeons and the robotized endoscope holder. The method is based on the 3D position measurements of the insertion points of the instruments and the strip markers, combined with the depth estimation of the instruments. The results of our experiments show that our method is fast and robust in the simulated laparoscopic surgeries.

  5. Real-time tracking using stereo and motion: Visual perception for space robotics

    Science.gov (United States)

    Nishihara, H. Keith; Thomas, Hans; Huber, Eric; Reid, C. Ann

    1994-01-01

    The state-of-the-art in computing technology is rapidly attaining the performance necessary to implement many early vision algorithms at real-time rates. This new capability is helping to accelerate progress in vision research by improving our ability to evaluate the performance of algorithms in dynamic environments. In particular, we are becoming much more aware of the relative stability of various visual measurements in the presence of camera motion and system noise. This new processing speed is also allowing us to raise our sights toward accomplishing much higher-level processing tasks, such as figure-ground separation and active object tracking, in real-time. This paper describes a methodology for using early visual measurements to accomplish higher-level tasks; it then presents an overview of the high-speed accelerators developed at Teleos to support early visual measurements. The final section describes the successful deployment of a real-time vision system to provide visual perception for the Extravehicular Activity Helper/Retriever robotic system in tests aboard NASA's KC135 reduced gravity aircraft.

  6. Tracking effusive eruptions in near real-time: 2014 Fogo (Cape Verde) eruption

    Science.gov (United States)

    Laiolo, Marco; Coppola, Diego; Cigolini, Corrado; Faria, Bruno; Ripepe, Maurizio

    2015-04-01

    The Fogo volcano (Cape Verde), after almost 20 years of inactivity, entered in a new effusive phase on November 23, 2014. The eruption occurred on the Fogo's Pico cone inside the Cha Caldera where the lava flow caused the evacuation of the Bangaeira and Portela inhabitants. To track the thermal evolution of this eruption, we extended the near-real time processing of the MIROVA (Middle InfraRed Observation of Volcanic Activity) algorithm to Fogo island. MIROVA is a hot-spot detection system based on the analysis of the Moderate Resolution Imaging Spectroradiometer (MODIS) data that provide thermal maps (1 km resolution) and radiant flux estimates, in near real time (1-4 hours from satellite overpass). Thermal output retrieved by MIROVA can be converted into time-average lava discharge rates allowing the identification of ongoing effusive trends. During the first 45 days of activity the eruption shows a waxing-waning trend typical of pressurized closed systems. Preliminary results indicate that MIROVA is particularly efficient to provide near real-time data that are critical for better assessing volcanic risk, and to help the decision-makers during volcanic crisis. Data requested by the UNDAC (United Nations Disaster Assessment and Coordination) team operating in Cape Verde, through the Emergency Response Coordination Center (ERCC) of the European Mechanism of Civil Protection, were provided in near real-time via web to the National Institute of Meteorology and Geophysics and to National Civil Protection. Once compared to seismological data, information provided by MIROVA have been successfully used during the volcanic crisis.

  7. Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera

    Science.gov (United States)

    Dziri, Aziz; Duranton, Marc; Chapuis, Roland

    2016-07-01

    Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.

  8. MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.

    Science.gov (United States)

    Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram

    2015-11-01

    We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.

  9. Automatic alignment of standard views in 3D echocardiograms using real-time tracking

    Science.gov (United States)

    Orderud, Fredrik; Torp, Hans; Rabben, Stein Inge

    2009-02-01

    In this paper, we present an automatic approach for alignment of standard apical and short-axis slices, and correcting them for out-of-plane motion in 3D echocardiography. This is enabled by using real-time Kalman tracking to perform automatic left ventricle segmentation using a coupled deformable model, consisting of a left ventricle model, as well as structures for the right ventricle and left ventricle outflow tract. Landmark points from the segmented model are then used to generate standard apical and short-axis slices. The slices are automatically updated after tracking in each frame to correct for out-of-plane motion caused by longitudinal shortening of the left ventricle. Results from a dataset of 35 recordings demonstrate the potential for automating apical slice initialization and dynamic short-axis slices. Apical 4-chamber, 2-chamber and long-axis slices are generated based on an assumption of fixed angle between the slices, and short-axis slices are generated so that they follow the same myocardial tissue over the entire cardiac cycle. The error compared to manual annotation was 8.4 +/- 3.5 mm for apex, 3.6 +/- 1.8 mm for mitral valve and 8.4 +/- 7.4 for apical 4-chamber view. The high computational efficiency and automatic behavior of the method enables it to operate in real-time, potentially during image acquisition.

  10. Optimized Carrier Tracking Loop Design for Real-Time High-Dynamics GNSS Receivers

    Directory of Open Access Journals (Sweden)

    Pedro A. Roncagliolo

    2012-01-01

    Full Text Available Carrier phase estimation in real-time Global Navigation Satellite System (GNSS receivers is usually performed by tracking loops due to their very low computational complexity. We show that a careful design of these loops allows them to operate properly in high-dynamics environments, that is, accelerations up to 40 g or more. Their phase and frequency discriminators and loop filter are derived considering the digital nature of the loop inputs. Based on these ideas, we propose a new loop structure named Unambiguous Frequency-Aided Phase-Locked Loop (UFA-PLL. In terms of tracking capacity and noise resistance UFA-PLL has the same advantages of frequently used coupled-loop schemes, but it is simpler to design and to implement. Moreover, it can keep phase lock in situations where other loops cannot. The loop design is completed selecting the correlation time and loop bandwidth that minimize the pull-out probability, without relying on typical rules of thumb. Optimal and efficient ways to smooth the phase estimates are also presented. Hence, high-quality phase measurements—usually exploited in offline and quasistatic applications—become practical for real-time and high-dynamics receivers. Experiments with fixed-point implementations of the proposed loops and actual radio signals are also shown.

  11. An optimized software framework for real-time, high-throughput tracking of spherical beads.

    Science.gov (United States)

    Cnossen, J P; Dulin, D; Dekker, N H

    2014-10-01

    Numerous biophysical techniques such as magnetic tweezers, flow stretching assays, or tethered particle motion assays rely on the tracking of spherical beads to obtain quantitative information about the individual biomolecules to which these beads are bound. The determination of these beads' coordinates from video-based images typically forms an essential component of these techniques. Recent advances in camera technology permit the simultaneous imaging of many beads, greatly increasing the information that can be captured in a single experiment. However, computational aspects such as frame capture rates or tracking algorithms often limit the rapid determination of such beads' coordinates. Here, we present a scalable and open source software framework to accelerate bead localization calculations based on the CUDA parallel computing framework. Within this framework, we implement the Quadrant Interpolation algorithm in order to accurately and simultaneously track hundreds of beads in real time using consumer hardware. In doing so, we show that the scatter derived from the bead tracking algorithms remains close to the theoretical optimum defined by the Cramer-Rao Lower Bound. We also explore the trade-offs between processing speed, size of the region-of-interests utilized, and tracking bias, highlighting in passing a bias in tracking along the optical axis that has previously gone unreported. To demonstrate the practical application of this software, we demonstrate how its implementation on magnetic tweezers can accurately track (with ∼1 nm standard deviation) 228 DNA-tethered beads at 58 Hz. These advances will facilitate the development and use of high-throughput single-molecule approaches.

  12. Registration of clinical volumes to beams-eye-view images for real-time tracking

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.; Mishra, Pankaj; Berbeco, Ross I., E-mail: rberbeco@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield units into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.

  13. Real-Time 3D Tracking and Reconstruction on Mobile Phones.

    Science.gov (United States)

    Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D

    2015-05-01

    We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.

  14. A robust system for real-time pedestrian detection and tracking

    Institute of Scientific and Technical Information of China (English)

    李琦; 邵春福; 赵熠

    2014-01-01

    A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules:video flow capture, pre-processing, movement detection, shadow removal, tracking, and object classification. The Gaussian mixture model was utilized to extract the moving object from an image sequence segmented by the mean-shift technique in the pre-processing module. Shadow removal was used to alleviate the negative impact of the shadow to the detected objects. A model-free method was adopted to identify pedestrians. The maximum and minimum integration methods were developed to integrate multiple cues into the mean-shift algorithm and the initial tracking iteration with the competent integrated probability distribution map for object tracking. A simple but effective algorithm was proposed to handle full occlusion cases. The system was tested using real traffic videos from different sites. The results of the test confirm that the system is reliable and has an overall accuracy of over 85%.

  15. Effective real-time vehicle tracking using discriminative sparse coding on local patches

    Science.gov (United States)

    Chen, XiangJun; Ye, Feiyue; Ruan, Yaduan; Chen, Qimei

    2016-01-01

    A visual tracking framework that provides an object detector and tracker, which focuses on effective and efficient visual tracking in surveillance of real-world intelligent transport system applications, is proposed. The framework casts the tracking task as problems of object detection, feature representation, and classification, which is different from appearance model-matching approaches. Through a feature representation of discriminative sparse coding on local patches called DSCLP, which trains a dictionary on local clustered patches sampled from both positive and negative datasets, the discriminative power and robustness has been improved remarkably, which makes our method more robust to a complex realistic setting with all kinds of degraded image quality. Moreover, by catching objects through one-time background subtraction, along with offline dictionary training, computation time is dramatically reduced, which enables our framework to achieve real-time tracking performance even in a high-definition sequence with heavy traffic. Experiment results show that our work outperforms some state-of-the-art methods in terms of speed, accuracy, and robustness and exhibits increased robustness in a complex real-world scenario with degraded image quality caused by vehicle occlusion, image blur of rain or fog, and change in viewpoint or scale.

  16. Real-time tumor tracking: Automatic compensation of target motion using the Siemens 160 MLC

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Martin B.; Nill, Simeon; Krauss, Andreas; Oelfke, Uwe [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany)

    2010-02-15

    Purpose: Advanced high quality radiation therapy techniques such as IMRT require an accurate delivery of precisely modulated radiation fields to the target volume. Interfractional and intrafractional motion of the patient's anatomy, however, may considerably deteriorate the accuracy of the delivered dose to the planned dose distributions. In order to compensate for these potential errors, a dynamic real-time capable MLC control system was designed. Methods: The newly developed adaptive MLC control system contains specialized algorithms which are capable of continuous optimization and correction of the aperture of the MLC according to the motion of the target volume during the dose delivery. The algorithms calculate the new leaf positions based on target information provided online to the system. The algorithms were implemented in a dynamic target tracking control system designed for a Siemens 160 MLC. To assess the quality of the new target tracking system in terms of dosimetric accuracy, experiments with various types of motion patterns using different phantom setups were performed. The phantoms were equipped with radiochromic films placed between solid water slabs. Dosimetric results of exemplary deliveries to moving targets with and without dynamic MLC tracking applied were compared in terms of the gamma criterion to the reference dose delivered to a static phantom. Results: Our measurements indicated that dose errors for clinically relevant two-dimensional target motion can be compensated by the new control system during the dose delivery of open fields. For a clinical IMRT dose distribution, the gamma success rate was increased from 19% to 77% using the new tracking system. Similar improvements were achieved for the delivery of a complete IMRT treatment fraction to a moving lung phantom. However, dosimetric accuracy was limited by the system's latency of 400 ms and the finite leaf width of 5 mm in the isocenter plane. Conclusions: Different

  17. Novel intelligent real-time position tracking system using FPGA and fuzzy logic.

    Science.gov (United States)

    Soares dos Santos, Marco P; Ferreira, J A F

    2014-03-01

    The main aim of this paper is to test if FPGAs are able to achieve better position tracking performance than software-based soft real-time platforms. For comparison purposes, the same controller design was implemented in these architectures. A Multi-state Fuzzy Logic controller (FLC) was implemented both in a Xilinx(®) Virtex-II FPGA (XC2v1000) and in a soft real-time platform NI CompactRIO(®)-9002. The same sampling time was used. The comparative tests were conducted using a servo-pneumatic actuation system. Steady-state errors lower than 4 μm were reached for an arbitrary vertical positioning of a 6.2 kg mass when the controller was embedded into the FPGA platform. Performance gains up to 16 times in the steady-state error, up to 27 times in the overshoot and up to 19.5 times in the settling time were achieved by using the FPGA-based controller over the software-based FLC controller.

  18. Real-time tracking data drive process improvements, even while ED volumes continue to climb.

    Science.gov (United States)

    2012-06-01

    Christiana Hospital in Newark, DE, has been able to dramatically reduce length-of-stay in the ED by making use of data derived from a real-time location system (RTLS) that tracks the movements of patients, providers, and staff. Administrators say that while some efficiencies are gained from the system alone, most of the positive impact is derived from using the RTLS data to focus on specific processes and make refinements. Within one year of implementing the RTLS technology, LOS in the ED was reduced by 40 minutes for admitted patients and 18 to 20 minutes for the treated-and-released population. A work group focused on process improvements in the ED's fast track section reduced the average LOS from 2.5 hours to 60 minutes or less. Similarly, a work group focused on the ESI 3 population reduced the average treatment time for this population from 5 or 6 hours to 3.4 hours. Administrators say key steps toward a successful RTLS implementation are careful planning for how you want to use the technology, and alleviating staff concerns about why their movements are being tracked.

  19. Automatic real-time tracking of fetal mouth in fetoscopic video sequence for supporting fetal surgeries

    Science.gov (United States)

    Xu, Rong; Xie, Tianliang; Ohya, Jun; Zhang, Bo; Sato, Yoshinobu; Fujie, Masakatsu G.

    2013-03-01

    Recently, a minimally invasive surgery (MIS) called fetoscopic tracheal occlusion (FETO) was developed to treat severe congenital diaphragmatic hernia (CDH) via fetoscopy, by which a detachable balloon is placed into the fetal trachea for preventing pulmonary hypoplasia through increasing the pressure of the chest cavity. This surgery is so dangerous that a supporting system for navigating surgeries is deemed necessary. In this paper, to guide a surgical tool to be inserted into the fetal trachea, an automatic approach is proposed to detect and track the fetal face and mouth via fetoscopic video sequencing. More specifically, the AdaBoost algorithm is utilized as a classifier to detect the fetal face based on Haarlike features, which calculate the difference between the sums of the pixel intensities in each adjacent region at a specific location in a detection window. Then, the CamShift algorithm based on an iterative search in a color histogram is applied to track the fetal face, and the fetal mouth is fitted by an ellipse detected via an improved iterative randomized Hough transform approach. The experimental results demonstrate that the proposed automatic approach can accurately detect and track the fetal face and mouth in real-time in a fetoscopic video sequence, as well as provide an effective and timely feedback to the robot control system of the surgical tool for FETO surgeries.

  20. Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping.

    Directory of Open Access Journals (Sweden)

    Joan Navarro

    Full Text Available Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis. In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps.

  1. Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping

    Science.gov (United States)

    Grémillet, David; Afán, Isabel; Ramírez, Francisco; Bouten, Willem; Forero, Manuela G.

    2016-01-01

    Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps. PMID:27448048

  2. Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping.

    Science.gov (United States)

    Navarro, Joan; Grémillet, David; Afán, Isabel; Ramírez, Francisco; Bouten, Willem; Forero, Manuela G

    2016-01-01

    Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps.

  3. Real-time fluorescence tracking of gene delivery via multifunctional nanocomposites.

    Science.gov (United States)

    Bai, Min; Bai, Xilin; Wang, Leyu

    2014-11-18

    Fluorescence imaging of transduced cells and tissues is valuable in the development of gene vectors and the evaluation of gene therapy efficacy. We report here the simple and rational design of multifunctional nanocomposites (NCs) for simultaneous gene delivery and fluorescence tracking based on ZnS:Mn(2+) quantum dots (QDs) and positively charged polymer coating. The positively charged imidazole in the as-synthesized amphiphilic copolymer can be used for gene loading via electrostatic interaction. While the introduced poly(ethylene glycol) (PEG) can be used to reduce the binding of plasma proteins to nanovectors and minimize clearance by the reticuloendothelial system after intravenous administration. Most importantly, these multifunctional nanovectors showed much lower cellular toxicity than the commercial polyethylenimine (PEI) transfection vectors. On the basis of the red fluorescence of QDs, we can real-time track the gene delivery in cells, and the transfection efficacy of pDNA encoding enhanced green fluorescence protein (pEGFP) was monitored via the green fluorescence of the GFP expressed by the pDNA delivered into the nuclei. Fluorescence imaging analysis confirmed that the QDs-based nanovectors delivered pDNA into HepG2 cells efficiently. These new insights and capabilities pave a new way toward nanocomposite engineering for fluorescence imaging tracking of gene therapy.

  4. Real-time Face Detection and Tracking Using Haar Classifier on SoC

    Directory of Open Access Journals (Sweden)

    Rajashree Tripathy

    2014-03-01

    Full Text Available In this paper we intend to Implement a real time Face detection and tracking the head poses position from high definition video using Haar Classifier through Raspberry Pi BCM2835 CPU processor which is a combination of SoC with GPU based Architecture. OV5647 CMOS Image sensor with 5-megapixel used for obtaining high definition video H.264 video data via GPU’s hardware video decoder to improve the playback of H.264 Video data supporting from 1080p at 30fps with complete user control over formatting and output data transfer also supporting with 720p/60HD video in full field of View(FOV. SimpleCV and OpenCV libraries are used for face detection and tracking the head poses position. The experimental result computed by using computer vision SimpleCV and OpenCV framework libraries along with above mentioned hardware results were obtained through of 30 fps under 1080p resolutions for higher accuracy and speediness for face detection and tracking the head poses position.

  5. Real-Time Local Range On-Demand for Tracking Gestures and Dynamic Regional Range Images

    Energy Technology Data Exchange (ETDEWEB)

    Tsap, L.V.

    2000-05-30

    This paper presents a new approach to a gesture-tracking system using real-time range on-demand. The system represents a gesture-controlled interface for interactive visual exploration of large data sets. The paper describes a method performing range processing only when necessary and where necessary. Range data is processed only for non-static regions of interest. This is accomplished by a set of filters on the color, motion, and range data. The speedup achieved is between 41% and 54%. The algorithm also includes a robust skin-color segmentation insensitive to illumination changes. Selective range processing results in dynamic regional range images (DRRIs). This development is also placed in a broader context of a biological visual system emulation, specifically redundancies and attention mechanisms.

  6. In vivo amyloid aggregation kinetics tracked by time-lapse confocal microscopy in real-time.

    Science.gov (United States)

    Villar-Piqué, Anna; Espargaró, Alba; Ventura, Salvador; Sabate, Raimon

    2016-01-01

    Amyloid polymerization underlies an increasing number of human diseases. Despite this process having been studied extensively in vitro, aggregation is a difficult process to track in vivo due to methodological limitations and the slow kinetics of aggregation reactions in cells and tissues. Herein we exploit the amyloid properties of the inclusions bodies (IBs) formed by amyloidogenic proteins in bacteria to address the kinetics of in vivo amyloid aggregation. To this aim we used time-lapse confocal microscopy and a fusion of the amyloid-beta peptide (A β42) with a fluorescent reporter. This strategy allowed us to follow the intracellular kinetics of amyloid-like aggregation in real-time and to discriminate between variants exhibiting different in vivo aggregation propensity. Overall, the approach opens the possibility to assess the impact of point mutations as well as potential anti-aggregation drugs in the process of amyloid formation in living cells.

  7. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    Science.gov (United States)

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video.

  8. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Fattori, G., E-mail: giovanni.fattori@psi.ch [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Seregni, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pella, A. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Riboldi, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Capasso, L. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Donetti, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Ciocca, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Giordanengo, S. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Pullia, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Baroni, G. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy)

    2016-08-11

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  9. Tracking in Real-Time Pyroclastic Flows at Soufriere Hills Volcano, Montserrat, by infrasonic array.

    Science.gov (United States)

    Ripepe, M.; de Angelis, S.; Lacanna, G.; Poggi, P.; Williams, C.

    2008-12-01

    flow indicated a mean speed of 160-175 km/h. The ability to detect and track such events in a real-time fashion has a strong impact on understanding the dynamics of pyroclastic flow propagation as well as on monitoring operations and risk management in Montserrat.

  10. Real-time optical multiple-object recognition and tracking demonstration: A friendly challenge to the digital field

    Science.gov (United States)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1980-01-01

    Researchers demonstrated the first optical multiple object tracking system. The system is capable of simultaneous tracking of multiple objects, each with independent movements in real-time, limited only to the TV frame rate (30 msec). In order to perform a similar tracking operation, a large computer system and very complex software would be needed. Although researchers have demonstrated the tracking of only 3 objects, the system capacity can easily be expanded by 2 orders of magnitude.

  11. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Via, Riccardo, E-mail: riccardo.via@polimi.it; Fassi, Aurora; Fattori, Giovanni [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133 (Italy); Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario [CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100 (Italy); Riboldi, Marco; Baroni, Guido [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy and CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100 (Italy); Orecchia, Roberto [CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy and European Institute of Oncology, Milano 20141 (Italy)

    2015-05-15

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring

  12. Creation of a RFID based real time tracking (R-RTT) system for small healthcare clinics.

    Science.gov (United States)

    Chen, Joseph C; Collins, Thomas J

    2012-12-01

    A well-managed healthcare system improves the quality of the patient experience. However, many small healthcare clinics have suboptimal systems for scheduling and locating patients and medical staff, delaying the relay of information and creating poor resource and room utilization. This paper proposes a Radio Frequency Identification (RFID)-based Real-Time Tracking (R-RTT) System for optimizing small healthcare facility operations, enabling further optimization of throughput time, room utilization, and patient flow. In the proposed scenario, RFID readers were equipped in strategic locations throughout the facility. Patients and medical staff were issued personalized RFID tags. When they pass through the reader's interrogation zone, it reads their RFID tag and sends the information to a central computer equipped with software capable of filtering the RFID data into useable information. A Visual Basic Application (VBA) program uses the information received from the ID tags to display the location of the patients and staff as they move throughout the facility. This increases their visibility within the facility by allowing medical staff to determine where their colleagues and patients are at all times. The VBA program was also able to record the data in order to track the time each stage of the appointment process takes to complete. The recorded time data can be broken into processes, making it easier to determine if it adds value. This data can then be transformed into a value stream map for further analysis and improvement.

  13. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

    Science.gov (United States)

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  14. Capturing geometry in real-time using a tracked Microsoft Kinect

    Science.gov (United States)

    Tenedorio, Daniel; Fecho, Marlena; Schwartzhaupt, Jorge; Pardridge, Robert; Lue, James; Schulze, Jürgen P.

    2012-03-01

    We investigate the suitability of the Microsoft Kinect device for capturing real-world objects and places. Our new geometry scanning system permits the user to obtain detailed triangle models of non-moving objects with a tracked Kinect. The system generates a texture map for the triangle mesh using video frames from the Kinect's color camera and displays a continually-updated preview of the textured model in real-time, allowing the user to re-scan the scene from any direction to fill holes or increase the texture resolution. We also present filtering methods to maintain a high-quality model of reasonable size by removing overlapping or low-precision range scans. Our approach works well in the presence of degenerate geometry or when closing loops about the scanned subject. We demonstrate the ability of our system to acquire 3D models at human scale with a prototype implementation in the StarCAVE, a virtual reality environment at the University of California, San Diego. We designed the capturing algorithm to support the scanning of large areas, provided that accurate tracking is available.

  15. Respiratory-Induced Prostate Motion Using Wavelet Decomposition of the Real-Time Electromagnetic Tracking Signal

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuting [Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, California (United States); Liu, Tian; Yang, Xiaofeng [Department of Radiation Oncology, Emory University Hospital, Winship Cancer Institute, Atlanta, Georgia (United States); Wang, Yuenan [Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland (United States); Khan, Mohammad K., E-mail: drkhurram2000@gmail.com [Department of Radiation Oncology, Emory University Hospital, Winship Cancer Institute, Atlanta, Georgia (United States)

    2013-10-01

    Purpose: The objective of this work is to characterize and quantify the impact of respiratory-induced prostate motion. Methods and Materials: Real-time intrafraction motion is observed with the Calypso 4-dimensional nonradioactive electromagnetic tracking system (Calypso Medical Technologies, Inc. Seattle, Washington). We report the results from a total of 1024 fractions from 31 prostate cancer patients. Wavelet transform was used to decompose the signal to extract and isolate the respiratory-induced prostate motion from the total prostate displacement. Results: Our results show that the average respiratory motion larger than 0.5 mm can be observed in 68% of the fractions. Fewer than 1% of the patients showed average respiratory motion of less than 0.2 mm, whereas 99% of the patients showed average respiratory-induced motion ranging between 0.2 and 2 mm. The maximum respiratory range of motion of 3 mm or greater was seen in only 25% of the fractions. In addition, about 2% patients showed anxiety, indicated by a breathing frequency above 24 times per minute. Conclusions: Prostate motion is influenced by respiration in most fractions. Real-time intrafraction data are sensitive enough to measure the impact of respiration by use of wavelet decomposition methods. Although the average respiratory amplitude observed in this study is small, this technique provides a tool that can be useful if one moves to smaller treatment margins (≤5 mm). This also opens ups the possibility of being able to develop patient specific margins, knowing that prostate motion is not unpredictable.

  16. Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment

    OpenAIRE

    Perch-Nielsen, I.; Rodrigo, P.J.; Alonzo, C.A.; Glückstad, J

    2006-01-01

    The Generalized Phase Contrast (GPC) method of optical 3D manipulation has previously been used for controlled spatial manipulation of live biological specimen in real-time. These biological experiments were carried out over a time-span of several hours while an operator intermittently optimized the optical system. Here we present GPC-based optical micromanipulation in a microfluidic system where trapping experiments are computer-automated and thereby capable of running with only limited supe...

  17. A Concept of Dynamically Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics.

    OpenAIRE

    De Cabrol, Aymeric; Garcia, Thibault; Bonnin, Patrick; Chetto, Maryline

    2007-01-01

    International audience; Abstract: In this article, we describe specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC based hardware architecture is convenient in this field because of its versatility, its flexibility, its performance and its cost, current real-time operating systems are not completely adapted to long processings with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions...

  18. Swarming visual sensor network for real-time multiple object tracking

    Science.gov (United States)

    Baranov, Yuri P.; Yarishev, Sergey N.; Medvedev, Roman V.

    2016-04-01

    Position control of multiple objects is one of the most actual problems in various technology areas. For example, in construction area this problem is represented as multi-point deformation control of bearing constructions in order to prevent collapse, in mining - deformation control of lining constructions, in rescue operations - potential victims and sources of ignition location, in transport - traffic control and traffic violations detection, in robotics -traffic control for organized group of robots and many other problems in different areas. Usage of stationary devices for solving these problems is inappropriately due to complex and variable geometry of control areas. In these cases self-organized systems of moving visual sensors is the best solution. This paper presents a concept of scalable visual sensor network with swarm architecture for multiple object pose estimation and real-time tracking. In this article recent developments of distributed measuring systems were reviewed with consequent investigation of advantages and disadvantages of existing systems, whereupon theoretical principles of design of swarming visual sensor network (SVSN) were declared. To measure object coordinates in the world coordinate system using TV-camera intrinsic (focal length, pixel size, principal point position, distortion) and extrinsic (rotation matrix, translation vector) calibration parameters were needed to be determined. Robust camera calibration was a too resource-intensive task for using moving camera. In this situation position of the camera is usually estimated using a visual mark with known parameters. All measurements were performed in markcentered coordinate systems. In this article a general adaptive algorithm of coordinate conversion of devices with various intrinsic parameters was developed. Various network topologies were reviewed. Minimum error in objet tracking was realized by finding the shortest path between object of tracking and bearing sensor, which set

  19. Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment

    DEFF Research Database (Denmark)

    Perch-Nielsen, I.; Rodrigo, P.J.; Alonzo, C.A.

    2006-01-01

    The Generalized Phase Contrast (GPC) method of optical 3D manipulation has previously been used for controlled spatial manipulation of live biological specimen in real-time. These biological experiments were carried out over a time-span of several hours while an operator intermittently optimized...... the optical system. Here we present GPC-based optical micromanipulation in a microfluidic system where trapping experiments are computer-automated and thereby capable of running with only limited supervision. The system is able to dynamically detect living yeast cells using a computer-interfaced CCD camera...... lateral stiffness of GPC-based optical traps. (c) 2006 Optical Society of America...

  20. Energy Tracking in Classrooms - A Real Time Experiment with Grade 5 Students

    Science.gov (United States)

    Lam, H. M.; Ho, F.

    2015-12-01

    ISF Academy, a K-G12 school in Hong Kong with over 1500 students and currently spanning 3 buildings, is retrofitting the school with an energy tracking system in three phases. The first phase during the fall of 2015 will include retrofitting eight Grade 5 classrooms. This new program will show the daily energy usage data from these classrooms. The Grade 5 students receive feedback on their energy use in real time as they compete over two months in their homeroom classes to lower their electrical use, and subsequently their carbon footprint. This competition style initiative will teach the 180 Grade 5 students about their energy usage in a fun and informative manner. ISF Academy has over 400 air-conditioners and we have already determined that the air conditioners are the largest single use of energy in the school. The energy tracking system installed and maintained by from Global Design Corporation utilizes uniquely identified current detectors attached to circuit breakers, to monitor electrical use of individual circuits. These detectors will also monitor the energy used for classroom lighting, fans and plugs, as well as the air conditioners. The system has been installed and the Grade 5 classrooms averaged between 40 kWh and 120 kWh of usage in May 2015. This data will be used as the baseline for the competition. Further analysis can also be done with the data, such as calculating the carbon emissions reduction throughout the school year, providing possible class learning activities and also aiding in future energy use and carbon footprint predictions. The data collected will help refine phase 2 and 3 of the installation, expanding the system to more buildings and also giving insight to the rollout of the system to the whole school when the systems are fully in place.

  1. Real-time self-calibration of a tracked augmented reality display

    Science.gov (United States)

    Baum, Zachary; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: Augmented reality systems have been proposed for image-guided needle interventions but they have not become widely used in clinical practice due to restrictions such as limited portability, low display refresh rates, and tedious calibration procedures. We propose a handheld tablet-based self-calibrating image overlay system. METHODS: A modular handheld augmented reality viewbox was constructed from a tablet computer and a semi-transparent mirror. A consistent and precise self-calibration method, without the use of any temporary markers, was designed to achieve an accurate calibration of the system. Markers attached to the viewbox and patient are simultaneously tracked using an optical pose tracker to report the position of the patient with respect to a displayed image plane that is visualized in real-time. The software was built using the open-source 3D Slicer application platform's SlicerIGT extension and the PLUS toolkit. RESULTS: The accuracy of the image overlay with image-guided needle interventions yielded a mean absolute position error of 0.99 mm (95th percentile 1.93 mm) in-plane of the overlay and a mean absolute position error of 0.61 mm (95th percentile 1.19 mm) out-of-plane. This accuracy is clinically acceptable for tool guidance during various procedures, such as musculoskeletal injections. CONCLUSION: A self-calibration method was developed and evaluated for a tracked augmented reality display. The results show potential for the use of handheld image overlays in clinical studies with image-guided needle interventions.

  2. A Concept of Dynamically Reconfigurable Real-time Vision System for Autonomous Mobile Robotics

    Institute of Scientific and Technical Information of China (English)

    Aymeric De Cabrol; Thibault Garcia; Patrick Bonnin; Maryline Chetto

    2008-01-01

    This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cleopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing chain to an exceptional everlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.

  3. A real-time image understanding system for an autonomous mobile robot

    OpenAIRE

    Remias, Leonard V.

    1996-01-01

    Approved for public release, distribution is unlimited Yamabico-11 is an autonomous mobile robot used as a research platform with one area in image understanding. Previous work focused on edge detection analysis on a Silicon Graphics Iris (SGI) workstation with no method for implementation on the robot. Yamabico-11 does not have an on-board image processing capability to detect straight edges in a grayscale image and a method for allowing the user to analyze the data. The approach taken fo...

  4. A novel autonomous real-time position method based on polarized light and geomagnetic field

    Science.gov (United States)

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Wang, Lu; Wang, Zhiwen

    2015-04-01

    Many animals exploit polarized light in order to calibrate their magnetic compasses for navigation. For example, some birds are equipped with biological magnetic and celestial compasses enabling them to migrate between the Western and Eastern Hemispheres. The Vikings' ability to derive true direction from polarized light is also widely accepted. However, their amazing navigational capabilities are still not completely clear. Inspired by birds' and Vikings' ancient navigational skills. Here we present a combined real-time position method based on the use of polarized light and geomagnetic field. The new method works independently of any artificial signal source with no accumulation of errors and can obtain the position and the orientation directly. The novel device simply consists of two polarized light sensors, a 3-axis compass and a computer. The field experiments demonstrate device performance.

  5. Data acquisition electronics and reconstruction software for real time 3D track reconstruction within the MIMAC project

    CERN Document Server

    Bourrion, O; Grignon, C; Bouly, J L; Richer, J P; Guillaudin, O; Mayet, F; Billard, J; Santos, D

    2011-01-01

    Directional detection of non-baryonic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A gaseous micro-TPC matrix, filled with either 3He, CF4 or C4H10 has been developed within the MIMAC project. A dedicated acquisition electronics and a real time track reconstruction software have been developed to monitor a 512 channel prototype. This autotriggered electronic uses embedded processing to reduce the data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.

  6. Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery

    DEFF Research Database (Denmark)

    Wagner, Martin; Gondan, Matthias; Zöllner, Christian

    2016-01-01

    and intraoperative electromagnetic tracking(EMT) of the rectum. Methods. Three models were compared and evaluated for the compensation of tissue. deformation. For Model A no compensation was performed. Model B moved the corresponding points rigidly to the motion of the EMT sensor. Model C used five nested linear....... In laparoscopic rectal surgery the combination of electromagnetic organ tracking and preoperative imaging is a promising approach to compensate for intraoperative tissue shift in real-time....

  7. Toward a generic real-time compression correction framework for tracked ultrasound

    Science.gov (United States)

    Pheiffer, Thomas S.; Miga, Michael I.

    2016-01-01

    Purpose Tissue compression during ultrasound imaging leads to error in the location and geometry of subsurface targets during soft tissue interventions. We present a novel compression correction method, which models a generic block of tissue and its subsurface tissue displacements resulting from application of a probe to the tissue surface. The advantages of the new method are that it can be realized independent of preoperative imaging data and is capable of near-video framerate compression compensation for real-time guidance. Methods The block model is calibrated to the tip of any tracked ultrasound probe. Intraoperative digitization of the tissue surface is used to measure the depth of compression and provide boundary conditions to the biomechanical model of the tissue. The tissue displacement field solution of the model is inverted to nonrigidly transform the ultrasound images to an estimation of the tissue geometry prior to compression. This method was compared to a previously developed method using a patient-specific model and within the context of simulation, phantom, and clinical data. Results Experimental results with gel phantoms demonstrated that the proposed generic method reduced the mock tumor margin modified Hausdorff distance (MHD) from 5.0 ± 1.6 to 2.1 ± 0.7 mm and reduced mock tumor centroid alignment error from 7.6 ± 2.6 to 2.6 ± 1.1 mm. The method was applied to a clinical case and reduced the in vivo tumor margin MHD error from 5.4 ± 0.1 to 2.9 ± 0.1 mm, and the centroid alignment error from 7.2 ± 0.2 to 3.8 ± 0.4 mm. Conclusions The correction method was found to effectively improve alignment of ultrasound and tomographic images and was more efficient compared to a previously proposed correction. PMID:25903777

  8. A real-time skin dose tracking system for biplane neuro-interventional procedures

    Science.gov (United States)

    Rana, Vijay K.; Rudin, Stephen R.; Bednarek, Daniel R.

    2015-03-01

    A biplane dose-tracking system (Biplane-DTS) that provides a real-time display of the skin-dose distribution on a 3D-patient graphic during neuro-interventional fluoroscopic procedures was developed. Biplane-DTS calculates patient skin dose using geometry and exposure information for the two gantries of the imaging system acquired from the digital system bus. The dose is calculated for individual points on the patient graphic surface for each exposure pulse and cumulative dose for both x-ray tubes is displayed as color maps on a split screen showing frontal and lateral projections of a 3D-humanoid graphic. Overall peak skin dose (PSD), FOV-PSD and current dose rates for the two gantries are also displayed. Biplane- TS uses calibration files of mR/mAs for the frontal and lateral tubes measured with and without the table in the beam at the entrance surface of a 20 cm thick PMMA phantom placed 15 cm tube-side of the isocenter. For neuro-imaging, conversion factors are applied as a function of entrance field area to scale the calculated dose to that measured with a Phantom Laboratory head phantom which contains a human skull to account for differences in backscatter between PMMA and the human head. The software incorporates inverse-square correction to each point on the skin and corrects for angulation of the beam through the table. Dose calculated by Biplane DTS and values measured by a 6-cc ionization chamber placed on the head phantom at multiple points agree within a range of -3% to +7% with a standard deviation for all points of less than 3%.

  9. Real-time Obstacle Avoidance for a Swarm of Autonomous Mobile Robots

    OpenAIRE

    Hedjar, Ramdane; Bounkhel, Messaoud

    2014-01-01

    In this paper, we propose a computational trajectory generation algorithm for swarm mobile robots using local information in a dynamic environment. The algorithm plans a reference path based on constrained convex nonlinear optimization which avoids both static and dynamic obstacles. This algorithm is combined with one-step-ahead predictive control for a swarm of mobile robots to track the generated paths and reach the goals without collision. The numerical simulations and experimental results...

  10. Low cost, robust and real time system for detecting and tracking moving objects to automate cargo handling in port terminals

    NARCIS (Netherlands)

    Vaquero, V.; Repiso, E.; Sanfeliu, A.; Vissers, J.; Kwakkernaat, M.

    2016-01-01

    The presented paper addresses the problem of detecting and tracking moving objects for autonomous cargo handling in port terminals using a perception system which input data is a single layer laser scanner. A computationally low cost and robust Detection and Tracking Moving Objects (DATMO) algorithm

  11. A machine vision approach to seam tracking in real-time in PAW of large-diameter stainless steel tube

    Institute of Scientific and Technical Information of China (English)

    葛景国; 朱政强; 何德孚; 陈立功

    2004-01-01

    Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.

  12. Real-time Obstacle Avoidance for a Swarm of Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Ramdane Hedjar

    2014-04-01

    Full Text Available In this paper, we propose a computational trajectory generation algorithm for swarm mobile robots using local information in a dynamic environment. The algorithm plans a reference path based on constrained convex nonlinear optimization which avoids both static and dynamic obstacles. This algorithm is combined with one-step-ahead predictive control for a swarm of mobile robots to track the generated paths and reach the goals without collision. The numerical simulations and experimental results demonstrate the effectiveness of the proposed free-collision path planning algorithm.

  13. Real-time piscicide tracking using Rhodamine WT dye for support of application, transport, and deactivation strategies in riverine environments

    Science.gov (United States)

    Jackson, Patrick Ryan; Lageman, Jonathan D.

    2013-01-01

    Piscicide applications in riverine environments are complicated by the advection and dispersion of the piscicide by the flowing water. Proper deactivation of the fish toxin is required outside of the treatment reach to ensure that there is minimal collateral damage to fisheries downstream or in connecting and adjacent water bodies. In urban settings and highly managed waterways, further complications arise from the influence of industrial intakes and outfalls, stormwater outfalls, lock and dam operations, and general unsteady flow conditions. These complications affect the local hydrodynamics and ultimately the transport and fate of the piscicide. This report presents two techniques using Rhodamine WT dye for real-time tracking of a piscicide plume—or any passive contaminant—in rivers and waterways in natural and urban settings. Passive contaminants are those that are present in such low concentration that there is no effect (such as buoyancy) on the fluid dynamics of the receiving water body. These methods, when combined with data logging and archiving, allow for visualization and documentation of the application and deactivation process. Real-time tracking and documentation of rotenone applications in rivers and urban waterways was accomplished by encasing the rotenone plume in a plume of Rhodamine WT dye and using vessel-mounted submersible fluorometers together with acoustic Doppler current profilers (ADCP) and global positioning system (GPS) receivers to track the dye and map the water currents responsible for advection and dispersion. In this study, two methods were used to track rotenone plumes: (1) simultaneous injection of dye with rotenone and (2) delineation of the upstream and downstream boundaries of the treatment zone with dye. All data were logged and displayed on a shipboard laptop computer, so that survey personnel provided real-time feedback about the extent of the rotenone plume to rotenone application and deactivation personnel. Further

  14. Antenna system analysis and design for automatic detection and real-time tracking of electron Bernstein waves in FTU

    Science.gov (United States)

    Bin, W.; Alessi, E.; Bruschi, A.; D'Arcangelo, O.; Figini, L.; Galperti, C.; Garavaglia, S.; Granucci, G.; Moro, A.

    2014-05-01

    The algorithm for the automatic control of the new front steering antenna of the Frascati Tokamak Upgrade device has been improved, in view of forthcoming experiments aimed at testing the mode conversion of electron cyclotron waves at a frequency of 140 GHz. The existing antenna system has been prepared to provide two-point real-time measurements of electron Bernstein waves and to allow real-time tracking of the optimal conversion region. This required an accurate analysis of the antenna to minimize the risk of a mechanical damage of the movable launching mirrors, when accessing the high toroidal launching angles needed for this kind of experiment. A detailed description is presented of the work carried out to safely reach and validate the desired range of steering angles, which include the region of interest, and a technique is proposed to track and chase the correct line of sight for electron Bernstein waves detection during the shot.

  15. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  16. A Real-Time Model-Based Human Motion Tracking and Analysis for Human-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Chung-Lin Huang

    2004-09-01

    Full Text Available This paper introduces a real-time model-based human motion tracking and analysis method for human computer interface (HCI. This method tracks and analyzes the human motion from two orthogonal views without using any markers. The motion parameters are estimated by pattern matching between the extracted human silhouette and the human model. First, the human silhouette is extracted and then the body definition parameters (BDPs can be obtained. Second, the body animation parameters (BAPs are estimated by a hierarchical tritree overlapping searching algorithm. To verify the performance of our method, we demonstrate different human posture sequences and use hidden Markov model (HMM for posture recognition testing.

  17. Predicting respiratory motion for real-time tumour tracking in radiotherapy

    CERN Document Server

    Krilavicius, Tomas; Simonavicius, Henrikas; Jarusevicius, Laimonas

    2015-01-01

    Purpose. Radiation therapy is a local treatment aimed at cells in and around a tumor. The goal of this study is to develop an algorithmic solution for predicting the position of a target in 3D in real time, aiming for the short fixed calibration time for each patient at the beginning of the procedure. Accurate predictions of lung tumor motion are expected to improve the precision of radiation treatment by controlling the position of a couch or a beam in order to compensate for respiratory motion during radiation treatment. Methods. For developing the algorithmic solution, data mining techniques are used. A model form from the family of exponential smoothing is assumed, and the model parameters are fitted by minimizing the absolute disposition error, and the fluctuations of the prediction signal (jitter). The predictive performance is evaluated retrospectively on clinical datasets capturing different behavior (being quiet, talking, laughing), and validated in real-time on a prototype system with respiratory mo...

  18. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zahnd, Guillaume, E-mail: g.zahnd@erasmusmc.nl [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam 3000 CA (Netherlands); Salles, Sébastien; Liebgott, Hervé; Vray, Didier [Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Lyon 69100 (France); Sérusclat, André [Department of Radiology, Louis Pradel Hospital, Lyon 69500 (France); Moulin, Philippe [Department of Endocrinology, Louis Pradel Hospital, Hospices Civils de Lyon, Université Lyon 1, Lyon 69100, France and INSERM UMR 1060, Lyon 69500 (France)

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time during image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.

  19. Real-Time Radar-Based Tracking and State Estimation of Multiple Non-Conformant Aircraft

    Science.gov (United States)

    Cook, Brandon; Arnett, Timothy; Macmann, Owen; Kumar, Manish

    2017-01-01

    In this study, a novel solution for automated tracking of multiple unknown aircraft is proposed. Many current methods use transponders to self-report state information and augment track identification. While conformant aircraft typically report transponder information to alert surrounding aircraft of its state, vehicles may exist in the airspace that are non-compliant and need to be accurately tracked using alternative methods. In this study, a multi-agent tracking solution is presented that solely utilizes primary surveillance radar data to estimate aircraft state information. Main research challenges include state estimation, track management, data association, and establishing persistent track validity. In an effort to realize these challenges, techniques such as Maximum a Posteriori estimation, Kalman filtering, degree of membership data association, and Nearest Neighbor Spanning Tree clustering are implemented for this application.

  20. Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Housden, R. James; Razavi, Reza; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Gogin, Nicolas; Cathier, Pascal [Medisys Research Group, Philips Healthcare, Paris 92156 (France); Gijsbers, Geert [Interventional X-ray, Philips Healthcare, Best 5680 DA (Netherlands); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guys and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2013-07-15

    Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction.Methods: In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time.Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 {+-} 0.29, 0.92 {+-} 0.61, and 0.63 {+-} 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 {+-} 0.28, 0.64 {+-} 0.37, and 0.53 {+-} 0.38 mm and success rates increased to 100%, 99

  1. Tracked robot controllers for climbing obstacles autonomously

    Science.gov (United States)

    Vincent, Isabelle

    2009-05-01

    Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.

  2. An efficient sequential approach to tracking multiple objects through crowds for real-time intelligent CCTV systems.

    Science.gov (United States)

    Li, Liyuan; Huang, Weimin; Gu, Irene Yu-Hua; Luo, Ruijiang; Tian, Qi

    2008-10-01

    Efficiency and robustness are the two most important issues for multiobject tracking algorithms in real-time intelligent video surveillance systems. We propose a novel 2.5-D approach to real-time multiobject tracking in crowds, which is formulated as a maximum a posteriori estimation problem and is approximated through an assignment step and a location step. Observing that the occluding object is usually less affected by the occluded objects, sequential solutions for the assignment and the location are derived. A novel dominant color histogram (DCH) is proposed as an efficient object model. The DCH can be regarded as a generalized color histogram, where dominant colors are selected based on a given distance measure. Comparing with conventional color histograms, the DCH only requires a few color components (31 on average). Furthermore, our theoretical analysis and evaluation on real data have shown that DCHs are robust to illumination changes. Using the DCH, efficient implementations of sequential solutions for the assignment and location steps are proposed. The assignment step includes the estimation of the depth order for the objects in a dispersing group, one-by-one assignment, and feature exclusion from the group representation. The location step includes the depth-order estimation for the objects in a new group, the two-phase mean-shift location, and the exclusion of tracked objects from the new position in the group. Multiobject tracking results and evaluation from public data sets are presented. Experiments on image sequences captured from crowded public environments have shown good tracking results, where about 90% of the objects have been successfully tracked with the correct identification numbers by the proposed method. Our results and evaluation have indicated that the method is efficient and robust for tracking multiple objects (>or= 3) in complex occlusion for real-world surveillance scenarios.

  3. ADAPTIVE BACKGROUND DENGAN METODE GAUSSIAN MIXTURE MODELS UNTUK REAL-TIME TRACKING

    Directory of Open Access Journals (Sweden)

    Silvia Rostianingsih

    2008-01-01

    Full Text Available Nowadays, motion tracking application is widely used for many purposes, such as detecting traffic jam and counting how many people enter a supermarket or a mall. A method to separate background and the tracked object is required for motion tracking. It will not be hard to develop the application if the tracking is performed on a static background, but it will be difficult if the tracked object is at a place with a non-static background, because the changing part of the background can be recognized as a tracking area. In order to handle the problem an application can be made to separate background where that separation can adapt to change that occur. This application is made to produce adaptive background using Gaussian Mixture Models (GMM as its method. GMM method clustered the input pixel data with pixel color value as it’s basic. After the cluster formed, dominant distributions are choosen as background distributions. This application is made by using Microsoft Visual C 6.0. The result of this research shows that GMM algorithm could made adaptive background satisfactory. This proofed by the result of the tests that succeed at all condition given. This application can be developed so the tracking process integrated in adaptive background maker process. Abstract in Bahasa Indonesia : Saat ini, aplikasi motion tracking digunakan secara luas untuk banyak tujuan, seperti mendeteksi kemacetan dan menghitung berapa banyak orang yang masuk ke sebuah supermarket atau sebuah mall. Sebuah metode untuk memisahkan antara background dan obyek yang di-track dibutuhkan untuk melakukan motion tracking. Membuat aplikasi tracking pada background yang statis bukanlah hal yang sulit, namun apabila tracking dilakukan pada background yang tidak statis akan lebih sulit, dikarenakan perubahan background dapat dikenali sebagai area tracking. Untuk mengatasi masalah tersebut, dapat dibuat suatu aplikasi untuk memisahkan background dimana aplikasi tersebut dapat

  4. Real-time drogue recognition and 3D locating for UAV autonomous aerial refueling based on monocular machine vision

    Institute of Scientific and Technical Information of China (English)

    Wang Xufeng; Kong Xingwei; Zhi Jianhui; Chen Yong; Dong Xinmin

    2015-01-01

    Drogue recognition and 3D locating is a key problem during the docking phase of the autonomous aerial refueling (AAR). To solve this problem, a novel and effective method based on monocular vision is presented in this paper. Firstly, by employing computer vision with red-ring-shape feature, a drogue detection and recognition algorithm is proposed to guarantee safety and ensure the robustness to the drogue diversity and the changes in environmental condi-tions, without using a set of infrared light emitting diodes (LEDs) on the parachute part of the dro-gue. Secondly, considering camera lens distortion, a monocular vision measurement algorithm for drogue 3D locating is designed to ensure the accuracy and real-time performance of the system, with the drogue attitude provided. Finally, experiments are conducted to demonstrate the effective-ness of the proposed method. Experimental results show the performances of the entire system in contrast with other methods, which validates that the proposed method can recognize and locate the drogue three dimensionally, rapidly and precisely.

  5. Real-Time Eye Detection and Tracking under Various Light Conditions

    Directory of Open Access Journals (Sweden)

    Feng Jiao

    2007-10-01

    Full Text Available This paper describes a real-time online prototype automobile and truck driver-fatigue monitor. It uses remotely located charge-coupled-device cameras equipped with active infrared illuminators to acquire video images of the driver. Various visual cues that typically characterize the level of alertness of a person are extracted in real time and systematically combined to infer the fatigue level of the driver. The visual cues employed characterize eyelid movement, gaze movement, head movement, and facial expression. A probabilistic model is developed to model human fatigue and to predict fatigue based on the visual cues obtained. The simultaneous use of multiple visual cues and their systematic combination yields a much more robust and accurate fatigue characterization than using a single visual cue. This system was validated under real-life fatigue conditions with human subjects of different ethnic backgrounds, genders, and ages; with/without glasses; and under different illumination conditions. It was found to be reasonably robust, reliable, and accurate in fatigue characterization.

  6. Real-time dynamic MLC tracking for inversely optimized arc radiotherapy

    DEFF Research Database (Denmark)

    Falk, Marianne; af Rosenschöld, Per Munck; Keall, Paul;

    2010-01-01

    Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory....

  7. Real-time dynamic MLC tracking for inversely optimized arc radiotherapy

    DEFF Research Database (Denmark)

    Falk, Marianne; af Rosenschöld, Per Munck; Keall, Paul

    2010-01-01

    Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory.......Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory....

  8. Real-time detecting and tracking ball with OpenCV and Kinect

    Science.gov (United States)

    Osiecki, Tomasz; Jankowski, Stanislaw

    2016-09-01

    This paper presents a way to detect and track ball with using the OpenCV and Kinect. Object and people recognition, tracking are more and more popular topics nowadays. Described solution makes it possible to detect ball based on the range, which is set by the user and capture information about ball position in three dimensions. It can be store in the computer and use for example to display trajectory of the ball.

  9. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    Science.gov (United States)

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  10. Seamless Data Services for Real Time Communication in a Heterogeneous Networks using Network Tracking and Management

    CERN Document Server

    T, Adiline Macriga

    2010-01-01

    Heterogeneous Networks is the integration of all existing networks under a single environment with an understanding between the functional operations and also includes the ability to make use of multiple broadband transport technologies and to support generalized mobility. It is a challenging feature for Heterogeneous networks to integrate several IP-based access technologies in a seamless way. The focus of this paper is on the requirements of a mobility management scheme for multimedia real-time communication services - Mobile Video Conferencing. Nowadays, the range of available wireless access network technologies includes cellular or wide-area wireless systems, such as cellular networks (GSM/GPRS/UMTS) or Wi-Max, local area Network or personal area wireless systems, comprising for example, WLAN (802.11 a/b/g) and Bluetooth. As the mobile video conferencing is considered, the more advanced mobile terminals are capable of having more than one interface active at the same time. In addition, the heterogeneity ...

  11. A real-time tracking system for monitoring shipments of hazardous materials

    Science.gov (United States)

    Womble, Phillip; Paschal, Jon; Hopper, Lindsay; Pinson, Dudley; Schultz, Frederick; Whitfield Humphrey, Melinda

    2007-04-01

    Due to the ever increasing use of radioactive materials in day to day living from the treatment of cancer patients and irradiation of food for preservation to industrial radiography to check for defects in the welding of pipelines and buildings there is a growing concern over the tracking and monitoring of these sources in transit prior to use as well as the waste produced by such use. The prevention of lost sealed sources is important in reducing the environmental and health risk posed by direct exposure, co-mingling in the metal recycling stream, use in contaminated consumer products, and use in terrorist activities. Northwest Nuclear, LLC (NWN) and the Applied Physics Institute (API) at Western Kentucky University have developed a tracking technology using active radio frequency identification (RFID) tags. This system provides location information by measuring the time of arrival of packets from a set of RFID tags to a set of location receivers. The system can track and graphically display the location on maps, drawings or photographs of tagged items on any 802.11- compliant device (PDAs, laptops, computers, WiFi telephones) situated both outside and inside structures. This location information would be vital for tracking the location of high level radiological sources while in transit. RFID technology would reduce the number of lost sources by tracking them from origination to destination. Special tags which indicate tampering or sudden movement have also been developed.

  12. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    Science.gov (United States)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  13. Real-time detection and tracking of multiple objects with partial decoding in H.264/AVC bitstream domain

    CERN Document Server

    You, Wonsang; Kim, Munchurl; 10.1117/12.805596

    2012-01-01

    In this paper, we show that we can apply probabilistic spatiotemporal macroblock filtering (PSMF) and partial decoding processes to effectively detect and track multiple objects in real time in H.264|AVC bitstreams with stationary background. Our contribution is that our method cannot only show fast processing time but also handle multiple moving objects that are articulated, changing in size or internally have monotonous color, even though they contain a chaotic set of non-homogeneous motion vectors inside. In addition, our partial decoding process for H.264|AVC bitstreams enables to improve the accuracy of object trajectories and overcome long occlusion by using extracted color information.

  14. Real-time detection and tracking of multiple objects with partial decoding in H.264/AVC bitstream domain

    Science.gov (United States)

    You, Wonsang; Sabirin, M. S. Houari; Kim, Munchurl

    2009-02-01

    In this paper, we show that we can apply probabilistic spatiotemporal macroblock filtering (PSMF) and partial decoding processes to effectively detect and track multiple objects in real time in H.264|AVC bitstreams with stationary background. Our contribution is that our method cannot only show fast processing time but also handle multiple moving objects that are articulated, changing in size or internally have monotonous color, even though they contain a chaotic set of non-homogeneous motion vectors inside. In addition, our partial decoding process for H.264|AVC bitstreams enables to improve the accuracy of object trajectories and overcome long occlusion by using extracted color information.

  15. Evaluation of Real-Time Hand Motion Tracking Using a Range Camera and the Mean-Shift Algorithm

    Science.gov (United States)

    Lahamy, H.; Lichti, D.

    2011-09-01

    Several sensors have been tested for improving the interaction between humans and machines including traditional web cameras, special gloves, haptic devices, cameras providing stereo pairs of images and range cameras. Meanwhile, several methods are described in the literature for tracking hand motion: the Kalman filter, the mean-shift algorithm and the condensation algorithm. In this research, the combination of a range camera and the simple version of the mean-shift algorithm has been evaluated for its capability for hand motion tracking. The evaluation was assessed in terms of position accuracy of the tracking trajectory in x, y and z directions in the camera space and the time difference between image acquisition and image display. Three parameters have been analyzed regarding their influence on the tracking process: the speed of the hand movement, the distance between the camera and the hand and finally the integration time of the camera. Prior to the evaluation, the required warm-up time of the camera has been measured. This study has demonstrated the suitability of the range camera used in combination with the mean-shift algorithm for real-time hand motion tracking but for very high speed hand movement in the traverse plane with respect to the camera, the tracking accuracy is low and requires improvement.

  16. Experimental validation of concept for real-time wavelength monitoring and tracking in densely populated WDM networks

    Science.gov (United States)

    Vukovic, Alex; Savoie, Michel; Hua, Heng; Campbell, Scott; Nguyen, Thao

    2005-10-01

    As the telecom industry responds with technological innovations to requests for higher data rates, increased number of wavelengths at higher densities, longer transmission distances and more intelligence for next generation optical networks, new monitoring schemes based on monitoring and tracking of each wavelength need to be developed and deployed. An optical layer monitoring scheme, based on tracking key optical parameters per each wavelength, is considered to be one of enablers for the transformation of today's opaque networks to dynamic, agile future networks. Ever-tighter network monitoring and control will be required to fulfill customer Service Level Agreements (SLAs). A wavelength monitoring and tracking concept was developed as a three-step approach. It started with the identification of all critical parameters required to obtain sufficient information about each wavelength; followed by the deployment of a cost-efficient device to provide simultaneous, accurate measurements in real-time of all critical parameters; and finally, the formulation of a specification for wavelength monitoring and tracking devices for real-time, simultaneous measurements and processing the data. A prototype solution based on a commercially available integrated modular spectrometer within a testbed environment associated with the all-optical network (AON) demonstrator program was used to verify and validate the wavelength monitoring and tracking concept. The developed concept verified that it can manage tracking of 32 wavelengths within a wavelength division multiplexing network. The developed concept presented in this paper can be used inside the transparent domains of networks to detect, identify and locate signal degradations in real-time, even sometimes to recognize the cause of the failure. Aside from the reduction of operational expenses due to the elimination of the need for operators at every site and skilled field technicians to isolate and repair faults, the developed

  17. Real-Time Dynamic MLC Tracking for Intensity Modulated Arc Therapy

    DEFF Research Database (Denmark)

    Falk, Marianne

    -fraction motion management that uses the MLC of the treatment machine to reshape the beam to follow the tumour movements. The 3D MLC tracking algorithm recalculates the planned MLC positions using information about the tumour location from an independent monitoring system and the leaves are adjusted accordingly...

  18. Real-time three-dimensional speckle tracking echocardiography: technical aspects and clinical applications

    Directory of Open Access Journals (Sweden)

    Sorrentino R

    2016-11-01

    Full Text Available Regina Sorrentino, Roberta Esposito, Enrica Pezzullo, Maurizio Galderisi Department of Advanced Biomedical Sciences, Interdepartmental Laboratory of Cardiac Imaging, Federico II University Hospital, Naples, Italy Abstract: Three-dimensional speckle tracking echocardiography (3D STE is a novel technique for the quantification of cardiac deformation based on tracking of ultrasonic speckles in gray scale full-volume 3D images. Developments in ultrasound technologies have made 3D speckle tracking widely available. Two-dimensional echocardiography has intrinsic limitations regarding estimation of left ventricular (LV volumes, ejection fraction, and LV mechanics, due to its inherent foreshortening errors and dependency on geometric models. The development of 3D echocardiography has improved reproducibility and accuracy. Data regarding the feasibility, accuracy, and clinical applications of 3D STE are rapidly assembling. From the tracking results, 3D STE derives several parameters, including longitudinal, circumferential and radial strain, as well as a combined assessment of longitudinal and circumferential strain, termed area strain. 3D STE can also quantify LV rotational movements such as rotation, twist, and torsion. 3D STE provides a better insight on global and regional myocardial deformation. Main applications include detection of subclinical myocardial involvement in heart failure, arterial hypertension, dyssynchrony, and ischemic heart disease. Emerging areas of application include a large spectrum of heart-involving systemic conditions, such as prediction of rejection in heart transplant patients, early detection of cardiotoxicity in patients receiving chemotherapy for cancer, and deeper physiological understanding of LV contraction mechanics in different types of athletes. Aim of this review is to discuss background, technical acquisition and processing aspects as well as recognized and developing clinical applications of this emerging

  19. Passive markers for tracking surgical instruments in real-time 3-D ultrasound imaging.

    Science.gov (United States)

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E

    2012-03-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts.

  20. Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles

    Science.gov (United States)

    Whiting, Nicholas; Hu, Jingzhe; Shah, Jay V.; Cassidy, Maja C.; Cressman, Erik; Zacharias Millward, Niki; Menter, David G.; Marcus, Charles M.; Bhattacharya, Pratip K.

    2015-08-01

    Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥40 minutes—allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation.

  1. Eye-tracking technology for real-time monitoring of transverse chromatic aberration

    Science.gov (United States)

    Privitera, Claudio M.; Sabesan, Ramkumar; Winter, Simon; Tiruveedhula, Pavan; Roorda, Austin

    2017-01-01

    Objective measurements of transverse chromatic aberration (TCA) between two or more wavelengths with an adaptive optics scanning laser ophthalmoscope (AOSLO) are very accurate, but frequent measurements are impractical in many experimental settings. Here, we demonstrate a pupil-tracker that can accurately measure relative changes in TCA that are caused by small shifts in the pupil relative to the AOSLO imaging beam. Corrections for TCA caused by these shifts improve the measurement of TCA as a function of eccentricity, revealing a strong linear relationship. We propose that pupil tracking be integrated into AOSLO systems where robust and unobtrusive control of TCA is required. PMID:27082330

  2. FTK: A Hardware Real-Time Track Finder for the ATLAS Trigger System

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2016-01-01

    An overview of the ATLAS Fast Tracker processor will be presented, reporting the design of the system, its expected performance, and the current integration status. The Fast TracKer is an upgrade of the trigger system at the ATLAS experiment. This system is designed to lower the event rate from the proton-proton collisions occurring at 40 MHz to about 1 kHz for the expected LHC luminosity (2x1034cm-2s-1). To achieve this selection rate an intensive use of particle tracking must be exploited. For such a demanding application a dedicated hardware tracker was designed, the Fast TracKer processor. To achieve the required performance Fast TracKer uses a combination of custom designed VLSI chips and latest generation FPGAs, all embedded in custom designed boards, exploiting a fully parallel architecture. Fast TracKer provides track reconstruction based on the full silicon (inner) detector with resolution comparable to the offline reconstruction with a latency of approximately 100μs.

  3. Real-Time Fluorescence Tracking of Protoporphyrin Incorporated Thermosensitive Hydrogel and Its Drug Release in Vivo.

    Science.gov (United States)

    Dong, Xia; Wei, Chang; Liu, Tianjun; Lv, Feng; Qian, Zhiyong

    2016-03-02

    Fluorescence imaging in vivo will pave an important way for the evaluation of biomaterials. The major advantage of fluorescence imaging compared to other imaging modalities is the possibility of tracking two or more fluorescence probes simultaneously with multispectral fluorescence imaging. It is essential to elucidate the location, erosion, drug release and resection of implanted biomaterials in vivo. Herein, a thermosensitive hydrogel with a protoporphyrin core based on a PEG and PCL copolymer (PCL-PEG-PPOR-PEG-PCL) was synthesized by ring-opening polymerization using protoporphyrin as a fluorescence tag. The optical properties of the hydrogel were investigated by UV-vis and fluorescence spectroscopy in vitro and by fluorescence imaging system in vivo. The hydrogel erosion and drug delivery in vivo were monitored and tracked by multispectral fluorescence imaging system in nude mice. The results show that the thermosensitive hydrogel exhibits fluorescence and injectability in vivo with good biocompatibility. Through the modality of fluorescence imaging, the status of the hydrogel is reflected in situ in vivo including its location and erosion. Multispectral analysis separates the autofluorescence signals from the specific label and provides the ability to locate the drug and carrier. The protoporphyrin incorporated thermosensitive hydrogel can be a potential visiable biomedical implant for tissue repair or drug delivery.

  4. FTK: A HARDWARE REAL-TIME TRACK FINDER FOR THE ATLAS TRIGGER SYSTEM

    CERN Document Server

    Stabile, Alberto; The ATLAS collaboration

    2016-01-01

    An overview of the ATLAS Fast Tracker processor will be presented, reporting the design of the system, its expected performance, and the current integration status. The Fast TracKer is an upgrade of the trigger system at the ATLAS experiment. This system is designed to lower the event rate from the proton-proton collisions occurring at 40 MHz to about 1 kHz for the expected LHC luminosity (2x1034cm-2s-1). To achieve this selection rate an intensive use of particle tracking must be exploited. For such a demanding application a dedicated hardware tracker was designed, the Fast TracKer processor. To achieve the required performance Fast TracKer uses a combination of custom designed VLSI chips and latest generation FPGAs, all embedded in custom designed boards, exploiting a fully parallel architecture. Fast TracKer provides track reconstruction based on the full silicon (inner) detector with resolution comparable to the offline reconstruction with a latency of approximately 100μs.

  5. Fast Tracker : A Hardware Real Time Track Finder for the ATLAS Trigger System

    CERN Document Server

    Kimura, N; The ATLAS collaboration

    2013-01-01

    The Large Hadron Collider (LHC) after the 2013-­‐2014 shutdown period is expected to improve the yet impressive performance obtained up to this year: collisions’ energy will increase to 14 TeV and instantaneous luminosity will reach and then overcome 10^34 cm‐2s‐1, with a bunch crossing period of 25 ns. The LHC experiments will need to adapt to the more crowded events, maintaining the physics output and the quality of the final results. The pileup higher than the LHC run 1, with peaks expected to reach 50 or more, will make more difficult to have efficient online selection of rare events based mostly on calorimeters and muon detectors as it is done now. A more extensive use of the information collected by the tracking detector will allow building more robust selections, limiting the degradation effects due to the high pileup. We report on the development of the Fast Tracker (FTK) processor for the ATLAS experiment, devoted to reconstruct tracks with transverse momentum above 1 GeV in the whole detect...

  6. Optimization of fluoroscopy parameters using pattern matching prediction in the real-time tumor-tracking radiotherapy system.

    Science.gov (United States)

    Miyamoto, Naoki; Ishikawa, Masayori; Bengua, Gerard; Sutherland, Kenneth; Suzuki, Ryusuke; Kimura, Suguru; Shimizu, Shinichi; Onimaru, Rikiya; Shirato, Hiroki

    2011-08-07

    In the real-time tumor-tracking radiotherapy system, fluoroscopy is used to determine the real-time position of internal fiducial markers. The pattern recognition score (PRS) ranging from 0 to 100 is computed by a template pattern matching technique in order to determine the marker position on the fluoroscopic image. The PRS depends on the quality of the fluoroscopic image. However, the fluoroscopy parameters such as tube voltage, current and exposure duration are selected manually and empirically in the clinical situation. This may result in an unnecessary imaging dose from the fluoroscopy or loss of the marker because of too much or insufficient x-ray exposure. In this study, a novel optimization method is proposed in order to minimize the fluoroscopic dose while keeping the image quality usable for marker tracking. The PRS can be predicted in a region where the marker appears to move in the fluoroscopic image by the proposed method. The predicted PRS can be utilized to judge whether the marker can be tracked with accuracy. In this paper, experiments were performed to show the feasibility of the PRS prediction method under various conditions. The predicted PRS showed good agreement with the measured PRS. The root mean square error between the predicted PRS and the measured PRS was within 1.44. An experiment using a motion controller and an anthropomorphic chest phantom was also performed in order to imitate a clinical fluoroscopy situation. The result shows that the proposed prediction method is expected to be applicable in a real clinical situation.

  7. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound

    Science.gov (United States)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry

    2016-03-01

    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  8. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Larsson, Tobias; Keall, Paul

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced...... on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans...... with a single 358° arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy × 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45° or 315°. To quantify the plan modulation, an average...

  9. A real-time tracking system of infrared dim and small target based on FPGA and DSP

    Science.gov (United States)

    Rong, Sheng-hui; Zhou, Hui-xin; Qin, Han-lin; Wang, Bing-jian; Qian, Kun

    2014-11-01

    A core technology in the infrared warning system is the detection tracking of dim and small targets with complicated background. Consequently, running the detection algorithm on the hardware platform has highly practical value in the military field. In this paper, a real-time detection tracking system of infrared dim and small target which is used FPGA (Field Programmable Gate Array) and DSP (Digital Signal Processor) as the core was designed and the corresponding detection tracking algorithm and the signal flow is elaborated. At the first stage, the FPGA obtain the infrared image sequence from the sensor, then it suppresses background clutter by mathematical morphology method and enhances the target intensity by Laplacian of Gaussian operator. At the second stage, the DSP obtain both the original image and the filtered image form the FPGA via the video port. Then it segments the target from the filtered image by an adaptive threshold segmentation method and gets rid of false target by pipeline filter. Experimental results show that our system can achieve higher detection rate and lower false alarm rate.

  10. Novel real-time alignment and calibration of LHCb detector for Run II and tracking for the upgrade.

    Science.gov (United States)

    Quagliani, Renato; LHCb Collaboration

    2016-10-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. Data collected at the start of the fill is processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. The procedure aims to improve the quality of the online selection and performance stability. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. A similar scheme is planned to be used for Run III foreseen to start in 2020. At that time LHCb will run at an instantaneous luminosity of 2 x 1033 cm-2 s-1 and a fully software based trigger strategy will be used. The new running conditions and the tighter timing constraints in the software trigger (only 13 ms per event are available) represent a big challenge for track reconstruction. The new software based trigger strategy implies a full detector read-out at the collision rate of 40 MHz. High performance and timing constraints are ensured by a new tracking system and a fast and efficient track reconstruction strategy.

  11. Autonomous Multicamera Tracking on Embedded Smart Cameras

    Directory of Open Access Journals (Sweden)

    Bischof Horst

    2007-01-01

    Full Text Available There is currently a strong trend towards the deployment of advanced computer vision methods on embedded systems. This deployment is very challenging since embedded platforms often provide limited resources such as computing performance, memory, and power. In this paper we present a multicamera tracking method on distributed, embedded smart cameras. Smart cameras combine video sensing, processing, and communication on a single embedded device which is equipped with a multiprocessor computation and communication infrastructure. Our multicamera tracking approach focuses on a fully decentralized handover procedure between adjacent cameras. The basic idea is to initiate a single tracking instance in the multicamera system for each object of interest. The tracker follows the supervised object over the camera network, migrating to the camera which observes the object. Thus, no central coordination is required resulting in an autonomous and scalable tracking approach. We have fully implemented this novel multicamera tracking approach on our embedded smart cameras. Tracking is achieved by the well-known CamShift algorithm; the handover procedure is realized using a mobile agent system available on the smart camera network. Our approach has been successfully evaluated on tracking persons at our campus.

  12. Real-Time Modeling of Cross-Body Flow for Torpedo Tube Recovery of the Phoenix Autonomous Underwater Vehicle (AUV)

    Science.gov (United States)

    1998-03-01

    Lienard, D., " Multivariable Sliding Mode Control for Autonomous Diving and Steering of Unmanned Underwater Vehicles," IEEE Journal of Oceanic...Lienard, D., " Multivariable Sliding Mode Control for Autonomous Diving and Steering of Unmanned Underwater Vehicles," IEEE Journal of Oceanic

  13. Integrated real time studies to track all physical and chemical changes in polyimide film processing from casting to imidization

    Science.gov (United States)

    Unsal, Emre

    Physical and chemical changes during the complex multi-step thermal imidization reaction were investigated including all processing steps (solution casting, drying and imidization), using newly developed highly instrumented measurement systems. These instruments allowed us to observe the dynamic relationship between the bound solvent evaporation that causes relaxation and chain orientation during the imidization. Drying and imidization of PMDA-ODA solutions in NMP were investigated by a novel custom designed measurement system that tracks real time weight, thickness, surface temperature, in-plane and out-of-plane birefringence. At low temperature drying stage (T bound solvent as solvent molecules decomplexed from the polymer chains and plasticized the film. During the latter stage, out-of-plane birefringence rose rapidly as the polymer chains increasingly became oriented with their chain axes were preferentially oriented in the film plane. Throughout the whole process the in-plane birefringence remained zero. For the first time, these real time measurements allowed us to quantitatively show the dynamics between chain relaxation due to evaporation of the decomplexed solvent molecules, and orientation development due to decreased chain mobility caused by imidization reaction and increasing Tg for the PMDA-ODA/NMP solutions. In addition, the dynamics of this interplay was investigated by varying the processing conditions: initial casting thickness and drying temperature. Chemical conversion, bound solvent and chain orientation that take place during thermal imidization of uniaxially constraint PMDA-ODA polyamic acid precursor film was investigated up to 200°C using real time measurement system that combines true stress, true strain, in-plane birefringence and temperature with polarized ultra-rapid scan polarized FT-IR spectrometry (URS-FT-IR). Upon heating, initially isotropic solution cast film developed stress and birefringence from the beginning while the solvent

  14. Real-time Needle Steering in Response to Rolling Vein Deformation by a 9-DOF Image-Guided Autonomous Venipuncture Robot.

    Science.gov (United States)

    Chen, Alvin I; Balter, Max L; Maguire, Timothy J; Yarmush, Martin L

    2015-01-01

    Venipuncture is the most common invasive medical procedure performed in the United States and the number one cause of hospital injury. Failure rates are particularly high in pediatric and elderly patients, whose veins tend to deform, move, or roll as the needle is introduced. To improve venipuncture accuracy in challenging patient populations, we have developed a portable device that autonomously servos a needle into a suitable vein under image guidance. The device operates in real time, combining near-infrared and ultrasound imaging, computer vision software, and a 9 degrees-of-freedom robot that servos the needle. In this paper, we present the kinematic and mechanical design of the latest generation robot. We then investigate in silico and in vitro the mechanics of vessel rolling and deformation in response to needle insertions performed by the robot. Finally, we demonstrate how the robot can make real-time adjustments under ultrasound image guidance to compensate for subtle vessel motions during venipuncture.

  15. Development of real-time quantitative polymerase chain reaction assays to track treatment response in retinoid resistant acute promyelocytic leukemia

    Directory of Open Access Journals (Sweden)

    Jelena V Jovanovic

    2011-10-01

    Full Text Available Molecular detection of minimal residual disease (MRD has become established to assess remission status and guide therapy in patients with PML-RARA+ acute promyelocytic leukemia (APL. However, there are few data on tracking disease response in patients with rarer retinoid resistant subtypes of APL, characterized by PLZF-RARA and STAT5b-RARA. Despite their relative rarity (<1% of APL we identified 6 cases (PLZF-RARA, n=5; STAT5b-RARA, n=1, established the respective breakpoint junction regions and designed real-time quantitative polymerase chain reaction (RQ-PCR assays to detect leukemic transcripts. The relative level of fusion gene expression in diagnostic samples was comparable to that observed in t(15;17-associated APL, affording assay sensitivities of ~1 in 104-105. Serial samples were available from 2 PLZF-RARA APL patients. One showed persistent PCR positivity, predicting subsequent relapse, and remains in CR2, ~11 years post-autograft. The other, achieved molecular remission (CRm with combination chemotherapy, remaining in CR1 at 6 years. The STAT5b-RARA patient failed to achieve CRm following frontline combination chemotherapy and ultimately proceeded to allogeneic transplant on the basis of a steadily rising fusion transcript level. These data highlight the potential of RQ-PCR detection of MRD to facilitate development of more individualized approaches to the management of rarer molecularly-defined subsets of acute leukemia.

  16. Novel real-time alignment and calibration of LHCb detector for Run II and tracking for the upgrade.

    CERN Document Server

    Quagliani, Renato

    2016-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. Data collected at the start of the fill is processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. The procedure aims to improve the quality of the online selection and performance stability. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. A similar scheme is planned to be used for Run III foreseen to start in 2020. At that time LHCb will run at an instantaneous luminosity of $2 \\times 10^{33}$ cm$^2$ s$^1$ and a fully software based trigger strategy will be used. The new running conditions and the tighter timing constraints in the software trigger (only 13 ms per event are available) represent a big challenge for track reconstruction. The new software based trigger strategy implies a full detector read-out at the collision rate of 40 MHz. High performance ...

  17. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingyao [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Bharat, Shyam [Philips Research North America, Briarcliff Manor, New York (United States); Michalski, Jeff M.; Gay, Hiram A. [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Hou, Wei-Hsien [St Louis University School of Medicine, St Louis, Missouri (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States)

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  18. Development of an autonomous target tracking system

    Science.gov (United States)

    Gidda, Venkata Ramaiah

    In recent years, surveillance and border patrol have become one of the key research areas in UAV research. Increase in the computational capability of the computers and embedded electronics, coupled with compatibility of various commercial vision algorithms and commercial off the shelf (COTS) embedded electronics, and has further fuelled the research. The basic task in these applications is perception of environment through the available visual sensors like camera. Visual tracking, as the name implies, is tracking of objects using a camera. The process of autonomous target tracking starts with the selection of the target in a sequence of video frames transmitted from the on-board camera. We use an improved fast dynamic template matching algorithm coupled with Kalman Filter to track the selected target in consecutive video frames. The selected target is saved as a reference template. On the ground station computer, the reference template is overlaid on the live streaming video from the on-board system, starting from the upper left corner of the video frame. The template is slid pixel by pixel over the entire source image. A comparison of the pixels is performed between the template and source image. A confidence value R of the match is calculated at each pixel. Based on the method used to perform the template matching, the best match pixel location is found according to the highest or lowest confidence value R. The best match pixel location is communicated to the on-board gimbal controller over the wireless Xbee network. The software on the controller actuates the pan-tilt servos to continuously to hold the selected target at the center of the video frame. The complete system is a portable control system assembled from commercial off the shelf parts. The tracking system is tested on a target having several motion patterns.

  19. EyeFrame: Real-time memory aid improves human multitasking via domain-general eye tracking procedures

    Directory of Open Access Journals (Sweden)

    P. eTaylor

    2015-09-01

    Full Text Available OBJECTIVE: We developed an extensively general closed-loop system to improve human interaction in various multitasking scenarios, with semi-autonomous agents, processes, and robots. BACKGROUND: Much technology is converging toward semi-independent processes with intermittent human supervision distributed over multiple computerized agents. Human operators multitask notoriously poorly, in part due to cognitive load and limited working memory. To multitask optimally, users must remember task order, e.g., the most neglected task, since longer times not monitoring an element indicates greater probability of need for user input. The secondary task of monitoring attention history over multiple spatial tasks requires similar cognitive resources as primary tasks themselves. Humans can not reliably make more than ~2 decisions/s. METHODS: Participants managed a range of 4-10 semi-autonomous agents performing rescue tasks. To optimize monitoring and controlling multiple agents, we created an automated short term memory aid, providing visual cues from users' gaze history. Cues indicated when and where to look next, and were derived from an inverse of eye fixation recency. RESULTS: Contingent eye tracking algorithms drastically improved operator performance, increasing multitasking capacity. The gaze aid reduced biases, and reduced cognitive load, measured by smaller pupil dilation. CONCLUSIONS: Our eye aid likely helped by delegating short-term memory to the computer, and by reducing decision making load. Past studies used eye position for gaze-aware control and interactive updating of displays in application-specific scenarios, but ours is the first to successfully implement domain-general algorithms. Procedures should generalize well to: process control, factory operations, robot control, surveillance, aviation, air traffic control, driving, military, mobile search and rescue, and many tasks where probability of utility is predicted by duration since last

  20. Sampling-based real-time motion planning under state uncertainty for autonomous micro-aerial vehicles in GPS-denied environments.

    Science.gov (United States)

    Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan

    2014-11-18

    This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.

  1. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish.

    Directory of Open Access Journals (Sweden)

    James Jaeyoon Jun

    Full Text Available In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole

  2. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units

    Directory of Open Access Journals (Sweden)

    Kui Liu

    2017-02-01

    Full Text Available This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI. More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©. The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs. The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.

  3. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units.

    Science.gov (United States)

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-02-12

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.

  4. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units

    Science.gov (United States)

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-01-01

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684

  5. SU-D-207-05: Real-Time Intrafractional Motion Tracking During VMAT Delivery Using a Conventional Elekta CBCT System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Kyun; Sharp, Gregory C.; Gierga, David P.; Winey, Brian A. [Massachusetts General Hospital, Boston, MA (United States); Ye, Sung-Joon [Seoul National University, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: Real-time kV projection streaming capability has become recently available for Elekta XVI version 5.0. This study aims to investigate the feasibility and accuracy of real-time fiducial marker tracking during CBCT acquisition with or without simultaneous VMAT delivery using a conventional Elekta linear accelerator. Methods: A client computer was connected to an on-board kV imaging system computer, and receives and processes projection images immediately after image acquisition. In-house marker tracking software based on FFT normalized cross-correlation was developed and installed in the client computer. Three gold fiducial markers with 3 mm length were implanted in a pelvis-shaped phantom with 36 cm width. The phantom was placed on a programmable motion platform oscillating in anterior-posterior and superior-inferior directions simultaneously. The marker motion was tracked in real-time for (1) a kV-only CBCT scan with treatment beam off and (2) a kV CBCT scan during a 6-MV VMAT delivery. The exposure parameters per projection were 120 kVp and 1.6 mAs. Tracking accuracy was assessed by comparing superior-inferior positions between the programmed and tracked trajectories. Results: The projection images were successfully transferred to the client computer at a frequency of about 5 Hz. In the kV-only scan, highly accurate marker tracking was achieved over the entire range of cone-beam projection angles (detection rate / tracking error were 100.0% / 0.6±0.5 mm). In the kV-VMAT scan, MV-scatter degraded image quality, particularly for lateral projections passing through the thickest part of the phantom (kV source angle ranging 70°-110° and 250°-290°), resulting in a reduced detection rate (90.5%). If the lateral projections are excluded, tracking performance was comparable to the kV-only case (detection rate / tracking error were 100.0% / 0.8±0.5 mm). Conclusion: Our phantom study demonstrated a promising Result for real-time motion tracking using a

  6. Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance.

    Science.gov (United States)

    Hendricks, Paul I; Dalgleish, Jon K; Shelley, Jacob T; Kirleis, Matthew A; McNicholas, Matthew T; Li, Linfan; Chen, Tsung-Chi; Chen, Chien-Hsun; Duncan, Jason S; Boudreau, Frank; Noll, Robert J; Denton, John P; Roach, Timothy A; Ouyang, Zheng; Cooks, R Graham

    2014-03-18

    A major design objective of portable mass spectrometers is the ability to perform in situ chemical analysis on target samples in their native states in the undisturbed environment. The miniature instrument described here is fully contained in a wearable backpack (10 kg) with a geometry-independent low-temperature plasma (LTP) ion source integrated into a hand-held head unit (2 kg) to allow direct surface sampling and analysis. Detection of chemical warfare agent (CWA) simulants, illicit drugs, and explosives is demonstrated at nanogram levels directly from surfaces in near real time including those that have complex geometries, those that are heat-sensitive, and those bearing complex sample matrices. The instrument consumes an average of 65 W of power and can be operated autonomously under battery power for ca. 1.5 h, including the initial pump-down of the manifold. The maximum mass-to-charge ratio is 925 Th with mass resolution of 1-2 amu full width at half-maximun (fwhm) across the mass range. Multiple stages of tandem analysis can be performed to identify individual compounds in complex mixtures. Both positive and negative ion modes are available. A graphical user interface (GUI) is available for novice users to facilitate data acquisition and real-time spectral matching.

  7. Real-Time Tracking and In Vivo Visualization of β-Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe.

    Science.gov (United States)

    Gu, Kaizhi; Xu, Yisheng; Li, Hui; Guo, Zhiqian; Zhu, Shaojia; Zhu, Shiqin; Shi, Ping; James, Tony D; Tian, He; Zhu, Wei-Hong

    2016-04-27

    Development of "smart" noninvasive bioimaging probes for trapping specific enzyme activities is highly desirable for cancer therapy in vivo. Given that β-galactosidase (β-gal) is an important biomarker for cell senescence and primary ovarian cancers, we design an enzyme-activatable ratiometric near-infrared (NIR) probe (DCM-βgal) for the real-time fluorescent quantification and trapping of β-gal activity in vivo and in situ. DCM-βgal manifests significantly ratiometric and turn-on NIR fluorescent signals simultaneously in response to β-gal concentration, which makes it favorable for monitoring dynamic β-gal activity in vivo with self-calibration in fluorescent mode. We exemplify DCM-βgal for the ratiometric tracking of endogenously overexpressed β-gal distribution in living 293T cells via the lacZ gene transfection method and OVCAR-3 cells, and further realize real-time in vivo bioimaging of β-gal activity in colorectal tumor-bearing nude mice. Advantages of our system include light-up ratiometric NIR fluorescence with large Stokes shift, high photostability, and pH independency under the physiological range, allowing for the in vivo real-time evaluation of β-gal activity at the tumor site with high-resolution three-dimensional bioimaging for the first time. Our work provides a potential tool for in vivo real-time tracking enzyme activity in preclinical applications.

  8. HuGE Watch: tracking trends and patterns of published studies of genetic association and human genome epidemiology in near-real time.

    Science.gov (United States)

    Yu, Wei; Wulf, Anja; Yesupriya, Ajay; Clyne, Melinda; Khoury, Muin Joseph; Gwinn, Marta

    2008-09-01

    HuGE Watch is a web-based application for tracking the evolution of published studies on genetic association and human genome epidemiology in near-real time. The application allows users to display temporal trends and spatial distributions as line charts and google maps, providing a quick overview of progress in the field. http://www.hugenavigator.net/HuGENavigator/startPageWatch.do

  9. REAL-TIME FACE TRACKING ALGORITHM BASED ON ONLINE INCREMENTAL LEARNING%基于在线增量学习的实时人脸跟踪算法

    Institute of Scientific and Technical Information of China (English)

    包芳; 张炎凯; 王士同

    2016-01-01

    提出基于在线增量式极端随机森林分类器的实时人脸跟踪算法。算法用在线极端随机森林分类器实现基于检测的跟踪,并结合动态目标框架和 P-N 学习矫正检测的错误。实验结果表明,该算法能够在不确定背景下对任意人脸实现较长时间段内的稳定快速的实时跟踪,并能有效排除背景等的干扰,效果较好。%The paper proposes a real-time face tracking algorithm,which is based on online incremental extremely random forests classifier.The algorithm achieves detection-based real-time tracking using online incremental extremely random forests classifier,and combines dynamic target framework and P-N learning to correct detection errors.Experimental results show,the proposed algorithm can realise fast and stable real-time tracking for any face in a longer period under uncertain background,and can effectively overcome interferences such as background with preferable effect.

  10. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    Science.gov (United States)

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown.

  11. Three-dimensional particle tracking method using FPGA-based real-time image processing and four-view image splitter

    Science.gov (United States)

    Kreizer, Mark; Liberzon, Alex

    2011-03-01

    We present a cost-effective solution of the three-dimensional particle tracking velocimetry (3D-PTV) system based on the real-time image processing method (Kreizer et al. Exp Fluids 48:105-110, 2010) and a four-view image splitter. The image processing algorithm, based on the intensity threshold and intensity gradients estimated using the fixed-size Sobel kernel, is implemented on the field-programmable gate array integrated into the camera electronics. It enables extracting positions of tracked objects, such as tracers or large particles, in real time. The second major component of this system is a four-view split-screen device that provides four views of the observation volume from different angles. An open-source ray-tracing software package allows for a customized optical setup for the given experimental settings of working distances and camera parameters. The specific design enables tracking in larger observation volumes when compared to the designs published up to date. The present cost-effective solution is complemented with open-source particle tracking software that receives raw data acquired by the real-time image processing system and returns trajectories of the identified particles. The combination of these components simplifies the 3D-PTV technique by reducing the size and increasing recording speed and storage capabilities. The system is capable to track a multitude of particles at high speed and stream the data over the computer network. The system can provide a solution for the remotely controlled tracking experiments, such as in microgravity, underwater or in applications with harsh experimental conditions.

  12. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe [Deutsches Krebsforschungszentrum (DKFZ), Department of Medical Physics, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2007-11-21

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v{sub max} while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information. (note)

  13. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach.

    Directory of Open Access Journals (Sweden)

    Johannes Salamon

    Full Text Available In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI / magnetic resonance imaging (MRI road map approach and an MPI-guided approach using a blood pool tracer.A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4 was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography.Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide.4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.

  14. Design of a real-time system of moving ship tracking on-board based on FPGA in remote sensing images

    Science.gov (United States)

    Yang, Tie-jun; Zhang, Shen; Zhou, Guo-qing; Jiang, Chuan-xian

    2015-12-01

    With the broad attention of countries in the areas of sea transportation and trade safety, the requirements of efficiency and accuracy of moving ship tracking are becoming higher. Therefore, a systematic design of moving ship tracking onboard based on FPGA is proposed, which uses the Adaptive Inter Frame Difference (AIFD) method to track a ship with different speed. For the Frame Difference method (FD) is simple but the amount of computation is very large, it is suitable for the use of FPGA to implement in parallel. But Frame Intervals (FIs) of the traditional FD method are fixed, and in remote sensing images, a ship looks very small (depicted by only dozens of pixels) and moves slowly. By applying invariant FIs, the accuracy of FD for moving ship tracking is not satisfactory and the calculation is highly redundant. So we use the adaptation of FD based on adaptive extraction of key frames for moving ship tracking. A FPGA development board of Xilinx Kintex-7 series is used for simulation. The experiments show that compared with the traditional FD method, the proposed one can achieve higher accuracy of moving ship tracking, and can meet the requirement of real-time tracking in high image resolution.

  15. H∞ control for path tracking of autonomous underwater vehicle motion

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-05-01

    Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.

  16. A Study on Human Oriented Autonomous Distributed Manufacturing System —Real-time Scheduling Method Based on Preference of Human Operators

    Science.gov (United States)

    Iwamura, Koji; Kuwahara, Shinya; Tanimizu, Yoshitaka; Sugimura, Nobuhiro

    Recently, new distributed architectures of manufacturing systems are proposed, aiming at realizing more flexible control structures of the manufacturing systems. Many researches have been carried out to deal with the distributed architectures for planning and control of the manufacturing systems. However, the human operators have not yet been discussed for the autonomous components of the distributed manufacturing systems. A real-time scheduling method is proposed, in this research, to select suitable combinations of the human operators, the resources and the jobs for the manufacturing processes. The proposed scheduling method consists of following three steps. In the first step, the human operators select their favorite manufacturing processes which they will carry out in the next time period, based on their preferences. In the second step, the machine tools and the jobs select suitable combinations for the next machining processes. In the third step, the automated guided vehicles and the jobs select suitable combinations for the next transportation processes. The second and third steps are carried out by using the utility value based method and the dispatching rule-based method proposed in the previous researches. Some case studies have been carried out to verify the effectiveness of the proposed method.

  17. Motion Predicting of Autonomous Tracked Vehicles with Online Slip Model Identification

    Directory of Open Access Journals (Sweden)

    Hao Lu

    2016-01-01

    Full Text Available Precise understanding of the mobility is essential for high performance autonomous tracked vehicles in challenging circumstances, though the complex track/terrain interaction is difficult to model. A slip model based on the instantaneous centers of rotation (ICRs of treads is presented and identified to predict the motion of the vehicle in a short term. Unlike many research studies estimating current ICRs locations using velocity measurements for feedback controllers, we focus on predicting the forward trajectories by estimating ICRs locations using position measurements. ICRs locations are parameterized over both tracks rolling speeds and the kinematic parameters are estimated in real time using an extended Kalman filter (EKF without requiring prior knowledge of terrain parameters. Simulation results verify that the proposed algorithm performs better than the traditional method when the pose measuring frequencies are low. Experiments are conducted on a tracked vehicle with a weight of 13.6 tons. Results demonstrate that the predicted position and heading errors are reduced by about 75% and the reduction of pose errors is over 24% in the absence of the real-time kinematic global positioning system (RTK GPS.

  18. Real-time tracking of phytochrome's ring D orientational changes during Pr photoisomerization: Two Pr isoforms with different photoisomerization yields

    Directory of Open Access Journals (Sweden)

    González L.

    2013-03-01

    Full Text Available Phytochromes' ring D orientational changes are tracked during Z-to-E photoisomerization by polarization resolved femtosecond visible pump-infrared probe spectroscopy. Two distinct Pr isoforms Pr-I and Pr-II exhibit photoisomerization yields of 3% and 29%, respectively.

  19. TrAVis to Enhance Online Tutoring and Learning Activities: Real-Time Visualization of Students Tracking Data

    Science.gov (United States)

    May, Madeth; George, Sebastien; Prevot, Patrick

    2011-01-01

    Purpose: This paper presents a part of our research work that places an emphasis on Tracking Data Analysis and Visualization (TrAVis) tools, a web-based system, designed to enhance online tutoring and learning activities, supported by computer-mediated communication (CMC) tools. TrAVis is particularly dedicated to assist both tutors and students…

  20. Noncontact millimeter-wave real-time detection and tracking of heart rate on an ambulatory subject.

    Science.gov (United States)

    Mikhelson, Ilya V; Lee, Philip; Bakhtiari, Sasan; Elmer, Thomas W; Katsaggelos, Aggelos K; Sahakian, Alan V

    2012-09-01

    This paper presents a solution to an aiming problem in the remote sensing of vital signs using an integration of two systems. The problem is that to collect meaningful data with a millimeter-wave sensor, the antenna must be pointed very precisely at the subject's chest. Even small movements could make the data unreliable. To solve this problem, we attached a camera to the millimeter-wave antenna, and mounted this combined system on a pan/tilt base. Our algorithm initially finds a subject's face and then tracks him/her through subsequent frames, while calculating the position of the subject's chest. For each frame, the camera sends the location of the chest to the pan/tilt base, which rotates accordingly to make the antenna point at the subject's chest. This paper presents a system for concurrent tracking and data acquisition with results from some sample scenarios.

  1. A Real-time Tracking Method Based on Object Segmentation%一种基于目标分割的实时跟踪方法

    Institute of Scientific and Technical Information of China (English)

    陈临强; 汪雯斌; 何一娜

    2013-01-01

    In order to reduce color similar background effect on target tracking process, this paper proposes a real-time target tracking method based on object segmentation. Multiple objects are obtained by using background subtraction method. Each target state can be updated by using the position, size and color characteristic of each target. The similar targets in the consecutive frames can be tracked by using matching targets and when the occluded targets separate, the targets can be tracked well by using this feature. Experimental results show that this method is fast and has a desirable tracking result.%为减少颜色相似背景在目标跟踪过程中对跟踪结果的影响,提出一种基于目标分割的实时跟踪方法.利用背景差分的方法进行目标分割,使用目标位置、大小及颜色的特征完成目标状态的更新,对连续帧之间的目标实施匹配跟踪,当2个目标重合分离时采用目标大小、颜色特征实现匹配.实验结果表明,该方法匹配跟踪速度较快、跟踪效果较好.

  2. Real-Time Tracking of Implanted Markers During Radiation Treatment by Use of Simultaneous kV and MV Imaging

    Science.gov (United States)

    2009-03-01

    imaging together with a MV electronic portal-imaging device (EPID). A Varian radiotherapy system equipped with both kV and MV imaging systems was used...direct (fiducial/image) in nature. In general, indirect tumor location methods, such as external skin marker tracking 10, 17, 18 or breath monitoring...more additional kV x-ray imaging systems, the technique may offer potential radiation sparing to the patient and overall system cost reductions. With

  3. Bringing well service into the digital age : new software and digital pens allow for real-time tracking of field data

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-09-15

    This article discussed a paperwork automation system that was implemented at a well services company and the efficiencies that were gained as a result of the implementation. The company's highly mobile delivery and service teams needed access to real-time delivery, inventory, and billing data, which the paper-based data management system then in place was unable to provide. The automated system incorporates new software and digital pens, which digitize handwriting and integrate the data directly into software. The new system allows for the real-time tracking of field data without disruption to existing employee processes or the necessity of a large investment in new computer infrastructure. The new system reduces the costs associated with paper-based data collection processes, including printing, form data re-keying, scanning, and storage. It also eliminates delays in reporting and billing and allows accurate inventory tracking throughout the supply chain as well as improved management of inventory levels. 2 refs., 2 figs.

  4. 3D Track-keeping Method for Autonomous Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; Bian Xin-Qian; Chang Zong-Hu

    2002-01-01

    In this paper, 3D track-keeping control method for autonomous underwater vehicle (AUV) with and without the influence of ocean current is investigated. Because the system to be controlled is highly nonlinear and strong coupled, an approach is used to divide it into two subsystems. One is to control the heading and the track error on the horizontal plane. The other is to control the pitch and the track error on the vertical plane. The results of computer simulation show that the autopilot works properly, it can capture the current waypoint and turns to track the next path automatically.

  5. Using Real-time Event Tracking Sensitivity Analysis to Overcome Sensor Measurement Uncertainties of Geo-Information Management in Drilling Disasters

    Science.gov (United States)

    Tavakoli, S.; Poslad, S.; Fruhwirth, R.; Winter, M.

    2012-04-01

    This paper introduces an application of a novel EventTracker platform for instantaneous Sensitivity Analysis (SA) of large scale real-time geo-information. Earth disaster management systems demand high quality information to aid a quick and timely response to their evolving environments. The idea behind the proposed EventTracker platform is the assumption that modern information management systems are able to capture data in real-time and have the technological flexibility to adjust their services to work with specific sources of data/information. However, to assure this adaptation in real time, the online data should be collected, interpreted, and translated into corrective actions in a concise and timely manner. This can hardly be handled by existing sensitivity analysis methods because they rely on historical data and lazy processing algorithms. In event-driven systems, the effect of system inputs on its state is of value, as events could cause this state to change. This 'event triggering' situation underpins the logic of the proposed approach. Event tracking sensitivity analysis method describes the system variables and states as a collection of events. The higher the occurrence of an input variable during the trigger of event, the greater its potential impact will be on the final analysis of the system state. Experiments were designed to compare the proposed event tracking sensitivity analysis with existing Entropy-based sensitivity analysis methods. The results have shown a 10% improvement in a computational efficiency with no compromise for accuracy. It has also shown that the computational time to perform the sensitivity analysis is 0.5% of the time required compared to using the Entropy-based method. The proposed method has been applied to real world data in the context of preventing emerging crises at drilling rigs. One of the major purposes of such rigs is to drill boreholes to explore oil or gas reservoirs with the final scope of recovering the content

  6. TU-PIS-Exhibit Hall-3: Simultaneous tracking of patient and real time staff dose to optimize interventional workflow

    Energy Technology Data Exchange (ETDEWEB)

    Boon, S.

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  7. Adaptive Visual Face Tracking for an Autonomous Robot

    NARCIS (Netherlands)

    van Hoof, Herke; van der Zant, Tijn; Wiering, Marco

    2011-01-01

    Perception is an essential ability for autonomous robots in non-standardized conditions. However, the appearance of objects can change between different conditions. A system visually tracking a target based on its appearance could lose its target in those cases. A tracker learning the appearance of

  8. Tracking Ocean Gravity Waves in Real-time: Highlights of Bottom Pressure Data Recorded on Ocean Networks Canada's NEPTUNE observatory

    Science.gov (United States)

    Heesemann, Martin; Mihaly, Steve; Gemmrich, Johannes; Davis, Earl; Thomson, Richard; Dewey, Richard

    2016-04-01

    Ocean Networks Canada operates two cabled ocean observatories off Vancouver Island on Canada's west coast. The regional NEPTUNE observatory spans the entire Juan de Fuca tectonic plate from the coast across the subduction zone to the hydrothermally active Endeavour Segment of the Juan de Fuca Ridge Segment while the VENUS observatory focuses on coastal processes. Both observatories collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods, supporting research on complex earth processes. High-precision bottom pressure recorders (BPR) deployed on the NEPTUNE observatory are capable of detecting a wide range of phenomena related to sea level variations. The observatory BPRs provide observations of nano-resolution (with respect to full scale of the instrument) pressure variations which correspond to sub-millimeter scale surface water displacements in several kilometers of water. Detected signals include tides, tsunamis, infragravity waves, swell, wave-induced microseisms, storm surge, and seismic signals. Spectral analysis reveals many of these phenomena with periods ranging from a few seconds to many hours. Dispersion patterns from distant swells are prominent in the swell and microseism bands. By comparing the difference of arrival times between longer period waves, which arrive first, and shorter period waves we can estimate the distance the swells travelled since they were generated. Using this information, swell can be tracked back to specific storms across the Pacific. The presentation will high-light some examples of the mentioned phenomena in the continuous time-series that in some instances are more than seven years long.

  9. A Real-Time Method to Detect and Track Moving Objects (DATMO from Unmanned Aerial Vehicles (UAVs Using a Single Camera

    Directory of Open Access Journals (Sweden)

    Bruce MacDonald

    2012-04-01

    Full Text Available We develop a real-time method to detect and track moving objects (DATMO from unmanned aerial vehicles (UAVs using a single camera. To address the challenging characteristics of these vehicles, such as continuous unrestricted pose variation and low-frequency vibrations, new approaches must be developed. The main concept proposed in this work is to create an artificial optical flow field by estimating the camera motion between two subsequent video frames. The core of the methodology consists of comparing this artificial flow with the real optical flow directly calculated from the video feed. The motion of the UAV between frames is estimated with available parallel tracking and mapping techniques that identify good static features in the images and follow them between frames. By comparing the two optical flows, a list of dynamic pixels is obtained and then grouped into dynamic objects. Tracking these dynamic objects through time and space provides a filtering procedure to eliminate spurious events and misdetections. The algorithms have been tested with a quadrotor platform using a commercial camera.

  10. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films

    Science.gov (United States)

    Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  11. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system.

    Science.gov (United States)

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth; Suzuki, Ryusuke; Matsuura, Taeko; Toramatsu, Chie; Takao, Seishin; Nihongi, Hideaki; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction.

  12. Real-Time Detection and Tracking of Vital Signs with an Ambulatory Subject Using Millimeter-Wave Interferometry

    Science.gov (United States)

    Mikhelson, Ilya V.

    Finding a subject's heart rate from a distance without any contact is a difficult and very practical problem. This kind of technology would allow more comfortable patient monitoring in hospitals or in home settings. It would also allow another level of security screening, as a person's heart rate increases in stressful situations, such as when lying or hiding malicious intent. In addition, the fact that the heart rate is obtained remotely means that the subject would not have to know he/she is being monitored at all, adding to the efficacy of the measurement. Using millimeter-wave interferometry, a signal can be obtained that contains composite chest wall motion made up of component motions due to cardiac activity, respiration, and interference. To be of use, these components have to be separated from each other by signal processing. To do this, the quadrature and in-phase components of the received signal are analyzed to get a displacement waveform. After that, processing can be done on that waveform in either the time or frequency domains to find the individual heartbeats. The first method is to find the power spectrum of the displacement waveform and to look for peaks corresponding to heartbeats and respiration. Another approach is to examine the signal in the time domain using wavelets for multiresolution analysis. One more method involves studying the statistics of the wavelet-processed signal. The final method uses a heartbeat model along with probabilistic processing to find heartbeats. For any of the above methods to work, the millimeter-wave sensor has to be accurately pointed at the subject's chest. However, even small subject motions can render the rest of the gathered data useless as the antenna may have lost its aim. To combat this, a color and a depth camera are used with a servo-pan/tilt base. My program finds a face in the image and subsequently tracks that face through upcoming frames. The pan/tilt base adjusts the aim of the antenna depending on

  13. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  14. SU-E-J-240: Development of a Novel 4D MRI Sequence for Real-Time Liver Tumor Tracking During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, L; Burmeister, J [Department of Oncology, Wayne State Univ School of Medicine, Detroit, MI (United States); Ye, Y [Department of Radiology, Wayne State Univ School of Medicine, Detroit, MI (United States)

    2015-06-15

    Purpose: To develop a Novel 4D MRI Technique that is feasible for realtime liver tumor tracking during radiotherapy. Methods: A volunteer underwent an abdominal 2D fast EPI coronal scan on a 3.0T MRI scanner (Siemens Inc., Germany). An optimal set of parameters was determined based on image quality and scan time. A total of 23 slices were scanned to cover the whole liver in the test scan. For each scan position, the 2D images were retrospectively sorted into multiple phases based on breathing signal extracted from the images. Consequently the 2D slices with same phase numbers were stacked to form one 3D image. Multiple phases of 3D images formed the 4D MRI sequence representing one breathing cycle. Results: The optimal set of scan parameters were: TR= 57ms, TE= 19ms, FOV read= 320mm and flip angle= 30°, which resulted in a total scan time of 14s for 200 frames (FMs) per slice and image resolution of (2.5mm,2.5mm,5.0mm) in three directions. Ten phases of 3D images were generated, each of which had 23 slices. Based on our test scan, only 100FMs were necessary for the phase sorting process which may lower the scan time to 7s/100FMs/slice. For example, only 5 slices/35s are necessary for a 4D MRI scan to cover liver tumor size ≤ 2cm leading to the possibility of tumor trajectory tracking every 35s during treatment. Conclusion: The novel 4D MRI technique we developed can reconstruct a 4D liver MRI sequence representing one breathing cycle (7s/ slice) without an external monitor. This technique can potentially be used for real-time liver tumor tracking during radiotherapy.

  15. 非接触动态实时视线跟踪技术%Non-Contact Dynamic Real-Time Eye Tracking Technology

    Institute of Scientific and Technical Information of China (English)

    王向军; 蔡方方; 刘峰; 李洋

    2015-01-01

    The eye tracking is the key technology of intelligent eye movement operating system, which is also the basis that enables eye movement operating system to be the advanced human-machine interactive applications. This paper gives a more comprehensive vision of the development of non-contact eye tracking technology, and introduces the non-contact eye gaze tracking technology that enables to achieve real-time dynamic eye tracking or gaze point estimation, including 2D eye tracking methods, 3D eye tracking methods and model-based 3D methods. Comparing and analyzing new development of the existing methods mentioned above, this paper illustrates the scientific prob-lems that eye tracking technology currently faces, and presents a novel head-mounted free space eye tracking method based on binocular stereo vision. The conclusion is that eye tracking technology should meet intelligent human-machine interactive approach based on eye movement operating system expands to free space. The eye tracking technology develops towards high-precision, easy to configure and wider range of sight in free space measurement.%视线跟踪技术是智能眼动操作系统的关键技术,是实现先进眼动操作系统作为高级人机交互应用的基础和前提。较为完整地阐述了非接触式视线跟踪技术的发展历程,并详细介绍了现有的实现视线或注视点实时动态跟踪测量的非接触视线跟踪技术,包括2D视线跟踪方法、3D视线跟踪方法和基于3D模型的视线跟踪方法。通过分析和比较现有的三类方法的最新进展,介绍了视线跟踪技术目前面临的科学问题,提出了基于双目立体视觉的头戴式自由空间视线跟踪测量方法,指出了视线跟踪技术应满足基于眼动操作系统的智能人机交互方法向自由空间操作发展的需求,朝着高精度、易配置、更大视线活动范围的自由空间视线测量方向发展。

  16. Street Viewer: An Autonomous Vision Based Traffic Tracking System

    Science.gov (United States)

    Bottino, Andrea; Garbo, Alessandro; Loiacono, Carmelo; Quer, Stefano

    2016-01-01

    The development of intelligent transportation systems requires the availability of both accurate traffic information in real time and a cost-effective solution. In this paper, we describe Street Viewer, a system capable of analyzing the traffic behavior in different scenarios from images taken with an off-the-shelf optical camera. Street Viewer operates in real time on embedded hardware architectures with limited computational resources. The system features a pipelined architecture that, on one side, allows one to exploit multi-threading intensively and, on the other side, allows one to improve the overall accuracy and robustness of the system, since each layer is aimed at refining for the following layers the information it receives as input. Another relevant feature of our approach is that it is self-adaptive. During an initial setup, the application runs in learning mode to build a model of the flow patterns in the observed area. Once the model is stable, the system switches to the on-line mode where the flow model is used to count vehicles traveling on each lane and to produce a traffic information summary. If changes in the flow model are detected, the system switches back autonomously to the learning mode. The accuracy and the robustness of the system are analyzed in the paper through experimental results obtained on several different scenarios and running the system for long periods of time. PMID:27271627

  17. Street Viewer: An Autonomous Vision Based Traffic Tracking System.

    Science.gov (United States)

    Bottino, Andrea; Garbo, Alessandro; Loiacono, Carmelo; Quer, Stefano

    2016-06-03

    The development of intelligent transportation systems requires the availability of both accurate traffic information in real time and a cost-effective solution. In this paper, we describe Street Viewer, a system capable of analyzing the traffic behavior in different scenarios from images taken with an off-the-shelf optical camera. Street Viewer operates in real time on embedded hardware architectures with limited computational resources. The system features a pipelined architecture that, on one side, allows one to exploit multi-threading intensively and, on the other side, allows one to improve the overall accuracy and robustness of the system, since each layer is aimed at refining for the following layers the information it receives as input. Another relevant feature of our approach is that it is self-adaptive. During an initial setup, the application runs in learning mode to build a model of the flow patterns in the observed area. Once the model is stable, the system switches to the on-line mode where the flow model is used to count vehicles traveling on each lane and to produce a traffic information summary. If changes in the flow model are detected, the system switches back autonomously to the learning mode. The accuracy and the robustness of the system are analyzed in the paper through experimental results obtained on several different scenarios and running the system for long periods of time.

  18. SU-D-BRE-02: Development and Commissioning of A Gated Spot Scanning Proton Beam Therapy System with Real-Time Tumor-Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, K; Matsuura, T.; Takao, S.; Nihongi, H.; Yamada, T.; Miyamoto, N.; Shimizu, S.; Shirato, H. [Hokkaido University, Sapporo, Hokkaido (Japan); Matsuda, K.; Nakamura, F.; Umezawa, M.; Hiramoto, K. [Hitachi, Ltd., Chiyoda-ku, Tokyo (Japan)

    2014-06-01

    Purpose: A novel Proton Beam Therapy system has been developed by integrating Real-Time Tumor-Tracking (RTRT) and discrete spot scanning techniques. The system dedicated for spot scanning delivers significant advantages for both clinical and economical points of view. The system has the ability to control dose distribution with spot scanning beams and to gate the beams from the synchrotron to irradiate moving tumors only when the actual positions of them are within the planned position. Methods: The newly designed system consists of a synchrotron, beam transport systems, a compact and rotating gantry system with robotic couch and two orthogonal sets of X-ray fluoroscopes. The fully compact design of the system has been realized by reducing the maximum energy of the beam to 220MeV, corresponding to 30g/cm2 range and the number of circulating protons per synchrotron operation cycle, due to higher beam utilization efficiency in spot scanning. To improve the irradiation efficiency in the integration of RTRT and spot scanning, a new control system has been developed to enable multiple gated irradiation per operation cycle according to the gating signals. After the completion of the equipment installation, beam tests and commissioning has been successfully performed. Results: The basic performances and beam characteristics through the synchrotron accelerator to iso-center have been confirmed and the performance test of the irradiation nozzle and whole system has been appropriately completed. CBCT image has been checked and sufficient quality was obtained. RTRT system has been demonstrated and realized accurate dose distributions for moving targets. Conclusion: The gated spot scanning Proton Beam Therapy system with Real-Time Tumor-Tracking has been developed, successfully installed and tested. The new system enables us to deliver higher dose to the moving target tumors while sparing surrounding normal tissues and to realize the compact design of the system and facility

  19. Real-time tracking of hydrogen peroxide secreted by live cells using MnO{sub 2} nanoparticles intercalated layered doubled hydroxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Asif, Muhammad; Aziz, Ayesha [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Dao, Anh Quang [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Hue Industrial College, 70 Nguyen Hue, Hue, Thua Thien Hue, 531081 (Viet Nam); Hakeem, Abdul; Wang, Haitao; Dong, Shuang; Zhang, Guoan [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Xiao, Fei [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China); Liu, Hongfang, E-mail: liuhf@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China)

    2015-10-22

    We report a facile and green method for the fabrication of new type of electrocatalysts based on MnO{sub 2} nanoparticles incorporated on MgAl LDH P-type semiconductive channel and explore its practical applications as high-performance electrode materials for electrochemical biosensor. A series of MgAl layered doubled hydroxide (LDH) nanohybrids with fixed Mg/Al (M{sup 2+}/M{sup 3+} atomic ratio of 3) and varied amount of MnCl{sub 2}.4H{sub 2}O are fabricated by a facile co-precipitation method. This approach demonstrates the combination of distinct properties including excellent intercalation features of LDH for entrapping nanoparticles and high loading of MnO{sub 2} nanoparticles in the host layers of LDH. Among all samples, Mn5–MgAl with 0.04% loaded manganese has a good crystalline morphology. A well-dispersed MnO{sub 2} nanoparticles encapsulated into the host matrix of hydrotalcite exhibit enhanced electrocatalytic activity towards the reduction of H{sub 2}O{sub 2} as well as excellent stability, selectivity and reproducibility due to synergistic effect of good catalytic ability of MnO{sub 2} and conductive MgAl LDH. Glass carbon electrode (GCE) modified with Mn5–MgAl possesses a wide linear range of 0.05–78 mM, lowest detection limit 5 μM (S/N = 3) and detection sensitivity of 0.9352 μAmM{sup −1}. This outstanding performance enables it to be used for real-time tracking of H{sub 2}O{sub 2} secreted by live HeLa cells. This work may provide new insight in clinical diagnosis, on-site environmental analysis and point of care testing devices. - Highlights: • MnO{sub 2}MgAl nanohybrids have been fabricated by a facile and robust co-precipitation approach. • MgAl layered doubled hydroxide can be used for the intercalation of MnO{sub 2} nanoparticles. • MgAl layered doubled hydroxide nanohybrid serves as p-type semiconductive channel for efficient electrocatalysis. • The nanohybrid electrode demonstrates excellent electrochemical performance

  20. Hardware Approach for Real Time Machine Stereo Vision

    Directory of Open Access Journals (Sweden)

    Michael Tornow

    2006-02-01

    Full Text Available Image processing is an effective tool for the analysis of optical sensor information for driver assistance systems and controlling of autonomous robots. Algorithms for image processing are often very complex and costly in terms of computation. In robotics and driver assistance systems, real-time processing is necessary. Signal processing algorithms must often be drastically modified so they can be implemented in the hardware. This task is especially difficult for continuous real-time processing at high speeds. This article describes a hardware-software co-design for a multi-object position sensor based on a stereophotogrammetric measuring method. In order to cover a large measuring area, an optimized algorithm based on an image pyramid is implemented in an FPGA as a parallel hardware solution for depth map calculation. Object recognition and tracking are then executed in real-time in a processor with help of software. For this task a statistical cluster method is used. Stabilization of the tracking is realized through use of a Kalman filter. Keywords: stereophotogrammetry, hardware-software co-design, FPGA, 3-d image analysis, real-time, clustering and tracking.

  1. Colour-based Object Detection and Tracking for Autonomous Quadrotor UAV

    Science.gov (United States)

    Kadouf, Hani Hunud A.; Mohd Mustafah, Yasir

    2013-12-01

    With robotics becoming a fundamental aspect of modern society, further research and consequent application is ever increasing. Aerial robotics, in particular, covers applications such as surveillance in hostile military zones or search and rescue operations in disaster stricken areas, where ground navigation is impossible. The increased visual capacity of UAV's (Unmanned Air Vehicles) is also applicable in the support of ground vehicles to provide supplies for emergency assistance, for scouting purposes or to extend communication beyond insurmountable land or water barriers. The Quadrotor, which is a small UAV has its lift generated by four rotors and can be controlled by altering the speeds of its motors relative to each other. The four rotors allow for a higher payload than single or dual rotor UAVs, which makes it safer and more suitable to carry camera and transmitter equipment. An onboard camera is used to capture and transmit images of the Quadrotor's First Person View (FPV) while in flight, in real time, wirelessly to a base station. The aim of this research is to develop an autonomous quadrotor platform capable of transmitting real time video signals to a base station for processing. The result from the image analysis will be used as a feedback in the quadrotor positioning control. To validate the system, the algorithm should have the capacity to make the quadrotor identify, track or hover above stationary or moving objects.

  2. Real-time tracking of dissociation of hyperpolarized 89Y-DTPA: a model for degradation of open-chain Gd3+ MRI contrast agents

    Science.gov (United States)

    Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd

    Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.

  3. Real-time tracking of motor response activation and response competition in a Stroop task in young children: a lateralized readiness potential study.

    Science.gov (United States)

    Szucs, Dénes; Soltész, Fruzsina; Bryce, Donna; Whitebread, David

    2009-11-01

    The ability to select an appropriate motor response by resolving competition among alternative responses plays a major role in cognitive performance. fMRI studies suggest that the development of this skill is related to the maturation of the frontal cortex that underlies the improvement of motor inhibition abilities. However, fMRI cannot characterize the temporal properties of motor response competition and motor activation in general. We studied the development of the time course of resolving motor response competition. To this end, we used the lateralized readiness potential (LRP), an ERP measure, for tracking correct and incorrect motor cortex activation in children in real time. Fourteen children and 14 adults took part in an animal-size Stroop task where they selected between two animals, presented simultaneously on the computer screen, which was larger in real life. In the incongruent condition, the LRP detected stronger and longer lasting incorrect response activation in children than in adults. LRP results could explain behavioral congruency effects, the generally longer RT in children than in adults and the larger congruency effect in children than in adults. In contrast, the peak latency of ERP waves, usually associated with stimulus processing speed, could explain neither of the above effects. We conclude that the development of resolving motor response competition, relying on motor inhibition skills, is a crucial factor in child development. Our study demonstrates that the LRP is an excellent tool for studying motor activation in children.

  4. An algorithm of a real time image tracking system using a camera with pan/tilt motors on an embedded system

    Science.gov (United States)

    Kim, Hie-Sik; Nam, Chul; Ha, Kwan-Yong; Ayurzana, Odgeral; Kwon, Jong-Won

    2005-12-01

    The embedded systems have been applied to many fields, including households and industrial sites. The user interface technology with simple display on the screen was implemented more and more. The user demands are increasing and the system has more various applicable fields due to a high penetration rate of the Internet. Therefore, the demand for embedded system is tend to rise. An embedded system for image tracking was implemented. This system is used a fixed IP for the reliable server operation on TCP/IP networks. Using an USB camera on the embedded Linux system developed a real time broadcasting of video image on the Internet. The digital camera is connected at the USB host port of the embedded board. All input images from the video camera are continuously stored as a compressed JPEG file in a directory at the Linux web-server. And each frame image data from web camera is compared for measurement of displacement Vector. That used Block matching algorithm and edge detection algorithm for past speed. And the displacement vector is used at pan/tilt motor control through RS232 serial cable. The embedded board utilized the S3C2410 MPU, which used the ARM 920T core form Samsung. The operating system was ported to embedded Linux kernel and mounted of root file system. And the stored images are sent to the client PC through the web browser. It used the network function of Linux and it developed a program with protocol of the TCP/IP.

  5. 一种深度图像中人体的实时跟踪算法%A Human Body Real-time Tracking Algorithm in Depth Image

    Institute of Scientific and Technical Information of China (English)

    曹昊; 诸宸辰; 李杨

    2013-01-01

    This paper proposes an improving Camshift algorithm based on depth data in order to realize real-time human body objects tracking in depth image. This algorithm computes depth probability distribution function of human body objects, combining the morphological characteristics of people. Different weight factors are given to the different part of human on depth probability distribution function. It finds human body objects in a frame after several times of iterations, uses the modified Camshift algorithm. Kalman filter is also applied in this work to predict the position of people in 3D space. Doing experiments on 1 200 frames of depth image, results present that this algorithm are effective to track moving human body on depth image even though the objects are partly covered or the shapes are regular changed. For the common one or two people situation, the tracking accuracy rate is over 95%, which is better than traditional Camshift algorithm.%针对深度图像中的人体目标跟踪问题,提出一种基于深度图像的改进Camshift算法。利用人体目标的深度信息计算概率分布,结合人体形态学特征,对深度的概率分布赋予不同的权重,通过Camshift算法进行迭代,从而寻找目标,使用卡尔曼滤波器在三维空间中对运动人体目标的位置实现预测和更新。采集1200帧图像进行测试,结果表明,该算法能实时准确地跟踪深度图像中的运动人体目标,有效克服遮挡等干扰,单人和双人跟踪准确率均在95%以上,高于传统Camshift算法。

  6. 基于改进Otsu的室外道路实时检测与跟踪算法%Real-time Detection and Tracking of Road Information for Outdoor Vision-based Robot Based on Improved Otsu

    Institute of Scientific and Technical Information of China (English)

    陆培源; 王建中; 罗涛

    2011-01-01

    The detection and tracking of road infornmtion, are the basis and prerequisite of environmental exploration anti autonomous navigation ],y mobile robot. In view of the complexity of the ouldoor working environment of the robot and the variety of the outdoor illumination conditions, a suitable and novel way of real-time detection and tracking for outdoor robot is presented. First, the video images obtained from CCD camera are preprocessed. Then the Region of Interest (ROI) is extracted and transformed into the HSV color space. The edge information of the road image is obtained from the ROI by using the improved Otsu algorithm. With the anti-jamming ability of the Hough transform, the regiom where robot can pass through is shown. Finally the weighted Mahalanobis distance discrimination method is used to track the passing area. Experiment results show that this algorithm enjoys a good performance in the detection and tracking of road information in outdoor environment in real-lime.%室外道路检测与跟踪是移动机器人完成室外环境探索和自主导航的基础和前提.针对室外机器人工作环境复杂、光照多变等特点,提出了一种适用于室外道路实时检测与跟踪的算法.首先将CCD摄像头获得的画面通过预处理,提取视频画面的感兴趣区域(ROI)并转化为HSV颜色空间下的图像,然后通过改进的自适应阈值分割法(Otsu)获得道路图像的边缘信息,采用抗干扰能力较强的霍夫(Hough)变换得出画面中的可通行区域,最后采用加权马氏距离判别法跟踪可通行区域.实验表明,该算法在室外环境下具有较好的道路识别跟踪能力和实时性.

  7. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guanghua, E-mail: yan@ufl.edu; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)

    2014-10-15

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  8. Stabilization and trajectory tracking of autonomous airship's planar motion

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan; Qu Weidong; Xi Yugeng; Cai Zili

    2008-01-01

    The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied.By denning novel configuration error and velocity error,the dynamics of error systems are derived.By applying Lyapunov stability method,the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem.In particular,the controller does not need knowledge on system parameters in the case of set-point stabilization,which makes the controller robust with respect to parameter uncertainty.Numerical simulations illustrate the effectiveness of the controller designed.

  9. Real Time Systems

    DEFF Research Database (Denmark)

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  10. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file

    Science.gov (United States)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-01

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior–inferior (SI), anterior–posterior (AP), and left–right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases. This work was partly presented at the 58th Annual meeting of American Association of Physicists in Medicine.

  11. Real-time tracking of CO₂ injected into a subsurface coal fire through high-frequency measurements of the ¹³CO₂ signature.

    Science.gov (United States)

    Krevor, Samuel C M; Ide, Taku; Benson, Sally M; Orr, Franklin M

    2011-05-01

    CO₂ was injected into a coal fire burning at a depth of 15 m in the subsurface in southwestern Colorado, USA. Measurements were made of the ¹³CO₂ isotopic signature of gas exhaust from an observation well and two surface fissures. The goal of the test was to determine (1) whether CO₂ with a distinct isotopic signature could be used as a tracer to identify flow pathways and travel times in a combustion setting where CO₂ was present in significant quantities in the gases being emitted from the coalbed fire, and (2) to confirm the existence of a self-propagating system of air-intake and combustion gas exhaust that has been previously proposed. CO₂ was injected in three separate periods. The ¹³CO₂ isotopic signature was measured at high frequency (0.5 Hz) before, during, and after the injection periods for gas flowing from fissures over the fire and from gas entering an observation well drilled into the formation just above the fire but near the combustion zone. In two cases, a shift in the isotopic signature of outgassing CO₂ provided clear evidence that injected CO₂ had traveled from the injection well to the observation point, while in a third case, no response was seen and the fissure could not be assumed to have a flowpath connected with the injection well. High-frequency measurements of the ¹³CO₂ signature of gas in observation wells is identified as a viable technique for tracking CO₂ injected into subsurface formations in real-time. In addition, a chimney-like coupled air-intake and exhaust outlet system feeding the combustion of the coal seam was confirmed. This can be used to further develop strategies for extinguishing the fire.

  12. Verification of respiratory-gated radiotherapy with new real-time tumour-tracking radiotherapy system using cine EPID images and a log file.

    Science.gov (United States)

    Shiinoki, Takehiro; Hanazawa, Hideki; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Shibuya, Keiko

    2017-02-21

    A combined system comprising the TrueBeam linear accelerator and a new real-time tumour-tracking radiotherapy system, SyncTraX, was installed at our institution. The objectives of this study are to develop a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine electronic portal image device (EPID) images and a log file and to verify this treatment in clinical cases. Respiratory-gated radiotherapy was performed using TrueBeam and the SyncTraX system. Cine EPID images and a log file were acquired for a phantom and three patients during the course of the treatment. Digitally reconstructed radiographs (DRRs) were created for each treatment beam using a planning CT set. The cine EPID images, log file, and DRRs were analysed using a developed software. For the phantom case, the accuracy of the proposed method was evaluated to verify the respiratory-gated radiotherapy. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker used as an internal surrogate were calculated to evaluate the gating accuracy and set-up uncertainty in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions. The proposed method achieved high accuracy for the phantom verification. For the clinical cases, the intra- and inter-fractional variations of the fiducial marker were  ⩽3 mm and  ±3 mm in the SI, AP, and LR directions. We proposed a method for the verification of respiratory-gated radiotherapy with SyncTraX using cine EPID images and a log file and showed that this treatment is performed with high accuracy in clinical cases.

  13. Online Tracking Control of Autonomous Mobile Robot Utilizing Optimal Formulation

    Science.gov (United States)

    Hirakoso, Nobuto; Takizawa, Takahiro; Ishihara, Masaaki; Aoki, Kouzou

    In this study, the objective is to build a wheeled mobile robot which can move independently avoiding obstacles. To move autonomously, this robot is enabled to detect obstacles' shapes and conduct self-localization. Also, this robot can move by tracking trajectories designed by the robot itself, based on the information about the obstacles' shapes and the robot's position and attitude angle. The optimal trajectories which lead the robot to its destination are designed by using a unique optimization method. As convergent calculation is performed by setting the variables within a certain range in this proposed optimization method, the optimal solutions can be obtained approximately, even in cases where there is a difference between the number of input and output variables, and when the nonlinearity is strong with restraint conditions. In this thesis, the effectiveness of the optimal track designing method used is proven and the method deemed as appropriate.

  14. Localization and Tracking of Submerged Phytoplankton Bloom Patches by an Autonomous Underwater Vehicle

    Science.gov (United States)

    Godin, M. A.; Ryan, J. P.; Zhang, Y.; Bellingham, J. G.

    2012-12-01

    Observing plankton in their drifting frame of reference permits effective studies of marine ecology from the perspective of microscopic life itself. By minimizing variation caused simply by advection, observations in a plankton-tracking frame of reference focus measurement capabilities on the processes that influence the life history of populations. Further, the patchy nature of plankton populations motivates use of sensor data in real-time to resolve patch boundaries and adapt observing resources accordingly. We have developed capabilities for population-centric plankton observation and sampling by autonomous underwater vehicles (AUVs). Our focus has been on phytoplankton populations, both because of their ecological significance - as the core of the oceanic food web and yet potentially harmful under certain bloom conditions, as well as the accessibility of their signal to simple optical sensing. During the first field deployment of these capabilities in 2010, we tracked a phytoplankton patch containing toxigenic diatoms and found that their toxicity correlated with exposure to resuspended sediments. However, this first deployment was labor intensive as the AUV drove in a pre-programmed pattern centered around a patch-marking drifter; it required a boat deployment of the patch-marking drifter and required full-time operators to periodically estimate of the position of the patch with respect to the drifter and adjust the AUV path accordingly. In subsequent field experiments during 2011 and 2012, the Tethys-class long-range AUVs ran fully autonomous patch tracking algorithms which detected phytoplankton patches and continually updated estimates of each patch center by driving adaptive patterns through the patch. Iterations of the algorithm were generated to overcome the challenges of tracking advecting and evolving patches while minimizing human involvement in vehicle control. Such fully autonomous monitoring will be necessary to perform long-term in

  15. Real-time shadows

    CERN Document Server

    Eisemann, Elmar; Assarsson, Ulf; Wimmer, Michael

    2011-01-01

    Important elements of games, movies, and other computer-generated content, shadows are crucial for enhancing realism and providing important visual cues. In recent years, there have been notable improvements in visual quality and speed, making high-quality realistic real-time shadows a reachable goal. Real-Time Shadows is a comprehensive guide to the theory and practice of real-time shadow techniques. It covers a large variety of different effects, including hard, soft, volumetric, and semi-transparent shadows.The book explains the basics as well as many advanced aspects related to the domain

  16. SU-E-J-182: Reproducibility of Tumor Motion Probability Distribution Function in Stereotactic Body Radiation Therapy of Lung Using Real-Time Tumor-Tracking Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Shiinoki, T; Hanazawa, H; Park, S; Takahashi, T; Shibuya, K [Yamaguchi University, Ube, Yamaguchi (Japan); Kawamura, S; Uehara, T; Yuasa, Y; Koike, M [Yamaguchi University Hospital, Ube, Yamaguchi (Japan)

    2015-06-15

    Purpose: We aim to achieve new four-dimensional radiotherapy (4DRT) using the next generation real-time tumor-tracking (RTRT) system and flattening-filter-free techniques. To achieve new 4DRT, it is necessary to understand the respiratory motion of tumor. The purposes of this study were: 1.To develop the respiratory motion analysis tool using log files. 2.To evaluate the reproducibility of tumor motion probability distribution function (PDF) during stereotactic body RT (SBRT) of lung tumor. Methods: Seven patients having fiducial markers closely implanted to the lung tumor were enrolled in this study. The positions of fiducial markers were measured using the RTRT system (Mitsubishi Electronics Co., JP) and recorded as two types of log files during the course of SBRT. For each patients, tumor motion range and tumor motion PDFs in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) directions were calculated using log files of all beams per fraction (PDFn). Fractional PDF reproducibility (Rn) was calculated as Kullback-Leibler (KL) divergence between PDF1 and PDFn of tumor motion. The mean of Rn (Rm) was calculated for each patient and correlated to the patient’s mean tumor motion range (Am). The change of Rm during the course of SBRT was also evluated. These analyses were performed using in-house developed software. Results: The Rm were 0.19 (0.07–0.30), 0.14 (0.07–0.32) and 0.16 (0.09–0.28) in LR, AP and SI directions, respectively. The Am were 5.11 mm (2.58–9.99 mm), 7.81 mm (2.87–15.57 mm) and 11.26 mm (3.80–21.27 mm) in LR, AP and SI directions, respectively. The PDF reproducibility decreased as the tumor motion range increased in AP and SI direction. That decreased slightly through the course of RT in SI direction. Conclusion: We developed the respiratory motion analysis tool for 4DRT using log files and quantified the range and reproducibility of respiratory motion for lung tumors.

  17. 基于EMG的假手实时力跟踪控制%Tracking control of real-time force for prosthetic hand based on EMG

    Institute of Scientific and Technical Information of China (English)

    王新庆; 刘伊威; 杨大鹏; 樊绍巍; 刘宏

    2012-01-01

    Aiming at such problems as low level of flexibility and intellectualization existing in commercial prosthetic hand,the study on a five-fingered prosthetic hand with moment/position perception and its control method was performed.The electromyography(EMG) signal of body forearm was taken as a control source,and the fingertip normal force was tested with a force sensor.A prediction model for fingertip force was established with a support vector regression(SVR) machine.The parameters of the proposed model were determined with a grid search method.And thus,the training time is shortened,and the generalization ability of the model gets enhanced.The real-time tracking of fingertip force was realized through combining the online prediction and fuzzy PID control method with a second-order differential tracker.The proposed control method has quick response speed,small ultra regulation and strong robustness,and thus,the control level for prosthetic hand gets improved.%针对商业假手灵活性及智能化水平较低的问题,进行了具有力矩/位置感知的五指假手及其控制方法的研究.以人体前臂肌电信号(EMG)为控制源,以力传感器检测指尖法向力,通过SVR支持向量机(Support Vector Regression,SVR)构建了指尖力的预测模型;采用网格搜索法确定模型的参数,缩短了训练时间,提高了模型的泛化能力.通过在线预测,结合带有二阶微分跟踪器的模糊PID控制方法实现了指尖施力实时跟踪;速度快,超调小,鲁棒性强,提高了假手的控制水平.

  18. Modelling the world in real time: how robots engineer information.

    Science.gov (United States)

    Davison, Andrew J

    2003-12-15

    Programming robots and other autonomous systems to interact with the world in real time is bringing into sharp focus general questions about representation, inference and understanding. These artificial agents use digital computation to interpret the data gleaned from sensors and produce decisions and actions to guide their future behaviour. In a physical system, however, finite computational resources unavoidably impose the need to approximate and make selective use of the information available to reach prompt deductions. Recent research has led to widespread adoption of the methodology of Bayesian inference, which provides the absolute framework to understand this process fully via modelling as informed, fully acknowledged approximation. The performance of modern systems has improved greatly on the heuristic methods of the early days of artificial intelligence. We discuss the general problem of real-time inference and computation, and draw on examples from recent research in computer vision and robotics: specifically visual tracking and simultaneous localization and mapping.

  19. Autonomous Aerial Refueling Ground Test Demonstration—A Sensor-in-the-Loop, Non-Tracking Method

    Directory of Open Access Journals (Sweden)

    Chao-I Chen

    2015-05-01

    Full Text Available An essential capability for an unmanned aerial vehicle (UAV to extend its airborne duration without increasing the size of the aircraft is called the autonomous aerial refueling (AAR. This paper proposes a sensor-in-the-loop, non-tracking method for probe-and-drogue style autonomous aerial refueling tasks by combining sensitivity adjustments of a 3D Flash LIDAR camera with computer vision based image-processing techniques. The method overcomes the inherit ambiguity issues when reconstructing 3D information from traditional 2D images by taking advantage of ready to use 3D point cloud data from the camera, followed by well-established computer vision techniques. These techniques include curve fitting algorithms and outlier removal with the random sample consensus (RANSAC algorithm to reliably estimate the drogue center in 3D space, as well as to establish the relative position between the probe and the drogue. To demonstrate the feasibility of the proposed method on a real system, a ground navigation robot was designed and fabricated. Results presented in the paper show that using images acquired from a 3D Flash LIDAR camera as real time visual feedback, the ground robot is able to track a moving simulated drogue and continuously narrow the gap between the robot and the target autonomously.

  20. Autonomous Aerial Refueling Ground Test Demonstration--A Sensor-in-the-Loop, Non-Tracking Method.

    Science.gov (United States)

    Chen, Chao-I; Koseluk, Robert; Buchanan, Chase; Duerner, Andrew; Jeppesen, Brian; Laux, Hunter

    2015-05-11

    An essential capability for an unmanned aerial vehicle (UAV) to extend its airborne duration without increasing the size of the aircraft is called the autonomous aerial refueling (AAR). This paper proposes a sensor-in-the-loop, non-tracking method for probe-and-drogue style autonomous aerial refueling tasks by combining sensitivity adjustments of a 3D Flash LIDAR camera with computer vision based image-processing techniques. The method overcomes the inherit ambiguity issues when reconstructing 3D information from traditional 2D images by taking advantage of ready to use 3D point cloud data from the camera, followed by well-established computer vision techniques. These techniques include curve fitting algorithms and outlier removal with the random sample consensus (RANSAC) algorithm to reliably estimate the drogue center in 3D space, as well as to establish the relative position between the probe and the drogue. To demonstrate the feasibility of the proposed method on a real system, a ground navigation robot was designed and fabricated. Results presented in the paper show that using images acquired from a 3D Flash LIDAR camera as real time visual feedback, the ground robot is able to track a moving simulated drogue and continuously narrow the gap between the robot and the target autonomously.

  1. Fuzzy Adaptive Control for Trajectory Tracking of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Saeed Nakhkoob

    2014-01-01

    Full Text Available In this paper, the problem of the position and attitude tracking of an autonomous underwater vehicle (AUV in the horizontal plane, under the presence of ocean current disturbances is discussed. The effect of the gradual variation of the parameters is taken into account. The effectiveness of the adaptive controller is compared with a feedback linearization method and fuzzy gain control approach. The proposed strategy has been tested through simulations. Also, the performance of the propos-ed method is compared with other strategies given in some other studies. The boundedness and asymptotic converge-nce properties of the control algorithm and its semi-global stability are analytically proven using Lyapunov stability theory and Barbalat’s lemma.

  2. NONLINEAR ESTIMATION METHODS FOR AUTONOMOUS TRACKED VEHICLE WITH SLIP

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bo; HAN Jianda

    2007-01-01

    In order to achieve precise, robust autonomous guidance and control of a tracked vehicle, a kinematic model with longitudinal and lateral slip is established. Four different nonlinear filters are used to estimate both state vector and time-varying parameter vector of the created model jointly. The first filter is the well-known extended Kalman filter. The second filter is an unscented version of the Kalman filter. The third one is a particle filter using the unscented Kalman filter to generate the importance proposal distribution. The last one is a novel and guaranteed filter that uses a linear set-membership estimator and can give an ellipsoid set in which the true state lies. The four different approaches have different complexities, behavior and advantages that are surveyed and compared.

  3. PRIMUS: autonomous navigation in open terrain with a tracked vehicle

    Science.gov (United States)

    Schaub, Guenter W.; Pfaendner, Alfred H.; Schaefer, Christoph

    2004-09-01

    The German experimental robotics program PRIMUS (PRogram for Intelligent Mobile Unmanned Systems) is focused on solutions for autonomous driving in unknown open terrain, over several project phases under specific realization aspects for more than 12 years. The main task of the program is to develop algorithms for a high degree of autonomous navigation skills with off-the-shelf available hardware/sensor technology and to integrate this into military vehicles. For obstacle detection a Dornier-3D-LADAR is integrated on a tracked vehicle "Digitized WIESEL 2". For road-following a digital video camera and a visual perception module from the Universitaet der Bundeswehr Munchen (UBM) has been integrated. This paper gives an overview of the PRIMUS program with a focus on the last program phase D (2001 - 2003). This includes the system architecture, the description of the modes of operation and the technology development with the focus on obstacle avoidance and obstacle classification using a 3-D LADAR. A collection of experimental results and a short look at the next steps in the German robotics program will conclude the paper.

  4. Real-time Cosmology

    CERN Document Server

    Quercellini, Claudia; Balbi, Amedeo; Cabella, Paolo; Quartin, Miguel

    2010-01-01

    In recent years the possibility of measuring the temporal change of radial and transverse position of sources in the sky in real time have become conceivable thanks to the thoroughly improved technique applied to new astrometric and spectroscopic experiments, leading to the research domain we call Real-time cosmology. We review for the first time great part of the work done in this field, analysing both the theoretical framework and some endeavor to foresee the observational strategies and their capability to constrain models. We firstly focus on real time measurements of the overall redshift drift and angular separation shift in distant source, able to trace background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper acceleration in clustered systems and therefore the gravitational potential. The last two sections are devoted to the short time future change of the cosmic microwave background, as ...

  5. Real-time radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  6. Real-Time Shading

    CERN Document Server

    Olano, Marc

    2002-01-01

    This book covers real-time shading systems, their design and how they work. Procedural shading, long valued for off-line rendering and production animation is now possible on interactive graphics hardware. These developments are important for areas such as game development, product design, and scientific visualization, among others. The authors include examples of techniques for achieving common effects efficiently in a real-time shading language ranging from full procedural shading on advanced specialized hardware to limited, yet surprisingly flexible shading on unextended OpenGL, to modern P

  7. Real-time RGBD SLAM system

    Science.gov (United States)

    Czupryński, BłaŻej; Strupczewski, Adam

    2015-09-01

    A real-time tracking and mapping SLAM system is presented. The developed system uses input from an RGBD sensor and tracks the camera pose from frame to frame. The tracking is based on matched feature points and is performed with respect to selected keyframes. The system is robust and scalable, as an arbitrary number of keyframes can be chosen for visualization and tracking depending on the desired accuracy and speed. The presented system is also a good platform for further research.

  8. Square tracking sensor for autonomous helicopter hover stabilization

    Science.gov (United States)

    Oertel, Carl-Henrik

    1995-06-01

    Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.

  9. Real-Time Evaluations

    Directory of Open Access Journals (Sweden)

    UNHCR

    2002-07-01

    Full Text Available A real-time evaluation (RTE is a timely, rapid andinteractive review of a fast evolving humanitarianoperation undertaken at an early phase. Its broadobjectives are to gauge the effectiveness and impactof a given UNHCR response and to ensure that itsfindings are used as an immediate catalyst fororganisational and operational change.

  10. Fast pattern recognizer for autonomous target recognition and tracking for advanced naval attack missiles

    Science.gov (United States)

    Hastbacka, Al

    2001-10-01

    A FPR System under development for the Naval Air Warfare Center, China Lake, CA is funded under a SBIR, Phase II contract as an automatic target recognizer and tracker candidate for Navy fast-reaction, subsonic and supersonic, stand-off weapons. The FPR will autonomously detect, identify, correlate, and track complex surface ship and land based targets in hostile, high-clutter environments in real time. The novel FPR system is proven technology that uses an electronic implementation analogous to an optical correlator system, where the Fourier transform of the incoming image is compared against known target images stored as matched filter templates. FPR demonstrations show that unambiguous target identification is achievable in a ninety-five percent fog obscuration for over ninety-percent of target images tested. The FPR technology employs an acoustic dispersive delay line (DDL) to achieve ultra-fast image correlations in 90 microseconds or 11,000 correlations per second. The massively scalable FPR design is capable of achieving processing speeds of an order of magnitude faster using available ASIC technology. Key benefits of the FPR are dramatically reduced power, size, weight, and cost with increased durability, robustness, and performance - which makes the FPR ideal for onboard missile applications.

  11. Autofluorescence imaging device for real-time detection and tracking of pathogenic bacteria in a mouse skin wound model: preclinical feasibility studies

    Science.gov (United States)

    Wu, Yichao Charlie; Kulbatski, Iris; Medeiros, Philip J.; Maeda, Azusa; Bu, Jiachuan; Xu, Lizhen; Chen, Yonghong; DaCosta, Ralph S.

    2014-08-01

    Bacterial infection significantly impedes wound healing. Clinical diagnosis of wound infections is subjective and suboptimal, in part because bacteria are invisible to the naked eye during clinical examination. Moreover, bacterial infection can be present in asymptomatic patients, leading to missed opportunities for diagnosis and treatment. We developed a prototype handheld autofluorescence (AF) imaging device (Portable Real-time Optical Detection, Identification and Guidance for Intervention-PRODIGI) to noninvasively visualize and measure bacterial load in wounds in real time. We conducted preclinical pilot studies in an established nude mouse skin wound model inoculated with bioluminescent Staphylococcus aureus bacteria. We tested the feasibility of longitudinal AF imaging for in vivo visualization of bacterial load in skin wounds, validated by bioluminescence imaging. We showed that bacteria (S. aureus), occult to standard examination, can be visualized in wounds using PRODIGI. We also detected quantitative changes in wound bacterial load over time based on the antibiotic treatment and the correlation of bacterial AF intensity with bacterial load. AF imaging of wounds offers a safe, noninvasive method for visualizing the presence, location, and extent of bacteria as well as measuring relative changes in bacterial load in wounds in real time.

  12. Real Time Econometrics

    OpenAIRE

    Pesaran, M. Hashem; Timmermann, Allan

    2004-01-01

    This paper considers the problems facing decision makers using econometric models in real time. It identifies the key stages involved and highlights the role of automated systems in reducing the effect of data snooping. It sets out many choices that researchers face in construction of automated systems and discusses some of the possible ways advanced in the literature for dealing with them. The role of feedbacks from the decision maker?s actions to the data generating process is also discusse...

  13. Real Time Processing

    CERN Document Server

    CERN. Geneva; ANDERSON, Dustin James; DOGLIONI, Caterina

    2015-01-01

    The LHC provides experiments with an unprecedented amount of data. Experimental collaborations need to meet storage and computing requirements for the analysis of this data: this is often a limiting factor in the physics program that would be achievable if the whole dataset could be analysed. In this talk, I will describe the strategies adopted by the LHCb, CMS and ATLAS collaborations to overcome these limitations and make the most of LHC data: data parking, data scouting, and real-time analysis.

  14. Tracking Object Existence From an Autonomous Patrol Vehicle

    Science.gov (United States)

    Wolf, Michael; Scharenbroich, Lucas

    2011-01-01

    An autonomous vehicle patrols a large region, during which an algorithm receives measurements of detected potential objects within its sensor range. The goal of the algorithm is to track all objects in the region over time. This problem differs from traditional multi-target tracking scenarios because the region of interest is much larger than the sensor range and relies on the movement of the sensor through this region for coverage. The goal is to know whether anything has changed between visits to the same location. In particular, two kinds of alert conditions must be detected: (1) a previously detected object has disappeared and (2) a new object has appeared in a location already checked. For the time an object is within sensor range, the object can be assumed to remain stationary, changing position only between visits. The problem is difficult because the upstream object detection processing is likely to make many errors, resulting in heavy clutter (false positives) and missed detections (false negatives), and because only noisy, bearings-only measurements are available. This work has three main goals: (1) Associate incoming measurements with known objects or mark them as new objects or false positives, as appropriate. For this, a multiple hypothesis tracker was adapted to this scenario. (2) Localize the objects using multiple bearings-only measurements to provide estimates of global position (e.g., latitude and longitude). A nonlinear Kalman filter extension provides these 2D position estimates using the 1D measurements. (3) Calculate the probability that a suspected object truly exists (in the estimated position), and determine whether alert conditions have been triggered (for new objects or disappeared objects). The concept of a probability of existence was created, and a new Bayesian method for updating this probability at each time step was developed. A probabilistic multiple hypothesis approach is chosen because of its superiority in handling the

  15. Real time Faraday spectrometer

    Science.gov (United States)

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  16. Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments

    Science.gov (United States)

    2016-03-05

    SECURITY CLASSIFICATION OF: The aim of this research is to develop a unified theory for perception and planning in autonomous ground vehicles , with a...Pine Tree Road Ithaca, NY 14850 -2820 ABSTRACT Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments...Report Title The aim of this research is to develop a unified theory for perception and planning in autonomous ground vehicles , with a specific focus on

  17. A predicted tracking algorithm based on least square principle in real-time recursively%实时递推的最小二乘预测跟踪算法

    Institute of Scientific and Technical Information of China (English)

    周姗姗; 柴金广; 李丹

    2011-01-01

    针对探测系统跟踪误差对目标跟踪的影响,提出一种实时递推的最小二乘预测跟踪算法.该算法采用平方预测器的估算方式,获得目标运动轨迹的最佳逼近,通过不断更新的历史数据实时递推轨迹参数,预测下一帧目标位置.该算法采用Matlab软件编写易于工程实现的应用程序.得到仿真的目标真实轨迹与预测轨迹数据.仿真结果表明,该算法可以在系统延迟、目标机动的情况下实时快速地预测目标位置,降低跟踪误差.%To deal with the tracking error of observation system for target tracing, a novel predicted tracking algorithm which is based on least square principle in real-time recursively is presented. The algorithm chooses the square prediction as the estimation method to obtain the optimal approximation of the target motion trajectory. The algorithm updates recursive trajectory parameters based on the historical data in real-time, and then predicts the target position of next frame. The algorithm uses Matlab to program the application which is easy to realize for the practical project. According to an given example, the simulation of real trajectory and predicted trajectory are given. The simulation results show that the algorithm can predict the target position quickly and in real-time in the case of system delay or target maneuver, and reduce the tracking error.

  18. Creating Real-Time Embodied Autonomous Agents

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ A challenging research area for computer graphics and virtual environments (VE) is training interpersonal interactions. In such a system, at least one person is the VE participant, while several more virtual human agents (represented by human-like, embodied models) are engaged in activities in the same virtual space. The participants, whether live or virtual, should interact as if all were real. This means that the virtual agents must have several characteristics afforded to real people, including the following:

  19. Analysis of real-time vibration data

    Science.gov (United States)

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  20. Real time production optimization

    Energy Technology Data Exchange (ETDEWEB)

    Saputelli, Luigi; Otavio, Joao; Araujo, Turiassu; Escorcia, Alvaro [Halliburton, Houston, TX (United States). Landmark Division

    2004-07-01

    Production optimization encompasses various activities of measuring, analyzing, modeling, prioritizing and implementing actions to enhance productivity of a field. We present a state-of-the-art framework for optimizing production on a continuous basis as new sensor data is acquired in real time. Permanently acquired data is modeled and analyzed in order to create predictive models. A model based control strategy is used to regulate well and field instrumentation. The optimum field operating point, which changes with time, satisfies the maximum economic return. This work is a starting point for further development in automatic, intelligent reservoir technologies which get the most out of the abilities of permanent, instrumented wells and remotely activated downhole completions. The strategy, tested with history-matched data from a compartmentalised giant field, proved to reduce operating costs while increasing oil recovery by 27% in this field. (author)

  1. Measure of the accuracy of navigational sensors for autonomous path tracking

    Science.gov (United States)

    Motazed, Ben

    1994-02-01

    Outdoor mobile robot path tracking for an extended period of time and distance is a formidable task. The difficulty lies in the ability of robot navigation systems to reliably and accurately report on the position and orientation of the vehicle. This paper addresses the accurate navigation of mobile robots in the context of non-line of sight autonomous convoying. Dead-reckoning, GPS and vision based autonomous road following navigational schemes are integrated through a Kalman filter formulation to derive mobile robot position and orientation. The accuracy of these navigational schemes and their sufficiency to achieve autonomous path tracking for long duration are examined.

  2. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  3. Real Time Information Fusion in Military Systems

    Directory of Open Access Journals (Sweden)

    E. Bhagiratharao

    1990-01-01

    Full Text Available With the proliferation of sensors on platforms like battle ships and aircraft, the information to be handled by the battlefield commanders has significantly increased in the recent time. From a deluge of information flowing from sensors, the battlefield commander is required to make situation assessment in real-time and take appropriate action. Recent studies by cognitive scientists have indicated that decision making by individuals as well as a team suffer from several biases. For these two reasons, the battlefield commanders need assistance of real-time information fusion systems to take objective assessment of highly dynamic battle situation in real-time information fusion systems to take objective assessment of a highly dynamic battle situation in real-time. The real-time information fusion systems at a single platform level as well as that applicable for geographically distributed platforms is discussed in detail in this paper. It was concluded that by carrying out these activities at the platform level as well as at 'global' level involving several platforms, the limitations in performance of any sensor due to propagation effects or due to enemy counter measures can be significantly minimised or totally eliminated. At the same time the functional effectiveness of each sensor onboard different platforms, becomes better than when it had to operate autonomously within the real-time information fusion facility. By carrying out global real-time information fusion activity in a theatre of war, all the platforms operating in the area will have the benefit of the best sensor in that area on each aspect of the capability. A few examples of real-time information fusion system are also discussed.

  4. A quantitative method to track protein translocation between intracellular compartments in real-time in live cells using weighted local variance image analysis.

    Directory of Open Access Journals (Sweden)

    Guillaume Calmettes

    Full Text Available The genetic expression of cloned fluorescent proteins coupled to time-lapse fluorescence microscopy has opened the door to the direct visualization of a wide range of molecular interactions in living cells. In particular, the dynamic translocation of proteins can now be explored in real time at the single-cell level. Here we propose a reliable, easy-to-implement, quantitative image processing method to assess protein translocation in living cells based on the computation of spatial variance maps of time-lapse images. The method is first illustrated and validated on simulated images of a fluorescently-labeled protein translocating from mitochondria to cytoplasm, and then applied to experimental data obtained with fluorescently-labeled hexokinase 2 in different cell types imaged by regular or confocal microscopy. The method was found to be robust with respect to cell morphology changes and mitochondrial dynamics (fusion, fission, movement during the time-lapse imaging. Its ease of implementation should facilitate its application to a broad spectrum of time-lapse imaging studies.

  5. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time

    Science.gov (United States)

    Wang, Zhihua; Yang, Zhaochu; Dong, Tao

    2017-01-01

    Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls) will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system. PMID:28208620

  6. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2017-02-01

    Full Text Available Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system.

  7. 引入相似性度量的GPU实时图形跟踪渲染技术%GPU Real-time Tracking Graphics Rendering Technology Based on Similar Measurement

    Institute of Scientific and Technical Information of China (English)

    钱春花

    2015-01-01

    提出一种基于目标分布场相似性度量的实时图形跟踪渲染算法.使用OpenFlight的建模环境提供GPU实时图形渲染三维图形观察器,得到一个有二维层次的结构图,进行目标分布场设计,结合静态视点图像的运动方程,通过对图像自然分层,保留原始图像的基本信息,为了在跟踪中使分布场能适应各种复杂场景,需要对原始的分布场进行高斯平滑,通过目标分布场相似性度量,实现GPU实时图形跟踪渲染.仿真结果表明,采用该算法进行实时图形渲染,可以提高渲染跟踪效率,搜索时间短,误差率较低,提高了图形的渲染真实感.%This paper proposed a similar target field real-time graphics rendering algorithm based on the tracking measure-ment. Modeling environment using OpenFlight GPU real-time rendering of 3D graphics viewer, a two-dimensional layered structure, the target distribution design, combined with the equations of motion of a static view images, the image of natural stratification, retains the basic information of the original image, in order to make the field can adapt to a variety of complex scene in the trace, Gauss needs to smooth the original distribution field, the distribution of target similarity measurement, real-time graphics rendering GPU tracking. The simulation results show that, by using the algorithm of real-time graphics rendering, can improve the efficiency of rendering tracking, search time is short, low error rate, improve the graphics render-ing.

  8. The ALMA Real Time Control System

    Science.gov (United States)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  9. Performance accuracy of real-time GPS asset tracking systems for timber haulage trucks travelling on both internal forest road and public road networks

    OpenAIRE

    Devlin, Ger; McDonnell, Kevin

    2009-01-01

    The GPSTRACK project has arisen as a result of a recommendation in the Forest Industry Transport Group (FITG) Code of Practice for Timber Haulage, which was to 'Encourage closer co-operation between consignors and hauliers to plan routes in a manner which optimizes the economic returns within a legal framework'. The project involved the installation of Bluetree global positioning systems (GPS) asset tracking systems onto two timber haulage trucks: an articulated Iveco Stralis 530 6⋆2 tractor ...

  10. WE-G-BRF-03: A Quasi-Cine CBCT Reconstruction Technique for Real-Time On- Board Target Tracking of Lung Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To develop a quasi-cine CBCT reconstruction technique that uses extremely-small angle (∼3°) projections to generate real-time high-quality lung CBCT images. Method: 4D-CBCT is obtained at the beginning and used as prior images. This study uses extremely-small angle (∼3°) on-board projections acquired at a single respiratory phase to reconstruct the CBCT image at this phase. An adaptive constrained free-form deformation (ACFD) method is developed to deform the prior 4D-CBCT volume at the same phase to reconstruct the new CBCT. Quasi-cine CBCT images are obtained by continuously reconstructing CBCT images at subsequent phases every 3° angle (∼0.5s). Note that the prior 4D-CBCT images are dynamically updated using the latest CBCT images. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of ACFD. A lung patient was simulated with a tumor baseline shift of 2mm along superior-inferior (SI) direction after every respiratory cycle for 5 cycles. Limited-angle projections were simulated for each cycle. The 4D-CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate their geometric differences.The ACFD was also compared to a principal-component-analysis based motion-modeling (MM) method. Results: Using orthogonal-view 3° projections, the VPD/COMS values for tumor baseline shifts of 2mm, 4mm, 6mm, 8mm, 10mm were 11.0%/0.3mm, 25.3%/2.7mm, 22.4%/2.9mm, 49.5%/5.4mm, 77.2%/8.1mm for the MM method, and 2.9%/0.7mm, 3.9%/0.8mm, 6.2%/1mm, 7.9%/1.2mm, 10.1%/1.1mm for the ACFD method. Using orthogonal-view 0° projections (1 projection only), the ACFD method yielded VPD/COMS results of 5.0%/0.9mm, 10.5%/1.2mm, 15.1%/1.4mm, 20.9%/1.6mm and 24.8%/1.6mm. Using single-view instead of orthogonal-view projections yielded less accurate results for ACFD

  11. Comparison between target margins derived from 4DCT scans and real-time tumor motion tracking: Insights from lung tumor patients treated with robotic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Descovich, Martina, E-mail: mdescovich@radonc.ucsf.edu; McGuinness, Christopher; Kannarunimit, Danita; Chen, Josephine; Pinnaduwage, Dilini; Pouliot, Jean; Kased, Norbert; Gottschalk, Alexander R.; Yom, Sue S. [UCSF Department of Radiation Oncology, San Francisco, California 94115 (United States)

    2015-03-15

    Purpose: A unique capability of the CyberKnife system is dynamic target tracking. However, not all patients are eligible for this approach. Rather, their tumors are tracked statically using the vertebral column for alignment. When using static tracking, the internal target volume (ITV) is delineated on the four-dimensional (4D) CT scan and an additional margin is added to account for setup uncertainty [planning target volume (PTV)]. Treatment margins are difficult to estimate due to unpredictable variations in tumor motion and respiratory pattern during the course of treatment. The inability to track the target and detect changes in respiratory characteristics might result in geographic misses and local tumor recurrences. The purpose of this study is to develop a method to evaluate the adequacy of ITV-to-PTV margins for patients treated in this manner. Methods: Data from 24 patients with lesions in the upper lobe (n = 12), middle lobe (n = 3), and lower lobe (n = 9) were included in this study. Each patient was treated with dynamic tracking and underwent 4DCT scanning at the time of simulation. Data including the 3D coordinates of the target over the course of treatment were extracted from the treatment log files and used to determine actual target motion in the superior–inferior (S–I), anterior–posterior (A–P), and left–right (L–R) directions. Different approaches were used to calculate anisotropic and isotropic margins, assuming that the tumor moves as a rigid body. Anisotropic margins were calculated by separating target motion in the three anatomical directions, and a uniform margin was calculated by shifting the gross tumor volume contours in the 3D space and by computing the percentage of overlap with the PTV. The analysis was validated by means of a theoretical formulation. Results: The three methods provided consistent results. A uniform margin of 4.5 mm around the ITV was necessary to assure 95% target coverage for 95% of the fractions included

  12. Ovation Prime Real-Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ovation Prime Real-Time (OPRT) product is a real-time forecast and nowcast model of auroral power and is an operational implementation of the work by Newell et...

  13. Light-sensitive vertical migration of the Japanese eel Anguilla japonica revealed by real-time tracking and its utilization for geolocation.

    Directory of Open Access Journals (Sweden)

    Seinen Chow

    Full Text Available Short-time tracking (one to eight days of the Japanese eel (Anguilla japonica using ultrasonic transmitter was performed in the tropical-subtropical area adjacent to the spawning area and temperate area off the Japanese Archipelago. Of 16 eels (11 wild and five farmed used, 10 wild eels displayed clear diel vertical migration (DVM from the beginning, while the other five farmed eels tracked for 19 to 66 hours did not. During daytime, a significantly positive correlation between migration depth and light intensity recorded on the vessel was observed in the 10 wild eels, indicating that the eels were sensitive to sunlight even at the middle to lower mesopelagic zone (500 to 800 m. During nighttime, the eel migration depth was observed to be associated with the phase, rising and setting of the moon, indicating that the eels were sensitive to moonlight at the upper mesopelagic zone (<300 m. Two of 10 wild eels were in the yellow stage but shared similar DVM with the silver stage eels. Swimbladders of three silver stage eels were punctured before releasing, but very little effect on DVM was observed. The eels very punctually initiated descent upon nautical dawn and ascent upon sunset, enabling us to determine local times for sunrise and sunset, and hence this behavior may be used for geolocating eels. In fact, estimated positions of eels based on the depth trajectory data were comparable or even better than those obtained by light-based archival tag in other fish species.

  14. Automatic identification and real-time tracking based on multiple sensors for low-altitude moving targets%一种多传感器反直升机智能雷伺服跟踪系统

    Institute of Scientific and Technical Information of China (English)

    张作楠; 刘国栋; 王婷婷

    2011-01-01

    讨论一种基于多传感器的反直升机智能雷AHM(Anti-Helicopter Mine)系统.为了提高智能雷的全自动智能跟踪能力和打击精度,在传统的被动声探测技术的基础上,结合图像传感器的视觉信息和激光测距仪的深度信息,提出一种基于声-光-电多传感器联合的自动目标探测、识别、跟踪算法.首先将五元十字声源定位技术用于低空目标探测和初始定位,然后对目标进行图像处理与特征提取,最后基于图像特征的视觉伺服跟踪算法得出伺服机构的旋转角以实现精确跟踪.%Discussed a tracking system for anti-helicopter mine (AHM) tracking system based on multi-sensors, in order to increase the ability of automatic tracking and the higher firing accuracy. Based on the traditional passive acoustic localization technology, a multi-sensor integrated automatic detection and real-time tracking algorithm is proposed with a variety of sensors and electronic measuring devices, such as acoustic sensors, image sensors and laser range finder. Firstly the target is initially located by the positive acoustic localization technology, then attract the target image feature by image processing, According to based-on-image visual servoing algorithm, the desired target error signal for precise tracking is used to control the servo mechanism to track precisely.

  15. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells.

    Directory of Open Access Journals (Sweden)

    Kevin Kolahi

    Full Text Available While the human placenta must provide selected long-chain fatty acids to support the developing fetal brain, little is known about the mechanisms underlying the transport process. We tracked the movement of the fluorescently labeled long-chain fatty acid analogue, BODIPY-C12, across the cell layers of living explants of human term placenta. Although all layers took up the fatty acid, rapid esterification of long-chain fatty acids and incorporation into lipid droplets was exclusive to the inner layer cytotrophoblast cells rather than the expected outer syncytiotrophoblast layer. Cytotrophoblast is a progenitor cell layer previously relegated to a repair role. As isolated cytotrophoblasts differentiated into syncytialized cells in culture, they weakened their lipid processing capacity. Syncytializing cells suppress previously active genes that regulate fatty-acid uptake (SLC27A2/FATP2, FABP4, ACSL5 and lipid metabolism (GPAT3, LPCAT3. We speculate that cytotrophoblast performs a previously unrecognized role in regulating placental fatty acid uptake and metabolism.

  16. Design of automatic real-time system with solar panels for sun tracking%太阳能电池自动实时逐日系统设计

    Institute of Scientific and Technical Information of China (English)

    蔡荣山; 杨勇; 张虹; 姚桔

    2016-01-01

    采用非易失实时时钟芯片DS12C887配合SPA算法,精确获取所在地实时太阳方位;单片机根据光功率评估电池方位驱动后所获电能及驱动耗电,优化驱动的时间间隔;不驱动时,系统掉电.该方案具有断电重启方便,实时跟踪,太阳能电池效能高的优势,具有一定的应用价值.%This scheme uses a nonvolatile real-time clock chip DS12C887 to precisely obtain realtime position of the sun by adopting SPA algorithm.SCM assesses the obtained electrical energy and driving energy consumption according to the optical power after the direction driving of the solar cell,and then optimizes the intervals of the driving.The system is in a brown-out condition when it is not driving.This scheme has the following advantages:convenient re-initialization after outage,real-time sun-tracking function,efficient solar cells and some application values.

  17. A Study on Stereoscopic X-ray Imaging Data Set on the Accuracy of Real-Time Tumor Tracking in External Beam Radiotherapy.

    Science.gov (United States)

    Esmaili Torshabi, Ahmad; Ghorbanzadeh, Leila

    2017-04-01

    At external beam radiotherapy, stereoscopic X-ray imaging system is responsible as tumor motion information provider. This system takes X-ray images intermittently from tumor position (1) at pretreatment step to provide training data set for model construction and (2) during treatment to control the accuracy of correlation model performance. In this work, we investigated the effect of imaging data points provided by this system on treatment quality. Because some information is still lacking about (1) the number of imaging data points, (2) shooting time for capturing each data point, and also (3) additional imaging dose delivered by this system. These 3 issues were comprehensively assessed at (1) pretreatment step while training data set is gathered for prediction model construction and (2) during treatment while model is tested and reconstructed using new arrival data points. A group of real patients treated with CyberKnife Synchrony module was chosen in this work, and an adaptive neuro-fuzzy inference system was considered as consistent correlation model. Results show that a proper model can be constructed while the number of imaging data points is highly enough to represent a good pattern of breathing cycles. Moreover, a trade-off between the number of imaging data points and additional imaging dose is considered in this study. Since breathing phenomena are highly variable at different patients, the time for taking some of imaging data points is very important, while their absence at that critical time may yield wrong tumor tracking. In contrast, the sensitivity of another category of imaging data points is not high, while breathing is normal and in the control range. Therefore, an adaptive supervision on the implementation of stereoscopic X-ray imaging is proposed to intelligently accomplish shooting process, based on breathing motion variations.

  18. Designing Real Time Assistive Technologies

    DEFF Research Database (Denmark)

    Sonne, Tobias; Obel, Carsten; Grønbæk, Kaj

    2015-01-01

    design criteria in relation to three core components (sensing, recognizing, and assisting) for designing real time assistive technologies for children with ADHD. Based on these design criteria, we designed the Child Activity Sensing and Training Tool (CASTT), a real time assistive prototype that captures...... activities and assists the child in maintaining attention. From a preliminary evaluation of CASTT with 20 children in several schools, we and found that: 1) it is possible to create a wearable sensor system for children with ADHD that monitors physical and physiological activities in real time; and that 2......) real time assistive technologies have potential to assist children with ADHD in regaining attention in critical school situations....

  19. Designing Real Time Assistive Technologies

    DEFF Research Database (Denmark)

    Sonne, Tobias; Obel, Carsten; Grønbæk, Kaj

    design criteria in relation to three core components (sensing, recognizing, and assisting) for designing real time assistive technologies for children with ADHD. Based on these design criteria, we designed the Child Activity Sensing and Training Tool (CASTT), a real time assistive prototype that captures...... activities and assists the child in maintaining attention. From a preliminary evaluation of CASTT with 20 children in several schools, we and found that: 1) it is possible to create a wearable sensor system for children with ADHD that monitors physical and physiological activities in real time; and that 2......) real time assistive technologies have potential to assist children with ADHD in regaining attention in critical school situations....

  20. Real Time Mapping and Dynamic Navigation for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Maki K. Habib

    2008-11-01

    Full Text Available This paper discusses the importance, the complexity and the challenges of mapping mobile robot?s unknown and dynamic environment, besides the role of sensors and the problems inherited in map building. These issues remain largely an open research problems in developing dynamic navigation systems for mobile robots. The paper presenst the state of the art in map building and localization for mobile robots navigating within unknown environment, and then introduces a solution for the complex problem of autonomous map building and maintenance method with focus on developing an incremental grid based mapping technique that is suitable for real-time obstacle detection and avoidance. In this case, the navigation of mobile robots can be treated as a problem of tracking geometric features that occur naturally in the environment of the robot. The robot maps its environment incrementally using the concept of occupancy grids and the fusion of multiple ultrasonic sensory information while wandering in it and stay away from all obstacles. To ensure real-time operation with limited resources, as well as to promote extensibility, the mapping and obstacle avoidance modules are deployed in parallel and distributed framework. Simulation based experiments has been conducted and illustrated to show the validity of the developed mapping and obstacle avoidance approach.

  1. 低空运动目标的多传感器自动识别和实时跟踪%Automatic identification and real-time tracking based on multiple sensors for low-altitude moving targets

    Institute of Scientific and Technical Information of China (English)

    张作楠; 刘国栋; 娄建

    2011-01-01

    This paper discussed a method for low altitude moving target detection and tracking in TV tracking system. In order to increase the ability of automatic tracking and anti-interferene, based on a variety of sensors and electronic measuring devices, such as acoustic sensors, image sensors and laser range finder,proposed a multi-sensor integrated automatic identification and real-time servo algorithm. Firstly located the target initially by the positive acoustic localization technology, secondly used the dynamic and static image features as well as the sound source characteristics of the target in target classification and recognition. According to video tracking and trajectory prediction algorithm, the desired target error signal control servo for precise tracking was used to control the servo mechanism to track precisely. Experiments show thattthe algorithm is simple and effective to achieve enough precision and reliability, and also validate the feasibility for multiple sensors being used in full-automatic intelligent tracking system.%讨论了一种用于低空运动目标检测和跟踪的电视跟踪系统.为了提高系统自动跟踪和抗干扰能力,基于声—光—电多种传感器和测量装置如声波传感器、图像传感器和激光测距仪等,提出一种多传感器综合的自动目标识别和实时跟踪算法.该方法将被动声定位技术用于目标初定位,结合目标图像动静态特征和目标声源特征用于目标的特征提取和自动识别,根据视频跟踪和轨迹预测算法,得出期望的目标误差信号控制伺服机构进行精确跟踪.实验结果表明该算法简捷有效、精度和可靠性达到要求,验证了多传感器应用于全自动智能跟踪系统的可行性.

  2. Real-time volume graphics

    CERN Document Server

    Engel, Klaus; Kniss, Joe; Rezk-Salama, Christof; Weiskopf, Daniel

    2006-01-01

    Based on course notes of SIGGRAPH course teaching techniques for real-time rendering of volumetric data and effects; covers both applications in scientific visualization and real-time rendering. Starts with the basics (texture-based ray casting) and then improves and expands the algorithms incrementally. Book includes source code, algorithms, diagrams, and rendered graphics.

  3. VLBI real-time analysis by Kalman Filtering

    Science.gov (United States)

    Karbon, Maria; Soja, Benedikt; Nilson, Tobias; Heinkelmann, Robert; Liu, Li; Lu, Ciuxian; Xu, Minghui; Raposo-Pulido, Virginia; Mora-Diaz, Julian; Schuh, Harald

    2014-05-01

    Geodetic Very Long Baseline Interferometry (VLBI) is one of the primary space geodetic techniques. It provides the full set of Earth Orientation Parameter (EOP) and is unique for observing long term Universal Time (UT1) and precession/nutation. Currently the VLBI products are delivered with a delay of about two weeks from the moment of the observation. However, the need for near-real time estimates of the parameters is increasing, e.g. for satellite based navigation and positioning or for enabling precise tracking of interplanetary spacecraft. The goal is thus to reduce the time span between observation and the final result to less than one day. This can be archived by replacing the classical least squares method with an adaptive Kalman filter. We have developed a Kalman filter for VLBI data analysis. This method has the advantage that it is simultaneously possible to estimate stationary parameters, e.g. station positions, and to model the highly variable stochastic behavior of non-stationary parameters like clocks or atmospheric parameters. The filter is able to perform without any human interaction, making it a completely autonomous tool. In this work we describe the filter and discuss its application for EOP determination and prediction. We discuss the implementation of the stochastic models to statistically account for unpredictable changes in EOP. Furthermore, additional data like results from other techniques can be included to improve the performance. For example, atmospheric angular momentum calculated from numerical weather models can be introduced to supplement the short-term prediction of UT1 and polar motion. This Kalman filter will be extended and embedded in the newly developed Vienna VLBI Software (VieVS) as a completely autonomous tool enabling the VLBI analysis in near real-time and providing all the parameters of interest with the highest possible accuracy.

  4. Path tracking control of autonomous agricultural mobile robots

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In a tractor automatic navigation system, path planning plays a significant role in improving operation efficiency. This study aims to create a suboptimal reference course for headland turning of a robot tractor and design a path-tracking controller to guide the robot tractor along the reference course. A time-minimum suboptimal control method was used to generate the reference turning course based on the mechanical parameters of the test tractor. A path-tracking controller consisting of both feedforward and feedback component elements was also proposed. The feedforward component was directly determined by the desired steering angle of the current navigation point on the reference course, whereas the feedback component was derived from the designed optimal controller. Computer simulation and field tests were performed to validate the path-tracking performance. Field test results indicated that the robot tractor followed the reference courses precisely on flat meadow, with average and standard lateral deviations being 0.031 m and 0.086 m, respectively. However, the tracking error increased while operating on sloping meadow due to the employed vehicle kinematic model.

  5. Object detection in real-time

    Science.gov (United States)

    Solder, Ulrich; Graefe, Volker

    1991-03-01

    An algorithm working on monocular gray-scale image sequences for object detection combined with a road tracker is presented. This algorithm appropriate for the real-time demands of an autonomous car driving with speeds over 40 km/h may be used for triggering obstacle avoidance maneuvers such as coming to a safe stop automatically in front of an obstacle or following another car. Moving and static objects have been detected in real-world experiments on various types of roads even under unfavorable weather conditions. . Morgenthaler and

  6. Vector Pursuit Path Tracking for Autonomous Ground Vehicles

    Science.gov (United States)

    2000-08-01

    collision avoidance for a mobile robot,” Robotica , v12, 1994, p521-527. [30] Saffiotti, A., Ruspini, E. H. and Konolige, K., “Blending Reactivity and...based collision avoidance for a mobile robot,” Robotica , v15, 1997, p627-632. [43] Hoffman, F. and Pfister, G., “Evolutionary Design of a Fuzzy...DeSantis, R. M., “Modeling and path-tracking control of a mobile wheeled robot with a differential drive,” Robotica , v13, 1995, p401-410. [49

  7. Autonomous search, tracking and classification by multiple cooperative UAVs

    Science.gov (United States)

    Sinha, A.; Kirubarajan, T.; Bar-Shalom, Y.

    2006-05-01

    In this paper we propose a cooperative control algorithm for a group of UAVs carrying out surveillance --- search, tracking and classification --- over a large region which includes a number of targets. The goal is to track and classify detected targets as well as search for new targets. The UAVs are assumed to be equipped with Ground Moving Target Indicator (GMTI) radars, which measure the locations of moving ground targets as well as their radial velocities (Doppler). In addition, a classification sensor is mounted on each UAV that can obtain target class information. The surveillance region is divided into a number of sectors and it is assumed that the GMTI sensor on each UAV scans a fixed number of such sectors in each period of its operation. The sensor responsible for class information can scan only a small circular region around the predicted position of a target. In this paper, a decentralized cooperative control algorithm is proposed, according to which each UAV transmits the current scan information (either kinematic or class information) and detection information (including "negative information") to the other UAVs. Each UAV makes its scan decision and path decision separately, based on information-based objective functions, which incorporate target state information as well as target detection probability and survival probability due to possible hostile fire by targets and collision with other UAVs. The proposed algorithm requires limited communication and modest computation and it can handle failure in communication and loss of UAVs.

  8. Left ventricular layer function in hypertension assessed by myocardial strain rate using novel one-beat real-time three-dimensional speckle tracking echocardiography with high volume rates.

    Science.gov (United States)

    Saeki, Maki; Sato, Noriaki; Kawasaki, Masanori; Tanaka, Ryuhei; Nagaya, Maki; Watanabe, Takatomo; Ono, Koji; Noda, Toshiyuki; Zile, Michael R; Minatoguchi, Shinya

    2015-08-01

    We recently developed novel software to measure phasic strain rate (SR) using automated one-beat real-time three-dimensional speckle tracking echocardiography (3D-STE) with high volume rates. We tested the hypothesis that left ventricular (LV) systolic function and relaxation analyzed by SR with the novel 3D-STE in hypertension (HTN) with hypertrophy may be impaired in the endocardium before there is LV systolic dysfunction. We measured LV longitudinal, radial and circumferential SR in patients with HTN (n=80, 69±7 years) and age-matched normotensive controls (n= 60, 69±10 years) using 3D-STE. HTN patients were divided into four groups according to LV geometry: normal, concentric remodeling, concentric hypertrophy and eccentric hypertrophy. We measured SR during systole as an index of systolic function, SR during isovolumic relaxation (IVR) as an index of relaxation and E/e' as an index of filling pressure. Endocardial SR during systole in HTN with concentric and eccentric hypertrophy decreased compared with that in controls despite no reduction in ejection fraction or epicardial SR. Endocardial radial SR during IVR decreased even in normal geometry, and it was further reduced in concentric remodeling and hypertrophy despite no reduction in epicardial SR. LV phasic SR assessed by 3D-STE with high volume rates is a useful index to detect early decreases in LV systolic function and to predict subclinical LV layer dysfunction in patients with HTN.

  9. 实时跟踪过程参数式电弧炉电极调节系统%Electrode Regulating System of the Real Time Tracking Process Parameters for the EAF

    Institute of Scientific and Technical Information of China (English)

    花皑; 王莉莎; 王华; 顾耀国

    2013-01-01

    The electrode regulating for EAF is a heart equipment of the furnace melting operation, it has extremely influence on the working efficiency, electric energy and electrode consumption as well as the active power input into the EAF. Moreover, the key segments determining regulating system accuracy are signal measurement circuit and controller. The electrode regulating system of the real time tracking process parameters for the EAF are introduced in detail.%电弧炉的电极调节系统是电弧炉冶炼作业的心脏环节,它极大地影响电弧炉工作效率、电能消耗、电极消耗和输入到电弧炉中的有功功率,而决定调节系统精度的关键环节是调节系统的信号捡测量环节和控制器.文中详细介绍实时跟踪过程参数式电弧炉电极调节系统.

  10. Evaluation of a combined respiratory-gating system comprising the TrueBeam linear accelerator and a new real-time tumor-tracking radiotherapy system: a preliminary study.

    Science.gov (United States)

    Shiinoki, Takehiro; Kawamura, Shinji; Uehara, Takuya; Yuasa, Yuki; Fujimoto, Koya; Koike, Masahiro; Sera, Tatsuhiro; Emoto, Yuki; Hanazawa, Hideki; Shibuya, Keiko

    2016-07-08

    A combined system comprising the TrueBeam linear accelerator and a new real-time, tumor-tracking radiotherapy system, SyncTraX, was installed in our institution. The goals of this study were to assess the capability of SyncTraX in measuring the position of a fiducial marker using color fluoroscopic images, and to evaluate the dosimetric and geometric accuracy of respiratory-gated radiotherapy using this combined system for the simple geometry. For the fundamental evaluation of respiratory-gated radiotherapy using SyncTraX, the following were performed:1) determination of dosimetric and positional characteristics of sinusoidal patterns using a motor-driven base for several gating windows; 2) measurement of time delay using an oscilloscope; 3) positional verification of sinusoidal patterns and the pattern in the case of a lung cancer patient; 4) measurement of the half-value layer (HVL in mm AL), effective kVp, and air kerma, using a solid-state detector for each fluoroscopic condition, to determine the patient dose. The dose profile in a moving phantom with gated radiotherapy having a gating window ≤ 4 mm was in good agreement with that under static conditions for each photon beam. The total time delay between TrueBeam and SyncTraX was < 227 ms for each photon beam. The mean of the positional tracking error was < 0.4 mm for sinusoidal patterns and for the pattern in the case of a lung cancer patient. The air-kerma rates from one fluoroscopy direction were 1.93 ± 0.01, 2.86 ± 0.01, 3.92 ± 0.04, 5.28 ± 0.03, and 6.60 ± 0.05 mGy/min for 70, 80, 90, 100, and 110 kV X-ray beams at 80 mA, respectively. The combined system comprising TrueBeam and SyncTraX could track the motion of the fiducial marker and control radiation delivery with reasonable accuracy; therefore, this system provides significant dosimetric improvement. However, patient exposure dose from fluoroscopy was not clinically negligible.

  11. Intelligent controller for load-tracking performance of an autonomous power system

    Directory of Open Access Journals (Sweden)

    Abhik Banerjee

    2014-12-01

    Full Text Available The design and performance analysis of a Sugeno fuzzy logic (SFL controller for an autonomous power system model is presented in this paper. In gravitational search algorithm (GSA, the searcher agents are collection of masses and their interactions are based on Newtonian laws of gravity and motion. The problem of obtaining the optimal tunable parameters of the studied model is formulated as an optimization problem and the same is solved by a novel opposition based GSA (OGSA. The proposed OGSA of the present work employs opposition-based learning for population initialization and also for generation jumping. In OGSA, opposite numbers are utilized to improve the convergence rate of the basic GSA. GSA and genetic algorithm are taken for the sake of comparison. Time-domain simulation reveals that the developed OGSA-SFL based on-line, off-nominal controller parameters for the studied model give real-time on-line terminal voltage response.

  12. Real time UAV autonomy through offline calculations

    Science.gov (United States)

    Jung, Sunghun

    . Once one or several targets are detected, UAVs near the target are manipulated to approach to the target. If the number of detected targets is more than one, UAVs are evenly grouped to track targets. After a specific period of time, UAVs hand off and continue their original tasks. Thirdly, Emergency algorithm is generated to avoid losses of UAVs when UAVs have system failures. If one UAV is out of fuel or control during the mission, the Emergency algorithm brings the malfunctioning UAV to the point of departure and let the rest UAVs to continue an aerial reconnaissance. An UAV which finishes its task the earliest will continue to search a region which the failed UAV is supposed to search. In addition, Emergency algorithm prevents UAVs colliding into each other by using emergency altitude. Overall, the framework developed here facilitates the solution of several mission planning problems. The robustness built into our discretization of space and time permits feedback corrections on real-time to vehicle trajectories. The library of off-line solutions proposed and developed here minimizes computational overhead during operations.

  13. Real Time Behavior-Based Control on a Mobile Robot

    Institute of Scientific and Technical Information of China (English)

    KootaMuzyamba; 钱晋武; 沈林勇; 章亚男

    2003-01-01

    This paper discusses and compares some common architectures used in autonomous mobile robotics. Then it describes a behavior-based autonomous mobile robot that was implemented successfully in the Robotics of the Department of Precision Mechanical Engineering. Fuzzy controller was used to implement the emergency behavior, the t~uiviors arbitration was implemented using the subsumption architecture. In an tmknown dynamic indoor environment, the robot achieved real-time obstacle avoidance properties that are cruel for mobile robolics.

  14. Real Time Sonic Boom Display

    Science.gov (United States)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  15. Real time automatic scene classification

    NARCIS (Netherlands)

    Israël, Menno; Broek, van den Egon L.; Putten, van der Peter; Uyl, den Marten J.; Verbrugge, R.; Taatgen, N.; Schomaker, L.

    2004-01-01

    This work has been done as part of the EU VICAR (IST) project and the EU SCOFI project (IAP). The aim of the first project was to develop a real time video indexing classification annotation and retrieval system. For our systems, we have adapted the approach of Picard and Minka [3], who categorized

  16. ISTTOK real-time architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel{sup ®} Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  17. Adaptive Kalman snake for semi-autonomous 3D vessel tracking.

    Science.gov (United States)

    Lee, Sang-Hoon; Lee, Sanghoon

    2015-10-01

    In this paper, we propose a robust semi-autonomous algorithm for 3D vessel segmentation and tracking based on an active contour model and a Kalman filter. For each computed tomography angiography (CTA) slice, we use the active contour model to segment the vessel boundary and the Kalman filter to track position and shape variations of the vessel boundary between slices. For successful segmentation via active contour, we select an adequate number of initial points from the contour of the first slice. The points are set manually by user input for the first slice. For the remaining slices, the initial contour position is estimated autonomously based on segmentation results of the previous slice. To obtain refined segmentation results, an adaptive control spacing algorithm is introduced into the active contour model. Moreover, a block search-based initial contour estimation procedure is proposed to ensure that the initial contour of each slice can be near the vessel boundary. Experiments were performed on synthetic and real chest CTA images. Compared with the well-known Chan-Vese (CV) model, the proposed algorithm exhibited better performance in segmentation and tracking. In particular, receiver operating characteristic analysis on the synthetic and real CTA images demonstrated the time efficiency and tracking robustness of the proposed model. In terms of computational time redundancy, processing time can be effectively reduced by approximately 20%.

  18. Real-Time Motion Management of Prostate Cancer Radiotherapy

    DEFF Research Database (Denmark)

    Pommer, Tobias

    of this thesis is to manage prostate motion in real-time by aligning the radiation beam to the prostate using the novel dynamic multileaf collimator (DMLC) tracking method. Specifically, the delivered dose with tracking was compared to the planned dose, and the impact of treatment plan complexity and limitations...

  19. Knowledge exchange between agents in real-time environments

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Falster, Peter; Møller, Gert Lykke

    2005-01-01

    To obtain unpredictable social interaction between autonomous agents in real-time environments, we present a simple method for logic-based knowledge exchange. A method which is able to form new knowledge rather than do simple exchange of particular rules found in predetermined rule sets. The appl...

  20. Improved Line Tracking System for Autonomous Navigation of High-Speed Vehicle

    Directory of Open Access Journals (Sweden)

    Yahya Zare Khafri

    2012-07-01

    Full Text Available Line tracking navigation is one of the most widely techniques used in the robot navigation. In this paper, a customized line tracking system is proposed for autonomous navigation of high speed vehicles. In the presented system, auxiliary information -in addition to the road path- is added to the tracking lines such as locations of turn and intersections in the real roads. Moreover, the geometric position of line sensors is re-designed enables the high rate sensing with higher reliability. Finally, a light-weight navigation algorithm is proposed allow the high-speed movement using a reasonable processing power. This system is implemented on a MIPS-based embedded processor and experimental results with this embedded system show more than 98% accuracy at 200km/h with a 1GHz processor is viable.

  1. A study of real-time content marketing : formulating real-time content marketing based on content, search and social media

    OpenAIRE

    Nguyen, Thi Kim Duyen

    2015-01-01

    The primary objective of this research is to understand profoundly the new concept of content marketing – real-time content marketing on the aspect of the digital marketing experts. Particularly, the research will focus on the real-time content marketing theories and how to build real-time content marketing strategy based on content, search and social media. It also finds out how marketers measure and keep track of conversion rates of their real-time content marketing plan. Practically, th...

  2. Near real-time stereo vision system

    Science.gov (United States)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  3. Radiation damping in real time.

    Science.gov (United States)

    Mendes, A C; Takakura, F I

    2001-11-01

    We study the nonequilibrium dynamics of a charge interacting with its own radiation, which originates the radiation damping. The real-time equation of motion for the charge and the associated Langevin equation is found in classical limit. The equation of motion for the charge allows one to obtain the frequency-dependent coefficient of friction. In the lowest order we find that although the coefficient of static friction vanishes, there is dynamical dissipation represented by a non-Markovian dissipative kernel.

  4. Investigating the Mobility of Light Autonomous Tracked Vehicles using a High Performance Computing Simulation Capability

    Science.gov (United States)

    Negrut, Dan; Mazhar, Hammad; Melanz, Daniel; Lamb, David; Jayakumar, Paramsothy; Letherwood, Michael; Jain, Abhinandan; Quadrelli, Marco

    2012-01-01

    This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on deformable and rough terrain that is feature rich and no longer representable using a continuum approach. A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine. Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.

  5. 360-Degree Visual Detection and Target Tracking on an Autonomous Surface Vehicle

    Science.gov (United States)

    Wolf, Michael T; Assad, Christopher; Kuwata, Yoshiaki; Howard, Andrew; Aghazarian, Hrand; Zhu, David; Lu, Thomas; Trebi-Ollennu, Ashitey; Huntsberger, Terry

    2010-01-01

    This paper describes perception and planning systems of an autonomous sea surface vehicle (ASV) whose goal is to detect and track other vessels at medium to long ranges and execute responses to determine whether the vessel is adversarial. The Jet Propulsion Laboratory (JPL) has developed a tightly integrated system called CARACaS (Control Architecture for Robotic Agent Command and Sensing) that blends the sensing, planning, and behavior autonomy necessary for such missions. Two patrol scenarios are addressed here: one in which the ASV patrols a large harbor region and checks for vessels near a fixed asset on each pass and one in which the ASV circles a fixed asset and intercepts approaching vessels. This paper focuses on the ASV's central perception and situation awareness system, dubbed Surface Autonomous Visual Analysis and Tracking (SAVAnT), which receives images from an omnidirectional camera head, identifies objects of interest in these images, and probabilistically tracks the objects' presence over time, even as they may exist outside of the vehicle's sensor range. The integrated CARACaS/SAVAnT system has been implemented on U.S. Navy experimental ASVs and tested in on-water field demonstrations.

  6. An optimal consensus tracking control algorithm for autonomous underwater vehicles with disturbances

    CERN Document Server

    Zhang, Jian Yuan Wen-Xia

    2012-01-01

    The optimal disturbance rejection control problem is considered for consensus tracking systems affected by external persistent disturbances and noise. Optimal estimated values of system states are obtained by recursive filtering for the multiple autonomous underwater vehicles modeled to multi-agent systems with Kalman filter. Then the feedforward-feedback optimal control law is deduced by solving the Riccati equations and matrix equations. The existence and uniqueness condition of feedforward-feedback optimal control law is proposed and the optimal control law algorithm is carried out. Lastly, simulations show the result is effectiveness with respect to external persistent disturbances and noise.

  7. Real-time flutter analysis

    Science.gov (United States)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  8. Real time analysis under EDS

    Energy Technology Data Exchange (ETDEWEB)

    Schneberk, D.

    1985-07-01

    This paper describes the analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL). Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis. Each of these components are described with an emphasis upon how each contributes to overall system capability. 3 figs.

  9. Real-time analysis keratometer

    Science.gov (United States)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  10. An Intelligent Real-Time System Architecture Implemented in ADA

    Science.gov (United States)

    1992-12-01

    performed by the system is procedural in nature [ Wilber , 1989:75]. For example, if one was to create a fully autonomous system to pilot a modem fighter...Tindell, Ken , Bums, Alan, and Wellings, Andy, Allocating Hard Real Time Tasks (An NP-Hard Problem Made Easy), e-mail via ftp, 1992, Real Time Systems...Technology/ENS Wright-Patterson AFB, Ohio 45433-6583, Distribution Limited to DoD and DoD contractors only, April 1990. [ Wilber , 1989]. Wilber , George

  11. A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Hafiz

    2011-01-01

    Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.

  12. Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance.

    Science.gov (United States)

    Xiang, Xianbo; Yu, Caoyang; Niu, Zemin; Zhang, Qin

    2016-08-20

    The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV) to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF) under-actuated autonomous underwater vehicle (AUV) without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS) guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route.

  13. Subsea Cable Tracking by Autonomous Underwater Vehicle with Magnetic Sensing Guidance

    Directory of Open Access Journals (Sweden)

    Xianbo Xiang

    2016-08-01

    Full Text Available The changes of the seabed environment caused by a natural disaster or human activities dramatically affect the life span of the subsea buried cable. It is essential to track the cable route in order to inspect the condition of the buried cable and protect its surviving seabed environment. The magnetic sensor is instrumental in guiding the remotely-operated vehicle (ROV to track and inspect the buried cable underseas. In this paper, a novel framework integrating the underwater cable localization method with the magnetic guidance and control algorithm is proposed, in order to enable the automatic cable tracking by a three-degrees-of-freedom (3-DOF under-actuated autonomous underwater vehicle (AUV without human beings in the loop. The work relies on the passive magnetic sensing method to localize the subsea cable by using two tri-axial magnetometers, and a new analytic formulation is presented to compute the heading deviation, horizontal offset and buried depth of the cable. With the magnetic localization, the cable tracking and inspection mission is elaborately constructed as a straight-line path following control problem in the horizontal plane. A dedicated magnetic line-of-sight (LOS guidance is built based on the relative geometric relationship between the vehicle and the cable, and the feedback linearizing technique is adopted to design a simplified cable tracking controller considering the side-slip effects, such that the under-actuated vehicle is able to move towards the subsea cable and then inspect its buried environment, which further guides the environmental protection of the cable by setting prohibited fishing/anchoring zones and increasing the buried depth. Finally, numerical simulation results show the effectiveness of the proposed magnetic guidance and control algorithm on the envisioned subsea cable tracking and the potential protection of the seabed environment along the cable route.

  14. Kalman Filtering with Real-Time Applications

    CERN Document Server

    Chui, Charles K

    2009-01-01

    Kalman Filtering with Real-Time Applications presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering.

  15. Real-time flood forecasting

    Science.gov (United States)

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  16. REAL TIME DATA PROCESSING FRAMEWORKS

    Directory of Open Access Journals (Sweden)

    Yash Sakaria

    2015-09-01

    Full Text Available On a business level, everyone wants to get hold of the business value and other organizational advantages that big data has to offer. Analytics has arisen as the primitive path to business value from big data. Hadoop is not just a storage platform for big data; it’s also a computational and processing platform for business analytics. Hadoop is, however, unsuccessful in fulfilling business requirements when it comes to live data streaming. The initial architecture of Apache Hadoop did not solve the problem of live stream data mining. In summary, the traditional approach of big data being co-relational to Hadoop is false; focus needs to be given on business value as well. Data Warehousing, Hadoop and stream processing complement each other very well. In this paper, we have tried reviewing a few frameworks and products which use real time data streaming by providing modifications to Hadoop.

  17. Enhanced mission performance from autonomous instrument guidance

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Jørgensen, Peter Siegbjørn; Betto, Maurizio;

    2006-01-01

    examples of such autonomous space instrumentation. With its full autonomy, this star tracker is capable of providing, in real-time, the absolute orientation with respect to the celestial reference frame with an accuracy of a few arc seconds. This high accuracy along with the robust operations, low weight...... acquisition and pointing (PROBA). Here three applications of the mu ASC as an autonomous onboard precision guide for precision vector instrumentation are presented. These are autonomous onboard antenna guidance, telescope guidance and tracking and high accuracy and wide range laser rangers....

  18. Clinical virology in real time.

    Science.gov (United States)

    Niesters, Hubert G M

    2002-12-01

    The ability to detect nucleic acids has had and still has a major impact on diagnostics in clinical virology. Both quantitative and qualitative techniques, whether signal or target amplification based systems, are currently used routinely in most if not all virology laboratories. Technological improvements, from automated sample isolation to real time amplification technology, have given the ability to develop and introduce systems for most viruses of clinical interest, and to obtain clinical relevant information needed for optimal antiviral treatment options. Both polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) can currently be used together with real time detection to generate results in a short turn-around time and to determine whether variants relevant for antiviral resistance are present. These new technologies enable the introduction of an individual patient disease management concept. Within our clinical setting, we have introduced this e.g. for quantitative detection of Epstein-Barr Virus (EBV) in T-dell depleted allogeneic stem cell transplant patients. This enabled us to develop models for pre-emptive anti B-cell immunotherapy for EBV reactivation, thereby effectively reducing not the incidence of EBV-lymphoproliferative disease but the virus related mortality. Furthermore, additional clinically relevant viruses can now easily be detected simultaneously. It also becomes more feasible to introduce molecular testing for those viruses that can easily be detected using classical virological methods, like culture techniques or antigen detection. Prospective studies are needed to evaluate the clinical importance of the additional positive samples detected. It should however be made clear that a complete exchange of technologies is unlikely to occur, and that some complementary technologies should stay operational enabling the discovery of new viruses. The implementation of these molecular diagnostic technologies furthermore

  19. Wide area surveillance real-time motion detection systems

    CERN Document Server

    2014-01-01

    The book describes a system for visual surveillance using intelligent cameras. The camera uses robust techniques for detecting and tracking moving objects. The real time capture of the objects is then stored int he database. The tracking data stored in the database is analysed to study the camera view, detect and track objects, and study object behavior. These set of models provide a robust framework for coordinating the tracking of objects between overlapping and non-overlapping cameras, and recording the activity of objects detected by the system.

  20. Real-Time Hardware-in-the-Loop Laboratory Testing for Multisensor Sense and Avoid Systems

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-01-01

    Full Text Available This paper focuses on a hardware-in-the-loop facility aimed at real-time testing of architectures and algorithms of multisensor sense and avoid systems. It was developed within a research project aimed at flight demonstration of autonomous non-cooperative collision avoidance for Unmanned Aircraft Systems. In this framework, an optionally piloted Very Light Aircraft was used as experimental platform. The flight system is based on multiple-sensor data integration and it includes a Ka-band radar, four electro-optical sensors, and two dedicated processing units. The laboratory test system was developed with the primary aim of prototype validation before multi-sensor tracking and collision avoidance flight tests. System concept, hardware/software components, and operating modes are described in the paper. The facility has been built with a modular approach including both flight hardware and simulated systems and can work on the basis of experimentally tested or synthetically generated scenarios. Indeed, hybrid operating modes are also foreseen which enable performance assessment also in the case of alternative sensing architectures and flight scenarios that are hardly reproducible during flight tests. Real-time multisensor tracking results based on flight data are reported, which demonstrate reliability of the laboratory simulation while also showing the effectiveness of radar/electro-optical fusion in a non-cooperative collision avoidance architecture.

  1. Optimization design about gimbal structure of high-precision autonomous celestial navigation tracking mirror system

    Science.gov (United States)

    Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng

    2016-01-01

    High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.

  2. Real-time image fusion involving diagnostic ultrasound

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Săftoiu, Adrian; Gruionu, Lucian G;

    2013-01-01

    The aim of our article is to give an overview of the current and future possibilities of real-time image fusion involving ultrasound. We present a review of the existing English-language peer-reviewed literature assessing this technique, which covers technical solutions (for ultrasound...... and endoscopic ultrasound), image fusion in several anatomic regions, and electromagnetic needle tracking....

  3. Mobile real time radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Taggart, D.; Betts, S. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  4. Real-time DIRCM system modeling

    Science.gov (United States)

    Petersson, Mikael

    2004-12-01

    Directed infrared countermeasures (DIRCM) play an increasingly important role in electronic warfare to counteract threats posed by infrared seekers. The usefulness and performance of such countermeasures depend, for example, on atmospheric conditions (attenuation and turbulence) and platform vibrations, causing pointing and tracking errors for the laser beam and reducing the power transferred to the seeker aperture. These problems make it interesting to simulate the performance of a DIRCM system in order to understand how easy or difficult it is to counteract an approaching threat and evaluate limiting factors in various situations. This paper describes a DIRCM model that has been developed, including atmospheric effects such as attenuation and turbulence as well as closed loop tracking algorithms, where the retro reflex of the laser is used for the pointing control of the beam. The DIRCM model is part of a large simulation framework (EWSim), which also incorporates several descriptions of different seekers (e.g. reticle, rosette, centroid, nutating cross) and models of robot dynamics. Effects of a jamming laser on a specific threat can be readily verified by simulations within this framework. The duel between missile and countermeasure is simulated in near real-time and visualized graphically in 3D. A typical simulation with a reticle seeker jammed by a modulated laser is included in the paper.

  5. A Vision System for Real Time Road and Object Recognition for Vehicle Guidance

    Science.gov (United States)

    Jackson, T. A.; Samuelsen, G. S.

    1987-02-01

    One crucial component of a control system for autonomous vehicle guidance is real time image analysis. This system part is burdened by the maximum flow of information. To overcome the high demands in computation power a combination of knowledge based scene analysis and special hardware has been developed. The use of knowledge based image analysis supports real time processing not by schematically evaluating all parts of the image, but only evaluating those which contain relevant information. This is due to the fact that in many practical problems the relevant information is very unevenly distributed over the image. Preknowledge of the problem or the aim of the mission and expectations or predictions about the scene sustantially reduce the amount of information to be processed. The operations during such an analysis may be divided into two classes - simple processes, e.g. filters, correlation, contour processing and simple search strategies - complex search and control strategy This classification supplied the concept for a special hardware. The complex tasks are performed by a universal processor 80286 while the remaining tasks are executed by a special coprocessor (including image memory). This combination permits the use of filter masks with a arbitrary geometry together with a powerful search strategy. A number of these basic modules may be configured into a multiprocessor system. The universal processor is programmed in a high level language. To support the coprocessor a set of software tools has been built. They permit interactive graphical manipulation of filtermasks, generation of simple search strategies and non real time simulation. Also the real data structures that control the function of the coprocessor are generated by this software package. The system is used within our autonomous vehicle project. One set of algorithms tracks the border lines of the road even if they are broken or disturbed by dirt. Also shadows of bridges crossing the road are

  6. Real-time simulation of thermal shadows with EMIT

    Science.gov (United States)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  7. Real-time estimation of dynamic functional connectivity networks.

    Science.gov (United States)

    Monti, Ricardo Pio; Lorenz, Romy; Braga, Rodrigo M; Anagnostopoulos, Christoforos; Leech, Robert; Montana, Giovanni

    2017-01-01

    Two novel and exciting avenues of neuroscientific research involve the study of task-driven dynamic reconfigurations of functional connectivity networks and the study of functional connectivity in real-time. While the former is a well-established field within neuroscience and has received considerable attention in recent years, the latter remains in its infancy. To date, the vast majority of real-time fMRI studies have focused on a single brain region at a time. This is due in part to the many challenges faced when estimating dynamic functional connectivity networks in real-time. In this work, we propose a novel methodology with which to accurately track changes in time-varying functional connectivity networks in real-time. The proposed method is shown to perform competitively when compared to state-of-the-art offline algorithms using both synthetic as well as real-time fMRI data. The proposed method is applied to motor task data from the Human Connectome Project as well as to data obtained from a visuospatial attention task. We demonstrate that the algorithm is able to accurately estimate task-related changes in network structure in real-time. Hum Brain Mapp 38:202-220, 2017. © 2016 Wiley Periodicals, Inc.

  8. Eye-Tracking, Autonomic, and Electrophysiological Correlates of Emotional Face Processing in Adolescents with Autism Spectrum Disorder

    Science.gov (United States)

    Wagner, Jennifer B.; Hirsch, Suzanna B.; Vogel-Farley, Vanessa K.; Redcay, Elizabeth; Nelson, Charles A.

    2013-01-01

    Individuals with autism spectrum disorder (ASD) often have difficulty with social-emotional cues. This study examined the neural, behavioral, and autonomic correlates of emotional face processing in adolescents with ASD and typical development (TD) using eye-tracking and event-related potentials (ERPs) across two different paradigms. Scanning of…

  9. Atomic Stretch: Optimally bounded real-time stretching and beyond

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll

    2016-01-01

    Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color......-modification, countering barrelling effects through vertical stretching, and tracking of targets of interest....

  10. Near Real Time Processing Chain for Suomi NPP Satellite Data

    Science.gov (United States)

    Monsorno, Roberto; Cuozzo, Giovanni; Costa, Armin; Mateescu, Gabriel; Ventura, Bartolomeo; Zebisch, Marc

    2014-05-01

    Since 2009, the EURAC satellite receiving station, located at Corno del Renon, in a free obstacle site at 2260 m a.s.l., has been acquiring data from Aqua and Terra NASA satellites equipped with Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The experience gained with this local ground segmenthas given the opportunity of adapting and modifying the processing chain for MODIS data to the Suomi NPP, the natural successor to Terra and Aqua satellites. The processing chain, initially implemented by mean of a proprietary system supplied by Seaspace and Advanced Computer System, was further developed by EURAC's Institute for Applied Remote Sensing engineers. Several algorithms have been developed using MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data to produce Snow Cover, Particulate Matter estimation and Meteo maps. These products are implemented on a common processor structure based on the use of configuration files and a generic processor. Data and products have then automatically delivered to the customers such as the Autonomous Province of Bolzano-Civil Protection office. For the processing phase we defined two goals: i) the adaptation and implementation of the products already available for MODIS (and possibly new ones) to VIIRS, that is one of the sensors onboard Suomi NPP; ii) the use of an open source processing chain in order to process NPP data in Near Real Time, exploiting the knowledge we acquired on parallel computing. In order to achieve the second goal, the S-NPP data received and ingested are sent as input to RT-STPS (Real-time Software Telemetry Processing System) software developed by the NASA Direct Readout Laboratory 1 (DRL) that gives as output RDR files (Raw Data Record) for VIIRS, ATMS (Advanced Technology Micorwave Sounder) and CrIS (Cross-track Infrared Sounder)sensors. RDR are then transferred to a server equipped with CSPP2 (Community Satellite Processing Package) software developed by the University of

  11. Real-Time Accumulative Computation Motion Detectors

    Directory of Open Access Journals (Sweden)

    Saturnino Maldonado-Bascón

    2009-12-01

    Full Text Available The neurally inspired accumulative computation (AC method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively.

  12. Space Weather and Real-Time Monitoring

    OpenAIRE

    2009-01-01

    Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES) in association with the International Geophysical Year (IGY) and importance of real-time monitoring in space weather.

  13. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  14. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  15. Real-time graphics rendering engine

    CERN Document Server

    Bao, Hujun

    2011-01-01

    ""Real-Time Graphics Rendering Engine"" reveals the software architecture of the modern real-time 3D graphics rendering engine and the relevant technologies based on the authors' experience developing this high-performance, real-time system. The relevant knowledge about real-time graphics rendering such as the rendering pipeline, the visual appearance and shading and lighting models are also introduced. This book is intended to offer well-founded guidance for researchers and developers who are interested in building their own rendering engines. Hujun Bao is a professor at the State Key Lab of

  16. Research in Distributed Real-Time Systems

    Science.gov (United States)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  17. Learning in Real-Time Search: A Unifying Framework

    CERN Document Server

    Bulitko, V; 10.1613/jair.1789

    2011-01-01

    Real-time search methods are suited for tasks in which the agent is interacting with an initially unknown environment in real time. In such simultaneous planning and learning problems, the agent has to select its actions in a limited amount of time, while sensing only a local part of the environment centered at the agents current location. Real-time heuristic search agents select actions using a limited lookahead search and evaluating the frontier states with a heuristic function. Over repeated experiences, they refine heuristic values of states to avoid infinite loops and to converge to better solutions. The wide spread of such settings in autonomous software and hardware agents has led to an explosion of real-time search algorithms over the last two decades. Not only is a potential user confronted with a hodgepodge of algorithms, but he also faces the choice of control parameters they use. In this paper we address both problems. The first contribution is an introduction of a simple three-parameter framework...

  18. A new real-time tsunami detection algorithm

    Science.gov (United States)

    Chierici, Francesco; Embriaco, Davide; Pignagnoli, Luca

    2017-01-01

    Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection based on the real-time tide removal and real-time band-pass filtering of seabed pressure recordings. The algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. Pressure data sets acquired by Bottom Pressure Recorders in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event which occurred at Haida Gwaii on 28 October 2012 using data recorded by the Bullseye underwater node of Ocean Networks Canada. The algorithm successfully ran for test purpose in year-long missions onboard abyssal observatories, deployed in the Gulf of Cadiz and in the Western Ionian Sea.

  19. Real-time tracking the instantaneous movement of crust during earthquake with a stand-alone GPS receiver%单站GPS测速在实时地震监测中的应用

    Institute of Scientific and Technical Information of China (English)

    张小红; 郭博峰

    2013-01-01

    Abstract We proposed a new method to record the instantaneous movement of crust during earthquake with a stand-alone Global Positioning System (GPS) receiver for real-time seismic monitoring.In the method,the velocity of GPS station is precisely estimated based on the Doppler shift method by only using standard GPS broadcast products and high-rate carrier phase measurements,which are available in real time.We analyzed the 5 Hz GPS data collected by UNAVCO-Plate Boundary Observatory (PBO) network from five stations in near-field areas within 50~100 km from the epicenter during the Mw7.2 EI-Mayor-Cucapah earthquake occurred on 4 April 2010 in Baja California (32.259°N,115.287°W),and compared the results with strongmotion seismograph records.The GPS results find a good agreement with the integrated strong motion seismograph record,and the earthquake waveforms can be fully recovered.Exciting performance demonstrates the potential application of this method.%本文提出一种利用单站GPS载波相位或多普勒观测数据,基于单站GPS测速法实时确定地震监测台站运动状态(速度)的新方法.针对2010年4月4日发生于墨西哥Baja California(32.259°N,115.287°W)北部的Mw7.2级El-Mayor-Cucapah地震事件,选取震中邻近区域(200 km内)若干采样率为5 Hz的高频GPS观测站数据进行实验.结果表明:基于新方法所得测站速度结果能够很好地反映出地震期间监测台站的瞬时运动状态,测站P496和P744计算的速度结果与其并置强震仪观测结果具有很好的一致性.

  20. Real-time communication protocols: an overview

    NARCIS (Netherlands)

    Hanssen, Ferdy; Jansen, Pierre G.

    2003-01-01

    This paper describes several existing data link layer protocols that provide real-time capabilities on wired networks, focusing on token-ring and Carrier Sense Multiple Access based networks. Existing modifications to provide better real-time capabilities and performance are also described. Finally

  1. Real-time communication protocols: an overview

    OpenAIRE

    Hanssen, Ferdy; Jansen, Pierre G.

    2003-01-01

    This paper describes several existing data link layer protocols that provide real-time capabilities on wired networks, focusing on token-ring and Carrier Sense Multiple Access based networks. Existing modifications to provide better real-time capabilities and performance are also described. Finally the pros and cons regarding the At-Home Anywhere project are discussed.

  2. Validation of RNAi by real time PCR

    DEFF Research Database (Denmark)

    Josefsen, Knud; Lee, Ying Chiu

    2011-01-01

    Real time PCR is the analytic tool of choice for quantification of gene expression, while RNAi is concerned with downregulation of gene expression. Together, they constitute a powerful approach in any loss of function studies of selective genes. We illustrate here the use of real time PCR to veri...

  3. Storm real-time processing cookbook

    CERN Document Server

    Anderson, Quinton

    2013-01-01

    A Cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

  4. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  5. Interactive Real-time Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Brix, Lau

    Real-time acquisition, reconstruction and interactively changing the slice position using magnetic resonance imaging (MRI) have been possible for years. However, the current clinical use of interactive real-time MRI is limited due to an inherent low spatial and temporal resolution. This PhD proje...

  6. APPLICATION OF MVP IN REAL-TIME IMAGE PROCESSING

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    MVP is a digital signal processor, which is of MIMD structure and fit for multimedia application. MVP has several processors in it, and its operation is characteristic of parallelism and pipeline; therefore, real-time signal processing can be done on it. This paper presents the image processing system based on MVP, explains the principles of parallel task assignment and hardware pipeline design, and gives out the example of target tracking and edge detection.

  7. Real-time GNSS volcano deformation monitoring (Invited)

    Science.gov (United States)

    Lisowski, M.; Langbein, J. O.; Hudnut, K. W.

    2013-12-01

    We present comparisons of the precision obtained from several alternative real-time GNSS processing methods, and show how offsets caused by snow and ice on an antenna can be automatically identified in real time using signal-to-noise ratio (SNR) data. We monitor ground deformation using continuous GNSS stations installed on several volcanoes in the Cascade Range and elsewhere, and many of these stations transmit high-rate (1s) data in real-time. We examine real-time, high-rate station position solutions obtained with two implementations of centralized RTNet (GPS Solutions, Inc.) processing, and find that the precision is roughly the same for ambiguity-fixed network solutions and for ambiguity-fixed precise point position solutions (PPPAR). The PPPAR method uses satellite clock corrections provided by GPS Solutions from a network of Plate Boundary Observatory (PBO) stations in western Oregon. The precision of network solutions that include GPS and GLONASS data is similar to the GPS-only solutions, except at stations with a relatively poor view of the sky. An alternative method of processing the real-time GPS data uses clock corrections transmitted directly to the receiver, which then autonomously calculates and transmits positions. We will compare our RTNet results with autonomous point position solutions calculated using Trimble's CenterPoint RTX corrections. RTX performance in repeated, controlled, large antenna-motion tests by USGS and UNAVCO indicates that it meets requirements of USGS volcano-monitoring applications; more thorough testing and performance checks on an ongoing basis would be desirable. GNSS antennas on volcanoes often become temporarily coated with ice or buried by snow in the winter. In these situations, signal delays introduce an apparent offset in the monitoring station's position. We address this problem by implementing in real time a technique developed by Kristine Larson that uses changes in the signal-to-noise ratio (SNR) of GNSS signals

  8. New real time needle segmentation technique using grayscale Hough transformation

    Science.gov (United States)

    Qiu, Wu; Zhou, Hua; Ding, Mingyue; Zhang, Songgeng

    2007-12-01

    Real-time needle segmentation and tracking is very important in image-guided surgery, biopsy, and therapy. In this paper, we described an automated technique to provide real-time needle segmentation from a sequence of 2-D ultrasound images for the use of guidance of a needle to the target in soft tissues. The Hough transform is used to find straight lines or analytic curves in binary image. Hough transform is applied usually to binary images. Hence one needs to convert, initially, the gray level image to a binary one (through thresholding, edge detection, or thinning) in order to apply the HT. While in the process of binarization, some information about line segments in the image may be lost when an inappropriate threshold is used. Gray-Scale Hough Transform can detect the line without binarization. Unfortunately, its high computational cost often prevents it from being applied in real-time applications without the help of specially designed hardware. In this paper, we proposed a needle segmentation technique based on a real-time gray-scale Hough transform. It is composed of an improved Gray Hough Transformation and a coarse-fine search strategy. Furthermore, the RTGHT (Real-Time Gray-Scale Hough Transform) technique is evaluated by patient breast biopsy images. Experiments with patient breast biopsy ultrasound (US) image sequences showed that our approach can segment the biopsy needle in real time (i.e., less than 60 ms) with the angular rms error of about 1° and the position rms error of about 0.5 mm an affordable PC computer without the help of specially designed hardware.

  9. Real time detecting system for turning force

    CERN Document Server

    Yue Xiao Bin

    2001-01-01

    How to get the real-time value of forces dropped on the tool in the course of processing by piezoelectric sensors is introduced. First, the analog signals of the cutting force were achieved by these sensors, amplified and transferred into digital signals by A/D transferring card. Then real-time software reads the information, put it into its own coordinate, drew the curve of forces, displayed it on the screen by the real time and saved it for the technicians to analyze the situation of the tool. So the cutting parameter can be optimized to improve surface quality of the pieces

  10. Real-time medical applications and telecommunications.

    Science.gov (United States)

    Stravs, M

    1999-01-01

    Telecommunications play an important role in telemedicine. Many forms of telecommunication services based on different telecommunication technologies are developed for various needs. The paper deals with complex real-time applications which demand high telecommunication requirements. At the beginning, medical applications are categorised and real-time applications qualified as multimedia applications. Requirements for multimedia elements are listed separately. Later on, short introduction of related telecommunication protocols is given. Real-time medical applications can show their ability in case of guaranteed quality of services delivered by telecommunication network as it is explained in the end.

  11. Real Time Study and Related Variables

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-qing

    2016-01-01

    This paper first, illustrates the advantages of applying real time study to linguistic researches. Second, this paper also compares linguistic variables with linguistic variant; nasality, stronger constraint and weaker constraint have been clearly de-fined as well.

  12. Multiprocessor scheduling for real-time systems

    CERN Document Server

    Baruah, Sanjoy; Buttazzo, Giorgio

    2015-01-01

    This book provides a comprehensive overview of both theoretical and pragmatic aspects of resource-allocation and scheduling in multiprocessor and multicore hard-real-time systems.  The authors derive new, abstract models of real-time tasks that capture accurately the salient features of real application systems that are to be implemented on multiprocessor platforms, and identify rules for mapping application systems onto the most appropriate models.  New run-time multiprocessor scheduling algorithms are presented, which are demonstrably better than those currently used, both in terms of run-time efficiency and tractability of off-line analysis.  Readers will benefit from a new design and analysis framework for multiprocessor real-time systems, which will translate into a significantly enhanced ability to provide formally verified, safety-critical real-time systems at a significantly lower cost.

  13. Visualization in Real-Time Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project will be to migrate some of the outputs from the WFF Mission Planning Lab (MPL) into a real-time visualization system.  The MPL is...

  14. Scala for Real-Time Systems?

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2015-01-01

    Java served well as a general-purpose language. However, during its two decades of constant change it has gotten some weight and legacy in the language syntax and the libraries. Furthermore, Java's success for real-time systems is mediocre. Scala is a modern object-oriented and functional language...... with interesting new features. Although a new language, it executes on a Java virtual machine, reusing that technology. This paper explores Scala as language for future real-time systems....

  15. Real-Time Sensor-Actuator Networks

    OpenAIRE

    Sastry, Shivakumar; S. S. Iyengar

    2005-01-01

    Emerging technologies offer new paradigms for computation, control, collaboration, and communication. To realize the full potential of these technologies in industry, defense, and homeland security applications, it is necessary to exploit the real-time distributed computing capabilities of sensor-actuator networks. To reliably design and develop such networks, it is necessary to develop deeper insight into the underlying model for real-time computation and the infrastructure at the node level...

  16. The LAA real-time benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Block, R.K.; Krischer, W.; Lone, S. [CERN, Geneva (Switzerland)

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  17. Automated real time peg and tool detection for the FLS trainer box.

    Science.gov (United States)

    Nemani, Arun; Sankaranarayanan, Ganesh

    2012-01-01

    This study proposes a method that effectively tracks trocar tool and peg positions in real time to allow real time assessment of the peg transfer task of the Fundamentals of Laparoscopic Surgery (FLS). By utilizing custom code along with OpenCV libraries, tool and peg positions can be accurately tracked without altering the original setup conditions of the FLS trainer box. This is achieved via a series of image filtration sequences, thresholding functions, and Haar training methods.

  18. Knowledge based support for real time application of multiagent control and automation in electric power systems

    DEFF Research Database (Denmark)

    Saleem, Arshad; Nordstrom, Lars; Lind, Morten

    2011-01-01

    This paper presents a mechanism for developing knowledge based support for real time application of multiagent systems (MAS) in control, automation and diagnosis of electric power systems. In particular it presents a way for autonomous agents to utilize a qualitative means-ends based model...... and choose an appropriate control action. The paper also elaborates on real time interfacing between multi-agent systems and industry standard distribution automation and control system....

  19. Real-time automatic registration in optical surgical navigation

    Science.gov (United States)

    Lin, Qinyong; Yang, Rongqian; Cai, Ken; Si, Xuan; Chen, Xiuwen; Wu, Xiaoming

    2016-05-01

    An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.

  20. Real-time estimation of wildfire perimeters from curated crowdsourcing

    Science.gov (United States)

    Zhong, Xu; Duckham, Matt; Chong, Derek; Tolhurst, Kevin

    2016-04-01

    Real-time information about the spatial extents of evolving natural disasters, such as wildfire or flood perimeters, can assist both emergency responders and the general public during an emergency. However, authoritative information sources can suffer from bottlenecks and delays, while user-generated social media data usually lacks the necessary structure and trustworthiness for reliable automated processing. This paper describes and evaluates an automated technique for real-time tracking of wildfire perimeters based on publicly available “curated” crowdsourced data about telephone calls to the emergency services. Our technique is based on established data mining tools, and can be adjusted using a small number of intuitive parameters. Experiments using data from the devastating Black Saturday wildfires (2009) in Victoria, Australia, demonstrate the potential for the technique to detect and track wildfire perimeters automatically, in real time, and with moderate accuracy. Accuracy can be further increased through combination with other authoritative demographic and environmental information, such as population density and dynamic wind fields. These results are also independently validated against data from the more recent 2014 Mickleham-Dalrymple wildfires.

  1. A Framework for Real Time Processing of Sensor Data in the Cloud

    Directory of Open Access Journals (Sweden)

    Supun Kamburugamuve

    2015-01-01

    Full Text Available We describe IoTCloud, a platform to connect smart devices to cloud services for real time data processing and control. A device connected to IoTCloud can communicate with real time data analysis frameworks deployed in the cloud via messaging. The platform design is scalable in connecting devices as well as transferring and processing data. With IoTCloud, a user can develop real time data processing algorithms in an abstract framework without concern for the underlying details of how the data is distributed and transferred. For this platform, we primarily consider real time robotics applications such as autonomous robot navigation, where there are strict requirements on processing latency and demand for scalable processing. To demonstrate the effectiveness of the system, a robotic application is developed on top of the framework. The system and the robotics application characteristics are measured to show that data processing in central servers is feasible for real time sensor applications.

  2. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  3. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    We present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The design uses the flexibility of Field Programmable Gate Arrays (FPGAs) and the powerful Associative Memory Chip (ASIC) to achieve real-time performance. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain.

  4. Practical constraints on real time Bayesian filtering for NDE applications

    Science.gov (United States)

    Summan, R.; Pierce, S.; Dobie, G.; Hensman, J.; MacLeod, C.

    2014-01-01

    An experimental evaluation of Bayesian positional filtering algorithms applied to mobile robots for Non-Destructive Evaluation is presented using multiple positional sensing data - a real time, on-robot implementation of an Extended Kalman and Particle filter was used to control a robot performing representative raster scanning of a sample. Both absolute and relative positioning were employed - the absolute being an indoor acoustic GPS system that required careful calibration. The performance of the tracking algorithms are compared in terms of computational cost and the accuracy of trajectory estimates. It is demonstrated that for real time NDE scanning, the Extended Kalman Filter is a more sensible choice given the high computational overhead for the Particle filter.

  5. Real Time Facial Expression Recognition Using a Novel Method

    Directory of Open Access Journals (Sweden)

    Saumil Srivastava

    2012-04-01

    Full Text Available This paper discusses a novel method for Facial Expression Recognition System which performs facial expression analysis in a near real time from a live web cam feed. Primary objectives were to get results in a near real time with light invariant, person independent and pose invariant way. The system is composed of two different entities trainer and evaluator. Each frame of video feed is passed through a series of steps including haar classifiers, skin detection, feature extraction, feature points tracking, creating a learned Support Vector Machine model to classify emotions to achieve a tradeoff between accuracy and result rate. A processing time of 100-120 ms per 10 frames was achieved with accuracy of around 60%. We measure our accuracy in terms of variety of interaction and classification scenarios. We conclude by discussing relevance of our work to human computer interaction and exploring further measures that can be taken.

  6. Visualization of Real-Time Data

    Science.gov (United States)

    Stansifer, Ryan; Engrand, Peter

    1996-01-01

    In this project we explored various approaches to presenting real-time data from the numerous systems monitored on the space shuttle to computer users. We examined the approach that several projects at the Kennedy Space Center (KSC) used to accomplish this. We undertook to build a prototype system to demonstrate that the Internet and the Java programming language could be used to present the real-time data conveniently. Several Java programs were developed that presented real-time data in different forms including one form that emulated the display screens of the PC GOAL system which is familiar to many at KSC. Also, we developed several communications programs to supply the data continuously. Furthermore, a framework was created using the World Wide Web (WWW) to organize the collection and presentation of the real-time data. We believe our demonstration project shows the great flexibility of the approach. We had no particular use of the data in mind, instead we wanted the most general and the least complex framework possible. People who wish to view data need only know how to use a WWW browser and the address (the URL). People wanting to build WWW documents containing real-time data need only know the values of a few parameters, they do not need to program in Java or any other language. These are stunning advantages over more monolithic systems.

  7. Real-time dynamic imaging of virus distribution in vivo.

    Directory of Open Access Journals (Sweden)

    Sean E Hofherr

    Full Text Available The distribution of viruses and gene therapy vectors is difficult to assess in a living organism. For instance, trafficking in murine models can usually only be assessed after sacrificing the animal for tissue sectioning or extraction. These assays are laborious requiring whole animal sectioning to ascertain tissue localization. They also obviate the ability to perform longitudinal or kinetic studies in one animal. To track viruses after systemic infection, we have labeled adenoviruses with a near-infrared (NIR fluorophore and imaged these after intravenous injection in mice. Imaging was able to track and quantitate virus particles entering the jugular vein simultaneous with injection, appearing in the heart within 500 milliseconds, distributing in the bloodstream and throughout the animal within 7 seconds, and that the bulk of virus distribution was essentially complete within 3 minutes. These data provide the first in vivo real-time tracking of the rapid initial events of systemic virus infection.

  8. Real-time visual mosaicking and navigation on the seafloor

    Science.gov (United States)

    Richmond, Kristof

    Remote robotic exploration holds vast potential for gaining knowledge about extreme environments accessible to humans only with great difficulty. Robotic explorers have been sent to other solar system bodies, and on this planet into inaccessible areas such as caves and volcanoes. In fact, the largest unexplored land area on earth lies hidden in the airless cold and intense pressure of the ocean depths. Exploration in the oceans is further hindered by water's high absorption of electromagnetic radiation, which both inhibits remote sensing from the surface, and limits communications with the bottom. The Earth's oceans thus provide an attractive target for developing remote exploration capabilities. As a result, numerous robotic vehicles now routinely survey this environment, from remotely operated vehicles piloted over tethers from the surface to torpedo-shaped autonomous underwater vehicles surveying the mid-waters. However, these vehicles are limited in their ability to navigate relative to their environment. This limits their ability to return to sites with precision without the use of external navigation aids, and to maneuver near and interact with objects autonomously in the water and on the sea floor. The enabling of environment-relative positioning on fully autonomous underwater vehicles will greatly extend their power and utility for remote exploration in the furthest reaches of the Earth's waters---even under ice and under ground---and eventually in extraterrestrial liquid environments such as Europa's oceans. This thesis presents an operational, fielded system for visual navigation of underwater robotic vehicles in unexplored areas of the seafloor. The system does not depend on external sensing systems, using only instruments on board the vehicle. As an area is explored, a camera is used to capture images and a composite view, or visual mosaic, of the ocean bottom is created in real time. Side-to-side visual registration of images is combined with dead

  9. Implementation of an Onboard Visual Tracking System with Small Unmanned Aerial Vehicle (UAV)

    CERN Document Server

    Qadir, Ashraf; Neubert, Jeremiah

    2012-01-01

    This paper presents a visual tracking system that is capable or running real time on-board a small UAV (Unmanned Aerial Vehicle). The tracking system is computationally efficient and invariant to lighting changes and rotation of the object or the camera. Detection and tracking is autonomously carried out on the payload computer and there are two different methods for creation of the image patches. The first method starts detecting and tracking using a stored image patch created prior to flight with previous flight data. The second method allows the operator on the ground to select the interest object for the UAV to track. The tracking system is capable of re-detecting the object of interest in the events of tracking failure. Performance of the tracking system was verified both in the lab and during actual flights of the UAV. Results show that the system can run on-board and track a diverse set of objects in real time.

  10. Deterministic Real-time Thread Scheduling

    CERN Document Server

    Yun, Heechul; Sha, Lui

    2011-01-01

    Race condition is a timing sensitive problem. A significant source of timing variation comes from nondeterministic hardware interactions such as cache misses. While data race detectors and model checkers can check races, the enormous state space of complex software makes it difficult to identify all of the races and those residual implementation errors still remain a big challenge. In this paper, we propose deterministic real-time scheduling methods to address scheduling nondeterminism in uniprocessor systems. The main idea is to use timing insensitive deterministic events, e.g, an instruction counter, in conjunction with a real-time clock to schedule threads. By introducing the concept of Worst Case Executable Instructions (WCEI), we guarantee both determinism and real-time performance.

  11. Continuous, real time microwave plasma element sensor

    Science.gov (United States)

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  12. Durham adaptive optics real-time controller.

    Science.gov (United States)

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems.

  13. Interactive Real-time Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Brix, Lau

    seeks to implement and assess existing reconstruction algorithms using multi-processors of modern graphics cards and many-core computer processors and to cover some of the potential clinical applications which might benefit from using an interactive real-time MRI system. First an off......-line, but interactive, slice alignment tool was used to support the notion that 3D blood flow quantification in the heart possesses the ability to obtain curves and volumes which are not statistical different from standard 2D flow. Secondly, the feasibility of an interactive real-time MRI system was exploited...... with regard to optimal sampling strategy for detecting motion in four different anatomies on two different MRI scanner brands. A fully implemented interactive real-time MRI system was exploited in a group of healthy fetuses and proved its eligibility as an alternative diagnostic tool for fetal imaging...

  14. Real-Time Visualization of Tissue Ischemia

    Science.gov (United States)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  15. AFSC/ABL: Autonomous underwater vehicle for tracking acoustically-tagged fish 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous underwater vehicles (AUVs) are increasingly being used to collect physical, chemical, and biological information in the marine environment. Recent efforts...

  16. Real Time Implementation Of Face Recognition System

    Directory of Open Access Journals (Sweden)

    Megha Manchanda

    2014-10-01

    Full Text Available This paper proposes face recognition method using PCA for real time implementation. Nowadays security is gaining importance as it is becoming necessary for people to keep passwords in their mind and carry cards. Such implementations however, are becoming less secure and practical, also is becoming more problematic thus leading to an increasing interest in techniques related to biometrics systems. Face recognition system is amongst important subjects in biometrics systems. This system is very useful for security in particular and has been widely used and developed in many countries. This study aims to achieve face recognition successfully by detecting human face in real time, based on Principal Component Analysis (PCA algorithm.

  17. Real-time systems scheduling fundamentals

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc.  Scheduling is a central problem for these computing/communication systems since responsible of software execution in a timely manner. This book provides state of knowledge in this domain with special emphasis on the key results obtained within the last decade. This book addresses foundations as well as the latest advances and findings in Real-Time Scheduling, giving all references to important papers. But nevertheless the chapters will be short and not overloaded with confusing details.

  18. Machine vision for real time orbital operations

    Science.gov (United States)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  19. Axial Tomography from Digitized Real Time Radiography

    Science.gov (United States)

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  20. Real-time systems scheduling 2 focuses

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc. Scheduling is a central problem for these computing/communication systems since it is responsible for software execution in a timely manner. This book, the second of two volumes on the subject, brings together knowledge on specific topics and discusses the recent advances for some of them.  It addresses foundations as well as the latest advances and findings in real-time scheduling, giving comprehensive references to important papers, but the chapters are short and not overloaded with co

  1. Automated Real-Time Conjunctival Microvasculature Image Stabilization.

    Science.gov (United States)

    Felder, Anthony E; Mercurio, Cesare; Wanek, Justin; Ansari, Rashid; Shahidi, Mahnaz

    2016-07-01

    The bulbar conjunctiva is a thin, vascularized membrane covering the sclera of the eye. Non-invasive imaging techniques have been utilized to assess the conjunctival vasculature as a means of studying microcirculatory hemodynamics. However, eye motion often confounds quantification of these hemodynamic properties. In the current study, we present a novel optical imaging system for automated stabilization of conjunctival microvasculature images by real-time eye motion tracking and realignment of the optical path. The ability of the system to stabilize conjunctival images acquired over time by reducing image displacements and maintaining the imaging area was demonstrated.

  2. Real time estimates of GDP growth

    NARCIS (Netherlands)

    Groot, de E.A. (Bert); Franses, P.H.P.H.

    2005-01-01

    This paper describes the components of the EICIE, the Econometric Institute Current Indicator of the Economy. This measure concerns quarterly and annual growth of Dutch real Gross Domestic Product. The key component of our real-time forecasting model for Dutch quarterly GDP is weekly staffing servic

  3. Real time estimates of GDP growth

    NARCIS (Netherlands)

    E.A. de Groot (Bert); Ph.H.B.F. Franses (Philip Hans)

    2005-01-01

    textabstractThis paper describes the components of the EICIE, the Econometric Institute Current Indicator of the Economy. This measure concerns quarterly and annual growth of Dutch real Gross Domestic Product. The key component of our real-time forecasting model for Dutch quarterly GDP is weekly sta

  4. Advances in Real-Time Systems

    CERN Document Server

    Chakraborty, Samarjit

    2012-01-01

    This volume contains the lectures given in honor to Georg Farber as tribute to his contributions in the area of real-time and embedded systems. The chapters of many leading scientists cover a wide range of aspects, like robot or automotive vision systems or medical aspects.

  5. Scene independent real-time indirect illumination

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Christensen, Niels Jørgen; Falster, Peter

    2005-01-01

    A novel method for real-time simulation of indirect illumination is presented in this paper. The method, which we call Direct Radiance Mapping (DRM), is based on basal radiance calculations and does not impose any restrictions on scene geometry or dynamics. This makes the method tractable for real...

  6. Real Time Grid Reliability Management 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  7. Refactoring Real-Time Java Profiles

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Thomsen, Bent; Ravn, Anders Peter

    2011-01-01

    Just like other software, Java profiles benefits from refactoring when they have been used and have evolved for some time. This paper presents a refactoring of the Real-Time Specification for Java (RTSJ) and the Safety Critical Java (SCJ) profile (JSR-302). It highlights core concepts and makes...

  8. Real-time analysis of telemetry data

    Science.gov (United States)

    Kao, Simon A.; Laffey, Thomas J.; Schmidt, James L.; Read, Jackson Y.; Dunham, Larry L.

    1987-01-01

    This paper descibes a knowledge-based system for performing real-time monitoring and analysis of telemetry data from the NASA Hubble Space Telescope (HST). In order to handle asynchronous inputs and perform in real time the system consists of three or more separate processes, which run concurrently and communicate via a message passing scheme. The data management process gathers, compresses, and scales the incoming telemetry data befoe sending it to the other tasks. The inferencing process uses the incoming data to perform a real-time analysis of the state and health of the Space Telescope. The I/O process receives telemetry monitors from the data management process, updates its graphical displays in real time, and acts as the interface to the console operator. The three processes may run on the same or different computers. This system is currently under development and is being used to monitor testcases produced by the Bass Telemetry System in the Hardware/Software Integration Facility at Lockheed Missile and Space Co. in Sunnyvale, California.

  9. Real-time dynamics of proton decay

    CERN Document Server

    Grigoriev, D

    2005-01-01

    Substituting Skyrmion for nucleon, one can potentially see -- in real time -- how the monopole is catalysing the proton (or neutron) decay, and even obtain a plausible estimate for catalysis cross-section. Here we discuss the key aspects of a practical implementation of such approach and demonstrate how one can overcome the main technical problems: Gauss constraint violation and reflections at the boundaries.

  10. The Power of Real-Time PCR

    Science.gov (United States)

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  11. Feedback as Real-Time Constructions

    Science.gov (United States)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  12. Real Time Structured Light and Applications

    DEFF Research Database (Denmark)

    Wilm, Jakob

    , increased processing power, and methods presented in this thesis, it is possible to perform structured light scans in real time with 20 depth measurements per second. This offers new opportunities for studying dynamic scenes, quality control, human-computer interaction and more. This thesis discusses...

  13. Real-time Texture Error Detection

    Directory of Open Access Journals (Sweden)

    Dan Laurentiu Lacrama

    2008-01-01

    Full Text Available This paper advocates an improved solution for the real-time error detection of texture errors that occurs in the production process in textile industry. The research is focused on the mono-color products with 3D texture model (Jacquard fabrics. This is a more difficult task than, for example, 2D multicolor textures.

  14. Kinetic Measurement and Real Time Visualization of Somatic Reprogramming.

    Science.gov (United States)

    Quintanilla, Rene H; Asprer, Joanna; Sylakowski, Kyle; Lakshmipathy, Uma

    2016-07-30

    Somatic reprogramming has enabled the conversion of adult cells to induced pluripotent stem cells (iPSC) from diverse genetic backgrounds and disease phenotypes. Recent advances have identified more efficient and safe methods for introduction of reprogramming factors. However, there are few tools to monitor and track the progression of reprogramming. Current methods for monitoring reprogramming rely on the qualitative inspection of morphology or staining with stem cell-specific dyes and antibodies. Tools to dissect the progression of iPSC generation can help better understand the process under different conditions from diverse cell sources. This study presents key approaches for kinetic measurement of reprogramming progression using flow cytometry as well as real-time monitoring via imaging. To measure the kinetics of reprogramming, flow analysis was performed at discrete time points using antibodies against positive and negative pluripotent stem cell markers. The combination of real-time visualization and flow analysis enables the quantitative study of reprogramming at different stages and provides a more accurate comparison of different systems and methods. Real-time, image-based analysis was used for the continuous monitoring of fibroblasts as they are reprogrammed in a feeder-free medium system. The kinetics of colony formation was measured based on confluence in the phase contrast or fluorescence channels after staining with live alkaline phosphatase dye or antibodies against SSEA4 or TRA-1-60. The results indicated that measurement of confluence provides semi-quantitative metrics to monitor the progression of reprogramming.

  15. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    Science.gov (United States)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  16. Simulations parameter estimation in near real-time from a future VGOS network

    Science.gov (United States)

    Nilsson, Tobias; Karbon, Maria; Soja, Benedikt; Glaser, Susanne; Schuh, Harald

    2016-04-01

    The new geodetic Very Long Baseline Interferometry (VLBI) system, the VLBI Global Observing System (VGOS), will present a number of opportunities and challenges for VLBI data analysis. For example, there will be an increase in the number of observations per day by a factor of 10-30 or more compared to today. Furthermore, another goal of VGOS is to reduce the latency between observation and availability of the results, like the Earth Orientation Parameters (EOP), to less than one day. Ideally, the results should be available in real-time. Thus, every part of the VLBI processing chain, e.g. observation, data transfer, correlation, and data analysis, needs to be able to operate autonomous in real-time. To meet the challenges that VGOS will put on the VLBI data analysis, we have implemented a Kalman filter module in to our software, VieVS@GFZ, which is able to analyze VLBI data fully automated in near real-time. In this contribution, we present this module, in particular the setup for real-time analysis, and we test its performance through simulation of a real-time estimation scenario from a potential future 30 station VGOS network. We investigate what real-time precision can be obtained for the estimated parameters, like the EOP, station coordinates, and tropospheric delays. Furthermore, we study how well the Kalman filter is able to autonomously cope with potential problems in the VLBI data, such as clock breaks.

  17. Real Time Flux Control in PM Motors

    Energy Technology Data Exchange (ETDEWEB)

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the

  18. A Phase II Trial of SABR (Stereotactic Ablative Body Radiotherapy for Low-Risk Prostate Cancer Using a Non-Robotic Linear Accelerator and Real-Time Target Tracking: Report of Toxicity, Quality of Life and Disease Control Outcomes with 5-Year Minimum Followup

    Directory of Open Access Journals (Sweden)

    Constantine Anastasios Mantz

    2014-11-01

    Full Text Available Purpose/Objective(s: Herein, we report the results of an IRB-approved phase II trial of Varian Trilogy/TrueBeam-based SABR monotherapy for low-risk prostate cancer using the Calypso® System to provide real-time electromagnetic tracking of the prostate’s position during treatment delivery. Materials/Methods: A total of 102 low-risk patients completed protocol treatment between January 2007 and May 2009. A total dose of 40.0 Gy in 5 every-other-day fractions of 8.0 Gy was prescribed to the planning target volume. Target setup and tracking procedures were as follows: (1 the Calypso® System was used to achieve target setup prior to each fraction; (2 conebeam CT imaging was then used for correction of setup error and for assessment of target and Organs-at-Risk (OAR deformations; (3 after treatment delivery was initiated, the Calypso® System then provided real-time intrafractional target tracking. The NCI CTCAE v3.0 was used to assess urinary and rectal toxicity during treatment and at defined followup time points. Biochemical response and quality of life measurements were made at concurrent followup points.Results: Urinary toxicities were most common. At 6 months, 19.6%, 2.9% and 4.9% of patients reported grades 1 – 2 urinary frequency, dysuria and retention, respectively. Rectal toxicities were uncommon. By 12 months, 2.9% of patients reported painless rectal bleeding with subsequent symptom resolution without requiring invasive interventions. Quality of life measurements demonstrated a significant decline over baseline in urinary irritative/obstructive scores at 1 month following SABR but otherwise did not demonstrate any difference for bowel, bladder and sexual function scores at any other followup time point. One patient suffered biochemical recurrence at 6 years following SABR.Conclusions: At five years minimum followup for this favorable patient cohort, prostate SABR resulted in favorable toxicity, quality of life and biochemical

  19. Investigations on Real-time GPS for Earthquake Early Warning

    Science.gov (United States)

    Grapenthin, R.; Aranha, M. A.; Melgar, D.; Allen, R. M.

    2015-12-01

    The Geodetic Alarm System (G-larmS) is a software system developed in a collaboration between the Berkeley Seismological Laboratory (BSL) and New Mexico Tech (NMT) primarily for real-time Earthquake Early Warning (EEW). It currently uses high rate (1Hz), low latency (inversion on these offsets to determine slip on a finite fault, which we use to estimate moment magnitude. These computations are repeated every second for the duration of the event. G-larmS has been in continuous operation at the BSL for over a year using event triggers from the California Integrated Seismic Network (CISN) ShakeAlert system and real-time position time series from a fully triangulated network consisting of BARD, PBO and USGS stations across northern California. Pairs of stations are processed as baselines using trackRT (MIT software package). G-larmS produced good results in real-time during the South Napa (M 6.0, August 2014) earthquake as well as on several replayed and simulated test cases. We evaluate the performance of G-larmS for EEW by analysing the results using a set of well defined test cases to investigate the following: (1) using multiple fault regimes and concurrent processing with the ultimate goal of achieving model generation (slip and magnitude computations) within each 1 second GPS epoch on very large magnitude earthquakes (up to M 9.0), (2) the use of Precise Point Positioning (PPP) real-time data streams of various operators, accuracies, latencies and formats along with baseline data streams, (3) collaboratively expanding EEW coverage along the U.S. West Coast on a regional network basis for Northern California, Southern California and Cascadia.

  20. Positioning reduction in the real-time phase of Chang'E-2 satellite

    Science.gov (United States)

    Li, JinLing; Liu, Li; Zheng, WeiMin; Sun, ZhongMiao

    2012-02-01

    The precision of VLBI tracking delays and the positioning reduction results during the real-time tracking phase of the Chang'E-2 satellite are statistically analyzed. The application of the positioning reduction to the real-time monitoring of pivotal arcs of the Chang'E-2 satellite is discussed. The technical specifications of the tests of tracking and control systems in X-band are estimated and evaluated via the positioning reduction method. Useful methodology and software are prepared and practical experience in engineering and technology is accumulated for the follow-up lunar and deep space explorations of China.

  1. Near real-time geocoding of SAR imagery with orbit error removal.

    NARCIS (Netherlands)

    Smith, A.J.E.

    2003-01-01

    When utilizing knowledge of the spacecraft trajectory for near real-time geocoding of Synthetic Aperture Radar (SAR) images, the main problem is that predicted satellite orbits have to be used, which may be in error by several kilometres. As part of the development of a Dutch autonomous mobile groun

  2. Real-Time Minimization of Tracking Error for Aircraft Systems

    Science.gov (United States)

    Garud, Sumedha; Kaneshige, John T.; Krishnakumar, Kalmanje S.; Kulkarni, Nilesh V.; Burken, John

    2013-01-01

    This technology presents a novel, stable, discrete-time adaptive law for flight control in a Direct adaptive control (DAC) framework. Where errors are not present, the original control design has been tuned for optimal performance. Adaptive control works towards achieving nominal performance whenever the design has modeling uncertainties/errors or when the vehicle suffers substantial flight configuration change. The baseline controller uses dynamic inversion with proportional-integral augmentation. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to a dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. If the system senses that at least one aircraft component is experiencing an excursion and the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, then the neural network (NN) modeling of aircraft operation may be changed.

  3. Software Agents Applications Using Real-Time CORBA

    Science.gov (United States)

    Fowell, S.; Ward, R.; Nielsen, M.

    This paper describes current projects being performed by SciSys in the area of the use of software agents, built using CORBA middleware, to improve operations within autonomous satellite/ground systems. These concepts have been developed and demonstrated in a series of experiments variously funded by ESA's Technology Flight Opportunity Initiative (TFO) and Leading Edge Technology for SMEs (LET-SME), and the British National Space Centre's (BNSC) National Technology Programme. Some of this earlier work has already been reported in [1]. This paper will address the trends, issues and solutions associated with this software agent architecture concept, together with its implementation using CORBA within an on-board environment, that is to say taking account of its real- time and resource constrained nature.

  4. An anti-disturbing real time pose estimation method and system

    Science.gov (United States)

    Zhou, Jian; Zhang, Xiao-hu

    2011-08-01

    Pose estimation relating two-dimensional (2D) images to three-dimensional (3D) rigid object need some known features to track. In practice, there are many algorithms which perform this task in high accuracy, but all of these algorithms suffer from features lost. This paper investigated the pose estimation when numbers of known features or even all of them were invisible. Firstly, known features were tracked to calculate pose in the current and the next image. Secondly, some unknown but good features to track were automatically detected in the current and the next image. Thirdly, those unknown features which were on the rigid and could match each other in the two images were retained. Because of the motion characteristic of the rigid object, the 3D information of those unknown features on the rigid could be solved by the rigid object's pose at the two moment and their 2D information in the two images except only two case: the first one was that both camera and object have no relative motion and camera parameter such as focus length, principle point, and etc. have no change at the two moment; the second one was that there was no shared scene or no matched feature in the two image. Finally, because those unknown features at the first time were known now, pose estimation could go on in the followed images in spite of the missing of known features in the beginning by repeating the process mentioned above. The robustness of pose estimation by different features detection algorithms such as Kanade-Lucas-Tomasi (KLT) feature, Scale Invariant Feature Transform (SIFT) and Speed Up Robust Feature (SURF) were compared and the compact of the different relative motion between camera and the rigid object were discussed in this paper. Graphic Processing Unit (GPU) parallel computing was also used to extract and to match hundreds of features for real time pose estimation which was hard to work on Central Processing Unit (CPU). Compared with other pose estimation methods, this new

  5. Collecting data in real time with postcards

    DEFF Research Database (Denmark)

    2013-01-01

    The success of information technology (IT) in transforming healthcare is often limited by the lack of clear understanding of the context at which the technology is used. Various methods have been proposed to understand healthcare context better in designing and implementing Health Information...... Systems. These methods often involve cross-sectional, retrospective data collection. This paper describes the postcard method for prospective real-time data collection, both in paper format and electronic format. This paper then describes the results obtained using postcard techniques in Denmark...... and Australia. The benefits of this technique are illustrated. There are limitations in using postcard techniques and this paper provides a detail discussion about these limitations. Postcard techniques provide unique advantages in understanding real time healthcare context and it is an important technique...

  6. Real-Time Watercolor for Animation

    Institute of Scientific and Technical Information of China (English)

    Thomas Luft; Oliver Deussen

    2006-01-01

    We present algorithms that allow for real-time rendering of 3D-scenes with a watercolor painting appearance. Our approach provides an appropriate simplification of the visual complexity, imitates characteristic natural effects of watercolor, and provides two essential painting techniques: the wet-on-wet and the wet-on-dry painting. We concentrate on efficient algorithms based on image space processing rather than on an exact simulation. This allows for the real-time rendering of 3D-scenes. During an animation a high frame-to-frame coherence can be achieved due to a stable segmentation scheme. Finally, we seamlessly integrate a smooth illumination into the watercolor renderings using information from the 3D-scene.

  7. Real Time Radiation Exposure And Health Risks

    Science.gov (United States)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  8. Monte Carlo study of real time dynamics

    CERN Document Server

    Alexandru, Andrei; Bedaque, Paulo F; Vartak, Sohan; Warrington, Neill C

    2016-01-01

    Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from highly oscillatory phase of the path integral. In this letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and in principle applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.

  9. Real time PCR. Application in dengue studies

    Directory of Open Access Journals (Sweden)

    Jeanette Prada-Arismendy

    2011-06-01

    Full Text Available PCR (polymerase chain reaction is a routinely used tool in every diagnostic and research laboratory. This technique has been used in detection of mutations and pathogens, forensic investigation, and even is the base tool for human genome sequencing. A modification of PCR technique, real time PCR, allows the quantification of nucleic acids with higher sensibility, specificity and reproducibility. This article is intended to clarify the foundations of real-time PCR, using an application model for virology. In the actual work, it was quantified the viral load of dengue virus serotype 2 produced from infected murine macrophages; the obtained results in this work established that murine strain BALB/c presents a greater susceptibility to dengue virus infection, which establishes BALB/c murine strain as a best model of study for investigation of dengue virus infection physiopathology.

  10. AMON: Transition to real-time operations

    Science.gov (United States)

    Cowen, D. F.; Keivani, A.; Tešić, G.

    2016-04-01

    The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.

  11. System Equivalent for Real Time Digital Simulator

    Science.gov (United States)

    Lin, Xi

    2011-07-01

    The purpose of this research is to develop a method of making system equivalents for the Real Time Digital Simulator (RTDS), which should enhance its capability of simulating large power systems. The proposed equivalent combines a Frequency Dependent Network Equivalent (FDNE) for the high frequency electromagnetic transients and a Transient Stability Analysis (TSA) type simulation block for the electromechanical transients. The frequency dependent characteristic for FDNE is obtained by curve-fitting frequency domain admittance characteristics using the Vector Fitting method. An approach for approximating the frequency dependent characteristic of large power networks from readily available typical power-flow data is also introduced. A new scheme of incorporating TSA solution in RTDS is proposed. This report shows how the TSA algorithm can be adapted to a real time platform. The validity of this method is confirmed with examples, including the study of a multi in-feed HVDC system based network.

  12. Real time gamma-ray signature identifier

    Science.gov (United States)

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  13. Real Time Radiation Monitoring Using Nanotechnology

    Science.gov (United States)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  14. Real-time lens distortion correction: speed, accuracy and efficiency

    Science.gov (United States)

    Bax, Michael R.; Shahidi, Ramin

    2014-11-01

    Optical lens systems suffer from nonlinear geometrical distortion. Optical imaging applications such as image-enhanced endoscopy and image-based bronchoscope tracking require correction of this distortion for accurate localization, tracking, registration, and measurement of image features. Real-time capability is desirable for interactive systems and live video. The use of a texture-mapping graphics accelerator, which is standard hardware on current motherboard chipsets and add-in video graphics cards, to perform distortion correction is proposed. Mesh generation for image tessellation, an error analysis, and performance results are presented. It is shown that distortion correction using commodity graphics hardware is substantially faster than using the main processor and can be performed at video frame rates (faster than 30 frames per second), and that the polar-based method of mesh generation proposed here is more accurate than a conventional grid-based approach. Using graphics hardware to perform distortion correction is not only fast and accurate but also efficient as it frees the main processor for other tasks, which is an important issue in some real-time applications.

  15. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    Science.gov (United States)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  16. Tactical AI in Real Time Strategy Games

    Science.gov (United States)

    2015-03-26

    a parent , and each parent can have multiple children based on what decision options are available at the parent node. The search evaluates each child...The real time strategy (RTS) tactical decision making problem is a difficult problem. It is generally more complex due to its high degree of time...evolutionary algorithms (MOEAs) in this tactical decision making problem allows an AI agent to make fast, effective solutions that do not require modification

  17. Robust synthesis for real-time systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Legay, Axel; Traonouez, Louis-Marie;

    2014-01-01

    Specification theories for real-time systems allow reasoning about interfaces and their implementation models, using a set of operators that includes satisfaction, refinement, logical and parallel composition. To make such theories applicable throughout the entire design process from an abstract ...... strategies in timed games. Finally, we consider the parametric robustness problem and propose a counter-example refinement heuristic for computing safe perturbation values....

  18. Real-time optical information processing

    CERN Document Server

    Javidi, Bahram

    1994-01-01

    Real-Time Optical Information Processing covers the most recent developments in optical information processing, pattern recognition, neural computing, and materials for devices in optical computing. Intended for researchers and graduate students in signal and information processing with some elementary background in optics, the book provides both theoretical and practical information on the latest in information processing in all its aspects. Leading researchers in the field describe the significant signal processing algorithms architectures in optics as well as basic hardware concepts,

  19. Real-Time Neutron Radiography at CARR

    Institute of Scientific and Technical Information of China (English)

    HE; Lin-feng; HAN; Song-bai; WANG; Hong-li; WU; Mei-mei; WEI; Guo-hai; WANG; Yu

    2012-01-01

    <正>A real-time detector system for neutron radiography based on CMOS camera has been designed for the thermal neutron imaging facility under construction at China Advanced Research Reactor (CARR). This system is equipped with a new scientific CMOS camera with 5.5 million pixels and speed up to 100 fps at full frame. The readout noise is less than 2.4 electron per pixel. It is capable of providing

  20. Real Time Route for Dynamic Road Congestions

    Directory of Open Access Journals (Sweden)

    A. M. Riad

    2012-05-01

    Full Text Available Minimizing service delivery and travel time during rush hours downtown is strategic target for several organizations, especially the emergency organizations. This paper presents an On-line and Real-time Dynamic Route System (ORDRS which benefits from the advantages and integration between information system and communications technology. It utilizes Global Positioning System (GPS, Geographical Information Systems (GIS, and Global System for Mobile communications (GSM; for producing the real time routes for vehicles. GPS-Tracker is the main input device for ORDRS. It is fixated in a vehicle, sends vehicle's movement data (Geo-info to the control center wirelessly through either Short Message Service (SMS or General Packet Radio Service (GPRS. Geo-info includes time, date, longitude, latitude, speed, and etc., these data is classified over time during weekdays into interval time slices, each slice is 30 minutes. Speeds are treated by GIS tools to determine historical and real time speeds for each street segment in the road network which is being used for calculating time impedance (cost matrix for each street segment dynamically. ORDRS uses a cost matrix of the current time slice for determining the best route to each vehicle in duty attached. Several algorithms was used to calculate the shortest route, a comparison between Dijekstra and Yen algorithms was studied.

  1. Real-time Interactive Tree Animation.

    Science.gov (United States)

    Quigley, Ed; Yu, Yue; Huang, Jingwei; Lin, Winnie; Fedkiw, Ronald

    2017-01-30

    We present a novel method for posing and animating botanical tree models interactively in real time. Unlike other state of the art methods which tend to produce trees that are overly flexible, bending and deforming as if they were underwater plants, our approach allows for arbitrarily high stiffness while still maintaining real-time frame rates without spurious artifacts, even on quite large trees with over ten thousand branches. This is accomplished by using an articulated rigid body model with as-stiff-as-desired rotational springs in conjunction with our newly proposed simulation technique, which is motivated both by position based dynamics and the typical O(N) algorithms for articulated rigid bodies. The efficiency of our algorithm allows us to pose and animate trees with millions of branches or alternatively simulate a small forest comprised of many highly detailed trees. Even using only a single CPU core, we can simulate ten thousand branches in real time while still maintaining quite crisp user interactivity. This has allowed us to incorporate our framework into a commodity game engine to run interactively even on a low-budget tablet. We show that our method is amenable to the incorporation of a large variety of desirable effects such as wind, leaves, fictitious forces, collisions, fracture, etc.

  2. Evaluation of left ventricular systolic function in patients with dilated cardiomyopathy by real-time three-dimensional speckle tracking echocardiography%实时三维超声心动图斑点追踪技术评价扩张型心肌病患者左室收缩功能

    Institute of Scientific and Technical Information of China (English)

    李阳; 邓又斌; 黄润青; 孙杰; 刘琨; 汤乔颖

    2013-01-01

    目的 应用实时三维超声心动图斑点追踪技术评价扩张型心肌病(DCM)患者左室收缩功能.方法 应用实时三维超声斑点追踪技术分别测量24例DCM患者(DCM组)和19例健康成人志愿者(对照组)左室收缩期纵向、圆周向、径向以及面积应变峰值,比较两组左室心肌基底部、中间部及心尖部局部应变和总体应变的差异,并分析总体应变与左室射血分数的相关性.结果 DCM组左室心肌纵向、圆周向、径向及面积的基底部、中间部、心尖部局部应变和心肌总体应变均明显小于对照组对应节段,差异均有统计学意义(均P<0.01).左室心肌纵向、圆周向、径向以及面积总体应变均与左室射血分数有良好的相关性(r=0.873、0.862、0.885及0.894,均P<0.01).结论 实时三维超声心动图斑点追踪技术可以为DCM的诊断、疗效评估以及预后判断提供较好的检测手段,具有较大的临床价值.%Objective To evaluate the systolic function of the left ventricle in patients with dilated cardiomyopathy by real-time three-dimensional speckle tracking echocardiography.Methods The peak systolic longitudinal train,circumferential stain,radial strain and area strain of left ventricle were measued by real time three-dimensional speckle tracking echocardiography technology in 24 patients with dilated cardiomyopathy (DCM group) and 19 healthy volunteers (control group).The difference of regional myocardial strain of basal,middle,apical level and global myocardial strain were compared between the two groups.The correlation between global myocardial strain in all directions and left ventricular ejection fraction was analyzed.Results The global and each level longitudinal strain,circumferential strain,radial strain and area strain in DCM group were significantly lower than those in control group(P<0.01).The global myocardial longitudinal train,circumferential stain,radial strain and area strain were

  3. Kalman Filters for UXO Detection: Real-Time Feedback and Small Target Detection

    Science.gov (United States)

    2012-05-01

    Tracking of the sensor positions was performed through an on-board RTK GPS (real-time kinematic global positioning system), providing a accuracy of about 2...Newton GPS : Global Positioning System GPU : Graphics Processing Unit GUI : Graphical User Interface IEEE : Institute of Electrical and Electronics...System NC : North Carolina Rx : Receiver RTK : Real-Time Kinematic SERDP : Strategic Environmental Research and Development Program SLO : San Luis

  4. Desain Kontrol Tracking Underactuated Autonomous Underwater Vehicle (AUV dengan Pengaruh Gangguan Arus Laut

    Directory of Open Access Journals (Sweden)

    Ilmi Rizki I

    2016-11-01

    Full Text Available Paper ini membahas masalah gerak AUV pada bidang horizontal yang dipengaruhi oleh arah sudut yaw. Arah sudut yaw merupakan ukuran utama dalam mengatur gerak horizontal pada AUV. Pengaturan gerak pada AUV berupa perubahan arah sudut yaw merupakan permasalahan kontrol tracking AUV. Kontrol tracking pada paper ini digunakan untuk kebutuhan heading control. Heading control tersebut digunakan untuk mengatur arah sudut yaw AUV agar sesuai dengan sinyal referensi yaw yang diberikan. Kompleksitas dalam mendesain heading control akibat karakteristik-karakteristik dari dinamika AUV yang high nonlinear dan uncertainty parameter yang ditentukan oleh hydrodynamic forces dan environmental forces berupa gangguan ocean current menjadi permasalahan yang tidak mudah dipecahkan. Oleh karena itu dibutuhkan sebuah metode untuk mengatasi permasalahan tersebut, yaitu menggunaan metode State Dependent Riccati Equations berdasarkan Linear Quadratic Tracking (SDRE-LQT. Algoritma ini menghitung perubahan permasalahan tracking pada sudut yaw dan dapat mengatasi gangguan ocean current melalui perhitungan perubahan parameter dari AUV secara online melalui algebraic Riccati equation.sehingga sinyal kontrol yang diberikan ke plant dapat mengikuti perubahan kondisi dari plant itu sendiri, termasuk perubahan parameter akibat gangguan berupa ocean current. Hasil simulasi menunjukkan bahwa metode kontrol yang digunakan mampu membawa sudut yaw pada nilai yang diharapkan dan gangguan arus dapat diatasi dengan memberikan nilai sinyal kontrol yang baru secara online, sehingga AUV dapat melakukan  tracking secara otomatis pada kondisi ada atau tanpa gangguan ocean current dengan dengan nilai error steady state . Kata kunci — AUV, Tracking Control, SDRE-LQT, Ocean Current Disturbance

  5. Real-Time Hand Posture Recognition Using a Range Camera

    Science.gov (United States)

    Lahamy, Herve

    The basic goal of human computer interaction is to improve the interaction between users and computers by making computers more usable and receptive to the user's needs. Within this context, the use of hand postures in replacement of traditional devices such as keyboards, mice and joysticks is being explored by many researchers. The goal is to interpret human postures via mathematical algorithms. Hand posture recognition has gained popularity in recent years, and could become the future tool for humans to interact with computers or virtual environments. An exhaustive description of the frequently used methods available in literature for hand posture recognition is provided. It focuses on the different types of sensors and data used, the segmentation and tracking methods, the features used to represent the hand postures as well as the classifiers considered in the recognition process. Those methods are usually presented as highly robust with a recognition rate close to 100%. However, a couple of critical points necessary for a successful real-time hand posture recognition system require major improvement. Those points include the features used to represent the hand segment, the number of postures simultaneously recognizable, the invariance of the features with respect to rotation, translation and scale and also the behavior of the classifiers against non-perfect hand segments for example segments including part of the arm or missing part of the palm. A 3D time-of-flight camera named SR4000 has been chosen to develop a new methodology because of its capability to provide in real-time and at high frame rate 3D information on the scene imaged. This sensor has been described and evaluated for its capability for capturing in real-time a moving hand. A new recognition method that uses the 3D information provided by the range camera to recognize hand postures has been proposed. The different steps of this methodology including the segmentation, the tracking, the hand

  6. Dynamic Track Management in MHT for Pedestrian Tracking Using Laser Range Finder

    Directory of Open Access Journals (Sweden)

    Abdul Hadi Abd Rahman

    2015-01-01

    Full Text Available Real time pedestrian tracking could be one of the important features for autonomous navigation. Laser Range Finder (LRF produces accurate pedestrian data but a problem occurs when a pedestrian is represented by multiple clusters which affect the overall tracking process. Multiple Hypothesis Tracking (MHT is a proven method to solve tracking problem but suffers a large computational cost. In this paper, a multilevel clustering of LRF data is proposed to improve the accuracy of a tracking system by adding another clustering level after the feature extraction process. A Dynamic Track Management (DTM is introduced in MHT with multiple motion models to perform a track creation, association, and deletion. The experimental results from real time implementation prove that the proposed multiclustering is capable of producing a better performance with less computational complexity for a track management process. The proposed Dynamic Track Management is able to solve the tracking problem with lower computation time when dealing with occlusion, crossed track, and track deletion.

  7. Exploring Earthquakes in Real-Time

    Science.gov (United States)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  8. CUDA-based real time surgery simulation.

    Science.gov (United States)

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  9. Real-time inclinometer using accelerometer MEMS

    CERN Document Server

    Hanto, D; Hermanto, B; Puranto, P; Handoko, L T

    2011-01-01

    A preliminary design of inclinometer for real-time monitoring system of soil displacement is proposed. The system is developed using accelerometer sensor with microelectromechanical system (MEMS) device. The main apparatus consists of a single MEMS sensor attached to a solid pipe and stucked pependicularly far away below the soil surface. The system utilizes small fractions of electrical signals from MEMS sensor induced by the pipe inclination due to soil displacements below the surface. It is argued that the system is accurate enough to detect soil displacements responsible for landslides, and then realizes a simple and low cost landslide early warning system.

  10. Testing Real-Time Systems Using UPPAAL

    DEFF Research Database (Denmark)

    Hessel, Anders; Larsen, Kim Guldstrand; Mikucionis, Marius

    2008-01-01

    This chapter presents principles and techniques for model-based black-box conformance testing of real-time systems using the Uppaal model-checking tool-suite. The basis for testing is given as a network of concurrent timed automata specified by the test engineer. Relativized input....../output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases can be generated offline and later executed, or they can be generated and executed online. For both approaches this chapter discusses how to specify test...... objectives, derive test sequences, apply these to the system under test, and assign a verdict....

  11. Real-time detection of gravitational microlensing

    CERN Document Server

    Pratt, M R; Axelrod, T S; Becker, A; Bennett, D P; Cook, K H; Freeman, K C; Griest, K; Guern, J A; Lehner, M; Marshall, S L; Peterson, B A; Quinn, P J; Reiss, D; Rodgers, A W; Stubbs, C W; Sutherland, W; Welch, D

    1995-01-01

    Real-time detection of microlensing has moved from proof of concept in 1994 to a steady stream of events this year. Global dissemination of these events by the MACHO and OGLE collaborations has made possible intensive photometric and spectroscopic followup from widely dispersed sites confirming the microlensing hypothesis. Improved photometry and increased temporal resolution from followup observations greatly increases the possibility of detecting deviations from the standard point-source, point-lens, inertial motion microlensing model. These deviations are crucial in understanding individual lensing systems by breaking the degeneracy between lens mass, position and velocity. We report here on GMAN (Global Microlensing Alert Network), the coordinated followup of MACHO alerts.

  12. Low cost real time interactive analysis system

    Science.gov (United States)

    Stetina, F.

    1988-01-01

    Efforts continue to develop a low cost real time interactive analysis system for the reception of satellite data. A multi-purpose ingest hardware software frame formatter was demonstrated for GOES and TIROS data and work is proceeding on extending the capability to receive GMS data. A similar system was proposed as an archival and analysis system for use with INSAT data and studies are underway to modify the system to receive the planned SeaWiFS (ocean color) data. This system was proposed as the core of a number of international programs in support of U.S. AID activities. Systems delivered or nearing final testing are listed.

  13. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  14. Real-time image and video processing

    CERN Document Server

    Kehtarnavaz, Nasser

    2006-01-01

    This book presents an overview of the guidelines and strategies for transitioning an image or video processing algorithm from a research environment into a real-time constrained environment. Such guidelines and strategies are scattered in the literature of various disciplines including image processing, computer engineering, and software engineering, and thus have not previously appeared in one place. By bringing these strategies into one place, the book is intended to serve the greater community of researchers, practicing engineers, industrial professionals, who are interested in taking an im

  15. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  16. Teaching and implementing autonomous robotic lab walkthroughs in a biotech laboratory through model-based visual tracking

    Science.gov (United States)

    Wojtczyk, Martin; Panin, Giorgio; Röder, Thorsten; Lenz, Claus; Nair, Suraj; Heidemann, Rüdiger; Goudar, Chetan; Knoll, Alois

    2010-01-01

    After utilizing robots for more than 30 years for classic industrial automation applications, service robots form a constantly increasing market, although the big breakthrough is still awaited. Our approach to service robots was driven by the idea of supporting lab personnel in a biotechnology laboratory. After initial development in Germany, a mobile robot platform extended with an industrial manipulator and the necessary sensors for indoor localization and object manipulation, has been shipped to Bayer HealthCare in Berkeley, CA, USA, a global player in the sector of biopharmaceutical products, located in the San Francisco bay area. The determined goal of the mobile manipulator is to support the off-shift staff to carry out completely autonomous or guided, remote controlled lab walkthroughs, which we implement utilizing a recent development of our computer vision group: OpenTL - an integrated framework for model-based visual tracking.

  17. Novel opportunities for wildlife conservation and research with real-time monitoring.

    Science.gov (United States)

    Wall, Jake; Wittemyer, George; Klinkenberg, Brian; Douglas-Hamilton, Iain

    2014-06-01

    The expansion of global communication networks and advances in animal-tracking technology make possible the real-time telemetry of positional data as recorded by animal-attached tracking units. When combined with continuous, algorithm-based analytical capability, unique opportunities emerge for applied ecological monitoring and wildlife conservation. We present here four broad approaches for algorithmic wildlife monitoring in real time--proximity, geofencing, movement rate, and immobility--designed to examine aspects of wildlife spatial activity and behavior not possible with conventional tracking systems. Application of these four routines to the real-time monitoring of 94 African elephants was made. We also provide details of our cloud-based monitoring system including infrastructure, data collection, and customized software for continuous tracking data analysis. We also highlight future directions of real-time collection and analysis of biological, physiological, and environmental information from wildlife to encourage further development of needed algorithms and monitoring technology. Real-time processing of remotely collected, animal biospatial data promises to open novel directions in ecological research, applied species monitoring, conservation programs, and public outreach and education.

  18. 3D model-based detection and tracking for space autonomous and uncooperative rendezvous

    Science.gov (United States)

    Shang, Yang; Zhang, Yueqiang; Liu, Haibo

    2015-10-01

    In order to fully navigate using a vision sensor, a 3D edge model based detection and tracking technique was developed. Firstly, we proposed a target detection strategy over a sequence of several images from the 3D model to initialize the tracking. The overall purpose of such approach is to robustly match each image with the model views of the target. Thus we designed a line segment detection and matching method based on the multi-scale space technology. Experiments on real images showed that our method is highly robust under various image changes. Secondly, we proposed a method based on 3D particle filter (PF) coupled with M-estimation to track and estimate the pose of the target efficiently. In the proposed approach, a similarity observation model was designed according to a new distance function of line segments. Then, based on the tracking results of PF, the pose was optimized using M-estimation. Experiments indicated that the proposed method can effectively track and accurately estimate the pose of freely moving target in unconstrained environment.

  19. Study on Real-Time Trajectory Tracking Control for Robot Manipulators with Uncertainties Based on Fuzzy Neural Network%基于模糊神经网络的不确定机器人实时轨迹跟踪控制的研究

    Institute of Scientific and Technical Information of China (English)

    杨丽; 任淑艳; 段海龙; 路海龙

    2012-01-01

    A real-time trajectory tracking control method for robot manipulators with uncertainties based on new fuzzy neural network is proposed to solve the uncertainty in robot manipulator dynamic system. The controller was composed of Fuzzy Neural Network (FNN) controller which replaced computed torque controller, and cerebellar model articulation controller (CMAC) compensated control error online. The simulation study on a two-degree~-of-freedom robot showsed the validity and feasibility of the proposed strategy.%针对机器人建模的不精确性以及扰动的存在给机器人控制增加难度的问题,提出了一种基于模糊神经网络的不确定机器人实时轨迹跟踪控制方法。该控制方法的控制器由模糊神经网络(FNN)控制器和CMAC控制器组成,FNN控制器代替传统的计算力矩法,CMAC控制器在线补偿控制误差,有效补偿机器人存在的各种不确定性。对二自由度机器人的仿真结果表明了所提出的控制方法的可行性。

  20. Real-time collision avoidance in space: the GETEX experiment

    Science.gov (United States)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Intelligent autonomous robotic systems require efficient safety components to assure system reliability during the entire operation. Especially if commanded over long distances, the robotic system must be able to guarantee the planning of safe and collision free movements independently. Therefore the IRF developed a new collision avoidance methodology satisfying the needs of autonomous safety systems considering the dynamics of the robots to protect. To do this, the collision avoidance system cyclically calculates the actual collision danger of the robots with respect to all static and dynamic obstacles in the environment. If a robot gets in collision danger the methodology immediately starts an evasive action to avoid the collision and guides the robot around the obstacle to its target position. This evasive action is calculated in real-time in a mathematically exact way by solving a quadratic convex optimization problem. The secondary conditions of this optimization problem include the potential collision danger of the robots kinematic chain including all temporarily attached grippers and objects and the dynamic constraints of the robots. The result of the optimization procedure are joint accelerations to apply to prevent the robot from colliding and to guide it to its target position. This methodology has been tested very successfully during the Japanese/German space robot project GETEX in April 1999. During the mission, the collision avoidance system successfully protected the free flying Japanese robot ERA on board the satellite ETS-VII at all times. The experiments showed, that the developed system is fully capable of ensuring the safety of such autonomous robotic systems by actively preventing collisions and generating evasive actions in cases of collision danger.

  1. Real Time PCR: Principles and Application

    Directory of Open Access Journals (Sweden)

    Safie Amini

    2005-09-01

    Full Text Available The polymerase chain reaction (PCR has been used as the new golden standard for detecting a wide variety of templates across a range of scientific specialties and also as an essential tool in research laboratories. PCR has completely revolutionized the detection of RNA and DNA viruses(1. Real Time vs. Traditional PCRReal time chemistry allows the detection of PCR amplification during the early phase of the reaction. Measuring the kinetic of the reaction in the early phase of PCR provides a distinct advantage over traditional PCR detection. Traditional methods use agarose gel electrophoresis for detection of PCR amplification at the final phase or end point. End point detection is really time consuming; it takes several hours to have the result. On the other hand, results are based on size discrimination. Also, the result of end point is variable from sample to sample. While gels may not resolve this variability in yield, real time PCR is sensitive enough to detect this change.Some problems with end point detection are: poor precision, low sensitivity, short dynamic range (<2 log, low resolution, non-automated procedure, size-based discrimination only, and post PCR processing (carry-over contamination and results are not expressed as numbers(2.Detection of PCR Products in Real-timeReal-time PCR and RT-PCR allow accurate quantification of starting amounts of DNA, cDNA, and RNA targets. Fluorescence is measured during each cycle, which greatly increases the dynamic range of the reaction since the amount offluorescence is proportional to the amount of PCR product. PCR products can be detected using either fluorescent dyes that bind to double-stranded DNA or fluorescently labeled sequence-specific probes(3.SYBR Green ISYBR® Green I binds all double-stranded DNA molecules, emitting a fluorescent signal of a defined wavelength on binding. The excitation and emission maxima of SYBR Green I are at 494 nm and 521 nm, respectively, and are compatible for

  2. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    Science.gov (United States)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  3. Integrated real-time roof monitoring

    Institute of Scientific and Technical Information of China (English)

    SHEN Bao-tang; GUO Hua; KING Andrew

    2009-01-01

    CSIRO has recently developed a real-time roof monitoring system for under-ground coal mines and successfully tried the system in gate roads at Ulan Mine. The sys-tem integrated displacement monitoring, stress monitoring and seismic monitoring in one package. It included GEL multianchor extensometers, vibrating wire uniaxial stress meters, ESG seismic monitoring system with microseismic sensors and high-frequency AE sen-sors. The monitoring system automated and the data can be automatically collected by a central computer located in an underground nonhazardous area. The data are then trans-ferred to the surface via an optical fiber cable. The real-time data were accessed at any location with an Internet connection. The trials of the system in two tailgates at Ulan Mine demonstrate that the system is effective for monitoring the behavior and stability of read-ways during Iongwall mining. The continuous roof displacement/stress data show clear precursors of roof falls. The seismic data (event count and locations) provide insights into the roof failure process during roof fall.

  4. Video Surveillance for Real Time Objects

    Directory of Open Access Journals (Sweden)

    N.R. Raajan

    2012-12-01

    Full Text Available In this study, we describe an integrated solution for video surveillance in a fortified environment. The focus of this study is on identification of real time objects on different environments. The system is composed of robust object detection module, which normally detects the presence of abandoned objects, concealed objects hidden inside the human clothing, objects in dark environment and performs image segmentation with the intention of facilitating human operator’s task of retrieving the cause of a buzzer. The abandoned objects are detected by image segmentation based on temporal rank order filtering. Image fusion technique which fuses a color visual image and a corresponding IR image for concealed objects in guarded environment and in some cases like dark environment heat signature can be used for detecting real time objects etc. In the clips of interest, the key frame is the one depicting a person leaving a dangerous object and is determined on the basis of a feature indicating the movement around the dangerous region.

  5. Real-time PCR in microfluidic devices

    Science.gov (United States)

    Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Hansen-Hagge, Thomas; Gärtner, Claudia

    2014-03-01

    A central method in a standard biochemical laboratory is represented by the polymerase chain reaction (PCR), therefore many attempts have been performed so far to implement this technique in lab-on-a-chip (LOC) devices. PCR is an ideal candidate for miniaturization because of a reduction of assay time and decreased costs for expensive bio-chemicals. In case of the "classical" PCR, detection is done by identification of DNA fragments electrophoretically separated in agarose gels. This method is meanwhile frequently replaced by the so-called Real-Time-PCR because here the exponential increase of amplificates can be observed directly by measurement of DNA interacting fluorescent dyes. Two main methods for on-chip PCRs are available: traditional "batch" PCR in chambers on a chip using thermal cycling, requiring about 30 minutes for a typical PCR protocol and continuous-flow PCR, where the liquid is guided over stationary temperature zones. In the latter case, the PCR protocol can be as fast as 5 minutes. In the presented work, a proof of concept is demonstrated for a real-time-detection of PCR products in microfluidic systems.

  6. An efficient real time superresolution ASIC system

    Science.gov (United States)

    Reddy, Dikpal; Yue, Zhanfeng; Topiwala, Pankaj

    2008-04-01

    Superresolution of images is an important step in many applications like target recognition where the input images are often grainy and of low quality due to bandwidth constraints. In this paper, we present a real-time superresolution application implemented in ASIC/FPGA hardware, and capable of 30 fps of superresolution by 16X in total pixels. Consecutive frames from the video sequence are grouped and the registered values between them are used to fill the pixels in the higher resolution image. The registration between consecutive frames is evaluated using the algorithm proposed by Schaum et al. The pixels are filled by averaging a fixed number of frames associated with the smallest error distances. The number of frames (the number of nearest neighbors) is a user defined parameter whereas the weights in the averaging process are decided by inverting the corresponding smallest error distances. Wiener filter is used to post process the image. Different input parameters, such as size of input image, enlarging factor and the number of nearest neighbors, can be tuned conveniently by the user. We use a maximum word size of 32 bits to implement the algorithm in Matlab Simulink as well as the hardware, which gives us a fine balance between the number of bits and performance. The algorithm performs with real time speed with very impressive superresolution results.

  7. Real-time applications of neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  8. ROBUST MEMORY MANAGEMENT USING REAL TIME CONCEPTS

    Directory of Open Access Journals (Sweden)

    V. Karthikeyan

    2014-01-01

    Full Text Available Memory fragmentation is the development of a large number of separate free areas. Memory management in embedded systems demand effective implementation schemes to avoid fragmentation problem. Existing dynamic memory allocation methods fail to suit real time system requirements. Execution times need to be deterministic and this motivates the need for allocation and deallocation to be done in constant time with the help of API’s. In µC/OS-II, memory allocation is semi-dynamic and a buddy allocator dynamic memory allocation algorithm is commonly used. Programmer must statically allocate a memory and partition the region using µC/OS-II Kernel API. Tasks can only request pre-partitioned fixed-size memory space from µC/OS-II. Memory allocation times are influenced by the ratio of memory allocation to the stack size of the task. In this research work memory management in LPC 1768 environment using RTOS µC/OS-II is proposed. Effective sharing of memory blocks among tasks co exists with partition. The captured results shows that the memory allocation and deallocation suits real time. The implication of the work is that, the necessity to reserve a static set of locations ahead of time is eliminated so that memory can be allocated at compile or design time.

  9. Large holographic displays for real-time applications

    Science.gov (United States)

    Schwerdtner, A.; Häussler, R.; Leister, N.

    2008-02-01

    Holography is generally accepted as the ultimate approach to display three-dimensional scenes or objects. Principally, the reconstruction of an object from a perfect hologram would appear indistinguishable from viewing the corresponding real-world object. Up to now two main obstacles have prevented large-screen Computer-Generated Holograms (CGH) from achieving a satisfactory laboratory prototype not to mention a marketable one. The reason is a small cell pitch CGH resulting in a huge number of hologram cells and a very high computational load for encoding the CGH. These seemingly inevitable technological hurdles for a long time have not been cleared limiting the use of holography to special applications, such as optical filtering, interference, beam forming, digital holography for capturing the 3-D shape of objects, and others. SeeReal Technologies has developed a new approach for real-time capable CGH using the socalled Tracked Viewing Windows technology to overcome these problems. The paper will show that today's state of the art reconfigurable Spatial Light Modulators (SLM), especially today's feasible LCD panels are suited for reconstructing large 3-D scenes which can be observed from large viewing angles. For this to achieve the original holographic concept of containing information from the entire scene in each part of the CGH has been abandoned. This substantially reduces the hologram resolution and thus the computational load by several orders of magnitude making thus real-time computation possible. A monochrome real-time prototype measuring 20 inches has been built and demonstrated at last year's SID conference and exhibition 2007 and at several other events.

  10. Real-Time Multimission Event Notification System for Mars Relay

    Science.gov (United States)

    Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Wang, Paul; Hy, Franklin H.

    2013-01-01

    As the Mars Relay Network is in constant flux (missions and teams going through their daily workflow), it is imperative that users are aware of such state changes. For example, a change by an orbiter team can affect operations on a lander team. This software provides an ambient view of the real-time status of the Mars network. The Mars Relay Operations Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay Network. As part of MaROS, a feature set was developed that operates on several levels of the software architecture. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. The result is a real-time event notification and management system, so mission teams can track and act upon events on a moment-by-moment basis. This software retrieves events from MaROS and displays them to the end user. Updates happen in real time, i.e., messages are pushed to the user while logged into the system, and queued when the user is not online for later viewing. The software does not do away with the email notifications, but augments them with in-line notifications. Further, this software expands the events that can generate a notification, and allows user-generated notifications. Existing software sends a smaller subset of mission-generated notifications via email. A common complaint of users was that the system-generated e-mails often "get lost" with other e-mail that comes in. This software allows for an expanded set (including user-generated) of notifications displayed in-line of the program. By separating notifications, this can improve a user's workflow.

  11. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  12. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    Science.gov (United States)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  13. Real-time treatment feedback guidance of Pleural PDT

    Science.gov (United States)

    Zhu, Timothy C.; Kim, Michele M.; Liang, Xing; Liu, Baochang; Meo, Julia L.; Finlay, Jarod C.; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles B.; Cengel, Keith; Friedberg, Joseph S.

    2015-01-01

    Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for mesothelioma with remarkable results. In the current intrapleural PDT protocol, a moving fiber-based point source is used to deliver the light and the light dose are monitored by 7 detectors placed in the pleural cavity. To improve the delivery of light dose uniformity, an infrared (IR) camera system is used to track the motion of the light sources. A treatment planning system uses feedback from the detectors as well as the IR camera to update light fluence distribution in real-time, which is used to guide the light source motion for uniform light dose distribution. We have improved the GUI of the light dose calculation engine to provide real-time light fluence distribution suitable for guiding the surgery to delivery light more uniformly. A dual-correction method is used in the feedback system, so that fluence calculation can match detector readings using both direct and scatter light models. An improved measurement device is developed to automatically acquire laser position for the point source. Comparison of the effects of the guidance is presented in phantom study. PMID:25999647

  14. A real-time treatment guidance system for Pleural PDT

    Science.gov (United States)

    Zhu, Timothy C.; Liang, Xing; Sandell, Julia; Finlay, Jarod C.; Dimofte, Andreea; Rodriguez, Carmen; Cengel, Keith; Friedberg, Joseph; Hahn, Stephen M; Glatstein, Eli

    2015-01-01

    Intrapleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for mesothelioma. In the current intrapleural PDT protocol, a moving fiber-based point source is used to deliver the light and the light dose are monitored by 7 detectors placed in the pleural cavity. To improve the delivery of light dose uniformity, an infrared (IR) camera system is used to track the motion of the light sources. A treatment planning system uses feedback from the detectors as well as the IR camera to update light fluence distribution in real-time, which is used to guide the light source motion for uniform light dose distribution. We have reported previously the success of using IR camera to passively monitor the light fluence rate distribution. In this study, the real-time feedback has been implemented in the current system prototype, by transferring data from the IR camera to a computer at a rate of 20 Hz, and by calculation/displaying using Matlab. A dual-correction method is used in the feedback system, so that fluence calculation can match detector readings. Preliminary data from a phantom showed superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown using the correction method dose model. PMID:26005245

  15. Dynamic Modeling and Real-Time Monitoring of Froth Flotation

    Directory of Open Access Journals (Sweden)

    Khushaal Popli

    2015-08-01

    Full Text Available A dynamic fundamental model was developed linking processes from the microscopic scale to the equipment scale for batch froth flotation. State estimation, fault detection, and disturbance identification were implemented using the extended Kalman filter (EKF, which reconciles real-time measurements with dynamic models. The online measurements for the EKF were obtained through image analysis of froth images that were captured and analyzed using the commercial package VisioFroth (Metsor Minerals. The extracted image features were then correlated to recovery using principal component analysis and partial least squares regression. The performance of real-time state estimation and fault detection was validated using batch flotation of pure galena at various operating conditions. The image features that were strongly representative of recovery were identified, and calibration and validation were performed against off-line measurements of recovery. The EKF successfully captured the dynamics of the process by updating the model states and parameters using the online measurements. Finally, disturbances in the air flow rate and impeller speed were introduced into the system, and the dynamic behavior of the flotation process was successfully tracked and the disturbances were identified using state estimation.

  16. Tracking Control of Autonomous Underwater Vehicles with Internal Moving Mass%自主水下航行器的变质心跟踪控制

    Institute of Scientific and Technical Information of China (English)

    李家旺; 宋保维; 邵成

    2008-01-01

    The trajectory-tracking control problem is inves-tigated for an autonomous underwater vehicle (AUV) moving in the vertical plane using an internal point mass and a rear thruster as actuators. Combined with the dynamics of the point mass, the AUV is modeled as an underactuated system. A Lyapunov-based tracking controller is proposed by using back-stepping approach to stabilize the error dynamics and forcc the position errors to a small neighborhood of thc origin. Simulation results validate the proposcd tracking approach.

  17. Real-time control open systems of five DOF nanomanipulators

    Science.gov (United States)

    Vladareanu, Luige; Vasile, Alexandru

    2010-11-01

    The main paper presents studies and research concerning the development of new open architectures for real-time control of a 5 degrees of freedom platform with 4 nano-manipulators, based on multiprocessor systems operating in a cooperation regime in order to achieve experiments in the 4 research domains: robotics, vibro-acustica, tribology, carbon nano tubes (CNTs ). In order to obtain this performance a positioning method with high precision at high speed is developed through reducing and compensating the induced dynamic vibrations by the system movement using the inverse dynamics method. The system's performance will allow the introduction of new functions without significant change to the hardware system. Through determining the optimal trajectory using a quadratic cost function for reducing tracking errors results increased motion speed and micro or nanometric positioning precision.

  18. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturised version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory (AM) chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering...

  19. Real-Time Observation of Cell and Carbon Nanotube Interactions

    Science.gov (United States)

    Chen, Michelle; Broman, Melanie; Mathews, Claire; McPherson, Eric

    2014-03-01

    Carbon nanotubes have been widely researched for disease diagnosis and drug delivery applications. However, its impact on biological systems is yet to be sufficiently understood. We studied optical imaging of Chinese hamster ovarian (CHO) cells exposed to various carbon nanotubes concentrations at various time points. The cell stress due to carbon nanotubes exposure is accessed via morphological changes of the CHO cells. Data showed that cell death increases with increasing carbon nanotube concentration and time exposure. To continuously view such changes of any one individual cell, we constructed an optically transparent miniaturized incubator that fits on a microscope stage. This specific incubator is able to maintain desirable temperature, humidity, and CO2 concentration to allow proper cell growth. Such incubator can be used to track real-time interactions of any cells and nanomaterials for future data collection.

  20. Real-time forecasts of dengue epidemics

    Science.gov (United States)

    Yamana, T. K.; Shaman, J. L.

    2015-12-01

    Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.

  1. A Flexible Real-Time Architecture

    Energy Technology Data Exchange (ETDEWEB)

    WICKSTROM,GREGORY L.

    2000-08-17

    Assuring hard real-time characteristics of I/O associated with embedded software is often a difficult task. Input-Output related statements are often intermixed with the computational code, resulting in I/O timing that is dependent on the execution path and computational load. One way to mitigate this problem is through the use of interrupts. However, the non-determinism that is introduced by interrupt driven I/O may be so difficult to analyze that it is prohibited in some high consequence systems. This paper describes a balanced hardware/software solution to obtain consistent interrupt-free I/O timing, and results in software that is much more amenable to analysis.

  2. Embedded and real-time operating systems

    CERN Document Server

    Wang, K C

    2017-01-01

    This book covers the basic concepts and principles of operating systems, showing how to apply them to the design and implementation of complete operating systems for embedded and real-time systems. It includes all the foundational and background information on ARM architecture, ARM instructions and programming, toolchain for developing programs, virtual machines for software implementation and testing, program execution image, function call conventions, run-time stack usage and link C programs with assembly code. It describes the design and implementation of a complete OS for embedded systems in incremental steps, explaining the design principles and implementation techniques. For Symmetric Multiprocessing (SMP) embedded systems, the author examines the ARM MPcore processors, which include the SCU and GIC for interrupts routing and interprocessor communication and synchronization by Software Generated Interrupts (SGIs). Throughout the book, complete working sample systems demonstrate the design principles and...

  3. Feedback as real-time constructions

    DEFF Research Database (Denmark)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very...... instant it takes place. This article argues for a clear distinction between the timing of communicative events, such as responses that are provided as help for feedback constructions, and the feedback construction itself as an event in a psychic system. Although feedback is described as an internal......, system-relative construction, different teaching environments offer diverse conditions for feedback constructions. The final section of this article explores this idea with the help of examples from both synchronous oral interaction and asynchronous text-based interaction mediated by digital media....

  4. Real-Time Optical Antimicrobial Susceptibility Testing

    DEFF Research Database (Denmark)

    Fredborg, Marlene; Andersen, Klaus R; Jørgensen, Erik;

    2013-01-01

    Rapid antibiotic susceptibility testing is in highly demand in health-care fields as antimicrobial resistant bacterial strains emerge and spread. Here we describe an optical screening system (oCelloScope), which based on time-lapse imaging of 96 bacteria-antibiotic combinations at a time, introdu......Rapid antibiotic susceptibility testing is in highly demand in health-care fields as antimicrobial resistant bacterial strains emerge and spread. Here we describe an optical screening system (oCelloScope), which based on time-lapse imaging of 96 bacteria-antibiotic combinations at a time......, introduces real-time detection of bacterial growth and antimicrobial susceptibility, with imaging material to support the automatically generated graphs. Automated antibiotic susceptibility tests of a monoculture showed statistically significant antibiotic effect within 6 minutes and within 30 minutes...

  5. Mobility and language change in real time

    DEFF Research Database (Denmark)

    Monka, Malene

    -mobile peers prior to being geographically and socially mobile (e.g. Andersson & Thelander 1994). In the presentation I discuss this question by presenting a real time panel-study of language change in 23 speakers from three municipalities in distinct dialect areas in Denmark. The language change of six mobile......Diachronic studies of the interrelationship between mobility and language change leave us with some unanswered questions of causation. The most important question is whether language change is caused by mobility, or if mobile informants mark themselves linguistically different than their non...... the non-mobile speakers in the old recordings, and that the degree of language change differs among the mobile informants from the three dialect areas. Based on the qualitative analyses I argue that differences in geographic and social orientation in the old recordings can explain differences between...

  6. Operational and real-time Business Intelligence

    Directory of Open Access Journals (Sweden)

    Daniela Ioana SANDU

    2008-01-01

    Full Text Available A key component of a company’s IT framework is a business intelligence (BI system. BI enables business users to report on, analyze and optimize business operations to reduce costs and increase revenues. Organizations use BI for strategic and tactical decision making where the decision-making cycle may span a time period of several weeks (e.g., campaign management or months (e.g., improving customer satisfaction.Competitive pressures coming from a very dynamic business environment are forcing companies to react faster to changing business conditions and customer requirements. As a result, there is now a need to use BI to help drive and optimize business operations on a daily basis, and, in some cases, even for intraday decision making. This type of BI is usually called operational business intelligence and real-time business intelligence.

  7. Real-time, face recognition technology

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S.

    1995-11-01

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory recently developed the real-time, face recognition technology KEN. KEN uses novel imaging devices such as silicon retinas developed at Caltech or off-the-shelf CCD cameras to acquire images of a face and to compare them to a database of known faces in a robust fashion. The KEN-Online project makes that recognition technology accessible through the World Wide Web (WWW), an internet service that has recently seen explosive growth. A WWW client can submit face images, add them to the database of known faces and submit other pictures that the system tries to recognize. KEN-Online serves to evaluate the recognition technology and grow a large face database. KEN-Online includes the use of public domain tools such as mSQL for its name-database and perl scripts to assist the uploading of images.

  8. CONSIDERATIONS ON REAL TIME DATA WAREHOUSING (RTDW

    Directory of Open Access Journals (Sweden)

    Marius Bogdan DINU

    2014-05-01

    Full Text Available The RTDW concept originated in the early 2000s. By that time, computing power had increased to a level that was allowing extraction of data collections for reporting purposes. Such collections were used almost in real time and at speeds nearly comparable to what an operation system was capable to deliver. The main idea will be to eliminate some of the components of the classic extraction process which is basically the most costly factor less time - consuming. We anticipate that the following factors will be decisive: elimination of batch-type processes [1], data compression techniques, data capture techniques, ability to keep in cache a large volume of data, parallel processing, and data mining algorithms that can adapt to such applications.

  9. Real-time color holographic interferometry

    Science.gov (United States)

    Desse, Jean-Michel; Albe, Felix; Tribillon, Jean-Louis

    2002-09-01

    A new optical technique based on real-time color holographic interferometry has been developed for analyzing unsteady aerodynamic wakes in fluid mechanics or for measuring displacements and deformations in solid mechanics. The technique's feasibility is demonstrated here. It uses three coherent wavelengths produced simultaneously by a cw laser (mixed argon and krypton). Holograms are recorded on single-layer panchromatic silver halide (Slavich PFG 03C) plates. Results show the optical setup can be adjusted to obtain a uniform background color. The interference fringe pattern visualized is large and colored and exhibits a single central white fringe, which makes the zero order of the interferogram easy to identify. An application in a subsonic wind tunnel is presented, in which the unsteady wake past a cylinder is recorded at high rate.

  10. Terrestrial Real-Time Volcano Monitoring

    Science.gov (United States)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  11. Real-Time Imaging of Quantum Entanglement

    CERN Document Server

    Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement - correlations between at least two systems that are stronger than classically explainable - is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, the creation of entanglement between two systems has become possible in laboratories, it has been out of the grasp of one of the most natural ways to investigate nature: direct visual observation. Here we show that modern imaging technology, namely a triggered intensified charge coupled device (ICCD) camera, is fast and sensitive enough to image in real-time the influence of the measurement of one photon on its entangled partner. To demonstrate the non-classicality of the measurements quantitatively from the registered intensity we develop a novel method to statistically analyze the image and precisely quantify the number of photons within a certain region. In addition, we show the high flexibility of our experimental setup in creating any desired spatial-mode entanglement, even...

  12. Wi-Fi real time location systems

    Science.gov (United States)

    Doll, Benjamin A.

    This thesis objective was to determine the viability of utilizing an untrained Wi-Fi. real time location system as a GPS alternative for indoor environments. Background. research showed that GPS is rarely able to penetrate buildings to provide reliable. location data. The benefit of having location information in a facility and how they might. be used for disaster or emergency relief personnel and their resources motivated this. research. A building was selected with a well-deployed Wi-Fi infrastructure and its. untrained location feature was used to determine the distance between the specified. test points and the system identified location. It was found that the average distance. from the test point throughout the facility was 14.3 feet 80% of the time. This fell within. the defined viable range and supported that an untrained Wi-Fi RTLS system could be a. viable solution for GPS's lack of availability indoors.

  13. Towards real time speckle controlled retinal photocoagulation

    Science.gov (United States)

    Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf

    2016-03-01

    Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.

  14. Real-time visualization of joint cavitation.

    Directory of Open Access Journals (Sweden)

    Gregory N Kawchuk

    Full Text Available Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking.

  15. Real-time monitoring of drowsiness through wireless nanosensor systems

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Generally, the bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper reviews the design aspects of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the textile based nanosensors mounted on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through ZigBee communication. This system is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the fatigue level. This approach of using a wireless, real time, dry sensor on a flexible substrate mitigates obtrusiveness that is expected from a wearable system. We have previously presented the results of the aforementioned wearable systems. This paper aims to extend our work conceptually through a review of engineering and medical techniques involved in wearable systems to detect drowsiness.

  16. Real-time and interactive virtual Doppler ultrasound

    Science.gov (United States)

    Hirji, Samira; Downey, Donal B.; Holdsworth, David W.; Steinman, David A.

    2005-04-01

    This paper describes our "virtual" Doppler ultrasound (DUS) system, in which colour DUS (CDUS) images and DUS spectrograms are generated on-the-fly and displayed in real-time in response to position and orientation cues provided by a magnetically tracked handheld probe. As the presence of complex flow often confounds the interpretation of Doppler ultrasound data, this system will serve to be a fundamental tool for training sonographers and gaining insight into the relationship between ambiguous DUS images and complex blood flow dynamics. Recently, we demonstrated that DUS spectra could be realistically simulated in real-time, by coupling a semi-empirical model of the DUS physics to a 3-D computational fluid dynamics (CFD) model of a clinically relevant flow field. Our system is an evolution of this approach where a motion-tracking device is used to continuously update the origin and orientation of a slice passing through a CFD model of a stenosed carotid bifurcation. After calibrating our CFD model onto a physical representation of a human neck, virtual CDUS images from an instantaneous slice are then displayed at a rate of approximately 15 Hz by simulating, on-the-fly, an array of DUS spectra and colour coding the resulting spectral mean velocity using a traditional Doppler colour scale. Mimicking a clinical examination, the operator can freeze the CDUS image on-screen, and a spectrogram corresponding to the selected sample volume location is rendered at a higher frame rate of at least 30 Hz. All this is achieved using an inexpensive desktop workstation and commodity graphics card.

  17. OS design challenges & research opportunities in real-time WSNs & approach for real time support in Nano-RK

    Directory of Open Access Journals (Sweden)

    Prof. Manjiri Pathak

    2013-07-01

    Full Text Available In recent years, wireless sensor network has become an important research domain. WSNs were initially proposed in domains where ordinary networks (not necessarily wired are not convenient, either because of the missing infrastructures, or when numerous nodes (in the order of hundreds or thousands are needed to achieve the assigned task. Nowadays WSNs represent a new generation of distributed embedded systems with a broad range of real-time applications. Some of the applications include process control, fire monitoring, border surveillance, medical care, asset tracking, agriculture, highway traffic coordination etc. Such systems need heavy computations & must meet new kinds of timing constraints under severe resource limitations & limited communication capabilities in highly dynamic environments. Bounded end-to- end delay and guaranteed Quality of Service is also expected. So it is highly necessary to have a common software framework that allows smooth and speedy development of the wide range of proposed sensor applications. An operating system can serve this purpose. Operating systems for WSNs should comprise abstractions that handle digital and analog sensors, provide a communication protocol stack, and make efficient use of the system's limited energy capability. Moreover, OSs should provide an interface and a simple configuration system for application developers [2]. The purpose of this survey is to highlight major concerns pertaining to OS design & research challenges in OS for WSNs in real time applications.

  18. An Efficient Secure Real-Time Concurrency Control Protocol

    Institute of Scientific and Technical Information of China (English)

    XIAO Yingyuan; LIU Yunsheng; CHEN Xiangyang

    2006-01-01

    Secure real-time databases must simultaneously satisfy two requirements in guaranteeing data security and minimizing the missing deadlines ratio of transactions. However, these two requirements can conflict with each other and achieve one requirement is to sacrifice the other. This paper presents a secure real-time concurrency control protocol based on optimistic method. The concurrency control protocol incorporates security constraints in a real-time optimistic concurrency control protocol and makes a suitable tradeoff between security and real-time requirements by introducing secure influence factor and real-time influence factor. The experimental results show the concurrency control protocol achieves data security without degrading real-time performance significantly.

  19. 实时三维超声心动图斑点追踪技术评价移植心脏左心室收缩功能%Left ventricular systolic function evaluated by real-time three-dimensional speckle tracking echocardiography in heart transplant recipients

    Institute of Scientific and Technical Information of China (English)

    刘红云; 邓又斌; 刘琨; 李阳; 汤乔颖; 魏翔; 昌盛; 卢峡

    2013-01-01

    Objective To evaluate the left ventricular systolic function in the cardiac allograft by real time three-dimensional speckle tracking echocardiography.Methods Twenty-three heart transplant recipients underwent total 57 echocardiographic studies at one,two,three months after heart transplantation.Twenty-three healthy subjects were served as controls.The three-dimensional full-volume images of left ventricle were recorded and then were analyzed using EchoPAC software.The strain curves were obtained and peak strain values of left ventricle for each segment and overall left ventricular wall were measured.Left ventricular global peak longitudinal strain (GPSL),circumferential strain (GPSC),area strain (GPSA) and radial strain (GPSR) were recorded and then statistical analyzed.Results The left ventricular ejection fraction (EF) and cardiac output (CO) in heart transplant recipients had no significant difference when compared with controls.The GPSL reduced significantly one month after surgery in heart transplant recipients than controls,but had no significant difference two months and three months after surgery with controls.The GPSC,GPSA,GPSR decreased significantly in heart transplant recipients (one,two,three months after surgery) than those in controls.Conclusions The left ventricular ejection fraction of cardiac allograft seemed "normal",but the global peak strain of left ventricle were still significantly reduced than controls.Real time three dimensional speckle tracking echocardiography can be used for an accurate assessment of left ventricular systolic function in heart transplant recipients.%目的 应用实时三维超声心动图斑点追踪技术检测移植心脏左室壁峰值收缩应变,探讨实时三维超声心动图斑点追踪技术评价移植心脏左室收缩功能的价值.方法 23例接受心脏移植患者于移植术后1月、2月、3月进行超声心动图检查,共57次.23例正常人作为对照.采集左室的三维全容积图像,应

  20. An acoustic system for autonomous navigation and tracking of marine fauna

    KAUST Repository

    De la Torre, Pedro

    2014-08-01

    A marine acoustic system for underwater target tracking is described. This system is part of the Integrated Satellite and Acoustic Telemetry (iSAT) project to study marine fauna. It is a microcontroller-based underwater projector and receiver. A narrow-band, passive sonar detection architecture is described from signal generation, through transduction, reception, signal processing and up to tone extraction. Its circuit and operation principles are described. Finally, a comparison between the current energy detection method versus an alternative matched filter approach is included.

  1. RTMOD: Real-Time MODel evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Graziani, G; Galmarini, S. [Joint Research centre, Ispra (Italy); Mikkelsen, T. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept. (Denmark)

    2000-01-01

    The 1998 - 1999 RTMOD project is a system based on an automated statistical evaluation for the inter-comparison of real-time forecasts produced by long-range atmospheric dispersion models for national nuclear emergency predictions of cross-boundary consequences. The background of RTMOD was the 1994 ETEX project that involved about 50 models run in several Institutes around the world to simulate two real tracer releases involving a large part of the European territory. In the preliminary phase of ETEX, three dry runs (i.e. simulations in real-time of fictitious releases) were carried out. At that time, the World Wide Web was not available to all the exercise participants, and plume predictions were therefore submitted to JRC-Ispra by fax and regular mail for subsequent processing. The rapid development of the World Wide Web in the second half of the nineties, together with the experience gained during the ETEX exercises suggested the development of this project. RTMOD featured a web-based user-friendly interface for data submission and an interactive program module for displaying, intercomparison and analysis of the forecasts. RTMOD has focussed on model intercomparison of concentration predictions at the nodes of a regular grid with 0.5 degrees of resolution both in latitude and in longitude, the domain grid extending from 5W to 40E and 40N to 65N. Hypothetical releases were notified around the world to the 28 model forecasters via the web on a one-day warning in advance. They then accessed the RTMOD web page for detailed information on the actual release, and as soon as possible they then uploaded their predictions to the RTMOD server and could soon after start their inter-comparison analysis with other modelers. When additional forecast data arrived, already existing statistical results would be recalculated to include the influence by all available predictions. The new web-based RTMOD concept has proven useful as a practical decision-making tool for realtime

  2. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    Science.gov (United States)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  3. Real-time underwater object detection based on an electrically scanned high-resolution sonar

    DEFF Research Database (Denmark)

    Henriksen, Lars

    1994-01-01

    The paper describes an approach to real time detection and tracking of underwater objects, using image sequences from an electrically scanned high-resolution sonar. The use of a high resolution sonar provides a good estimate of the location of the objects, but strains the computers on board, beca...

  4. The Slow Developmental Time Course of Real-Time Spoken Word Recognition

    Science.gov (United States)

    Rigler, Hannah; Farris-Trimble, Ashley; Greiner, Lea; Walker, Jessica; Tomblin, J. Bruce; McMurray, Bob

    2015-01-01

    This study investigated the developmental time course of spoken word recognition in older children using eye tracking to assess how the real-time processing dynamics of word recognition change over development. We found that 9-year-olds were slower to activate the target words and showed more early competition from competitor words than…

  5. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...

  6. Effects of Aging and Noise on Real-Time Spoken Word Recognition: Evidence from Eye Movements

    Science.gov (United States)

    Ben-David, Boaz M.; Chambers, Craig G.; Daneman, Meredyth; Pichora-Fuller, M. Kathleen; Reingold, Eyal M.; Schneider, Bruce A.

    2011-01-01

    Purpose: To use eye tracking to investigate age differences in real-time lexical processing in quiet and in noise in light of the fact that older adults find it more difficult than younger adults to understand conversations in noisy situations. Method: Twenty-four younger and 24 older adults followed spoken instructions referring to depicted…

  7. Real time model for public transportation management

    Directory of Open Access Journals (Sweden)

    Ireneusz Celiński

    2014-03-01

    Full Text Available Background: The article outlines managing a public transportation fleet in the dynamic aspect. There are currently many technical possibilities of identifying demand in the transportation network. It is also possible to indicate legitimate basis of estimating and steering demand. The article describes a general public transportation fleet management concept based on balancing demand and supply. Material and methods: The presented method utilizes a matrix description of demand for transportation based on telemetric and telecommunication data. Emphasis was placed mainly on a general concept and not the manner in which data was collected by other researchers.  Results: The above model gave results in the form of a system for managing a fleet in real-time. The objective of the system is also to optimally utilize means of transportation at the disposal of service providers. Conclusions: The presented concept enables a new perspective on managing public transportation fleets. In case of implementation, the project would facilitate, among others, designing dynamic timetables, updated based on observed demand, and even designing dynamic points of access to public transportation lines. Further research should encompass so-called rerouting based on dynamic measurements of the characteristics of the transportation system.

  8. The Colliderscope: a real-time show

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    Ninety-six LED lights distributed over the facade of the Niels Bohr Institute (NBI) in Blegdamsvej (Denmark) reproduce the actual signals coming from the Transition Radiation Detector (TRT) in ATLAS. Thanks to the Colliderscope, when a collision occurs below the ground in Geneva, people passing by in Blegdamsvej will be aware of it almost in real-time.   Niels Bohr Institute facade lit up to reflect the latest data from ATLAS-TRT . The pattern, intensity and duration of the Colliderscope’s flashes of light depend on the physical parameters of particles crossing the ATLAS TRT detector. “At the Colliderscope very little happens randomly”, explains Troels Petersen, a physicist at NBI and one of the people who conceived it. “Particularly interesting events, such as electrons, are shown by a bright light that remains on the facade for several seconds”. The Niels Bohr Institute has participated in the development of the TRT detector, and this is why t...

  9. Real-Time Principal-Component Analysis

    Science.gov (United States)

    Duong, Vu; Duong, Tuan

    2005-01-01

    A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in Method of Real-Time Principal-Component Analysis (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59. To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

  10. Recommendations for Real-Time Speech MRI

    Science.gov (United States)

    Lingala, Sajan Goud; Sutton, Brad P.; Miquel, Marc E.; Nayak, Krishna S.

    2016-01-01

    Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech. PMID:26174802

  11. Real-time optoacoustic monitoring of stroke

    Science.gov (United States)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  12. Business Hypervisors for Real-time Applications

    Directory of Open Access Journals (Sweden)

    L. Perneel

    2015-08-01

    Full Text Available System virtualization is one of the hottest trends in information technology today. It is not just another nice to use technology but has become fundamental across the business world. It is successfully used with many business application classes where cloud computing is the most visual one. Recently, it started to be used for soft Real-Time (RT applications such as IP telephony, media servers, audio and video streaming servers, automotive and communication systems in general. Running these applications on a traditional system (Hardware + Operating System guarantee their Quality of Service (QoS; virtualizing them means inserting a new layer between the hardware and the (virtual Operating System (OS, and thus adding extra overhead. Although these applications’ areas do not always demand hard time guarantees, they require the underlying virtualization layer supports low latency and provide adequate computational resources for completion within a reasonable or predictable timeframe. These aspects are intimately intertwined with the logic of the hypervisor scheduler. In this paper, a series of tests are conducted on three hypervisors (VMware ESXi, Hyper-V server and Xen to provide a benchmark of the latencies added to the applications running on top of them. These tests are conducted for different scenarios (use cases to take into consideration all the parameters and configurations of the hypervisors’ schedulers. Finally, this benchmark can be used as a reference for choosing the best hypervisor-application combination.

  13. Real-Time 3D Visualization

    Science.gov (United States)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  14. Real time visual servoing using controlled illumination

    Science.gov (United States)

    Urban, J. P.; Motyl, G.; Gallice, J.

    1994-02-01

    A real-time visual servoing approach is applied to robotics tasks consisting of the positioning of the end effector with respect to a priori known polyhedral objects. The vision apparatus is consituted by a compact CCD camera rigidly coupled with two laser stripes mounted on the wrist of a robot manipulator. The objective is to servo the robot and effector at a constant position and orientation with respect to a known object in three- dimensional space in the field of view of the sensory system. The approach is expressed in terms of sensor-based control applied to visual servoing. In the case of camera-light stripe coupling, the elementary visual signals used for visual servoing are the points of discontinuity in the light stripes. The feasibility of the approach is demonstrated in a factory automation task consisting of the positioning of the end-effector tool over a vehicle battery. Both simulation and experimentation results are presented, proving the robustness and stability of the algorithm.

  15. Real-time open-loop frequency response analysis of flight test data

    Science.gov (United States)

    Bosworth, J. T.; West, J. C.

    1986-01-01

    A technique has been developed to compare the open-loop frequency response of a flight test aircraft real time with linear analysis predictions. The result is direct feedback to the flight control systems engineer on the validity of predictions and adds confidence for proceeding with envelope expansion. Further, gain and phase margins can be tracked for trends in a manner similar to the techniques used by structural dynamics engineers in tracking structural modal damping.

  16. Internet-accessible real-time weather information system

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Desa, E.; Mehra, P.; Desa, E.; Gouveia, A.D.

    An internet-accessible real-time weather information system has been developed. This system provides real-time accessibility to weather information from a multitude of spatially distributed weather stations. The Internet connectivity also offers...

  17. Execution of a High Level Real-Time Language

    OpenAIRE

    Luqi; Berzins, Valdis

    1988-01-01

    Prototype System Description Language (PSDL) is a high level real-time language with special features for hard real-time system specification and design. It can be used to firm up requirements through execution of its software prototypes The language is designed based on a real-time model merging data and control flow and its implementation is beyond conventional compiler technology because of the need to meet real-time constraints. In this paper we describe and illustrate our research result...

  18. Real-time people and vehicle detection from UAV imagery

    Science.gov (United States)

    Gaszczak, Anna; Breckon, Toby P.; Han, Jiwan

    2011-01-01

    A generic and robust approach for the real-time detection of people and vehicles from an Unmanned Aerial Vehicle (UAV) is an important goal within the framework of fully autonomous UAV deployment for aerial reconnaissance and surveillance. Here we present an approach for the automatic detection of vehicles based on using multiple trained cascaded Haar classifiers with secondary confirmation in thermal imagery. Additionally we present a related approach for people detection in thermal imagery based on a similar cascaded classification technique combining additional multivariate Gaussian shape matching. The results presented show the successful detection of vehicle and people under varying conditions in both isolated rural and cluttered urban environments with minimal false positive detection. Performance of the detector is optimized to reduce the overall false positive rate by aiming at the detection of each object of interest (vehicle/person) at least once in the environment (i.e. per search patter flight path) rather than every object in each image frame. Currently the detection rate for people is ~70% and cars ~80% although the overall episodic object detection rate for each flight pattern exceeds 90%.

  19. Real time target allocation in cooperative unmanned aerial vehicles

    Science.gov (United States)

    Kudleppanavar, Ganesh

    The prolific development of Unmanned Aerial Vehicles (UAV's) in recent years has the potential to provide tremendous advantages in military, commercial and law enforcement applications. While safety and performance take precedence in the development lifecycle, autonomous operations and, in particular, cooperative missions have the ability to significantly enhance the usability of these vehicles. The success of cooperative missions relies on the optimal allocation of targets while taking into consideration the resource limitation of each vehicle. The task allocation process can be centralized or decentralized. This effort presents the development of a real time target allocation algorithm that considers available stored energy in each vehicle while minimizing the communication between each UAV. The algorithm utilizes a nearest neighbor search algorithm to locate new targets with respect to existing targets. Simulations show that this novel algorithm compares favorably to the mixed integer linear programming method, which is computationally more expensive. The implementation of this algorithm on Arduino and Xbee wireless modules shows the capability of the algorithm to execute efficiently on hardware with minimum computation complexity.

  20. Survey of real-time processing systems for big data

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Lftikhar, Nadeem; Xie, Xike

    2014-01-01

    for big data; Its open-source implementation such as Hadoop has become the de-facto standard for processing big data, however, Hadoop has the limitation of supporting real-time updates. The improvements in Hadoop for the real-time capability, and the other alternative real-time frameworks have been...