WorldWideScience

Sample records for autonomous in-pipe robot

  1. Mechatronics Design of an Autonomous Pipe-Inspection Robot

    Directory of Open Access Journals (Sweden)

    Abdellatif Mohamed

    2018-01-01

    Full Text Available Pipelines require periodical inspection to detect corrosion, deformation and congestion with obstacles in the network. Autonomous mobile robots are good solutions for this task. Visual information from the pipe interior associated with a location stamp is needed for inspection. In this paper, the previous designs of autonomous robots are reviewed and a new robot is developed to ensure simple design and smooth motion. Images are processed online to detect irregularity in pipe and then start capturing high resolution pictures to conserve the limited memory size. The new robot moves in pipes and provides video stream of pipe interior with location stamp. The visual information can later be processed offline to extract more information of pipeline condition to make maintenance decisions.

  2. Recognition and automatic tracking of weld line in fringe welding by autonomous mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Saito, Keishin; Ishii, Hideaki.

    1994-01-01

    An autonomous mobile robot with visual sensor and four driving axes for welding of pipe and fringe was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to perform welding automatically, the tip of welding torch can track the weld line of the joint by rotating the robot head. In the case of welding of pipe and fringe, the robot can detect the contact angle between the two base metals to be welded, and the torch angle changes according to the contact angle. As the result of tracking test by the robot system, it was made clear that the recognition of geometry of the joint by the laser lighting method and automatic tracking of weld line were possible. The average tracking error was ±0.3 mm approximately and the torch angle could be always kept at the optimum angle. (author)

  3. An inspection of pipe by snake robot

    Directory of Open Access Journals (Sweden)

    František Trebuňa

    2016-10-01

    Full Text Available The article deals with development and application of snake robot for inspection pipes. The first step involves the introduction of a design of mechanical and electrical parts of the snake robot. Next, the analysis of the robot locomotion is introduced. For the curved pipe, potential field method is used. By this method, the system is able to generate path for the head and rear robot, linking the environment with obstacles, which are represented by the walls of the pipe. Subsequently, the solution of potential field method is used in inverse kinematic model, which respects tasks as obstacle avoidance, joint limit avoidance, and singularity avoidance. Mentioned approach is then tested on snake robot in provisional pipe with rectangular cross section. For this research, software Matlab (2013b is used as the control system in cooperation with the control system of robot, which is based on microcontrollers. By experiments, it is shown that designed robot is able to pass through straight and also curved pipe.

  4. Robotic platform for traveling on vertical piping network

    Science.gov (United States)

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  5. Elements of Autonomous Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan

    In this thesis, we study several central elements of autonomous self-reconfigurable modular robots. Unlike conventional robots such robots are: i) Modular, since robots are assembled from numerous robotic modules. ii) Reconfigurable, since the modules can be combined in a variety of ways. iii) Self......-reconfigurable, since the modules themselves are able to change how they are combined. iv) Autonomous, since robots control themselves without human guidance. Such robots are attractive to study since they in theory have several desirable characteristics, such as versatility, reliability and cheapness. In practice...... however, it is challenging to realize such characteristics since state-of-the-art systems and solutions suffer from several inherent technical and theoretical problems and limitations. In this thesis, we address these challenges by exploring four central elements of autonomous self-reconfigurable modular...

  6. Information Engineering in Autonomous Robot Software

    NARCIS (Netherlands)

    Ziafati, P.

    2015-01-01

    In order to engage and help in our daily life, autonomous robots are to operate in dynamic and unstructured environments and interact with people. As the robot's environment and its behaviour are getting more complex, so are the robot's software and the knowledge that the robot needs to carry out

  7. Development of Pipe Holding Mechanism for Pipe Inspection Robot Using Flexible Pneumatic Cylinder

    Directory of Open Access Journals (Sweden)

    Choi Kyujun

    2016-01-01

    Full Text Available A pipe inspection robot is useful to reduce the inspection cost. In the previous study, a novel pipe inspection robot using a flexible pneumatic cylinder that can move forward along to the pipe by changing the robot’s body naturally was proposed and tested. In this paper, to improve its mobility for a corner of a pipe, the thin pipe holding mechanism using pneumatic bellows was proposed and tested. As a result of its driving test, the holding performance of the mechanism was confirmed.

  8. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  9. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  10. Experiments in Competence Acquisition for Autonomous Mobile Robots

    OpenAIRE

    Nehmzow, Ulrich

    1992-01-01

    This thesis addresses the problem of intelligent control of autonomous mobile robots, particularly under circumstances unforeseen by the designer.As the range of applications for autonomous robots widens and increasingly includes operation in unknown environments (exploration) and tasks which are not clearly specifiable a priori (maintenance work), this question is becoming more and more important. It is argued that in order to achieve such flexibility in unforeseen situations it is necess...

  11. Mobile Robot Designed with Autonomous Navigation System

    Science.gov (United States)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  12. Distributed formation control for autonomous robots

    NARCIS (Netherlands)

    Garcia de Marina Peinado, Hector Jesús

    2016-01-01

    This thesis addresses several theoretical and practical problems related to formation-control of autonomous robots. Formation-control aims to simultaneously accomplish the tasks of forming a desired shape by the robots and controlling their coordinated collective motion. This kind of robot

  13. An autonomous robot for harvesting cucumbers in greenhouses

    NARCIS (Netherlands)

    Henten, van E.J.; Hemming, J.; Tuijl, van B.A.J.; Kornet, J.G.; Meuleman, J.; Bontsema, J.; Os, van E.A.

    2002-01-01

    This paper describes the concept of an autonomous robot for harvesting cucumbers in greenhouses. A description is given of the working environment of the robot and the logistics of harvesting. It is stated that for a 2 ha Dutch nursery, 4 harvesting robots and one docking station are needed during

  14. Introduction to autonomous manipulation case study with an underwater robot, SAUVIM

    CERN Document Server

    Marani, Giacomo

    2014-01-01

    Autonomous manipulation” is a challenge in robotic technologies. It refers to the capability of a mobile robot system with one or more manipulators that performs intervention tasks requiring physical contacts in unstructured environments and without continuous human supervision. Achieving autonomous manipulation capability is a quantum leap in robotic technologies as it is currently beyond the state of the art in robotics. This book addresses issues with the complexity of the problems encountered in autonomous manipulation including representation and modeling of robotic structures, kinematic and dynamic robotic control, kinematic and algorithmic singularity avoidance, dynamic task priority, workspace optimization and environment perception. Further development in autonomous manipulation should be able to provide robust improvements of the solutions for all of the above issues. The book provides an extensive tract on sensory-based autonomous manipulation for intervention tasks in unstructured environment...

  15. Autonomous mobile robot teams

    Science.gov (United States)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  16. Structured control for autonomous robots

    International Nuclear Information System (INIS)

    Simmons, R.G.

    1994-01-01

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator

  17. Autonomous Robot Navigation In Public Nature Park

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole

    2005-01-01

    This extended abstract describes a project to make a robot travel autonomously across a public nature park. The challenge is to detect and follow the right path across junctions and open squares avoiding people and obstacles. The robot is equipped with a laser scanner, a (low accuracy) GPS, wheel...

  18. Advances in Autonomous Mini Robots : Proceedings of the 6-th AMiRE Symposium

    CERN Document Server

    Joaquin, Sitte; Felix, Werner

    2012-01-01

    Autonomous robots must carry out useful tasks all by themselves relying entirely on their own perceptions of their environment. The cognitive abilities required for autonomous action are largely independent of robot size, which makes mini robots attractive as artefacts for research, education and entertainment. Autonomous mini robots must be small enough for experimentation on a desktop or a small laboratory.  They must be easy to carry and safe for interaction with humans. They must not be expensive. Mini robot designers have to work at the leading edge of technology so that their creations can carry out purposeful autonomic action under these constraints. Since 2001 researchers have met every two years for an international symposium to report on the advances achieved in Autonomous Mini  Robots for Research and Edutainment (AMiRE). The AMiRE Symposium is a single track conference that offers ample opportunities for discussion and exchange of ideas. This volume contains the contributed papers of the 2011 AM...

  19. Robots in pipe and vessel inspection: past, present, and future

    International Nuclear Information System (INIS)

    Mueller, T.A.; Tyndall, J.F.

    1984-01-01

    Over the past several decades, remotely operated scanners have been employed to inspect piping and pressure vessels. These devices in their early forms were manually controlled manipulators functioning as mere extensions of the operator. With the addition of limit sensing, speed control, and positional feedback and display, the early manipulators became primitive robots. By adding computer controls with their degree of intelligence to the devices, they achieved the status of robots. Future applications of vision, adaptive control, proximity sensing, and pattern recognition will bring these devices to a level of intelligence that will make automated robotic inspection of pipes and pressure vessels a true reality

  20. Development and implementation of algorithms in a population of cooperative autonomous mobile robots

    CSIR Research Space (South Africa)

    Namoshe, M

    2007-10-01

    Full Text Available An increase in the number of mobile robot users has lead to the design and implementation of cooperative autonomous mobile robots. Autonomous robots require the ability to build maps of an unknown environment while simultaneously using these maps...

  1. Flocking algorithm for autonomous flying robots.

    Science.gov (United States)

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.

  2. Mobile autonomous robot for radiological surveys

    International Nuclear Information System (INIS)

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1992-01-01

    The robotics development group at the Savannah River Laboratory (SRL) is developing a mobile autonomous robot that performs radiological surveys of potentially contaminated floors. The robot is called SIMON, which stands for Semi-Intelligent Mobile Observing Navigator. Certain areas of SRL are classified as radiologically controlled areas (RCAs). In an RCA, radioactive materials are frequently handled by workers, and thus, the potential for contamination is ever present. Current methods used for floor radiological surveying includes labor-intensive manual scanning or random smearing of certain floor locations. An autonomous robot such as SIMON performs the surveying task in a much more efficient manner and will track down contamination before it is contacted by humans. SIMON scans floors at a speed of 1 in./s and stops and alarms upon encountering contamination. Its environment is well defined, consisting of smooth building floors with wide corridors. The kind of contaminations that SIMON is capable of detecting are alpha and beta-gamma. The contamination levels of interest are low to moderate

  3. Autonomous learning in humanoid robotics through mental imagery.

    Science.gov (United States)

    Di Nuovo, Alessandro G; Marocco, Davide; Di Nuovo, Santo; Cangelosi, Angelo

    2013-05-01

    In this paper we focus on modeling autonomous learning to improve performance of a humanoid robot through a modular artificial neural networks architecture. A model of a neural controller is presented, which allows a humanoid robot iCub to autonomously improve its sensorimotor skills. This is achieved by endowing the neural controller with a secondary neural system that, by exploiting the sensorimotor skills already acquired by the robot, is able to generate additional imaginary examples that can be used by the controller itself to improve the performance through a simulated mental training. Results and analysis presented in the paper provide evidence of the viability of the approach proposed and help to clarify the rational behind the chosen model and its implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Full autonomous microline trace robot

    Science.gov (United States)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  5. Development of non-destructive diagnosis technology for pipe internal in thermal power plants based on robotics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungho; Kim, Changhoi; Seo, Yongchil; Lee, Sunguk; Jung, Seungho; Jung, Seyoung

    2011-11-15

    The Pipelines of power plants may have tiny crack by corrosion. Pipe safety inspection should be performed periodically and non-periodically to ensure their safety and integrity. It is difficult to inspection pipes inside defect since pipes of power plant is covered thermal insulation material. Normally pipes inspection was performed part of pipes on outside. A mobile robot was developed for the inspection of pipe of 100 mm inside diameter. The robot is adopted screw type drive mechanism in order to move vertical, horizontal pipes inside. The multi-laser and camera module, which is mounted in front of the robot, captures a sequence of 360 degree shapes of the inner surface of a pipe. The 3D inner shape of pipe is reconstructed from a multi laser triangulation techniques for the inspection of pipes.

  6. Autonomous path planning solution for industrial robot manipulator using backpropagation algorithm

    Directory of Open Access Journals (Sweden)

    PeiJiang Yuan

    2015-12-01

    Full Text Available Here, we propose an autonomous path planning solution using backpropagation algorithm. The mechanism of movement used by humans in controlling their arms is analyzed and then applied to control a robot manipulator. Autonomous path planning solution is a numerical method. The model of industrial robot manipulator used in this article is a KUKA KR 210 R2700 EXTRA robot. In order to show the performance of the autonomous path planning solution, an experiment validation of path tracking is provided. Experiment validation consists of implementation of the autonomous path planning solution and the control of physical robot. The process of converging to target solution is provided. The mean absolute error of position for tool center point is also analyzed. Comparison between autonomous path planning solution and the numerical methods based on Newton–Raphson algorithm is provided to demonstrate the efficiency and accuracy of the autonomous path planning solution.

  7. Pipe robots for internal inspection, non-destructive testing and machining of pipelines

    International Nuclear Information System (INIS)

    Reiss, Alexander

    2016-01-01

    Inspector Systems is a specialist in manufacturing of tethered self-propelled pipe robots for internal inspection, non-destructive testing and machining of pipeline systems. Our industrial sectors, which originates from 30 year experience in the nuclear industry, are Gas and Oil (On-/Offshore, Refineries), Chemical, Petrochemical, Water etc. The pipe robots are able to get inserted through poor access points (e.g. valves) and to pass in bi-directional travelling vertical sections and numerous bends with small arc radius. The paper describes the system concept and performance of the pipe robot technology. A modular construction allows to equip the robots with different operational elements for the respective application.

  8. QFD-based conceptual design of an autonomous underwater robot

    Directory of Open Access Journals (Sweden)

    Thip Pasawang

    2015-12-01

    Full Text Available Autonomous underwater robots in the past few years have been designed according to the individual concepts and experiences of the researchers. To design a robot, which meets all the requirements of potential users, is an advanced work. Hence, a systematic design method that could include users’ preferences and requirements is needed. This paper presents the quality function deployment (QFD technique to design an autonomous underwater robot focusing on the Thai Navy military mission. Important user requirements extracted from the QFD method are the ability to record videos, operating at depth up to 10 meters, the ability to operate remotely with cable and safety concerns related to water leakages. Less important user requirements include beauty, using renewable energy, operating remotely with radio and ability to work during night time. The important design parameters derived from the user requirements are a low cost-controller, an autonomous control algorithm, a compass sensor and vertical gyroscope, and a depth sensor. Of low-importance ranked design parameters include the module design, use clean energy, a low noise electric motor, remote surveillance design, a pressure hull, and a beautiful hull form design. The study results show the feasibility of using QFD techniques to systematically design the autonomous underwater robot to meet user requirements. Mapping between the design and expected parameters and a conceptual drafting design of an autonomous underwater robot are also presented.

  9. Human-robot collaborative navigation for autonomous maintenance management of nuclear installation

    International Nuclear Information System (INIS)

    Nugroho, Djoko Hari

    2002-01-01

    Development of human and robot collaborative navigation for autonomous maintenance management of nuclear installation has been conducted. The human-robot collaborative system is performed using a switching command between autonomous navigation and manual navigation that incorporate a human intervention. The autonomous navigation path is conducted using a novel algorithm of MLG method based on Lozano-Perez s visibility graph. The MLG optimizes the shortest distance and safe constraints. While the manual navigation is performed using manual robot tele operation tools. Experiment in the MLG autonomous navigation system is conducted for six times with 3-D starting point and destination point coordinate variation. The experiment shows a good performance of autonomous robot maneuver to avoid collision with obstacle. The switching navigation is well interpreted using open or close command to RS-232C constructed using LabVIEW

  10. Genetic Optimization and Simulation of a Piezoelectric Pipe-Crawling Inspection Robot

    Science.gov (United States)

    Hollinger, Geoffrey A.; Briscoe, Jeri M.

    2004-01-01

    Using the DarwinZk development software, a genetic algorithm (GA) was used to design and optimize a pipe-crawling robot for parameters such as mass, power consumption, and joint extension to further the research of the Miniature Inspection Systems Technology (MIST) team. In an attempt to improve on existing designs, a new robot was developed, the piezo robot. The final proposed design uses piezoelectric expansion actuators to move the robot with a 'chimneying' method employed by mountain climbers and greatly improves on previous designs in load bearing ability, pipe traversing specifications, and field usability. This research shows the advantages of GA assisted design in the field of robotics.

  11. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  12. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  13. Tracked robot controllers for climbing obstacles autonomously

    Science.gov (United States)

    Vincent, Isabelle

    2009-05-01

    Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.

  14. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized

  15. Development of Multiple Capsule Robots in Pipe

    Directory of Open Access Journals (Sweden)

    Shuxiang Guo

    2018-05-01

    Full Text Available Swallowable capsule robots which travel in body cavities to implement drug delivery, minimally invasive surgery, and diagnosis have provided great potential for medical applications. However, the space constraints of the internal environment and the size limitations of the robots are great challenges to practical application. To address the fundamental challenges of narrow body cavities, a different-frequency driven approach for multiple capsule robots with screw structure manipulated by external electromagnetic field is proposed in this paper. The multiple capsule robots are composed of driven permanent magnets, joint permanent magnets, and a screw body. The screw body generates a propulsive force in a fluidic environment. Moreover, robots can form new constructions via mutual docking and release. To provide manipulation guidelines for active locomotion, a dynamic model of axial propulsion and circumferential torque is established. The multiple start and step-out frequencies for multiple robots are defined theoretically. Moreover, the different-frequency driven approach based on geometrical parameters of screw structure and the overlap angles of magnetic polarities is proposed to drive multiple robots in an identical electromagnetic field. Finally, two capsule robots were prototyped and experiments in a narrow pipe were conducted to verify the different motions such as docking, release, and cooperative locomotion. The experimental results demonstrated the validity of the driven approach for multiple capsule robots in narrow body cavities.

  16. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully a...... automatically learn and store visual landmarks, and later recognize these landmarks from arbitrary positions and thus estimate robot position and heading.......The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully...... autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...

  17. Interactive animated displayed of man-controlled and autonomous robots

    International Nuclear Information System (INIS)

    Crane, C.D. III; Duffy, J.

    1986-01-01

    An interactive computer graphics program has been developed which allows an operator to more readily control robot motions in two distinct modes; viz., man-controlled and autonomous. In man-controlled mode, the robot is guided by a joystick or similar device. As the robot moves, actual joint angle information is measured and supplied to a graphics system which accurately duplicates the robot motion. Obstacles are placed in the actual and animated workspace and the operator is warned of imminent collisions by sight and sound via the graphics system. Operation of the system in man-controlled mode is shown. In autonomous mode, a collision-free path between specified points is obtained by previewing robot motions on the graphics system. Once a satisfactory path is selected, the path characteristics are transmitted to the actual robot and the motion is executed. The telepresence system developed at the University of Florida has been successful in demonstrating that the concept of controlling a robot manipulator with the aid of an interactive computer graphics system is feasible and practical. The clarity of images coupled with real-time interaction and real-time determination of imminent collision with obstacles has resulted in improved operator performance. Furthermore, the ability for an operator to preview and supervise autonomous operations is a significant attribute when operating in a hazardous environment

  18. An autonomous weeding robot for organic farming

    NARCIS (Netherlands)

    Bakker, T.; Asselt, van C.J.; Bontsema, J.; Müller, J.; Straten, van G.

    2006-01-01

    The objective of this research is the replacement of hand weeding in organic farming by a device working autonomously at ¯eld level. The autonomous weeding robot was designed using a structured design approach, giving a good overview of the total design. A vehicle was developed with a diesel engine,

  19. 11th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Chirikjian, Gregory

    2014-01-01

    Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot com...

  20. Monte Carlo Registration and Its Application with Autonomous Robots

    Directory of Open Access Journals (Sweden)

    Christian Rink

    2016-01-01

    Full Text Available This work focuses on Monte Carlo registration methods and their application with autonomous robots. A streaming and an offline variant are developed, both based on a particle filter. The streaming registration is performed in real-time during data acquisition with a laser striper allowing for on-the-fly pose estimation. Thus, the acquired data can be instantly utilized, for example, for object modeling or robot manipulation, and the laser scan can be aborted after convergence. Curvature features are calculated online and the estimated poses are optimized in the particle weighting step. For sampling the pose particles, uniform, normal, and Bingham distributions are compared. The methods are evaluated with a high-precision laser striper attached to an industrial robot and with a noisy Time-of-Flight camera attached to service robots. The shown applications range from robot assisted teleoperation, over autonomous object modeling, to mobile robot localization.

  1. Colias: An Autonomous Micro Robot for Swarm Robotic Applications

    Directory of Open Access Journals (Sweden)

    Farshad Arvin

    2014-07-01

    Full Text Available Robotic swarms that take inspiration from nature are becoming a fascinating topic for multi-robot researchers. The aim is to control a large number of simple robots in order to solve common complex tasks. Due to the hardware complexities and cost of robot platforms, current research in swarm robotics is mostly performed by simulation software. The simulation of large numbers of these robots in robotic swarm applications is extremely complex and often inaccurate due to the poor modelling of external conditions. In this paper, we present the design of a low-cost, open-platform, autonomous micro-robot (Colias for robotic swarm applications. Colias employs a circular platform with a diameter of 4 cm. It has a maximum speed of 35 cm/s which enables it to be used in swarm scenarios very quickly over large arenas. Long-range infrared modules with an adjustable output power allow the robot to communicate with its direct neighbours at a range of 0.5 cm to 2 m. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. It has been tested in both individual and swarm scenarios, and the observed results demonstrate its feasibility for use as a micro-sized mobile robot and as a low-cost platform for robot swarm applications.

  2. From Autonomous Robots to Artificial Ecosystems

    Science.gov (United States)

    Mastrogiovanni, Fulvio; Sgorbissa, Antonio; Zaccaria, Renato

    During the past few years, starting from the two mainstream fields of Ambient Intelligence [2] and Robotics [17], several authors recognized the benefits of the socalled Ubiquitous Robotics paradigm. According to this perspective, mobile robots are no longer autonomous, physically situated and embodied entities adapting themselves to a world taliored for humans: on the contrary, they are able to interact with devices distributed throughout the environment and get across heterogeneous information by means of communication technologies. Information exchange, coupled with simple actuation capabilities, is meant to replace physical interaction between robots and their environment. Two benefits are evident: (i) smart environments overcome inherent limitations of mobile platforms, whereas (ii) mobile robots offer a mobility dimension unknown to smart environments.

  3. Terpsichore. ENEA's autonomous robotics project; Progetto Tersycore, la robotica autonoma

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S; Zanela, S; Santini, A; Nanni, V [ENEA, Centro Ricerche Casaccia, Rome (Italy). Div. Robotica e Informatica Avanzata

    1999-10-01

    The article presents some of the Terpsichore project's results aimed to developed and test algorithms and applications for autonomous robotics. Four applications are described: dynamic mapping of a building's interior through the use of ultrasonic sensors; visual drive of an autonomous robot via a neural network controller; a neural network-based stereo vision system that steers a robot through unknown indoor environments; and the evolution of intelligent behaviours via the genetic algorithm approach.

  4. Towards Competitive Commercial Autonomous Robots: The Configuration Problem

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole

    2011-01-01

    knowledge about the underlying algorithms. The framework also makes it possible for the robot to autonomously calibrate itself, resulting in higher stability of the robot and less development time required. The work is a result of an industrial research project aimed at lowering development costs...

  5. Navigation Method for Autonomous Robots in a Dynamic Indoor Environment

    Czech Academy of Sciences Publication Activity Database

    Věchet, Stanislav; Chen, K.-S.; Krejsa, Jiří

    2013-01-01

    Roč. 3, č. 4 (2013), s. 273-277 ISSN 2223-9766 Institutional support: RVO:61388998 Keywords : particle filters * autonomous mobile robots * mixed potential fields Subject RIV: JD - Computer Applications, Robotics http://www.ausmt.org/index.php/AUSMT/article/view/214/239

  6. A study on in-pipe inspection mobile robots, 3

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Uemura, Masahiro.

    1990-01-01

    This paper deals with inspection path planning for in-pipe inspection mobile robots which have the capability of moving through complicated pipeline networks. It is imperative that the robot systems have an inspection path planning system for such networks for their reasonable and rational operation, controlled by themselves or by the operators. The planning mainly requires two projects: the selection of the place to put the robot in or out, and the generation of the paths in the networks. This system provides the for complicated problems with plural inspection points using a basic strategy of systematically producing patterns and dividing partial problems of simple searches based on rules. (author)

  7. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...

  8. BOA: Asbestos Pipe-Insulation Abatement Robot System

    International Nuclear Information System (INIS)

    Schempf, H.

    1996-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  9. BOA: Pipe asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  10. BOA: Pipe-asbestos insulation removal robot system

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.; Schnorr, W. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  11. BOA: Pipe-asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  12. Field test of an autonomous cucumber picking robot

    NARCIS (Netherlands)

    Henten, van E.J.; Tuijl, van B.A.J.; Hemming, J.; Kornet, J.G.; Bontsema, J.; Os, van E.A.

    2003-01-01

    At the Institute of Agricultural and Environmental Engineering (IMAG B.V.) an autonomous harvesting robot for cucumbers was developed and tested in a greenhouse in autumn 2001. Analysis of the harvest process had revealed that at a 2 ha Dutch production facility four robots are needed to replace the

  13. Design and Implementation of Autonomous Stair Climbing with Nao Humanoid Robot

    OpenAIRE

    Lu, Wei

    2015-01-01

    With the development of humanoid robots, autonomous stair climbing is an important capability. Humanoid robots will play an important role in helping people tackle some basic problems in the future. The main contribution of this thesis is that the NAO humanoid robot can climb the spiral staircase autonomously. In the vision module, the algorithm of image filtering and detecting the contours of the stair contributes to calculating the location of the stairs accurately. Additionally, the st...

  14. Autonomous mobile robot localization using Kalman filter

    Directory of Open Access Journals (Sweden)

    Mohd Nasir Nabil Zhafri

    2017-01-01

    Full Text Available Autonomous mobile robot field has gain interest among researchers in recent years. The ability of a mobile robot to locate its current position and surrounding environment is the fundamental in order for it to operate autonomously, which commonly known as localization. Localization of mobile robot are commonly affected by the inaccuracy of the sensors. These inaccuracies are caused by various factors which includes internal interferences of the sensor and external environment noises. In order to overcome these noises, a filtering method is required in order to improve the mobile robot’s localization. In this research, a 2- wheeled-drive (2WD mobile robot will be used as platform. The odometers, inertial measurement unit (IMU, and ultrasonic sensors are used for data collection. Data collected is processed using Kalman filter to predict and correct the error from these sensors reading. The differential drive model and measurement model which estimates the environmental noises and predict a correction are used in this research. Based on the simulation and experimental results, the x, y and heading was corrected by converging the error to10 mm, 10 mm and 0.06 rad respectively.

  15. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-09-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  16. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-06-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  17. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  18. Autonomous Mobile Robot That Can Read

    Directory of Open Access Journals (Sweden)

    Létourneau Dominic

    2004-01-01

    Full Text Available The ability to read would surely contribute to increased autonomy of mobile robots operating in the real world. The process seems fairly simple: the robot must be capable of acquiring an image of a message to read, extract the characters, and recognize them as symbols, characters, and words. Using an optical Character Recognition algorithm on a mobile robot however brings additional challenges: the robot has to control its position in the world and its pan-tilt-zoom camera to find textual messages to read, potentially having to compensate for its viewpoint of the message, and use the limited onboard processing capabilities to decode the message. The robot also has to deal with variations in lighting conditions. In this paper, we present our approach demonstrating that it is feasible for an autonomous mobile robot to read messages of specific colors and font in real-world conditions. We outline the constraints under which the approach works and present results obtained using a Pioneer 2 robot equipped with a Pentium 233 MHz and a Sony EVI-D30 pan-tilt-zoom camera.

  19. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  20. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  1. Navigation strategies for multiple autonomous mobile robots moving in formation

    Science.gov (United States)

    Wang, P. K. C.

    1991-01-01

    The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.

  2. Toward semi-autonomous control of mobile robots for constrained environments

    International Nuclear Information System (INIS)

    Mercier, O.; Cara, O.

    1991-01-01

    Drawing from long-time experience in nuclear maintenance robotics, FRAMATOME leads with several partners an important effort with the goal of developing the decision and operator assistance capabilities of mobile robots. Future robots shall be better adapted (in size and configuration) to the operational requirements of nuclear plants work than current demonstrators. Due regards shall be paid to safety aspects and qualification procedure shall be specified soon. Also, dosimetry gains (e.g. as evaluated by DOSIANA) shall be evaluated to establish further the advantages of robotic solutions. Current achievements and plans for the next two years are expected to provide the necessary know-how for semi-autonomous control of various mobile robots in actual missions in nuclear plant environment. These advances in many closely connected disciplines and technologies should put FRAMATOME in a leader position as systems integrator or as developer for future markets in autonomous mobile robotics, not only in the nuclear field but in other domains as well. (author)

  3. Obstacle avoidance test using a sensor-based autonomous robotic system

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Suzuki, Katsuo

    1998-12-01

    From a viewpoint of reducing personnel radiation exposure of plant staffs working in the high radiation area of nuclear facilities, it is often said to be necessary to develop remote robotic systems, which have great potential of performing various tasks in nuclear facilities. Hence, we developed an advanced remote robotic system, consisting of redundant manipulator and environment-sensing systems, which can be applied to complicated handling tasks under unstructured environment. In the robotic system, various types of sensors for environment-sensing are mounted on the redundant manipulator and sensor-based autonomous capabilities are incorporated. This report describes the results of autonomous obstacle avoidance test which was carried out as follows: manipulating valves at the rear-side of wall, through a narrow window of the wall, with the redundant manipulator mounted on an x-axis driving mechanism. From this test, it is confirmed that the developed robotic system can autonomously achieve handling tasks in limited space as avoiding obstacles, which is supposed to be difficult by a non-redundant manipulator. (author)

  4. Development and Evaluation of Compact Robot Imitating a Hermit Crab for Inspecting the Outer Surface of Pipes

    Directory of Open Access Journals (Sweden)

    Naoto Imajo

    2015-01-01

    Full Text Available Terrestrial hermit crabs which are a type of hermit crabs live on land, whereas typical hermit crabs inhabit the sea. They have an ability of climbing a tree vertically. Their claws allow them to hang on the tree. In this study, an outer-pipe inspection robot was developed. Its locomotion mechanism was developed in imitation of the terrestrial hermit crab’s claws. It is equipped with two rimless wheels. Each of the spokes is tipped with a neodymium magnet, which allows the robot to remain attached to even a vertical steel pipe. Moreover, the robot has a mechanism for adjusting the camber angle of the right and left wheels, allowing it to tightly grip pipes with different diameters. Experiments were conducted to check the performance of the robot using steel pipes with different diameters, placed horizontally, vertically, or obliquely. The robot attempted to move a certain distance along a pipe, and its success rate was measured. It was found that the robot could successfully travel along pipes with vertical orientations, although it sometimes fell from oblique or horizontal pipes. The most likely reason for this is identified and discussed. Certain results were obtained in laboratory. Further experiments in actual environment are required.

  5. Nuclear power plant steam pipes repairing with TIRANT 3 robot system

    International Nuclear Information System (INIS)

    Soto Tomas, Marcelo; Curiel Nieva, Marceliano; Monzo Blasco, Enrique; Rodriguez, Salvador Pineda; Vaquer Perez, Juan I.

    2011-01-01

    A typical application functions covering the steam pipes inner surface in coal-fired power station and nuclear power plants. The results of this process are spectacular in terms of protection against corrosion and abrasion, but its application has conditioning factors, such as: Severe application conditions for workers. Due to the postural position (usually kneeling) in small diameter pipes and working with fireproof clothing and masks with outdoor air supplying, due to fumes, sparks and molten metal particles, radiological contamination, confined space, poor lighting... Coating uniformity. As metallization is a manual process, the carried out measurements show small variations in the thickness of the coating, always within the tolerance limits established by the applicable regulations and quality assurance. For all these reasons, Grupo Dominguis has developed the TIRANT 3 robot, a worldwide innovative system, for metallization of steam pipes inner surface. TIRANT 3 robot is teleoperated from outside of the pipe, so that human intervention is reduced to the operations of robot positioning and change of metallization wire. As it is an independent system of the human factor, metallization process performance is significantly increased by reducing rest periods due only to the robot maintenance. Likewise, TIRANT 3 system permits to increase resulting coating uniformity, and thus its resistance, keeping selected parameters constant depending on required type and thickness of wire. TIRANT 3 system has successfully worked in 2010 during the stops refueling of the Units I and II of Laguna Verde nuclear power plant in Mexico. (author)

  6. A study on autonomous maintenance robot, 7

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Shimasaka, Naoki; Kaneshige, Masanori; Iwasaki, Shinnosuke.

    1990-01-01

    This paper deals with the new mechanism of a new maintenance robot, Mark IV, following the previous reports on pipeline inspection and maintenance robots of Mark I, II, and III. The Mark IV has a mechanism capable of inspecting surfaces of storage tanks as well as pipeline outer surfaces, which is another capability of the maintenance robots, different from the previous ones. The main features of Mark IV are as follows, (i) The robot has a multijoint structure, so that it has better adaptability to the curvartures of pipelines and storage tanks. (ii) The joint of the robot has SMA actuators to make the robot lighter in weight. Some actuator shape characteristics are also examined for the robot structure and control. (iii) The robot has suckers at both ends so that the robot can climb up along the wall from the ground. (iv) A robot with the inch worm mechanisms has many functional motions, such that it can pass over flanges and T-joints, and transfer to adjacent pipelines with a wider range of pipe diameters. (v) A control method is given for the mobile motion control. Thus, the functional level of the maintenance robot has been greatly improved by the introduction of the Mark IV robot. (author)

  7. Autonomous navigation system for mobile robots of inspection

    International Nuclear Information System (INIS)

    Angulo S, P.; Segovia de los Rios, A.

    2005-01-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  8. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-02-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  9. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-03-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  10. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.

    Science.gov (United States)

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco

    2009-01-01

    This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.

  11. Context recognition and situation assessment in autonomous mobile robots

    Science.gov (United States)

    Yavnai, Arie

    1993-05-01

    The capability to recognize the operating context and to assess the situation in real-time is needed, if a high functionality autonomous mobile robot has to react properly and effectively to continuously changing situations and events, either external or internal, while the robot is performing its assigned tasks. A new approach and architecture for context recognition and situation assessment module (CORSA) is presented in this paper. CORSA is a multi-level information processing module which consists of adaptive decision and classification algorithms. It performs dynamic mapping from the data space to the context space, and dynamically decides on the context class. Learning mechanism is employed to update the decision variables so as to minimize the probability of misclassification. CORSA is embedded within the Mission Manager module of the intelligent autonomous hyper-controller (IAHC) of the mobile robot. The information regarding operating context, events and situation is then communicated to other modules of the IAHC where it is used to: (a) select the appropriate action strategy; (b) support the processes to arbitration and conflict resolution between reflexive behaviors and reasoning-driven behaviors; (c) predict future events and situations; and (d) determine criteria and priorities for planning, replanning, and decision making.

  12. Design and Development of Vision Based Blockage Clearance Robot for Sewer Pipes

    Directory of Open Access Journals (Sweden)

    Krishna Prasad Nesaian

    2012-03-01

    Full Text Available Robotic technology is one of the advanced technologies, which is capable of completing tasks at situations where humans are unable to reach, see or survive. The underground sewer pipelines are the major tools for the transportation of effluent water. A lot of troubles caused by blockage in sewer pipe will lead to overflow of effluent water, sanitation problems. So robotic vehicle that is capable of traveling at underneath effluent water determining blockage using ultrasonic sensors and clearing by means of drilling mechanism is done. In addition to that wireless camera is fixed which acts as a robot vision by which we can monitor video and capture images using MATLAB tool. Thus in this project a prototype model of underground sewer pipe blockage clearance robot with drilling type will be developed

  13. Terpsichore. ENEA's autonomous robotics project; Progetto Tersycore, la robotica autonoma

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S.; Zanela, S.; Santini, A.; Nanni, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Div. Robotica e Informatica Avanzata

    1999-10-01

    The article presents some of the Terpsichore project's results aimed to developed and test algorithms and applications for autonomous robotics. Four applications are described: dynamic mapping of a building's interior through the use of ultrasonic sensors; visual drive of an autonomous robot via a neural network controller; a neural network-based stereo vision system that steers a robot through unknown indoor environments; and the evolution of intelligent behaviours via the genetic algorithm approach.

  14. Autonomous stair-climbing with miniature jumping robots.

    Science.gov (United States)

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed.

  15. Mapping planetary caves with an autonomous, heterogeneous robot team

    Science.gov (United States)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  16. Computer vision for an autonomous mobile robot

    CSIR Research Space (South Africa)

    Withey, Daniel J

    2015-10-01

    Full Text Available Computer vision systems are essential for practical, autonomous, mobile robots – machines that employ artificial intelligence and control their own motion within an environment. As with biological systems, computer vision systems include the vision...

  17. Autonomous Assembly of Solar Array Modules by a Team of Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate the hypothesis that Intelligent Precision Jigging Robots (IPJRs) and auxiliary robotic manipulators can autonomously perform the local...

  18. Research on a New Bilateral Self-locking Mechanism for an Inchworm Micro In-pipe Robot with Large Traction

    Directory of Open Access Journals (Sweden)

    Junhong Yang

    2014-10-01

    Full Text Available In this paper, we present an innovative bilaterally-controllable self-locking mechanism that can be applied to the micro in-pipe robot. The background and state of the art of the inchworm micro in-pipe robot is briefly described in the very beginning of the paper, where the main factors that influence the traction ability are also discussed. Afterwards, the micro in-pipe robots’ propulsion principle based on a unidirectional self-locking mechanism is discussed. Then, several kinds of self-locking mechanisms are compared, and a new bilaterally-controllable self-locking mechanism is proposed. By implementing the self-locking mechanism, the robot's tractive force is no longer restricted by the friction force, and both two-way motion and position locking for the robot can be achieved. Finally, the traction experiment is conducted using a prototype robot with the new bilaterally-controllable self-locking mechanism. Test results show that this new self-locking mechanism can adapt itself to a diameter of >17~>20 mm and has a blocking force up to 25N, and the maximum tractive force of the in-pipe robot based on such a locking mechanism is 12N under the maximum velocity of 10mm/s.

  19. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.

    Science.gov (United States)

    Ka, Hyun W; Chung, Cheng-Shiu; Ding, Dan; James, Khara; Cooper, Rory

    2018-02-01

    We developed a 3D vision-based semi-autonomous control interface for assistive robotic manipulators. It was implemented based on one of the most popular commercially available assistive robotic manipulator combined with a low-cost depth-sensing camera mounted on the robot base. To perform a manipulation task with the 3D vision-based semi-autonomous control interface, a user starts operating with a manual control method available to him/her. When detecting objects within a set range, the control interface automatically stops the robot, and provides the user with possible manipulation options through audible text output, based on the detected object characteristics. Then, the system waits until the user states a voice command. Once the user command is given, the control interface drives the robot autonomously until the given command is completed. In the empirical evaluations conducted with human subjects from two different groups, it was shown that the semi-autonomous control can be used as an alternative control method to enable individuals with impaired motor control to more efficiently operate the robot arms by facilitating their fine motion control. The advantage of semi-autonomous control was not so obvious for the simple tasks. But, for the relatively complex real-life tasks, the 3D vision-based semi-autonomous control showed significantly faster performance. Implications for Rehabilitation A 3D vision-based semi-autonomous control interface will improve clinical practice by providing an alternative control method that is less demanding physically as well cognitively. A 3D vision-based semi-autonomous control provides the user with task specific intelligent semiautonomous manipulation assistances. A 3D vision-based semi-autonomous control gives the user the feeling that he or she is still in control at any moment. A 3D vision-based semi-autonomous control is compatible with different types of new and existing manual control methods for ARMs.

  20. MECHANICAL DESIGN OF AN AUTONOMOUS MARINE ROBOTIC SYSTEM FOR INTERACTION WITH DIVERS

    Directory of Open Access Journals (Sweden)

    Nikola Stilinović

    2016-09-01

    Full Text Available SCUBA diving, professional or recreational, remains one of the most hazardous activities known by man, mostly due to the fact that the human survival in the underwater environment requires use of technical equipment such as breathing regulators. Loss of breathing gas supply, burst eardrum, decompression sickness and nitrogen narcosis are just a few problems which can occur during an ordinary dive and result in injuries, long-term illnesses or even death. Most common way to reduce the risk of diving is to dive in pairs, thus allowing divers to cooperate with each other and react when uncommon situation occurs. Having the ability to react before an unwanted situation happens would improve diver safety. This paper describes an autonomous marine robotic system that replaces a human dive buddy. Such a robotic system, developed within an FP7 project “CADDY – Cognitive Autonomous Diving Buddy” provides a symbiotic link between robots and human divers in the underwater. The proposed concept consists of a diver, an autonomous underwater vehicle (AUV Buddy and an autonomous surface vehicle (ASV PlaDyPos, acting within a cooperative network linked via an acoustic communication channel. This is a first time that an underwater human-robot system of such a scale has ever been developed. In this paper, focus is put on mechanical characteristics of the robotic vehicles.

  1. A mobile autonomous robot for radiological surveys

    International Nuclear Information System (INIS)

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1992-01-01

    The Robotics Development Group at the Savannah River Site is developing an autonomous robot (SIMON) to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The robot, a Cybermotion K2A base, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It uses an ultrasonic ranging system for collision avoidance. In addition, two safety bumpers located in the front and the back of the robot will stop the robots motion when they are depressed. Paths for the robot are preprogrammed and the robots motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/0 interface for remote operation. Up to 30 detectors may be configured with the RM22A

  2. Theseus: tethered distributed robotics (TDR)

    Science.gov (United States)

    Digney, Bruce L.; Penzes, Steven G.

    2003-09-01

    The Defence Research and Development Canada's (DRDC) Autonomous Intelligent System's program conducts research to increase the independence and effectiveness of military vehicles and systems. DRDC-Suffield's Autonomous Land Systems (ALS) is creating new concept vehicles and autonomous control systems for use in outdoor areas, urban streets, urban interiors and urban subspaces. This paper will first give an overview of the ALS program and then give a specific description of the work being done for mobility in urban subspaces. Discussed will be the Theseus: Thethered Distributed Robotics (TDR) system, which will not only manage an unavoidable tether but exploit it for mobility and navigation. Also discussed will be the prototype robot called the Hedgehog, which uses conformal 3D mobility in ducts, sewer pipes, collapsed rubble voids and chimneys.

  3. Strategy in the Robotic Age: A Case for Autonomous Warfare

    Science.gov (United States)

    2014-09-01

    enabling technology that augments human performance, such as exoskeleton suits, and other complementary fields that make robotics function...philosophy of maneuver warfare with new technologies from the Robotic Age, such as unmanned systems and exoskeleton suits, to present a new warfighting...and Brimley, “20YY,” 12. 49 the exoskeleton suit, but rather that the full benefit of autonomous warfare will be achieved by leveraging mass and

  4. Design and construction of an in-pipe robot for inspection and maintenance

    KAUST Repository

    Sibai, Fadi N.

    2012-12-01

    Inspection and maintenance of aging pipelines is crucial to the reliable and continued distribution of hydrocarbons. In this paper, we describe the design and construction of a robotic platform for inspection and minor maintenance of pipelines. The 7.5 kg robotic platform was demonstrated to move straight inside 12″ to 16″ diameter pipes in a forward or backward direction, and either horizontally or vertically. The experimental robotic platform has three sets of two wheels, and three driving motors. The equations governing the mechanical frame\\'s component sizes are presented and the robotic frame component dimensions derived. The paper also discusses the construction and testing of the robot. Future work includes adding sensors, controls for turning, a microcontroller board, and a robotic arm for performing maintenance tasks. © 2012 IEEE.

  5. Design and construction of an in-pipe robot for inspection and maintenance

    KAUST Repository

    Sibai, Fadi N.; Sayegh, Amer Ahmed; Al-Taie, Ihsan

    2012-01-01

    Inspection and maintenance of aging pipelines is crucial to the reliable and continued distribution of hydrocarbons. In this paper, we describe the design and construction of a robotic platform for inspection and minor maintenance of pipelines. The 7.5 kg robotic platform was demonstrated to move straight inside 12″ to 16″ diameter pipes in a forward or backward direction, and either horizontally or vertically. The experimental robotic platform has three sets of two wheels, and three driving motors. The equations governing the mechanical frame's component sizes are presented and the robotic frame component dimensions derived. The paper also discusses the construction and testing of the robot. Future work includes adding sensors, controls for turning, a microcontroller board, and a robotic arm for performing maintenance tasks. © 2012 IEEE.

  6. Semi-autonomous exploration of multi-floor buildings with a legged robot

    Science.gov (United States)

    Wenger, Garrett J.; Johnson, Aaron M.; Taylor, Camillo J.; Koditschek, Daniel E.

    2015-05-01

    This paper presents preliminary results of a semi-autonomous building exploration behavior using the hexapedal robot RHex. Stairwells are used in virtually all multi-floor buildings, and so in order for a mobile robot to effectively explore, map, clear, monitor, or patrol such buildings it must be able to ascend and descend stairwells. However most conventional mobile robots based on a wheeled platform are unable to traverse stairwells, motivating use of the more mobile legged machine. This semi-autonomous behavior uses a human driver to provide steering input to the robot, as would be the case in, e.g., a tele-operated building exploration mission. The gait selection and transitions between the walking and stair climbing gaits are entirely autonomous. This implementation uses an RGBD camera for stair acquisition, which offers several advantages over a previously documented detector based on a laser range finder, including significantly reduced acquisition time. The sensor package used here also allows for considerable expansion of this behavior. For example, complete automation of the building exploration task driven by a mapping algorithm and higher level planner is presently under development.

  7. Autonomous mobile robot for radiologic surveys

    International Nuclear Information System (INIS)

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1994-01-01

    An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures

  8. Towards Autonomous Operations of the Robonaut 2 Humanoid Robotic Testbed

    Science.gov (United States)

    Badger, Julia; Nguyen, Vienny; Mehling, Joshua; Hambuchen, Kimberly; Diftler, Myron; Luna, Ryan; Baker, William; Joyce, Charles

    2016-01-01

    The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012. Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators ("legs"), more capable processors, and new sensors, as shown in Figure 1. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions. Technology development has thus far followed two main paths, autonomous climbing and efficient tool manipulation. Central to both technologies has been the incorporation of a human robotic interaction paradigm that involves the visualization of sensory and pre-planned command data with models of the robot and its environment. Figure 2 shows screenshots of these interactive tools, built in rviz, that are used to develop and implement these technologies on R2. Robonaut 2 is designed to move along the handrails and seat track around the US lab inside the ISS. This is difficult for many reasons, namely the environment is cluttered and constrained, the robot has many degrees of freedom (DOF) it can utilize for climbing, and remote commanding for precision tasks such as grasping handrails is time-consuming and difficult. Because of this, it is important to develop the technologies needed to allow the robot to reach operator-specified positions as

  9. MART: an overview of the Mobile Autonomous Robot Twente project

    NARCIS (Netherlands)

    Tillema, H.G.; de Graaf, A.J.; Koster, M.P.; Nauta, J.M.; Oelen, W.; Schipper, D.A.

    1993-01-01

    At the University of Twente a mobile autonomous robot system is built that is designed to operate in a 'factory of the future'. Multiple robots, consisting of a manipulator on top of a vehicle, will drive through an assembly hall to collect components at part supply stations and to assemble

  10. Distributed Autonomous Robotic Systems : the 12th International Symposium

    CERN Document Server

    Cho, Young-Jo

    2016-01-01

    This volume of proceedings includes 32 original contributions presented at the 12th International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), held in November 2014. The selected papers in this volume are authored by leading researchers from Asia, Europe, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. .

  11. Nuclear power plant steam pipes repairing with Tirant 3 Robot system

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Lazaro, F. [Revestimientos Anticorrosivos Industriales, S. L. U., Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Arnaldos, A., E-mail: m.soto@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    The metallization arc spray process is based on the projection of molten metal, supplied by means of different stainless alloys wire, over a surface of carbon steel usually, with the object of serving as protection against erosion-corrosion, increasing resistance to abrasion and detrition. A typical application functions covering the steam pipes inner surface in coal-fired power station and nuclear power plants. The results of this process are spectacular in terms of protection against corrosion and abrasion, but its application has conditioning factors, such as: Severe application conditions for workers. Due to the worker's postural position (usually kneeling) in 32 diameter pipes and working with fireproof clothing and masks with outdoor air supplying, due to fumes, sparks and molten metal particles, radiological contamination, confined space, poor lighting, ... Coating uniformity. As metallization is a manual process, the carried out measurements show small variations in the thickness of the coating, always within the tolerance limits established by the applicable regulations and quality assurance. An increase in the uniformity of the projected coating, increase the resistance and give a better surface protection. For all these reasons, Lainsa has developed the Tirant 3 robot, a worldwide innovative system, for metallization of steam pipes inner surface. Tirant 3 robot is tele operated from outside of the pipe, so that human intervention is reduced to the operations of robot positioning and change of metallization wire. As it is an independent system of the human factor, metallization process performance is significantly increased by reducing rest periods due only to the robot maintenance. Likewise, Tirant 3 system permits to increase resulting coating uniformity and thus its resistance, keeping selected parameters constant (forward speed, rotation speed and inner surface distance) depending on required type and thickness of wire. (Author)

  12. ROBERT autonomous navigation robot with artificial vision

    International Nuclear Information System (INIS)

    Cipollini, A.; Meo, G.B.; Nanni, V.; Rossi, L.; Taraglio, S.; Ferjancic, C.

    1993-01-01

    This work, a joint research between ENEA (the Italian National Agency for Energy, New Technologies and the Environment) and DIGlTAL, presents the layout of the ROBERT project, ROBot with Environmental Recognizing Tools, under development in ENEA laboratories. This project aims at the development of an autonomous mobile vehicle able to navigate in a known indoor environment through the use of artificial vision. The general architecture of the robot is shown together with the data and control flow among the various subsystems. Also the inner structure of the latter complete with the functionalities are given in detail

  13. A study on an autonomous pipeline maintenance robot, 8

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Niitsu, Shunichi; Kaneshige, Masanori; Iwasaki, Shinnosuke.

    1990-01-01

    This paper deals with the path planning and sensing planning expert system with learning functions for the pipeline inspection and maintenance robot, Mark IV. The robot can carry out inspection tasks to autonomously detect malfunctions in a plant pipeline system. Furthermore, the robot becomes more intelligent by adding the following functions: (1) the robot, Mark IV, is capable of inspecting surfaces of storage tanks as well as pipeline outer surfaces; (2) in path planning, the robot has a learning function using information generated in the past such as a moving path, task level and control commands of the robot; (3) in inspecting a pipeline system with plant equipment such as valves, franges, T- and L-joints, the robot is capable of inspecting continuous surfaces in pipeline. Thus, together with the improved path planning expert system (PPES) and the sensing planning expert system (SPES), the Mark IV robot becomes intelligent enough to automatically carry out given inspection tasks. (author)

  14. Remote Sensing of Radiation Dose Rate by Customizing an Autonomous Robot

    International Nuclear Information System (INIS)

    Kobayashi, T; Nakahara, M; Morisato, K; Takashina, T; Kanematsu, H

    2012-01-01

    Distribution of radiation dose was measured by customizing an autonomous cleaning robot 'Roomba' and a scintillation counter. The robot was used as a vehicle carrying the scintillation survey meter, and was additionally equipped with an H8 micro computer to remote-control the vehicle and to send measured data. The data obtained were arranged with position data, and then the distribution map of the radiation dose rate was produced. Manual, programmed and autonomous driving tests were conducted, and all performances were verified. That is, for each operational mode, the measurements both with moving and with discrete moving were tried in and outside of a room. Consequently, it has been confirmed that remote sensing of radiation dose rate is possible by customizing a robot on market.

  15. Autonomous mobile robotic system for supporting counterterrorist and surveillance operations

    Science.gov (United States)

    Adamczyk, Marek; Bulandra, Kazimierz; Moczulski, Wojciech

    2017-10-01

    Contemporary research on mobile robots concerns applications to counterterrorist and surveillance operations. The goal is to develop systems that are capable of supporting the police and special forces by carrying out such operations. The paper deals with a dedicated robotic system for surveillance of large objects such as airports, factories, military bases, and many others. The goal is to trace unauthorised persons who try to enter to the guarded area, document the intrusion and report it to the surveillance centre, and then warn the intruder by sound messages and eventually subdue him/her by stunning through acoustic effect of great power. The system consists of several parts. An armoured four-wheeled robot assures required mobility of the system. The robot is equipped with a set of sensors including 3D mapping system, IR and video cameras, and microphones. It communicates with the central control station (CCS) by means of a wideband wireless encrypted system. A control system of the robot can operate autonomously, and under remote control. In the autonomous mode the robot follows the path planned by the CCS. Once an intruder has been detected, the robot can adopt its plan to allow tracking him/her. Furthermore, special procedures of treatment of the intruder are applied including warning about the breach of the border of the protected area, and incapacitation of an appropriately selected very loud sound until a patrol of guards arrives. Once getting stuck the robot can contact the operator who can remotely solve the problem the robot is faced with.

  16. Adaptive Visual Face Tracking for an Autonomous Robot

    NARCIS (Netherlands)

    van Hoof, Herke; van der Zant, Tijn; Wiering, Marco

    2011-01-01

    Perception is an essential ability for autonomous robots in non-standardized conditions. However, the appearance of objects can change between different conditions. A system visually tracking a target based on its appearance could lose its target in those cases. A tracker learning the appearance of

  17. On the Use of Safety Certification Practices in Autonomous Field Robot Software Development

    DEFF Research Database (Denmark)

    Mogensen, Johann Thor Ingibergsson; Schultz, Ulrik Pagh; Kuhrmann, Marco

    2015-01-01

    reactions or performance in malfunctioning systems, and influence industry regarding software development and project management. However, academia seemingly did not reach the same degree of utilisation of standards. This paper presents the findings from a systematic mapping study in which we study...... the state-of-the-art in developing software for safety-critical software for autonomous field robots. The purpose of the study is to identify practices used for the development of autonomous field robots and how these practices relate to available safety standards. Our findings from reviewing 49 papers show...... on the quest for suitable approaches to develop safety-critical software, awaiting appropriate standards for this support....

  18. A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.

    Science.gov (United States)

    Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie

    2014-12-01

    Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.

  19. External force/velocity control for an autonomous rehabilitation robot

    Science.gov (United States)

    Saekow, Peerayuth; Neranon, Paramin; Smithmaitrie, Pruittikorn

    2018-01-01

    Stroke is a primary cause of death and the leading cause of permanent disability in adults. There are many stroke survivors, who live with a variety of levels of disability and always need rehabilitation activities on daily basis. Several studies have reported that usage of rehabilitation robotic devices shows the better improvement outcomes in upper-limb stroke patients than the conventional therapy-nurses or therapists actively help patients with exercise-based rehabilitation. This research focuses on the development of an autonomous robotic trainer designed to guide a stroke patient through an upper-limb rehabilitation task. The robotic device was designed and developed to automate the reaching exercise as mentioned. The designed robotic system is made up of a four-wheel omni-directional mobile robot, an ATI Gamma multi-axis force/torque sensor used to measure contact force and a microcontroller real-time operating system. Proportional plus Integral control was adapted to control the overall performance and stability of the autonomous assistive robot. External force control was successfully implemented to establish the behavioral control strategy for the robot force and velocity control scheme. In summary, the experimental results indicated satisfactorily stable performance of the robot force and velocity control can be considered acceptable. The gain tuning for proportional integral (PI) velocity control algorithms was suitably estimated using the Ziegler-Nichols method in which the optimized proportional and integral gains are 0.45 and 0.11, respectively. Additionally, the PI external force control gains were experimentally tuned using the trial and error method based on a set of experiments which allow a human participant moves the robot along the constrained circular path whilst attempting to minimize the radial force. The performance was analyzed based on the root mean square error (E_RMS) of the radial forces, in which the lower the variation in radial

  20. BOA: Pipe-asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Mutschler, E.

    1995-01-01

    This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY '95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee

  1. Autonomous biomorphic robots as platforms for sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-10-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.

  2. Autonomous biomorphic robots as platforms for sensors

    International Nuclear Information System (INIS)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-01-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology

  3. Automatic tracking of laparoscopic instruments for autonomous control of a cameraman robot.

    Science.gov (United States)

    Khoiy, Keyvan Amini; Mirbagheri, Alireza; Farahmand, Farzam

    2016-01-01

    An automated instrument tracking procedure was designed and developed for autonomous control of a cameraman robot during laparoscopic surgery. The procedure was based on an innovative marker-free segmentation algorithm for detecting the tip of the surgical instruments in laparoscopic images. A compound measure of Saturation and Value components of HSV color space was incorporated that was enhanced further using the Hue component and some essential characteristics of the instrument segment, e.g., crossing the image boundaries. The procedure was then integrated into the controlling system of the RoboLens cameraman robot, within a triple-thread parallel processing scheme, such that the tip is always kept at the center of the image. Assessment of the performance of the system on prerecorded real surgery movies revealed an accuracy rate of 97% for high quality images and about 80% for those suffering from poor lighting and/or blood, water and smoke noises. A reasonably satisfying performance was also observed when employing the system for autonomous control of the robot in a laparoscopic surgery phantom, with a mean time delay of 200ms. It was concluded that with further developments, the proposed procedure can provide a practical solution for autonomous control of cameraman robots during laparoscopic surgery operations.

  4. An architecture for an autonomous learning robot

    Science.gov (United States)

    Tillotson, Brian

    1988-01-01

    An autonomous learning device must solve the example bounding problem, i.e., it must divide the continuous universe into discrete examples from which to learn. We describe an architecture which incorporates an example bounder for learning. The architecture is implemented in the GPAL program. An example run with a real mobile robot shows that the program learns and uses new causal, qualitative, and quantitative relationships.

  5. Enabling technologies for the prassi autonomous robot

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S; Nanni, V [ENEA, Robotics and Information Technology Division, Rome (Italy)

    2001-07-01

    In this book are summarised some of the results of the PRASSI project as presented by the different partners of the effort. PRASSI is an acronym which stands for Autonomous Robotic Platform for the Security and Surveillance of plants, the Italian for it is 'Piattaforma Robotica per la Sorveglianza e Sicurezza d'Impianto'. This project has been funded by the Italian Ministry for the Education, the University and the Research (MIUR) in the framework of the project High Performance Computing Applied to Robotics (Calcolo Parallelo con Applicazioni alla Robotica) of the law 95/1995. The idea behind such an initiative is that of fostering the knowledge and possibly the use of high performance computing in the research and industrial community. In other words, robotic scientists are always simplifying their algorithms or using particular approaches (e.g. soft computing) in order to use standard processors for difficult sensorial data processing; well, what if an embedded parallel computer were available, with at least one magnitude more of computing power?.

  6. Developing operation algorithms for vision subsystems in autonomous mobile robots

    Science.gov (United States)

    Shikhman, M. V.; Shidlovskiy, S. V.

    2018-05-01

    The paper analyzes algorithms for selecting keypoints on the image for the subsequent automatic detection of people and obstacles. The algorithm is based on the histogram of oriented gradients and the support vector method. The combination of these methods allows successful selection of dynamic and static objects. The algorithm can be applied in various autonomous mobile robots.

  7. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection

    International Nuclear Information System (INIS)

    Anthierens, C.

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60μm. A PID control law is used to control the robot but state feed back control law is planed. (author)

  8. Autonomous navigation system for mobile robots of inspection; Sistema de navegacion autonoma para robots moviles de inspeccion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo S, P. [ITT, Metepec, Estado de Mexico (Mexico); Segovia de los Rios, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: pedrynteam@hotmail.com

    2005-07-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  9. BOA: Asbestos pipe insulation removal robot system. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  10. Design of an autonomous mobile robot for service applications

    CSIR Research Space (South Africa)

    De Villiers, M

    2011-02-01

    Full Text Available This research project proposes the development of an autonomous, omnidirectional vehicle that will be used for general indoor service applications. A suggested trial application for this service robot will be to deliver printouts to various network...

  11. On detection and automatic tracking of butt weld line in thin wall pipe welding by a mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Ishii, Hideaki; Muto, Akifumi

    1992-01-01

    An automatic pipe welding mobile robot system with visual sensor was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to make an automatic welding, the welding torch can track the butt weld line of the pipes at a constant speed by rotating the robot head. Main results obtained are summarized as follows: 1) Using a proper lighting fixed in front of the CCD camera, the butt weld line of thin wall pipes can be recongnized stably. In this case, the root gap should be approximately 0.5 mm. 2) In order to detect the weld line stably during moving along the pipe, a brightness distribution measured by the CCD camera should be subjected to smoothing and differentiating and then the weld line is judged by the maximum and minimum values of the differentials. 3) By means of the basic robot system with a visual sensor controlled by a personal computer, the detection and in-process automatic tracking of a weld line are possible. The average tracking error was approximately 0.2 mm and maximum error 0.5 mm and the welding speed was held at a constant value with error of about 0.1 cm/min. (author)

  12. A new technique for robot vision in autonomous underwater vehicles using the color shift in underwater imaging

    Science.gov (United States)

    2017-06-01

    FOR ROBOT VISION IN AUTONOMOUS UNDERWATER VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING by Jake A. Jones June 2017 Thesis Advisor...techniques to determine the distances from each pixel to the camera. 14. SUBJECT TERMS unmanned undersea vehicles (UUVs), autonomous ... AUTONOMOUS UNDERWATER VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING Jake A. Jones Lieutenant Commander, United States Navy B.S

  13. A traffic priority language for collision-free navigation of autonomous mobile robots in dynamic environments.

    Science.gov (United States)

    Bourbakis, N G

    1997-01-01

    This paper presents a generic traffic priority language, called KYKLOFORTA, used by autonomous robots for collision-free navigation in a dynamic unknown or known navigation space. In a previous work by X. Grossmman (1988), a set of traffic control rules was developed for the navigation of the robots on the lines of a two-dimensional (2-D) grid and a control center coordinated and synchronized their movements. In this work, the robots are considered autonomous: they are moving anywhere and in any direction inside the free space, and there is no need of a central control to coordinate and synchronize them. The requirements for each robot are i) visual perception, ii) range sensors, and iii) the ability of each robot to detect other moving objects in the same free navigation space, define the other objects perceived size, their velocity and their directions. Based on these assumptions, a traffic priority language is needed for each robot, making it able to decide during the navigation and avoid possible collision with other moving objects. The traffic priority language proposed here is based on a set of primitive traffic priority alphabet and rules which compose pattern of corridors for the application of the traffic priority rules.

  14. Remote radioactive waste drum inspection with an autonomous mobile robot

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Ward, C.R.; Wagner, D.G.

    1992-01-01

    An autonomous mobile robot is being developed to perform remote surveillance and inspection task on large numbers of stored radioactive waste drums. The robot will be self guided through narrow storage aisles and record the visual image of each viewable drum for subsequent off line analysis and archiving. The system will remove the personnel from potential exposure to radiation, perform the require inspections, and improve the ability to assess the long term trends in drum conditions

  15. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  16. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  17. HERMIES-3: A step toward autonomous mobility, manipulation, and perception

    Science.gov (United States)

    Weisbin, C. R.; Burks, B. L.; Einstein, J. R.; Feezell, R. R.; Manges, W. W.; Thompson, D. H.

    1989-01-01

    HERMIES-III is an autonomous robot comprised of a seven degree-of-freedom (DOF) manipulator designed for human scale tasks, a laser range finder, a sonar array, an omni-directional wheel-driven chassis, multiple cameras, and a dual computer system containing a 16-node hypercube expandable to 128 nodes. The current experimental program involves performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES-III). The environment in which the robots operate has been designed to include multiple valves, pipes, meters, obstacles on the floor, valves occluded from view, and multiple paths of differing navigation complexity. The ongoing research program supports the development of autonomous capability for HERMIES-IIB and III to perform complex navigation and manipulation under time constraints, while dealing with imprecise sensory information.

  18. Enabling technologies for the prassi autonomous robot

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S.; Nanni, V. [ENEA, Robotics and Information Technology Division, Rome (Italy)

    2001-07-01

    In this book are summarised some of the results of the PRASSI project as presented by the different partners of the effort. PRASSI is an acronym which stands for Autonomous Robotic Platform for the Security and Surveillance of plants, the Italian for it is 'Piattaforma Robotica per la Sorveglianza e Sicurezza d'Impianto'. This project has been funded by the Italian Ministry for the Education, the University and the Research (MIUR) in the framework of the project High Performance Computing Applied to Robotics (Calcolo Parallelo con Applicazioni alla Robotica) of the law 95/1995. The idea behind such an initiative is that of fostering the knowledge and possibly the use of high performance computing in the research and industrial community. In other words, robotic scientists are always simplifying their algorithms or using particular approaches (e.g. soft computing) in order to use standard processors for difficult sensorial data processing; well, what if an embedded parallel computer were available, with at least one magnitude more of computing power?.

  19. Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty

    Science.gov (United States)

    Armah, Stephen Kofi

    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized

  20. Autonomous Navigation, Dynamic Path and Work Flow Planning in Multi-Agent Robotic Swarms

    Data.gov (United States)

    National Aeronautics and Space Administration — Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots,...

  1. A survey on pattern formation of autonomous mobile robots: asynchrony, obliviousness and visibility

    International Nuclear Information System (INIS)

    Yamauchi, Yukiko

    2013-01-01

    A robot system consists of autonomous mobile robots each of which repeats Look-Compute-Move cycles, where the robot observes the positions of other robots (Look phase), computes the track to the next location (Compute phase), and moves along the track (Move phase). In this survey, we focus on self-organization of mobile robots, especially their power of forming patterns. The formation power of a robot system is the class of patterns that the robots can form, and existing results show that the robot system's formation power is determined by their asynchrony, obliviousness, and visibility. We briefly survey existing results, with impossibilities and pattern formation algorithms. Finally, we present several open problems related to the pattern formation problem of mobile robots

  2. A study on an autonomous pipeline maintenance robot, 5

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Otsuka, Masashi.

    1989-01-01

    The path planning is very important for the pipeline maintenance robot because there are many obstacles on pipeline such as flanges and T-joints and others, and because pipelines are constructed as a connected network in a very complicated way. Furthermore the maintenance robot Mark III previously reported has the ability to transit from one pipe to another the path planner should consider. The expert system especially aimed for path planning, named PPES (Path Planning Expert System), is described in this paper. A human-operator has only to give some tasks to this system. This system automatically replies with the optimal path, which is based on the calculation of the task levels and list of some control commands. Task level is a criterion to determine one optimal path. It consists of the difference of potential energies, the static joint torques, velocity of the robot, step numbers of the grippers' or body's movement, which the robot requires. This system also has graphic illustrations, so that the operator can easily check and understand the plant map and the result of the path planning. (author)

  3. Autonomous Robotic Weapons: US Army Innovation for Ground Combat in the Twenty-First Century

    Science.gov (United States)

    2015-05-21

    1 Introduction Today the robot is an accepted fact, but the principle has not been pushed far enough. In the twenty-first century the...2013, accessed March 29, 2015, http://www.bbc.com/news/magazine-21576376?print=true. 113 Steven Kotler , “Say Hello to Comrade Terminator: Russia’s...of autonomous robotic weapons, black- marketed directed energy weapons, and or commercially available software, potential adversaries may find

  4. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  5. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  6. An automated miniature robotic vehicle inspection system

    International Nuclear Information System (INIS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-01-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software

  7. An Adaptive Game Algorithm for an Autonomous, Mobile Robot

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Bak, Thomas; Risager, Claus

    2012-01-01

    This paper presents a field study of a physical ball game for elderly based on an autonomous, mobile robot. The game algorithm is based on Case Based Reasoning and adjusts the game challenge to the player’s mobility skills by registering the spatio-temporal behaviour of the player using an on boa...

  8. BOA: Asbestos pipe-insulation removal robot system. Phase I. Topical report, November 1993--December 1994

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.E.

    1995-01-01

    Based on several key design criteria and site visits, we developed a Robot design and built a system which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure. Experimental results indicated that the current robotic abatement process is sound yet needs to be further expanded and modified. One of the main discoveries was that a longitudinal cut to fully allow the paddles to dig in and compress the insulation off the pipe is essential. Furthermore, a different cutting method might be explored to alleviate the need for a deeper cut and to enable a combination of certain functions such as compression and cutting. Unfortunately due to a damaged mechanism caused by extensive testing, we were unable to perform vertical piping abatement experiments, but foresee no trouble in implementing them in the next proposed Phase. Other encouraging results have BOA removing asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. However, we feel confident that we can double the asbestos removal rate by improving cutting speed, and increasing the length of the BOA robot. The containment and vacuum system on BOA is able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/8-hr. shift. Currently, BOA weighs about 117 pounds which is more than a human is permitted to lift overhead under OSHA requirements (i.e., 25 pounds). We are considering designing the robot into two components (i.e., locomotor section and cutter/removal section) to aid human installation as well as incorporating composite materials. A more detailed list of all the technical modifications is given in this topical report

  9. BOA: Asbestos pipe-insulation removal robot system. Phase I. Topical report, November 1993--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.E.

    1995-01-01

    Based on several key design criteria and site visits, we developed a Robot design and built a system which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure. Experimental results indicated that the current robotic abatement process is sound yet needs to be further expanded and modified. One of the main discoveries was that a longitudinal cut to fully allow the paddles to dig in and compress the insulation off the pipe is essential. Furthermore, a different cutting method might be explored to alleviate the need for a deeper cut and to enable a combination of certain functions such as compression and cutting. Unfortunately due to a damaged mechanism caused by extensive testing, we were unable to perform vertical piping abatement experiments, but foresee no trouble in implementing them in the next proposed Phase. Other encouraging results have BOA removing asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. However, we feel confident that we can double the asbestos removal rate by improving cutting speed, and increasing the length of the BOA robot. The containment and vacuum system on BOA is able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/8-hr. shift. Currently, BOA weighs about 117 pounds which is more than a human is permitted to lift overhead under OSHA requirements (i.e., 25 pounds). We are considering designing the robot into two components (i.e., locomotor section and cutter/removal section) to aid human installation as well as incorporating composite materials. A more detailed list of all the technical modifications is given in this topical report.

  10. Task Refinement for Autonomous Robots using Complementary Corrective Human Feedback

    Directory of Open Access Journals (Sweden)

    Cetin Mericli

    2011-06-01

    Full Text Available A robot can perform a given task through a policy that maps its sensed state to appropriate actions. We assume that a hand-coded controller can achieve such a mapping only for the basic cases of the task. Refining the controller becomes harder and gets more tedious and error prone as the complexity of the task increases. In this paper, we present a new learning from demonstration approach to improve the robot's performance through the use of corrective human feedback as a complement to an existing hand-coded algorithm. The human teacher observes the robot as it performs the task using the hand-coded algorithm and takes over the control to correct the behavior when the robot selects a wrong action to be executed. Corrections are captured as new state-action pairs and the default controller output is replaced by the demonstrated corrections during autonomous execution when the current state of the robot is decided to be similar to a previously corrected state in the correction database. The proposed approach is applied to a complex ball dribbling task performed against stationary defender robots in a robot soccer scenario, where physical Aldebaran Nao humanoid robots are used. The results of our experiments show an improvement in the robot's performance when the default hand-coded controller is augmented with corrective human demonstration.

  11. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm.

    Science.gov (United States)

    Wei, Kun; Ren, Bingyin

    2018-02-13

    In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.

  12. Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter

    NARCIS (Netherlands)

    Hiremath, S.A.; Heijden, van der G.W.A.M.; Evert, van F.K.; Stein, A.; Braak, ter C.J.F.

    2014-01-01

    Autonomous navigation of robots in an agricultural environment is a difficult task due to the inherent uncertainty in the environment. Many existing agricultural robots use computer vision and other sensors to supplement Global Positioning System (GPS) data when navigating. Vision based methods are

  13. Novel Integrated System Architecture for an Autonomous Jumping Micro-Robot

    Science.gov (United States)

    2010-01-01

    tp=&arnumber=1570285&isnumber =33250 [9] Stoeter, S.A.; Rybski, P.E.; Gini, M.; Papanikolopoulos, N.;, "Autonomous stair - hopping with Scout...A.J.; Nelson, G.M.; Quinn, R.D.; Ritzmann, R.E.; , " Biomechanics and simulation of cricket for microrobot design," Robotics and Automation, 2000

  14. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  15. Kinematics modeling and simulation of an autonomous omni-directional mobile robot

    Directory of Open Access Journals (Sweden)

    Daniel Garcia Sillas

    2015-05-01

    Full Text Available Although robotics has progressed to the extent that it has become relatively accessible with low-cost projects, there is still a need to create models that accurately represent the physical behavior of a robot. Creating a completely virtual platform allows us to test behavior algorithms such as those implemented using artificial intelligence, and additionally, it enables us to find potential problems in the physical design of the robot. The present work describes a methodology for the construction of a kinematic model and a simulation of the autonomous robot, specifically of an omni-directional wheeled robot. This paper presents the kinematic model development and its implementation using several tools. The result is a model that follows the kinematics of a triangular omni-directional mobile wheeled robot, which is then tested by using a 3D model imported from 3D Studio® and Matlab® for the simulation. The environment used for the experiment is very close to the real environment and reflects the kinematic characteristics of the robot.

  16. An Intention-Driven Semi-autonomous Intelligent Robotic System for Drinking

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2017-09-01

    Full Text Available In this study, an intention-driven semi-autonomous intelligent robotic (ID-SIR system is designed and developed to assist the severely disabled patients to live independently. The system mainly consists of a non-invasive brain–machine interface (BMI subsystem, a robot manipulator and a visual detection and localization subsystem. Different from most of the existing systems remotely controlled by joystick, head- or eye tracking, the proposed ID-SIR system directly acquires the intention from users’ brain. Compared with the state-of-art system only working for a specific object in a fixed place, the designed ID-SIR system can grasp any desired object in a random place chosen by a user and deliver it to his/her mouth automatically. As one of the main advantages of the ID-SIR system, the patient is only required to send one intention command for one drinking task and the autonomous robot would finish the rest of specific controlling tasks, which greatly eases the burden on patients. Eight healthy subjects attended our experiment, which contained 10 tasks for each subject. In each task, the proposed ID-SIR system delivered the desired beverage container to the mouth of the subject and then put it back to the original position. The mean accuracy of the eight subjects was 97.5%, which demonstrated the effectiveness of the ID-SIR system.

  17. A Voice Operated Tour Planning System for Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Charles V. Smith Iii

    2010-06-01

    Full Text Available Control systems driven by voice recognition software have been implemented before but lacked the context driven approach to generate relevant responses and actions. A partially voice activated control system for mobile robotics is presented that allows an autonomous robot to interact with people and the environment in a meaningful way, while dynamically creating customized tours. Many existing control systems also require substantial training for voice application. The system proposed requires little to no training and is adaptable to chaotic environments. The traversable area is mapped once and from that map a fully customized route is generated to the user

  18. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection; Conception d'un micro robot a actionneur asservi electropneumatique pour l'inspection intratubulaire

    Energy Technology Data Exchange (ETDEWEB)

    Anthierens, C

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60{mu}m. A PID control law is used to control the robot but state feed back control law is planed. (author)

  19. Manifold traversing as a model for learning control of autonomous robots

    Science.gov (United States)

    Szakaly, Zoltan F.; Schenker, Paul S.

    1992-01-01

    This paper describes a recipe for the construction of control systems that support complex machines such as multi-limbed/multi-fingered robots. The robot has to execute a task under varying environmental conditions and it has to react reasonably when previously unknown conditions are encountered. Its behavior should be learned and/or trained as opposed to being programmed. The paper describes one possible method for organizing the data that the robot has learned by various means. This framework can accept useful operator input even if it does not fully specify what to do, and can combine knowledge from autonomous, operator assisted and programmed experiences.

  20. BOA II: Asbestos Pipe-Insulation Removal Robot System. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The objective of this task is to develop and demonstrate a mechanical, asbestos-removal system that can be remotely operated without a containment area. The technology, known as BOA, consists of a pipe-crawler removal head and a boom vehicle system with dual robots. BOA's removal head can be remotely placed on the outside of the pipe and can crawl along the pipe, removing lagging and insulation. The lagging and insulation is cut using a hybrid endmill water-jet cutter and then diced into 2-inch cube sections of ACM. These ACM sections are then removed from the pipe using a set of blasting fan- spray nozzles, vacuumed off through a vacuum hose, and bagged. Careful attention to vacuum and entrapment air flow ensures that the system can operate without a containment area while meeting local and federal standards for fiber count

  1. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    Science.gov (United States)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  2. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot

    International Nuclear Information System (INIS)

    Onal, Cagdas D; Rus, Daniela

    2013-01-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s −1 . (paper)

  3. Robots Social Embodiment in Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  4. Flexible mobile robot system for smart optical pipe inspection

    Science.gov (United States)

    Kampfer, Wolfram; Bartzke, Ralf; Ziehl, Wolfgang

    1998-03-01

    Damages of pipes can be inspected and graded by TV technology available on the market. Remotely controlled vehicles carry a TV-camera through pipes. Thus, depending on the experience and the capability of the operator, diagnosis failures can not be avoided. The classification of damages requires the knowledge of the exact geometrical dimensions of the damages such as width and depth of cracks, fractures and defect connections. Within the framework of a joint R&D project a sensor based pipe inspection system named RODIAS has been developed with two partners from industry and research institute. It consists of a remotely controlled mobile robot which carries intelligent sensors for on-line sewerage inspection purpose. The sensor is based on a 3D-optical sensor and a laser distance sensor. The laser distance sensor is integrated in the optical system of the camera and can measure the distance between camera and object. The angle of view can be determined from the position of the pan and tilt unit. With coordinate transformations it is possible to calculate the spatial coordinates for every point of the video image. So the geometry of an object can be described exactly. The company Optimess has developed TriScan32, a special software for pipe condition classification. The user can start complex measurements of profiles, pipe displacements or crack widths simply by pressing a push-button. The measuring results are stored together with other data like verbal damage descriptions and digitized images in a data base.

  5. Structured Kernel Subspace Learning for Autonomous Robot Navigation.

    Science.gov (United States)

    Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai

    2018-02-14

    This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.

  6. Command and Control Architectures for Autonomous Micro-Robotic Forces - FY-2000 Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean

    2001-04-01

    Advances in Artificial Intelligence (AI) and micro-technologies will soon give rise to production of large-scale forces of autonomous micro-robots with systems of innate behaviors and with capabilities of self-organization and real world tasking. Such organizations have been compared to schools of fish, flocks of birds, herds of animals, swarms of insects, and military squadrons. While these systems are envisioned as maintaining a high degree of autonomy, it is important to understand the relationship of man with such machines. In moving from research studies to the practical deployment of large-scale numbers of robots, one of critical pieces that must be explored is the command and control architecture for humans to re-task and also inject global knowledge, experience, and intuition into the force. Tele-operation should not be the goal, but rather a level of adjustable autonomy and high-level control. If a herd of sheep is comparable to the collective of robots, then the human element is comparable to the shepherd pulling in strays and guiding the herd in the direction of greener pastures. This report addresses the issues and development of command and control for largescale numbers of autonomous robots deployed as a collective force.

  7. An autonomous robot for de-leafing cucumber plants in a high-wire cultivation system

    NARCIS (Netherlands)

    Henten, van E.J.; Tuijl, van B.A.J.; Hoogakker, G.J.; Weerd, van der M.J.; Hemming, J.; Kornet, J.G.; Bontsema, J.

    2005-01-01

    The paper presents an autonomous robot for removing the leaves from cucumber plants grown in a high-wire cultivation system. Leaves at the lower end of the plants are removed because of their reduced vitality, their negligible contribution to canopy photosynthesis and their increased sensitivity for

  8. Terrain Classification for Outdoor Autonomous Robots using 2D Laser Scans

    DEFF Research Database (Denmark)

    Rufus Blas, Morten; Riisgaard, Søren; Ravn, Ole

    2005-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses four distinctly different classifiers: raw height, step size, slope...

  9. Ground plane detection for autonomous robots in complex environments inclined with flexed far-field terrains

    CSIR Research Space (South Africa)

    Osunmakind, IO

    2009-11-01

    Full Text Available In this paper, collective intelligence of the Emergent Situation Awareness (ESA) technology is proposed as a supportive strategy for autonomous robotic navigation. The ability to reveal uncertainties over time on flexed far-field is a ground plane...

  10. Development of an ISI robot for the fast breeder reactor MONJU primary heat transfer system piping

    International Nuclear Information System (INIS)

    Tagawa, Akihiro; Ueda, Masashi; Yamashita, Takuya; Narisawa, Masataka; Haga, Kouichi

    2011-01-01

    This paper describes the development of a new inspection robot for the In-Service Inspection of the heat transfer system of the Fast Breeder Reactor MONJU. The inspection was carried out using a tire-type ultrasonic sensor for volumetric tests at high temperature (atmosphere, 55degC; piping surface, 80degC) and radiation exposure condition (dose rate, 10 mGy/h; piping surface dose rate, 15 mGy/h). An inspection robot using a new tire type for the ultrasonic testing sensor and a new control method was developed. A signal-to-noise ratio S/N over 2 was obtained during the functional test for a calibration defect with a depth of 50%t (from the tube wall thickness). In the automatic inspection test, an EDM slit with a depth of 9% from the pipe thickness was detectable and with an S/N ratio = 4.0 (12.0 dB). (author)

  11. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection; Conception d'un micro robot a actionneur asservi electropneumatique pour l'inspection intratubulaire

    Energy Technology Data Exchange (ETDEWEB)

    Anthierens, C

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60{mu}m. A PID control law is used to control the robot but state feed back control law is planed. (author)

  12. Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan.

    Directory of Open Access Journals (Sweden)

    Masahiro Shiomi

    Full Text Available We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items.

  13. 2D navigation and pilotage of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Favre, Patrick

    1989-01-01

    The contribution of this thesis deals with the navigation and the piloting of an autonomous robot, in a known or weakly known environment of dimension two without constraints. This leads to generate an optimal path to a given goal and then to compute the commands to follow this path. Several constraints are taken into account (obstacles, geometry and kinematic of the robot, dynamic effects). The first part defines the problem and presents the state of the art. The three following parts present a set of complementary solutions according to the knowledge level of the environment and to the space constraints: - Case of a known environment: generation and following of a trajectory with respect to given path points. - Case of a weakly known environment: coupling of a command module interacting with the environment perception, and a path planner. This allows a fast motion of the robot. - Case of a constrained environment: planner enabling the taking into account of many constraints as the robot's shape, turning radius limitation, backward motion and orientation. (author) [fr

  14. Reliability of EUCLIDIAN: An autonomous robotic system for image-guided prostate brachytherapy

    International Nuclear Information System (INIS)

    Podder, Tarun K.; Buzurovic, Ivan; Huang Ke; Showalter, Timothy; Dicker, Adam P.; Yu, Yan

    2011-01-01

    Purpose: Recently, several robotic systems have been developed to perform accurate and consistent image-guided brachytherapy. Before introducing a new device into clinical operations, it is important to assess the reliability and mean time before failure (MTBF) of the system. In this article, the authors present the preclinical evaluation and analysis of the reliability and MTBF of an autonomous robotic system, which is developed for prostate seed implantation. Methods: The authors have considered three steps that are important in reliability growth analysis. These steps are: Identification and isolation of failures, classification of failures, and trend analysis. For any one-of-a-kind product, the reliability enhancement is accomplished through test-fix-test. The authors have used failure mode and effect analysis for collection and analysis of reliability data by identifying and categorizing the failure modes. Failures were classified according to severity. Failures that occurred during the operation of this robotic system were considered as nonhomogenous Poisson process. The failure occurrence trend was analyzed using Laplace test. For analyzing and predicting reliability growth, commonly used and widely accepted models, Duane's model and the Army Material Systems Analysis Activity, i.e., Crow's model, were applied. The MTBF was used as an important measure for assessing the system's reliability. Results: During preclinical testing, 3196 seeds (in 53 test cases) were deposited autonomously by the robot and 14 critical failures were encountered. The majority of the failures occurred during the first few cases. The distribution of failures followed Duane's postulation as well as Crow's postulation of reliability growth. The Laplace test index was -3.82 (<0), indicating a significant trend in failure data, and the failure intervals lengthened gradually. The continuous increase in the failure occurrence interval suggested a trend toward improved reliability. The MTBF

  15. Reliability of EUCLIDIAN: An autonomous robotic system for image-guided prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Podder, Tarun K.; Buzurovic, Ivan; Huang Ke; Showalter, Timothy; Dicker, Adam P.; Yu, Yan [Department of Radiation Oncology, Kimmel Cancer Center (NCI-designated), Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States)

    2011-01-15

    Purpose: Recently, several robotic systems have been developed to perform accurate and consistent image-guided brachytherapy. Before introducing a new device into clinical operations, it is important to assess the reliability and mean time before failure (MTBF) of the system. In this article, the authors present the preclinical evaluation and analysis of the reliability and MTBF of an autonomous robotic system, which is developed for prostate seed implantation. Methods: The authors have considered three steps that are important in reliability growth analysis. These steps are: Identification and isolation of failures, classification of failures, and trend analysis. For any one-of-a-kind product, the reliability enhancement is accomplished through test-fix-test. The authors have used failure mode and effect analysis for collection and analysis of reliability data by identifying and categorizing the failure modes. Failures were classified according to severity. Failures that occurred during the operation of this robotic system were considered as nonhomogenous Poisson process. The failure occurrence trend was analyzed using Laplace test. For analyzing and predicting reliability growth, commonly used and widely accepted models, Duane's model and the Army Material Systems Analysis Activity, i.e., Crow's model, were applied. The MTBF was used as an important measure for assessing the system's reliability. Results: During preclinical testing, 3196 seeds (in 53 test cases) were deposited autonomously by the robot and 14 critical failures were encountered. The majority of the failures occurred during the first few cases. The distribution of failures followed Duane's postulation as well as Crow's postulation of reliability growth. The Laplace test index was -3.82 (<0), indicating a significant trend in failure data, and the failure intervals lengthened gradually. The continuous increase in the failure occurrence interval suggested a trend toward

  16. Robot soccer anywhere: achieving persistent autonomous navigation, mapping, and object vision tracking in dynamic environments

    Science.gov (United States)

    Dragone, Mauro; O'Donoghue, Ruadhan; Leonard, John J.; O'Hare, Gregory; Duffy, Brian; Patrikalakis, Andrew; Leederkerken, Jacques

    2005-06-01

    The paper describes an ongoing effort to enable autonomous mobile robots to play soccer in unstructured, everyday environments. Unlike conventional robot soccer competitions that are usually held on purpose-built robot soccer "fields", in our work we seek to develop the capability for robots to demonstrate aspects of soccer-playing in more diverse environments, such as schools, hospitals, or shopping malls, with static obstacles (furniture) and dynamic natural obstacles (people). This problem of "Soccer Anywhere" presents numerous research challenges including: (1) Simultaneous Localization and Mapping (SLAM) in dynamic, unstructured environments, (2) software control architectures for decentralized, distributed control of mobile agents, (3) integration of vision-based object tracking with dynamic control, and (4) social interaction with human participants. In addition to the intrinsic research merit of these topics, we believe that this capability would prove useful for outreach activities, in demonstrating robotics technology to primary and secondary school students, to motivate them to pursue careers in science and engineering.

  17. Nuclear Power Plant Steam Pipes repairing with Tirant 3R Robot System

    International Nuclear Information System (INIS)

    Ruiz-Martinez, Jose-Tomas; Soto-Tomas, Marcelo; Curiel-Nieva, Marceliano; Monzo-Blasco, Enrique; Pineda-Rodriguez, Salvador; Vaquer-Perez, Juan-Ignacio

    2012-09-01

    The metallization arc spray process is based on the projection of molten metal, supplied by means of different stainless alloys wire, over a surface of carbon steel usually, with the object of serving as protection against flow assisted corrosion (FAC), increasing resistance to abrasion and deteriorations. A typical application functions covering the steam pipes inner surface in Coal-fired power station and Nuclear Power Plants. The results of this process are spectacular in terms of protection against flow assisted corrosion and abrasion, but its application has conditioning factors, such as: Severe application conditions for workers. Due to the worker's postural position (usually kneeling) in 32' diameter pipes and working with fireproof clothing and masks with outdoor air supplying, due to fumes, sparks and molten metal particles, radiological contamination, confined space, poor lighting... Coating uniformity. As metallization is a manual process, the carried out measurements show small variations in the thickness of the coating, always within the tolerance limits established by the applicable regulations and Quality Assurance. An increase in the uniformity of the projected coating, increase the resistance and give a better surface protection. For all these reasons, Lainsa has developed the TIRANT 3 R system, a worldwide innovative system, for metallization of steam pipes inner surface. TIRANT 3 R system is tele-operated from outside of the pipe, so that human intervention is reduced to the operations of robot positioning and change of metallization wire. As it is an independent system of the human factor, metallization process performance is significantly increased by reducing rest periods due only to the robot maintenance. Likewise, TIRANT 3 R system permits to increase resulting coating uniformity and thus its resistance, keeping selected parameters constant (forward speed, rotation speed and inner surface distance) depending on required type and

  18. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Tuvshinjargal, Doopalam; Lee, Deok Jin [Kunsan National University, Gunsan (Korea, Republic of)

    2015-06-15

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

  19. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    International Nuclear Information System (INIS)

    Tuvshinjargal, Doopalam; Lee, Deok Jin

    2015-01-01

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments

  20. An Autonomous Robot for De-leafing Cumcumber Plants grown in a High-wire Cultivation System

    NARCIS (Netherlands)

    Henten, van E.J.; Tuijl, van B.A.J.; Hoogakker, G.J.; Weerd, van der M.J.; Hemming, J.; Kornet, J.G.; Bontsema, J.

    2006-01-01

    The paper presents an autonomous robot for removing the leaves from cucumber plants grown in a high-wire cultivation system. Leaves at the lower end of the plants are removed because of their reduced vitality, their negligible contribution to canopy photosynthesis and their increased sensitivity to

  1. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.

    Science.gov (United States)

    Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D

    2009-01-01

    Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.

  2. Autonomous military robotics

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This SpringerBrief reveals the latest techniques in computer vision and machine learning on robots that are designed as accurate and efficient military snipers. Militaries around the world are investigating this technology to simplify the time, cost and safety measures necessary for training human snipers. These robots are developed by combining crucial aspects of computer science research areas including image processing, robotic kinematics and learning algorithms. The authors explain how a new humanoid robot, the iCub, uses high-speed cameras and computer vision algorithms to track the objec

  3. Biomass feeds vegetarian robot; Biomassa voedt vegetarische robot

    Energy Technology Data Exchange (ETDEWEB)

    Van den Brandt, M. [Office for Science and Technology, Embassy of the Kingdom of the Netherlands, Washington (United States)

    2009-09-15

    This brief article addresses the EATR robot (Energetically Autonomous Tactical Robot) that was developed by Cyclone Power and uses biomass as primary source of energy for propulsion. [Dutch] Een kort artikel over de door Cyclone Power ontwikkelde EATR-robot (Energetically Autonomous Tactical Robot) die voor de voortdrijving biomassa gebruikt als primaire energiebron.

  4. Temporal Memory Reinforcement Learning for the Autonomous Micro-mobile Robot Based-behavior

    Institute of Scientific and Technical Information of China (English)

    Yang Yujun(杨玉君); Cheng Junshi; Chen Jiapin; Li Xiaohai

    2004-01-01

    This paper presents temporal memory reinforcement learning for the autonomous micro-mobile robot based-behavior. Human being has a memory oblivion process, i.e. the earlier to memorize, the earlier to forget, only the repeated thing can be remembered firmly. Enlightening forms this, and the robot need not memorize all the past states, at the same time economizes the EMS memory space, which is not enough in the MPU of our AMRobot. The proposed algorithm is an extension of the Q-learning, which is an incremental reinforcement learning method. The results of simulation have shown that the algorithm is valid.

  5. Inspection, maintenance, and repair of large pumps and piping systems using advanced robotic tools

    International Nuclear Information System (INIS)

    Lewis, R.K.; Radigan, T.M.

    1998-01-01

    Operating and maintaining large pumps and piping systems can be an expensive proposition. Proper inspections and monitoring can reduce costs. This was difficult in the past, since detailed pump inspections could only be performed by disassembly and many portions of piping systems are buried or covered with insulation. Once these components were disassembled, a majority of the cost was already incurred. At that point, expensive part replacement usually took place whether it was needed or not. With the completion of the Pipe Walkertrademark/LIP System and the planned development of the Submersible Walkertrademark, this situation is due to change. The specifications for these inspection and maintenance robots will ensure that. Their ability to traverse both horizontal and vertical, forward and backward, make them unique tools. They will open the door for some innovative approaches to inspection and maintenance of large pumps and piping systems

  6. Bio-inspired motion planning algorithms for autonomous robots facilitating greater plasticity for security applications

    Science.gov (United States)

    Guo, Yi; Hohil, Myron; Desai, Sachi V.

    2007-10-01

    Proposed are techniques toward using collaborative robots for infrastructure security applications by utilizing them for mobile sensor suites. A vast number of critical facilities/technologies must be protected against unauthorized intruders. Employing a team of mobile robots working cooperatively can alleviate valuable human resources. Addressed are the technical challenges for multi-robot teams in security applications and the implementation of multi-robot motion planning algorithm based on the patrolling and threat response scenario. A neural network based methodology is exploited to plan a patrolling path with complete coverage. Also described is a proof-of-principle experimental setup with a group of Pioneer 3-AT and Centibot robots. A block diagram of the system integration of sensing and planning will illustrate the robot to robot interaction to operate as a collaborative unit. The proposed approach singular goal is to overcome the limits of previous approaches of robots in security applications and enabling systems to be deployed for autonomous operation in an unaltered environment providing access to an all encompassing sensor suite.

  7. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection.

    Science.gov (United States)

    Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J

    2008-05-01

    Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.

  8. Automatic detection and classification of obstacles with applications in autonomous mobile robots

    Science.gov (United States)

    Ponomaryov, Volodymyr I.; Rosas-Miranda, Dario I.

    2016-04-01

    Hardware implementation of an automatic detection and classification of objects that can represent an obstacle for an autonomous mobile robot using stereo vision algorithms is presented. We propose and evaluate a new method to detect and classify objects for a mobile robot in outdoor conditions. This method is divided in two parts, the first one is the object detection step based on the distance from the objects to the camera and a BLOB analysis. The second part is the classification step that is based on visuals primitives and a SVM classifier. The proposed method is performed in GPU in order to reduce the processing time values. This is performed with help of hardware based on multi-core processors and GPU platform, using a NVIDIA R GeForce R GT640 graphic card and Matlab over a PC with Windows 10.

  9. Teaching and implementing autonomous robotic lab walkthroughs in a biotech laboratory through model-based visual tracking

    Science.gov (United States)

    Wojtczyk, Martin; Panin, Giorgio; Röder, Thorsten; Lenz, Claus; Nair, Suraj; Heidemann, Rüdiger; Goudar, Chetan; Knoll, Alois

    2010-01-01

    After utilizing robots for more than 30 years for classic industrial automation applications, service robots form a constantly increasing market, although the big breakthrough is still awaited. Our approach to service robots was driven by the idea of supporting lab personnel in a biotechnology laboratory. After initial development in Germany, a mobile robot platform extended with an industrial manipulator and the necessary sensors for indoor localization and object manipulation, has been shipped to Bayer HealthCare in Berkeley, CA, USA, a global player in the sector of biopharmaceutical products, located in the San Francisco bay area. The determined goal of the mobile manipulator is to support the off-shift staff to carry out completely autonomous or guided, remote controlled lab walkthroughs, which we implement utilizing a recent development of our computer vision group: OpenTL - an integrated framework for model-based visual tracking.

  10. Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots.

    Science.gov (United States)

    Kano, Takeshi; Yoshizawa, Ryo; Ishiguro, Akio

    2017-08-04

    Snakes change their locomotion patterns in response to the environment. This ability is a motivation for developing snake-like robots with highly adaptive functionality. In this study, a decentralised control scheme of snake-like robots that exhibited autonomous gait transition (i.e. the transition between concertina locomotion in narrow aisles and scaffold-based locomotion on unstructured terrains) was developed. Additionally, the control scheme was validated via simulations. A key insight revealed is that these locomotion patterns were not preprogrammed but emerged by exploiting Tegotae, a concept that describes the extent to which a perceived reaction matches a generated action. Unlike local reflexive mechanisms proposed previously, the Tegotae-based feedback mechanism enabled the robot to 'selectively' exploit environments beneficial for propulsion, and generated reasonable locomotion patterns. It is expected that the results of this study can form the basis to design robots that can work under unpredictable and unstructured environments.

  11. ARK-2: a mobile robot that navigates autonomously in an industrial environment

    International Nuclear Information System (INIS)

    Bains, N.; Nickerson, S.; Wilkes, D.

    1995-01-01

    ARK-2 is a robot that uses a vision system based on a camera and spot laser rangefinder mounted on a pan and tilt unit for navigation. This vision system recognizes known landmarks and computes its position relative to them, thus bounding the error in its position. The vision system is also used to find known gauges, given their approximate locations, and takes readings from them. 'Approximate' in this context means the same sort of accuracy that a human would need: 'down aisle 3 on the right' suffices. ARK-2 is also equipped with the FAD (Floor Anomaly Detector) which is based on the NRC (National Research Council of Canada) BIRIS (Bi-IRIS) sensor, and keeps ARK-2 from failing into open drains or trying to negotiate large cables or pipes on the floor. ARK-2 has also been equipped with a variety of application sensors for security and safety patrol applications. Radiation sensors are used to produce contour maps of radiation levels. In order to detect fires, environmental changes and intruders, ARK-2 is equipped with smoke, temperature, humidity and gas sensors, scanning ultraviolet and infrared detectors and a microwave motion detector. In order to support autonomous, untethered operation for hours at a time, ARK-2 also has onboard systems for power, sonar-based obstacle detection, computation and communications. The project uses a UNIX environment for software development, with the onboard SPARC processor appearing as just another workstation on the LAN. Software modules include the hardware drivers, path planning, navigation, emergency stop, obstacle mapping and status monitoring. ARK-2 may also be controlled from a ROBCAD simulation. (author)

  12. Autonomous construction using scarce resources in unknown environments - Ingredients for an intelligent robotic interaction with the physical world

    OpenAIRE

    Magnenat, Stéphane; Philippsen, Roland; Mondada, Francesco

    2012-01-01

    The goal of creating machines that autonomously perform useful work in a safe, robust and intelligent manner continues to motivate robotics research. Achieving this autonomy requires capabilities for understanding the environment, physically interacting with it, predicting the outcomes of actions and reasoning with this knowledge. Such intelligent physical interaction was at the centre of early robotic investigations and remains an open topic. In this paper, we build on the fruit of decades ...

  13. Autonomous Monitoring Aerial Robot System for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji H.; Gu, Beom W; Thai, Van X.; Rim, C. T. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, autonomous monitoring aerial robot system (AMARS), which includes omnidirectional wireless charging platform, aerial robot, landing coils and a battery management board, is proposed to guarantee automatic monitoring of NPPs. The prototype of the system is fabricated, and omnidirectional charging of the system is experimentally validated with 1 C charging state. AR(Aerial Robots)s are essential for NPP accident management because human cannot access to the accident site due to the risks of unexpected explosions, collapses, and high level of radioactive contaminants. Moreover, ARs can support operators to manage normal operation of NPPs built in harsh environment of high temperature and humidity such as UAE Barakah NPP. Because these ARs usually have very low energy capacity, however, the operation time of ARs is less than 30 minutes and should be recharged regularly by human powers, which makes it impossible to monitor NPPs by ARs automatically. In this paper, the concept of AMARS has been proposed and its performance was successfully verified with a fabricated prototype. The charging state of the on board battery in AR was measured as 0.5 C with the induced voltage of 18.6 V, which is well matched to the designed induced voltage when the AR was placed on the edge of the wireless charging platform.

  14. Traversable terrain classification for outdoor autonomous robots using single 2D laser scans

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Blas, Morten Rufus; Andersen, Nils Axel

    2006-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses seven distinctly different classifiers: raw height, roughness, step size...

  15. Design and Implementation an Autonomous Humanoid Robot Based on Fuzzy Rule-Based Motion Controller

    Directory of Open Access Journals (Sweden)

    Mohsen Taheri

    2010-04-01

    Full Text Available Research on humanoid robotics in Mechatronics and Automation Laboratory, Electrical and Computer Engineering, Islamic Azad University Khorasgan branch (Isfahan of Iran was started at
    the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. This paper describes the hardware and software design of the kid size humanoid robot systems of the PERSIA Team in 2009. The robot has 20 actuated degrees of freedom based on Hitec HSR898. In this paper we have tried to focus on areas such as mechanical structure, Image processing unit, robot controller, Robot AI and behavior
    learning. In 2009, our developments for the Kid size humanoid robot include: (1 the design and construction of our new humanoid robots (2 the design and construction of a new hardware and software controller to be used in our robots. The project is described in two main parts: Hardware and Software. The software is developed a robot application which consists walking controller, autonomous motion robot, self localization base on vision and Particle Filter, local AI, Trajectory Planning, Motion Controller and Network. The hardware consists of the mechanical structure and the driver circuit board. Each robot is able to walk, fast walk, pass, kick and dribble when it catches
    the ball. These humanoids have been successfully participating in various robotic soccer competitions. This project is still in progress and some new interesting methods are described in the current report.

  16. Autonomously Implemented Versatile Path Planning for Mobile Robots Based on Cellular Automata and Ant Colony

    Directory of Open Access Journals (Sweden)

    Adel Akbarimajd

    2012-02-01

    Full Text Available A path planning method for mobile robots based on two dimensional cellular automata is proposed. The method can be applied for environments with both concave and convex obstacles. It is also appropriate for multi-robot problems as well as dynamic environments. In order to develop the planning method, environment of the robot is decomposed to a rectangular grid and the automata is defined with four states including Robot cell, Free cell, Goal cell and Obstacle cell. Evolution rules of automata are proposed in order to direct the robot toward its goal. CA based path planner method is afterwards modified by a colony technique to be applicable for concave obstacles. Then a layered architecture is proposed to autonomously implement the planning algorithm. The architecture employs an abstraction approach which makes the complexity manageable. An important feature of the architecture is internal artifacts that have some beliefs about the world. Most actions of the robot are planned and performed with respect to these artifacts.

  17. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  18. Mechanical deployment system on aries an autonomous mobile robot

    International Nuclear Information System (INIS)

    Rocheleau, D.N.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is under development for the Department of Energy (DOE) to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. This paper focuses on the mechanical deployment system-referred to as the camera positioning system (CPS)-used in the project. The CPS is used for positioning four identical but separate camera packages consisting of vision cameras and other required sensors such as bar-code readers and light stripe projectors. The CPS is attached to the top of a mobile robot and consists of two mechanisms. The first is a lift mechanism composed of 5 interlocking rail-elements which starts from a retracted position and extends upward to simultaneously position 3 separate camera packages to inspect the top three drums of a column of four drums. The second is a parallelogram special case Grashof four-bar mechanism which is used for positioning a camera package on drums on the floor. Both mechanisms are the subject of this paper, where the lift mechanism is discussed in detail

  19. SIMULATION OF ADAPTIVE BEHAVIOR IN THE CONTEXT OF SOLVING AN AUTONOMOUS ROBOTIC VEHICLE MOTION TASK ON TWO-DIMENSIONAL PLANE WITH OBSTACLES

    Directory of Open Access Journals (Sweden)

    R. A. Prakapovich

    2014-01-01

    Full Text Available An adaptive neurocontroller for autonomous robotic vehicle control, which is designed to generate control signals (according to preprogrammed motion algorithm and to develop individual reactions to some external impacts during functioning process, that allows the robot to adapt to external environment changes, is suggested. To debug and test the proposed neurocontroller a specially designed program, able to simulate the sensory and executive systems operation of the robotic vehicle, is used.

  20. Autonomous Kinematic Calibration of the Robot Manipulator with a Linear Laser-Vision Sensor

    Science.gov (United States)

    Kang, Hee-Jun; Jeong, Jeong-Woo; Shin, Sung-Weon; Suh, Young-Soo; Ro, Young-Schick

    This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The data collected by changing robot configuration and measuring the intersection points are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.

  1. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots.

    Science.gov (United States)

    Hess, H; Ross, Jennifer L

    2017-09-18

    Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.

  2. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots.

    Science.gov (United States)

    Sherwin, Tyrone; Easte, Mikala; Chen, Andrew Tzer-Yeu; Wang, Kevin I-Kai; Dai, Wenbin

    2018-02-14

    Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS) is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM) and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  3. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots

    Directory of Open Access Journals (Sweden)

    Tyrone Sherwin

    2018-02-01

    Full Text Available Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  4. On the development a pneumatic four-legged mechanism autonomous vertical wall climbing robot

    International Nuclear Information System (INIS)

    Mohamad Shukri Zainal Abidin; Shamsudin H.M. Amin . shukri@suria.fke.utm.my

    1999-01-01

    The paper describes the design of a prototype legged mechanism together with suction mechanism, the mechanical design, on-board controller and an initial performance test. The design is implemented in the form of a pneumatically powered multi-legged robot equipped with suction pads at the sole of the feet for wall climbing purpose. The whole mechanism and suction system is controlled by controller which is housed on-board the robot. The gait of the motion depended on the logic control patterns as dictated by the controller. The robot is equipped with sensors both at the front and rear ends that function as an obstacle avoidance facility. Once objects are detected, signals are sent to the controller to start an evasive action that is to move in the opposite direction. The mechanism has been tested and initial results have shown promising potential for an autonomous mobile. (Author)

  5. Robot fish bio-inspired fishlike underwater robots

    CERN Document Server

    Li, Zheng; Youcef-Toumi, Kamal; Alvarado, Pablo

    2015-01-01

    This book provides a comprehensive coverage on robot fish including design, modeling and optimization, control, autonomous control and applications. It gathers contributions by the leading researchers in the area. Readers will find the book very useful for designing and building robot fish, not only in theory but also in practice. Moreover, the book discusses various important issues for future research and development, including design methodology, control methodology, and autonomous control strategy. This book is intended for researchers and graduate students in the fields of robotics, ocean engineering and related areas.

  6. A Combination of Terrain Prediction and Correction for Search and Rescue Robot Autonomous Navigation

    Directory of Open Access Journals (Sweden)

    Yan Guo

    2009-09-01

    Full Text Available This paper presents a novel two-step autonomous navigation method for search and rescue robot. The algorithm based on the vision is proposed for terrain identification to give a prediction of the safest path with the support vector regression machine (SVRM trained off-line with the texture feature and color features. And correction algorithm of the prediction based the vibration information is developed during the robot traveling, using the judgment function given in the paper. The region with fault prediction will be corrected with the real traversability value and be used to update the SVRM. The experiment demonstrates that this method could help the robot to find the optimal path and be protected from the trap brought from the error between prediction and the real environment.

  7. Intelligent autonomous systems 12. Vol. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukhan [Sungkyunkwan Univ., Gyeonggi-Do (Korea, Republic of). College of Information and Communication Engineering; Yoon, Kwang-Joon [Konkuk Univ., Seoul (Korea, Republic of); Cho, Hyungsuck [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Lee, Jangmyung (eds.) [Pusan National Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2013-02-01

    Recent research in Intelligent and Autonomous Systems. Volume 2 of the proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, jeju Island, Korea. Written by leading experts in the field. Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of ''Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 2 includes contributions devoted to Service Robotics and Human-Robot Interaction and Autonomous Multi-Agent Systems and Life Engineering.

  8. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  9. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  10. Implementation of Obstacle-Avoidance Control for an Autonomous Omni-Directional Mobile Robot Based on Extension Theory

    Directory of Open Access Journals (Sweden)

    Yi-Chung Lai

    2012-10-01

    Full Text Available The paper demonstrates a following robot with omni-directional wheels, which is able to take action to avoid obstacles. The robot design is based on both fuzzy and extension theory. Fuzzy theory was applied to tune the PMW signal of the motor revolution, and correct path deviation issues encountered when the robot is moving. Extension theory was used to build a robot obstacle-avoidance model. Various mobile models were developed to handle different types of obstacles. The ultrasonic distance sensors mounted on the robot were used to estimate the distance to obstacles. If an obstacle is encountered, the correlation function is evaluated and the robot avoids the obstacle autonomously using the most appropriate mode. The effectiveness of the proposed approach was verified through several tracking experiments, which demonstrates the feasibility of a fuzzy path tracker as well as the extensible collision avoidance system.

  11. Scaling effects in spiral capsule robots.

    Science.gov (United States)

    Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan

    2017-04-01

    Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2  m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.

  12. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  13. Autonomy in robots and other agents.

    Science.gov (United States)

    Smithers, T

    1997-06-01

    The word "autonomous" has become widely used in artificial intelligence, robotics, and, more recently, artificial life and is typically used to qualify types of systems, agents, or robots: we see terms like "autonomous systems," "autonomous agents," and "autonomous robots." Its use in these fields is, however, both weak, with no distinctions being made that are not better and more precisely made with other existing terms, and varied, with no single underlying concept being involved. This ill-disciplined usage contrasts strongly with the use of the same term in other fields such as biology, philosophy, ethics, law, and human rights, for example. In all these quite different areas the concept of autonomy is essentially the same, though the language used and the aspects and issues of concern, of course, differ. In all these cases the underlying notion is one of self-law making and the closely related concept of self-identity. In this paper I argue that the loose and varied use of the term autonomous in artificial intelligence, robotics, and artificial life has effectively robbed these fields of an important concept. A concept essentially the same as we find it in biology, philosophy, ethics, and law, and one that is needed to distinguish a particular kind of agent or robot from those developed and built so far. I suggest that robots and other agents will have to be autonomous, i.e., self-law making, not just self-regulating, if they are to be able effectively to deal with the kinds of environments in which we live and work: environments which have significant large scale spatial and temporal invariant structure, but which also have large amounts of local spatial and temporal dynamic variation and unpredictability, and which lead to the frequent occurrence of previously unexperienced situations for the agents that interact with them.

  14. Visual identification and similarity measures used for on-line motion planning of autonomous robots in unknown environments

    Science.gov (United States)

    Martínez, Fredy; Martínez, Fernando; Jacinto, Edwar

    2017-02-01

    In this paper we propose an on-line motion planning strategy for autonomous robots in dynamic and locally observable environments. In this approach, we first visually identify geometric shapes in the environment by filtering images. Then, an ART-2 network is used to establish the similarity between patterns. The proposed algorithm allows that a robot establish its relative location in the environment, and define its navigation path based on images of the environment and its similarity to reference images. This is an efficient and minimalist method that uses the similarity of landmark view patterns to navigate to the desired destination. Laboratory tests on real prototypes demonstrate the performance of the algorithm.

  15. A field robot for autonomous laser-based N2O flux measurements

    Science.gov (United States)

    Molstad, Lars; Reent Köster, Jan; Bakken, Lars; Dörsch, Peter; Lien, Torgrim; Overskeid, Øyvind; Utstumo, Trygve; Løvås, Daniel; Brevik, Anders

    2014-05-01

    N2O measurements in multi-plot field trials are usually carried out by chamber-based manual gas sampling and subsequent laboratory-based gas chromatographic N2O determination. Spatial and temporal resolution of these measurements are commonly limited by available manpower. However, high spatial and temporal variability of N2O fluxes within individual field plots can add large uncertainties to time- and area-integrated flux estimates. Detailed mapping of this variability would improve these estimates, as well as help our understanding of the factors causing N2O emissions. An autonomous field robot was developed to increase the sampling frequency and to operate outside normal working hours. The base of this system was designed as an open platform able to carry versatile instrumentation. It consists of an electrically motorized platform powered by a lithium-ion battery pack, which is capable of autonomous navigation by means of a combined high precision real-time kinematic (RTK) GPS and an inertial measurement unit (IMU) system. On this platform an elevator is mounted, carrying a lateral boom with a static chamber on each side of the robot. Each chamber is equipped with a frame of plastic foam to seal the chamber when lowered onto the ground by the elevator. N2O flux from the soil covered by the two chambers is sequentially determined by circulating air between each chamber and a laser spectrometer (DLT-100, Los Gatos Research, Mountain View, CA, USA), which monitors the increase in N2O concentration. The target enclosure time is 1 - 2 minutes, but may be longer when emissions are low. CO2 concentrations are determined by a CO2/H2O gas analyzer (LI-840A, LI-COR Inc., Lincoln, NE, USA). Air temperature and air pressure inside both chambers are continuously monitored and logged. Wind speed and direction are monitored by a 3D sonic anemometer on top of the elevator boom. This autonomous field robot can operate during day and night time, and its working hours are only

  16. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  17. Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements

    Directory of Open Access Journals (Sweden)

    Jesus M. de la Cruz

    2012-02-01

    Full Text Available This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.

  18. Hedonic quality or reward? A study of basic pleasure in homeostasis and decision making of a motivated autonomous robot.

    Science.gov (United States)

    Lewis, Matthew; Cañamero, Lola

    2016-10-01

    We present a robot architecture and experiments to investigate some of the roles that pleasure plays in the decision making (action selection) process of an autonomous robot that must survive in its environment. We have conducted three sets of experiments to assess the effect of different types of pleasure-related versus unrelated to the satisfaction of physiological needs-under different environmental circumstances. Our results indicate that pleasure, including pleasure unrelated to need satisfaction, has value for homeostatic management in terms of improved viability and increased flexibility in adaptive behavior.

  19. Robots: l'embarras de richesses [:survey of robots available

    International Nuclear Information System (INIS)

    Meieran, H.; Brittain, K.; Sturkey, R.

    1989-01-01

    A survey of robots available for use in the nuclear industry is presented. Two new categories of mobile robots have been introduced since the last survey (April 1987): pipe crawlers and underwater robots. The number of robots available has risen to double what it was two years ago and four times what it was in 1986. (U.K.)

  20. Specific and Class Object Recognition for Service Robots through Autonomous and Interactive Methods

    Science.gov (United States)

    Mansur, Al; Kuno, Yoshinori

    Service robots need to be able to recognize and identify objects located within complex backgrounds. Since no single method may work in every situation, several methods need to be combined and robots have to select the appropriate one automatically. In this paper we propose a scheme to classify situations depending on the characteristics of the object of interest and user demand. We classify situations into four groups and employ different techniques for each. We use Scale-invariant feature transform (SIFT), Kernel Principal Components Analysis (KPCA) in conjunction with Support Vector Machine (SVM) using intensity, color, and Gabor features for five object categories. We show that the use of appropriate features is important for the use of KPCA and SVM based techniques on different kinds of objects. Through experiments we show that by using our categorization scheme a service robot can select an appropriate feature and method, and considerably improve its recognition performance. Yet, recognition is not perfect. Thus, we propose to combine the autonomous method with an interactive method that allows the robot to recognize the user request for a specific object and class when the robot fails to recognize the object. We also propose an interactive way to update the object model that is used to recognize an object upon failure in conjunction with the user's feedback.

  1. Combining a Novel Computer Vision Sensor with a Cleaning Robot to Achieve Autonomous Pig House Cleaning

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Braithwaite, Ian David; Blanke, Mogens

    2005-01-01

    condition based cleaning. This paper describes how a novel sensor, developed for the purpose, and algorithms for classification and learning are combined with a commercial robot to obtain an autonomous system which meets the necessary quality attributes. These include features to make selective cleaning...

  2. An in-pipe mobile micromachine using fluid power. A mechanism adaptable to pipe diameters

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Yokota, Shinichi; Takahashi, Ken

    2000-01-01

    To realize micro maintenance robots for small diameter pipes of nuclear reactors and so on, high power in-pipe mobile micromachines have been required. The authors have proposed the bellows microactuator using fluid power and have tried to apply the actuators to in-pipe mobile micromachines. In the previous papers, some inchworm mobile machine prototypes with 25 mm in diameter are fabricated and the traveling performances are experimentally investigated. In this paper, to miniaturize the in-pipe mobile machine and to make it adaptable to pipe diameters, firstly, a simple rubber-tube actuator constrained with a coil-spring is proposed and the static characteristics are investigated. Secondly, a supporting mechanism which utilizes a toggle mechanism and is adaptable to pipe diameters is proposed and the supporting forces are investigated. Finally, an in-pipe mobile micromachine for pipe with 4 - 5 mm in diameter is fabricated and the maximum traveling velocity of 7 mm/s in both ahead and astern movements is experimentally verified. (author)

  3. The French A.E.C. nuclear robotic program

    International Nuclear Information System (INIS)

    Foult, T.

    1991-01-01

    The new French nuclear robotic program launched by the CEA was started at the beginning of 1988 for the duration of two years and with the total subsidy of about 130 million French franc. This program includes the following four steps: the definition of model missions dedicated to inspection and intervention in nuclear environment, the system analysis to define the systems, functions and specifications required to perform these model missions, the technological development required to achieve these systems, and the design of demonstration models with the partial integration of the above developments. The whole program including these four steps is called SYROCO (modular SYstem for RObots COoperating in radioactive environment). The repair of leak in a pipe in a reprocessing cell, the model mission in a PWR nuclear power plant, autonomous load bearing mobile robots, squirrel concept light modular carrier concept, radiation hardening, mechanic, perception of environment, communication, control and simulation and the demonstration models are described. SHERPA project, perception management, force controlled manipulator, squirrel project, light modular carrier, processes and NAB model mission simulation are particularly mentioned

  4. PIPEBOT: a mobile system for duct inspection

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Emanuel; Goncalves, Eder Mateus; Botelho, Silvia; Oliveira, Vinicius; Souto Junior, Humberto; Almeida, Renan de; Mello Junior, Claudio; Santos, Thiago [Universidade Federal do Rio Grande (FURG), RS (Brazil); Gulles, Roger [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    In this paper, it is presented the development of an innovative and low-cost robotic mobile system to be employed in inspection of pipes. The system is composed of a robot with different sensors which permit to move inside pipes and detect faults as well as incipient faults. The robot is a semiautonomous one, i.e. it can navigate by human tele operation or autonomously one. The autonomous mode uses computer vision techniques and signals from position sensor of the robot to navigating and localizing it. It is showed the mechanical structure of the robot, the overall architecture of the system and preliminary results. (author)

  5. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    Science.gov (United States)

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a

  6. On-rail solution for autonomous inspections in electrical substations

    Science.gov (United States)

    Silva, Bruno P. A.; Ferreira, Rafael A. M.; Gomes, Selson C.; Calado, Flavio A. R.; Andrade, Roberto M.; Porto, Matheus P.

    2018-05-01

    This work presents an alternative solution for autonomous inspections in electrical substations. The autonomous system is a robot that moves on rails, collects infrared and visible images of selected targets, also processes the data and predicts the components lifetime. The robot moves on rails to overcome difficulties found in not paved substations commonly encountered in Brazil. We take advantage of using rails to convey the data by them, minimizing the electromagnetic interference, and at the same time transmitting electrical energy to feed the autonomous system. As part of the quality control process, we compared thermographic inspections made by the robot with inspections made by a trained thermographer using a scientific camera Flir® SC660. The results have shown that the robot achieved satisfactory results, identifying components and measuring temperature accurately. The embodied routine considers the weather changes along the day, providing a standard result of the components thermal response, also gives the uncertainty of temperature measurement, contributing to the quality in the decision making process.

  7. GPS Enabled Semi-Autonomous Robot

    Science.gov (United States)

    2017-09-01

    GPVTG. The GPGLL sentence, illustrated in Figure 6, provides the location of the robot in real time via latitude and longitude coordinates. The...equal and the goal has not yet been reached (i.e., any time the robot has reached a local minimum), and direct the robot to travel in a specific...pulled into MATLAB was not sufficiently close to real time . While any input buffer ensures data is not immediate, the size of the default input

  8. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  9. Mechanism for in-pipe inspection; Dispositivo para inspecao de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Gustavo Medeiros; Dutra, Max Suell [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2008-07-01

    The internal inspection of pipes is becoming a routine activity thanks to their importance on transportation of substances such as oil and natural gas. This paper addresses a mechanism capable of working inside pipes of different diameters that may present extreme curves and inclinations. The mechanism is composed of modules with devices that provide adjustable contact with the duct, using wheels on the contact points. The robot moves inside the pipe creating a virtual spindle. For that, two parts are used: the first one, guided along the pipe by a set of wheels, moves parallel to the axis of the pipe; the second part is attached to a motor. The motor rotation forces the mechanism to follow a helical motion, with tilted wheels rotating about the axis of the pipe. Each adjustable contact device works like a lever, pressing the wheel against the pipe. The base of the device can be actively rotated, modifying the angle of the wheel in relation to the pipe (equivalent to the step of the spindle), permitting the motion of the system in both directions, with specific velocity. According to the applied angle, the robot changes the relation between torque and displacement velocity. (author)

  10. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  11. 5th International Robotic Sailing Conference

    CERN Document Server

    Finnis, James

    2013-01-01

    Robotic sailing offers the potential of wind propelled vehicles which are sufficiently autonomous to remain at sea for months at a time. These could replace or augment existing oceanographic sampling systems, be used in border surveillance and security or offer a means of carbon neutral transportation. To achieve this represents a complex, multi-disciplinary challenge to boat designers and naval architects, systems/electrical engineers and computer scientists.  Since 2004 a series of competitions in the form of the Sailbot, World Robotic Sailing Championship and Microtransat competitions have sparked an explosion in the number of groups working on autonomous sailing robots. Despite this interest the longest distance sailed autonomously remains only a few hundred miles. Many of the challenges in building truly autonomous sailing robots still remain unsolved. These proceedings present the cutting edge of work in a variety of fields related to robotic sailing. They will be presented during the 5th International...

  12. The Development of a Radiation Hardened Robot for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil (and others)

    2007-04-15

    We has been developed two remotely controlled robotic systems. One is a underwater vehicle for inspection of the internal structures of PWRs and retrieving foreign stubs in the reactor pressure vessels and reactor coolant pipes. The other robotic system consists of a articulated-type mobile robot capable of recovering the failure of the fuel exchange machine and a mini modular mobile robot for inspection of feeder pipes with ultrasonic array sensors in PHWRs. The underwater robot has been designed by considering radiation effect, underwater condition, and accessibility to the working area. The size of underwater robot is designed to enter the cold legs. A extendable manipulator is mounted on the mobile robot, which can restore nuclear fuel exchange machine. The mini modular mobile robot is composed of dual inch worm mechanisms, which are constructed by two gripper bodies that can fix the robot body on to the pipe and move along the longitudinal and to rotate in a circumferential direction to access all of the outer surfaces of the pipe.

  13. Autonomous charging to enable long-endurance missions for small aerial robots

    Science.gov (United States)

    Mulgaonkar, Yash; Kumar, Vijay

    2014-06-01

    The past decade has seen an increased interest towards research involving Autonomous Micro Aerial Vehicles (MAVs). The predominant reason for this is their agility and ability to perform tasks too difficult or dangerous for their human counterparts and to navigate into places where ground robots cannot reach. Among MAVs, rotary wing aircraft such as quadrotors have the ability to operate in confined spaces, hover at a given point in space and perch1 or land on a flat surface. This makes the quadrotor a very attractive aerial platform giving rise to a myriad of research opportunities. The potential of these aerial platforms is severely limited by the constraints on the flight time due to limited battery capacity. This in turn arises from limits on the payload of these rotorcraft. By automating the battery recharging process, creating autonomous MAVs that can recharge their on-board batteries without any human intervention and by employing a team of such agents, the overall mission time can be greatly increased. This paper describes the development, testing, and implementation of a system of autonomous charging stations for a team of Micro Aerial Vehicles. This system was used to perform fully autonomous long-term multi-agent aerial surveillance experiments with persistent station keeping. The scalability of the algorithm used in the experiments described in this paper was also tested by simulating a persistence surveillance scenario for 10 MAVs and charging stations. Finally, this system was successfully implemented to perform a 9½ hour multi-agent persistent flight test. Preliminary implementation of this charging system in experiments involving construction of cubic structures with quadrotors showed a three-fold increase in effective mission time.

  14. Temporal logic motion planning in robotics

    CSIR Research Space (South Africa)

    Seotsanyana, M

    2012-08-01

    Full Text Available ) transport-related applications such as intra-logistics, automated parking garages and autonomous vehicles: (ii) mining-related applications such as automated mine vehicles and mine sensing; (iii) defence force-related applications such as autonomous... vehicles and (iv) hospital-related applications such as surgical procedures. In such applications, any failure of a robotic system may result in more than just a mere inconvenience, such as incorrect information by a robotic receptionist, loss of time...

  15. Task oriented evaluation system for maintenance robots

    International Nuclear Information System (INIS)

    Asame, Hajime; Endo, Isao; Kotosaka, Shin-ya; Takata, Shozo; Hiraoka, Hiroyuki; Kohda, Takehisa; Matsumoto, Akihiro; Yamagishi, Kiichiro.

    1994-01-01

    The adaptability evaluation of maintenance robots to autonomous plants has been discussed. In this paper, a new concept of autonomous plant with maintenance robots are introduced, and a framework of autonomous maintenance system is proposed. Then, task-oriented evaluation of robot arms is discussed for evaluating their adaptability to maintenance tasks, and a new criterion called operability is proposed for adaptability evaluation. The task-oriented evaluation system is implemented and applied to structural design of robot arms. Using genetic algorithm, an optimal structure adaptable to a pump disassembly task is obtained. (author)

  16. Low cost submarine robot

    Directory of Open Access Journals (Sweden)

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  17. Current challenges in autonomous vehicle development

    Science.gov (United States)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  18. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  19. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    Science.gov (United States)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  20. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari, Gerard T. Pittard

    2004-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  1. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M Kothari; Gerard T. Pittard

    2004-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera

  2. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2004-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  3. An Adaptive Robot Game

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Svenstrup, Mikael; Dalgaard, Lars

    2010-01-01

    The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal is to im......The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal...... is to improve the mental and physical state of the user by playing a physical game with the robot. Ideally, a robot game should be simple to learn but difficult to master, providing an appropriate degree of challenge for players with different skills. In order to achieve that, the robot should be able to adapt...

  4. Development of high pressure pipe scanners

    International Nuclear Information System (INIS)

    Kim, Jae H.; Lee, Jae C.; Moon, Soon S.; Eom, Heung S.; Choi, Yu R.

    1998-12-01

    This report describes an automatic ultrasonic scanning system for pressure pipe welds, which was developed in this project using recent advanced technologies on mobile robot and computer. The system consists of two modules: a robot scanner module which navigates and manipulates scanning devices, and a data acquisition module which generates ultrasonic signal and processes the data from the scanner. The robot has 4 magnetic wheels and 2 -axis manipulator on which ultrasonic transducer attached. The wheeled robot can navigate curved surface such as outer wall of circular pipes. Magnetic wheels were optimally designed through magnetic field analysis. Free surface sensing and line tracking control algorithm were developed and implemented, and the control devices and software can be used in practical inspection works. We expect our system can contribute to reduction of inspection time, performance enhancement, and effective management of inspection results

  5. Research project RoboGas{sup Inspector}. Gas leak detection with autonomous mobile robots; Forschungsprojekt RoboGas{sup Inspector}. Gaslecksuche mit autonomen mobilen Robotern

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Abdelkarim [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Bonow, Gero; Kroll, Andreas [Fachgebiet Mess- und Regelungstechnik, Universitaet Kassel, Kassel (Germany); Hegenberg, Jens; Schmidt, Ludger [Fachgebiet Mensch-Maschine-Systemtechnik, Universitaet Kassel, Kassel (Germany); Barz, Thomas; Schulz, Dirk [Fraunhofer FKIE, Unbemannte Systeme, Wachtberg (Germany)

    2013-05-15

    As part of the promotional program AUTONOMIK of the Federal Ministry of Economics and Technology (Berlin, Federal Republic of Germany) a consortium of nine project partners developed a prototype of an autonomous mobile robot looking for gas leaks in extended industrial equipment. The autonomous mobility of the system for any systems was implemented using different types of sensors for self-localization and navigation. The tele-operation enables a manual intervention in the process. The robot performs inspection tasks in industrial plants by means of video technology and remote gas measurement technology without driving into the possible risk areas and without the presence of humans. The robot can be used for routine inspections of facilities or for the targeted inspection of specific plant components. Thanks to the remote sensing technique also plant components can be inspected which are difficult to be inspected due to their limited accessibility by conventional measurement techniques.

  6. Self-localization for an autonomous mobile robot based on an omni-directional vision system

    Science.gov (United States)

    Chiang, Shu-Yin; Lin, Kuang-Yu; Chia, Tsorng-Lin

    2013-12-01

    In this study, we designed an autonomous mobile robot based on the rules of the Federation of International Robotsoccer Association (FIRA) RoboSot category, integrating the techniques of computer vision, real-time image processing, dynamic target tracking, wireless communication, self-localization, motion control, path planning, and control strategy to achieve the contest goal. The self-localization scheme of the mobile robot is based on the algorithms featured in the images from its omni-directional vision system. In previous works, we used the image colors of the field goals as reference points, combining either dual-circle or trilateration positioning of the reference points to achieve selflocalization of the autonomous mobile robot. However, because the image of the game field is easily affected by ambient light, positioning systems exclusively based on color model algorithms cause errors. To reduce environmental effects and achieve the self-localization of the robot, the proposed algorithm is applied in assessing the corners of field lines by using an omni-directional vision system. Particularly in the mid-size league of the RobotCup soccer competition, selflocalization algorithms based on extracting white lines from the soccer field have become increasingly popular. Moreover, white lines are less influenced by light than are the color model of the goals. Therefore, we propose an algorithm that transforms the omni-directional image into an unwrapped transformed image, enhancing the extraction features. The process is described as follows: First, radical scan-lines were used to process omni-directional images, reducing the computational load and improving system efficiency. The lines were radically arranged around the center of the omni-directional camera image, resulting in a shorter computational time compared with the traditional Cartesian coordinate system. However, the omni-directional image is a distorted image, which makes it difficult to recognize the

  7. Algorithm for covert convoy of a moving target using a group of autonomous robots

    Science.gov (United States)

    Polyakov, Igor; Shvets, Evgeny

    2018-04-01

    An important application of autonomous robot systems is to substitute human personnel in dangerous environments to reduce their involvement and subsequent risk on human lives. In this paper we solve the problem of covertly convoying a civilian in a dangerous area with a group of unmanned ground vehicles (UGVs) using social potential fields. The novelty of our work lies in the usage of UGVs as compared to the unmanned aerial vehicles typically employed for this task in the approaches described in literature. Additionally, in our paper we assume that the group of UGVs should simultaneously solve the problem of patrolling to detect intruders on the area. We develop a simulation system to test our algorithms, provide numerical results and give recommendations on how to tune the potentials governing robots' behaviour to prioritize between patrolling and convoying tasks.

  8. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.; Holland, J.M.

    1994-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a semi-autonomous robotic system intended for use in the automatic inspection of stored containers of low-level nuclear waste. This article describes the technology and how it could be used. 3 refs., 3 figs

  9. Shuttlecock detection system for fully-autonomous badminton robot with two high-speed video cameras

    Science.gov (United States)

    Masunari, T.; Yamagami, K.; Mizuno, M.; Une, S.; Uotani, M.; Kanematsu, T.; Demachi, K.; Sano, S.; Nakamura, Y.; Suzuki, S.

    2017-02-01

    Two high-speed video cameras are successfully used to detect the motion of a flying shuttlecock of badminton. The shuttlecock detection system is applied to badminton robots that play badminton fully autonomously. The detection system measures the three dimensional position and velocity of a flying shuttlecock, and predicts the position where the shuttlecock falls to the ground. The badminton robot moves quickly to the position where the shuttle-cock falls to, and hits the shuttlecock back into the opponent's side of the court. In the game of badminton, there is a large audience, and some of them move behind a flying shuttlecock, which are a kind of background noise and makes it difficult to detect the motion of the shuttlecock. The present study demonstrates that such noises can be eliminated by the method of stereo imaging with two high-speed cameras.

  10. 12th International Conference on Intelligent Autonomous Systems

    CERN Document Server

    Cho, Hyungsuck; Yoon, Kwang-Joon; Lee, Jangmyung

    2013-01-01

    Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of “Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security ...

  11. B Plant process piping replacement feasibility study

    International Nuclear Information System (INIS)

    Howden, G.F.

    1996-01-01

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace

  12. Sociable Robots Through Self-Maintained Energy

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2006-12-01

    Full Text Available Research of autonomous mobile robots has mostly emphasized interaction and coordination that are natually inspired from biological behavior of birds, insects, and fish: flocking, foraging, collecting, and sharing. However, most research has been only focused on autonomous behaviors in order to perform robots like animals, whereas it is lacked of determinant to those behaviours: energy. Approaching to clusted amimal and the higher, collective and sharing food among individuals are major activity to keep society being. This paper issues an approach to sociable robots using self-maintained energy in cooperative mobile robots, which is dominantly inspired from swarm behavior of collecting and sharing food of honey-bee and ant. Autonomous mobile robots are usually equipped with a finite energy, thus they can operate in a finite time. To overcome the finitude, we describe practical deployment of mobile robots that are capable of carrying and exchanging fuel to other robots. Mechanism implementation including modular hardware and control architecture to demonstrate the capabicities of the approach is presented. Subsequently, the battery exchange algorithm basically based on probabilistic modeling of total energy on each robot located in its local vicinity is described. The paper is concluded with challenging works of chain of mobile robots, rescue, repair, and relation of heterogeneous robots.

  13. Sociable Robots through Self-maintained Energy

    Directory of Open Access Journals (Sweden)

    Henrik Schioler

    2008-11-01

    Full Text Available Research of autonomous mobile robots has mostly emphasized interaction and coordination that are natually inspired from biological behavior of birds, insects, and fish: flocking, foraging, collecting, and sharing. However, most research has been only focused on autonomous behaviors in order to perform robots like animals, whereas it is lacked of determinant to those behaviours: energy. Approaching to clusted amimal and the higher, collective and sharing food among individuals are major activity to keep society being. This paper issues an approach to sociable robots using self-maintained energy in cooperative mobile robots, which is dominantly inspired from swarm behavior of collecting and sharing food of honey-bee and ant. Autonomous mobile robots are usually equipped with a finite energy, thus they can operate in a finite time. To overcome the finitude, we describe practical deployment of mobile robots that are capable of carrying and exchanging fuel to other robots. Mechanism implementation including modular hardware and control architecture to demonstrate the capabicities of the approach is presented. Subsequently, the battery exchange algorithm basically based on probabilistic modeling of total energy on each robot located in its local vicinity is described. The paper is concluded with challenging works of chain of mobile robots, rescue, repair, and relation of heterogeneous robots.

  14. Behavioural domain knowledge transfer for autonomous agents

    CSIR Research Space (South Africa)

    Rosman, Benjamin S

    2014-11-01

    Full Text Available , and Behavior Transfer in Autonomous Robots, AAAI 2014 Fall Symposium Series, 13-15 November 2014 Behavioural Domain Knowledge Transfer for Autonomous Agents Benjamin Rosman Mobile Intelligent Autonomous Systems Modelling and Digital Science Council...

  15. SIMULATION OF LANDMARK APPROACH FOR WALL FOLLOWING ALGORITHM ON FIRE-FIGHTING ROBOT USING V-REP

    Directory of Open Access Journals (Sweden)

    Sumarsih Condroayu Purbarani

    2015-08-01

    Full Text Available Autonomous mobile robot has been implemented to assist humans in their daily activity. Autonomous robots have also contributed significantly in human safety. Autonomous mobile robot have been implemented to assist humans in their daily activity. Autonomous robots Have also contributed significantly in human safety. An example of the autonomous robot in the human safety sector is the fire fighting robot, which is the main topic of this paper. As an autonomous robot, the fire fighting robot needs a robust navigation ability to execute a given task in the shortest time interval. Wall-following algorithm is one of several navigating algorithm that simplifies this autonomous navigation problem. As a contribution, we propose two methods that could be combined to make the existing wall-following algorithm more robust. The combined wall-flowing algorithm will be compared to the original wall-following algorithm. By doing so, we could determine which method has more impact on the robot’s navigation robustness. Our goal is to see which method is more effective when combined with the wall-following algorithm.

  16. Mining in the Future: Autonomous Robotics for Safer Mines

    CSIR Research Space (South Africa)

    Shahdi, A

    2012-10-01

    Full Text Available ? Require less support infrastructure ? Advanced sensors ? CSIR 2012 Slide 4 Degree of Autonomy ? Teleoperation ? Semi-autonomous ? Autonomous ? CSIR 2012 Slide 5 Mobile Intelligent Autonomous Systems Group ? The Mobile Intelligent Autonomous...

  17. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  18. Are Sex Robots as Bad as Killing Robots

    OpenAIRE

    Richardson, Kathleen

    2016-01-01

    In 2015 the Campaign Against Sex Robots was launched to draw attention to the technological production of new kinds of objects: sex robots of women and children. The campaign was launched shortly after the Future of Life Institute published an online petition: “Autonomous Weapons: An Open Letter From AI and Robotics Researchers” which was signed by leading luminaries in the field of AI and Robotics. In response to the Campaign, an academic at Oxford University opened an ethics thread “Are sex...

  19. Commanding and Planning for Robots in Space Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous and semi-autonomous systems like unmanned spacecraft or robotic vehicles have filled critical roles in NASA's great successes, surviving the harsh...

  20. Atypical autonomic dysreflexia during robotic-assisted body weight supported treadmill training in an individual with motor incomplete spinal cord injury.

    Science.gov (United States)

    Geigle, Paula R; Frye, Sara Kate; Perreault, John; Scott, William H; Gorman, Peter H

    2013-03-01

    A 41-year-old man with a history of C6 American Spinal Injury Association (ASIA) Impairment Scale (AIS) C spinal cord injury (SCI), enrolled in an Institutional Review Board (IRB)-approved, robotic-assisted body weight-supported treadmill training (BWSTT), and aquatic exercise research protocol developed asymptomatic autonomic dysreflexia (AD) during training. Little information is available regarding the relationship of robotic-assisted BWSTT and AD. After successfully completing 36 sessions of aquatic exercise, he reported exertional fatigue during his 10th Lokomat intervention and exhibited asymptomatic or silent AD during this and the three subsequent BWSTT sessions. Standard facilitators of AD were assessed and no obvious irritant identified other than the actual physical exertion and positioning required during robotic-assisted BWSTT. Increased awareness of potential silent AD presenting during robotic assisted BWSTT training for individuals with motor incomplete SCI is required as in this case AD clinical signs were not concurrent with occurrence. Frequent vital sign assessment before, during, and at conclusion of each BWSTT session is strongly recommended.

  1. Robot Games for Elderly

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg

    2011-01-01

    improve a person’s overall health, and this thesis investigates how games based on an autonomous, mobile robot platform, can be used to motivate elderly to move physically while playing. The focus of the investigation is on the development of games for an autonomous, mobile robot based on algorithms using...... spatio-temporal information about player behaviour - more specifically, I investigate three types of games each using a different control strategy. The first game is based on basic robot control which allows the robot to detect and follow a person. A field study in a rehabilitation centre and a nursing....... The robot facilitates interaction, and the study suggests that robot based games potentially can be used for training balance and orientation. The second game consists in an adaptive game algorithm which gradually adjusts the game challenge to the mobility skills of the player based on spatio...

  2. 9th International Robotic Sailing Conference

    CERN Document Server

    Cruz, Nuno

    2017-01-01

    This book contains selected papers that address a variety of topics related to the design, development and operation of unmanned and fully autonomous sailing boats. These papers were presented in the 9th International Robotic Sailing Conference, in association with the 9th World Robotic Sailing Championship that took place in Viana do Castelo, Portugal from the 5th to 10th of September 2016. The book is divided in three parts, each focusing on key aspects of robotic sailing. The first part addresses the design, construction and validation of autonomous sailboat platforms, including their rigs, appendages and control mechanisms. The second part is devoted to the development of sensors and algorithms to enhance the performance of robotic sailing boats, in terms of their speed, course control and manoeuvring ability. Finally, the papers in the last part are dedicated to the improvement of behaviours required for the accomplishment of complex autonomous missions. Robotic sailing is a relatively new multidisciplin...

  3. SLAM algorithm applied to robotics assistance for navigation in unknown environments

    Directory of Open Access Journals (Sweden)

    Lobo Pereira Fernando

    2010-02-01

    Full Text Available Abstract Background The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous. The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI. Methods In this paper, a sequential Extended Kalman Filter (EKF feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. Results The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how

  4. Towards Bio-Inspired Chromatic Behaviours in Surveillance Robots

    Directory of Open Access Journals (Sweden)

    Sampath Kumar Karutaa Gnaniar

    2016-09-01

    Full Text Available The field of Robotics is ever growing at the same time as posing enormous challenges. Numerous works has been done in biologically inspired robotics emulating models, systems and elements of nature for the purpose of solving traditional robotics problems. Chromatic behaviours are abundant in nature across a variety of living species to achieve camouflage, signaling, and temperature regulation. The ability of these creatures to successfully blend in with their environment and communicate by changing their colour is the fundamental inspiration for our research work. In this paper, we present dwarf chameleon inspired chromatic behaviour in the context of an autonomous surveillance robot, “PACHONDHI”. In our experiments, we successfully validated the ability of the robot to autonomously change its colour in relation to the terrain that it is traversing for maximizing detectability to friendly security agents and minimizing exposure to hostile agents, as well as to communicate with fellow cooperating robots.

  5. A remotely operated robot for decontamination tasks

    International Nuclear Information System (INIS)

    Dudar, A.M.; Vandewalle, R.C.

    1994-01-01

    Engineers in the Robotics Development Group at the Westinghouse Savannah River Company (WSRC) have developed a robot which will be used to decontaminate a pipe gallery of a tank farm used for nuclear waste storage. Personnel access is required into this pipe gallery to inspect existing pipes and perform repairs to secondary containment walls around the tank farm. Presently, the pipe gallery is littered with debris of various sizes and its surface is contaminated with activity levels up to 2.5E6 DPM (disintegrations per minute) alpha and exposure levels as high as 20 Rad/hr. Cleaning up this pipe gallery win be the mission of an all-hydraulic robotic vehicle developed in-house at WSRC caged the ''Remote Decon'' robot. The Remote Decon is a tracked vehicle which utilizes skid steering and features a six-degree-of-freedom (DOF) manipulator arm, a five-DOF front end loader type bucket with a rotating brush for scrubbing and decontaminating surfaces, and a three-DOF pan/tilt mechanism with cameras and lights. The Remote Decon system is connected to a control console via a 200 foot tethered cable. The control console was designed with ergonomics and simplicity as the main design factors and features three joysticks, video monitors, LED panels, and audible alarms

  6. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    Science.gov (United States)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  7. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  8. Teleautonomous Control on Rescue Robot Prototype

    Directory of Open Access Journals (Sweden)

    Son Kuswadi

    2012-12-01

    Full Text Available Robot application in disaster area can help responder team to save victims. In order to finish task, robot must have flexible movement mechanism so it can pass through uncluttered area. Passive linkage can be used on robot chassis so it can give robot flexibility. On physical experiments, robot is succeeded to move through gravels and 5 cm obstacle. Rescue robot also has specialized control needs. Robot must able to be controlled remotely. It also must have ability to move autonomously. Teleautonomous control method is combination between those methods. It can be concluded from experiments that on teleoperation mode, operator must get used to see environment through robot’s camera. While on autonomous mode, robot is succeeded to avoid obstacle and search target based on sensor reading and controller program. On teleautonomous mode, robot can change control mode by using bluetooth communication for data transfer, so robot control will be more flexible.

  9. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2004-11-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each as well as field testing of the 4-inch gas pipe repair robot in cast iron pipe at Public Service Electric & Gas. The field tests were conducted August 23-26, 2004 in Oradell, New Jersey. The field tests identified several design issues which need to be implemented in both the small

  10. Robots of the Future

    Indian Academy of Sciences (India)

    two main types of robots: industrial robots, and autonomous robots. .... position); it also has a virtual CPU with two stacks and three registers that hold 32-bit strings. Each item ..... just like we can aggregate images, text, and information from.

  11. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast-iron test pipe segments. Efforts in the current quarter continued to focus on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported last quarter.) These tests identified several design issues which need to be implemented in both the small- and large

  12. Autonomous Industrial Mobile Manipulation (AIMM)

    DEFF Research Database (Denmark)

    Hvilshøj, Mads; Bøgh, Simon; Nielsen, Oluf Skov

    2012-01-01

    Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper investiga......Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper......; sustainability, configuration, adaptation, autonomy, positioning, manipulation and grasping, robot-robot interaction, human-robot interaction, process quality, dependability, and physical properties. Findings - The concise yet comprehensive review provides both researchers (academia) and practitioners (industry......) with a quick and gentle overview of AIMM. Furthermore, the paper identifies key open issues and promising research directions to realize real-world integration and maturation of the AIMM technology. Originality/value - This paper reviews the interdisciplinary research field Autonomous Industrial Mobile...

  13. Autonomous Flight in Unknown Indoor Environments

    OpenAIRE

    Bachrach, Abraham Galton; He, Ruijie; Roy, Nicholas

    2009-01-01

    This paper presents our solution for enabling a quadrotor helicopter, equipped with a laser rangefinder sensor, to autonomously explore and map unstructured and unknown indoor environments. While these capabilities are already commodities on ground vehicles, air vehicles seeking the same performance face unique challenges. In this paper, we describe the difficulties in achieving fully autonomous helicopter flight, highlighting the differences between ground and helicopter robots that make it ...

  14. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  15. Social Robotics in Therapy of Apraxia of Speech

    Directory of Open Access Journals (Sweden)

    José Carlos Castillo

    2018-01-01

    Full Text Available Apraxia of speech is a motor speech disorder in which messages from the brain to the mouth are disrupted, resulting in an inability for moving lips or tongue to the right place to pronounce sounds correctly. Current therapies for this condition involve a therapist that in one-on-one sessions conducts the exercises. Our aim is to work in the line of robotic therapies in which a robot is able to perform partially or autonomously a therapy session, endowing a social robot with the ability of assisting therapists in apraxia of speech rehabilitation exercises. Therefore, we integrate computer vision and machine learning techniques to detect the mouth pose of the user and, on top of that, our social robot performs autonomously the different steps of the therapy using multimodal interaction.

  16. Value-driven behavior generation for an autonomous mobile ground robot

    Science.gov (United States)

    Balakirsky, Stephen B.; Lacaze, Alberto

    2002-07-01

    In this paper, we will describe a value-driven graph search technique that is capable of generating a rich variety of single and multiple vehicle behaviors. The generation of behaviors depends on cost and benefit computations that may involve terrain characteristics, line of sight to enemy positions, and cost, benefit, and risk of traveling on roads. Depending on mission priorities and cost values, real-time planners can autonomously build appropriate behaviors on the fly that include road following, cross-country movement, stealthily movement, formation keeping, and bounding overwatch. This system follows NIST's 4D/RCS architecture, and a discussion of the world model, value judgment, and behavior generation components is provided. In addition, techniques for collapsing a multidimensional model space into a cost space and planning graph constraints are discussed. The work described in this paper has been performed under the Army Research Laboratory's Robotics Demo III program.

  17. Adaptive Behavior for Mobile Robots

    Science.gov (United States)

    Huntsberger, Terrance

    2009-01-01

    The term "System for Mobility and Access to Rough Terrain" (SMART) denotes a theoretical framework, a control architecture, and an algorithm that implements the framework and architecture, for enabling a land-mobile robot to adapt to changing conditions. SMART is intended to enable the robot to recognize adverse terrain conditions beyond its optimal operational envelope, and, in response, to intelligently reconfigure itself (e.g., adjust suspension heights or baseline distances between suspension points) or adapt its driving techniques (e.g., engage in a crabbing motion as a switchback technique for ascending steep terrain). Conceived for original application aboard Mars rovers and similar autonomous or semi-autonomous mobile robots used in exploration of remote planets, SMART could also be applied to autonomous terrestrial vehicles to be used for search, rescue, and/or exploration on rough terrain.

  18. Robot Lies in Health Care: When Is Deception Morally Permissible?

    Science.gov (United States)

    Matthias, Andreas

    2015-06-01

    Autonomous robots are increasingly interacting with users who have limited knowledge of robotics and are likely to have an erroneous mental model of the robot's workings, capabilities, and internal structure. The robot's real capabilities may diverge from this mental model to the extent that one might accuse the robot's manufacturer of deceiving the user, especially in cases where the user naturally tends to ascribe exaggerated capabilities to the machine (e.g. conversational systems in elder-care contexts, or toy robots in child care). This poses the question, whether misleading or even actively deceiving the user of an autonomous artifact about the capabilities of the machine is morally bad and why. By analyzing trust, autonomy, and the erosion of trust in communicative acts as consequences of deceptive robot behavior, we formulate four criteria that must be fulfilled in order for robot deception to be morally permissible, and in some cases even morally indicated.

  19. A Novel Method of Autonomous Inspection for Transmission Line based on Cable Inspection Robot LiDAR Data

    Directory of Open Access Journals (Sweden)

    Xinyan Qin

    2018-02-01

    Full Text Available With the growth of the national economy, there is increasing demand for electricity, which forces transmission line corridors to become structurally complicated and extend to complex environments (e.g., mountains, forests. It is a great challenge to inspect transmission line in these regions. To address these difficulties, a novel method of autonomous inspection for transmission line is proposed based on cable inspection robot (CIR LiDAR data, which mainly includes two steps: preliminary inspection and autonomous inspection. In preliminary inspection, the position and orientation system (POS data is used for original point cloud dividing, ground point filtering, and structured partition. A hierarchical classification strategy is established to identify the classes and positions of the abnormal points. In autonomous inspection, CIR can autonomously reach the specified points through inspection planning. These inspection targets are imaged with PTZ (pan, tilt, zoom cameras by coordinate transformation. The feasibility and effectiveness of the proposed method are verified by test site experiments and actual line experiments, respectively. The proposed method greatly reduces manpower and improves inspection accuracy, providing a theoretical basis for intelligent inspection of transmission lines in the future.

  20. Probabilistic methods for robotics in agriculture

    NARCIS (Netherlands)

    Hiremath, S.

    2013-01-01

    Autonomous operation of robotic systems in an agricultural environment is a difficult task due to the inherent uncertainty in the environment. The robot is in a dynamic, non-deterministic and semi-structured environment with many sources of noise and

  1. Robustness inembedded software for autonomous robots

    NARCIS (Netherlands)

    Broenink, Johannes F.; Brodskiy, Y.; Dresscher, Douwe; Stramigioli, Stefano

    2014-01-01

    The European BRICS project aims to bring about a long-lasting change in robotics research and development in industry as well as in academia. It wants to change the current situation of non-interoperable, monolithic and single-sourcing robotic components into a situation that other domains have

  2. Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles

    Science.gov (United States)

    Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.

    2001-01-01

    The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.

  3. Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments

    Science.gov (United States)

    2016-03-05

    Vehicles in Urban Environments The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...Pine Tree Road Ithaca, NY 14850 -2820 ABSTRACT Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments...Probabilistic Anticipation for Autonomous Robots in Urban Environments, IEEE Transactions on Robotics, (04 2014): 0. doi: 10.1109/TRO.2013.2291620 Isaac

  4. Reinforcement Learning on autonomous humanoid robots

    NARCIS (Netherlands)

    Schuitema, E.

    2012-01-01

    Service robots have the potential to be of great value in households, health care and other labor intensive environments. However, these environments are typically unique, not very structured and frequently changing, which makes it difficult to make service robots robust and versatile through manual

  5. Lessons Learned in Designing User-configurable Modular Robotics

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2013-01-01

    User-configurable robotics allows users to easily configure robotic systems to perform task-fulfilling behaviors as desired by the users. With a user configurable robotic system, the user can easily modify the physical and func-tional aspect in terms of hardware and software components of a robotic...... with the semi-autonomous com-ponents of the user-configurable robotic system in interaction with the given environment. Components constituting such a user-configurable robotic system can be characterized as modules in a modular robotic system. Several factors in the definition and implementation...

  6. ARIES: A mobile robot inspector

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a mobile robot inspection system being developed for the Department of Energy (DOE) to survey and inspect drums containing mixed and low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an autonomous inspection operation, typically performed by a human operator. It will make real-time decisions about the condition of the drums, maintain a database of pertinent information about each drum, and generate reports

  7. Exploring child-robot engagement in a collaborative task

    NARCIS (Netherlands)

    Zaga, Cristina; Truong, Khiet Phuong; Lohse, M.; Evers, Vanessa

    Imagine a room with toys scattered on the floor and a robot that is motivating a small group of children to tidy up. This scenario poses real-world challenges for the robot, e.g., the robot needs to navigate autonomously in a cluttered environment, it needs to classify and grasp objects, and it

  8. The COMRADE System for Multirobot Autonomous Landmine Detection in Postconflict Regions

    Directory of Open Access Journals (Sweden)

    Prithviraj Dasgupta

    2015-01-01

    Full Text Available We consider the problem of autonomous landmine detection using a team of mobile robots. Previous research on robotic landmine detection mostly employs a single robot equipped with a landmine detection sensor to detect landmines. We envisage that the quality of landmine detection can be significantly improved if multiple robots are coordinated to detect landmines in a cooperative manner by incrementally fusing the landmine-related sensor information they collect and then use that information to visit locations of potential landmines. Towards this objective, we describe a multirobot system called COMRADES to address different aspects of the autonomous landmine detection problem including distributed area coverage to detect and locate landmines, information aggregation to fuse the sensor information obtained by different robots, and multirobot task allocation (MRTA to enable different robots to determine a suitable sequence to visit locations of potential landmines while reducing the time required and battery expended. We have used commercially available all-terrain robots called Coroware Explorer that are customized with a metal detector to detect metallic objects including landmines, as well as indoor Corobot robots, both in simulation and in physical experiments, to test the different techniques in COMRADES.

  9. Robotics_MobileRobot Navigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Robots and rovers exploring planets need to autonomously navigate to specified locations. Advanced Scientific Concepts, Inc. (ASC) and the University of Minnesota...

  10. Concepts of the Internet of Things from the Aspect of the Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Janos Simon

    2015-01-01

    Full Text Available The Internet of Things (IoT is slowly gaining grounds and through the properties of barcodes, QR codes, RFID, active sensors and IPv6, objects are fitted with some form of readability and traceability. People are becoming part of digital global network driven by personal interests. The feeling being part of a community and the constant drive of getting connected from real life finds it continuation in digital networks. This article investigates the concepts of the internet of things from the aspect of the autonomous mobile robots with an overview of the performances of the currently available database systems.

  11. Future of Autonomous Ground Logistics: Convoys in the Department of Defense

    Science.gov (United States)

    2011-02-13

    operations. Figure 3 History of Autonomous Vehicles44 Civilian car manufactures have included elements of autonomous vehicles in their...in the area of autonomous vehicles , equal to the capabilities of civilian robotics programs. These contests and competitions inspire new ideas...data into the vehicles , loaded the vehicles with the supplies and drove them to the staging area. From the staging area, the autonomous vehicles self

  12. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    Science.gov (United States)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  13. Fast mapping of the local environment of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Fanton, Herve

    1989-01-01

    The construction of a map of the local world for the navigation of an autonomous mobile robot leads to the following problem: how to extract among the sensor data information accurate an reliable enough to plan a path, in a way that enables a reasonable displacement speed. Choice has been made not to tele-operate the vehicle nor to design any custom architecture. So the only way to match the computational cost is to look for the most efficient sensor-algorithms-architecture combination. A good solution is described in this study, using a laser range-finder, a grid model of the world and both SIMD and MIMD parallel processors. A short review of some possible approaches is made first; the mapping algorithms are then described as also the parallel implementations with the corresponding speedup and efficiency factors. (author) [fr

  14. Collaborative autonomous sensing with Bayesians in the loop

    Science.gov (United States)

    Ahmed, Nisar

    2016-10-01

    There is a strong push to develop intelligent unmanned autonomy that complements human reasoning for applications as diverse as wilderness search and rescue, military surveillance, and robotic space exploration. More than just replacing humans for `dull, dirty and dangerous' work, autonomous agents are expected to cope with a whole host of uncertainties while working closely together with humans in new situations. The robotics revolution firmly established the primacy of Bayesian algorithms for tackling challenging perception, learning and decision-making problems. Since the next frontier of autonomy demands the ability to gather information across stretches of time and space that are beyond the reach of a single autonomous agent, the next generation of Bayesian algorithms must capitalize on opportunities to draw upon the sensing and perception abilities of humans-in/on-the-loop. This work summarizes our recent research toward harnessing `human sensors' for information gathering tasks. The basic idea behind is to allow human end users (i.e. non-experts in robotics, statistics, machine learning, etc.) to directly `talk to' the information fusion engine and perceptual processes aboard any autonomous agent. Our approach is grounded in rigorous Bayesian modeling and fusion of flexible semantic information derived from user-friendly interfaces, such as natural language chat and locative hand-drawn sketches. This naturally enables `plug and play' human sensing with existing probabilistic algorithms for planning and perception, and has been successfully demonstrated with human-robot teams in target localization applications.

  15. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    Directory of Open Access Journals (Sweden)

    Brandon Sights

    2006-10-01

    Full Text Available High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the trend toward relieving the human of the low-level control burden advances, the ability to combine the functionalities of several critical control systems on a single platform becomes imperative.

  16. Intelligent robotic tracker

    Science.gov (United States)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  17. Autonomous Task Primitives for Complex Manipulation Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this research effort is to enable robots to autonomously perform the complex manipulation tasks that are necessary to maintain a spacecraft. Robots, like...

  18. The technology of mobile robot with articulated crawler mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Suh, Yong Chil; Lee, Yung Kwang; Sin, Jae Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    The main application of a mobile robot are to do the inspection and maintenance tasks in the primary and auxiliary building, and to meet with the radiological emergency response in nuclear power plant. Our project to develop crawler-type mobile robot has been divided into 3 phases. In 1 st phase, the-state-of-the-arts of mobile robot technology were studied and analyzed. And then the technical report `development of mobile robot technology for the light work` was published on July, 1993. In current phase, the articulated crawler type mobile robot named as ANDROS Mark VI was purchased to evaluate deeply its mechanism and control system. Then we designed the autonomous track surface, to get the inclination angle of robot, and to control the front and rear auxiliary track autonomously during climbing up and down stairs. And also, the autonomous stair-climbing algorithm has been developed to going over stairs with high stability. For the final phase, the advanced model of articulated crawler type mobile robot is going to be developed. (Author) 13 refs., 30 figs., 12 tabs.

  19. The technology of mobile robot with articulated crawler mechanism

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Suh, Yong Chil; Lee, Yung Kwang; Sin, Jae Ho

    1995-01-01

    The main application of a mobile robot are to do the inspection and maintenance tasks in the primary and auxiliary building, and to meet with the radiological emergency response in nuclear power plant. Our project to develop crawler-type mobile robot has been divided into 3 phases. In 1 st phase, the-state-of-the-arts of mobile robot technology were studied and analyzed. And then the technical report 'development of mobile robot technology for the light work' was published on July, 1993. In current phase, the articulated crawler type mobile robot named as ANDROS Mark VI was purchased to evaluate deeply its mechanism and control system. Then we designed the autonomous track surface, to get the inclination angle of robot, and to control the front and rear auxiliary track autonomously during climbing up and down stairs. And also, the autonomous stair-climbing algorithm has been developed to going over stairs with high stability. For the final phase, the advanced model of articulated crawler type mobile robot is going to be developed. (Author) 13 refs., 30 figs., 12 tabs

  20. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human`s eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. 203 figs, 12 tabs, 72 refs. (Author).

  1. vSLAM: vision-based SLAM for autonomous vehicle navigation

    Science.gov (United States)

    Goncalves, Luis; Karlsson, Niklas; Ostrowski, Jim; Di Bernardo, Enrico; Pirjanian, Paolo

    2004-09-01

    Among the numerous challenges of building autonomous/unmanned vehicles is that of reliable and autonomous localization in an unknown environment. In this paper we present a system that can efficiently and autonomously solve the robotics 'SLAM' problem, where a robot placed in an unknown environment, simultaneously must localize itself and make a map of the environment. The system is vision-based, and makes use of Evolution Robotic's powerful object recognition technology. As the robot explores the environment, it is continuously performing four tasks, using information from acquired images and the drive system odometry. The robot: (1) recognizes previously created 3-D visual landmarks; (2) builds new 3-D visual landmarks; (3) updates the current estimate of its location, using the map; (4) updates the landmark map. In indoor environments, the system can build a map of a 5m by 5m area in approximately 20 minutes, and can localize itself with an accuracy of approximately 15 cm in position and 3 degrees in orientation relative to the global reference frame of the landmark map. The same system can be adapted for outdoor, vehicular use.

  2. Measuring Attitudes Towards Telepresence Robots

    OpenAIRE

    M Tsui, Katherine; Desai, Munjal; A. Yanco, Holly; Cramer, Henriette; Kemper, Nicander

    2011-01-01

    Studies using Nomura et al.’s “Negative Attitude toward Robots Scale” (NARS) [1] as an attitudinal measure have featured robots that were perceived to be autonomous, indepen- dent agents. State of the art telepresence robots require an explicit human-in-the-loop to drive the robot around. In this paper, we investigate if NARS can be used with telepresence robots. To this end, we conducted three studies in which people watched videos of telepresence robots (n=70), operated te...

  3. Quadruped robots for nuclear facilities. Development of cooperative carrying and unloading functions

    International Nuclear Information System (INIS)

    2016-01-01

    As the Fukushima Daiichi Nuclear Power Station (hereafter refers to as 1F) became the high dose environment by the Great East Japan Earthquake, remotely operated robots were required in order to reduce workers' radiation exposure. We developed a quadruped robot to walk the stairs and narrow passages with carrying burdens such as investigation tools. This robot investigated water leakage from vent pipes at underground of 1F unit 2. There are various works towards the decommissioning such as measuring doses of radiation, cutting pipes, connecting wires and more. It is desirable to carry various work tools and to unload them at destinations with remotely operated robots. To this end, we have developed carrying and unloading functions of the robot. In addition, we have developed cooperative carrying functions that two quadruped robots carry and unload a burden which is too long or heavy for individual robot. As a result, it was realized that two robots carried the pipe of 48 kg while getting over a step of 100 mm and unloading it at a destination. (author)

  4. Robot Wars: US Empire and geopolitics in the robotic age

    Science.gov (United States)

    Shaw, Ian GR

    2017-01-01

    How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots – driven by leaps in artificial intelligence and swarming – are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence – revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy. PMID:29081605

  5. Science, technology and the future of small autonomous drones.

    Science.gov (United States)

    Floreano, Dario; Wood, Robert J

    2015-05-28

    We are witnessing the advent of a new era of robots - drones - that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.

  6. Editorial for special issue on Perception and Navigation for Autonomous Vehicles

    OpenAIRE

    Laugier , Christian; Philippe , Martinet; Urbano , Nunes

    2014-01-01

    International audience; This Special Issue of the IEEE Robotics and Automation Magazine has been prepared in the scope of the activities of the Technical Committee on "Autonomous Ground Vehicle and Intelligent Transportation System" (AGV-ITS) (http://www.ieee-ras.org/autonomous-groundvehicles- and-intelligent-transportation-systems) of the IEEE Robotics and Automation Society (IEEE RAS).

  7. Autonomous flying robots

    CERN Document Server

    Nonami, Kenzo; Suzuki, Satoshi; Wang, Wei; Nakazawa, Daisuke

    2010-01-01

    Worldwide demand for robotic aircraft such as unmanned aerial vehicles (UAVs) and micro aerial vehicles (MAVs) is surging. Not only military but especially civil applications are being developed at a rapid pace. Unmanned vehicles offer major advantages when used for aerial surveillance, reconnaissance, and inspection in complex and inhospitable environments. UAVs are better suited for dirty or dangerous missions than manned aircraft and are more cost-effective. UAVs can operate in contaminated environments, for example, and at altitudes both lower and higher than those typically traversed by m

  8. Multisensor Data Fusion and Integration for Mobile Robots: A Review

    Directory of Open Access Journals (Sweden)

    KS Nagla

    2013-09-01

    Full Text Available One of the most important and useful feature of autonomous mobile robots is their ability to adopt themselves to operate in unstructured environment. Today robots are performing autonomously in industrial floor, office environments, as well as in crowded public places where the robots need to maintain their localization and mapping parameters.The basic requirement of an intelligent mobile robot is to develop and maintain localization and mapping parameters to complete the complex missions. In such situations, several difficulties arise in due to the inaccuracies and uncertainties in sensor measurements. Various techniques are there to handle such noises where the multisensor data fusion is not the exceptional one.From the last two decades, multisensor data fusions in mobile robots become a dominant paradigm  due to its potential advantages like reduction in uncertainty, increase in accuracy and reliability and reduction of cost.This paper presents the reviews of autonomous mobile robots and role of multisenosr data fusion.

  9. Implementation of a Mobile Robot Platform Navigating in Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Belaidi Hadjira

    2017-01-01

    Full Text Available Currently, problems of autonomous wheeled mobile robots in unknown environments are great challenge. Obstacle avoidance and path planning are the back bone of autonomous control as it makes robot able to reach its destination without collision. Dodging obstacles in dynamic and uncertain environment is the most complex part of obstacle avoidance and path planning tasks. This work deals with the implementation of an easy approach of static and dynamic obstacles avoidance. The robot starts by executing a free optimal path loaded into its controller; then, it uses its sensors to avoid the unexpected obstacles which may occur in that path during navigation.

  10. 8th International Robotic Sailing Conference

    CERN Document Server

    Haug, Florian

    2016-01-01

    This book presents the cutting edge developments within a broad field related to robotic sailing. The contributions were presented during the 8th International Robotic Sailing Conference, which has taken place as a part of the 2015 World Robotic Sailing Championships in Mariehamn, Åland (Finland), August 31st – September 4th 2015. Since more than a decade, a series of competitions such as the World Robotic Sailing Championship have stimulated a variety of groups to work on research and development around autonomous sailing robots, which involves boat designers, naval architects, electrical engineers and computer scientists. While many of the challenges in building a truly autonomous sailboat are still unsolved, the books presents the state of the art of research and development within platform optimization, route and stability planning, collision avoidance, power management and boat control.

  11. Spatial and Temporal Abstractions in POMDPs Applied to Robot Navigation

    National Research Council Canada - National Science Library

    Theocharous, Georgios; Mahadevan, Sridhar; Kaelbling, Leslie P

    2005-01-01

    Partially observable Markov decision processes (POMDPs) are a well studied paradigm for programming autonomous robots, where the robot sequentially chooses actions to achieve long term goals efficiently...

  12. An Autonomous Robotic System for Mapping Weeds in Fields

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær; Garcia Ruiz, Francisco Jose; Kazmi, Wajahat

    2013-01-01

    The ASETA project develops theory and methods for robotic agricultural systems. In ASETA, unmanned aircraft and unmanned ground vehicles are used to automate the task of identifying and removing weeds in sugar beet fields. The framework for a working automatic robotic weeding system is presented...

  13. The development of radiation hardened robot for nuclear facility

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Jung, Seung Ho; Kim, Byung Soo and others

    2000-04-01

    The work conducted in this stage covers development of core technology of tele-robot system including monitoring technique in high-level radioactive area, tele-sensing technology and radiation-hardened technology for the non-destructive tele-inspection system which monitors the primary coolant system during the normal operations of PHWR(Pressurized Heavy Water Reactor) NPPs and measures the decrease of bending part of feeder pipe during overall. Based on the developed core technology, the monitoring mobile robot system of the primary coolant system and the feeder pipe inspecting robot system are developed

  14. The development of radiation hardened robot for nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Seung Ho; Kim, Byung Soo and others

    2000-04-01

    The work conducted in this stage covers development of core technology of tele-robot system including monitoring technique in high-level radioactive area, tele-sensing technology and radiation-hardened technology for the non-destructive tele-inspection system which monitors the primary coolant system during the normal operations of PHWR(Pressurized Heavy Water Reactor) NPPs and measures the decrease of bending part of feeder pipe during overall. Based on the developed core technology, the monitoring mobile robot system of the primary coolant system and the feeder pipe inspecting robot system are developed.

  15. Robotic system for orbital welding of pipes; Sistema robotizado para soldagem orbital de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Bracarense, Alexandre Queiroz; Lima, II, Eduardo Jose; Torres, Guilherme Fortunato; Ramalho, Frederico [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Felizardo, Ivanilza; Zanon, Gislaine Pires [ROTECH Tecnologia Robotica Ltda., Belo Horizonte, MG (Brazil)

    2004-07-01

    This work presents the robotic system projected for orbital welding of pipelines of oil and gas. The system consists of a controller (microcomputer), that allows the execution of all the referring tasks to the welding in an autonomous way, and two manipulates, to what are coupled the welding torches that are connected to a welding power source with double wire feeders. With this system, GMA W process is used to execute the root pass, while FCA W process, besides the GMA W, is used for the filling and finishing passes. The system has four degrees of freedom, allowing the control of stick out, travel speed, torch angle and positioning. Besides these, the arc voltage and and welding current are also controlled during the process. Knowing that for each welding position (plane, vertical up and down and over head) a great group of parameters must be used, several tests were accomplished. With these values a controlled variation could be accomplished in an uninterrupted way when welding position changes, getting the increase of the productivity and also the quality of the weld performed by a robotic system. (author)

  16. Human-Agent Teaming for Multi-Robot Control: A Literature Review

    Science.gov (United States)

    2013-02-01

    advent of the Goggle driverless car , autonomous farm equipment, and unmanned commercial aircraft (Mosher, 2012). The inexorable trend towards...because a robot cannot be automated to navigate in difficult terrain. However, this high ratio will not be sustainable if large numbers of autonomous ...Parasuraman et al., 2007). 3.5 RoboLeader Past research indicates that autonomous cooperation between robots can improve the performance of the human

  17. Car-Like Mobile Robot Oriented Positioning by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Noureddine Ouadah

    2008-11-01

    Full Text Available In this paper, fuzzy logic controllers (FLC are used to implement an efficient and accurate positioning of an autonomous car-like mobile robot, respecting final orientation. To accomplish this task, called "Oriented Positioning", two FLC have been developed: robot positioning controller (RPC and robot following controller (RFC. Computer simulation results illustrate the effectiveness of the proposed technique. Finally, real-time experiments have been made on an autonomous car-like mobile robot called "Robucar", developed to perform people transportation. Obtained results from experiments demonstrate the effectiveness of the proposed control strategy.

  18. Car-Like Mobile Robot Oriented Positioning by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Noureddine Ouadah

    2008-09-01

    Full Text Available In this paper, fuzzy logic controllers (FLC are used to implement an efficient and accurate positioning of an autonomous car-like mobile robot, respecting final orientation. To accomplish this task, called “Oriented Positioning”, two FLC have been developed: robot positioning controller (RPC and robot following controller (RFC. Computer simulation results illustrate the effectiveness of the proposed technique. Finally, real-time experiments have been made on an autonomous car-like mobile robot called “Robucar”, developed to perform people transportation. Obtained results from experiments demonstrate the effectiveness of the proposed control strategy.

  19. Toward autonomous operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Kitamura, M.

    1994-01-01

    Issues toward realization of autonomous operation as well as maintenance of nuclear power plants are reviewed in this paper. First, the necessity and significance of the technical program aiming at the establishment of autonomous nuclear plant are discussed through reviewing the history and current status computerized operation of complex artifacts. Then, key technologies currently studied to meet the need within the framework of artificial intelligence (AI) and advanced robotics are described. Among such AI-technologies are distributed multi-agent system, operator thinking model, and advanced man-machine interface design. Advances in robot technology attained include active sensing technique and multi-unit autonomous maintenance robot systems. Techniques for simulation of human action have been pursued as basic issues for understanding mechanisms behind human behavior. In addition to the individual developments, methodological topics relevant to the autonomy of nuclear facilities are briefly addressed. The concepts called methodology diversity and dynamic functionality restoration (realization) are introduced and discussed as the underlining principles to be considered in the development of the autonomous nuclear power plants. (author)

  20. Field dose radiation determination by active learning with Gaussian Process for autonomous robot guiding

    International Nuclear Information System (INIS)

    Freitas Naiff, Danilo de; Silveira, Paulo R.; Pereira, Claudio M.N.A.

    2017-01-01

    This article proposes an approach for determination of radiation dose pro le in a radiation-susceptible environment, aiming to guide an autonomous robot in acting on those environments, reducing the human exposure to dangerous amount of dose. The approach consists of an active learning method based on information entropy reduction, using log-normally warped Gaussian Process (GP) as surrogate model, resulting in non-linear online regression with sequential measurements. Experiments with simulated radiation dose fields of varying complexity were made, and results showed that the approach was effective in reconstruct the eld with high accuracy, through relatively few measurements. The technique was also shown some robustness in presence measurement noise, present in real measurements, by assuming Gaussian noise. (author)

  1. Field dose radiation determination by active learning with Gaussian Process for autonomous robot guiding

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Naiff, Danilo de; Silveira, Paulo R.; Pereira, Claudio M.N.A., E-mail: danilonai1992@poli.ufrj.br, E-mail: paulo@lmp.ufrj.br, E-mail: cmnap@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    This article proposes an approach for determination of radiation dose pro le in a radiation-susceptible environment, aiming to guide an autonomous robot in acting on those environments, reducing the human exposure to dangerous amount of dose. The approach consists of an active learning method based on information entropy reduction, using log-normally warped Gaussian Process (GP) as surrogate model, resulting in non-linear online regression with sequential measurements. Experiments with simulated radiation dose fields of varying complexity were made, and results showed that the approach was effective in reconstruct the eld with high accuracy, through relatively few measurements. The technique was also shown some robustness in presence measurement noise, present in real measurements, by assuming Gaussian noise. (author)

  2. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    National Research Council Canada - National Science Library

    Sights, B; Everett, H. R; Pacis, E. B; Kogut, G; Thompson, M

    2005-01-01

    High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact...

  3. Autonomous Motion Learning for Intra-Vehicular Activity Space Robot

    Science.gov (United States)

    Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo

    Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.

  4. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    Science.gov (United States)

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  5. Navigation Algorithm Using Fuzzy Control Method in Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Cviklovič Vladimír

    2016-03-01

    Full Text Available The issue of navigation methods is being continuously developed globally. The aim of this article is to test the fuzzy control algorithm for track finding in mobile robotics. The concept of an autonomous mobile robot EN20 has been designed to test its behaviour. The odometry navigation method was used. The benefits of fuzzy control are in the evidence of mobile robot’s behaviour. These benefits are obtained when more physical variables on the base of more input variables are controlled at the same time. In our case, there are two input variables - heading angle and distance, and two output variables - the angular velocity of the left and right wheel. The autonomous mobile robot is moving with human logic.

  6. A ToF-Camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera's performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  7. 7th International Robotic Sailing Conference

    CERN Document Server

    Tynan, Dermot

    2015-01-01

    An autonomous sailboat robot is a boat that only uses the wind on its sail as the propelling force, without remote control or human assistance to achieve its mission. Robotic sailing offers the potential of long range and long term autonomous wind propelled, solar or wave-powered carbon neutral devices. Robotic sailing devices could contribute to monitoring of environmental, ecological, meteorological, hydrographic and oceanographic data. These devices can also be used in traffic monitoring, border surveillance, security, assistance and rescue. The dependency on changing winds and sea conditions presents a considerable challenge for short and long term route and stability planning, collision avoidance and boat control. Building a robust and seaworthy sailing robot presents a truly complex and multi-disciplinary challenge for boat designers, naval architects, systems/electrical engineers and computer scientists. Over the last decade, several events such as Sailbot, World Robotic Sailing Championship and the In...

  8. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb

    Directory of Open Access Journals (Sweden)

    E. D. Oña

    2018-01-01

    Full Text Available Robot-mediated neurorehabilitation is a growing field that seeks to incorporate advances in robotics combined with neuroscience and rehabilitation to define new methods for treating problems related with neurological diseases. In this paper, a systematic literature review is conducted to identify the contribution of robotics for upper limb neurorehabilitation, highlighting its relation with the rehabilitation cycle, and to clarify the prospective research directions in the development of more autonomous rehabilitation processes. With this aim, first, a study and definition of a general rehabilitation process are made, and then, it is particularized for the case of neurorehabilitation, identifying the components involved in the cycle and their degree of interaction between them. Next, this generic process is compared with the current literature in robotics focused on upper limb treatment, analyzing which components of this rehabilitation cycle are being investigated. Finally, the challenges and opportunities to obtain more autonomous rehabilitation processes are discussed. In addition, based on this study, a series of technical requirements that should be taken into account when designing and implementing autonomous robotic systems for rehabilitation is presented and discussed.

  9. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb

    Science.gov (United States)

    Sánchez-Herrera, P.; Balaguer, C.; Jardón, A.

    2018-01-01

    Robot-mediated neurorehabilitation is a growing field that seeks to incorporate advances in robotics combined with neuroscience and rehabilitation to define new methods for treating problems related with neurological diseases. In this paper, a systematic literature review is conducted to identify the contribution of robotics for upper limb neurorehabilitation, highlighting its relation with the rehabilitation cycle, and to clarify the prospective research directions in the development of more autonomous rehabilitation processes. With this aim, first, a study and definition of a general rehabilitation process are made, and then, it is particularized for the case of neurorehabilitation, identifying the components involved in the cycle and their degree of interaction between them. Next, this generic process is compared with the current literature in robotics focused on upper limb treatment, analyzing which components of this rehabilitation cycle are being investigated. Finally, the challenges and opportunities to obtain more autonomous rehabilitation processes are discussed. In addition, based on this study, a series of technical requirements that should be taken into account when designing and implementing autonomous robotic systems for rehabilitation is presented and discussed. PMID:29707189

  10. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb.

    Science.gov (United States)

    Oña, E D; Cano-de la Cuerda, R; Sánchez-Herrera, P; Balaguer, C; Jardón, A

    2018-01-01

    Robot-mediated neurorehabilitation is a growing field that seeks to incorporate advances in robotics combined with neuroscience and rehabilitation to define new methods for treating problems related with neurological diseases. In this paper, a systematic literature review is conducted to identify the contribution of robotics for upper limb neurorehabilitation, highlighting its relation with the rehabilitation cycle, and to clarify the prospective research directions in the development of more autonomous rehabilitation processes. With this aim, first, a study and definition of a general rehabilitation process are made, and then, it is particularized for the case of neurorehabilitation, identifying the components involved in the cycle and their degree of interaction between them. Next, this generic process is compared with the current literature in robotics focused on upper limb treatment, analyzing which components of this rehabilitation cycle are being investigated. Finally, the challenges and opportunities to obtain more autonomous rehabilitation processes are discussed. In addition, based on this study, a series of technical requirements that should be taken into account when designing and implementing autonomous robotic systems for rehabilitation is presented and discussed.

  11. Development of bore tools for pipe welding and cutting

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Ito, Akira; Takiguchi, Yuji

    1998-01-01

    In the International Thermonuclear Experimental Reactor (ITER), in-vessel components replacement and maintenance requires that connected cooling pipes be cut and removed beforehand and that new components be installed to which cooling pipes must be rewelded. All welding must be inspected for soundness after completion. These tasks require a new task concept for ensuring shielded areas and access from narrow ports. Thus, it became necessary to develop autonomous locomotion welding and cutting tools for branch and main pipes to weld pipes by in-pipe access; a system was proposed that cut and welded branch and main pipes after passing inside pipe curves, and elemental technologies developed. This paper introduces current development in tools for welding and cutting branch pipes and other tools for welding and cutting the main pipe. (author)

  12. Development of bore tools for pipe welding and cutting

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Ito, Akira; Takiguchi, Yuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    In the International Thermonuclear Experimental Reactor (ITER), in-vessel components replacement and maintenance requires that connected cooling pipes be cut and removed beforehand and that new components be installed to which cooling pipes must be rewelded. All welding must be inspected for soundness after completion. These tasks require a new task concept for ensuring shielded areas and access from narrow ports. Thus, it became necessary to develop autonomous locomotion welding and cutting tools for branch and main pipes to weld pipes by in-pipe access; a system was proposed that cut and welded branch and main pipes after passing inside pipe curves, and elemental technologies developed. This paper introduces current development in tools for welding and cutting branch pipes and other tools for welding and cutting the main pipe. (author)

  13. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  14. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran M. Kothari; Gerard T. Pittard

    2005-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed previously. Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in test cast-iron pipe segments. Efforts in the current quarter continued to be focused on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported previously.) Several design issues were identified which need to be implemented in both the small- and large-diameter repair

  15. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human's eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. It has been looking for these techniques to expand the working area of human, raise the working efficiencies of remote task to the highest degree, and enhance the industrial

  16. Decommissioning? Why not use a robot

    International Nuclear Information System (INIS)

    Bares, L.C.

    1995-01-01

    Tasks which may be accomplished by robots alone or in conjunction with human workers in decommissioning nuclear facilities include: routine surveillance in contaminated areas; radiation surveys and sampling; preparation of work area; decontamination of walls and floors; disassembly of contaminated equipment and piping; internal decontamination of piping and waste storage/processing tanks; sorting materials; removal of large activated/contaminated structures; asbestos removal and packaging; transport of waste from disassembly areas; tending waste processing equipment; waste packaging for storage. The status of the technology is briefly reviewed and examples of the use of robots in decommissioning work in the USA are described. Although the use of robots in this field is not extensive so far, that use is increasing and information on its costs and benefits are becoming available. (UK)

  17. Toward a framework for levels of robot autonomy in human-robot interaction.

    Science.gov (United States)

    Beer, Jenay M; Fisk, Arthur D; Rogers, Wendy A

    2014-07-01

    A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully autonomous systems, influence the way in which humans and robots may interact with one another. Thus, there is a need to understand HRI by identifying variables that influence - and are influenced by - robot autonomy. Our overarching goal is to develop a framework for levels of robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-automation interaction, a field with a long history of studying and understanding human-related variables. The construct of autonomy is reviewed and redefined within the context of HRI. Additionally, the framework proposes a process for determining a robot's autonomy level, by categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced by the LORA.

  18. Nasa's Ant-Inspired Swarmie Robots

    Science.gov (United States)

    Leucht, Kurt W.

    2016-01-01

    As humans push further beyond the grasp of earth, robotic missions in advance of human missions will play an increasingly important role. These robotic systems will find and retrieve valuable resources as part of an in-situ resource utilization (ISRU) strategy. They will need to be highly autonomous while maintaining high task performance levels. NASA Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots to be used as a ground-based research platform for ISRU missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in a previously unmapped environment and return those resources to a central site. This talk will guide the audience through the Swarmie robot project from its conception by students in a New Mexico research lab to its robot trials in an outdoor parking lot at NASA. The software technologies and techniques used on the project will be discussed, as well as various challenges and solutions that were encountered by the development team along the way.

  19. Autonomous Shepherding Behaviors of Multiple Target Steering Robots.

    Science.gov (United States)

    Lee, Wonki; Kim, DaeEun

    2017-11-25

    This paper presents a distributed coordination methodology for multi-robot systems, based on nearest-neighbor interactions. Among many interesting tasks that may be performed using swarm robots, we propose a biologically-inspired control law for a shepherding task, whereby a group of external agents drives another group of agents to a desired location. First, we generated sheep-like robots that act like a flock. We assume that each agent is capable of measuring the relative location and velocity to each of its neighbors within a limited sensing area. Then, we designed a control strategy for shepherd-like robots that have information regarding where to go and a steering ability to control the flock, according to the robots' position relative to the flock. We define several independent behavior rules; each agent calculates to what extent it will move by summarizing each rule. The flocking sheep agents detect the steering agents and try to avoid them; this tendency leads to movement of the flock. Each steering agent only needs to focus on guiding the nearest flocking agent to the desired location. Without centralized coordination, multiple steering agents produce an arc formation to control the flock effectively. In addition, we propose a new rule for collecting behavior, whereby a scattered flock or multiple flocks are consolidated. From simulation results with multiple robots, we show that each robot performs actions for the shepherding behavior, and only a few steering agents are needed to control the whole flock. The results are displayed in maps that trace the paths of the flock and steering robots. Performance is evaluated via time cost and path accuracy to demonstrate the effectiveness of this approach.

  20. Sensor Fusion for Autonomous Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Plascencia, Alfredo

    Multi-sensor data fusion is a broad area of constant research which is applied to a wide variety of fields such as the field of mobile robots. Mobile robots are complex systems where the design and implementation of sensor fusion is a complex task. But research applications are explored constantl....... The scope of the thesis is limited to building a map for a laboratory robot by fusing range readings from a sonar array with landmarks extracted from stereo vision images using the (Scale Invariant Feature Transform) SIFT algorithm....

  1. Robotics in the nuclear environment-inspection and repairs inside the primary coolant system

    International Nuclear Information System (INIS)

    Guillet, J.; Marcel Tortolano

    2005-01-01

    The increase in the lifetime of the power plants and the ageing of materials require the intervention inside the components to carry out controls and possibly repairs in the event of discovered defects. Within this framework, EDF is investigating the feasibility of robotized repairs of the components and pipes of the main primary coolant system of a nuclear power plant. For several years, EDF R and D has engaged projects whose subject of study is the possibility of repairing components such as the main vessel; the pressurizer or the primary coolant pipes with the help of robots and dedicated tools. INTERVENTIONS INSIDE PRIMARY COOLANT PIPES: Studies undertaken by EDF highlighted that certain zones, particularly in pipe connections, can be affected by thermal fatigue which causes crackling defects or crackings. In anticipation of this phenomenon which would affect primary pipes and to avoid their replacements, EDF R and D has been studying the feasibility of examining and repairing these zones using robots. Robotized repair consists in introducing into the pipe while passing by the vessel, a 6 degrees of freedom manipulator mounted on a mobile carrier. This robot implements and carries out the trajectories of the different processes of repair: - Precise localization of the defects, - Elimination (possibly sampling) of the defects by machining, - Control that the defects were eliminated, - Weld metal buildup if the repair cavity is too deep, - Grinding followed by a new control of the surface. These studies and tests were conducted in the laboratory of EDF R and D in Chatou. The sequence of operations included machining by grinding and milling, profilometric control, dye penetrant testing, TIG welding and ultrasonic examinations. The results of the tests, executed on full scale models of components, are satisfactory and show the advantages of robotics compared with classical methods. ROBOTIZED INTERVENTIONS IN THE REACTOR VESSEL: Another difficult issue is the

  2. Mobile Intelligent Autonomous Systems

    OpenAIRE

    Jitendra R. Raol; Ajith Gopal

    2010-01-01

    Mobile intelligent autonomous systems (MIAS) is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i) perception and reasoning, (ii) mobility and navigation,(iii) haptics and teleoperation, (iv) image fusion/computervision, (v) modelling of manipulators, (vi) hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii) ve...

  3. HiMoP: A three-component architecture to create more human-acceptable social-assistive robots : Motivational architecture for assistive robots.

    Science.gov (United States)

    Rodríguez-Lera, Francisco J; Matellán-Olivera, Vicente; Conde-González, Miguel Á; Martín-Rico, Francisco

    2018-05-01

    Generation of autonomous behavior for robots is a general unsolved problem. Users perceive robots as repetitive tools that do not respond to dynamic situations. This research deals with the generation of natural behaviors in assistive service robots for dynamic domestic environments, particularly, a motivational-oriented cognitive architecture to generate more natural behaviors in autonomous robots. The proposed architecture, called HiMoP, is based on three elements: a Hierarchy of needs to define robot drives; a set of Motivational variables connected to robot needs; and a Pool of finite-state machines to run robot behaviors. The first element is inspired in Alderfer's hierarchy of needs, which specifies the variables defined in the motivational component. The pool of finite-state machine implements the available robot actions, and those actions are dynamically selected taking into account the motivational variables and the external stimuli. Thus, the robot is able to exhibit different behaviors even under similar conditions. A customized version of the "Speech Recognition and Audio Detection Test," proposed by the RoboCup Federation, has been used to illustrate how the architecture works and how it dynamically adapts and activates robots behaviors taking into account internal variables and external stimuli.

  4. A concept of distributed architecture for maintenance robot systems

    International Nuclear Information System (INIS)

    Asama, Hajime

    1990-01-01

    Aiming at development of a robot system for maintenance tasks in nuclear power plants, a concept of distributed architecture for autonomous robot systems is discussed. At first, based on investigation of maintenance tasks, requirements for maintenance robots are introduced, and structures to realize multi-functions are discussed. Then, as a new design strategy of maintenance robot system, an autonomous and decentralized robot systems is proposed, which is composed of multiple robots, computers, and equipments, and concept of ACTRESS (ACTor-based Robots and Equipments Synthetic System) including communication framework between robotic components is designed. Finally, as a model of ACTRESS, a experimental system is developed, which deals with object-pushing tasks by two micromice and an environment modeler with communicating with each other. Both of parallel independent motion and cooperative motion based on communication is reconciled, and the efficiency of the distributed architecture is verified. (author)

  5. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots enhance a safety and operations in nuclear plants. E.I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligence, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  6. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots will enhance safety and operations in nuclear plants. E. I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligent, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  7. 3-D Vision Techniques for Autonomous Vehicles

    Science.gov (United States)

    1988-08-01

    TITLE (Include Security Classification) W 3-D Vision Techniques for Autonomous Vehicles 12 PERSONAL AUTHOR(S) Martial Hebert, Takeo Kanade, inso Kweoni... Autonomous Vehicles Martial Hebert, Takeo Kanade, Inso Kweon CMU-RI-TR-88-12 The Robotics Institute Carnegie Mellon University Acession For Pittsburgh

  8. Development of bore tools for pipe inspection

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Nakahira, Masataka; Taguchi, Kou; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    In the International Thermonuclear Reactor (ITER), replacement and maintenance on in-vessel components requires that all cooling pipes connected be cut and removed, that a new component be installed, and that all cooling pipes be rewelded. After welding is completed, welded area must be inspected for soundness. These tasks require a new work concept for securing shielded area and access from narrow ports. Tools had to be developed for nondestructive inspection and leak testing to evaluate pipe welding soundness by accessing areas from inside pipes using autonomous locomotion welding and cutting tools. A system was proposed for nondestructive inspection of branch pipes and the main pipe after passing through pipe curves, the same as for welding and cutting tool development. Nondestructive inspection and leak testing sensors were developed and the basic parameters were obtained. In addition, the inspection systems which can move inside pipes and conduct the nondestructive inspection and the leak testing were developed. In this paper, an introduction will be given to the current situation concerning the development of nondestructive inspection and leak testing machines for the branch pipes. (author)

  9. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  10. AUTONOMOUS DETECTION AND TRACKING OF AN OBJECT AUTONOMOUSLY USING AR.DRONE QUADCOPTER

    Directory of Open Access Journals (Sweden)

    Futuhal Arifin

    2014-08-01

    Full Text Available Abstract Nowadays, there are many robotic applications being developed to do tasks autonomously without any interactions or commands from human. Therefore, developing a system which enables a robot to do surveillance such as detection and tracking of a moving object will lead us to more advanced tasks carried out by robots in the future. AR.Drone is a flying robot platform that is able to take role as UAV (Unmanned Aerial Vehicle. Usage of computer vision algorithm such as Hough Transform makes it possible for such system to be implemented on AR.Drone. In this research, the developed algorithm is able to detect and track an object with certain shape and color. Then the algorithm is successfully implemented on AR.Drone quadcopter for detection and tracking.

  11. Multi-Robot Assembly Strategies and Metrics

    Science.gov (United States)

    MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE

    2018-01-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234

  12. Multi-Robot Assembly Strategies and Metrics.

    Science.gov (United States)

    Marvel, Jeremy A; Bostelman, Roger; Falco, Joe

    2018-02-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

  13. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  14. Multi-sensor integration for autonomous robots in nuclear power plants

    International Nuclear Information System (INIS)

    Mann, R.C.; Jones, J.P.; Beckerman, M.; Glover, C.W.; Farkas, L.; Bilbro, G.L.; Snyder, W.

    1989-01-01

    As part of a concerted RandD program in advanced robotics for hazardous environments, scientists and engineers at the Oak Ridge National Laboratory (ORNL) are performing research in the areas of systems integration, range-sensor-based 3-D world modeling, and multi-sensor integration. This program features a unique teaming arrangement that involves the universities of Florida, Michigan, Tennessee, and Texas; Odetics Corporation; and ORNL. This paper summarizes work directed at integrating information extracted from data collected with range sensors and CCD cameras on-board a mobile robot, in order to produce reliable descriptions of the robot's environment. Specifically, the paper describes the integration of two-dimensional vision and sonar range information, and an approach to integrate registered luminance and laser range images. All operations are carried out on-board the mobile robot using a 16-processor hypercube computer. 14 refs., 4 figs

  15. Development of measuring device for inner surfaces of embedded piping (Contract research)

    CERN Document Server

    Itoh, H; Tachibana, M; Yanagihara, S

    2003-01-01

    The measuring device for inner surfaces of embedded piping (MISE) was developed to evaluate low-level radiological contaminations of inner surfaces of piping. The MISE consists of a cylindrically-formed double layered type detector and a piping crawling robot, which were designed and manufactured separately. In measurements of the contaminations, an outer cylindrical detector close to the surface of piping measures beta-rays and gamma-rays and an inner cylindrical detector set after a shielding plate for shield of beta-rays measures gamma-rays. The beta-ray counting rates are derived by subtracting gamma-ray counts measured by the inner detector from gamma- and beta-ray counts measured by the outer detector. The piping crawling robot transports the cylindrically-formed double layered type detector with observing inner surfaces of piping. The detection limit for the contamination of sup 6 sup 0 Co was found to be about 0.17 Bq/cm sup 2 with measurement time of 30 seconds. It is expected that 0.2 Bq/cm sup 2 co...

  16. Underground mining robot: a CSIR project

    CSIR Research Space (South Africa)

    Green, JJ

    2012-11-01

    Full Text Available The Council for Scientific and Industrial Research (CSIR) in South Africa is currently developing a robot for the inspection of the ceiling (hanging-wall) in an underground gold mine. The robot autonomously navigates the 30 meter long by 3 meter...

  17. Cold Regions Issues for Off-Road Autonomous Vehicles

    Science.gov (United States)

    2004-04-01

    the operation of off-road autonomous vehicles . Low-temperature effects on lubricants, materials, and batteries can impair a robot’s ability to operate...demanding that off-road autonomous vehicles must be designed for and tested in cold regions if they are expected to operate there successfully.

  18. Robotics and remote systems applications

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling

  19. Robotics development for the enhancement of space endeavors

    Science.gov (United States)

    Mauceri, A. J.; Clarke, Margaret M.

    Telerobotics and robotics development activities to support NASA's goal of increasing opportunities in space commercialization and exploration are described. The Rockwell International activities center is using robotics to improve efficiency and safety in three related areas: remote control of autonomous systems, automated nondestructive evaluation of aspects of vehicle integrity, and the use of robotics in space vehicle ground reprocessing operations. In the first area, autonomous robotic control, Rockwell is using the control architecture, NASREM, as the foundation for the high level command of robotic tasks. In the second area, we have demonstrated the use of nondestructive evaluation (using acoustic excitation and lasers sensors) to evaluate the integrity of space vehicle surface material bonds, using Orbiter 102 as the test case. In the third area, Rockwell is building an automated version of the present manual tool used for Space Shuttle surface tile re-waterproofing. The tool will be integrated into an orbiter processing robot being developed by a KSC-led team.

  20. Sea-Shore Interface Robotic Design

    Science.gov (United States)

    2014-06-01

    for various beachfront terrains. Robotics , Robot , Amphibious Vehicles, Mobility, Surf-Zone, Autonomous, Wheg, exoskeleton Unclassified Unclassified...controllers and to showcase the benefits of a modular construction. The result was an exoskeleton design with modular components, see Figure 2.1. Figure 2.1...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEA-SHORE INTERFACE ROBOTIC DESIGN by Timothy L. Bell June 2014 Thesis Advisor: Richard Harkins

  1. Bilateral human-robot control for semi-autonomous UAV navigation

    NARCIS (Netherlands)

    Wopereis, Han Willem; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2015-01-01

    This paper proposes a semi-autonomous bilateral control architecture for unmanned aerial vehicles. During autonomous navigation, a human operator is allowed to assist the autonomous controller of the vehicle by actively changing its navigation parameters to assist it in critical situations, such as

  2. Autonomous intelligent assembly systems LDRD 105746 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J.

    2013-04-01

    This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control framework for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.

  3. Automation and robotics technology for intelligent mining systems

    Science.gov (United States)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  4. 3rd International Asia Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Informatics in Control, Automation and Robotics

    2012-01-01

    Session 2 includes 110 papers selected from 2011 3rd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2011), held on December 24-25, 2011, Shenzhen, China.   As we all know, the ever growing technology in robotics and automation will help build a better human society. This session will provide a unique opportunity for the academic and industrial communities to address new challenges, share solutions, and discuss research directions for the future. Robotics research emphasizes intelligence and adaptability to cope with unstructured environments. Automation research emphasizes efficiency, productivity, quality, and reliability, focusing on systems that operate autonomously. The main focus of this session is on the autonomous acquisition of semantic information in intelligent robots and systems, as well as the use of semantic knowledge to guide further acquisition of information.

  5. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  6. Robotics and artificial intelligence for hazardous environments

    International Nuclear Information System (INIS)

    Spelt, P.F.

    1993-01-01

    In our technological society, hazardous materials including toxic chemicals, flammable, explosive, and radioactive substances, and biological agents, are used and handled routinely. Each year, many workers who handle these substances are accidently contaminated, in some cases resulting in injury, death, or chronic disabilities. If these hazardous materials could be handled remotely, either with a teleoperated robot (operated by a worker in a safe location) or by an autonomous robot, then human suffering and economic costs of accidental exposures could be dramatically reduced. At present, it is still difficult for commercial robotic technology to completely replace humans involved in performing complex work tasks in hazardous environments. The robotics efforts at the Center for Engineering Systems Advanced Research represent a significant effort at contributing to the advancement of robotics for use in hazardous environments. While this effort is very broad-based, ranging from dextrous manipulation to mobility and integrated sensing, the technical portion of this paper will focus on machine learning and the high-level decision making needed for autonomous robotics

  7. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.

    Science.gov (United States)

    Zhao, Xu; Dou, Lihua; Su, Zhong; Liu, Ning

    2018-03-16

    A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot's motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot's motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot's navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots.

  8. Distance-Based Behaviors for Low-Complexity Control in Multiagent Robotics

    Science.gov (United States)

    Pierpaoli, Pietro

    Several biological examples show that living organisms cooperate to collectively accomplish tasks impossible for single individuals. More importantly, this coordination is often achieved with a very limited set of information. Inspired by these observations, research on autonomous systems has focused on the development of distributed control techniques for control and guidance of groups of autonomous mobile agents, or robots. From an engineering perspective, when coordination and cooperation is sought in large ensembles of robotic vehicles, a reduction in hardware and algorithms' complexity becomes mandatory from the very early stages of the project design. The research for solutions capable of lowering power consumption, cost and increasing reliability are thus worth investigating. In this work, we studied low-complexity techniques to achieve cohesion and control on swarms of autonomous robots. Starting from an inspiring example with two-agents, we introduced effects of neighbors' relative positions on control of an autonomous agent. The extension of this intuition addressed the control of large ensembles of autonomous vehicles, and was applied in the form of a herding-like technique. To this end, a low-complexity distance-based aggregation protocol was defined. We first showed that our protocol produced a cohesion aggregation among the agent while avoiding inter-agent collisions. Then, a feedback leader-follower architecture was introduced for the control of the swarm. We also described how proximity measures and probability of collisions with neighbors can also be used as source of information in highly populated environments.

  9. Autonomous Shepherding Behaviors of Multiple Target Steering Robots

    Directory of Open Access Journals (Sweden)

    Wonki Lee

    2017-11-01

    Full Text Available This paper presents a distributed coordination methodology for multi-robot systems, based on nearest-neighbor interactions. Among many interesting tasks that may be performed using swarm robots, we propose a biologically-inspired control law for a shepherding task, whereby a group of external agents drives another group of agents to a desired location. First, we generated sheep-like robots that act like a flock. We assume that each agent is capable of measuring the relative location and velocity to each of its neighbors within a limited sensing area. Then, we designed a control strategy for shepherd-like robots that have information regarding where to go and a steering ability to control the flock, according to the robots’ position relative to the flock. We define several independent behavior rules; each agent calculates to what extent it will move by summarizing each rule. The flocking sheep agents detect the steering agents and try to avoid them; this tendency leads to movement of the flock. Each steering agent only needs to focus on guiding the nearest flocking agent to the desired location. Without centralized coordination, multiple steering agents produce an arc formation to control the flock effectively. In addition, we propose a new rule for collecting behavior, whereby a scattered flock or multiple flocks are consolidated. From simulation results with multiple robots, we show that each robot performs actions for the shepherding behavior, and only a few steering agents are needed to control the whole flock. The results are displayed in maps that trace the paths of the flock and steering robots. Performance is evaluated via time cost and path accuracy to demonstrate the effectiveness of this approach.

  10. 13th International Conference Intelligent Autonomous Systems

    CERN Document Server

    Michael, Nathan; Berns, Karsten; Yamaguchi, Hiroaki

    2016-01-01

    This book describes the latest research accomplishments, innovations, and visions in the field of robotics as presented at the 13th International Conference on Intelligent Autonomous Systems (IAS), held in Padua in July 2014, by leading researchers, engineers, and practitioners from across the world. The contents amply confirm that robots, machines, and systems are rapidly achieving intelligence and autonomy, mastering more and more capabilities such as mobility and manipulation, sensing and perception, reasoning, and decision making. A wide range of research results and applications are covered, and particular attention is paid to the emerging role of autonomous robots and intelligent systems in industrial production, which reflects their maturity and robustness. The contributions have been selected through a rigorous peer-review process and contain many exciting and visionary ideas that will further galvanize the research community, spurring novel research directions. The series of biennial IAS conferences ...

  11. Design and modeling of an autonomous multi-link snake robot, capable of 3D-motion

    Directory of Open Access Journals (Sweden)

    Rizkallah Rabel

    2016-01-01

    Full Text Available The paper presents the design of an autonomous, wheeless, mechanical snake robot that was modeled and built at Notre Dame University – Louaize. The robot is also capable of 3D motion with an ability to climb in the z-direction. The snake is made of a series links, each containing one to three high torque DC motors and a gearing system. They are connected to each other through Aluminum hollow rods that can be rotated through a 180° span. This allows the snake to move in various environments including unfriendly and cluttered ones. The front link has a proximity sensor used to map the environment. This mapping is sent to a microcontroller which controls and adapts the motion pattern of the snake. The snake can therefore choose to avoid obstacles, or climb over them if their height is within its range. The presented model is made of five links, but this number can be increased as their role is repetitive. The novel design is meant to overcome previous limitations by allowing 3D motion through electric actuators and low energy consumption.

  12. Grounding Robot Autonomy in Emotion and Self-awareness

    Science.gov (United States)

    Sanz, Ricardo; Hernández, Carlos; Hernando, Adolfo; Gómez, Jaime; Bermejo, Julita

    Much is being done in an attempt to transfer emotional mechanisms from reverse-engineered biology into social robots. There are two basic approaches: the imitative display of emotion —e.g. to intend more human-like robots— and the provision of architectures with intrinsic emotion —in the hope of enhancing behavioral aspects. This paper focuses on the second approach, describing a core vision regarding the integration of cognitive, emotional and autonomic aspects in social robot systems. This vision has evolved as a result of the efforts in consolidating the models extracted from rat emotion research and their implementation in technical use cases based on a general systemic analysis in the framework of the ICEA and C3 projects. The desire for generality of the approach intends obtaining universal theories of integrated —autonomic, emotional, cognitive— behavior. The proposed conceptualizations and architectural principles are then captured in a theoretical framework: ASys — The Autonomous Systems Framework.

  13. Mobile robot for hazardous environments

    International Nuclear Information System (INIS)

    Bains, N.

    1995-01-01

    This paper describes the architecture and potential applications of the autonomous robot for a known environment (ARK). The ARK project has developed an autonomous mobile robot that can move around by itself in a complicated nuclear environment utilizing a number of sensors for navigation. The primary sensor system is computer vision. The ARK has the intelligence to determine its position utilizing open-quotes natural landmarks,close quotes such as ordinary building features at any point along its path. It is this feature that gives ARK its uniqueness to operate in an industrial type of environment. The prime motivation to develop ARK was the potential application of mobile robots in radioactive areas within nuclear generating stations and for nuclear waste sites. The project budget is $9 million over 4 yr and will be completed in October 1995

  14. On the role of emotion in biological and robotic autonomy.

    Science.gov (United States)

    Ziemke, Tom

    2008-02-01

    This paper reviews some of the differences between notions of biological and robotic autonomy, and how these differences have been reflected in discussions of embodiment, grounding and other concepts in AI and autonomous robotics. Furthermore, the relations between homeostasis, emotion and embodied cognition are discussed as well as recent proposals to model their interplay in robots, which reflects a commitment to a multi-tiered affectively/emotionally embodied view of mind that takes organismic embodiment more serious than usually done in biologically inspired robotics.

  15. BOA II: pipe-asbestos insulation removal system

    International Nuclear Information System (INIS)

    Schempf, H.; Mutschler; Boehmke, S.; Chemel, B.; Piepgras, C.

    1996-01-01

    BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to high labor costs and high level of radioactive contamination, making manual removal costly and inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  16. Tactile Sensing for Dexterous Robotic Hands

    Science.gov (United States)

    Martin, Toby B.

    2000-01-01

    Robotic systems will be used as precursors to human exploration to explore the solar system and expand our knowledge of planetary surfaces. Robotic systems will also be used to build habitats and infrastructure required for human presence in space and on other planetary surfaces . Such robots will require a high level of intelligence and automation. The ability to flexibly manipulate their physical environment is one characteristic that makes humans so effective at these building and exploring tasks . The development of a generic autonomous grasp ing capability will greatly enhance the efficiency and ability of robotics to build, maintain and explore. To tele-operate a robot over vast distances of space, with long communication delays, has proven to be troublesome. Having an autonomous grasping capability that can react in real-time to disturbances or adapt to generic objects, without operator intervention, will reduce the probability of mishandled tools and samples and reduce the number of re-grasp attempts due to dropping. One aspect that separates humans from machines is a rich sensor set. We have the ability to feel objects and respond to forces and textures. The development of touch or tactile sensors for use on a robot that emulates human skin and nerves is the basis for this discussion. We will discuss the use of new piezo-electric and resistive materials that have emerged on the market with the intention of developing a touch sensitive sensor. With viable tacti le sensors we will be one step closer to developing an autonomous grasping capability.

  17. Physical Embodiment can Produce Robot Operator’s Pseudo Presence

    Directory of Open Access Journals (Sweden)

    Kazuaki eTanaka

    2015-05-01

    Full Text Available Recent studies have focused on humanoid robots for improving distant communication. When a user talks with a remote conversation partner through a humanoid robot, the user can see the remote partner’s body motions with physical embodiment but not the partner’s current appearance. The physical embodiment existing in the same room with the user is the main feature of humanoid robots, but the effects on social telepresence, i.e. the sense of resembling face-to-face interaction, had not yet been well demonstrated. To find the effects, we conducted an experiment in which subjects talked with a partner through robots and various existing communication media (e.g. voice, avatar and video chats. As a result, we found that the physical embodiment enhances social telepresence. However, in terms of the degree of social telepresence, the humanoid robot remained at the same level as the partner’s live-video, since presenting partner’s appearance also enhances social telepresence. To utilize the anonymity of a humanoid robot, we proposed the way that produces pseudo presence that is the sense of interacting with a remote partner when they are actually interacting with an autonomous robot. Through the second experiment, we discovered that the subjects tended to evaluate the degree of pseudo presence of a remote partner based on their prior experience of watching the partner’s body motions reproduced by a robot. When a subject interacted with an autonomous robot after interacting with a teleoperated robot (i.e., a remote operator that is identical with the autonomous robot, the subjects tended to feel as if they were talking with a remote operator.

  18. Vision-based mapping with cooperative robots

    Science.gov (United States)

    Little, James J.; Jennings, Cullen; Murray, Don

    1998-10-01

    Two stereo-vision-based mobile robots navigate and autonomously explore their environment safely while building occupancy grid maps of the environment. The robots maintain position estimates within a global coordinate frame using landmark recognition. This allows them to build a common map by sharing position information and stereo data. Stereo vision processing and map updates are done at 3 Hz and the robots move at speeds of 200 cm/s. Cooperative mapping is achieved through autonomous exploration of unstructured and dynamic environments. The map is constructed conservatively, so as to be useful for collision-free path planning. Each robot maintains a separate copy of a shared map, and then posts updates to the common map when it returns to observe a landmark at home base. Issues include synchronization, mutual localization, navigation, exploration, registration of maps, merging repeated views (fusion), centralized vs decentralized maps.

  19. A concept for ubiquitous robotics in industrial environment

    Science.gov (United States)

    Sallinen, Mikko; Heilala, Juhani; Kivikunnas, Sauli

    2007-09-01

    In this paper a concept for industrial ubiquitous robotics is presented. The concept combines two different approaches to manage agile, adaptable production: firstly the human operator is strongly in the production loop and secondly, the robot workcell will be more autonomous and smarter to manage production. This kind of autonomous robot cell can be called production island. Communication to the human operator working in this kind of smart industrial environment can be divided into two levels: body area communication and operator-infrastructure communication including devices, machines and infra. Body area communication can be supportive in two directions: data is recorded by means of measuring physical actions, such as hand movements, body gestures or supportive when it will provide information to user such as guides or manuals for operation. Body area communication can be carried out using short range communication technologies such as NFC (Near Field communication) which is RFID type of communication. In the operator-infrastructure communication, WLAN or Bluetooth -communication can be used. Beyond the current Human Machine interaction HMI systems, the presented system concept is designed to fulfill the requirements for hybrid, knowledge intensive manufacturing in the future, where humans and robots operate in close co-operation.

  20. Autonomous Lawnmower using FPGA implementation.

    Science.gov (United States)

    Ahmad, Nabihah; Lokman, Nabill bin; Helmy Abd Wahab, Mohd

    2016-11-01

    Nowadays, there are various types of robot have been invented for multiple purposes. The robots have the special characteristic that surpass the human ability and could operate in extreme environment which human cannot endure. In this paper, an autonomous robot is built to imitate the characteristic of a human cutting grass. A Field Programmable Gate Array (FPGA) is used to control the movements where all data and information would be processed. Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) is used to describe the hardware using Quartus II software. This robot has the ability of avoiding obstacle using ultrasonic sensor. This robot used two DC motors for its movement. It could include moving forward, backward, and turning left and right. The movement or the path of the automatic lawn mower is based on a path planning technique. Four Global Positioning System (GPS) plot are set to create a boundary. This to ensure that the lawn mower operates within the area given by user. Every action of the lawn mower is controlled by the FPGA DE' Board Cyclone II with the help of the sensor. Furthermore, Sketch Up software was used to design the structure of the lawn mower. The autonomous lawn mower was able to operate efficiently and smoothly return to coordinated paths after passing the obstacle. It uses 25% of total pins available on the board and 31% of total Digital Signal Processing (DSP) blocks.

  1. Inspection of Pipe Inner Surface using Advanced Pipe Crawler Robot with PVDF Sensor based Rotating Probe

    Directory of Open Access Journals (Sweden)

    Vimal AGARWAL

    2011-04-01

    Full Text Available Due to corrosive environment, pipes used for transportation of water and gas at the plants often get damaged. Defects caused by corrosion and cracking may cause serious accidents like leakage, fire and blasts. It also reduces the life of the transportation system substantially. In order to inspect such defects, a Polyvinyledene Fluoride (PVDF based cantilever smart probe is developed to scan the surface quality of the pipes. The smart probe, during rotation, touches the inner surface of the pipe and experience a broad-band excitation in the absence of surface features. On the other hand, whenever the probe comes across any surface projection, there is a change in vibration pattern of the probe, which causes a high voltage peak/pulse. Such peaks/pulses could give useful information about the location and nature of a defect. Experiments are carried out on different patterns, sizes and shapes of surface projections artificially constructed inside the pipe. The sensor system has reliably predicted the presence and distribution of projections in every case. It is envisaged that the new sensing system could be used effectively for pipe health monitoring.

  2. Introduction to autonomous mobile robotics using Lego Mindstorms NXT

    Science.gov (United States)

    Akın, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-12-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the Lego Mindstorms NXT kits are used as the robot platform. The aims, scope and contents of the course are presented, and the design of the laboratory sessions as well as the term projects, which address several core problems of robotics and artificial intelligence simultaneously, are explained in detail.

  3. 12th International Conference on Intelligent Autonomous Systems (IAS-12)

    CERN Document Server

    Yoon, Kwang-Joon; Lee, Jangmyung; Frontiers of Intelligent Autonomous Systems

    2013-01-01

    This carefully edited volume aims at providing readers with the most recent progress on intelligent autonomous systems, with its particular emphasis on intelligent autonomous ground, aerial and underwater vehicles as well as service robots for home and healthcare under the context of the aforementioned convergence. “Frontiers of Intelligent Autonomous Systems” includes thoroughly revised and extended papers selected from the 12th International Conference on Intelligent Autonomous Systems (IAS-12), held in Jeju, Korea, June 26-29, 2012. The editors chose 35 papers out of the 202 papers presented at IAS-12 which are organized into three chapters: Chapter 1 is dedicated to autonomous navigation and mobile manipulation, Chapter 2 to unmanned aerial and underwater vehicles and Chapter 3 to service robots for home and healthcare. To help the readers to easily access this volume, each chapter starts with a chapter summary introduced by one of the editors: Chapter 1 by Sukhan Lee, Chapter 2 by Kwang Joon Yoon and...

  4. Design of Autonomous Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2011-01-01

    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  5. Supervised Autonomy for Exploration and Mobile Manipulation in Rough Terrain with a Centaur-like Robot

    Directory of Open Access Journals (Sweden)

    Max Schwarz

    2016-10-01

    Full Text Available Planetary exploration scenarios illustrate the need for autonomous robots that are capable to operate in unknown environments without direct human interaction. At the DARPA Robotics Challenge, we demonstrated that our Centaur-like mobile manipulation robot Momaro can solve complex tasks when teleoperated. Motivated by the DLR SpaceBot Cup 2015, where robots should explore a Mars-like environment, find and transport objects, take a soil sample, and perform assembly tasks, we developed autonomous capabilities for Momaro. Our robot perceives and maps previously unknown, uneven terrain using a 3D laser scanner. Based on the generated height map, we assess drivability, plan navigation paths, and execute them using the omnidirectional drive. Using its four legs, the robot adapts to the slope of the terrain. Momaro perceives objects with cameras, estimates their pose, and manipulates them with its two arms autonomously. For specifying missions, monitoring mission progress, on-the-fly reconfiguration, and teleoperation, we developed a ground station with suitable operator interfaces. To handle network communication interruptions and latencies between robot and ground station, we implemented a robust network layer for the ROS middleware. With the developed system, our team NimbRo Explorer solved all tasks of the DLR SpaceBot Camp 2015. We also discuss the lessons learned from this demonstration.

  6. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    Science.gov (United States)

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  7. A Multi-Sensorial Hybrid Control for Robotic Manipulation in Human-Robot Workspaces

    Directory of Open Access Journals (Sweden)

    Juan A. Corrales

    2011-10-01

    Full Text Available Autonomous manipulation in semi-structured environments where human operators can interact is an increasingly common task in robotic applications. This paper describes an intelligent multi-sensorial approach that solves this issue by providing a multi-robotic platform with a high degree of autonomy and the capability to perform complex tasks. The proposed sensorial system is composed of a hybrid visual servo control to efficiently guide the robot towards the object to be manipulated, an inertial motion capture system and an indoor localization system to avoid possible collisions between human operators and robots working in the same workspace, and a tactile sensor algorithm to correctly manipulate the object. The proposed controller employs the whole multi-sensorial system and combines the measurements of each one of the used sensors during two different phases considered in the robot task: a first phase where the robot approaches the object to be grasped, and a second phase of manipulation of the object. In both phases, the unexpected presence of humans is taken into account. This paper also presents the successful results obtained in several experimental setups which verify the validity of the proposed approach.

  8. Dynamic Arc Fitting Path Follower for Skid-Steered Mobile Robots

    Directory of Open Access Journals (Sweden)

    Peter Lepej

    2015-10-01

    Full Text Available Many applications, such as surveillance, inspection or search and rescue operations, can be performed with autonomous robots. Our aim is a control of modular autonomous systems in rescue robotics. One of the basic problems with autonomous robotics is the execution part where the control commands (translation and rotational velocities are produced for mobile bases. Therefore we have focused on this area because there is only a small amount of available path following software for skid-steered mobile robots. Our goal was to develop a velocity controller that could be used for multiple skid-steered mobile bases. We considered differential drive mobile bases such as tracked skid-steering mobile bases. Our approach is based on an arc fitting algorithm, which takes into account the robot constraints and kinematical model. It produces a continuous trajectory where fitting to the given path is adapted based on given parameters. Moreover, we have included orientation angle compensation while the mobile robot is moving and ground inclination compensation. Our rescue robot is described, together with the simulation setup and algorithm implementation. We compared our algorithm to the Hector-based software and curvature velocity approach. The results for the proposed algorithm are shown for the simulation results and the experiment.

  9. Simultaneous scheduling of machines and mobile robots

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa

    2013-01-01

    This paper deals with the problem of simultaneously scheduling machines and a number of autonomous mobile robots in a flexible manufacturing system (FMS). Besides capability of transporting materials between machines, the considered mobile robots are different from other material handling devices...

  10. Optimization approaches for robot trajectory planning

    Directory of Open Access Journals (Sweden)

    Carlos Llopis-Albert

    2018-03-01

    Full Text Available The development of optimal trajectory planning algorithms for autonomous robots is a key issue in order to efficiently perform the robot tasks. This problem is hampered by the complex environment regarding the kinematics and dynamics of robots with several arms and/or degrees of freedom (dof, the design of collision-free trajectories and the physical limitations of the robots. This paper presents a review about the existing robot motion planning techniques and discusses their pros and cons regarding completeness, optimality, efficiency, accuracy, smoothness, stability, safety and scalability.

  11. Gathering asychronous mobile robots with inaccurate compasses

    OpenAIRE

    Souissi, Samia; Defago, Xavier; Yamashita, Masafumi

    2006-01-01

    This paper considers a system of asynchronous autonomous mobile robots that can move freely in a twodimensional plane with no agreement on a common coordinate system. Starting from any initial configuration, the robots are required to eventually gather at a single point, not fixed in advance (gathering problem). Prior work has shown that gathering oblivious (i.e., stateless) robots cannot be achieved deterministically without additional assumptions. In particular, if robots can detect multipl...

  12. Human detection for underground autonomous mine vehicles using thermal imaging

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-07-01

    Full Text Available Underground mine automation has the potential to increase safety, productivity and allow the mining of lower-grade resources. In a mining environment with both autonomous robots and humans, it is essential that the robots are able to detect...

  13. Robotic security vehicle for exterior environments

    International Nuclear Information System (INIS)

    Klarer, P.R.; Workhoven, R.M.

    1988-01-01

    This paper describes a current effort at Sandia National Labs to develop an outdoor robotic vehicle capable of performing limited security functions autonomously in a structured environment. The present stage of development entails application of algorithms originally developed for the SIR vehicle to a testbed vehicle more appropriate to an outdoor environment. The current effort will culminate in a full scale demonstration of autonomous navigation capabilities on routine patrol and teleoperation by a human operator for alarm assessment and response. Various schemes for implementation of the robot system are discussed, as are plans for further development of the system

  14. 25th Conference on Robotics in Alpe-Adria-Danube Region

    CERN Document Server

    Borangiu, Theodor

    2017-01-01

    This book presents the proceedings of the 25th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2016 held in Belgrade, Serbia, on June 30th–July 2nd, 2016. In keeping with the tradition of the event, RAAD 2016 covered all the important areas of research and innovation in new robot designs and intelligent robot control, with papers including Intelligent robot motion control; Robot vision and sensory processing; Novel design of robot manipulators and grippers; Robot applications in manufacturing and services; Autonomous systems, humanoid and walking robots; Human–robot interaction and collaboration; Cognitive robots and emotional intelligence; Medical, human-assistive robots and prosthetic design; Robots in construction and arts, and Evolution, education, legal and social issues of robotics. For the first time in RAAD history, the themes cloud robots, legal and ethical issues in robotics as well as robots in arts were included in the technical program. The book is a valuable resource f...

  15. Vision Assisted Laser Scanner Navigation for Autonomous Robots

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole

    2008-01-01

    This paper describes a navigation method based on road detection using both a laser scanner and a vision sensor. The method is to classify the surface in front of the robot into traversable segments (road) and obstacles using the laser scanner, this classifies the area just in front of the robot ...

  16. Development of measuring device for inner surfaces of embedded piping (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hirokuni [Ohyo Koken Kogyo Co., Ltd., Tokyo (Japan); Hatakeyama, Mutsuo [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan); Tachibana, Mitsuo; Yanagihara, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The measuring device for inner surfaces of embedded piping (MISE) was developed to evaluate low-level radiological contaminations of inner surfaces of piping. The MISE consists of a cylindrically-formed double layered type detector and a piping crawling robot, which were designed and manufactured separately. In measurements of the contaminations, an outer cylindrical detector close to the surface of piping measures {beta}-rays and {gamma}-rays and an inner cylindrical detector set after a shielding plate for shield of {beta}-rays measures {gamma}-rays. The {beta}-ray counting rates are derived by subtracting {gamma}-ray counts measured by the inner detector from {gamma}- and {beta}-ray counts measured by the outer detector. The piping crawling robot transports the cylindrically-formed double layered type detector with observing inner surfaces of piping. The detection limit for the contamination of {sup 60}Co was found to be about 0.17 Bq/cm{sup 2} with measurement time of 30 seconds. It is expected that 0.2 Bq/cm{sup 2} corresponding to clearance level of {sup 60}Co (0.4 Bq/g) can be evaluated with measurement time of 2 seconds, which is equal to measurement speed of 54 m/h. (author)

  17. Human-Robot Teaming: From Space Robotics to Self-Driving Cars

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    In this talk, I describe how NASA Ames has been developing and testing robots for space exploration. In our research, we have focused on studying how human-robot teams can increase the performance, reduce the cost, and increase the success of space missions. A key tenet of our work is that humans and robots should support one another in order to compensate for limitations of manual control and autonomy. This principle has broad applicability beyond space exploration. Thus, I will conclude by discussing how we have worked with Nissan to apply our methods to self-driving cars, enabling humans to support autonomous vehicles operating in unpredictable and difficult situations.

  18. Architecture for robot intelligence

    Science.gov (United States)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  19. Self-sufficiency of an autonomous reconfigurable modular robotic organism

    CERN Document Server

    Qadir, Raja Humza

    2015-01-01

    This book describes how the principle of self-sufficiency can be applied to a reconfigurable modular robotic organism. It shows the design considerations for a novel REPLICATOR robotic platform, both hardware and software, featuring the behavioral characteristics of social insect colonies. Following a comprehensive overview of some of the bio-inspired techniques already available, and of the state-of-the-art in re-configurable modular robotic systems, the book presents a novel power management system with fault-tolerant energy sharing, as well as its implementation in the REPLICATOR robotic modules. In addition, the book discusses, for the first time, the concept of “artificial energy homeostasis” in the context of a modular robotic organism, and shows its verification on a custom-designed simulation framework in different dynamic power distribution and fault tolerance scenarios. This book offers an ideal reference guide for both hardware engineers and software developers involved in the design and implem...

  20. Infrared Beacons based Localization of Mobile Robot

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Věchet, Stanislav

    2012-01-01

    Roč. 117, č. 1 (2012), s. 17-22 ISSN 1392-1215 Institutional research plan: CEZ:AV0Z20760514 Keywords : mobile robot localization * extended Kalman filter * autonomous mobile robot Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.411, year: 2012 http://www.eejournal.ktu.lt/index.php/elt/article/view/1046

  1. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU

    Science.gov (United States)

    Dou, Lihua; Su, Zhong; Liu, Ning

    2018-01-01

    A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot’s motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot’s motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot’s navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots. PMID:29547515

  2. Gaussian Processes for Data-Efficient Learning in Robotics and Control.

    Science.gov (United States)

    Deisenroth, Marc Peter; Fox, Dieter; Rasmussen, Carl Edward

    2015-02-01

    Autonomous learning has been a promising direction in control and robotics for more than a decade since data-driven learning allows to reduce the amount of engineering knowledge, which is otherwise required. However, autonomous reinforcement learning (RL) approaches typically require many interactions with the system to learn controllers, which is a practical limitation in real systems, such as robots, where many interactions can be impractical and time consuming. To address this problem, current learning approaches typically require task-specific knowledge in form of expert demonstrations, realistic simulators, pre-shaped policies, or specific knowledge about the underlying dynamics. In this paper, we follow a different approach and speed up learning by extracting more information from data. In particular, we learn a probabilistic, non-parametric Gaussian process transition model of the system. By explicitly incorporating model uncertainty into long-term planning and controller learning our approach reduces the effects of model errors, a key problem in model-based learning. Compared to state-of-the art RL our model-based policy search method achieves an unprecedented speed of learning. We demonstrate its applicability to autonomous learning in real robot and control tasks.

  3. Combining Hector SLAM and Artificial Potential Field for Autonomous Navigation Inside a Greenhouse

    Directory of Open Access Journals (Sweden)

    El Houssein Chouaib Harik

    2018-05-01

    Full Text Available The key factor for autonomous navigation is efficient perception of the surroundings, while being able to move safely from an initial to a final point. We deal in this paper with a wheeled mobile robot working in a GPS-denied environment typical for a greenhouse. The Hector Simultaneous Localization and Mapping (SLAM approach is used in order to estimate the robots’ pose using a LIght Detection And Ranging (LIDAR sensor. Waypoint following and obstacle avoidance are ensured by means of a new artificial potential field (APF controller presented in this paper. The combination of the Hector SLAM and the APF controller allows the mobile robot to perform periodic tasks that require autonomous navigation between predefined waypoints. It also provides the mobile robot with a robustness to changing conditions that may occur inside the greenhouse, caused by the dynamic of plant development through the season. In this study, we show that the robot is safe to operate autonomously with a human presence, and that in contrast to classical odometry methods, no calibration is needed for repositioning the robot over repetitive runs. We include here both hardware and software descriptions, as well as simulation and experimental results.

  4. Mobile Robotic Teams Applied to Precision Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Matthew Oley; Kinoshita, Robert Arthur; Mckay, Mark D; Willis, Walter David; Gunderson, R.W.; Flann, N.S.

    1999-04-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and Utah State University’s Center for Self-Organizing and Intelligent Systems (CSOIS) have developed a team of autonomous robotic vehicles applicable to precision agriculture. A unique technique has been developed to plan, coordinate, and optimize missions in large structured environments for these autonomous vehicles in realtime. Two generic tasks are supported: 1) Driving to a precise location, and 2) Sweeping an area while activating on-board equipment. Sensor data and task achievement data is shared among the vehicles enabling them to cooperatively adapt to changing environmental, vehicle, and task conditions. This paper discusses the development of the autonomous robotic team, details of the mission-planning algorithm, and successful field demonstrations at the INEEL.

  5. Mobile Robotic Teams Applied to Precision Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    M.D. McKay; M.O. Anderson; N.S. Flann (Utah State University); R.A. Kinoshita; R.W. Gunderson; W.D. Willis (INEEL)

    1999-04-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and Utah State University�s Center for Self-Organizing and Intelligent Systems (CSOIS) have developed a team of autonomous robotic vehicles applicable to precision agriculture. A unique technique has been developed to plan, coordinate, and optimize missions in large structured environments for these autonomous vehicles in real-time. Two generic tasks are supported: 1) Driving to a precise location, and 2) Sweeping an area while activating on-board equipment. Sensor data and task achievement data is shared among the vehicles enabling them to cooperatively adapt to changing environmental, vehicle, and task conditions. This paper discusses the development of the autonomous robotic team, details of the mission-planning algorithm, and successful field demonstrations at the INEEL.

  6. Humanoid Robots and Human Society

    OpenAIRE

    Bahishti, Adam A

    2017-01-01

    Almost every aspect of modern human life starting from the smartphone to the smart houses you live in has been influenced by science and technology. The field of science and technology has advanced throughout the last few decades. Among those advancements, robots have become significant by managing most of our day-to-day tasks and trying to get close to human lives. As robotics and autonomous systems flourish, human-robot relationships are becoming increasingly important. Recently humanoid ro...

  7. Human guidance of mobile robots in complex 3D environments using smart glasses

    Science.gov (United States)

    Kopinsky, Ryan; Sharma, Aneesh; Gupta, Nikhil; Ordonez, Camilo; Collins, Emmanuel; Barber, Daniel

    2016-05-01

    In order for humans to safely work alongside robots in the field, the human-robot (HR) interface, which enables bi-directional communication between human and robot, should be able to quickly and concisely express the robot's intentions and needs. While the robot operates mostly in autonomous mode, the human should be able to intervene to effectively guide the robot in complex, risky and/or highly uncertain scenarios. Using smart glasses such as Google Glass∗, we seek to develop an HR interface that aids in reducing interaction time and distractions during interaction with the robot.

  8. Sample Return Robot

    Data.gov (United States)

    National Aeronautics and Space Administration — This Challenge requires demonstration of an autonomous robotic system to locate and collect a set of specific sample types from a large planetary analog area and...

  9. Selected Topics in MicroNano-robotics for Biomedical Applications

    CERN Document Server

    2013-01-01

    Selected Topics in Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials and cutting-edge research results in micro/nanorobotics for biomedical applications. The book presents new sensing technology on nanofibers, new power supply techniques including miniature fuel cells and energy harvesting devices, and manipulation techniques including AFM-based nano-robotic manipulation, robot-aided optical tweezers, and robot-assisted catheter surgery systems. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Each chapter covers a different topic of the highly interdisciplinary area. Bring together the selected topics into ...

  10. A robotic vision system to measure tree traits

    Science.gov (United States)

    The autonomous measurement of tree traits, such as branching structure, branch diameters, branch lengths, and branch angles, is required for tasks such as robotic pruning of trees as well as structural phenotyping. We propose a robotic vision system called the Robotic System for Tree Shape Estimati...

  11. Training Revising Based Traversability Analysis of Complex Terrains for Mobile Robot

    Directory of Open Access Journals (Sweden)

    Rui Song

    2014-05-01

    Full Text Available Traversability analysis is one of the core issues in the autonomous navigation for mobile robots to identify the accessible area by the information of sensors on mobile robots. This paper proposed a model to analyze the traversability of complex terrains based on rough sets and training revising. The model described the traversability for mobile robots by traversability cost. Through the experiment, the paper gets the conclusion that traversability analysis model based on rough sets and training revising can be used where terrain features are rich and complex, can effectively handle the unstructured environment, and can provide reliable and effective decision rules in the autonomous navigation for mobile robots.

  12. 14th International Conference on Intelligent Autonomous Systems

    CERN Document Server

    Hosoda, Koh; Menegatti, Emanuele; Shimizu, Masahiro; Wang, Hesheng

    2017-01-01

    This book describes the latest research advances, innovations, and visions in the field of robotics as presented by leading researchers, engineers, and practitioners from around the world at the 14th International Conference on Intelligent Autonomous Systems (IAS-14), held in Shanghai, China in July 2016. The contributions amply demonstrate that robots, machines and systems are rapidly achieving intelligence and autonomy, attaining more and more capabilities such as mobility and manipulation, sensing and perception, reasoning, and decision-making. They cover a wide range of research results and applications, and particular attention is paid to the emerging role of autonomous robots and intelligent systems in industrial production, which reflects their maturity and robustness. The contributions were selected by means of a rigorous peer-review process and highlight many exciting and visionary ideas that will further galvanize the research community and spur novel research directions. The series of biennial IAS ...

  13. Collaborative Indoor Access Point Localization Using Autonomous Mobile Robot Swarm.

    Science.gov (United States)

    Awad, Fahed; Naserllah, Muhammad; Omar, Ammar; Abu-Hantash, Alaa; Al-Taj, Abrar

    2018-01-31

    Localization of access points has become an important research problem due to the wide range of applications it addresses such as dismantling critical security threats caused by rogue access points or optimizing wireless coverage of access points within a service area. Existing proposed solutions have mostly relied on theoretical hypotheses or computer simulation to demonstrate the efficiency of their methods. The techniques that rely on estimating the distance using samples of the received signal strength usually assume prior knowledge of the signal propagation characteristics of the indoor environment in hand and tend to take a relatively large number of uniformly distributed random samples. This paper presents an efficient and practical collaborative approach to detect the location of an access point in an indoor environment without any prior knowledge of the environment. The proposed approach comprises a swarm of wirelessly connected mobile robots that collaboratively and autonomously collect a relatively small number of non-uniformly distributed random samples of the access point's received signal strength. These samples are used to efficiently and accurately estimate the location of the access point. The experimental testing verified that the proposed approach can identify the location of the access point in an accurate and efficient manner.

  14. Collaborative Indoor Access Point Localization Using Autonomous Mobile Robot Swarm

    Directory of Open Access Journals (Sweden)

    Fahed Awad

    2018-01-01

    Full Text Available Localization of access points has become an important research problem due to the wide range of applications it addresses such as dismantling critical security threats caused by rogue access points or optimizing wireless coverage of access points within a service area. Existing proposed solutions have mostly relied on theoretical hypotheses or computer simulation to demonstrate the efficiency of their methods. The techniques that rely on estimating the distance using samples of the received signal strength usually assume prior knowledge of the signal propagation characteristics of the indoor environment in hand and tend to take a relatively large number of uniformly distributed random samples. This paper presents an efficient and practical collaborative approach to detect the location of an access point in an indoor environment without any prior knowledge of the environment. The proposed approach comprises a swarm of wirelessly connected mobile robots that collaboratively and autonomously collect a relatively small number of non-uniformly distributed random samples of the access point’s received signal strength. These samples are used to efficiently and accurately estimate the location of the access point. The experimental testing verified that the proposed approach can identify the location of the access point in an accurate and efficient manner.

  15. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments.

    Science.gov (United States)

    Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph

    2017-09-26

    Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.

  16. A Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Aizzat Zakaria

    2013-08-01

    Full Text Available Trajectory tracking is an important aspect of autonomous vehicles. The idea behind trajectory tracking is the ability of the vehicle to follow a predefined path with zero steady state error. The difficulty arises due to the nonlinearity of vehicle dynamics. Therefore, this paper proposes a stable tracking control for an autonomous vehicle. An approach that consists of steering wheel control and lateral control is introduced. This control algorithm is used for a non-holonomic navigation problem, namely tracking a reference trajectory in a closed loop form. A proposed future prediction point control algorithm is used to calculate the vehicle's lateral error in order to improve the performance of the trajectory tracking. A feedback sensor signal from the steering wheel angle and yaw rate sensor is used as feedback information for the controller. The controller consists of a relationship between the future point lateral error, the linear velocity, the heading error and the reference yaw rate. This paper also introduces a spike detection algorithm to track the spike error that occurs during GPS reading. The proposed idea is to take the advantage of the derivative of the steering rate. This paper aims to tackle the lateral error problem by applying the steering control law to the vehicle, and proposes a new path tracking control method by considering the future coordinate of the vehicle and the future estimated lateral error. The effectiveness of the proposed controller is demonstrated by a simulation and a GPS experiment with noisy data. The approach used in this paper is not limited to autonomous vehicles alone since the concept of autonomous vehicle tracking can be used in mobile robot platforms, as the kinematic model of these two platforms is similar.

  17. Potential applications of robotics in advanced liquid-metal reactors

    International Nuclear Information System (INIS)

    Carroll, D.G.; Thompson, M.L.

    1990-01-01

    The advanced liquid-metal reactor (ALMR) design includes a range of robots and automation devices. They extend from stationary robots that are a part of the current design to more exotic concepts with mobile, autonomous units, which may become part of the design. Development of robotic application requirements is enhanced by using computer models of work spaces in three dimensions. The primary goals of the more autonomous machines are to: (1) extent and/or enhance one's capabilities in a hazardous environment; some tasks could encounter high temperatures (up to 800 degree F), high radiation (fields up to several hundred thousand roentgens per hour), rooms filled with inert gas and/or sodium aerosol, or combinations of these; (2) reduce operating and maintenance cost through inservice inspection (ISI) of various parts of the reactor, through consideration of as-low-as-reasonably achievable radiation levels, and through automation of some maintenance/processing operations. This paper discusses some applications in the fuel cycle, in refueling operations, and in inspection

  18. JPL Robotics Technology Applicable to Agriculture

    Science.gov (United States)

    Udomkesmalee, Suraphol Gabriel; Kyte, L.

    2008-01-01

    This slide presentation describes several technologies that are developed for robotics that are applicable for agriculture. The technologies discussed are detection of humans to allow safe operations of autonomous vehicles, and vision guided robotic techniques for shoot selection, separation and transfer to growth media,

  19. Image-Based Particle Filtering For Robot Navigation In A Maize Field

    NARCIS (Netherlands)

    Hiremath, S.; Evert, van F.K.; Heijden, van der G.W.A.M.; Braak, ter C.J.F.; Stein, A.

    2012-01-01

    Autonomous navigation of a robot in an agricultural field is a challenge as the robot is in an environment with many sources of noise. This includes noise due to uneven terrain, varying shapes, sizes and colors of the plants, imprecise sensor measurements and effects due to wheel-slippage. The

  20. Improving mobile robot localization: grid-based approach

    Science.gov (United States)

    Yan, Junchi

    2012-02-01

    Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.

  1. A trend of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi

    1993-01-01

    In order to operate stably nuclear power stations, the periodic inspection determined by the law has been carried out once every year in Japan. For reducing the radiation exposure of workers and improving work efficiency and work quality, the automation and the use of robots have been promoted. Also in fuel reprocessing plants and the facilities for storing radioactive wastes, the remotely operated devices for handling uranium and plutonium are indispensable. The course of the development of the robots for nuclear power plants classified by ages is shown. The research and development have been advanced from special automatic machines of first generation since 1965, through versatile robots of second generation since 1980 to intellectual robots of third generation since 1985. Automatic fuel exchanger, control rod moving mechanism and the ultrasonic flaw detector for pipings are those of first generation. As those of second generation, various movable inspection robots and the manipulators for them were developed. The ultimate working robot completed in 1990 is that of third generation. As the trend of the practical use, monorail type inspection robots and underwater inspection robots and various manipulators are reported. (K.I.)

  2. Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Directory of Open Access Journals (Sweden)

    Adel Al-Jumaily

    2005-06-01

    Full Text Available Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments.

  3. Robot Skills for Transformable Manufacturing Systems

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath

    Efficient, transformable production systems need robots that are flexible and effortlessly repurposed or reconfigured. The present dissertation argues that this can be achieved through the implementation and use of general, object-centered robot skills. In this dissertation, we focus on the design...... autonomously, exactly when it is needed. It is the firm belief of this researcher that industrial robotics need to go in a direction towards what is outlined in this dissertation, both in academia and in the industry. In order for manufacturing companies to remain competitive, robotics is the definite way...

  4. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  5. Development of the Research Platform of Small Autonomous Blimp Robot

    Science.gov (United States)

    Takaya, Toshihiko; Kawamura, Hidenori; Yamamoto, Masahito; Ohuchi, Azuma

    A blimp robot is attractive as an small flight robot and can float in the air by buoyancy and realize safe to the crash small flight with low energy and can movement for a long time compared with other flight robots with low energy and can movement for a long time compared with other flight robots. However, control of an airplane robot is difficult for the nonlinear characteristic exposed to inertia by the air flow in response to influence. Therefore, the applied research which carried out the maximum use of such in recent years a blimp robot's feature is prosperous. In this paper, we realized development of blimp robot for research which can be used general-purpose by carrying out clue division of the blimp robot body at a unit, and constituting and building for research of blimp robot, and application development. On the other hand, by developing a general-purpose blimp robot research platform, improvement in the research efficiency of many researchers can be attained, and further, research start of blimp robot becomes easy and contributes to development of research. We performed the experiments for the above-mentioned proof. 1. Checked basic keeping position performance and that various orbital operation was possible. And the unit exchange ease of software unit was checked by the experiment which exchanges the control layer of software for learning control from PID control, and carries out comparison of operation. 2. In order to check the exchange ease of hardware unit, the sensor was exchanged for the microphon from the camera, and control of operation was checked. 3. For the unit addition ease, the microphon which carries out sound detection with the picture detection with a camera was added, and control of operation was verified. 4. The unit exchange was carried out for the check of a function addition and the topological map generation experiment by addition of an ultrasonic sensor was conducted. Developed blimp robot for research mounted the exchange ease

  6. Autonomous Coordination and Online Motion Modeling for Mobile Robots

    National Research Council Canada - National Science Library

    Sjoberg, Eric J

    2007-01-01

    Robots are rapidly becoming more involved in everyday military operations. As robots become more capable, their tasks will increase to include such roles as exploring enemy controlled buildings and caves...

  7. Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

    Science.gov (United States)

    Lacaze, Alberto; Meystel, Michael; Meystel, Alex

    1994-01-01

    This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.

  8. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglová

    2004-03-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  9. Robots show us how to teach them: feedback from robots shapes tutoring behavior during action learning.

    Science.gov (United States)

    Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J; Wrede, Britta

    2014-01-01

    Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction.

  10. Mobile Autonomous Reconfigurable System

    Directory of Open Access Journals (Sweden)

    Pavliuk N.A.

    2018-04-01

    Full Text Available The object of this study is a multifunctional modular robot able to assemble independently in a given configuration and responsively change it in the process of operation depending on the current task. In this work we aim at developing and examining unified modules for a modular robot, which can both perform autonomous movement and form a complex structure by connecting to other modules. The existing solutions in the field of modular robotics were reviewed and classified by power supply, the ways of interconnection, the ways of movement and the possibility of independent movement of separate modules. Basing on the analysis of the shortcomings of existing analogues, we have developed a module of mobile autonomous reconfigurable system, including a base unit, a set of magneto-mechanical connectors and two motor wheels. The basic kinematic scheme of the modular robot, the features of a single module, as well as the modular structure formed by an array of similar modules were described. Two schemes for placing sets of magneto-mechanical connectors in the basic module have been proposed. We described the principle of operation of a magneto-mechanical connector based on redirection of the magnetic flux of a permanent magnet. This solution simplifies the system for controlling a mechanism of connection with other modules, increases energy efficiency and a battery life of the module. Since the energy is required only at the moment of switching the operating modes of the connector, there is no need to power constantly the connector mechanism to maintain the coupling mode.

  11. Autonomous Military Robotics: Risk, Ethics, and Design

    Science.gov (United States)

    2008-12-20

    close scrutiny of the robotics industry with respect to those ethical issues, e.g., the book Love and Sex with Robots published late last year that...thank and credit Wendell Wallach and Colin Allen for their contribution to many of the discussions here, drawn from their new book Moral Machines... secondhand smoke is more objectionable than firsthand, because the passive smoker did not consent to the risk even if ▌64 A u t o n o m o

  12. Localization Using Magnetic Patterns for Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Won Suk You

    2014-03-01

    Full Text Available In this paper, we present a method of localization using magnetic landmarks. With this method, it is possible to compensate the pose error (xe, ye, θe of a mobile robot correctly and localize its current position on a global coordinate system on the surface of a structured environment with magnetic landmarks. A set of four magnetic bars forms total six different patterns of landmarks and these patterns can be read by the mobile robot with magnetic hall sensors. A sequential motion strategy for a mobile robot is proposed to find the geometric center of magnetic landmarks by reading the nonlinear magnetic field. The mobile robot first moves into the center region of the landmark where it can read the magnetic pattern, after which tracking and global localization can be easily achieved by recognizing the patterns of neighboring landmarks. Experimental results show the effectiveness of the sequential motion strategy for estimating the center of the first encountered landmark as well as the performance of tracking and global localization of the proposed system.

  13. Spectrally Queued Feature Selection for Robotic Visual Odometery

    Science.gov (United States)

    2010-11-23

    in these systems has yet to be defined. 1. INTRODUCTION 1.1 Uses of Autonomous Vehicles Autonomous vehicles have a wide range of possible...applications. In military situations, autonomous vehicles are valued for their ability to keep Soldiers far away from danger. A robot can inspect and disarm...just a glimpse of what engineers are hoping for in the future. 1.2 Biological Influence Autonomous vehicles are becoming more of a possibility in

  14. Self-Organizing Robots

    CERN Document Server

    Murata, Satoshi

    2012-01-01

    It is man’s ongoing hope that a machine could somehow adapt to its environment by reorganizing itself. This is what the notion of self-organizing robots is based on. The theme of this book is to examine the feasibility of creating such robots within the limitations of current mechanical engineering. The topics comprise the following aspects of such a pursuit: the philosophy of design of self-organizing mechanical systems; self-organization in biological systems; the history of self-organizing mechanical systems; a case study of a self-assembling/self-repairing system as an autonomous distributed system; a self-organizing robot that can create its own shape and robotic motion; implementation and instrumentation of self-organizing robots; and the future of self-organizing robots. All topics are illustrated with many up-to-date examples, including those from the authors’ own work. The book does not require advanced knowledge of mathematics to be understood, and will be of great benefit to students in the rob...

  15. Robotic and user interface solutions for hazardous and remote applications

    International Nuclear Information System (INIS)

    Schempf, H.

    1997-01-01

    Carnegie Mellon University (CMU) is developing novel robotic and user interface systems to assist in the cleanup activities undertaken by the U.S. Department of Energy (DOE). Under DOE's EM-50 funding and administered by the Federal Energy Technology Center (FETC), CMU has developed a novel asbestos pipe-insulation abatement robot system, called BOA, and a novel generic user interface control and training console, dubbed RoboCon. The use of BOA will allow the speedier abatement of the vast DOE piping networks clad with hazardous and contaminated asbestos insulation by which overall job costs can be reduced by as much as 50%. RoboCon will allow the DOE to evaluate different remote and robotic system technologies from the overall man-machine performance standpoint, as well as provide a standardized training platform for training site operators in the operation of remote and robotic equipment

  16. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU

    Directory of Open Access Journals (Sweden)

    Xu Zhao

    2018-03-01

    Full Text Available A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot’s motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS Inertial-Measurement-Unit (IMU. First, it studies the snake robot’s motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot’s navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD. In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots.

  17. Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro)

    International Nuclear Information System (INIS)

    Villanueva, Alex A; Marut, Kenneth J; Michael, Tyler; Priya, Shashank

    2013-01-01

    A biomimetic robot inspired by Cyanea capillata, termed as ‘Cyro’, was developed to meet the functional demands of underwater surveillance in defense and civilian applications. The vehicle was designed to mimic the morphology and swimming mechanism of the natural counterpart. The body of the vehicle consists of a rigid support structure with linear DC motors which actuate eight mechanical arms. The mechanical arms in conjunction with artificial mesoglea create the hydrodynamic force required for propulsion. The full vehicle measures 170 cm in diameter and has a total mass of 76 kg. An analytical model of the mechanical arm kinematics was developed. The analytical and experimental bell kinematics were analyzed and compared to the C. capillata. Cyro was found to reach the water surface untethered and autonomously from a depth of 182 cm in five actuation cycles. It achieved an average velocity of 8.47 cm s −1  while consuming an average power of 70 W. A two-axis thrust stand was developed to calculate the thrust directly from a single bell segment yielding an average thrust of 27.9 N for the whole vehicle. Steady state velocity during Cyro's swimming test was not reached but the measured performance during its last swim cycle resulted in a cost of transport of 10.9 J (kg ⋅ m) −1  and total efficiency of 0.03. (paper)

  18. Robotics for waste storage inspection: A user's perspective

    International Nuclear Information System (INIS)

    Hazen, F.B.

    1994-01-01

    Self-navigating robotic vehicles are now commercially available, and the technology supporting other important system components has also matured. Higher reliability and the obtainability of system support now make it practical to consider robotics as a way of addressing the growing operational requirement for the periodic inspection and maintenance of radioactive, hazardous, and mixed waste inventories. This paper describes preparations for the first field deployment of an autonomous container inspection robot at a Department of Energy (DOE) site. The Stored Waste Autonomous Mobile Inspector (SWAMI) is presently being completed by engineers at the Savannah River Technology Center (SRTC). It is a modified version of a commercially available robot. It has been outfitted with sensor suites and cognition that allow it to perform inspections of drum inventories and their storage facilities

  19. A Qualitative Approach to Mobile Robot Navigation Using RFID

    International Nuclear Information System (INIS)

    Hossain, M; Rashid, M M; Bhuiyan, M M I; Ahmed, S; Akhtaruzzaman, M

    2013-01-01

    Radio Frequency Identification (RFID) system allows automatic identification of items with RFID tags using radio-waves. As the RFID tag has its unique identification number, it is also possible to detect a specific region where the RFID tag lies in. Recently it is widely been used in mobile robot navigation, localization, and mapping both in indoor and outdoor environment. This paper represents a navigation strategy for autonomous mobile robot using passive RFID system. Conventional approaches, such as landmark or dead-reckoning with excessive number of sensors, have complexities in establishing the navigation and localization process. The proposed method satisfies less complexity in navigation strategy as well as estimation of not only the position but also the orientation of the autonomous robot. In this research, polar coordinate system is adopted on the navigation surface where RFID tags are places in a grid with constant displacements. This paper also presents the performance comparisons among various grid architectures through simulation to establish a better solution of the navigation system. In addition, some stationary obstacles are introduced in the navigation environment to satisfy the viability of the navigation process of the autonomous mobile robot

  20. Autonomous trajectory generation for mobile robots with non-holonomic and steering angle constraints

    International Nuclear Information System (INIS)

    Pin, F.G.; Vasseur, H.A.

    1990-01-01

    This paper presents an approach to the trajectory planning of mobile platforms characterized by non-holonomic constraints and constraints on the steering angle and steering angle rate. The approach is based on geometric reasoning and provides deterministic trajectories for all pairs of initial and final configurations (position x, y, and orientation θ) of the robot. Furthermore, the method generates trajectories taking into account the forward and reverse mode of motion of the vehicle, or combination of these when complex maneuvering is involved or when the environment is obstructed with obstacles. The trajectory planning algorithm is described, and examples of trajectories generated for a variety of environmental conditions are presented. The generation of the trajectories only takes a few milliseconds of run time on a micro Vax, making the approach quite attractive for use as a real-time motion planner for teleoperated or sensor-based autonomous vehicles in complex environments. 10 refs., 11 figs

  1. Embodied Computation: An Active-Learning Approach to Mobile Robotics Education

    Science.gov (United States)

    Riek, L. D.

    2013-01-01

    This paper describes a newly designed upper-level undergraduate and graduate course, Autonomous Mobile Robots. The course employs active, cooperative, problem-based learning and is grounded in the fundamental computational problems in mobile robotics defined by Dudek and Jenkin. Students receive a broad survey of robotics through lectures, weekly…

  2. Intelligent robotics and remote systems for the nuclear industry

    International Nuclear Information System (INIS)

    Wehe, D.K.; Lee, J.C.; Martin, W.R.; Tulenko, J.

    1989-01-01

    The nuclear industry has a recognized need for intelligent, multitask robots to carry out tasks in harsh environments. From 1986 to the present, the number of robotic systems available or under development for use in the nuclear industry has more than doubled. Presently, artificial intelligence (AI) plays a relatively small role in existing robots used in the nuclear industry. Indeed, the lack of intelligence has been labeled the ''Achilles heel'' of all current robotic technology. However, larger-scale efforts are underway to make the multitask robot more sensitive to its environment, more capable to move and perform useful work, and more fully autonomous via the use of AI. In this paper, we review the terminology, the history, and the factors which are motivating the development of robotics and remove systems; discuss the applications related to the nuclear industry; and, finally, examine the state of the art of the technologies being applied to introduce more autonomous capabilities. Much of this latter work can be classified as within the artificial intelligence framework. (orig.)

  3. Developing sensor-based robots with utility to waste management applications

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Abidi, M.A.; Gonzalez, R.C.

    1990-01-01

    There are several Environmental Restoration and Waste Management (ER and WM) application areas where autonomous or teleoperated robotic systems can be utilized to improve personnel safety and reduce operation costs. In this paper the authors describe continuing research undertaken by their group in intelligent robotics area which should have a direct relevance to a number of ER and WM applications. The authors' current research is sponsored by the advanced technology division of the U.S. Department of Energy. It is part of a program undertaken at four universities (Florida, Michigan, Tennessee, and Texas) and the Oak ridge National Laboratory directed towards the development of advanced robotic systems for use in nuclear environments. The primary motivation for using robotic (autonomous and/or teleoperated) technology in such hazardous environments is to reduce exposure and costs associated with performing tasks such as surveillance, maintenance and repair. The main focus of the authors' research a the University of Tennessee has been to contribute to the development of autonomous inspection and manipulation systems which utilize a wide array of sensory inputs in controlling the actions of a stationary robot. The authors' experimental research effort is directed towards design and evaluation of new methodologies using a laboratory based robotic testbed. A unique feature of this testbed is a multisensor module useful in the characterization of the robot workspace. In this paper, the authors describe the development of a robot vision system for automatic spill detection, localization and clean-up verification; and the development of efficient techniques for analyzing range images using a parallel computer. The 'simulated spill cleanup' scenario allows us to show the applicability of robotic systems to problems encountered in nuclear environments

  4. Autonomous parsing of behavior in a multi-agent setting

    NARCIS (Netherlands)

    Vanderelst, D.; Barakova, E.I.; Rutkowski, L.; Tadeusiewicz, R.

    2008-01-01

    Imitation learning is a promising route to instruct robotic multi-agent systems. However, imitating agents should be able to decide autonomously what behavior, observed in others, is interesting to copy. Here we investigate whether a simple recurrent network (Elman Net) can be used to extract

  5. A psychology based approach for longitudinal development in cognitive robotics

    Directory of Open Access Journals (Sweden)

    James eLaw

    2014-01-01

    Full Text Available A major challenge in robotics is the ability to learn, from novel experiences, new behaviour that is useful for achieving new goals and skills. Autonomous systems must be able to learn solely through the environment, thus ruling out a priori task knowledge, tuning, extensive training, or other forms of pre-programming. Learning must also be cumulative and incremental, as complex skills are built on top of primitive skills. Additionally, it must be driven by intrinsic motivation because formative experience is gained through autonomous activity, even in the absence of extrinsic goals or tasks. This paper presents an approach to these issues through robotic implementations inspired by the learning behaviour of human infants. We describe an approach to developmental learning and present results from a demonstration of longitudinal development on an iCub humanoid robot. The results cover the rapid emergence of staged behaviour, the role of constraints in development, the effect of bootstrapping between stages, and the use of a schema memory of experiential fragments in learning new skills. The context is a longitudinalexperiment in which the robot advanced from uncontrolled motor babbling to skilled hand/eyeintegrated reaching and basic manipulation of objects. This approach offers promise for furtherfast and effective sensory-motor learning techniques for robotic learning.

  6. Biologically based neural network for mobile robot navigation

    Science.gov (United States)

    Torres Muniz, Raul E.

    1999-01-01

    The new tendency in mobile robots is to crete non-Cartesian system based on reactions to their environment. This emerging technology is known as Evolutionary Robotics, which is combined with the Biorobotic field. This new approach brings cost-effective solutions, flexibility, robustness, and dynamism into the design of mobile robots. It also provides fast reactions to the sensory inputs, and new interpretation of the environment or surroundings of the mobile robot. The Subsumption Architecture (SA) and the action selection dynamics developed by Brooks and Maes, respectively, have successfully obtained autonomous mobile robots initiating this new trend of the Evolutionary Robotics. Their design keeps the mobile robot control simple. This work present a biologically inspired modification of these schemes. The hippocampal-CA3-based neural network developed by Williams Levy is used to implement the SA, while the action selection dynamics emerge from iterations of the levels of competence implemented with the HCA3. This replacement by the HCA3 results in a closer biological model than the SA, combining the Behavior-based intelligence theory with neuroscience. The design is kept simple, and it is implemented in the Khepera Miniature Mobile Robot. The used control scheme obtains an autonomous mobile robot that can be used to execute a mail delivery system and surveillance task inside a building floor.

  7. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.

    Science.gov (United States)

    Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang

    2018-03-01

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots

    Directory of Open Access Journals (Sweden)

    Luis Emmi

    2014-01-01

    Full Text Available Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.

  9. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots

    Science.gov (United States)

    Gonzalez-de-Soto, Mariano; Pajares, Gonzalo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976

  10. New trends in robotics for agriculture: integration and assessment of a real fleet of robots.

    Science.gov (United States)

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.

  11. Design, implementation and testing of master slave robotic surgical system

    International Nuclear Information System (INIS)

    Ali, S.A.

    2015-01-01

    The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom) haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system. (author)

  12. Design, Implementation and Testing of Master Slave Robotic Surgical System

    Directory of Open Access Journals (Sweden)

    Syed Amjad Ali

    2015-01-01

    Full Text Available The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system

  13. Operator-centered control of a semi-autonomous industrial robot

    International Nuclear Information System (INIS)

    Spelt, P.F.; Jones, S.L.

    1994-01-01

    This paper presents work done by Oak Ridge National Laboratory and Remotec, Inc., to develop a new operator-centered control system for Remotec's Andros telerobot. Andros robots are presently used by numerous electric utilities, the armed forces, and numerous law enforcement agencies to perform tasks which are hazardous for human operators. This project has automated task components and enhanced the video graphics display of the robot's position in the environment to significantly reduce operator workload. The procedure of automating a telerobot requires the addition of computer power to the robot, along with a variety of sensors and encoders to provide information about the robots performance in and relationship to its environment The resulting vehicle serves as a platform for research on strategies to integrate automated tasks with those performed by a human operator. The addition of these capabilities will greatly enhance the safety and efficiency of performance in hazardous environments

  14. Posture estimation for autonomous weeding robots navigation in nursery tree plantations

    DEFF Research Database (Denmark)

    Khot, Law Ramchandra; Tang, Lie; Blackmore, Simon

    2005-01-01

    errors of the system, in x and y direction for all the four lines. Further, it could also be stated that the errors were observed more in the direction of travel of the robot. When robot was navigated through the poles, the positioning accuracy of the system increased after filtering. The accuracy...

  15. Utilizing Robot Operating System (ROS) in Robot Vision and Control

    Science.gov (United States)

    2015-09-01

    Palmer, “Development of a navigation system for semi-autonomous operation of wheelchairs,” in Proc. of the 8th IEEE/ASME Int. Conf. on Mechatronic ...and Embedded Systems and Applications, Suzhou, China, 2012, pp. 257-262. [30] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based SLAM...OPERATING SYSTEM (ROS) IN ROBOT VISION AND CONTROL by Joshua S. Lum September 2015 Thesis Advisor: Xiaoping Yun Co-Advisor: Zac Staples

  16. Distributed Hardware-in-the-loop simulator for autonomous continuous dynamical systems with spatially constrained interactions

    NARCIS (Netherlands)

    Verburg, D.J.; Papp, Z.; Dorrepaal, M.

    2003-01-01

    The state-of-the-art intelligent vehicle, autonomous guided vehicle and mobile robotics application domains can be described as collection of interacting highly autonomous complex dynamical systems. Extensive formal analysis of these systems – except special cases – is not feasible, consequently the

  17. Autonomous navigation system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  18. Programación de comportamientos de un robot autónomo

    OpenAIRE

    Vivet Moral, Gerard

    2016-01-01

    El propósito de este proyecto, es lograr un mayor grado de autonomía de los comportamientos de un robot. Para incrementar la autonomía, necesitamos supervisar las baterías del robot, parar su estado actual, volver a la estación de carga y acoplarse cuando sea necesario. Asimismo, el robot se desplazará por su entorno hacia destinos dados por el usuario, a la vez evitando objetos que interrumpan su trayectoria planificada de manera dinámica. Todo ello adherido en un solo script Python y ROS (S...

  19. Autonomous driving in urban environments: approaches, lessons and challenges.

    Science.gov (United States)

    Campbell, Mark; Egerstedt, Magnus; How, Jonathan P; Murray, Richard M

    2010-10-13

    The development of autonomous vehicles for urban driving has seen rapid progress in the past 30 years. This paper provides a summary of the current state of the art in autonomous driving in urban environments, based primarily on the experiences of the authors in the 2007 DARPA Urban Challenge (DUC). The paper briefly summarizes the approaches that different teams used in the DUC, with the goal of describing some of the challenges that the teams faced in driving in urban environments. The paper also highlights the long-term research challenges that must be overcome in order to enable autonomous driving and points to opportunities for new technologies to be applied in improving vehicle safety, exploiting intelligent road infrastructure and enabling robotic vehicles operating in human environments.

  20. Development of a soft untethered robot using artificial muscle actuators

    Science.gov (United States)

    Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian

    2017-04-01

    Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.

  1. Deployment of Remotely-Accessible Robotics Laboratory

    Directory of Open Access Journals (Sweden)

    Richard Balogh

    2012-03-01

    Full Text Available Robotnacka is an autonomous drawing mobile robot, designed for eaching beginners in the Logo programming language. It can also be used as an experimental platform, in our case in a remotely accessible robotic laboratory with the possibility to control the robots via the Internet. In addition to a basic version of the robot a version equipped with a gripper is available too, one with a wireless camera, and one with additional ultrasonic distance sensors. The laboratory is available on-line permanently and provides a simple way to incorporate robotics in teaching mathematics, programming and other subjects. The laboratory has been in use several years. We provide description of its functionality and summarize our experience.

  2. Adaptive learning fuzzy control of a mobile robot

    International Nuclear Information System (INIS)

    Tsukada, Akira; Suzuki, Katsuo; Fujii, Yoshio; Shinohara, Yoshikuni

    1989-11-01

    In this report a problem is studied to construct a fuzzy controller for a mobile robot to move autonomously along a given reference direction curve, for which control rules are generated and acquired through an adaptive learning process. An adaptive learning fuzzy controller has been developed for a mobile robot. Good properties of the controller are shown through the travelling experiments of the mobile robot. (author)

  3. Iterative design process for robots with personality

    NARCIS (Netherlands)

    Meerbeek, B.W.; Saerbeck, M.; Bartneck, C.; Dautenhahn, K.

    2009-01-01

    Previous research has shown that autonomous robots tend to induce the perception of a personality through their behavior and appearance. It has therefore been suggested that the personality of a robot can be used as a design guideline. A welldefined and clearly communicated personality can serve as

  4. BART: The Czech Autonomous Observatory

    Czech Academy of Sciences Publication Activity Database

    Nekola, Martin; Hudec, René; Jelínek, M.; Kubánek, P.; Štrobl, Jan; Polášek, Cyril

    2010-01-01

    Roč. 2010, Spec. Is. (2010), 103986/1-103986/5 ISSN 1687-7969. [Workshop on Robotic Autonomous Observatories. Málaga, 18.05.2009-21.05.2009] R&D Projects: GA ČR GA205/08/1207 Grant - others:ESA(XE) ESA-PECS project No. 98023; Spanish Ministry of Education and Science(ES) AP2003-1407 Institutional research plan: CEZ:AV0Z10030501 Keywords : robotic telescope * BART * gamma ray bursts Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www.hindawi.com/journals/aa/2010/103986.html

  5. Fully decentralized control of a soft-bodied robot inspired by true slime mold.

    Science.gov (United States)

    Umedachi, Takuya; Takeda, Koichi; Nakagaki, Toshiyuki; Kobayashi, Ryo; Ishiguro, Akio

    2010-03-01

    Animals exhibit astoundingly adaptive and supple locomotion under real world constraints. In order to endow robots with similar capabilities, we must implement many degrees of freedom, equivalent to animals, into the robots' bodies. For taming many degrees of freedom, the concept of autonomous decentralized control plays a pivotal role. However a systematic way of designing such autonomous decentralized control system is still missing. Aiming at understanding the principles that underlie animals' locomotion, we have focused on a true slime mold, a primitive living organism, and extracted a design scheme for autonomous decentralized control system. In order to validate this design scheme, this article presents a soft-bodied amoeboid robot inspired by the true slime mold. Significant features of this robot are twofold: (1) the robot has a truly soft and deformable body stemming from real-time tunable springs and protoplasm, the former is used for an outer skin of the body and the latter is to satisfy the law of conservation of mass; and (2) fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts stemming from the law of conservation of protoplasmic mass. Simulation results show that this robot exhibits highly supple and adaptive locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design methodology for autonomous decentralized control system.

  6. A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Hafiz

    2011-01-01

    Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.

  7. Autonomous intelligent cars: proof that the EPSRC Principles are future-proof

    Science.gov (United States)

    de Cock Buning, Madeleine; de Bruin, Roeland

    2017-07-01

    Principle 2 of the EPSRC's principles of robotics (AISB workshop on Principles of Robotics, 2016) proves to be future proof when applied to the current state of the art of law and technology surrounding autonomous intelligent cars (AICs). Humans, not AICS, are responsible agents. AICs should be designed; operated as far as is practicable to comply with existing laws and fundamental rights and freedoms, including privacy by design. It will show that some legal questions arising from autonomous intelligent driving technology can be answered by the technology itself.

  8. Robots and Moral Agency

    OpenAIRE

    Johansson, Linda

    2011-01-01

      Machine ethics is a field of applied ethics that has grown rapidly in the last decade. Increasingly advanced autonomous robots have expanded the focus of machine ethics from issues regarding the ethical development and use of technology by humans to a focus on ethical dimensions of the machines themselves. This thesis contains two essays, both about robots in some sense, representing these different perspectives of machine ethics. The first essay, “Is it Morally Right to use UAVs in War?” c...

  9. Autonomous Wheeled Robot Platform Testbed for Navigation and Mapping Using Low-Cost Sensors

    Science.gov (United States)

    Calero, D.; Fernandez, E.; Parés, M. E.

    2017-11-01

    This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance.

  10. Robotic Autonomous Observatories: A Historical Perspective

    Directory of Open Access Journals (Sweden)

    Alberto Javier Castro-Tirado

    2010-01-01

    Full Text Available This paper presents a historical introduction to the field of Robotic Astronomy, from the point of view of a scientist working in this field for more than a decade. The author discusses the basic definitions, the differing telescope control operating systems, observatory managers, as well as a few current scientific applications.

  11. A multimodal interface for real-time soldier-robot teaming

    Science.gov (United States)

    Barber, Daniel J.; Howard, Thomas M.; Walter, Matthew R.

    2016-05-01

    Recent research and advances in robotics have led to the development of novel platforms leveraging new sensing capabilities for semantic navigation. As these systems becoming increasingly more robust, they support highly complex commands beyond direct teleoperation and waypoint finding facilitating a transition away from robots as tools to robots as teammates. Supporting future Soldier-Robot teaming requires communication capabilities on par with human-human teams for successful integration of robots. Therefore, as robots increase in functionality, it is equally important that the interface between the Soldier and robot advances as well. Multimodal communication (MMC) enables human-robot teaming through redundancy and levels of communications more robust than single mode interaction. Commercial-off-the-shelf (COTS) technologies released in recent years for smart-phones and gaming provide tools for the creation of portable interfaces incorporating MMC through the use of speech, gestures, and visual displays. However, for multimodal interfaces to be successfully used in the military domain, they must be able to classify speech, gestures, and process natural language in real-time with high accuracy. For the present study, a prototype multimodal interface supporting real-time interactions with an autonomous robot was developed. This device integrated COTS Automated Speech Recognition (ASR), a custom gesture recognition glove, and natural language understanding on a tablet. This paper presents performance results (e.g. response times, accuracy) of the integrated device when commanding an autonomous robot to perform reconnaissance and surveillance activities in an unknown outdoor environment.

  12. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert; /SLAC; Sykes, Mark V.; /PSI, Tucson

    2012-02-15

    The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.

  13. Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior

    Science.gov (United States)

    2006-09-28

    navigate in an unstructured environment to a specific target or location. 15. SUBJECT TERMS autonomous vehicles , fuzzy logic, learning behavior...ANSI-Std Z39-18 Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior FINAL REPORT 9/28/2006 Dean B. Edwards Department...the future, as greater numbers of autonomous vehicles are employed, it is hoped that lower LONG-TERM GOALS Use LAGR (Learning Applied to Ground Robots

  14. Positioning the laparoscopic camera with industrial robot arm

    DEFF Research Database (Denmark)

    Capolei, Marie Claire; Wu, Haiyan; Andersen, Nils Axel

    2017-01-01

    This paper introduces a solution for the movement control of the laparoscopic camera employing a teleoperated robotic assistant. The project propose an autonomous robotic solution based on an industrial manipulator, provided with a modular software which is applicable to large scale. The robot arm...... industrial robot arm is designated to accomplish this manipulation task. The software is implemented in ROS in order to facilitate future extensions. The experimental results shows a manipulator capable of moving fast and smoothly the surgical tool around a remote center of motion....

  15. Distributed computing by oblivious mobile robots

    CERN Document Server

    Flocchini, Paola; Santoro, Nicola

    2012-01-01

    The study of what can be computed by a team of autonomous mobile robots, originally started in robotics and AI, has become increasingly popular in theoretical computer science (especially in distributed computing), where it is now an integral part of the investigations on computability by mobile entities. The robots are identical computational entities located and able to move in a spatial universe; they operate without explicit communication and are usually unable to remember the past; they are extremely simple, with limited resources, and individually quite weak. However, collectively the ro

  16. What do care robots reveal about technology?

    NARCIS (Netherlands)

    op den Akker, Hendrikus J.A.

    2015-01-01

    Ethical issues raised by the idea of social robots that care point at a fundamental difference between man and machine. What sort of “difference‿ is this? We propose a semiotic view on technology to clarify the relations users have with social robots. Are these autonomous agents just promising or

  17. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning

    International Nuclear Information System (INIS)

    Schalkoff, Robert J.

    1999-01-01

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology

  18. Optical Flow based Robot Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Kahlouche Souhila

    2008-11-01

    Full Text Available In this paper we try to develop an algorithm for visual obstacle avoidance of autonomous mobile robot. The input of the algorithm is an image sequence grabbed by an embedded camera on the B21r robot in motion. Then, the optical flow information is extracted from the image sequence in order to be used in the navigation algorithm. The optical flow provides very important information about the robot environment, like: the obstacles disposition, the robot heading, the time to collision and the depth. The strategy consists in balancing the amount of left and right side flow to avoid obstacles, this technique allows robot navigation without any collision with obstacles. The robustness of the algorithm will be showed by some examples.

  19. Autonomous Aerial Refueling Ground Test Demonstration—A Sensor-in-the-Loop, Non-Tracking Method

    Directory of Open Access Journals (Sweden)

    Chao-I Chen

    2015-05-01

    Full Text Available An essential capability for an unmanned aerial vehicle (UAV to extend its airborne duration without increasing the size of the aircraft is called the autonomous aerial refueling (AAR. This paper proposes a sensor-in-the-loop, non-tracking method for probe-and-drogue style autonomous aerial refueling tasks by combining sensitivity adjustments of a 3D Flash LIDAR camera with computer vision based image-processing techniques. The method overcomes the inherit ambiguity issues when reconstructing 3D information from traditional 2D images by taking advantage of ready to use 3D point cloud data from the camera, followed by well-established computer vision techniques. These techniques include curve fitting algorithms and outlier removal with the random sample consensus (RANSAC algorithm to reliably estimate the drogue center in 3D space, as well as to establish the relative position between the probe and the drogue. To demonstrate the feasibility of the proposed method on a real system, a ground navigation robot was designed and fabricated. Results presented in the paper show that using images acquired from a 3D Flash LIDAR camera as real time visual feedback, the ground robot is able to track a moving simulated drogue and continuously narrow the gap between the robot and the target autonomously.

  20. The Dawning of the Ethics of Environmental Robots.

    Science.gov (United States)

    van Wynsberghe, Aimee; Donhauser, Justin

    2017-10-23

    Environmental scientists and engineers have been exploring research and monitoring applications of robotics, as well as exploring ways of integrating robotics into ecosystems to aid in responses to accelerating environmental, climatic, and biodiversity changes. These emerging applications of robots and other autonomous technologies present novel ethical and practical challenges. Yet, the critical applications of robots for environmental research, engineering, protection and remediation have received next to no attention in the ethics of robotics literature to date. This paper seeks to fill that void, and promote the study of environmental robotics. It provides key resources for further critical examination of the issues environmental robots present by explaining and differentiating the sorts of environmental robotics that exist to date and identifying unique conceptual, ethical, and practical issues they present.

  1. Intelligent Robot-assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Henry Y. K. Lau

    2009-11-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  2. Intelligent Robot-Assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Albert W. Y. Ko

    2009-06-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  3. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  4. Responsive Social Positioning Behaviors for Semi-Autonomous Telepresence Robots

    NARCIS (Netherlands)

    Vroon, Jered Hendrik

    2017-01-01

    Social interaction with a mobile robot requires the establishment of appropriate social positioning behaviors. Previous work has focused mostly on general and static rules that can be applied to robotics, such as proxemics. How can we deal effectively and efficiently with the dynamic positioning

  5. Sociable mobile robots through self-maintained energy

    DEFF Research Database (Denmark)

    Ngo, Trung Dung; Schiøler, Henrik

    2006-01-01

    society, collecting and sharing are experimentally recognized as the highest property. This paper issues an approach to sociable robots using self-maintained energy in robot society, which is naturally inspired from swarm behavior of honey-bee and ant. Typically, autonomous mobile robots are usually......Research of sociable robots has emphasized interaction and coordination of mobile robots with inspiration from natural behavior of birds, insects, and fish: flocking, foraging, collecting, sharing and so forth. However, the animal behaviors are looking for food towards survival. In an animal...... equipped with a finite energy, thus they can operate in a finite time. To overcome the limitation, we describe practical deployment of a group of mobile robot with the possibility of carrying and exchanging fuel, e.g. battery to other robots. Early implementation that includes modular hardware and control...

  6. RoMPS concept review automatic control of space robot, volume 2

    Science.gov (United States)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form and include: (1) system concept; (2) Hitchhiker Interface Requirements; (3) robot axis control concepts; (4) Autonomous Experiment Management System; (5) Zymate Robot Controller; (6) Southwest SC-4 Computer; (7) oven control housekeeping data; and (8) power distribution.

  7. Autonomous intelligent cars: proof that the EPSRC Principles are future-proof

    NARCIS (Netherlands)

    de Bruin, R.W.; de Cock Buning, M.

    2017-01-01

    Principle 2 of the EPSRC’s principles of robotics (AISB workshop on PrinciplesofRobotics, 2016) proves to be future proof when applied to the current state of the art of law and technology surrounding autonomous intelligent cars (AICs). Humans, not AICS, are responsible agents. AICs should be

  8. Introduction to Autonomous Mobile Robotics Using "Lego Mindstorms" NXT

    Science.gov (United States)

    Akin, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-01-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the…

  9. Cleaning Robot for Solar Panels in Solar Power Station

    Science.gov (United States)

    Hang, Lu-Bin; Shen, Cheng-Wei; Bian, Huai-Qiang; Wang, Yan

    2016-05-01

    The dust particles on solar panel surface have been a serious problem for the photovoltaic industry, a new monorail-tracked robot used for automatic cleaning of solar panel is presented in this paper. To meet the requirement of comprehensive and stable cleaning of PV array, the monorail-tracked pattern of robot is introduced based on the monorail structure technique. The running and striding mechanism are designed for mobility of robot on the solar panels. According to the carrying capacity and water circulation mechanism, a type of self-cleaning device with filtering system is developed. Combined with the computer software and communications technology, the control system is built in this robot, which can realize the functions of autonomous operation, positioning and monitoring. The application of this developed cleaning robot can actualize the Industrialization of automatic cleaning for PV components and have wide market prospect.

  10. Supervisory control for a complex robotic system

    International Nuclear Information System (INIS)

    Miller, D.J.

    1988-01-01

    The Robotic Radiation Survey and Analysis System investigates the use of advanced robotic technology for performing remote radiation surveys on nuclear waste shipping casks. Robotic systems have the potential for reducing personnel exposure to radiation and providing fast reliable throughput at future repository sites. A primary technology issue is the integrated control of distributed specialized hardware through a modular supervisory software system. Automated programming of robot trajectories based upon mathematical models of the cask and robot coupled with sensory feedback enables flexible operation of a commercial gantry robot with the reliability needed to perform autonomous operations in a hazardous environment. Complexity is managed using structured software engineering techniques resulting in the generation of reusable command primitives which contribute to a software parts catalog for a generalized robot programming language

  11. Decomposition of Agricultural tasks into Robotic Behaviours

    DEFF Research Database (Denmark)

    Fountas, Spyros; Blaskmore, Benjamin Simon; Vougioukas, Stavros

    2007-01-01

    decomposed into primitive actions, whichin turn are converted into the tractor directrix. Examples of this method are given forexploring an unknown area and ploughing a field. Results of a simulation of the exploreoperation are presented.Keywords: Autonomous vehicles, route planning, autonomous tractor......A new method is described that can be used to decompose human controlled agriculturaloperations into robotic behaviours embedded in an autonomous tractor. Four main levels havebeen identified: Operation, Task, Optimisation/Behaviour and Primitive actions where eachlevel is subsumed by the level...

  12. Intraoperative navigation of an optically tracked surgical robot.

    Science.gov (United States)

    Cornellà, Jordi; Elle, Ole Jakob; Ali, Wajid; Samset, Eigil

    2008-01-01

    This paper presents an adaptive control scheme for improving the performance of a surgical robot when it executes tasks autonomously. A commercial tracking system is used to correlate the robot with the preoperative plan as well as to correct the position of the robot when errors between the real and planned positions are detected. Due to the noisy signals provided by the tracking system, a Kalman filter is proposed to smooth the variations and to increase the stability of the system. The efficiency of the approach has been validated using rigid and flexible endoscopic tools, obtaining in both cases that the target points can be reached with an error less than 1mm. These results make the approach suitable for a range of abdominal procedures, such as autonomous repositioning of endoscopic tools or probes for percutaneous procedures.

  13. 2nd International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Matson, Eric; Myung, Hyun; Xu, Peter; Karray, Fakhri

    2014-01-01

    We are facing a new technological challenge on how to store and retrieve knowledge and manipulate intelligence for autonomous services by intelligent systems which should be capable of carrying out real world tasks autonomously. To address this issue, robot researchers have been developing intelligence technology (InT) for “robots that think” which is in the focus of this book. The book covers all aspects of intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving resear...

  14. Enhancing agent safety through autonomous environment adaptation

    CSIR Research Space (South Africa)

    Rosman, Benjamin S

    2015-08-01

    Full Text Available limit their ability to interact with and explore their environments. In this work we address this risk through the incorporation of a caregiver robot, and present a model allowing it to autonomously adapt its environment to minimize danger for other...

  15. Autonomous Intersection Management

    Science.gov (United States)

    2009-12-01

    detects that the driver is not slowing sufficiently fast. Jaguar, Honda, and BMW offer similar systems. Nissan and Toyota have recently begun offering...that the driver is not braking hard enough. Both Toyota and BMW are currently selling vehicles that can parallel park completely autonomously, even...other vehicles. The system was tested both in simulation and with a robotic vehicle. This work is sponsored by Toyota , who have also currently have an

  16. The Adam and Eve Robot Scientists for the Automated Discovery of Scientific Knowledge

    Science.gov (United States)

    King, Ross

    A Robot Scientist is a physically implemented robotic system that applies techniques from artificial intelligence to execute cycles of automated scientific experimentation. A Robot Scientist can automatically execute cycles of hypothesis formation, selection of efficient experiments to discriminate between hypotheses, execution of experiments using laboratory automation equipment, and analysis of results. The motivation for developing Robot Scientists is to better understand science, and to make scientific research more efficient. The Robot Scientist `Adam' was the first machine to autonomously discover scientific knowledge: both form and experimentally confirm novel hypotheses. Adam worked in the domain of yeast functional genomics. The Robot Scientist `Eve' was originally developed to automate early-stage drug development, with specific application to neglected tropical disease such as malaria, African sleeping sickness, etc. We are now adapting Eve to work with on cancer. We are also teaching Eve to autonomously extract information from the scientific literature.

  17. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  18. Robotics research at Electrotechnical Laboratory-R and D program for advanced robot technology

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, S; Akahori, H; Shirai, Y; Kakikura, M

    1983-01-01

    The purposes of this paper are both to introduce the outline of robotics researches at Electrotechnical Laboratory and to describe the relation between those researches and the national project so called robotics for critical work. The authors first describe the robotics researches and related topics historically which have been continued from the latter half of 1960s as a part of researches on artificial intelligence at Electrotechnical Laboratory. Secondly, they mention the present aspects of our researches, its relation with past results, and changes of basic concepts on robotics systems. Finally, as an extension of our researches, they propose some approaches to establish the following techniques which make very important roles for the success of the national project; (1) manipulation techniques, (2) sensor techniques, (3) autonomous robot control techniques, (4) advanced tele-operation techniques and, (5) system totalizing techniques. 15 references.

  19. Trajectory planning and tracking for autonomous vehicles navigation

    OpenAIRE

    Chebly , Alia

    2017-01-01

    In this thesis, the trajectory planning and the control of autonomous vehicles are addressed. As a first step, a multi-body modeling technique is used to develop a four wheeled vehicle planar model. This technique considers the vehicle as a robot consisting of articulated bodies. The geometric description of the vehicle system is derived using the modified Denavit Hartenberg parameterization and then the dynamic model of the vehicle is computed by applying a recursive method used in robotics,...

  20. Understanding of Android-Based Robotic and Game Structure

    Science.gov (United States)

    Phongtraychack, A.; Syryamkin, V.

    2018-05-01

    The development of an android with impressive lifelike appearance and behavior has been a long-standing goal in robotics and a new and exciting approach of smartphone-based robotics for research and education. Recent years have been progressive for many technologies, which allowed creating such androids. There are different examples including the autonomous Erica android system capable of conversational interaction and speech synthesis technologies. The behavior of Android-based robot could be running on the phone as the robot performed a task outdoors. In this paper, we present an overview and understanding of the platform of Android-based robotic and game structure for research and education.

  1. Véhicules autonomes et environnement semi-statiques

    OpenAIRE

    Bellicot , Iker

    2006-01-01

    voir basilic : http://emotion.inrialpes.fr/bibemotion/2006/Bel06/ school: Universite Joseph Fourier; Les robots autonomes utilisent des balises (murs, coins en interieur ; arbres, batiments a l'exterieur) pour se localiser. Cependant cette localisation peut echouer si le robot confond les balises entre eux, ce qui peut arriver lorsque l'environnement change (dont l'exemple typique est le parking, pour lequel les voitures ne sont plus stationnees au meme endroit) ; l'imprecision du capteur peu...

  2. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  3. Multi-sensors multi-baseline mapping system for mobile robot using stereovision camera and laser-range device

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-06-01

    Full Text Available Countless applications today are using mobile robots, including autonomous navigation, security patrolling, housework, search-and-rescue operations, material handling, manufacturing, and automated transportation systems. Regardless of the application, a mobile robot must use a robust autonomous navigation system. Autonomous navigation remains one of the primary challenges in the mobile-robot industry; many control algorithms and techniques have been recently developed that aim to overcome this challenge. Among autonomous navigation methods, vision-based systems have been growing in recent years due to rapid gains in computational power and the reliability of visual sensors. The primary focus of research into vision-based navigation is to allow a mobile robot to navigate in an unstructured environment without collision. In recent years, several researchers have looked at methods for setting up autonomous mobile robots for navigational tasks. Among these methods, stereovision-based navigation is a promising approach for reliable and efficient navigation. In this article, we create and develop a novel mapping system for a robust autonomous navigation system. The main contribution of this article is the fuse of the multi-baseline stereovision (narrow and wide baselines and laser-range reading data to enhance the accuracy of the point cloud, to reduce the ambiguity of correspondence matching, and to extend the field of view of the proposed mapping system to 180°. Another contribution is the pruning the region of interest of the three-dimensional point clouds to reduce the computational burden involved in the stereo process. Therefore, we called the proposed system multi-sensors multi-baseline mapping system. The experimental results illustrate the robustness and accuracy of the proposed system.

  4. Architecture for Multiple Interacting Robot Intelligences

    Science.gov (United States)

    Peters, Richard Alan, II (Inventor)

    2008-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a database associative memory (DBAM) that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  5. Hand-held medical robots.

    Science.gov (United States)

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  6. Fault Diagnosis of a Reconfigurable Crawling–Rolling Robot Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Karthikeyan Elangovan

    2017-10-01

    Full Text Available As robots begin to perform jobs autonomously, with minimal or no human intervention, a new challenge arises: robots also need to autonomously detect errors and recover from faults. In this paper, we present a Support Vector Machine (SVM-based fault diagnosis system for a bio-inspired reconfigurable robot named Scorpio. The diagnosis system needs to detect and classify faults while Scorpio uses its crawling and rolling locomotion modes. Specifically, we classify between faulty and non-faulty conditions by analyzing onboard Inertial Measurement Unit (IMU sensor data. The data capture nine different locomotion gaits, which include rolling and crawling modes, at three different speeds. Statistical methods are applied to extract features and to reduce the dimensionality of original IMU sensor data features. These statistical features were given as inputs for training and testing. Additionally, the c-Support Vector Classification (c-SVC and nu-SVC models of SVM, and their fault classification accuracies, were compared. The results show that the proposed SVM approach can be used to autonomously diagnose locomotion gait faults while the reconfigurable robot is in operation.

  7. Approximate Cartesian Control for Robotic Tool Usage with Graceful Degradation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Many of NASA's exploration scenarios include important roles for autonomous or partially autonomous robots. It is desirable for them to utilize human tools when...

  8. CSIR Centre for Mining Innovation and the mine safety platform robot

    CSIR Research Space (South Africa)

    Green, JJ

    2012-11-01

    Full Text Available The Council for Scientific and Industrial Research (CSIR) in South Africa is currently developing a robot for the inspection of the ceiling (hanging wall) in an underground gold mine. The robot autonomously navigates the 30 meter long by 3 meter...

  9. The development of robot application technology in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Seung Ho; Kim, Chang Hoi; Kim, Byung Soo; Hwang, Suk Young; Sohn, Surg Won; Lee, Yong Bum; Kim, Woong Ki

    1991-01-01

    The project of this study is intended to develop the application technology for autonomous robotic systems operated in hostile environments where human access is prohibited. The mobile robot, named as KAEROT, has been designed by adopting the controller of multiprocessor of distributed system architecture in order to get flexibility. 2 driving wheel assembles and 1 steering mechanism has been adopted and each of them is made of planetary wheel which is composed of a couple of star-like arms with 3 wheels. The 6 D.O.F of manipulator is controlled by CCD camera mounted on the elbow and base, to provide wide view of the working area for tele-operation. The off-line programming system is being developed for checking robot constraint violations within workspace prior to execution of robot programming. (Author)

  10. Automating the Incremental Evolution of Controllers for Physical Robots.

    Science.gov (United States)

    Faíña, Andrés; Jacobsen, Lars Toft; Risi, Sebastian

    2017-01-01

    Evolutionary robotics is challenged with some key problems that must be solved, or at least mitigated extensively, before it can fulfill some of its promises to deliver highly autonomous and adaptive robots. The reality gap and the ability to transfer phenotypes from simulation to reality constitute one such problem. Another lies in the embodiment of the evolutionary processes, which links to the first, but focuses on how evolution can act on real agents and occur independently from simulation, that is, going from being, as Eiben, Kernbach, & Haasdijk [2012, p. 261] put it, "the evolution of things, rather than just the evolution of digital objects.…" The work presented here investigates how fully autonomous evolution of robot controllers can be realized in hardware, using an industrial robot and a marker-based computer vision system. In particular, this article presents an approach to automate the reconfiguration of the test environment and shows that it is possible, for the first time, to incrementally evolve a neural robot controller for different obstacle avoidance tasks with no human intervention. Importantly, the system offers a high level of robustness and precision that could potentially open up the range of problems amenable to embodied evolution.

  11. System for leaks inspection in a nuclear plant by means of a mobile robot; Sistema para inspeccion de fugas en una planta nuclear por medio de un robot movil

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, R.; Segovia de los Rios, J.A. [ININ, Km. 36.5 Carretera Mexico-Toluca, Salazar, Edo. de Mexico (Mexico)]. E-mail: ramses@nuclear.inin.mx

    2004-07-01

    In this work a supervision system that could allow to carry out the detection of leaks of vapor in pipe lines, using a mobile robot Pioneer 2 -D Xe, which is controlled by means of an external micro controller 68HC912B32 programmed in Forth and using diffuse control to travel a road by means of the one to follow one lines painted in the floor is described. The robot takes in his superior part, a thermographic camera that allows to determine if leaks of vapor exist in pipes and a dosemeter to measure the present radiation levels in the place, besides a video camera. This way, the personnel, can make sure of having a propitious situation to make the maintenance of the facilities. (Author)

  12. Toward cognitive robotics

    Science.gov (United States)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  13. Supervised Remote Robot with Guided Autonomy and Teleoperation (SURROGATE): A Framework for Whole-Body Manipulation

    Science.gov (United States)

    Hebert, Paul; Ma, Jeremy; Borders, James; Aydemir, Alper; Bajracharya, Max; Hudson, Nicolas; Shankar, Krishna; Karumanchi, Sisir; Douillard, Bertrand; Burdick, Joel

    2015-01-01

    The use of the cognitive capabilties of humans to help guide the autonomy of robotics platforms in what is typically called "supervised-autonomy" is becoming more commonplace in robotics research. The work discussed in this paper presents an approach to a human-in-the-loop mode of robot operation that integrates high level human cognition and commanding with the intelligence and processing power of autonomous systems. Our framework for a "Supervised Remote Robot with Guided Autonomy and Teleoperation" (SURROGATE) is demonstrated on a robotic platform consisting of a pan-tilt perception head, two 7-DOF arms connected by a single 7-DOF torso, mounted on a tracked-wheel base. We present an architecture that allows high-level supervisory commands and intents to be specified by a user that are then interpreted by the robotic system to perform whole body manipulation tasks autonomously. We use a concept of "behaviors" to chain together sequences of "actions" for the robot to perform which is then executed real time.

  14. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor); Strawser, Philip A. (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  15. Development of a small cruising-type AUV and training of constant altitude swimming; Kogata kokogata kaichu robot no kaihatsu to teikodo koko no kunren

    Energy Technology Data Exchange (ETDEWEB)

    Suto, T. [Japan Society for the Promotion of Science, Tokyo (Japan); Ura, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1997-08-01

    A small autonomous robot with high software development efficiency was developed to investigate the control system of an autonomous cruising-type AUV in the actual environment. This robot has a minimum of functions required as a cruising type. One researcher can make an experiment on the robot because of its compactness and lightweight. The robot can also automatically cruise around in a small pool. It was confirmed that an adaptive constant altitude swimming controller utilizing a neural network verified by simulation can also be properly adjusted by an actual robot. The switching mechanism of neural networks was introduced to classify environmental patterns. The corresponding controller is adjusted automatically. In this study, a lightweight and compact cruising-type test-bed robot that has not existed until now was developed. This robot is easy to manufacture and construct in software. Therefore, it is to be desired that the researches and development of autonomous functions are promoted using such a robot. 9 refs., 13 figs., 1 tab.

  16. System for leaks inspection in a nuclear plant by means of a mobile robot

    International Nuclear Information System (INIS)

    Ramirez S, R.; Segovia de los Rios, J.A.

    2004-01-01

    In this work a supervision system that could allow to carry out the detection of leaks of vapor in pipe lines, using a mobile robot Pioneer 2 -D Xe, which is controlled by means of an external micro controller 68HC912B32 programmed in Forth and using diffuse control to travel a road by means of the one to follow one lines painted in the floor is described. The robot takes in his superior part, a thermographic camera that allows to determine if leaks of vapor exist in pipes and a dosemeter to measure the present radiation levels in the place, besides a video camera. This way, the personnel, can make sure of having a propitious situation to make the maintenance of the facilities. (Author)

  17. Symbolic power, robotting, and surveilling

    DEFF Research Database (Denmark)

    Skovsmose, Ole

    2012-01-01

    describes as it prioritises is discussed with reference to robotting and surveillance. In general, the symbolic power of mathematics and formal languages is summarised through the observations: that mathematics treats parts and properties as autonomous, that it dismembers what it addresses and destroys...

  18. Mobile robots in research and development programs at the Savannah River Site

    International Nuclear Information System (INIS)

    Martin, T.P.; Byrd, J.S.; Fisher, J.J.

    1987-01-01

    Savannah River Laboratory (SRL) is developing mobile robots for deployment in nuclear applications at the Savannah River Plant (SRP). Teleoperated mobile vehicles have been successfully used for several onsite applications. Development work using two research vehicles is underway to demonstrate semi-autonomous intelligent expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes of these vehicles is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being developed at SRL to allow vehicles to autonomously navigate and perform tasks in known environments, without the need for large computer systems. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation functions, and to analyze sensory information

  19. Mobile robots in research and development programs at the Savannah River site

    International Nuclear Information System (INIS)

    Martin, T.P.; Byrd, J.S.; Fisher, J.J.

    1987-01-01

    Mobile robots for deployment in nuclear applications at the Savannah River Plant (SRP) have been developed. Teleoperated mobile vehicles have been successfully used for several onsite applications. Development work using two research vehicles is underway to demonstrate semi-autonomous intelligent expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes of these vehicles is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being developed at SRL to allow vehicles to autonomously navigate and perform tasks in known environments, without the need for large computer systems. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation functions, and to analyze sensory information

  20. Human-like Compliance for Dexterous Robot Hands

    Science.gov (United States)

    Jau, Bruno M.

    1995-01-01

    This paper describes the Active Electromechanical Compliance (AEC) system that was developed for the Jau-JPL anthropomorphic robot. The AEC system imitates the functionality of the human muscle's secondary function, which is to control the joint's stiffness: AEC is implemented through servo controlling the joint drive train's stiffness. The control strategy, controlling compliant joints in teleoperation, is described. It enables automatic hybrid position and force control through utilizing sensory feedback from joint and compliance sensors. This compliant control strategy is adaptable for autonomous robot control as well. Active compliance enables dual arm manipulations, human-like soft grasping by the robot hand, and opens the way to many new robotics applications.