WorldWideScience

Sample records for autonomous helicopter slung

  1. Adaptive Control System for Autonomous Helicopter Slung Load Operations

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2010-01-01

    This paper presents design and verification of an estimation and control system for a helicopter slung load system. The estimator provides position and velocity estimates of the slung load and is designed to augment existing navigation in autonomous helicopters. Sensor input is provided by a vision...

  2. Modeling, Estimation, and Control of Helicopter Slung Load System

    OpenAIRE

    Bisgaard, Morten

    2008-01-01

    Denne afhandling omhandler autonom flyvning med helicopter slung load systemer og præsenterer en metodik der beskriver system udvikling fra modellering og system analyse, over sensor fusion og tilstands estimering, til kontroller design. To forskellige udviklingsgrene præsenteres: Flyvning med generisk slung load og landmine detektion med helikopter slung load system.Et hoved bidrag for denne afhandling er udviklingen af en komplet helikopter og slung load model. Den generiske slung load mode...

  3. Modeling, Estimation, and Control of Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten

    This thesis treats the subject of autonomous helicopter slung load flight and presents the reader with a methodology describing the development path from modeling and system analysis over sensor fusion and state estimation to controller synthesis. The focus is directed along two different....... To enable slung load flight capabilities for general cargo transport, an integrated estimation and control system is developed for use on already autonomous helicopters. The estimator uses vision based updates only and needs little prior knowledge of the slung load system as it estimates the length...

  4. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous...... of swing. The design of the delayed feedback controller is presented as an optimization problem which gives the possibility of an automated design process. Simulations and flight test verifications of the control system on two different autonomous helicopters are presented and it is shown how a significant...

  5. Input Shaping for Helicopter Slung Load Swing Reduction

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2008-01-01

    This chapter presents a feedforward swing reducing control system for augmenting already existing helicopter controllers and enables slung load flight with autonomous helicopters general cargo transport. The feedforward controller is designed to avoid excitation of the lightly damped modes of the...

  6. Vision Aided State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders;

    2007-01-01

    This paper presents the design and verification of a state estimator for a helicopter based slung load system. The estimator is designed to augment the IMU driven estimator found in many helicopter UAV s and uses vision based updates only. The process model used for the estimator is a simple 4...... state acceleration driven pendulum. Sensor input for the filter is provided by a vision based system that measures the position of the slung load. The estimator needs no prior knowledge of the system as it estimates the length of the suspension system together with the system states. Finally...

  7. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    . A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  8. Modeling of Generic Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders

    2009-01-01

    This paper presents the result of the modelling and verification of a generic slung load system using a small-scale helicopter. The model is intended for use in simulation, pilot training, estimation, and control. The model is derived using a redundant coordinate formulation based on Gauss...... slackening and tightening as well as aerodynamic coupling between the helicopter and the load. Furthermore, it is shown how the model can be easily used for multi-lift systems either with multiple helicopters or multiple loads. A numerical stabilisation algorithm is introduced and finally the use...

  9. Modelling of Generic Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; La Cour-Harbo, Anders

    2006-01-01

    This paper presents the result of modelling and verification of a generic slung load system using a small-scale helicopter. The model is intended for use in simulation, pilot training, estimation, and control. The model is derived using a redundant coordinate formulation based on Gauss Principle...... and tightening, and aerodynamical coupling between the helicopter and the load. Furthermore, it is shown how the model can be easily used for multi-lift systems either with multiple helicopers or multiple loads. A numerical stabilisation algorithm as well as a trim algorithm is presented for the complete...... helicopter/load system and finally the use of the model is illustrated through simulations....

  10. Autonomous Navigation, Guidance and Control of Small Electric Helicopter

    Directory of Open Access Journals (Sweden)

    Satoshi Suzuki

    2013-01-01

    Full Text Available In this study, we design an autonomous navigation, guidance and control system for a small electric helicopter. Only small, light‐weight, and inaccurate sensors can be used for the control of small helicopters because of the payload limitation. To overcome the problem of inaccurate sensors, a composite navigation system is designed. The designed navigation system enables us to precisely obtain the position and velocity of the helicopter. A guidance and control system is designed for stabilizing the helicopter at an arbitrary point in three‐dimensional space. In particular, a novel and simple guidance system is designed using the combination of optimal control theory and quaternion kinematics. The designs of the study are validated experimentally, and the experimental results verify the efficiency of our navigation, guidance and control system for a small electric helicopter.

  11. Square tracking sensor for autonomous helicopter hover stabilization

    Science.gov (United States)

    Oertel, Carl-Henrik

    1995-06-01

    Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.

  12. Merged Vision and GPS Control of a Semi-Autonomous, Small Helicopter

    Science.gov (United States)

    Rock, Stephen M.

    1999-01-01

    This final report documents the activities performed during the research period from April 1, 1996 to September 30, 1997. It contains three papers: Carrier Phase GPS and Computer Vision for Control of an Autonomous Helicopter; A Contestant in the 1997 International Aerospace Robotics Laboratory Stanford University; and Combined CDGPS and Vision-Based Control of a Small Autonomous Helicopter.

  13. Autonomous formation flight of helicopters: Model predictive control approach

    Science.gov (United States)

    Chung, Hoam

    Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected

  14. Quad-Rotor Helicopter Autonomous Navigation Based on Vanishing Point Algorithm

    Directory of Open Access Journals (Sweden)

    Jialiang Wang

    2014-01-01

    Full Text Available Quad-rotor helicopter is becoming popular increasingly as they can well implement many flight missions in more challenging environments, with lower risk of damaging itself and its surroundings. They are employed in many applications, from military operations to civilian tasks. Quad-rotor helicopter autonomous navigation based on the vanishing point fast estimation (VPFE algorithm using clustering principle is implemented in this paper. For images collected by the camera of quad-rotor helicopter, the system executes the process of preprocessing of image, deleting noise interference, edge extracting using Canny operator, and extracting straight lines by randomized hough transformation (RHT method. Then system obtains the position of vanishing point and regards it as destination point and finally controls the autonomous navigation of the quad-rotor helicopter by continuous modification according to the calculated navigation error. The experimental results show that the quad-rotor helicopter can implement the destination navigation well in the indoor environment.

  15. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    OpenAIRE

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for understanding the rotor performance and blade condition. A discussion on the dual character of blades as rotating structures results in two different interrogation strategies for external and internal dynamic...

  16. Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan

    2010-01-01

    for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller....

  17. Development of an Autonomous Flight Control System for Small Size Unmanned Helicopter Based on Dynamical Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that simple but effective MTCV control algorithm was proposed. The whole flight control algorithm is composed of two parts:orientation controller based on the model for rotation dynamics and a robust position controller for a double integrator. The MTCV block is also used to achieve translation velocity control. To demonstrate the performance of the presented algorithm, simulation results and results achieved in real flight experiments were presented.

  18. 3D Vision Based Landing Control of a Small Scale Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Zhenyu Yu

    2008-11-01

    Full Text Available Autonomous landing is a challenging but important task for Unmanned Aerial Vehicles (UAV to achieve high level of autonomy. The fundamental requirement for landing is the knowledge of the height above the ground, and a properly designed controller to govern the process. This paper presents our research results in the study of landing an autonomous helicopter. The abovetheground height sensing is based on a 3D vision system. We have designed a simple planefitting method for estimating the height over the ground. The method enables vibration free measurement with the camera rigidly attached on the helicopter without using complicated gimbal or active vision mechanism. The estimated height is used by the landing control loop. Considering the ground effect during landing, we have proposed a twostage landing procedure. Two controllers are designed for the two landing stages respectively. The sensing approach and control strategy has been verified in field flight test and has demonstrated satisfactory performance.

  19. Helicopter

    NARCIS (Netherlands)

    Van Holten, T.

    2004-01-01

    The invention relates to a helicopter provided with a rotor with at least one rotor blade (5), wherein drive means are provided for actively moving the or each rotor blade up and down during rotation of the rotor, in particular about a flapping hinge (8) thereof, so that moments, applied by the roto

  20. Terrain and Radiation Mapping in Post-Disaster Environments Using an Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Kevin Kochersberger

    2012-07-01

    Full Text Available Recent events have highlighted the need for unmanned remote sensing in dangerous areas, particularly where structures have collapsed or explosions have occurred, to limit hazards to first responders and increase their efficiency in planning response operations. In the case of the Fukushima nuclear reactor explosion, an unmanned helicopter capable of obtaining overhead images, gathering radiation measurements, and mapping both the structural and radiation content of the environment would have given the response team invaluable data early in the disaster, thereby allowing them to understand the extent of the damage and areas where dangers to personnel existed. With this motivation, the Unmanned Systems Lab at Virginia Tech has developed a remote sensing system for radiation detection and aerial imaging using a 90 kg autonomous helicopter and sensing payloads for the radiation detection and imaging operations. The radiation payload, which is the sensor of focus in this paper, consists of a scintillating type detector with associated software and novel search algorithms to rapidly and effectively map and locate sources of high radiation intensity. By incorporating this sensing technology into an unmanned aerial vehicle system, crucial situational awareness can be gathered about a post-disaster environment and response efforts can be expedited. This paper details the radiation mapping and localization capabilities of this system as well as the testing of the various search algorithms using simulated radiation data. The various components of the system have been flight tested over a several-year period and a new production flight platform has been built to enhance reliability and maintainability. The new system is based on the Aeroscout B1-100 helicopter platform, which has a one-hour flight endurance and uses a COFDM radio system that gives the helicopter an effective range of 7 km.

  1. The Effectiveness of Pole Placement Method in Control System Design for an Autonomous Helicopter Model in Hovering Flight

    Directory of Open Access Journals (Sweden)

    Abas Ab. Wahab

    2009-12-01

    Full Text Available This paper presents the results of attitude, velocity, heave and yaw controller design for an autonomous model scaled helicopter using identified model of vehicle dynamic from parameterized state-space model with quasi-steady attitude dynamic approximation (6 Degree of Freedom model. Multivariable state-space control methodology such as pole placement was used to design the linear state-space feedback for the stabilization of helicopter because of its simple controller architecture. The design specification for controller design was selected according to Military Handling Qualities Specification ADS-33C. Results indicate that acceptable controller can be designed using pole placement method with quasi-steady attitude approximation and it has been shown that the controller design was compliance with design criteria of hover requirement in ADS-33C.

  2. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully Integrated with the Morpheus Vertical Test Bed Avionics

    Science.gov (United States)

    Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second

  3. Helicopter Flight Test of 3-D Imaging Flash LIDAR Technology for Safe, Autonomous, and Precise Planetary Landing

    Science.gov (United States)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-01-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).

  4. Helicopter-borne laser autonomous positioning of buried pipeline%机载激光对埋地管道的自主定位

    Institute of Scientific and Technical Information of China (English)

    刘海芳; 王瑞; 钟诗胜; 刘克强

    2011-01-01

    为实现用机载激光对埋地天然气管道泄漏进行遥感检测,提出了机载激光自主定位管道的定位测量方法,利用机载GPS和惯性姿态测量系统得到载机的位置和姿态,结合已知的埋地管道地理位置信息,采用解析几何中的点法式求出激光对管道的自主定位点;然后利用坐标转换求出激光束在载机坐标系中的方位角和俯仰角,通过机械机构驱动激光完成对管道的引导定位.利用自行研制的激光夹持对准机构进行了地面定点实验,结果显示,地面定位最大误差为8.4m,平均定位误差<6.9 m;若进一步提高载机姿态、位置传感器精度及执行机构精度,激光对管道的引导定位误差会更小.结果表明本文所阐述的激光对埋地管道自主定位算法可用于机载激光对埋地天然气管道的遥感检测.%To realize the remote detection of the leak of a buried natural gas pipeline by an airborne laser, a helicopter-borne laser autonomous positioning method for the buried natural gas pipeline was presented. Based on the position and attitude of the carrier aircraft obtained by an airborne GPS and an inertial attitude measurement system, the laser autonomous positioning point of the pipeline was obtained based on the known location information and by the space vector method. Furthermore,the azimuth and pitch angles of the airborne laser were solved through the coordinate transformation. Finally, driven by the mechanism, the laser-guiding positioning of the pipeline was fulfilled. With application of the laser clamping alignment mechanism independently developed by ourselves, the ground point-fixed experiment proves that the proposed algorithm can offer the accuracy of the ground positioning by 6. 9 m,and it will be more accurate when the precision of the carrier aircraft attitude and the position sensor is further improved. Experiments demonstrate that the algorithm is suitable for the remote detection of the

  5. 改装体检直升机飞行员前庭自主神经反应观察%Vestibular autonomic reactions in pilots of modified helicopters detected at physical examination

    Institute of Scientific and Technical Information of China (English)

    徐先荣; 徐华; 李梅; 翟丽红; 刘玉华

    2011-01-01

    目的 观察改装体检直升机飞行员的前庭自主神经反应.方法 对35名参加改装体检直升机的飞行员行平静状态胃电图(EGG)记录,然后于电动转椅上进行科里奥利(Coriolis)加速度试验,待出现明显恶心反应时停止刺激,再次描记EGG,统计Coriolis加速度刺激前后EGG各指标变化,并将前庭自主神经反应分度与既往观察的歼击机飞行员前庭自主神经反应分度进行对照.结果 1)直升机飞行员Coriolis加速度刺激后4min的EGG平均幅值(327.1μV)、平均节律紊乱百分比(28.6%)、正常慢波百分比(38.9%)与平静状态4min的EGG平均幅值(259.7 μV)、平均节律紊乱百分比(24.2%)、正常慢波百分比(47.8%)差异有统计学意义(P<0.01);但前庭刺激前后的EGG平均频率无明显差异.2)刺激后直升机飞行员前庭自主神经反应Ⅱ°者占31.4%(11/35),与既往歼击机飞行员刺激后前庭自主神经反应Ⅱ°者占28.0%(7/25)相比无明显差异.结论 Coriolis加速度刺激下EGG平均幅值、平均节律紊乱百分比、正常慢波百分比可作为前庭自主神经反应的评价指标,改装体检直升机飞行员的前庭自主神经功能状况良好.%Objective To observe the vestibular autonomic reactions in pilots of modified helicopters detected at physical examination. Methods Electrogastrograms(EGG) of 35 pilots of modified helicopters in normal state were recorded. Coriolis acceleration test was performed in the pilots on electric rotatory chair and stopped when nausea occurred. Then changes in their EGG before and after Coriolis acceleration test were recorded and the degrees of their vestibular autonomic reactions were compared with the reported findings in fighter pilots. Results The average amplitude, average rhythm disturbance, and normal slow wave of EGG for 4min were significantly lower in pilots of helicopters before Coriolis acceleration test than in pilots of fighters after Coriolis acceleration

  6. Optimal Tracking Controller Design for a Small Scale Helicopter

    Institute of Scientific and Technical Information of China (English)

    Agus Budiyono; Singgih S. Wibowo

    2007-01-01

    A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed.The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs.

  7. Small Business Innovations (Helicopters)

    Science.gov (United States)

    1992-01-01

    The amount of engine power required for a helicopter to hover is an important, but difficult, consideration in helicopter design. The EHPIC program model produces converged, freely distorted wake geometries that generate accurate analysis of wake-induced downwash, allowing good predictions of rotor thrust and power requirements. Continuum Dynamics, Inc., the Small Business Innovation Research (SBIR) company that developed EHPIC, also produces RotorCRAFT, a program for analysis of aerodynamic loading of helicopter blades in forward flight. Both helicopter codes have been licensed to commercial manufacturers.

  8. Evaluating SLAM algorithms for Autonomous Helicopters

    OpenAIRE

    Skoglund, Martin

    2008-01-01

    Navigation with unmanned aerial vehicles (UAVs) requires good knowledge of the current position and other states. A UAV navigation system often uses GPS and inertial sensors in a state estimation solution. If the GPS signal is lost or corrupted state estimation must still be possible and this is where simultaneous localization and mapping (SLAM) provides a solution. SLAM considers the problem of incrementally building a consistent map of a previously unknown environment and simultaneously loc...

  9. Modeling, State Estimation and Control of Unmanned Helicopters

    Science.gov (United States)

    Lau, Tak Kit

    error modeling and the filtering method for the sensor noise compensation. Moreover, we provide a fully automatic algorithm to tune our method. Finally, we evaluate our method on an instrumented gasoline helicopter. Experiments show that the technique enables the robust positioning of flying helicopters when no GNSS measurement is available. The design of an autopilot for an unmanned helicopter is made difficult by its nonlinear, coupled and non-minimum phase dynamics. Here, we consider a reinforcement learning approach to transfer motion skills from human to machine, and hence to achieve autonomous flight control. By making efficient use of a series of state-and-action pairs given by a human pilot, our algorithm bootstraps a parameterized control policy and learns to hover and follow trajectories after one manual flight. One key observation our algorithm is based on is that, although it is often difficult to retrieve the human pilots' hidden desiderata that formulate their state-feedback mechanisms in controlling the helicopters, it is possible to intercept the states of a helicopter and the actions by a human pilot and then to fit both into a model. We demonstrate the performance of our learning controller in experiments. The results described in this dissertation shed new and important light on the technology necessary to advance the current state of the unmanned helicopters. From a comprehensive dynamics modeling that addresses perplexing cross-couplings on the unmanned helicopters, to a robust state estimation against GNSS outage and a learn-from-scarce-sample control for an unmanned helicopter, we provide a starting point for the cultivation of the next-generation unmanned helicopters that can operate with the least possible human intervention.

  10. Model Reference Sliding Mode Control of Small Helicopter X.R.B based on Vision

    OpenAIRE

    Wei Wang; Kenzo Nonami; Yuta Ohira

    2008-01-01

    This paper presents autonomous control for indoor small helicopter X.R.B. In case of natural disaster like earthquake, a MAV (Micro Air Vehicle) which can fly autonomously will be very effective for surveying the site and environment in dangerous area or narrow space, where human cannot access safely. In addition, it will be helpful to prevent secondary disaster. This paper describes vision based autonomous hovering control, guidance control for X.R.B by model reference sliding mode control.

  11. Power Efficient Video Communication for Mini Helicopter

    OpenAIRE

    Ingvaldsen, Ola Naalsund

    2010-01-01

    In this thesis, a video communication system for use in a mini helicopter is reviewed. The transmitter is located in a small battery powered mini helicopter, weighing about 15 grams, and the receiver is the helicopter's remote control. The operator controls the helicopter only based on the video feed sent from the helicopter, hence it is critical that the delay is kept to a minimum. Due to the helicopter's small size, the energy available is very limited, and both coding and transmission shou...

  12. Development of helicopter attitude axes controlled hover flight without pilot assistance and vehicle crashes

    Science.gov (United States)

    Simon, Miguel

    testing any one or combination of the following attitude axes controlled flight: (1) pitch, (2) roll and (3) yaw. The subsequent development of a novel method to decouple, stabilize and teach the helicopter hover flight is a primary contribution of this thesis. The novel method included the development of a non-linear modeling technique for linearizing the RPM state equation dynamics so that a simple but accurate transfer function is derivable between the "available torque of the engine" and RPM. Specifically, the main rotor and tail rotor torques are modeled accurately with a bias term plus a nonlinear term involving the product of RPM squared times the main rotor blade pitch angle raised to the three-halves power. Application of this non-linear modeling technique resulted in a simple, representative and accurate transfer function model of the open-loop plant for the entire helicopter system so that all the feedback control laws for autonomous flight purposes could be derived easily using classical control theory. This is one of the contributions of this dissertation work. After discussing the integration of hardware and software elements of our helicopter research test bed system, we perform a number of experiments and tests using the two specially built test stands. Feedback gains are derived for controlling the following: (1) engine throttle to maintain prescribed main rotor angular speed, (2) main rotor collective pitch to maintain constant elevation, (3) longitudinal cyclic pitch to maintain prescribed pitch angle, (4) lateral cyclic pitch to maintain prescribed roll angle, and (5) yaw axis to maintain prescribed compass direction. (Abstract shortened by UMI.)

  13. Identification, control and visually-guided behavior for a model helicopter

    Science.gov (United States)

    Saripalli, Srikanth

    Research on unmanned aerial vehicles is motivated by applications where human intervention is impossible, risky or expensive e.g. hazardous material recovery, traffic monitoring, disaster relief support, military operations etc. Due to its vertical take-off, landing and hover capabilities, a helicopter is an attractive platform for such applications. There are significant challenges to building an autonomous robotic helicopter - these span the areas of system identification, low-level control, state estimation, and planning. Towards the goal of fully-autonomous helicopters this thesis makes the following contributions. A continuous-discrete extended Kalman filter has been developed that combines inertial data with GPS and compass data to provide estimates of the 6DOF state of the helicopter. Using this filter a model for the helicopter has been identified based on frequency response techniques. The model has been validated in flight tests on a small helicopter testbed (1.6 m rotor diameter) at speeds upto 5 m/s. Based on evidence from this model a decoupled low-level controller has been developed which is embedded in a control architecture suitable for visually-guided navigation. As a novel application, we show how such a controller can be used to perform trajectory following on the helicopter where the desired trajectories are typical spacecraft landing trajectories, and the only controls available are thrusters. This in effect, produces a low-cost testbed for testing spacecraft landing and hazard avoidance on a planetary surface. Finally, we develop and extensively experimentally characterize algorithms for vision-based autonomous landing, object tracking, and sensor deployment.

  14. 75 FR 62639 - Air Ambulance and Commercial Helicopter Operations, Part 91 Helicopter Operations, and Part 135...

    Science.gov (United States)

    2010-10-12

    ...). SUMMARY: This proposed rule addresses air ambulance and commercial helicopter operations, part 91... and commercial helicopter operations. The proposal aims to address safety concerns arising from an... factors that are addressed in this proposal. These accidents involving commercial helicopter...

  15. [Autonomic neuropathies].

    Science.gov (United States)

    Siepmann, T; Penzlin, A I; Illigens, B M W

    2013-07-01

    Autonomic neuropathies are a heterogeneous group of diseases that involve damage of small peripheral autonomic Aδ- and C-fibers. Causes of autonomic nerve fiber damage are disorders such as diabetes mellitus and HIV-infection. Predominant symptoms of autonomic neuropathy are orthostatic hypotension, gastro-intestinal problems, urogenital dysfunction, and cardiac arrhythmia, which can severely impair the quality of life in affected patients. Furthermore, autonomic neuropathies can be induced by autoimmune diseases such as acute inflammatory demyelinating polyneuropathy, hereditary disorders such as the lysosomal storage disorder Fabry disease and hereditary sensory and autonomic neuropathies, as well as certain toxins and drugs.

  16. Modeling, Control and Coordination of Helicopter Systems

    CERN Document Server

    Ren, Beibei; Chen, Chang; Fua, Cheng-Heng; Lee, Tong Heng

    2012-01-01

    Modeling, Control and Coordination of Helicopter Systems provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems,providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved. This book also: Presents a complete picture of modeling, control and coordination for helicopter systems Provides a modeling platform for a general class of ro...

  17. Vertebral pain in helicopter pilots

    Science.gov (United States)

    Auffret, R.; Delahaye, R. P.; Metges, P. J.; VICENS

    1980-01-01

    Pathological forms of spinal pain engendered by piloting helicopters were clinically studied. Lumbalgia and pathology of the dorsal and cervical spine are discussed along with their clinical and radiological signs and origins.

  18. The evolution of helicopters

    Science.gov (United States)

    Chen, R.; Wen, C. Y.; Lorente, S.; Bejan, A.

    2016-07-01

    Here, we show that during their half-century history, helicopters have been evolving into geometrically similar architectures with surprisingly sharp correlations between dimensions, performance, and body size. For example, proportionalities emerge between body size, engine size, and the fuel load. Furthermore, the engine efficiency increases with the engine size, and the propeller radius is roughly the same as the length scale of the whole body. These trends are in accord with the constructal law, which accounts for the engine efficiency trend and the proportionality between "motor" size and body size in animals and vehicles. These body-size effects are qualitatively the same as those uncovered earlier for the evolution of aircraft. The present study adds to this theoretical body of research the evolutionary design of all technologies [A. Bejan, The Physics of Life: The Evolution of Everything (St. Martin's Press, New York, 2016)].

  19. Agent, autonomous

    OpenAIRE

    Luciani, Annie

    2007-01-01

    The expression autonomous agents, widely used in virtual reality, computer graphics, artificial intelligence and artificial life, corresponds to the simulation of autonomous creatures, virtual (i.e. totally computed by a program), or embodied in a physical envelope, as done in autonomous robots.

  20. A Primer on Autonomous Aerial Vehicle Design

    Science.gov (United States)

    Coppejans, Hugo H. G.; Myburgh, Herman C.

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  1. A Primer on Autonomous Aerial Vehicle Design.

    Science.gov (United States)

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  2. A Primer on Autonomous Aerial Vehicle Design

    Directory of Open Access Journals (Sweden)

    Hugo H. G. Coppejans

    2015-12-01

    Full Text Available There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV, such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  3. Wavelet analysis of helicopter noise signal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiang; WANG Huaming; HU Zhangwei

    2002-01-01

    Helicopter noise features under typical flight condition were investigated based on wavelet transform. The contribution of blade-vortex interaction (BVI) to helicopter noise and low frequency oscillations beat was shown clearly from the detail of wavelet decomposition for helicopter noise signal.

  4. Investigating Flight with a Toy Helicopter

    Science.gov (United States)

    Liebl, Michael

    2010-01-01

    Flight fascinates people of all ages. Recent advances in battery technology have extended the capabilities of model airplanes and toy helicopters. For those who have never outgrown a childhood enthusiasm for the wonders of flight, it is possible to buy inexpensive, remotely controlled planes and helicopters. A toy helicopter offers an opportunity…

  5. 78 FR 7645 - Airworthiness Directives; Bell Helicopter Textron, Inc., Helicopters

    Science.gov (United States)

    2013-02-04

    ... the proposal because of ``continual noise, pollution and aggravation as a result of low flying planes....gov . SUPPLEMENTARY INFORMATION: Discussion On February 3, 2012, at 77 FR 5427, the Federal Register... landing gear, and subsequent loss of control of the helicopter. Comments After our NPRM (77 FR...

  6. 77 FR 35306 - Airworthiness Directives; Bell Helicopter Textron, Inc. Helicopters

    Science.gov (United States)

    2012-06-13

    ... visibility, and subsequent loss of structural integrity and helicopter control. FAA's Determination We are... Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will not affect intrastate aviation in Alaska... the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations...

  7. Autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1983-01-01

    The diagnosis of autonomic neuropathy is often difficult to establish, since clinical symptoms generally appear late in the course of the disease, and may be non-specific. A number of recently developed quantifiable and reproducible autonomic nerve function tests are reviewed, with emphasis on th...

  8. Autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1980-01-01

    In order to elucidate the physiological significance of autonomic neuropathy in juvenile diabetics, cardiovascular, hormonal and metabolic functions have been investigated in three groups of juvenile diabetics: One group had no signs of neuropathy, one group had presumably slight autonomic...... neuropathy (reduced beat-to-beat variation in heart rate during hyperventilation) and one group had clinically severe autonomic neuropathy, defined by presence of orthostatic hypotension. In all three experimental situations we found sympathetic dysfunction causing cardiovascular and/or hormonal...... maladjustments in patients with autonomic neuropathy. Regarding metabolic functions we found normal responses to graded exercise and insulin-induced hypoglycemia in patients with autonomic neuropathy in spite of blunted catecholamine responses, suggesting increased sensitivity of glycogen stores and adipose...

  9. Helicopter Toy and Lift Estimation

    Science.gov (United States)

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  10. Smart actuation for helicopter rotorblades

    NARCIS (Netherlands)

    Paternoster, A.R.A.; Loendersloot, R.; Boer, de A.; Akkerman, R.; Berselli, G.; Vertechy, R.; Vassura, G.

    2012-01-01

    Successful rotorcrafts were only achieved when the differences between hovering flight conditions and a stable forward flight were understood. During hovering, the air speed on all helicopter blades is linearly distributed along each blade and is the same for each. However, during forward flight, th

  11. Human-Vehicle Interface for Semi-Autonomous Operation of Uninhabited Aero Vehicles

    Science.gov (United States)

    Jones, Henry L.; Frew, Eric W.; Woodley, Bruce R.; Rock, Stephen M.

    2001-01-01

    The robustness of autonomous robotic systems to unanticipated circumstances is typically insufficient for use in the field. The many skills of human user often fill this gap in robotic capability. To incorporate the human into the system, a useful interaction between man and machine must exist. This interaction should enable useful communication to be exchanged in a natural way between human and robot on a variety of levels. This report describes the current human-robot interaction for the Stanford HUMMINGBIRD autonomous helicopter. In particular, the report discusses the elements of the system that enable multiple levels of communication. An intelligent system agent manages the different inputs given to the helicopter. An advanced user interface gives the user and helicopter a method for exchanging useful information. Using this human-robot interaction, the HUMMINGBIRD has carried out various autonomous search, tracking, and retrieval missions.

  12. Military display market segment: helicopters

    Science.gov (United States)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2004-09-01

    The military display market is analyzed in terms of one of its segments: helicopter displays. Parameters requiring special consideration, to include luminance ranges, contrast ratio, viewing angles, and chromaticity coordinates, are examined. Performance requirements for rotary-wing displays relative to several premier applications are summarized. Display sizes having aggregate defense applications of 5,000 units or greater and having DoD applications across 10 or more platforms, are tabulated. The issue of size commonality is addressed where distribution of active area sizes across helicopter platforms, individually, in groups of two through nine, and ten or greater, is illustrated. Rotary-wing displays are also analyzed by technology, where total quantities of such displays are broken out into CRT, LCD, AMLCD, EM, LED, Incandescent, Plasma and TFEL percentages. Custom, versus Rugged commercial, versus commercial off-the-shelf designs are contrasted. High and low information content designs are identified. Displays for several high-profile military helicopter programs are discussed, to include both technical specifications and program history. The military display market study is summarized with breakouts for the helicopter market segment. Our defense-wide study as of March 2004 has documented 1,015,494 direct view and virtual image displays distributed across 1,181 display sizes and 503 weapon systems. Helicopter displays account for 67,472 displays (just 6.6% of DoD total) and comprise 83 sizes (7.0% of total DoD) in 76 platforms (15.1% of total DoD). Some 47.6% of these rotary-wing applications involve low information content displays comprising just a few characters in one color; however, as per fixed-wing aircraft, the predominant instantiation involves higher information content units capable of showing changeable graphics, color and video.

  13. Portable-Beacon Landing System for Helicopters

    Science.gov (United States)

    Davis, Thomas J.; Clary, George R.; Chisholm, John P.; Macdonald, Stanley L.

    1987-01-01

    Prototype beacon landing system (BLS) allows helicopters to make precise landings in all weather. BLS easily added to existing helicopter avionic equipment and readily deployed at remote sites. Small and light, system employs X-band radar and digital processing. Variety of beams pulsed sequentially by ground station after initial interrogation by weather radar of approaching helicopter. Airborne microprocessor processes pulses to determine glide slope, course deviation, and range.

  14. 78 FR 40954 - Airworthiness Directives; Various Restricted Category Helicopters

    Science.gov (United States)

    2013-07-09

    ...-17339 (78 FR 9793, February 12, 2013), for Bell Model 204B, 205A, 205A-1, 205B, 210, and 212 helicopters... Helicopter Textron, Inc..; Global Helicopter Technology, Inc.; Hagglund Helicopters, LLC; JJASPP Engineering... often used in the timber industry and for firefighting, they may accrue 25 hours TIS within a...

  15. Helicopter attempts tow of Liberty Bell 7

    Science.gov (United States)

    1961-01-01

    Marine helicopter appears to have Liberty Bell 7 in tow after Virgil I. Grissom's successful flight of 305 miles down the Atlantic Missile Range. Minutes after 'Gus' Grissom got out of the spacecraft, it sank.

  16. Autonomous Search

    CERN Document Server

    Hamadi, Youssef; Saubion, Frédéric

    2012-01-01

    Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners. Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the

  17. 77 FR 64439 - Airworthiness Directives; Bell Helicopter Textron Canada (Bell) Model Helicopters

    Science.gov (United States)

    2012-10-22

    ... converter, and AFCS air data computer adapter module for each helicopter, assuming 8 work hours for each... Bell Model 430 helicopters, which would require replacing certain components of the air data system... rulemaking by submitting written comments, data, or views. We also invite comments relating to the...

  18. Pure Autonomic Failure

    Science.gov (United States)

    ... Drugs GARD Information Navigator FAQs About Rare Diseases Pure autonomic failure Title Other Names: Bradbury Eggleston syndrome; ... Categories: Nervous System Diseases ; RDCRN Summary Summary Listen Pure autonomic failure is characterized by generalized autonomic failure ...

  19. Diabetic autonomic neuropathy.

    Science.gov (United States)

    Freeman, Roy

    2014-01-01

    Diabetes mellitus is the commonest cause of an autonomic neuropathy in the developed world. Diabetic autonomic neuropathy causes a constellation of symptoms and signs affecting cardiovascular, urogenital, gastrointestinal, pupillomotor, thermoregulatory, and sudomotor systems. Several discrete syndromes associated with diabetes cause autonomic dysfunction. The most prevalent of these are: generalized diabetic autonomic neuropathy, autonomic neuropathy associated with the prediabetic state, treatment-induced painful and autonomic neuropathy, and transient hypoglycemia-associated autonomic neuropathy. These autonomic manifestations of diabetes are responsible for the most troublesome and disabling features of diabetic peripheral neuropathy and result in a significant proportion of the mortality and morbidity associated with the disease.

  20. US Helicopter Expands Service to Newark Liberty International Airport

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ US Helicopter Corporation ("US Helicopter") (OTC Bulletin Board: USHP) and Continental Airlines (NYSE: CAL)announced a partnership to provide eight-minute shuttle service between Manhattan and Newark Liberty International Airport beginning Dec.18, 2006.

  1. 78 FR 17593 - Airworthiness Directives; Bell Helicopter Textron, Inc.

    Science.gov (United States)

    2013-03-22

    ... lead to the loss of main rotor (M/R) blade pitch control and subsequent loss of helicopter control..., which could lead to the loss of M/R blade pitch control and subsequent loss of helicopter control... helicopters. This AD requires establishing a lower life limit on certain swashplate outer ring...

  2. Helicopter industry - early beginnings to now; an outlook on the helicopter market and its major players in the rotorcraft industry

    NARCIS (Netherlands)

    Spranger, L.

    2013-01-01

    The helicopter is probably the most flexible aircraft that we know today. Although its history dates back to around 1500, the first practical helicopter wasn’t manufactured until the 1940s, roughly three decades after the Wright brothers’ first powered human flight. Today, helicopters fulfil a wide

  3. Simulation of Flow around Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Garipov A.O.

    2013-04-01

    Full Text Available Low fuselage drag has always been a key target of helicopter manufacturers. Therefore, this paper focuses on CFD predictions of the drag of several components of a typical helicopter fuselage. In the first section of the paper, validation of the obtained CFD predictions is carried out using wind tunnel measurements. The measurements were carried out at the Kazan National Research Technical University n.a. A. Tupolev. The second section of the paper is devoted to the analysis of drag contributions of several components of the ANSAT helicopter prototype fuselage using the RANS approach. For this purpose, several configurations of fuselages are considered with different levels of complexity including exhausts and skids. Depending on the complexity of the considered configuration and CFD mesh both the multi-block structured HMB solver and the unstructured commercial tool Fluent are used. Finally, the effect of an actuator disk on the predicted drag is addressed.

  4. Helicopter trajectory planning using optimal control theory

    Science.gov (United States)

    Menon, P. K. A.; Cheng, V. H. L.; Kim, E.

    1988-01-01

    A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.

  5. A New Hybrid Control Architecture to Attenuate Large Horizontal Wind Disturbance for a Small-Scale Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Xiaorui Zhu

    2012-07-01

    Full Text Available This paper presents a novel method to attenuate large horizontal wind disturbance for a small‐scale unmanned autonomous helicopter combining wind tunnel‐based experimental data and a backstepping algorithm. Large horizontal wind disturbance is harmful to autonomous helicopters, especially to small ones because of their low inertia and the high cross‐coupling effects among the multiple inputs. In order to achieve more accurate and faster attenuation of large wind disturbance, a new hybrid control architecture is proposed to take advantage of the direct force/moment compensation based on the wind tunnel experimental data. In this architecture, large horizontal wind disturbance is treated as an additional input to the control system instead of a small perturbation around the equilibrium state. A backstepping algorithm is then designed to guarantee the stable convergence of the helicopter to the desired position. The proposed technique is finally evaluated in simulation on the platform, HIROBO Eagle, compared with a traditional wind velocity compensation method.

  6. Fuzzy logic mode switching in helicopters

    Science.gov (United States)

    Sherman, Porter D.; Warburton, Frank W.

    1993-01-01

    The application of fuzzy logic to a wide range of control problems has been gaining momentum internationally, fueled by a concentrated Japanese effort. Advanced Research & Development within the Engineering Department at Sikorsky Aircraft undertook a fuzzy logic research effort designed to evaluate how effective fuzzy logic control might be in relation to helicopter operations. The mode switching module in the advanced flight control portion of Sikorsky's motion based simulator was identified as a good candidate problem because it was simple to understand and contained imprecise (fuzzy) decision criteria. The purpose of the switching module is to aid a helicopter pilot in entering and leaving coordinated turns while in flight. The criteria that determine the transitions between modes are imprecise and depend on the varied ranges of three flight conditions (i.e., simulated parameters): Commanded Rate, Duration, and Roll Attitude. The parameters were given fuzzy ranges and used as input variables to a fuzzy rulebase containing the knowledge of mode switching. The fuzzy control program was integrated into a real time interactive helicopter simulation tool. Optimization of the heading hold and turn coordination was accomplished by interactive pilot simulation testing of the handling quality performance of the helicopter dynamic model. The fuzzy logic code satisfied all the requirements of this candidate control problem.

  7. Support of Helicopter 'Free Flight' Operations in the 1996 Olympics

    Science.gov (United States)

    Branstetter, James R.; Cooper, Eric G.

    1996-01-01

    The microcosm of activity surrounding the 1996 Olympic Games provided researchers an opportunity for demonstrating state-of-the art technology in the first large-scale deployment of a prototype digital communication/navigation/surveillance system in a confined environment. At the same time it provided an ideal opportunity for transportation officials to showcase the merits of an integrated transportation system in meeting the operational needs to transport time sensitive goods and provide public safety services under real-world conditions. Five aeronautical CNS functions using a digital datalink system were chosen for operational flight testing onboard 91 aircraft, most of them helicopters, participating in the Atlanta Short-Haul Transportation System. These included: GPS-based Automatic Dependent Surveillance, Cockpit Display of Traffic Information, Controller-Pilot Communications, Graphical Weather Information (uplink), and Automated Electronic Pilot Reporting (downlink). Atlanta provided the first opportunity to demonstrate, in an actual operating environment, key datalink functions which would enhance flight safety and situational awareness for the pilot and supplement conventional air traffic control. The knowledge gained from such a large-scale deployment will help system designers in development of a national infrastructure where aircraft would have the ability to navigate autonomously.

  8. Toward Visual Autonomous Ship Board Landing of a VTOL UAV

    OpenAIRE

    Sánchez López, José Luis; Saripalli, Srikanth; Campoy Cervera, Pascual; Pestana Puerta, Jesús; Fu, Changhong

    2013-01-01

    In this paper we tackle the problem of landing a helicopter autonomously on a ship deck, using as the main sensor, an on-board colour camera. To create a test-bed, we first adequately simulate the movement of a ship landing platform on the Sea, for different Sea States, for different ships, randomly and realistically enough. We use a commercial parallel robot to get this movement. Once we had this, we developed an accurate and robust computer vision system to measure the pose of the helipad w...

  9. Computer-vision-based autonomous control for quadrocopter

    OpenAIRE

    Lukežič, Alan

    2012-01-01

    The main goal of the thesis is presenting the implementation of the mobile platform Parrot AR.Drone for object tracking. Parrot is a quadrocopter – an aerial vehicle similar to a helicopter, but with four propellers. As there is a camera attached to it and there is the possibility of wireless connection via laptop, the system belongs to the computer vision and robotics field. We created a system which is capable of autonomous tracking a manually selected object. For tracking we used two exist...

  10. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  11. Autoimmune Autonomic Ganglionopathy

    Science.gov (United States)

    ... Accessed 9/2/2015. Autoimmune Autonomic Ganglionopathy Summary. Dysautonomia International . http://www.dysautonomiainternational.org/page.php?ID= ... page Basic Information In Depth Information Basic Information Dysautonomia International offers an information page on Autoimmune autonomic ...

  12. [Trigeminal autonomic cephalgias].

    Science.gov (United States)

    Maximova, M Yu; Piradov, M A; Suanova, E T; Sineva, N A

    2015-01-01

    Review of literature on the trigeminal autonomic cephalgias are presented. Trigeminal autonomic cephalgias are primary headaches with phenotype consisting of trigeminal pain with autonomic sign including lacrimation, rhinorrhea and miosis. Discussed are issues of classification, pathogenesis, clinical picture, diagnosis, differential diagnosis and treatment of this headache. Special attention is paid to cluster headache, paroxysmal hemicrania, SUNCT syndrome, hemicrania continua.

  13. Autonomous Aerial Sensors for Wind Power Meteorology - A Pre-Project

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Bange, Jens;

    Autonomous Aerial Sensors, i.e. meteorological sensors mounted on Unmanned Aerial Systems UAS, can characterise the atmospheric flow in and around wind farms. We instrumented three planes, a helicopter and a lighter-than-air LTA system to fly one week together in a well-instrumented wind farm...... at a wind farm in Lolland and on an atmospheric campaign in France. Planning of an offshore campaign using the developed techniques is underway....

  14. Depth Image Processing for Obstacle Avoidance of an Autonomous VTOL UAV

    OpenAIRE

    Andert, Franz; Strickert, Gordon; Thielecke, Frank

    2006-01-01

    We describe a new approach for stereo-based obstacle avoidance. This method analyzes the images of a stereo camera in realtime and searches for a safe target point that can be reached without collision. The obstacle avoidance system is used by our unmanned helicopter ARTIS (Autonomous Rotorcraft Testbed for Intelligent Systems) and its simulation environment. It is optimized for this UAV, but not limited to aircraft systems.

  15. Finite difference time domain grid generation from AMC helicopter models

    Science.gov (United States)

    Cravey, Robin L.

    1992-01-01

    A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.

  16. Development of a Cost-efficient Autonomous MAV for an Unstructured Indoor Environment

    CERN Document Server

    Kernbach, Serge

    2011-01-01

    Performing rescuing and surveillance operations with autonomous ground and aerial vehicles become more and more apparent task. Involving unmanned robot systems allows making these operations more efficient, safe and reliable especially in hazardous areas. This work is devoted to the development of a cost-efficient micro aerial vehicle in a quadrocopter shape for developmental purposes within indoor scenarios. It has been constructed with off-the-shelf components available for mini helicopters. Additional sensors and electronics are incorporated into this aerial vehicle to stabilize its flight behavior and to provide a capability of an autonomous navigation in a partially unstructured indoor environment.

  17. Helicopter mission optimization study. [portable computer technology for flight optimization

    Science.gov (United States)

    Olson, J. R.

    1978-01-01

    The feasibility of using low-cost, portable computer technology to help a helicopter pilot optimize flight parameters to minimize fuel consumption and takeoff and landing noise was demonstrated. Eight separate computer programs were developed for use in the helicopter cockpit using a hand-held computer. The programs provide the helicopter pilot with the ability to calculate power required, minimum fuel consumption for both range and endurance, maximum speed and a minimum noise profile for both takeoff and landing. Each program is defined by a maximum of two magnetic cards. The helicopter pilot is required to key in the proper input parameter such as gross weight, outside air temperature or pressure altitude.

  18. Learning Basic Mechatronics through Helicopter Workshop

    OpenAIRE

    Adzly Anuar; Maryam Huda Ahmad Phesal; Azrul Abidin Zakaria; Goh Chin Hock; Sivadass Thiruchelvam; Dickson Neoh Tze How; Muhammad Fahmi Abdul Ghani; Khairul Salleh Mohamed Sahari

    2014-01-01

    In recent years, technologies related to mechatronics and robotics is available even to elementary level students. It is now common to see schools in Malaysia using Lego Mindstorm as a tool for active learning on mechatronics and robotics. A new yet interesting way of learning mechatronics and robotics is introduced by Dr. Dan Barry, a former astronaut and his son Andrew Barry during their visit to Malaysia. The kits used are based on a 4-channel RC helicopter, Arduino Uno microcontroller, IR...

  19. High-integrity databases for helicopter operations

    Science.gov (United States)

    Pschierer, Christian; Schiefele, Jens; Lüthy, Juerg

    2009-05-01

    Helicopter Emergency Medical Service missions (HEMS) impose a high workload on pilots due to short preparation time, operations in low level flight, and landings in unknown areas. The research project PILAS, a cooperation between Eurocopter, Diehl Avionics, DLR, EADS, Euro Telematik, ESG, Jeppesen, the Universities of Darmstadt and Munich, and funded by the German government, approached this problem by researching a pilot assistance system which supports the pilots during all phases of flight. The databases required for the specified helicopter missions include different types of topological and cultural data for graphical display on the SVS system, AMDB data for operations at airports and helipads, and navigation data for IFR segments. The most critical databases for the PILAS system however are highly accurate terrain and obstacle data. While RTCA DO-276 specifies high accuracies and integrities only for the areas around airports, HEMS helicopters typically operate outside of these controlled areas and thus require highly reliable terrain and obstacle data for their designated response areas. This data has been generated by a LIDAR scan of the specified test region. Obstacles have been extracted into a vector format. This paper includes a short overview of the complete PILAS system and then focus on the generation of the required high quality databases.

  20. On the capability of helicopter gravimetry.

    Science.gov (United States)

    Bielenberg, Olaf; Meyer, Uwe; Götze, Hans-Jürgen; Choi, Sungchan

    2010-05-01

    Affordable, high performance inertial navigation systems, their integration with GPS, and modern high performance airborne vertical sensors make helicopter gravimetry an attractive alternative to other methods for obtaining gravity data. As part of the Dead Sea Integrated Research Project (DESIRE) in late spring 2007 a helicopter borne gravimetry survey was conducted over the Dead Sea Basin along and across the rift between Aquaba and the Dead Sea. A German Sikorsky S-76B helicopter system was used to carry a GT-1A gravity meter system supplied by Canadian Micro Gravity. The GT-1A is an airborne, single vertical sensor, GPS-INS scalar gravity meter with a Schuler-tuned three-axis gyro-stabilized inertial platform, that uses intelligent platform control to maintain platform verticality during turbulent motion. Low speed and terrain following helicopter gravity flights were performed to acquire the best possible data quality and high resolution, considering extreme elevation differences associated with the Dead Sea Basin. The Dead Sea Valley lies more than 400 m below sea level, while the shoulders are more than 1500 m high. The resulting initial airborne gravity data were merged with existent ground based data for enhanced mapping and modelling providing a seamless gravity map of the area. During terrain following flights the vertical accelerations effecting the helicopter and also the vertical sensor of the gravity meter are logically much higher compared to straight level flights. To investigate the effects of this two different flight performances on the gravity measurements, a test flight over flat terrain at a constant altitude with very small vertical accelerations was performed. The acceleration data occurred during this simulated airborne survey flight were recorded using an inertial measurement unit iVRU-FC constructed by iMAR-Navigation, which was also part of the equipment used during the gravimetry survey flights of DESIRE. This means that the

  1. 78 FR 58256 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-09-23

    ... (78 FR 24041) for Eurocopter Model AS350B3 helicopters with MOD 07 5601 installed. AD 2012-25-04... requirements of AD 2012-25-04, Amendment 39-17285 (78 FR 24041, April 24, 2013). Additionally, this proposed AD... FR 24041, April 24, 2013). Modifying the helicopter would be terminating action for the...

  2. Model Tests on the Economy and Effectiveness of Helicopter Propellers

    Science.gov (United States)

    Munk, Max M

    1925-01-01

    The average velocity of helicopter blades relative to the air is greater than that of airplane wings. The helicopter may turn out to be more economical than the airplane wing for extreme velocities of horizontal flight, the airplane then requiring a very great speed range.

  3. Helicopter Emergency Medical Services: effects, costs and benefits

    NARCIS (Netherlands)

    A.N. Ringburg (Akkie)

    2009-01-01

    textabstractAdvanced prehospital medical care with air transport was introduced in the Netherlands in May 1995. The fi rst helicopter Mobile Medical Team, also called Helicopter Emergency Medical Service (HEMS) was a joint venture initiative of the VU Medical Center in Amsterdam and the Algemene Ned

  4. 77 FR 39911 - The New York North Shore Helicopter Route

    Science.gov (United States)

    2012-07-06

    ...'' (75 FR 29471). The FAA proposed requiring civil helicopters operating along Long Island, New York's... noted that the helicopter noise interferes with sleep, conversation, and outdoor activities. Still... manage aviation activity within the National Airspace System (NAS). The PDARS data analyzed by the...

  5. Power harvesting using piezoelectric materials: applications in helicopter rotors

    NARCIS (Netherlands)

    Jong, de P.H.

    2013-01-01

    The blades of helicopters are heavily loaded and are critical components. Failure of any one blade will lead to loss of the aircraft. Currently, the technical lifespan of helicopter blades is calculated using a worst-case operation scenario. The consequence is that a blade that may be suitable for,

  6. Heat stress reduction of helicopter crew wearing a ventilated vest

    NARCIS (Netherlands)

    Reffeltrath, P.A.

    2006-01-01

    Background: Helicopter pilots are often exposed to periods of high heat strain, especially when wearing survival suits. Therefore, a prototype of a ventilated vest was evaluated on its capability to reduce the heat strain of helicopter pilots during a 2-h simulated flight. Hypothesis: It was hypothe

  7. Detection of Sensor Faults in Small Helicopter UAVs Using Observer/Kalman Filter Identification

    Directory of Open Access Journals (Sweden)

    Guillermo Heredia

    2011-01-01

    Full Text Available Reliability is a critical issue in navigation of unmanned aerial vehicles (UAVs since there is no human pilot that can react to any abnormal situation. Due to size and cost limitations, redundant sensor schemes and aeronautical-grade navigation sensors used in large aircrafts cannot be installed in small UAVs. Therefore, other approaches like analytical redundancy should be used to detect faults in navigation sensors and increase reliability. This paper presents a sensor fault detection and diagnosis system for small autonomous helicopters based on analytical redundancy. Fault detection is accomplished by evaluating any significant change in the behaviour of the vehicle with respect to the fault-free behaviour, which is estimated by using an observer. The observer is obtained from input-output experimental data with the Observer/Kalman Filter Identification (OKID method. The OKID method is able to identify the system and an observer with properties similar to a Kalman filter, directly from input-output experimental data. Results are similar to the Kalman filter, but, with the proposed method, there is no need to estimate neither system matrices nor sensor and process noise covariance matrices. The system has been tested with real helicopter flight data, and the results compared with other methods.

  8. Stabilization and trajectory tracking control for underactuated quadrotor helicopter subject to wind-gust disturbance

    Indian Academy of Sciences (India)

    Mohd Ariffanan Mohd Basri; Abdul Rashid Husain; Kumeresan A Danapalasingam

    2015-08-01

    The control of quadrotor helicopter has been a great challenge for control engineers and researchers since quadrotor is an underactuated and a highly unstable nonlinear system. In this paper, the dynamic model of quadrotor has been derived and a so-called robust optimal backstepping control (ROBC) is designed to address its stabilization and trajectory tracking problem in the existence of external disturbances. The robust controller is achieved by incorporating a prior designed optimal backstepping control (OBC) with a switching function. The control law design utilizes the switching function in order to attenuate the effects caused by external disturbances. In order to eliminate the chattering phenomenon, the sign function is replaced by the saturation function. A new heuristic algorithm namely Gravitational Search Algorithm (GSA) has been employed in designing the OBC. The proposed method is evaluated on a quadrotor simulation environment to demonstrate the effectiveness and merits of the theoretical development. Simulation results show that the proposed ROBC scheme can achieve favorable control performances compared to the OBC for autonomous quadrotor helicopter in the presence of external disturbances.

  9. 78 FR 23688 - Airworthiness Directives; Bell Helicopter Textron Canada Inc. Helicopters

    Science.gov (United States)

    2013-04-22

    ... system. This condition could result in increased pilot workload during a power loss emergency and... pilot workload during a power loss emergency in-flight and subsequent loss of control of the helicopter... disabled auto-relight system, failure of the engine to relight after a flame-out, increased pilot...

  10. 78 FR 37152 - Airworthiness Directives; Bell Helicopter Textron Canada Limited (Bell) Helicopters

    Science.gov (United States)

    2013-06-20

    ... reducing the life limit of the blade if the spar spacer is oversized. This proposed AD is prompted by the... life limits of those main rotor blades. The proposed actions are intended to prevent failure of a M/R blade and subsequent loss of control of the helicopter. DATES: We must receive comments on this...

  11. 78 FR 66252 - Airworthiness Directives; Bell Helicopter Textron Canada Limited (Bell) Helicopters

    Science.gov (United States)

    2013-11-05

    ... . SUPPLEMENTARY INFORMATION: Discussion On June 7, 2013, at 78 FR 34280, the Federal Register published our notice... Model 206L helicopters (ASB 206L- 07-146). Comments After our NPRM (78 FR 34280, June 7, 2013) was... avoidance zone. We disagree. Marking the glass surface of the gauge can create parallax issues when...

  12. Modeling and Analysis of Helicopter Thermal and Infrared Radiation

    Institute of Scientific and Technical Information of China (English)

    PAN Chengxiong; ZHANG Jingzhou; SHAN Yong

    2011-01-01

    The temperature distributions on the helicopter airframe and in the exhaust plume are affected seriously by the engine exhaust system,rotor downwash and solar irradiance.To precisely simulate temperature distribution on the helicopter airframe and in the exhaust plume,the effects of rotor downwash and solar irradiance are considered in three-dimensional flow and heat transfer calculation under helicopter hovering.Based on the temperature distribution,a forward-backward ray tracing method is used to calculate the helicopter infrared(IR)radiation intensity.A numerical study is conducted on a fictitious helicopter model with an integrated exhaust system-tail airframe configuration,and the thermal and infrared radiation characteristics are analyzed.

  13. A vision system for landing an unmanned helicopter in a complex environment

    Science.gov (United States)

    Shi, Haiqing; Wang, Hong

    2009-10-01

    We present a vision-based landing algorithm for an autonomous helicopter under complex environment (there are several suspected targets). The algorithm is integrated with algorithms for visual acquisition, recognition of the target and computing the navigation information. In our algorithm, we use international standard landing mark as our landing target. The experiment results demonstrate that our algorithm has the feature of robustness, accuracy and real time. It can meet the actual flight requirements well: the average processing time of a 640×480 image is less than 40ms; the position error is below 5cm in each axis of translation; the angle error is below 3.5°. Based on the algorithm, we win the champion of the aerial robot competition in the 2008 China robot competition and the RoboCup China open.

  14. Effects of exhaust temperature on helicopter infrared signature

    International Nuclear Information System (INIS)

    The effects of exhaust temperature on infrared signature (in 3–5 μm band) for a helicopter equipped with integrative infrared suppressor were numerically investigated. The internal flow of exhaust gas and the external downwash flow, as well as the mixing between exhaust gas and downwash were simulated by CFD software to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that for a helicopter with its integrative infrared suppressor embedded inside its rear airframe, the exhaust temperature has significant influence on the plume radiation characteristics, while the helicopter skin radiation intensity has little impact. When the exhaust temperature is raised from 900 K to 1200 K, the plume radiation intensity in 3–5 μm band is increased by about 100%, while the skin radiation intensity is increased by only about 5%. In general, the effects of exhaust temperature on helicopter infrared radiation intensity are mainly concentrated on plume, especially obvious for a lower skin emissivity case. -- Highlights: ► The effect of exhaust temperature on infrared signature for a helicopter is numerically investigated. ► The impact of exhaust temperature on helicopter skin temperature is revealed. ► The impact of exhaust temperature on plume radiation characteristics is revealed. ► The impact of exhaust temperature on helicopter skin radiation is revealed. ► The impact of exhaust temperature on helicopter's total infrared radiation intensity is revealed

  15. Novel approaches to helicopter obstacle warning

    Science.gov (United States)

    Seidel, Christian; Samuelis, Christian; Wegner, Matthias; Münsterer, Thomas; Rumpf, Thomas; Schwartz, Ingo

    2006-05-01

    EADS Germany is the world market leader in commercial Helicopter Laser Radar (HELLAS) Obstacle Warning Systems. The HELLAS-Warning System has been introduced into the market in 2000, is in service at German Border Control (Bundespolizei) and Royal Thai Airforce and is successfully evaluated by the Foreign Comparative Test Program (FCT) of the USSOCOM. Currently the successor system HELLAS-Awareness is in development. It will have extended sensor performance, enhanced realtime data processing capabilities and advanced HMI features. We will give an outline of the new sensor unit concerning detection technology and helicopter integration aspects. The system provides a widespread field of view with additional dynamic line of sight steering and a large detection range in combination with a high frame rate of 3Hz. The workflow of the data processing will be presented with focus on novel filter techniques and obstacle classification methods. As commonly known the former are indispensable due to unavoidable statistical measuring errors and solarisation. The amount of information in the filtered raw data is further reduced by ground segmentation. The remaining raised objects are extracted and classified in several stages into different obstacle classes. We will show the prioritization function which orders the obstacles concerning to their threat potential to the helicopter taking into account the actual flight dynamics. The priority of an object determines the display and provision of warnings to the pilot. Possible HMI representation includes video or FLIR overlay on multifunction displays, audio warnings and visualization of information on helmet mounted displays and digital maps. Different concepts will be presented.

  16. Composite curved frames for helicopter fuselage structure

    Science.gov (United States)

    Rich, M. J.; Lowry, D. W.

    1984-01-01

    This paper presents the results of analysis and testing of composite curved frames. A major frame was selected from the UH-60 Black Hawk helicopter and designed as a composite structure. The curved beam effects were expected to increase flange axial stresses and induce transverse bending. A NASTRAN finite element analysis was conducted and the results were used in the design of composite curved frame specimens. Three specimens were fabricated and five static tests were conducted. The NASTRAN analysis and test results are compared for axial, transverse, and Web strains. Results show the curved beam effects are closely predicted by a NASTRAN analysis and the effects increase with loading on the composite frames.

  17. Trigeminal autonomic cephalgias

    OpenAIRE

    Benoliel, Rafael

    2012-01-01

    1. Trigeminal autonomic cephalgias (TACs) are headaches/facial pains classified together based on:a suspected common pathophysiology involving the trigeminovascular system, the trigeminoparasympathetic reflex and centres controlling circadian rhythms;a similar clinical presentation of trigeminal pain, and autonomic activation.

  18. Testing for autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1984-01-01

    Autonomic neuropathy is a common complication in long-term diabetes, about 30% of the patients showing measurable signs of autonomic dysfunction after 10 years duration of disease. The diagnosis is often difficult to establish because clinical symptoms generally occur late in the course...

  19. Compound cycle engine for helicopter application

    Science.gov (United States)

    Castor, Jere; Martin, John; Bradley, Curtiss

    1987-01-01

    The compound cycle engine (CCE) is a highly turbocharged, power-compounded, ultra-high-power-density, lightweight diesel engine. The turbomachinery is similar to a moderate-pressure-ratio, free-power-turbine gas turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military helicopter applications. Cycle thermodynamic specific fuel consumption (SFC) and engine weight analyses performed to establish general engine operating parameters and configurations are presented. An extensive performance and weight analysis based on a typical 2-hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a contemporary gas turbine engine. The CCE had a 31 percent lower-fuel consumption and resulted in a 16 percent reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb/hp-hr and installed wet weight is 0.43 lb/hp. The major technology development areas required for the CCE are identified and briefly discussed.

  20. Importance of engine as a source of helicopter external noise

    Science.gov (United States)

    Janakiram, R. D.; Smith, M. J.; Tadghighi, H.

    1989-01-01

    A turboshaft engine's importance as a source of helicopter external noise is presently evaluated experimentally and analytically on the basis of test data from an MD500E helicopter, with and without engine muffler, during level flyovers and climbing flight. A strong engine noise component is noted for helicopter positions nearly overhead and beyond observed position, especially in the 200-1000 Hz range; its strong rearward directivity suggests the noise source to be the broadband exhaust or combustion noise radiated from the exhaust duct. The engine muffler furnished estimated perceived noise level reductions of 2-3 dB for the centerline.

  1. Simulating effectiveness of helicopter evasive manoeuvres to RPG attack

    Science.gov (United States)

    Anderson, D.; Thomson, D. G.

    2010-04-01

    The survivability of helicopters under attack by ground troops using rocket propelled grenades has been amply illustrated over the past decade. Given that an RPG is unguided and it is infeasible to cover helicopters in thick armour, existing optical countermeasures are ineffective - the solution is to compute an evasive manoeuvre. In this paper, an RPG/helicopter engagement model is presented. Manoeuvre profiles are defined in the missile approach warning sensor camera image plane using a local maximum acceleration vector. Required control inputs are then computed using inverse simulation techniques. Assessments of platform survivability to several engagement scenarios are presented.

  2. Study of the helicopter blade running elevation measurement system

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Helicopter blade running elevation measurement is an important measure target in helicopter blade dynamic balance experimentation. The elevation influences the helicopter's security and other performance capabilities. In testing, however, it has been difficult to measure the elevation when the rotor reaches high speeds. To get a simple, fast and highly accurate measurement system, photo electricity technology was applied to measuring the blade running elevation. Discussed is the measurement principle of blade running elevation, the design of the measurement system and analysis of the measurement precision.

  3. Autonomous linear lossless systems

    OpenAIRE

    Rao, Shodhan; Rapisarda, Paolo

    2008-01-01

    We define a lossless autonomous system as one having a quadratic differential form associated with it called an energy function, which is positive and which is conserved. We define an oscillatory system as one which has all its trajectories bounded on the entire time axis. In this paper, we show that an autonomous system is lossless if and only if it is oscillatory. Next we discuss a few properties of energy functions of autonomous lossless systems and a suitable way of splitting a given ener...

  4. Autonomous surveillance for biosecurity.

    Science.gov (United States)

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance. PMID:25744760

  5. Highly Autonomous Systems Workshop

    Science.gov (United States)

    Doyle, R.; Rasmussen, R.; Man, G.; Patel, K.

    1998-01-01

    It is our aim by launching a series of workshops on the topic of highly autonomous systems to reach out to the larger community interested in technology development for remotely deployed systems, particularly those for exploration.

  6. Autonomic Nervous System Disorders

    Science.gov (United States)

    ... with breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result of another disease, such as Parkinson's disease, alcoholism and diabetes. Problems can affect either part ...

  7. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren;

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  8. A Computational Tool for Helicopter Rotor Noise Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project proposes to develop a computational tool for helicopter rotor noise prediction based on hybrid Cartesian grid/gridless approach. The uniqueness of...

  9. Dynamics Analysis of Close-coupling Multiple Helicopters System

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhigang; Lu Tiansheng

    2008-01-01

    The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary. Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.

  10. Advanced Modelling of Helicopter Nonlinear Dynamics and Aerodynamics

    OpenAIRE

    Castillo-Rivera, Salvador

    2014-01-01

    The work presented here provides a comprehensive dynamic and aerodynamic helicopter model. The possible applications of this work are wide including, control systems applications, reference and trajectory tracking methods implementation amongst others. The model configuration corresponds to a Sikorsky helicopter; a main rotor in perpendicular combination with a tail rotor. Also, a particular model of unmanned aerial vehicle has been modelled as part of collaboration with the La Laguna Univers...

  11. Autonomic disturbances in narcolepsy.

    Science.gov (United States)

    Plazzi, Giuseppe; Moghadam, Keivan Kaveh; Maggi, Leonardo Serra; Donadio, Vincenzo; Vetrugno, Roberto; Liguori, Rocco; Zoccoli, Giovanna; Poli, Francesca; Pizza, Fabio; Pagotto, Uberto; Ferri, Raffaele

    2011-06-01

    Narcolepsy is a clinical condition characterized mainly by excessive sleepiness and cataplexy. Hypnagogic hallucinations and sleep paralysis complete the narcoleptic tetrad; disrupted night sleep, automatic behaviors and weight gain are also usual complaints. Different studies focus on autonomic changes or dysfunctions among narcoleptic patients, such as pupillary abnormalities, fainting spells, erectile dysfunction, night sweats, gastric problems, low body temperature, systemic hypotension, dry mouth, heart palpitations, headache and extremities dysthermia. Even if many studies lack sufficient standardization or their results have not been replicated, a non-secondary involvement of the autonomic nervous system in narcolepsy is strongly suggested, mainly by metabolic and cardiovascular findings. Furthermore, the recent discovery of a high risk for overweight and for metabolic syndrome in narcoleptic patients represents an important warning for clinicians in order to monitor and follow them up for their autonomic functions. We review here studies on autonomic functions and clinical disturbances in narcoleptic patients, trying to shed light on the possible contribute of alterations of the hypocretin system in autonomic pathophysiology.

  12. Image based augmentation of an autonomous VTOL-MAV

    Science.gov (United States)

    Frietsch, N.; Maier, A.; Kessler, C.; Meister, O.; Seibold, J.; Trommer, G. F.

    2009-09-01

    In this paper, the development of a vision based system for a small-scale VTOL-MAV is presented. The on-board GPS/INS navigation system is augmented by further sensors in order to allow for an autonomous waypoint mode. Especially in urban environments the GPSsignal quality is disturbed by shading and multipath propagation. The investigated vision system based on algorithms analyzing the optical flow is essential to enable the helicopter to reliably hover even in these scenarios. Due to the integration of the vision based navigation information into the navigation filter, GPSsignal outages can be bridged. The necessary height above ground information is estimated from the relative altitude change given by the barometric altimeter and the optical flow.

  13. Development of a low-volume sprayer for an unmanned autonomous helicopter

    Science.gov (United States)

    An UAV (Unmanned Aerial Vehicle) can fly over much smaller areas with much lower flight altitudes than conventional, piloted airplanes. In agriculture, UAVs have been mainly developed and used for chemical application and remote sensing. Application of fertilizers and chemicals is frequently needed ...

  14. Architecture of autonomous systems

    Science.gov (United States)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  15. Exercise and autonomic function.

    Science.gov (United States)

    Goldsmith, R L; Bloomfield, D M; Rosenwinkel, E T

    2000-03-01

    The complex interplay between the dichotomous subdivisions of the autonomic nervous system establishes and maintains a delicately tuned homeostasis in spite of an ever-changing environment. Aerobic exercise training can increase activity of the parasympathetic nervous system and decrease sympathetic activity. Conversely, it is well-documented that cardiac disease is often characterized by attenuated parasympathetic activity and heightened sympathetic tone. A correlation between autonomic disequilibrium and disease has led to the hypothesis that exercise training, as a therapy that restores the autonomic nervous system towards normal function, may be associated with, and possibly responsible for, outcome improvements in various populations. This is merely one of the many benefits that is conferred by chronic exercise training and reviewed in this issue. PMID:10758814

  16. Amplifying the helicopter drift in a conformal HMD

    Science.gov (United States)

    Schmerwitz, Sven; Knabl, Patrizia M.; Lueken, Thomas; Doehler, Hans-Ullrich

    2016-05-01

    Helicopter operations require a well-controlled and minimal lateral drift shortly before ground contact. Any lateral speed exceeding this small threshold can cause a dangerous momentum around the roll axis, which may cause a total roll over of the helicopter. As long as pilots can observe visual cues from the ground, they are able to easily control the helicopter drift. But whenever natural vision is reduced or even obscured, e.g. due to night, fog, or dust, this controllability diminishes. Therefore helicopter operators could benefit from some type of "drift indication" that mitigates the influence of a degraded visual environment. Generally humans derive ego motion by the perceived environmental object flow. The visual cues perceived are located close to the helicopter, therefore even small movements can be recognized. This fact was used to investigate a modified drift indication. To enhance the perception of ego motion in a conformal HMD symbol set the measured movement was used to generate a pattern motion in the forward field of view close or on the landing pad. The paper will discuss the method of amplified ego motion drift indication. Aspects concerning impact factors like visualization type, location, gain and more will be addressed. Further conclusions from previous studies, a high fidelity experiment and a part task experiment, will be provided. A part task study will be presented that compared different amplified drift indications against a predictor. 24 participants, 15 holding a fixed wing license and 4 helicopter pilots, had to perform a dual task on a virtual reality headset. A simplified control model was used to steer a "helicopter" down to a landing pad while acknowledging randomly placed characters.

  17. Autonomous electrochromic assembly

    Science.gov (United States)

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  18. Task and Motion Planning for Selective Weed Conrol using a Team of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Hameed, Ibrahim; la Cour-Harbo, Anders; Hansen, Karl Damkjær

    2014-01-01

    with the right amount. In this article, a task and motion planning for a team of autonomous vehicles to reduce chemicals in farming is presented. Field data are collected by small unmanned helicopters equipped with a range of sensors, including multispectral and thermal cameras. Data collected are transmitted...... to a ground station to be analyzed and triggers aerial and ground-based vehicles to start close inspection and/or plant/weed treatment in specified areas. A complete trajectory is generated to enable ground-based vehicle to visit infested areas and start chemical/mechanical weed treatment....

  19. Application of Computational Fluid Dynamics in the problems of determining the aerodynamic characteristics of the helicopter

    OpenAIRE

    Andrei Batrakov; Lyaisan Garipova; Aleksandr Kysumov; George Barakos

    2014-01-01

    In this article, computational Fluid Dynamics is used to study the complex interactions between the rotor and fuselage of the helicopter. Helicopter flows have been under investigation using isolated fuselage models, actuator disks as well as complete rotor-fuselage configurations. The paper highlights the flow detail that can be available to modern helicopter engineers equipped with modern software and computer clusters.

  20. Helicopter Parenting: The Effect of an Overbearing Caregiving Style on Peer Attachment and Self-Efficacy

    Science.gov (United States)

    van Ingen, Daniel J.; Freiheit, Stacy R.; Steinfeldt, Jesse A.; Moore, Linda L.; Wimer, David J.; Knutt, Adelle D.; Scapinello, Samantha; Roberts, Amber

    2015-01-01

    Helicopter parenting, an observed phenomenon on college campuses, may adversely affect college students. The authors examined how helicopter parenting is related to self-efficacy and peer relationships among 190 undergraduate students ages 16 to 28 years. Helicopter parenting was associated with low self-efficacy, alienation from peers, and a lack…

  1. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  2. ADAM: ADaptive Autonomous Machine

    NARCIS (Netherlands)

    Oosten, van Daan C.; Nijenhuis, Lucas F.J.; Bakkers, André W.P.; Vervoort, Wiek A.

    1996-01-01

    This paper describes a part of the development of an adaptive autonomous machine that is able to move in an unknown world extract knowledge out of the perceived data, has the possibility to reason, and finally has the capability to exchange experiences and knowledge with other agents. The agent is n

  3. Autonomous data transmission apparatus

    Science.gov (United States)

    Kotlyar, Oleg M.

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  4. Condition Monitoring for Helicopter Data. Appendix A

    Science.gov (United States)

    Wen, Fang; Willett, Peter; Deb, Somnath

    2000-01-01

    In this paper the classical "Westland" set of empirical accelerometer helicopter data is analyzed with the aim of condition monitoring for diagnostic purposes. The goal is to determine features for failure events from these data, via a proprietary signal processing toolbox, and to weigh these according to a variety of classification algorithms. As regards signal processing, it appears that the autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; it has also been found that augmentation of these by harmonic and other parameters can improve classification significantly. As regards classification, several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior on training data and is thus able to quantify probability of error in an exact manner, such that features may be discarded or coarsened appropriately.

  5. Helicopter EMS: Research Endpoints and Potential Benefits

    Directory of Open Access Journals (Sweden)

    Stephen H. Thomas

    2012-01-01

    Full Text Available Patients, EMS systems, and healthcare regions benefit from Helicopter EMS (HEMS utilization. This article discusses these benefits in terms of specific endpoints utilized in research projects. The endpoint of interest, be it primary, secondary, or surrogate, is important to understand in the deployment of HEMS resources or in planning further HEMS outcomes research. The most important outcomes are those which show potential benefits to the patients, such as functional survival, pain relief, and earlier ALS care. Case reports are also important “outcomes” publications. The benefits of HEMS in the rural setting is the ability to provide timely access to Level I or Level II trauma centers and in nontrauma, interfacility transport of cardiac, stroke, and even sepsis patients. Many HEMS crews have pharmacologic and procedural capabilities that bring a different level of care to a trauma scene or small referring hospital, especially in the rural setting. Regional healthcare and EMS system's benefit from HEMS by their capability to extend the advanced level of care throughout a region, provide a “backup” for areas with limited ALS coverage, minimize transport times, make available direct transport to specialized centers, and offer flexibility of transport in overloaded hospital systems.

  6. Software Architecture for Autonomous Spacecraft

    Science.gov (United States)

    Shih, Jimmy S.

    1997-01-01

    The thesis objective is to design an autonomous spacecraft architecture to perform both deliberative and reactive behaviors. The Autonomous Small Planet In-Situ Reaction to Events (ASPIRE) project uses the architecture to integrate several autonomous technologies for a comet orbiter mission.

  7. A hybrid model of a subminiature helicopter in horizontal turn

    Institute of Scientific and Technical Information of China (English)

    Chen Li; Gong Zhenbang; Liu Liang

    2007-01-01

    A hybrid model of a subminiature helicopter in horizontal turn is presented. This model is based on a mechanism model and its compensated neural network (NN). First, the nonlinear dynamics of a subminiature helicopter is established. Through the linearization of the nonlinear dynamics on a trim point, the linear time-invariant mechanism model in horizontal turn is obtained. Then a diagonal recursive neural network is used to compensate the model error between the mechanism model and the nonlinear model, thus the hybrid model of a subminiature helicopter in horizontal turn is achieved. Simulation results show that the hybrid model has higher accuracy than the mechanism model and the obtained compensated-NN has good generalization capability.

  8. Flap motion of helicopter rotors with novel, dynamic stall model

    Directory of Open Access Journals (Sweden)

    Han Wei

    2016-07-01

    Full Text Available In this paper, a nonlinear flapping equation for large inflow angles and flap angles is established by analyzing the aerodynamics of helicopter blade elements. In order to obtain a generalized flap equation, the Snel stall model was first applied to determine the lift coefficient of the helicopter rotor. A simulation experiment for specific airfoils was then conducted to verify the effectiveness of the Snel stall model as it applies to helicopters. Results show that the model requires no extraneous parameters compared to the traditional stall model and is highly accurate and practically applicable. Based on the model, the relationship between the flapping angle and the angle of attack was analyzed, as well as the advance ratio under the dynamic stall state.

  9. Catecholamines and diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1995-01-01

    In diabetic patients with autonomic neuropathy plasma noradrenaline concentration, used as an index of sympathetic nervous activity, is low. This decrease is, however, only found in patients with a long duration of diabetes with clinically severe autonomic neuropathy. This apparent insensitivity...... of plasma catecholamine measurements is not due to changes in the clearance of catecholamines in diabetic autonomic neuropathy. The physiological responses to infused adrenaline and to noradrenaline are enhanced, for noradrenaline mainly cardiovascular responses. Adrenoceptors (alpha and beta adrenoceptors......) are not altered in circulating blood cells in diabetic autonomic neuropathy. Thus, a generalized up-regulation of adrenoceptors does not occur in diabetic autonomic neuropathy....

  10. Study of operational parameters impacting helicopter fuel consumption. [using computer techniques (computer programs)

    Science.gov (United States)

    Cross, J. L.; Stevens, D. D.

    1976-01-01

    A computerized study of operational parameters affecting helicopter fuel consumption was conducted as an integral part of the NASA Civil Helicopter Technology Program. The study utilized the Helicopter Sizing and Performance Computer Program (HESCOMP) developed by the Boeing-Vertol Company and NASA Ames Research Center. An introduction to HESCOMP is incorporated in this report. The results presented were calculated using the NASA CH-53 civil helicopter research aircraft specifications. Plots from which optimum flight conditions for minimum fuel use that can be obtained are presented for this aircraft. The results of the study are considered to be generally indicative of trends for all helicopters.

  11. Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights

    Science.gov (United States)

    Friedmann, Peretz P.

    1990-01-01

    Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.

  12. Identification of Helicopter Rigid Body Dynamics from Flight Data.

    Directory of Open Access Journals (Sweden)

    Jatinder Singh

    1998-01-01

    Full Text Available This paper discusses helicopter modelling and identification related aspects. By applying thesystem identification methodology, longitudinal and lateral-directional rigid body helicopter dynamics are identified from flight data. Aerodynamic parameters from single input excitation as wellas multimanoeuver evaluation are estimated utilising output-error approach. The formulatedmathematical models yield adequate fit to measured time histories. Results obtained from the proof-of-match for model validation indicate that the identified derivatives can satisfactorily predictlongitudinal dynamics to a given arbitrary input. It is further demonstrated for the present study thatlateral body dynamics can be adequately predicted by including cross-coupling terms in the estimation model.

  13. Mobile Autonomous Humanoid Assistant

    Science.gov (United States)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  14. Mobile Intelligent Autonomous Systems

    OpenAIRE

    Jitendra R. Raol; Ajith Gopal

    2010-01-01

    Mobile intelligent autonomous systems (MIAS) is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i) perception and reasoning, (ii) mobility and navigation,(iii) haptics and teleoperation, (iv) image fusion/computervision, (v) modelling of manipulators, (vi) hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii) ve...

  15. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  16. Trigeminal autonomic cephalalgias.

    Science.gov (United States)

    Eller, M; Goadsby, P J

    2016-01-01

    The trigeminal autonomic cephalalgias (TACs) are a group of primary headache disorders characterised by lateralized symptoms: prominent headache and ipsilateral cranial autonomic features, such as conjunctival injection, lacrimation and rhinorrhea. The TACs are: cluster headache (CH), paroxysmal hemicrania (PH), short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT)/short-lasting neuralgiform headache attacks with cranial autonomic features (SUNA) and hemicrania continua (HC). Their diagnostic criteria are outlined in the International Classification of Headache Disorders, third edition-beta (ICHD-IIIb). These conditions are distinguished by their attack duration and frequency, as well as response to treatment. HC is continuous and by definition responsive to indomethacin. The main differential when considering this headache is chronic migraine. Other TACs are remarkable for their short duration and must be distinguished from other short-lasting painful conditions, such as trigeminal neuralgia and primary stabbing headache. Cluster headache is characterised by exquisitely painful attacks that occur in discrete episodes lasting 15-180 min a few times a day. In comparison, PH occurs more frequently and is of shorter duration, and like HC is responsive to indomethacin. SUNCT/SUNA is the shortest duration and highest frequency TAC; attacks can occur over a hundred times every day. PMID:24888770

  17. Trigeminal autonomic cephalalgias.

    Science.gov (United States)

    Eller, M; Goadsby, P J

    2016-01-01

    The trigeminal autonomic cephalalgias (TACs) are a group of primary headache disorders characterised by lateralized symptoms: prominent headache and ipsilateral cranial autonomic features, such as conjunctival injection, lacrimation and rhinorrhea. The TACs are: cluster headache (CH), paroxysmal hemicrania (PH), short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT)/short-lasting neuralgiform headache attacks with cranial autonomic features (SUNA) and hemicrania continua (HC). Their diagnostic criteria are outlined in the International Classification of Headache Disorders, third edition-beta (ICHD-IIIb). These conditions are distinguished by their attack duration and frequency, as well as response to treatment. HC is continuous and by definition responsive to indomethacin. The main differential when considering this headache is chronic migraine. Other TACs are remarkable for their short duration and must be distinguished from other short-lasting painful conditions, such as trigeminal neuralgia and primary stabbing headache. Cluster headache is characterised by exquisitely painful attacks that occur in discrete episodes lasting 15-180 min a few times a day. In comparison, PH occurs more frequently and is of shorter duration, and like HC is responsive to indomethacin. SUNCT/SUNA is the shortest duration and highest frequency TAC; attacks can occur over a hundred times every day.

  18. From Self-Flying Helicopters to Classrooms of the Future

    Science.gov (United States)

    Young, Jeffrey R.

    2012-01-01

    On a summer day four years ago, a Stanford University computer-science professor named Andrew Ng held an unusual air show on a field near the campus. His fleet of small helicopter drones flew under computer control, piloted by artificial-intelligence software that could teach itself to fly after watching a human operator. By the end of the day,…

  19. 78 FR 22213 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-04-15

    ... Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will not affect intrastate aviation in Alaska... France Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for Eurocopter...

  20. 78 FR 37156 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-06-20

    ... prevent failure of the windows to jettison, so helicopter occupants can exit the aircraft during an... identified in this proposed AD, contact American Eurocopter Corporation, 2701 N. Forum Drive, Grand Prairie... operation in the United States. Pursuant to our bilateral agreement with France, EASA, its...

  1. 77 FR 36220 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2012-06-18

    ... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will... C3 helicopters with a MGB, all part numbers, that was delivered before December 5, 2007, installed on.... (g) Subject Joint Aircraft Service Component (JASC) Code: 6320: Main Rotor Gearbox. Issued in...

  2. 78 FR 63853 - Airworthiness Directives; Eurocopter France (Eurocopter) Helicopters

    Science.gov (United States)

    2013-10-25

    ... Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); ] 3. Will not affect intrastate aviation....00.49 is for non-FAA type certificated military Models AS550A2, C2, C3, and U2 helicopters. EASB No... in Docket No. FAA-2013-0878. (i) Subject Joint Aircraft Service Component (JASC) Code: 6400...

  3. The Computational Electromagnetic Modelling of the CH-146 Griffon Helicopter

    Science.gov (United States)

    Rogers, Sarah Alicia

    Selecting the optimal location for a new antenna on an aircraft is a difficult task. Given the limited space that is available on the fuselage, there maybe only a few available locations from which to choose. The performance of a new antenna is often hindered by nearby structures on the aircraft, which may block or diffract the antenna's desired radiation. In addition, given that there are many other antennas and electronic systems onboard aircraft, potential interference produced by the new antenna must also be considered. The choice of the best antenna location must therefore be based on the careful study of the electromagnetic performance of the antenna at each location. Given that it is unlikely that a new antenna can be physically tested in various locations on an operational aircraft, recourse must be made to computer simulation. In this work, the selection of an appropriate location for a new satellite communication antenna is considered for the CH-146 Griffon helicopter. To this end, a new computer electromagnetic model of the CH-146 Griffon helicopter was created, validated, and used to characterize the helicopter's electromagnetic environment. A commercial computational software called FEKO was subsequently used to calculate the radiation patterns, near-fields, and surface current distribution generated on the helicopter model by a broad-patterned antenna installed at three different locations on the aircraft. A subsequent analysis of the calculated results was then used to determine the best of the three possible placements of the proposed satellite communications antenna.

  4. 78 FR 40956 - Airworthiness Directives; Eurocopter Deutschland (Eurocopter) Helicopters

    Science.gov (United States)

    2013-07-09

    .... The air conditioning compressor is driven by a pulley attached to the rotor brake disc. We received a report of a recent incident where the fasteners attaching the air conditioning compressor pulley to the... helicopters with a Metro Aviation (Metro) vapor-cycle air conditioning kit installed in accordance...

  5. 78 FR 20234 - Airworthiness Directives; Eurocopter France Helicopters

    Science.gov (United States)

    2013-04-04

    ... of a slow drift in the roll axis, disorientation of the pilot, and subsequent loss of control of the... disorientation of the pilot and subsequent loss of control of the helicopter. (c) Effective Date. This AD becomes... and testing for correct function of the navigation systems. This AD was prompted by flight...

  6. At Issue: Helicopter Parents and Millennial Students, an Annotated Bibliography

    Science.gov (United States)

    Pricer, Wayne F.

    2008-01-01

    Technological advances have made it easy for parents and children--many of them students--to communicate instantaneously. Devices and technologies such as cell phones, laptops, texting, and e-mail all enable various forms of instant communication. "Helicopter parents" are regarded as very overprotective and overly involved in the affairs of their…

  7. 78 FR 17591 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2013-03-22

    ... elements with 10 micron fuel filter elements at the next scheduled inspection or within 150 flight hours... identification plate, cross out the last two digits (``09'') of the ] existing fuel filter P/N 52-2145-009, and... helicopters to require replacing each forward and aft fuel system 40 micron fuel filter element with a...

  8. Synthetic vision helicopter flights using high resolution LIDAR terrain data

    Science.gov (United States)

    Sindlinger, A.; Meuter, M.; Barraci, N.; Güttler, M.; Klingauf, U.; Schiefele, J.; Howland, D.

    2006-05-01

    Helicopters are widely used for operations close to terrain such as rescue missions; therefore all-weather capabilities are highly desired. To minimize or even avoid the risk of collision with terrain and obstacles, Synthetic Vision Systems (SVS) could be used to increase situational awareness. In order to demonstrate this, helicopter flights have been performed in the area of Zurich, Switzerland A major component of an SVS is the three-dimensional (3D) depiction of terrain data, usually presented on the primary flight display (PFD). The degree of usability in low level flight applications is a function of the terrain data quality. Today's most precise, large scale terrain data are derived from airborne laser scanning technologies such as LIDAR (light detection and ranging). A LIDAR dataset provided by Swissphoto AG, Zurich with a resolution of 1m was used. The depiction of high resolution terrain data consisting of 1 million elevation posts per square kilometer on a laptop in an appropriate area around the helicopter is challenging. To facilitate the depiction of the high resolution terrain data, it was triangulated applying a 1.5m error margin making it possible to depict an area of 5x5 square kilometer around the helicopter. To position the camera correctly in the virtual scene the SVS had to be supplied with accurate navigation data. Highly flexible and portable measurement equipment which easily could be used in most aircrafts was designed. Demonstration flights were successfully executed in September, October 2005 in the Swiss Alps departing from Zurich.

  9. Aeromechanical Analysis of a Smart Helicopter Rotor in Forward Flight

    Directory of Open Access Journals (Sweden)

    Jacopo Serafini

    2015-02-01

    Full Text Available This paper deals with a smart system integrated into a helicopter blade aimed at giving an anhedral shape to the blade tip region to alleviate the blade-vortex interaction phenomenon that may cause reduced helicopter performance in terms of noise and vibrations. The blade tip morphing is obtained through the joint action of a magneto-rheological fluid (MRF device, a shape-memory alloy ribbons- based (SMA device and a set of concentrated masses properly distributed spanwise. The presence of this smart actuator (particularly the concentrated masses inside the blades modifies the aeromechanical behaviour of the rotor and may be detrimental in terms of hub vibratory loads, pitch control effectiveness and aeroelastic stability. Following a previous literature work concerning with the effectiveness of the smart actuated rotor in hovering conditions, the present paper focuses on the aeromechanical effects due to the inclusion of the smart device in a four-bladed helicopter rotor in forward flight where blade morphing is not needed. Aim of this work is to investigate on the compatibility of the smart system with the required aeromechanical performance of the rotor, highlighting the feasibility of its application on helicopters.

  10. Robust Helicopter Stabilization in the Face of Wind Disturbance

    DEFF Research Database (Denmark)

    A. Danapalasingam, Kumeresan; Leth, John-Josef; la Cour-Harbo, Anders;

    2010-01-01

    When a helicopter is required to hover with minimum deviations from a desired position without measurements of an affecting persistent wind disturbance, a robustly stabilizing control action is vital. In this paper, the stabilization of the position and translational velocity of a nonlinear...

  11. Acoustic Helicopter and FW Aircraft Detection and Classification

    NARCIS (Netherlands)

    Koersel, A.C. van

    2001-01-01

    The possibility to detect the passage of aircraft (either propeller or jet) with one or more mechanical wave sensors (acoustic or seismic) is investigated. An existing algorithm-sensor demonstator can detect and classify helicopter targets. In its current form it is developed to reject other targets

  12. Jam avoidance with autonomous systems

    OpenAIRE

    Tordeux, Antoine; Lassarre, Sylvain

    2015-01-01

    Many car-following models are developed for jam avoidance in highways. Two mechanisms are used to improve the stability: feedback control with autonomous models and increasing of the interaction within cooperative ones. In this paper, we compare the linear autonomous and collective optimal velocity (OV) models. We observe that the stability is significantly increased by adding predecessors in interaction with collective models. Yet autonomous and collective approaches are close when the speed...

  13. Chemical Specification of Autonomic Systems

    OpenAIRE

    Banâtre, Jean-Pierre; Fradet, Pascal; Radenac, Yann

    2004-01-01

    Autonomic computing provides a vision of information systems allowing self-management of many predefined properties. Such systems take care of their own behavior and of their interactions with other components without any external intervention. One of the major challenges concerns the expression of properties and constraints of autonomic systems. We believe that the {\\em chemical programming paradigm} (represented here by the Gamma formalism) is well-suited to the specification of autonomic s...

  14. Jam avoidance with autonomous systems

    CERN Document Server

    Tordeux, Antoine

    2016-01-01

    Many car-following models are developed for jam avoidance in highways. Two mechanisms are used to improve the stability: feedback control with autonomous models and increasing of the interaction within cooperative ones. In this paper, we compare the linear autonomous and collective optimal velocity (OV) models. We observe that the stability is significantly increased by adding predecessors in interaction with collective models. Yet autonomous and collective approaches are close when the speed difference term is taking into account. Within the linear OV models tested, the autonomous models including speed difference are sufficient to maximise the stability.

  15. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  16. Autonomous packaging robot

    OpenAIRE

    Vo, Van Thanh

    2010-01-01

    The objective of the autonomous packaging robot application is to replace manual product packaging in food industry with a fully automatic robot. The objective is achieved by using the combination of machine vision, central computer, sensors, microcontroller and a typical ABB robot. The method is to equip the robot with different sensors: camera as “eyes” of robot, distance sensor and microcontroller as “sense of touch” of the robot, central computer as “brain” of the robot. Because the ro...

  17. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple....... The central element of the architecture is the ‘global database’ that serves several purposes, such as storing system parameters, making signals available for data logging and inter-process communication. Standard software components are used to a large extent, OS-9 as real-time operating system, a custom...

  18. Nemesis Autonomous Test System

    Science.gov (United States)

    Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.

    2012-01-01

    A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.

  19. Towards autonomous vehicular clouds

    Directory of Open Access Journals (Sweden)

    Stephan Olariu

    2011-09-01

    Full Text Available The dawn of the 21st century has seen a growing interest in vehicular networking and its myriad potential applications. The initial view of practitioners and researchers was that radio-equipped vehicles could keep the drivers informed about potential safety risks and increase their awareness of road conditions. The view then expanded to include access to the Internet and associated services. This position paper proposes and promotes a novel and more comprehensive vision namely, that advances in vehicular networks, embedded devices and cloud computing will enable the formation of autonomous clouds of vehicular computing, communication, sensing, power and physical resources. Hence, we coin the term, autonomous vehicular clouds (AVCs. A key feature distinguishing AVCs from conventional cloud computing is that mobile AVC resources can be pooled dynamically to serve authorized users and to enable autonomy in real-time service sharing and management on terrestrial, aerial, or aquatic pathways or theaters of operations. In addition to general-purpose AVCs, we also envision the emergence of specialized AVCs such as mobile analytics laboratories. Furthermore, we envision that the integration of AVCs with ubiquitous smart infrastructures including intelligent transportation systems, smart cities and smart electric power grids will have an enormous societal impact enabling ubiquitous utility cyber-physical services at the right place, right time and with right-sized resources.

  20. Learning for Autonomous Navigation

    Science.gov (United States)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  1. Extracting radar micro-Doppler signatures of helicopter rotating rotor blades using K-band radars

    Science.gov (United States)

    Chen, Rachel; Liu, Baokun

    2014-06-01

    Helicopter identification has been an attractive topic. In this paper, we applied radar micro-Doppler signatures to identify helicopter. For identifying the type of a helicopter, besides its shape and size, the number of blades, the length of the blade, and the rotation rate of the rotor are important features, which can be estimated from radar micro-Doppler signatures of the helicopter's rotating rotor blades. In our study, K-band CW/FMCW radars are used for collecting returned signals from helicopters. By analyzing radar micro-Doppler signatures, we can estimate the number of blades, the length of the blade, the angular rotation rate of the rotating blade, and other necessary parameters for identifying the type of a helicopter.

  2. Quadrotor helicopter for surface hydrological measurements

    Science.gov (United States)

    Pagano, C.; Tauro, F.; Porfiri, M.; Grimaldi, S.

    2013-12-01

    Surface hydrological measurements are typically performed through user-assisted and intrusive field methodologies which can be inadequate to monitor remote and extended areas. In this poster, we present the design and development of a quadrotor helicopter equipped with digital acquisition system and image calibration units for surface flow measurements. This custom-built aerial vehicle is engineered to be lightweight, low-cost, highly customizable, and stable to guarantee optimal image quality. Quadricopter stability guarantees minimal vibrations during image acquisition and, therefore, improved accuracy in flow velocity estimation through large scale particle image velocimetry algorithms or particle tracking procedures. Stability during the vehicle pitching and rolling is achieved by adopting large arm span and high-wing configurations. Further, the vehicle framework is composed of lightweight aluminum and durable carbon fiber for optimal resilience. The open source Ardupilot microcontroller is used for remote control of the quadricopter. The microcontroller includes an inertial measurement unit (IMU) equipped with accelerometers and gyroscopes for stable flight through feedback control. The vehicle is powered by a 3 cell (11.1V) 3000 mAh Lithium-polymer battery. Electronic equipment and wiring are hosted into the hollow arms and on several carbon fiber platforms in the waterproof fuselage. Four 35A high-torque motors are supported at the far end of each arm with 10 × 4.7 inch propellers. Energy dissipation during landing is accomplished by four pivoting legs that, through the use of shock absorbers, prevent the impact energy from affecting the frame thus causing significant damage. The data capturing system consists of a GoPro Hero3 camera and in-house built camera gimbal and shock absorber damping device. The camera gimbal, hosted below the vehicle fuselage, is engineered to maintain the orthogonality of the camera axis with respect to the water surface by

  3. Hyperspectral and photogrammetric helicopter-based measurements over western Greenland

    Science.gov (United States)

    Tedesco, M.; Mote, T. L.; Smith, L. C.; Rennermalm, A. K.; Lampkin, D. J.

    2015-12-01

    We discuss the setup and results of an experiment aimed at collecting helicopter-based hyperspectral and photogrammetry measurements over the western Greenland ice sheet (GrIS) for studying the evolution of surface albedo and surface hydrological features. Data were collected during three days at the end of July 2015 concurrently with in-situ hydrological measurements of runoff and discharge of a supraglacial stream (Rio Behar) and along the K-transect up to an elevation of ~ 1500 m a.s.l. Hyperspectral measurements of incoming and outgoing radiation collected at a radiometric resolution of 10 nm were acquired in conjunction with geo-located images by means of a digital camera mounted on the same platform. Gyroscopes and 3-D accelerometers were also used to estimate the relative orientation of the sensors collecting the incoming and outgoing solar radiation. To our knowledge, despite their importance, it is the first time that such measurements have been collected over the Greenland ice sheet from an airborne platform. The sensors were installed inside a pod that was specifically modified for our purpose. The impact of the helicopter on the recorded incoming radiation was characterized by collecting measurements in the absence and presence of the helicopter when the rotors were either off or on. Moreover, the effect of the relative position of the helicopter with respect to the sun's position was also quantified by ad-hoc maneuvers during take off and landing with the helicopter spinning around the main rotor axis. The geo-referenced images collected by our instrument provide an unprecedented ground spatial resolution of ~ 6 cm, hence allowing us to study the spatial distribution of surface hydrological features, such as cryoconite holes, small order streams and cracks developing into larger moulins. Such images were also used to evaluate the application of RGB data to estimate streams and lakes surface area and depths. Our helicopter-based hyperspectral and

  4. Expanded Perspectives on Autonomous Learners

    Science.gov (United States)

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…

  5. Application of Computational Fluid Dynamics in the problems of determining the aerodynamic characteristics of the helicopter

    Directory of Open Access Journals (Sweden)

    Andrei Batrakov

    2014-04-01

    Full Text Available In this article, computational Fluid Dynamics is used to study the complex interactions between the rotor and fuselage of the helicopter. Helicopter flows have been under investigation using isolated fuselage models, actuator disks as well as complete rotor-fuselage configurations. The paper highlights the flow detail that can be available to modern helicopter engineers equipped with modern software and computer clusters.

  6. ROTOR TURBULENCE INFLUENCE ON HELICOPTER FLIGHTS IN HIGH URBAN BUILT-UP AREA

    Directory of Open Access Journals (Sweden)

    Tomasz Łusiak

    2013-03-01

    Full Text Available The paper provides a discussion of the influence of turbulence in the areaa of high urban buildings or in vicinity of fire on safety of helicopter flights. The analysis was conducted using Ansys Fluent software. All the threats considering helicopter flight, landing and hovering in such an environment were shown. As objects of this research helicopter types: W3-A Sokół, W3-A Głuszec and Robinson R-44 were used.

  7. Evolutionary Autonomous Health Monitoring System (EAHMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's Robotics, Tele-Robotics and Autonomous Systems Roadmap, we are proposing the "Evolutionary Autonomous Health Monitoring System" (EAHMS) for...

  8. Design of an Optimal Fuzzy Controller for Hover mode of Finite Degree of Freedom Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Sina Ameli

    2012-01-01

    Full Text Available A helicopter has nonlinear dynamics and it’s a multivariable system. A helicopter is an unstable plant with high level of interaction between some of its variables. Therefore, controlling a helicopter is very difficult and to control it we must use special strategies. A fuzzy controller is a kind of nonlinear controller. It can control a plant without a mathematical model or a poor model. In this paper, we designed a fuzzy controller for an unmanned helicopter with finite degree of freedom. The fuzzy controller is designed based on optimal controller strategies. The proposed method has a better performance than state feedback optimal controller.

  9. A method for determining internal noise criteria based on practical speech communication applied to helicopters

    Science.gov (United States)

    Sternfeld, H., Jr.; Doyle, L. B.

    1978-01-01

    The relationship between the internal noise environment of helicopters and the ability of personnel to understand commands and instructions was studied. A test program was conducted to relate speech intelligibility to a standard measurement called Articulation Index. An acoustical simulator was used to provide noise environments typical of Army helicopters. Speech material (command sentences and phonetically balanced word lists) were presented at several voice levels in each helicopter environment. Recommended helicopter internal noise criteria, based on speech communication, were derived and the effectiveness of hearing protection devices were evaluated.

  10. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving......Low-power base stations such as e.g. Femto-cells are one of the candidates for high data rate provisioning in local areas, such as residences, apartment complexes, business offices and outdoor hotspot scenarios. Unfortunately, the benefits are not without new challenges in terms of interference...... management and efficient system operation. Due to the expected large number of user-deployed cells, centralized network planning becomes unpractical and new scalable alternatives must be sought. In this article, we propose a fully distributed and scalable solution to the interference management problem...

  11. Autonomous Gaussian Decomposition

    CERN Document Server

    Lindner, Robert R; Murray, Claire E; Stanimirović, Snežana; Babler, Brian L; Heiles, Carl; Hennebelle, Patrick; Goss, W M; Dickey, John

    2014-01-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21cm absorption spectra from the 21cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the HI line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the up...

  12. Autonomous Flying Controls Testbed

    Science.gov (United States)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  13. Identification and stochastic control of helicopter dynamic modes

    Science.gov (United States)

    Molusis, J. A.; Bar-Shalom, Y.

    1983-01-01

    A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.

  14. Helicopter optimal descent and landing after power loss

    Science.gov (United States)

    Johnson, W.

    1977-01-01

    An optimal control solution is obtained for the descent and landing of a helicopter after the loss of power in level flight. The model considers the helicopter vertical velocity, horizontal velocity, and rotor speed; and it includes representations of ground effect, rotor inflow time lag, pilot reaction time, rotor stall, and the induced velocity curve in the vortex ring state. The control (rotor thrust magnitude and direction) required to minimize the vertical and horizontal velocity at contact with the ground is obtained using nonlinear optimal control theory. It is found that the optimal descent after power loss in hover is a purely vertical flight path. Good correlation, even quantitatively, is found between the calculations and (non-optimal) flight test results.

  15. A new approach to helicopter rotor blade research instrumentation

    Science.gov (United States)

    Knight, V. H., Jr.

    1978-01-01

    A rotor-blade-mounted telemetry instrumentation system developed and used in flight tests by the NASA/Langley Research Center is described. The system uses high-speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested using an AH-1G helicopter. The system employs microelectronic PCM multiplexer-digitizer stations located remotely on the blade and in a hub-mounted metal canister. The electronics contained in the canister digitizes up to 16 sensors, formats this data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data is transmitted over an RF link to the ground for real-time monitoring and to the helicopter fuselage for tape recording.

  16. Simulation and Analysis of Crashworthiness of Fuel Tank for Helicopters

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Crashworthiness requirement of fuel tanks is one of the important requirements in helicopter designs. The relations among the protection frame, textile layer and rubber layer of the fuel tank are introduced. Two appropriate FE models are established, one is for an uncovered helicopter fuel tank without protection frame, and the other is for fuel tank with protection frame. The dynamic responses of the two types of fuel tanks impinging on the ground with velocities of 17.3 m/s are numerically simulated for the purpose of analyzing energy-absorbing capabilities of the textile layer and protection frame. The feasibility of the current crashworthiness design of the fuel tank is examined though comparing the dynamic response behaviors of the two fuel tanks.

  17. Experimental studies in system identification of helicopter rotor dynamics

    Science.gov (United States)

    Mckillip, Robert, Jr.

    1988-01-01

    Recent experiments investigating the system identification of helicopter rotor dynamics are described. The identification makes use of a two-pass procedure that estimates the rotor dynamic states prior to estimation of the dynamic equation parameters. Estimation of the rotor states is made possible through use of the predictive information contained in blade-mounted accelerometers combined with a specialized processing scheme utilizing these signals. Descriptions of the experimental hardware and the system identification technique are given, as well as implementation issues for using the procedure on other similarly instrumented rotor blades. Finally, comparisons with other identification techniques using the same data are presented. It is demonstrated that the approach is an attractive one for measurement of a helicopter rotor's dynamic behavior.

  18. Lift capability prediction for helicopter rotor blade-numerical evaluation

    Science.gov (United States)

    Rotaru, Constantin; Cîrciu, Ionicǎ; Luculescu, Doru

    2016-06-01

    The main objective of this paper is to describe the key physical features for modelling the unsteady aerodynamic effects found on helicopter rotor blade operating under nominally attached flow conditions away from stall. The unsteady effects were considered as phase differences between the forcing function and the aerodynamic response, being functions of the reduced frequency, the Mach number and the mode forcing. For a helicopter rotor, the reduced frequency at any blade element can't be exactly calculated but a first order approximation for the reduced frequency gives useful information about the degree of unsteadiness. The sources of unsteady effects were decomposed into perturbations to the local angle of attack and velocity field. The numerical calculus and graphics were made in FLUENT and MAPLE soft environments. This mathematical model is applicable for aerodynamic design of wind turbine rotor blades, hybrid energy systems optimization and aeroelastic analysis.

  19. Feasibility study of a superconducting motor for electrical helicopter propulsion

    International Nuclear Information System (INIS)

    During the past decades, superconducting electrical machines have become more suitable to replace conventional iron based designs, because of their lower weight and higher torque density. These properties make them good candidates for use in More Electric Aircraft (MEA). Especially helicopter propulsion systems could benefit from the increased performance. This paper describes the feasibility study of a superconducting motor to be used for helicopter propulsion as part of a More Electric Aircraft (MEA). For this, the armature, field windings and cryostat are designed, aiming at meeting the difficult specifications. Since superconductors have virtually no electrical resistance when cooled down below a certain critical temperature, they can be used to build high field and low weight coils for electrical machines. Especially the possibility to not use iron can make the superconducting motor lighter with a higher power density compared with conventional Permanent Magnet (PM) motors.

  20. Mobile Intelligent Autonomous Systems

    Directory of Open Access Journals (Sweden)

    Jitendra R. Raol

    2010-01-01

    Full Text Available Mobile intelligent autonomous systems (MIAS is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i perception and reasoning, (ii mobility and navigation,(iii haptics and teleoperation, (iv image fusion/computervision, (v modelling of manipulators, (vi hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii vehicle-robot path and motionplanning/control, (viii human-machine interfaces for interaction between humans and robots, and (ix application of artificial neural networks (ANNs, fuzzy logic/systems (FLS,probabilistic/approximate reasoning (PAR, Bayesian networks(BN and genetic algorithms (GA to the above-mentioned problems. Also, multi-sensor data fusion (MSDF playsvery crucial role at many levels of the data fusion process:(i kinematic fusion (position/bearing tracking, (ii imagefusion (for scene recognition, (iii information fusion (forbuilding world models, and (iv decision fusion (for tracking,control actions. The MIAS as a technology is useful for automation of complex tasks, surveillance in a hazardousand hostile environment, human-assistance in very difficultmanual works, medical robotics, hospital systems, autodiagnosticsystems, and many other related civil and military systems. Also, other important research areas for MIAScomprise sensor/actuator modelling, failure management/reconfiguration, scene understanding, knowledge representation, learning and decision-making. Examples ofdynamic systems considered within the MIAS would be:autonomous systems (unmanned ground vehicles, unmannedaerial vehicles, micro/mini air vehicles, and autonomousunder water vehicles, mobile/fixed robotic systems, dexterousmanipulator robots, mining robots, surveillance systems,and networked/multi-robot systems, to name a few.Defence Science Journal, 2010, 60(1, pp.3-4,

  1. Parametrically excited helicopter ground resonance dynamics with high blade asymmetries

    OpenAIRE

    Sanches, Leonardo; Michon, Guilhem; Berlioz, Alain; Alazard, Daniel

    2012-01-01

    The present work is aimed at verifying the influence of high asymmetries in the variation of in-plane lead-lag stiffness of one blade on the ground resonance phenomenon in helicopters. The periodical equations of motions are analyzed by using Floquet's Theory (FM) and the boundaries of instabilities predicted. The stability chart obtained as a function of asymmetry parameters and rotor speed reveals a complex evolution of critical zones and the existence of bifurcation points at low rotor spe...

  2. A study of helicopter rotor dynamics and modeling methods

    OpenAIRE

    Hiatt, Daniel S.

    1995-01-01

    The rotor system is the primary source of vibratory forces on a helicopter. Vibratory forces result from the rotor system response to dynamic and aerodynamic loading. This thesis discusses sources of excitation, and investigates rotor system modeling methods. Computer models based on finite element and Mykiestad methods are developed and compared for the free and forced vibration cases of a nniform rotor blade. The modeling assumptions and the effects of non-iniform physical parameters are di...

  3. GENERATION OF AN ADVANCED HELICOPTER EXPERIMENTAL AERODYNAMIC DATABASE

    OpenAIRE

    Raffel, Markus; de Gegorio, Fabrizio; Sheng, W; GIBERTINI G.; Seraudie, A.; Groot, Klaus de; van der Wall, Berend G.

    2009-01-01

    The GOAHEAD-consortium was created in the frame of an EU-project in order to create an experimental database for the validation of 3D-CFD and comprehensive aeromechanics methods for the prediction of unsteady viscous flows including rotor dynamics for complete helicopter configurations, i.e. main rotor – fuselage – tail rotor configurations with emphasis on viscous phenomena like flow separation and transition from laminar to turbulent flow. The wind tunnel experiments have been p...

  4. Do Army Helicopter Training Simulators Need Motion Bases?

    OpenAIRE

    McCauley, Michael E.

    2006-01-01

    United States Army Research Institute for the Behavioral and Social Sciences This report reviews the arguments and the evidence regarding the need for simulator motion bases in training helicopter pilots. It discusses flight simulators, perceptual fidelity, history of motion bases, disturbance versus maneuver motion, human motion sensation, and reviews the empirical evidence for the training effectiveness of motion bases. The section on training effectiveness reviews research f...

  5. Intelligent Control of Quadrotor Unmanned Helicopter in Hovering Mode

    OpenAIRE

    Neda Shamshiri; Abbas Chatraei

    2015-01-01

    A Quadrotor helicopter is an unmanned aerial vehicle (UAV). This vehicle has attracted lots of researchers’ attention because of its unique abilities such as being an under-actuated system, vertical take-off and landing, spot movement, more degree of freedom (DOF) and military and non- military functions. Because of nonlinear and complex dynamic, modeling and controlling this vehicle is one of the most challenging areas in control engineering. In this paper modeling of a Quadrotor will be des...

  6. Future Autonomous and Automated Systems Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FAAST is an R/C helicopter platform that is being developed by the Aeroscience and Flight Mechanics Division (EG) as a low-cost, low-risk, hands-on way for...

  7. Measurement and Characterization of Helicopter Noise at Different Altitudes

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Stephenson, James

    2016-01-01

    This paper presents an overview of a flight test campaign performed at different test sites whose altitudes ranged from 0 to 7000 feet above mean sea level (AMSL) between September 2014 and February 2015. The purposes of this campaign were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. In addition to describing the test campaign, results of the acoustic effects of altitude variation for the AS350 SD1 and EH-60L aircraft are presented. Large changes in acoustic amplitudes were observed in response to changes in ambient conditions when the helicopter was flown at constant indicated airspeed and gross weight at the three test sites. However, acoustic amplitudes were found to scale with ambient pressure when flight conditions were defined in terms of the non-dimensional parameters, such as the weight coefficient and effective hover tip Mach number.

  8. Advanced automatic target recognition for police helicopter missions

    Science.gov (United States)

    Stahl, Christoph; Schoppmann, Paul

    2000-08-01

    The results of a case study about the application of an advanced method for automatic target recognition to infrared imagery taken from police helicopter missions are presented. The method consists of the following steps: preprocessing, classification, fusion, postprocessing and tracking, and combines the three paradigms image pyramids, neural networks and bayesian nets. The technology has been developed using a variety of different scenes typical for military aircraft missions. Infrared cameras have been in use for several years at the Bavarian police helicopter forces and are highly valuable for night missions. Several object classes like 'persons' or 'vehicles' are tested and the possible discrimination between persons and animals is shown. The analysis of complex scenes with hidden objects and clutter shows the potentials and limitations of automatic target recognition for real-world tasks. Several display concepts illustrate the achievable improvement of the situation awareness. The similarities and differences between various mission types concerning object variability, time constraints, consequences of false alarms, etc. are discussed. Typical police actions like searching for missing persons or runaway criminals illustrate the advantages of automatic target recognition. The results demonstrate the possible operational benefits for the helicopter crew. Future work will include performance evaluation issues and a system integration concept for the target platform.

  9. Principal Components Analysis of Triaxial Vibration Data From Helicopter Transmissions

    Science.gov (United States)

    Tumer, Irem Y.; Huff, Edward M.

    2001-01-01

    Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In this light, helicopter transmission vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed for content, and then combined using Principal Components Analysis (PCA) to analyze changes in directionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors. The experiment-wide eigenvectors. are then projected onto the individual test conditions to evaluate changes and similarities in their directionality based on the various experimental factors. The paper will present the foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors accurately model the vibration modes in individual test conditions. The results will further determine the value of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.

  10. Development of a helicopter rotor/propulsion system dynamics analysis

    Science.gov (United States)

    Warmbrodt, W.; Hull, R.

    1982-01-01

    A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.

  11. Selected Problems Of Transmission Wear Of The Mi-24 Helicopter

    Directory of Open Access Journals (Sweden)

    Gębura Andrzej

    2015-12-01

    Full Text Available The hypothesis of mutual, destructive impact of the worn upper bearing of the WR-24 transmission on the Mi-24 helicopter's gearbox was stated. The Mi-24 is the only helicopter operated in Poland, in which the gearbox is mounted outside the main transmission – in the centre of the transmission shaft, between the main gearbox and the tail rotor. Damage to the gears in the gearbox of power generators is equivalent to termination of the tail rotor's drive. Such a termination immediately causes rotation of the body in the direction opposite to the direction of rotation of the main rotor. It is associated with the loss of lift and steering. It may lead to a disaster. Such an incident occurred in January 2011 in Afghanistan – both authors participated in its investigation. The authors, taking into account very good, almost legendary combat properties of the Mi-24, and their research of the specifics of wear and tear of the transmission elements, they think that, first, funds for development and implementation of the drive unit monitoring system should be made available specially for this helicopter. For this purpose, the authors propose to use the FAM-C method. It is characterised with significant ergonomics. Thank to this, multiple kinematic pairs can be observed simultaneously, and, therefore, the relationships between them as well.

  12. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  13. Framework for Autonomous Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phoenix Integration and MIT propose to create a novel autonomous optimization tool and application programming interface (API). The API will demonstrate the ability...

  14. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    Neurodegenerative diseases are highly debilitating and often lead to severe morbidity and even death. Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease. According to the Braak staging study, the progressionof PD starts in the medulla oblongata......, which includes the cardiac centre and controls autonomic functions, and therefore autonomic dysfunction may be experienced early in the disease course. Sleep disturbances are also common non-motor complications of PD, and therefore PD patients undergo polysomnography at the Danish Center for Sleep...... Medicine to assess the sleep disturbances. The aim of this PhD dissertation was to: 1) Develop a method to investigate autonomic changes during sleep in neurodegenerative diseases, and apply this method on PD, iRBD and narcolepsy patients to evaluate the autonomic function in these diseases. 2) Validate...

  15. AUTONOMOUS GAUSSIAN DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  16. Autonomous Mission Operations Roadmap

    Science.gov (United States)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  17. Build Autonomic Agents with ABLE

    Institute of Scientific and Technical Information of China (English)

    吴吉义

    2007-01-01

    The IBM Agent Building and Learning Environment(ABLE) provides a lightweight Java~(TM) agent frame- work,a comprehensive JavaBeansTM library of intelligent software components,a set of development and test tools, and an agent platform.After the introduction to ABLE,classes and interfaces in the ABLE agent framework were put forward.At last an autonomic agent that is an ABLE-based architecture for incrementally building autonomic systems was discussed.

  18. World’s smallest helicopter to fly in da Vinci birthplace

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The world’s smallest one-man helicopter will soon take flight in the birthplace of Leonardo da Vinci, who is credited with having first thought of a vertical-flight machine, its developer said.The 75-kilogram helicopter will make a demonstration flight in the city of Vinci, near Florence, on May 25, according to

  19. FlyTact : A tactile display improves a helicopter pilot's landing performance in degraded visual environments

    NARCIS (Netherlands)

    Jansen, C.; Wennemers, A.S.; Vos, W.K.; Groen, E.L.

    2008-01-01

    Helicopter landings are more challenging in 'brownout' conditions, in which sand and dust is stirred up by the rotary wing aircraft, obscuring visibility. Safe brownout landings require new sensor and display technologies to provide the pilot with information on helicopter motion. In this respect ta

  20. Exercise training as treatment of neck pain among military helicopter pilots and crew members

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling;

    Introduction: Neck pain is frequent among helicopter pilots and crew (1). The aim of this study was to investigate if an exercise intervention could reduce the prevalence of neck-pain among helicopter pilots and crew. Methods: Thirty-one pilots and thirty-eight crew members were randomized...

  1. 77 FR 37777 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters

    Science.gov (United States)

    2012-06-25

    ... systems necessary for flight safety, and subsequent loss of control of the helicopter. Actions Since... power system failure and subsequent loss of control of the helicopter. (c) Other Affected ADs This AD...) by inserting three temporary pages into the RFM to alert pilots to monitor the power display when...

  2. Neck Strength, Position Sense, and Motion in Military Helicopter Crew With and Without Neck Pain

    NARCIS (Netherlands)

    M.H.A.H. van den Oord; V. de Loose; J.K. Sluiter; M.H.W. Frings-Dresen

    2010-01-01

    Introduction: Neck pain in military helicopter pilots and rear aircrew is an occupational health problem that may interfere with flying performance. The aim of the present study was to investigate possible differences in the physical abilities of the cervical spines of helicopter pilots and rear air

  3. 77 FR 38744 - Airworthiness Directives; Sikorsky Aircraft-Manufactured Model S-64F Helicopters

    Science.gov (United States)

    2012-06-29

    ..., which could lead to failure of the MGB and subsequent loss of control of the helicopter. Actions Since... establish life limits for certain components, remove various parts from service, and require consistency in..., failure from static overload, and subsequent loss of control of the helicopter. DATES: We must...

  4. Helicopter Landing Sites, FCC registered helicopter landing pads (hospitals)., Published in 2008, 1:600 (1in=50ft) scale, Waupaca County Land Information.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Helicopter Landing Sites dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Orthoimagery information as of 2008. It is described as...

  5. Lidar Sensors for Autonomous Landing and Hazard Avoidance

    Science.gov (United States)

    Amzajerdian, Farzin; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.; Reisse, Robert A.; Pierrottet, Diego F.

    2013-01-01

    Lidar technology will play an important role in enabling highly ambitious missions being envisioned for exploration of solar system bodies. Currently, NASA is developing a set of advanced lidar sensors, under the Autonomous Landing and Hazard Avoidance (ALHAT) project, aimed at safe landing of robotic and manned vehicles at designated sites with a high degree of precision. These lidar sensors are an Imaging Flash Lidar capable of generating high resolution three-dimensional elevation maps of the terrain, a Doppler Lidar for providing precision vehicle velocity and altitude, and a Laser Altimeter for measuring distance to the ground and ground contours from high altitudes. The capabilities of these lidar sensors have been demonstrated through four helicopter and one fixed-wing aircraft flight test campaigns conducted from 2008 through 2012 during different phases of their development. Recently, prototype versions of these landing lidars have been completed for integration into a rocket-powered terrestrial free-flyer vehicle (Morpheus) being built by NASA Johnson Space Center. Operating in closed-loop with other ALHAT avionics, the viability of the lidars for future landing missions will be demonstrated. This paper describes the ALHAT lidar sensors and assesses their capabilities and impacts on future landing missions.

  6. Effects of rotor downwash on exhaust plume flow and helicopter infrared signature

    International Nuclear Information System (INIS)

    The effects of rotor downwash and exhaust direction on plume flow field, rear-fuselage temperature distribution and helicopter infrared signature were numerically investigated. The internal flow inside IR suppressor originated from engine exhaust nozzle and the external flow around helicopter airframe originated from rotor downwash were computed in a coupled mode to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that the exhaust plume takes on strong downwards deflection to the rear-fuselage, as well as to the rotor rotational direction under the action of rotor downwash. The rotor downwash has a complicated influence on the infrared radiation distribution of helicopter. It is benefit for reducing the infrared radiation intensity when the exhaust is ejected in oblique-turned or lateral-turned mode. While for the up-turned exhaust mode, the exhaust plume could heating the helicopter rear-fuselage and the infrared radiation intensity may be enhanced under the action of downwash. - Highlights: •Illustrate effects of rotor downwash and exhaust direction on plume flow field. •Modeling helicopter infrared signature taking into consideration of rotor downwash action. •Assessing different orientation of exhaust plume on helicopter infrared intensity. •Oblique-turned exhaust mode is reasonable for helicopter infrared suppressor. •Rotor downwash has a complicated influence on helicopter infrared radiation distribution

  7. Neural control of helicopter blade-vortex interaction noise

    Science.gov (United States)

    Glaessel, Holger; Kloeppel, Valentin; Rudolph, Stephan

    2001-06-01

    Significant reduction of helicopter blade-vortex interaction (BVI) noise is currently one of the most advanced research topics in the helicopter industry. This is due to the complex flow, the close aerodynamic and structural coupling, and the interaction of the blades with the trailing edge vortices. Analytical and numerical modeling techniques are therefore currently still far from a sufficient degree of accuracy to obtain satisfactory results using classical model based control concepts. Neural networks with a proven potential to learn nonlinear relationships implicitly encoded in a training data set are therefore an appropriate and complementary technique for the alternative design of a nonlinear controller for BVI noise reduction. For nonlinear and adaptive control different neural control strategies have been proposed. Two possible approaches, a direct and an indirect neural controller are described. In indirect neural control, the plant has to be identified first by training a network with measured data. The plant network is then used to train the controller network. On the other hand the direct control approach does not rely on an explicit plant model, instead a specific training algorithm (like reinforcement learning) uses the information gathered from interactions with the environment. In the investigation of the BVI noise phenomena, helicopter developers have undertaken substantial efforts in full scale flight tests and wind tunnel experiments. Data obtained in these experiments have been adequately preprocessed using wavelet analysis and filtering techniques and are then used in the design of a neural controller. Neural open-loop control and neural closed-loop control concepts for the BVI noise reduction problem are conceived, simulated and compared against each other in this work in the above mentioned framework.

  8. Optimal flight of a helicopter in engine failure

    Science.gov (United States)

    Jhemi, Ali Abdelmajid

    This thesis studies optimal category-A helicopter flight operations in the event of one engine failure. Both Continued Takeoff (CTO) and Rejected Takeoff (RTO) operations are studied. A two-dimensional point mass model has been used to study CTO and RTO from an elevated heliport. In this model, the main rotor and tail rotor dynamics are modeled to better predict the power required during flight. A first order dynamic of the One Engine Inoperative (OEI) contingency power is considered. Flights after engine failure are formulated as nonlinear optimal control problems. For studying optimal strategies, the performance index is selected in a way that reflects the main parameters to be optimized. Problems are formulated to minimize heliport size, subject to helicopter equations. In addition to the equations of motion, state and control constraints, FAA regulations are enforced. FAA regulations are enforced during CTO, while safety considerations are enforced during RTO. These optimal control problems are solved numerically using a direct approach. States, controls, and helicopter constant parameters are parameterized, and a collocation method is employed. The cost function and path constraints are enforced as algebraic equations at the nodes, while the differential constraints are enforced by integrating the equations of motion in between nodes using Simpson's one third rule. The problem is then fed to a nonlinear programming routine to solve for all parameters. Extensive optimization of CTO and RTO problems are conducted, and results are computed, plotted, and interpreted physically. A balanced weight concept is concluded. The balanced weight concept is similar to the balanced field-length concept in field takeoff.

  9. Panoramic dynamic data acquisition system based on unmanned helicopter

    Science.gov (United States)

    Yao, Yigang; Zhao, Shuguang; Lin, Zhaorong; Wen, Gaojin; Zhang, Qian; Zhang, Weiwei

    2012-10-01

    In recent years, the archaeological tourism has rapidly been developed all over the world, and it has become more and more popular. However, the scope of the human activities has been restricted by complicated geographical terrain, and the popularization of archaeological tourism has been hampered. For the purpose of solving the above problem, the archaeological tourism system of the panoramic dynamic data acquisition system based on unmanned helicopter is designed, and we got the image of the Chinese Ming Dynasty Great Wall realtime 360˚ panoramic dynamic monitor. The applying of this system will increase the scope of the archaeological tourism activities.

  10. Trimmed CFD Simulation of a Complete Helicopter Configuration

    OpenAIRE

    Khier, Walid; Dietz, Markus; Schwarz, Thorsten; Wagner, Siegfried

    2007-01-01

    An investigation was carried out using the flight mechanics tool HOST weakly coupled to the RANS solver FLOWer to simulate the flow around helicopter configuration under different flight conditions. The configuration considered was a wind tunnel model with powered 4.2 meter four-bladed main rotor, and 0.73 meter two bladed tail rotor. Two forward flight conditions at Mach number equal to 0.059 and 0.204 were considered at 5o and -2o angle of attack, respectively. The objective was to asses th...

  11. Integrated Motion Planning and Autonomous Control Technology for Autonomous ISR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI and MIT propose to design, implement and test a comprehensive Integrated Mission Planning & Autonomous Control Technology (IMPACT) for Autonomous ISR...

  12. Autonomous Landing on Moving Platforms

    KAUST Repository

    Mendoza Chavez, Gilberto

    2016-08-01

    This thesis investigates autonomous landing of a micro air vehicle (MAV) on a nonstationary ground platform. Unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) are becoming every day more ubiquitous. Nonetheless, many applications still require specialized human pilots or supervisors. Current research is focusing on augmenting the scope of tasks that these vehicles are able to accomplish autonomously. Precise autonomous landing on moving platforms is essential for self-deployment and recovery of MAVs, but it remains a challenging task for both autonomous and piloted vehicles. Model Predictive Control (MPC) is a widely used and effective scheme to control constrained systems. One of its variants, output-feedback tube-based MPC, ensures robust stability for systems with bounded disturbances under system state reconstruction. This thesis proposes a MAV control strategy based on this variant of MPC to perform rapid and precise autonomous landing on moving targets whose nominal (uncommitted) trajectory and velocity are slowly varying. The proposed approach is demonstrated on an experimental setup.

  13. Autonomous aerial sensors for wind power meteorology - A pre-project

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G. (ed.); Schmidt Paulsen, U.; Bange, J.; la Cour-Harbo, A.; Reuder, J.; Mayer, S.; van der Kroonenberg, A.; Moelgaard, J.

    2012-01-15

    Autonomous Aerial Sensors, i.e. meteorological sensors mounted on Unmanned Aerial Systems UAS, can characterise the atmospheric flow in and around wind farms. We instrumented three planes, a helicopter and a lighter-than-air LTA system to fly one week together in a well-instrumented wind farm, partly with nano-synchronised sensors (time stamped with about 100 ns global accuracy). Between bankruptcy of a partner, denied overflight rights at the main test location, denied Civil Aviation Authorities permits at the alternative location, stolen planes, and crashed UAS we managed to collect data at a wind farm in Lolland and on an atmospheric campaign in France. Planning of an offshore campaign using the developed techniques is underway. (Author)

  14. Autonomous mobile robots: Vehicles with cognitive control

    Energy Technology Data Exchange (ETDEWEB)

    Meystel, A.

    1987-01-01

    This book explores a new rapidly developing area of robotics. It describes the state-of-the-art intelligence control, applied machine intelligence, and research and initial stages of manufacturing of autonomous mobile robots. A complete account of the theoretical and experimental results obtained during the last two decades together with some generalizations on Autonomous Mobile Systems are included in this book. Contents: Introduction; Requirements and Specifications; State-of-the-art in Autonomous Mobile Robots Area; Structure of Intelligent Mobile Autonomous System; Planner, Navigator; Pilot; Cartographer; Actuation Control; Computer Simulation of Autonomous Operation; Testing the Autonomous Mobile Robot; Conclusions; Bibliography.

  15. Autonomous Industrial Mobile Manipulation (AIMM)

    DEFF Research Database (Denmark)

    Hvilshøj, Mads; Bøgh, Simon; Nielsen, Oluf Skov;

    2012-01-01

    Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper investiga......Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper......; sustainability, configuration, adaptation, autonomy, positioning, manipulation and grasping, robot-robot interaction, human-robot interaction, process quality, dependability, and physical properties. Findings - The concise yet comprehensive review provides both researchers (academia) and practitioners (industry......) with a quick and gentle overview of AIMM. Furthermore, the paper identifies key open issues and promising research directions to realize real-world integration and maturation of the AIMM technology. Originality/value - This paper reviews the interdisciplinary research field Autonomous Industrial Mobile...

  16. Autonomous underwater riser inspection tool

    Energy Technology Data Exchange (ETDEWEB)

    Camerini, Claudio; Marnet, Robson [Petrobras SA, (Brazil); Freitas, Miguel; Von der Weid, Jean Pierre [CPTI/PUC-Rio, Rio de Janeiro, (Brazil); Artigas Lander, Ricardo [EngeMOVI, Curitiba, (Brazil)

    2010-07-01

    The detection of damage on the riser is a serious concern for pipeline companies. Visual examinations by remotely operated vehicle (ROV) are presently carried out to detect the defects but this process has limitations and is expensive. This paper presents the development of a new tool to ensure autonomous underwater riser inspection (AURI) that uses the riser itself for guidance. The AURI, which is autonomous in terms of control and power supply, is equipped with several cameras that perform a complete visual inspection of the riser with 100 % coverage of the external surface of the riser. The paper presents the detailed characteristics of the first AURI prototype, describes its launching procedure and provides the preliminary test results from pool testing. The results showed that the AURI is a viable system for autonomous riser inspection. Offshore tests on riser pipelines are scheduled to be performed shortly.

  17. Hereditary sensory and autonomic neuropathies.

    Science.gov (United States)

    Auer-Grumbach, Michaela

    2013-01-01

    Hereditary sensory and autonomic neuropathies (HSN/HSAN) are clinically and genetically heterogeneous disorders of the peripheral nervous system that predominantly affect the sensory and autonomic neurons. Hallmark features comprise not only prominent sensory signs and symptoms and ulcerative mutilations but also variable autonomic and motor disturbances. Autosomal dominant and autosomal recessive inheritance has been reported. Molecular genetics studies have identified disease-causing mutations in 11 genes. Some of the affected proteins have nerve-specific roles but underlying mechanisms have also been shown to involve sphingolipid metabolism, vesicular transport, structural integrity, and transcription regulation. Genetic and functional studies have substantially improved the understanding of the pathogenesis of the HSN/HSAN and will help to find preventive and causative therapies in the future.

  18. Development of autonomous magnetometer rotorcraft for wide area assessment

    Energy Technology Data Exchange (ETDEWEB)

    Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

    2010-04-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of

  19. Differential Degradation Assessment of Helicopter Engines Operated in Marine Environment

    Directory of Open Access Journals (Sweden)

    Mathews P. Samuel

    2014-07-01

    Full Text Available The helicopters used for marine operations encounter harsh environment laden with salt mist, sand and dust which could accelerate the deterioration of components. Assessment of the effect of operational environment on component degradation of such helicopter engines is crucial in scheduling their maintenance and ensuring flight safety. The objective of this study is to understand and assess the differential degradation pattern of aeroengines operated in marine environment in comparison to their counterparts operated in non-marine environment. In this study, a sample of 257 ex-service aeroengines of same type and make, operated in marine and non-marine environment were randomly selected and their degradation pattern observed. After obtaining the data on component degradation, further statistical analysis was carried out and the statistical significance of the observations were computed. Out of the ten major components considered in this study, five of them were found to have statistically significant differential degradation due to operation in marine environment. For the remaining components adequate evidence was not available to substantiate differential degradation due to operation in marine environment. These findings serve as valuable input for maintenance inventory planning as well as component improvement programme.Defence Science Journal, Vol. 64, No. 4, July 2014, pp. 371-377, DOI:http://dx.doi.org/10.14429/dsj.64.4007 

  20. Comparison of induced velocity models for helicopter flight mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.E.; Houston, S.S.

    2002-07-01

    Modeling of rotor-induced velocity receives continued attention in the literature as the rotorcraft community addresses limitations in the fidelity of simulations of helicopter stability, control, and handling qualities. A comparison is presented of results obtained using a rigid-blade rotor-fuselage model configured with two induced velocity models: a conventional, first-order, finite state, dynamic inflow model and a wake model that solves a vorticity transport equation on a computational mesh enclosing the rotorcraft. Differences between the two models are quantified by comparing predictions of trimmed rotor blade flap, lag and feather angles, airframe pitch and roll attitudes, cross-coupling derivatives, response to control inputs, and airframe vibration. Results are presented in the context of measurements taken on a Puma aircraft in steady flight from hover to high speed. More accurate predictions of the cross-coupling derivatives, response to control, and airframe vibration obtained using the vorticity transport model suggest that incorporation of real flowfield effects is important to extending the bandwidth of applicability of helicopter simulation models. Unexpectedly small differences in some of the trim predictions obtained using the two wake models suggest that an overall improvement in simulation fidelity may not be achieved without equivalent attention to the rotor dynamic model. (Author)

  1. Numerical Simulation of Helicopter Cockpit Seat subjected to Crash Impact

    Directory of Open Access Journals (Sweden)

    M.N. Sulaiman

    2013-01-01

    Full Text Available Sikorsky S-61 or better known as “Nuri” had served the Malaysian aviation sector for the past four decades. It is mainly used for transportation, combat search and rescue purposes. However, there were Nuri helicopter crashes or accident cases reported during its operation period which involved loss of its occupants. The pilot survivability rate can be improved provided that the vertical impact loading on the helicopter is reduced during the crash accident. Utilization of an energy absorbing pilot seat or cockpit structure maybe one of the approaches to minimize the impact shock exerted to the occupants. However, the shock or maximum acceleration of the cockpit/pilot seat has to be first determined before a thorough design scheme can be undertaken. In this study, a vertical crash event of the Nuri pilot seat from 500 feet altitude was simulated and the maximum acceleration rate was determined using MSC PATRAN/LSDYNA. The pilot survivability was determined by comparing the result with human tolerance criteria data available in other published works. From the result, it was found that the maximum acceleration of the Nuri pilot seat was 584.4g at 19. 63 milliseconds, thus it can be concluded that the survivability aspect of the pilot is fatal when compared to other published works.

  2. Dynamic analysis of multimesh-gear helicopter transmissions

    Science.gov (United States)

    Choy, Fred K.; Townsend, Dennis P.; Oswald, Fred B.

    1988-01-01

    A dynamic analysis of multimesh-gear helicopter transmission systems was performed by correlating analytical simulations with experimental investigations. The two computer programs used in this study, GRDYNMLT and PGT, were developed under NASA/Army sponsorship. Parametric studies of the numerical model with variations on mesh damping ratios, operating speeds, tip-relief tooth modifications, and tooth-spacing errors were performed to investigate the accuracy, application, and limitations of the two computer programs. Although similar levels of dynamic loading were predicted by both programs, the computer code GRDYNMLT was found to be superior and broader in scope. Results from analytical work were also compared with experimental data obtained from the U.S. Army's UH-60A Black Hawk 2240-kW (3000-hp) class, twin-engine helicopter transmission tested at the NASA Lewis Research Center. Good correlation in gear stresses was obtained between the analytical model simulated by GRDYNMLT and the experimental measurements. More realistic mesh damping can be predicted through experimental data correlation.

  3. Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors

    Science.gov (United States)

    Alexander, James; Goldberg, Hannah; Montgomery, James; Spiers, Gary; Liebe, Carl; Johnson, Andrew; Gromov, Konstantin; Konefat, Edward; Lam, Raymond; Meras, Patrick

    2008-01-01

    To be certain that a candidate sensor system will perform as expected during missions, we have developed a field test system and have executed test flights with a helicopter-mounted sensor platform over desert terrains, which simulate Lunar features. A key advantage to this approach is that different sensors can be tested and characterized in an environment relevant to the flight needs prior to flight. Testing the various sensors required the development of a field test system, including an instrument to validate the truth of the sensor system under test. The field test system was designed to be flexible enough to cover the test needs of many sensors (lidar, radar, cameras) that require an aerial test platform, including helicopters, airplanes, unmanned aerial vehicles (UAV), or balloons. To validate the performance of the sensor under test, the dynamics of the test platform must be known with sufficient accuracy to provide accurate models for input into algorithm development. The test system provides support equipment to measure the dynamics of the field test sensor platform, and allow computation of the truth position, velocity, attitude, and time.

  4. Progress towards autonomous, intelligent systems

    Science.gov (United States)

    Lum, Henry; Heer, Ewald

    1987-01-01

    An aggressive program has been initiated to develop, integrate, and implement autonomous systems technologies starting with today's expert systems and evolving to autonomous, intelligent systems by the end of the 1990s. This program includes core technology developments and demonstration projects for technology evaluation and validation. This paper discusses key operational frameworks in the content of systems autonomy applications and then identifies major technological challenges, primarily in artificial intelligence areas. Program content and progress made towards critical technologies and demonstrations that have been initiated to achieve the required future capabilities in the year 2000 era are discussed.

  5. Discerning non-autonomous dynamics

    International Nuclear Information System (INIS)

    Structure and function go hand in hand. However, while a complex structure can be relatively safely broken down into the minutest parts, and technology is now delving into nanoscales, the function of complex systems requires a completely different approach. Here the complexity clearly arises from nonlinear interactions, which prevents us from obtaining a realistic description of a system by dissecting it into its structural component parts. At best, the result of such investigations does not substantially add to our understanding or at worst it can even be misleading. Not surprisingly, the dynamics of complex systems, facilitated by increasing computational efficiency, is now readily tackled in the case of measured time series. Moreover, time series can now be collected in practically every branch of science and in any structural scale—from protein dynamics in a living cell to data collected in astrophysics or even via social networks. In searching for deterministic patterns in such data we are limited by the fact that no complex system in the real world is autonomous. Hence, as an alternative to the stochastic approach that is predominantly applied to data from inherently non-autonomous complex systems, theory and methods specifically tailored to non-autonomous systems are needed. Indeed, in the last decade we have faced a huge advance in mathematical methods, including the introduction of pullback attractors, as well as time series methods that cope with the most important characteristic of non-autonomous systems—their time-dependent behaviour. Here we review current methods for the analysis of non-autonomous dynamics including those for extracting properties of interactions and the direction of couplings. We illustrate each method by applying it to three sets of systems typical for chaotic, stochastic and non-autonomous behaviour. For the chaotic class we select the Lorenz system, for the stochastic the noise-forced Duffing system and for the non-autonomous

  6. Intelligent, autonomous systems in space

    Science.gov (United States)

    Lum, H.; Heer, E.

    1988-01-01

    The Space Station is expected to be equipped with intelligent, autonomous capabilities; to achieve and incorporate these capabilities, the required technologies need to be identitifed, developed and validated within realistic application scenarios. The critical technologies for the development of intelligent, autonomous systems are discussed in the context of a generalized functional architecture. The present state of this technology implies that it be introduced and applied in an evolutionary process which must start during the Space Station design phase. An approach is proposed to accomplish design information acquisition and management for knowledge-base development.

  7. Contingency Software in Autonomous Systems

    Science.gov (United States)

    Lutz, Robyn; Patterson-Hine, Ann

    2006-01-01

    This viewgraph presentation reviews the development of contingency software for autonomous systems. Autonomous vehicles currently have a limited capacity to diagnose and mitigate failures. There is a need to be able to handle a broader range of contingencies. The goals of the project are: 1. Speed up diagnosis and mitigation of anomalous situations.2.Automatically handle contingencies, not just failures.3.Enable projects to select a degree of autonomy consistent with their needs and to incrementally introduce more autonomy.4.Augment on-board fault protection with verified contingency scripts

  8. Discerning non-autonomous dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clemson, Philip T.; Stefanovska, Aneta, E-mail: aneta@lancaster.ac.uk

    2014-09-30

    Structure and function go hand in hand. However, while a complex structure can be relatively safely broken down into the minutest parts, and technology is now delving into nanoscales, the function of complex systems requires a completely different approach. Here the complexity clearly arises from nonlinear interactions, which prevents us from obtaining a realistic description of a system by dissecting it into its structural component parts. At best, the result of such investigations does not substantially add to our understanding or at worst it can even be misleading. Not surprisingly, the dynamics of complex systems, facilitated by increasing computational efficiency, is now readily tackled in the case of measured time series. Moreover, time series can now be collected in practically every branch of science and in any structural scale—from protein dynamics in a living cell to data collected in astrophysics or even via social networks. In searching for deterministic patterns in such data we are limited by the fact that no complex system in the real world is autonomous. Hence, as an alternative to the stochastic approach that is predominantly applied to data from inherently non-autonomous complex systems, theory and methods specifically tailored to non-autonomous systems are needed. Indeed, in the last decade we have faced a huge advance in mathematical methods, including the introduction of pullback attractors, as well as time series methods that cope with the most important characteristic of non-autonomous systems—their time-dependent behaviour. Here we review current methods for the analysis of non-autonomous dynamics including those for extracting properties of interactions and the direction of couplings. We illustrate each method by applying it to three sets of systems typical for chaotic, stochastic and non-autonomous behaviour. For the chaotic class we select the Lorenz system, for the stochastic the noise-forced Duffing system and for the non-autonomous

  9. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  10. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters

    Science.gov (United States)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.

  11. A Robust Compositional Architecture for Autonomous Systems

    Science.gov (United States)

    Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara

    2006-01-01

    Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.

  12. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Chreiteh, Shadi Samir;

    2016-01-01

    Neck pain among helicopter pilots and crew-members is common. This study quantified the physical workload on neck and shoulder muscles using electromyography (EMG) measures during helicopter flight. Nine standardized sorties were performed, encompassing: cruising from location A to location B (AB...... for normalization of EMG (MVE). Neck posture of pilots and crew-members was monitored and pain intensity of neck, shoulder, and back was recorded. Mean muscle activity for UNE was ∼10% MVE and significantly higher than TRA and SCM, and SCM was significantly lower than TRA. There was no significant difference...... between AB-NVG and AB+NVG. Muscle activity in the UNE was significantly higher during SAR+NVG than AB-NVG. Sortie time (%) with non-neutral neck posture for SAR+NVG and AB-NVG was: 80.4%, 74.5% (flexed), 55.5%, 47.9% (rotated), 4.5%, 3.7% (lateral flexed). Neck pain intensity increased significantly from...

  13. The autonomic phenotype of rumination.

    Science.gov (United States)

    Ottaviani, Cristina; Shapiro, David; Davydov, Dmitry M; Goldstein, Iris B; Mills, Paul J

    2009-06-01

    Recent studies suggest that ruminative thoughts may be mediators of the prolonged physiological effects of stress. We hypothesized that autonomic dysregulation plays a role in the relation between rumination and health. Rumination was induced by an anger-recall task in 45 healthy subjects. Heart rate variability (HRV), baroreflex sensitivity (BRS), and baroreflex effectiveness index (BEI) change scores were evaluated to obtain the autonomic phenotype of rumination. Personality traits and endothelial activation were examined for their relation to autonomic responses during rumination. Degree of endothelial activation was assessed by circulating soluble intercellular adhesion molecule-1 (sICAM-1). Vagal withdrawal during rumination was greater for women than men. Larger decreases in the high frequency component of HRV were associated with higher levels of anger-in, depression, and sICAM-1 levels. BRS reactivity was negatively related to trait anxiety. BEI reactivity was positively related to anger-in, hostility, anxiety, and depression. Lower BEI and BRS recovery were associated with lower social desirability and higher anger-out, anxiety, and depression. Findings suggest that the autonomic dysregulation that characterizes rumination plays a role in the relationships between personality and cardiovascular health. PMID:19272312

  14. Hazard Map for Autonomous Navigation

    DEFF Research Database (Denmark)

    Riis, Troels

    This dissertation describes the work performed in the area of using image analysis in the process of landing a spacecraft autonomously and safely on the surface of the Moon. This is suggested to be done using a Hazard Map. The correspondence problem between several Hazard Maps are investigated...

  15. Computing architecture for autonomous microgrids

    Science.gov (United States)

    Goldsmith, Steven Y.

    2015-09-29

    A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .

  16. The Bering Autonomous Target Detection

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Denver, Troelz; Betto, Maurizio;

    2003-01-01

    autonomous star tracker the Advanced Stellar Compass (ASC). One feature of this instrument is that potential targets are registered directly in terms of date, right ascension, declination, and intensity, which greatly facilitates both tracking search and registering. Results from ground and inflight tests...... are encouraging, both with respect to robustness, speed and accuracy, and demonstrates the span and range of applications of this technology....

  17. Autonomous navigation for artificial satellites

    Science.gov (United States)

    Desai, P. S.

    1975-01-01

    An autonomous navigation system is considered that provides a satellite with sufficient numbers and types of sensors, as well as computational hardware and software, to enable it to track itself. Considered are attitude type sensors, meteorological cameras and scanners, one way Doppler, and image correlator.

  18. Autonomous Duffing-Holmes Type Chaotic Oscillator

    DEFF Research Database (Denmark)

    Tamaševičius, A.; Bumelienė, S.; Kirvaitis, R.;

    2009-01-01

    We have designed and built a novel Duffing type autonomous 3rd-order chaotic oscillator. In comparison with the common non-autonomous DuffingHolmes type oscillator the autonomous circuit has an internal positive feedback loop instead of an external periodic drive source. In addition...

  19. Indoor Autonomous Airship Control and Navigation System

    OpenAIRE

    Fedorenko Roman; Krukhmalev Victor

    2016-01-01

    The paper presents an automatic control system for autonomous airship. The system is designed to organize autonomous flight of the mini-airship performing flight mission defined from ground control station. Structure, hardware and software implementation of indoor autonomous airship and its navigation and control system as well as experiment results are described.

  20. Indoor Autonomous Airship Control and Navigation System

    Directory of Open Access Journals (Sweden)

    Fedorenko Roman

    2016-01-01

    Full Text Available The paper presents an automatic control system for autonomous airship. The system is designed to organize autonomous flight of the mini-airship performing flight mission defined from ground control station. Structure, hardware and software implementation of indoor autonomous airship and its navigation and control system as well as experiment results are described.

  1. Time domain System Identification of Longitudinal Dynamics of Single Rotor Model Helicopter using SIDPAC

    Directory of Open Access Journals (Sweden)

    Arbab Nighat Khizer

    2015-01-01

    Full Text Available This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane©. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identification Programs for Air Craft toolbox for MATLAB, resulting in an aerodynamic model of single rotor helicopter. Finally, the identified model of single rotor helicopter is validated on Raptor 30-class model helicopter at hover showing the reliability of proposed approach

  2. [An ambulance helicopter in Jamtland. A survival necessity in a county of tourism].

    Science.gov (United States)

    Ek, B; Zetterström, H

    2000-03-22

    The county of Jämtland is a sparsely populated area in which an ambulance-helicopter has been in use since the middle of the 1970's. A prospective study was undertaken during a six month period with the aim of evaluating the benefits of the helicopter as compared with the use of road-ambulance transport alone. Total number of patients involved was n = 249. Both flight nurses and receiving doctors found that in most cases, patients transported by helicopter manned with a flight nurse were given higher quality care. A follow-up study by specialists from the receiving departments confirmed that for 3% (n = 8), transport by ambulance-helicopter resulted in "probably better prognosis", and that for 2% (n = 6) the result was "lifesaving". PMID:10765625

  3. 14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight

    Science.gov (United States)

    2010-01-01

    ... lateral control motion or force. Longitudinal cyclic movement with sideslip must not be excessive. VI..., and the steepest IFR precision approach gradient for which the helicopter is approved; (b)...

  4. Ultra-heavy vertical lift system: The Heli-Stat. [helicopter - airship combination for materials handling

    Science.gov (United States)

    Piasecki, F. N.

    1975-01-01

    A hybrid VTOL airship which is combined with helicopters is evaluated. The static lift of the airship supports approximately the full empty weight of the entire assembly. The helicopter rotors furnish the lift to support the payload as well as the propulsion and control about all axes. Thus existing helicopters, with no new technology required, can be made to lift payloads of ten times the capacity of each one alone, and considerably more than that of any airship built so far. A vehicle is described which has a 75-ton payload, based on four existing CH-53D helicopters and an airship of 3,600,000 cu. ft. The method of interconnection is described along with discussion of control, instrumentation, drive system and critical design conditions. The vertical lift and positioning capabilities of this vehicle far exceed any other means available today, yet can be built with a minimum of risk, development cost and time.

  5. Time domain system identification of longitudinal dynamics of single rotor model helicopter using sidpac

    International Nuclear Information System (INIS)

    This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identification Programs for Air Craft) toolbox for MATLAB, resulting in an aerodynamic model of single rotor helicopter. Finally, the identified model of single rotor helicopter is validated on Raptor 30-class model helicopter at hover showing the reliability of proposed approach. (author)

  6. Final assessment of vibro-acoustic source strength descriptors of helicopter gearboxes

    DEFF Research Database (Denmark)

    Ohlrich, Mogens; Rasmussen, Ulrik Møller

    1996-01-01

    Two novel measurement techniques have been developed for quantifying the vibro-aqcoustic source strength of lightweight helicopter gearboxes. The accuracy, robustness and implementation of these methods have been examined by a comprehensive investigation, including theoretical studies of simple...... multi-modal beam systems and extensive experiments with more realistic small scale models and with large, detailed 3/4-scale test structures of a medium-size helicopter. In addition, partial verification tests have been conducted with the Eurocopter BK 117 helicopter and its main rotor gearbox....... The results of this work are essential as input for any prediction code of the internal noise in a helicopter cabin, because the prediction requires knowledge of the major sources, that is, the rotors, engines and gearboxes....

  7. Low Cost Helicopter Training Simulator : A Software Case Study from the Brazilian Military Police

    OpenAIRE

    Mendes, Joice B.; Brandao-Ramos, Alexandre Carlos; Mora-Camino, Félix

    2014-01-01

    International audience This work describes a computer based training system to assist the crew members to learn the ground school of helicopter AS350-B2, manufactured by HELIBRAS, a Brazilian helicopter company and widely used by the Armed Forces, Civil and Military Policies and by companies of executive transportation and load lifting. The training system consists of a 1:1 scale aircraft cabin simulator, a system software and a MS Flight Simulator interface. The project is in advanced pha...

  8. AirDyn: an instrumented model-scale helicopter for measuring unsteady aerodynamic loading in airwakes

    Science.gov (United States)

    Wang, Y.; Curran, J.; Padfield, G. D.; Owen, I.

    2011-04-01

    This paper describes the design, calibration and application of an instrument that measures the effects of unsteady air flow (airwake) on a helicopter in flight. The instrument is a 1/54th-scale model helicopter that is mounted on a six-component dynamic force balance to measure the forces and moments that an airwake imposes onto the helicopter; it is therefore an 'Airwake Dynamometer' to which we have given the name AirDyn. The AirDyn has been designed, in particular, to measure the effect of a ship airwake on a helicopter translating over the ship's landing deck. The AirDyn, which has been implemented in a water tunnel, in preference to a wind tunnel, senses the integrated effect of a turbulent airwake on the helicopter, and the resulting unsteady forces and moments are an indication of the workload the pilot would need to exert to counteract these effects in a real helicopter. Binocular sensing elements and semiconductor strain gauges have been adopted to achieve high sensitivity and relatively high stiffness. The compact strain gauge balance is fitted into the helicopter fuselage, and protective coatings and a flexible bellows are used to seal the balance and protect it from the water. The coefficient matrix of the AirDyn has been obtained by static calibrations, while impulse excitation tests have confirmed that its frequency response is suitable for the measurements of unsteady loads. The application of the instrument is illustrated by using it to quantify the effect that a bulky ship mast has on the airwake and thus on a helicopter as it lands onto a simplified ship in a scaled 50 knot headwind.

  9. Autonomic computing enabled cooperative networked design

    CERN Document Server

    Wodczak, Michal

    2014-01-01

    This book introduces the concept of autonomic computing driven cooperative networked system design from an architectural perspective. As such it leverages and capitalises on the relevant advancements in both the realms of autonomic computing and networking by welding them closely together. In particular, a multi-faceted Autonomic Cooperative System Architectural Model is defined which incorporates the notion of Autonomic Cooperative Behaviour being orchestrated by the Autonomic Cooperative Networking Protocol of a cross-layer nature. The overall proposed solution not only advocates for the inc

  10. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    Science.gov (United States)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  11. Helicopter Surveys for Locating Wells and Leaking Oilfield Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Hammack, R.W.; Veloski, G.A.; Hodges, G. (Fugro Airborne Surveys)

    2006-10-01

    Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energy’s National Energy Technology Laboratory and Fugro Airborne Surveys

  12. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2016-01-01

    Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  13. Pipes's distribution by helicopter in Amazonian forest

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Gilberto R.; Machado, Otto L.M.; Gomes, Antonio E. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The innumerable logistical problems encountered during the implementation of the gas pipeline Urucu - Coari - Manaus, located in the Amazon forest, connecting the Base Operations Geologist Pedro de Moura in Urucu to the refinery Isaac Sabba - Reman, in the city of Manaus, contributed considerably for PETROBRAS to seek non conventional solutions in the construction and assembly of pipelines in our country. Among these solutions, there is the technique of distributing pipes through cargo helicopters. The need for the usage of this technique, innovative in Brazil, comes from the lack and/or insufficiency of land access from Solimoes River to the gas pipeline main route, and the large quantities of flooded areas and/or flood plain, and also the type of soil, that together with the high index of rainfall in the region, makes the soil fully inappropriate to the traffic of heavy equipment. (author)

  14. Helicopter flight-control design using an H(2) method

    Science.gov (United States)

    Takahashi, Marc D.

    1991-01-01

    Rate-command and attitude-command flight-control designs for a UH-60 helicopter in hover are presented and were synthesized using an H(2) method. Using weight functions, this method allows the direct shaping of the singular values of the sensitivity, complementary sensitivity, and control input transfer-function matrices to give acceptable feedback properties. The designs were implemented on the Vertical Motion Simulator, and four low-speed hover tasks were used to evaluate the control system characteristics. The pilot comments from the accel-decel, bob-up, hovering turn, and side-step tasks indicated good decoupling and quick response characteristics. However, an underlying roll PIO tendency was found to exist away from the hover condition, which was caused by a flap regressing mode with insufficient damping.

  15. Data acquisition and processing - helicopter radiometric survey, Krageroe, 1998

    CERN Document Server

    Beard, L P

    2000-01-01

    On 07 October 1998 a helicopter radiometric survey was flown in the vicinity of Krageroe municipality. The purpose of the survey was to provide radiometric information to help assess radon hazard from radioactive rocks in the area. A total of 60 line-kilometres of radiometric data were acquired in a single flight, covering an area of approximately 3 square km with a 50-m line spacing. The data were collected by Geological Survey of Norway (NGU) personnel and processed at NGU. Radiometric data were reduced using the three-channel procedure recommended by the International Atomic Energy Association. All data were gridded using square cells with 30-m sides and geophysical maps were produced at a scale of 1:5000. This report covers aspects of data acquisition and processing (Author)

  16. The inclusion of rotor dynamics in controller design for helicopters.

    Science.gov (United States)

    Hall, W. E., Jr.; Bryson, A. E., Jr.

    1972-01-01

    State-feedback-controllers and state-estimators (filters) are designed for the roll-pitch-horizontal motions of a helicopter near hover, using a new quadratic synthesis technique. One model (tenth order) uses a dynamic model of the rotor, whereas the other model (sixth order) assumes the rotor can be tilted instantaneously. It is shown that, for tight control, neglecting the rotor dynamics in designing the autopilot can produce unstable closed-loop response on the model that includes rotor dynamics. Two filters are designed to use only fuselage sensors and two are designed to use both fuselage and rotor sensors. It is shown that rotor states can be estimated with sufficient accuracy using only fuselage sensors so that it does not seem worthwhile to use rotor sensors. The mean square response of the vehicle to a gusty, random wind, using several different filter/state-feedback compensators, is shown to be satisfactory.

  17. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  18. Alerting prefixes for speech warning messages. [in helicopters

    Science.gov (United States)

    Bucher, N. M.; Voorhees, J. W.; Karl, R. L.; Werner, E.

    1984-01-01

    A major question posed by the design of an integrated voice information display/warning system for next-generation helicopter cockpits is whether an alerting prefix should precede voice warning messages; if so, the characteristics desirable in such a cue must also be addressed. Attention is presently given to the results of a study which ascertained pilot response time and response accuracy to messages preceded by either neutral cues or the cognitively appropriate semantic cues. Both verbal cues and messages were spoken in direct, phoneme-synthesized speech, and a training manipulation was included to determine the extent to which previous exposure to speech thus produced facilitates these messages' comprehension. Results are discussed in terms of the importance of human factors research in cockpit display design.

  19. Durability of commercial aircraft and helicopter composite structures

    Science.gov (United States)

    Dexter, H. B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.

  20. Helicopter Flight Test of a Compact, Real-Time 3-D Flash Lidar for Imaging Hazardous Terrain During Planetary Landing

    Science.gov (United States)

    Roback, VIncent E.; Amzajerdian, Farzin; Brewster, Paul F.; Barnes, Bruce W.; Kempton, Kevin S.; Reisse, Robert A.; Bulyshev, Alexander E.

    2013-01-01

    A second generation, compact, real-time, air-cooled 3-D imaging Flash Lidar sensor system, developed from a number of cutting-edge components from industry and NASA, is lab characterized and helicopter flight tested under the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project. The ALHAT project is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar incorporates a 3-D imaging video camera based on Indium-Gallium-Arsenide Avalanche Photo Diode and novel micro-electronic technology for a 128 x 128 pixel array operating at a video rate of 20 Hz, a high pulse-energy 1.06 µm Neodymium-doped: Yttrium Aluminum Garnet (Nd:YAG) laser, a remote laser safety termination system, high performance transmitter and receiver optics with one and five degrees field-of-view (FOV), enhanced onboard thermal control, as well as a compact and self-contained suite of support electronics housed in a single box and built around a PC-104 architecture to enable autonomous operations. The Flash Lidar was developed and then characterized at two NASA-Langley Research Center (LaRC) outdoor laser test range facilities both statically and dynamically, integrated with other ALHAT GN&C subsystems from partner organizations, and installed onto a Bell UH-1H Iroquois "Huey" helicopter at LaRC. The integrated system was flight tested at the NASA-Kennedy Space Center (KSC) on simulated lunar approach to a custom hazard field consisting of rocks, craters, hazardous slopes, and safe-sites near the Shuttle Landing Facility runway starting at slant ranges of 750 m. In order to evaluate different methods of achieving hazard detection, the lidar, in conjunction with the ALHAT hazard detection and GN&C system, operates in both a narrow 1deg FOV raster

  1. Helicopter flights with night-vision goggles: Human factors aspects

    Science.gov (United States)

    Brickner, Michael S.

    1989-01-01

    Night-vision goggles (NVGs) and, in particular, the advanced, helmet-mounted Aviators Night-Vision-Imaging System (ANVIS) allows helicopter pilots to perform low-level flight at night. It consists of light intensifier tubes which amplify low-intensity ambient illumination (star and moon light) and an optical system which together produce a bright image of the scene. However, these NVGs do not turn night into day, and, while they may often provide significant advantages over unaided night flight, they may also result in visual fatigue, high workload, and safety hazards. These problems reflect both system limitations and human-factors issues. A brief description of the technical characteristics of NVGs and of human night-vision capabilities is followed by a description and analysis of specific perceptual problems which occur with the use of NVGs in flight. Some of the issues addressed include: limitations imposed by a restricted field of view; problems related to binocular rivalry; the consequences of inappropriate focusing of the eye; the effects of ambient illumination levels and of various types of terrain on image quality; difficulties in distance and slope estimation; effects of dazzling; and visual fatigue and superimposed symbology. These issues are described and analyzed in terms of their possible consequences on helicopter pilot performance. The additional influence of individual differences among pilots is emphasized. Thermal imaging systems (forward looking infrared (FLIR)) are described briefly and compared to light intensifier systems (NVGs). Many of the phenomena which are described are not readily understood. More research is required to better understand the human-factors problems created by the use of NVGs and other night-vision aids, to enhance system design, and to improve training methods and simulation techniques.

  2. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Heung Yong Jin

    2015-12-01

    Full Text Available Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM and type 2 diabetes mellitus (T2DM. Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN. Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed.

  3. Stable Hovering Flight for a Small Unmanned Helicopter Using Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Arbab Nighat Khizer

    2014-01-01

    Full Text Available Stable hover flight control for small unmanned helicopter under light air turbulent environment is presented. Intelligent fuzzy logic is chosen because it is a nonlinear control technique based on expert knowledge and is capable of handling sensor created noise and contradictory inputs commonly encountered in flight control. The fuzzy nonlinear control utilizes these distinct qualities for attitude, height, and position control. These multiple controls are developed using two-loop control structure by first designing an inner-loop controller for attitude angles and height and then by establishing outer-loop controller for helicopter position. The nonlinear small unmanned helicopter model used comes from X-Plane simulator. A simulation platform consisting of MATLAB/Simulink and X-Plane© flight simulator was introduced to implement the proposed controls. The main objective of this research is to design computationally intelligent control laws for hovering and to test and analyze this autopilot for small unmanned helicopter model on X-Plane under ideal and mild turbulent condition. Proposed fuzzy flight controls are validated using an X-Plane helicopter model before being embedded on actual helicopter. To show the effectiveness of the proposed fuzzy control method and its ability to cope with the external uncertainties, results are compared with a classical PD controller. Simulated results show that two-loop fuzzy controllers have a good ability to establish stable hovering for a class of unmanned rotorcraft in the presence of light turbulent environment.

  4. Cardiac autonomic nerve distribution and arrhythmia

    Institute of Scientific and Technical Information of China (English)

    Quan Liu; Dongmei Chen; Yonggang Wang; Xin Zhao; Yang Zheng

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia.DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using "heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation" as the key words.SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included.MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated.RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system.CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in the

  5. An Autonomously Reciprocating Transmembrane Nanoactuator.

    Science.gov (United States)

    Watson, Matthew A; Cockroft, Scott L

    2016-01-22

    Biological molecular machines operate far from equilibrium by coupling chemical potential to repeated cycles of dissipative nanomechanical motion. This principle has been exploited in supramolecular systems that exhibit true machine behavior in solution and on surfaces. However, designed membrane-spanning assemblies developed to date have been limited to simple switches or stochastic shuttles, and true machine behavior has remained elusive. Herein, we present a transmembrane nanoactuator that turns over chemical fuel to drive autonomous reciprocating (back-and-forth) nanomechanical motion. Ratcheted reciprocating motion of a DNA/PEG copolymer threaded through a single α-hemolysin pore was induced by a combination of DNA strand displacement processes and enzyme-catalyzed reactions. Ion-current recordings revealed saw-tooth patterns, indicating that the assemblies operated in autonomous, asymmetric cycles of conformational change at rates of up to one cycle per minute. PMID:26661295

  6. Cardiovascular autonomic neuropathy in diabetes

    DEFF Research Database (Denmark)

    Spallone, Vincenza; Ziegler, Dan; Freeman, Roy;

    2011-01-01

    Cardiovascular Autonomic Neuropathy (CAN) Subcommittee of Toronto Consensus Panel on Diabetic Neuropathy worked to update CAN guidelines, with regard to epidemiology, clinical impact, diagnosis, usefulness of CAN testing, and management. CAN is the impairment of cardiovascular autonomic control...... in the setting of diabetes after exclusion of other causes. The prevalence of confirmed CAN is around 20%, and increases up to 65% with age and diabetes duration. Established risk factors for CAN are glycaemic control in type 1 and a combination of hypertension, dyslipidemia, obesity and glycaemic control...... in type 2 diabetes. CAN is a risk marker of mortality and cardiovascular morbidity, and possibly a progression promoter of diabetic nephropathy. Criteria for CAN diagnosis and staging are: 1. one abnormal cardio-vagal test identifies possible or early CAN; 2. at least two abnormal cardio-vagal tests...

  7. Treatment of gastrointestinal autonomic neuropathy.

    Science.gov (United States)

    Törnblom, Hans

    2016-03-01

    The symptoms caused by gastrointestinal autonomic neuropathy in diabetes mellitus is important to highlight since it affects a large proportion of people with diabetes, regardless of whether this is type 1 or type 2. Gastroparesis and general signs of bowel dysfunction, such as constipation, diarrhoea and abdominal pain are most often encountered and involve both pharmacological and non-pharmacological treatment options. This mini-review summarises a presentation given at the 'Diagnosis and treatment of autonomic diabetic neuropathy in the gut' symposium at the 2015 annual meeting of the EASD. It is accompanied by another mini-review on a topic from this symposium (by Azpiroz and Malagelada, DOI: 10.1007/s00125-015-3831-1 ) and a commentary by the Session Chair, Péter Kempler (DOI: 10.1007/s00125-015-3826-y ). PMID:26634570

  8. Insurance for autonomous underwater vehicles

    OpenAIRE

    Griffiths, G; N Bose; Ferguson, J.; Blidberg, D.R.

    2007-01-01

    The background and practice of insurance for autonomous underwater vehicles (AUVs) are examined. Key topics include: relationships between clients, brokers and underwriters; contract wording to provide appropriate coverage; and actions to take when an incident occurs. Factors that affect cost of insurance are discussed, including level of autonomy, team experience and operating environment. Four case studies from industry and academia illustrate how AUV insurance has worked in practice. The p...

  9. Prototype design for autonomous vehicle

    OpenAIRE

    Lehander, Jacob; Persson, Joel

    2015-01-01

    This thesis describes the mechanical design of a prototype vehicle developed for a company located in California. The project was based on an earlier vehicle located at KTH, Transport Labs, and investigated if the existing concept for the vehicle would work as a concept for an autonomous prototype, with focus on component layout and increased forces. The design of the vehicle is based on a concept with a carbon fiber bottom plate, two separate suspension modules with electric hub motors and s...

  10. [Autonomic nervous system in diabetes].

    Science.gov (United States)

    Emdin, M

    2001-08-01

    Hyperglycemia and hyperinsulinemia have a primary role in determining the early functional and later anatomic changes at the level of the autonomic pathways controlling the circulation, and besides in directly influencing cardiac and vascular cellular targets and feed-back baroreceptor system sensitivity to neurohumoral modulation in patients with diabetes mellitus. The basic mechanisms of dysfunction and damage, and the clinical and prognostic value of diabetic cardiovascular dysautonomia are discussed together with the diagnostic apparatus and the possible therapeutic approaches.

  11. Design of Autonomous Underwater Vehicle

    OpenAIRE

    Tadahiro Hyakudome

    2011-01-01

    There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle) were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. Whe...

  12. Semi autonomous mine detection system

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.

  13. Autonomic neuropathy in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Alberto eVerrotti

    2014-12-01

    Full Text Available Diabetic autonomic neuropathy (DAN is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy (CAN defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent definition, different diagnostic method, different patient cohorts studied. The pathogenesis is still unclear and probably multifactorial. Once DAN becomes clinically evident, no form of therapy has been identified which can effectively stop or reverse it. Prevention strategies are based on strict glycemic control with intensive insulin treatment, multifactorial intervention and lifestyle modification including control of hypertension, dyslipidemia, stop smoking, weight loss and adequate physical exercise. The present review summarizes the latest knowledge regarding clinical presentation, epidemiology, pathogenesis and management of DAN, with some mention to childhood and adolescent population.

  14. 基于2点RANSAC的无人直升机单目视觉SLAM%Monocular Visual SLAM of Unmanned Helicopter Based on 2-point RANSAC

    Institute of Scientific and Technical Information of China (English)

    徐伟杰; 李平; 韩波

    2012-01-01

    1点随机抽样一致性(RANSAC)算法是一种准确度高、计算量小的数据关联算法,但是其在摄像机多个轴上的角速度都快速变化时会失效,用在以无人直升机为载体的单目视觉同步定位与地图构建(SLAM)上存在滤波发散的风险.针对该问题,提出2点RANSAC算法,结合EKF运动模型的先验信息,用只抽样2个匹配点的RANSAC去除野点.在微小型无人直升机平台上进行了基于2点RANSAC算法的单目视觉SLAM实验,实验结果表明2点RANSAC算法工作可靠,SLAM的位姿估计精度可以达到自主飞行需要.%The 1-point random sample consensus (RANSAC) algorithm is a data association algorithm with high accuracy and low compaction cost. However, it fails when angular velocities around multiple axes of the camera change quickly, and causes the risk of filter divergence when applied to the monocular visual simultaneous localization and mapping (SLAM) of unmanned helicopter. For this problem, 2-point RANSAC algorithm is proposed, which incorporates a priori information from the EKF (extended Kalman filter) motion model, and uses RANSAC, in which only 2 matched points are used for sampling, to remove the outliers. Monocular visual SLAM based on 2-point RANSAC algorithm is performed on a mini unmanned helicopter (MUH) platform. The field-experiment results show that 2-point RANSAC algorithm works reliably, and the SLAM's pose estimation is precise enough for autonomous flight.

  15. The noise environment of a school classroom due to the operation of utility helicopters. [acoustic measurements of helicopter noise during flight over building

    Science.gov (United States)

    Hilton, D. A.; Pegg, R. J.

    1974-01-01

    Noise measurements under controlled conditions have been made inside and outside of a school building during flyover operations of four different helicopters. The helicopters were operated at a condition considered typical for a police patrol mission. Flyovers were made at an altitude of 500 ft and an airspeed of 45 miles per hour. During these operations acoustic measurements were made inside and outside of the school building with the windows closed and then open. The outside noise measurements during helicopter flyovers indicate that the outside db(A) levels were approximately the same for all test helicopters. For the windows closed case, significant reductions for the inside measured db(A) values were noted for all overflights. These reductions were approximately 20 db(A); similar reductions were noted in other subjective measuring units. The measured internal db(A) levels with the windows open exceeded published classroom noise criteria values; however, for the windows-closed case they are in general agreement with the criteria values.

  16. Autonomic Management for Multi-agent Systems

    OpenAIRE

    Nadir kamal Salih; G. K. Viju; Mohamed, Abdelmotalib A.

    2011-01-01

    Autonomic computing is a computing system that can manage itself by self-configuration, self-healing, self-optimizing and self-protection. Researchers have been emphasizing the strong role that multi agent systems can play progressively towards the design and implementation of complex autonomic systems. The important of autonomic computing is to create computing systems capable of managing themselves to a far greater extent than they do today. With the nature of autonomy, reactivity, socialit...

  17. Gastrointestinal autonomic nerve tumor of the stomach

    OpenAIRE

    Meshikhes, Abdul-Wahed N.; Al-Garni, Ayed A.; Sami A Al-Momen; Al-Nahawi, Mamdouh; Abu Subaih, Jawad

    2014-01-01

    Patient: Female, 32 Final Diagnosis: Gastrintestinal Autonomic Nerve Tumor (GANT) Symptoms: anemia • anorexia • fatigue • fever • hearburn • nausea • weight loss Medication: — Clinical Procedure: — Specialty: Gastroenterology and Hepatology Objective: Rare disease Background: Gastrointestinal autonomic nerve tumors (GANT) are extremely rare tumors that are related to gastrointestinal autonomic nervous plexuses. They are distinguished from stromal tumors by their unique ultrastructural feature...

  18. Autonomic dysfunction in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Dümcke, Christine Winkler; Møller, Søren

    2008-01-01

    Liver cirrhosis and portal hypertension are frequently associated with signs of circulatory dysfunction and peripheral polyneuropathy, which includes defects of the autonomic nervous system. Autonomic dysfunction, which is seen in both alcoholic and non-alcoholic liver cirrhosis and increases wit...... liver disease. A description is given of its aetiology and the typical circulatory dysfunction with characteristic hyperdynamic and hyporeactive circulation and heart failure, and the most important tests of the autonomic nervous system....

  19. Test and Evaluation of Autonomous Ground Vehicles

    OpenAIRE

    Yang Sun; Guangming Xiong; Weilong Song; Jianwei Gong; Huiyan Chen

    2014-01-01

    A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China’s autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approac...

  20. Autonomous vehicle control systems for safe crossroads

    OpenAIRE

    Alonso Ruiz, Javier; Milanés Montero, Vicente; Pérez, Joshué; Onieva Caracuel, Enrique; González Fernández-Vallejo, Carlos; Pedro Lucio, María Teresa de

    2011-01-01

    This article presents a cooperative manoeuvre among three dual mode cars – vehicles equipped with sensors and actuators, and that can be driven either manually or autonomously. One vehicle is driven autonomously and the other two are driven manually. The main objective is to test two decision algorithms for priority conflict resolution at intersections so that a vehicle autonomously driven can take their own decision about crossing an intersection mingling with manually driven cars without th...

  1. Self-Adapting Reactive Autonomous Agents

    Science.gov (United States)

    Andrecut, M.; Ali, M. K.

    This paper describes a new self-adapting control algorithm for reactive autonomous agents. The architecture of the autonomous agents integrates the reactive behavior with reinforcement learning. We show how these components perform on-line adaptation of the autonomous agents to various complex navigation situations by constructing an internal model of the environment. Also, a discussion on cooperation and coordination of teams of agents is presented.

  2. Attainability of Carnot efficiency with autonomous engines

    Science.gov (United States)

    Shiraishi, Naoto

    2015-11-01

    The maximum efficiency of autonomous engines with a finite chemical potential difference is investigated. We show that, without a particular type of singularity, autonomous engines cannot attain the Carnot efficiency. This singularity is realized in two ways: single particle transports and the thermodynamic limit. We demonstrate that both of these ways actually lead to the Carnot efficiency in concrete setups. Our results clearly illustrate that the singularity plays a crucial role in the maximum efficiency of autonomous engines.

  3. Attainability of Carnot efficiency with autonomous engines.

    Science.gov (United States)

    Shiraishi, Naoto

    2015-11-01

    The maximum efficiency of autonomous engines with a finite chemical potential difference is investigated. We show that, without a particular type of singularity, autonomous engines cannot attain the Carnot efficiency. This singularity is realized in two ways: single particle transports and the thermodynamic limit. We demonstrate that both of these ways actually lead to the Carnot efficiency in concrete setups. Our results clearly illustrate that the singularity plays a crucial role in the maximum efficiency of autonomous engines.

  4. Information for Successful Interaction with Autonomous Systems

    Science.gov (United States)

    Malin, Jane T.; Johnson, Kathy A.

    2003-01-01

    Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.

  5. Design of a Miniature Autonomous Surveillance Robot

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chang-e; HUANG Qiang; HUANG Yuan-can

    2009-01-01

    The small size of miniature robots poses great challenges for the mechanical and deetrieal design and the implementation of autonomous capabilities.In this paper,the mechanical and electrical design for a twowheeled cylindrical miniature autonomous robot ("BMS-1",BIT MicroScout-1) is presented and some autonomous capabilities are implemented by multiple sensors and some arithmetic models.Several experimental results show that BMS-1 is useful for surveillance in confined spaces and suitable for large-scale surveillance due to some autonomous capabilities.

  6. Autonomic dysfunction in primary sleep disorders.

    Science.gov (United States)

    Miglis, Mitchell G

    2016-03-01

    The autonomic nervous system plays an important role in the coordination of many important physiologic functions during sleep. Many patients with untreated sleep disorders will describe symptoms of autonomic impairment, and a majority of patients with autonomic impairment have some form of sleep disorder. This article will explore possible explanations for this connection, as well as review the current literature on autonomic impairment in common primary sleep disorders including obstructive sleep apnea, insomnia, restless legs syndrome, periodic limb movement disorder, narcolepsy, and rapid eye movement sleep behavior disorder. PMID:27198946

  7. A necessary and sufficient condition for transforming autonomous systems into linear autonomous Birkhoffian systems

    International Nuclear Information System (INIS)

    The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Knowledge acquisition for autonomous systems

    Science.gov (United States)

    Lum, Henry; Heer, Ewald

    1988-01-01

    Knowledge-based capabilities for autonomous aerospace systems, such as the NASA Space Station, must encompass conflict-resolution functions comparable to those of human operators, with all elements of the system working toward system goals in a concurrent, asynchronous-but-coordinated fashion. Knowledge extracted from a design database will support robotic systems by furnishing geometric, structural, and causal descriptions required for repair, disassembly, and assembly. The factual knowledge for these databases will be obtained from a master database through a technical management information system, and it will in many cases have to be augmented by domain-specific heuristic knowledge acquired from domain experts.

  9. Autonomous sensor manager agents (ASMA)

    Science.gov (United States)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  10. Autonomous Dome for Robotic Telescope

    CERN Document Server

    Kumar, Akash; Ganesh, Shashikiran

    2016-01-01

    Physical Research Laboratory operates a 50cm robotic observatory at Mount Abu. This Automated Telescope for Variability Studies (ATVS) makes use of Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  11. Topological entropy of autonomous flows

    Energy Technology Data Exchange (ETDEWEB)

    Badii, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    When studying fluid dynamics, especially in a turbulent regime, it is crucial to estimate the number of active degrees of freedom or of localized structures in the system. The topological entropy quantifies the exponential growth of the number of `distinct` orbits in a dynamical system as a function of their length, in the infinite spatial resolution limit. Here, I illustrate a novel method for its evaluation, which extends beyond maps and is applicable to any system, including autonomous flows: these are characterized by lack of a definite absolute time scale for the orbit lengths. (author) 8 refs.

  12. The Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  13. Correlate Life Predictions and Condition Indicators in Helicopter Tail Gearbox Bearings

    Science.gov (United States)

    Dempsey, Paula J.; Bolander, Nathan; Haynes, Chris; Branning, Jeremy; Wade, Daniel R.

    2010-01-01

    Research to correlate bearing remaining useful life (RUL) predictions with Helicopter Health Usage Monitoring Systems (HUMS) condition indicators (CI) to indicate the damage state of a transmission component has been developed. Condition indicators were monitored and recorded on UH-60M (Black Hawk) tail gearbox output shaft thrust bearings, which had been removed from helicopters and installed in a bearing spall propagation test rig. Condition indicators monitoring the tail gearbox output shaft thrust bearings in UH-60M helicopters were also recorded from an on-board HUMS. The spal-lpropagation data collected in the test rig was used to generate condition indicators for bearing fault detection. A damage progression model was also developed from this data. Determining the RUL of this component in a helicopter requires the CI response to be mapped to the damage state. The data from helicopters and a test rig were analyzed to determine if bearing remaining useful life predictions could be correlated with HUMS condition indicators (CI). Results indicate data fusion analysis techniques can be used to map the CI response to the damage levels.

  14. The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment

    Science.gov (United States)

    Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.

    2016-01-01

    The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.

  15. Advances in processing, modeling and application of high resolution helicopter TEM data

    DEFF Research Database (Denmark)

    Kirkegaard, Casper

    The history of electromagnetic surveying using airborne methods dates back more than 60 years, but the advent of time domain instruments towed by a helicopter is relatively new. Time domain instruments designed for fixed wing aircraft has previously proved a valuable tool in exploration of conduc......The history of electromagnetic surveying using airborne methods dates back more than 60 years, but the advent of time domain instruments towed by a helicopter is relatively new. Time domain instruments designed for fixed wing aircraft has previously proved a valuable tool in exploration...... position and orientation, which can be used to significantly improve the resulting data quality by means of processing. Such a novel processing system specifically made for helicopter systems is presented. For geometric reasons helicopter systems typically measure only the vertical component...... of the secondary magnetic field, whereas fixed wing systems have traditionally measured all 3 field components. The potential benefits of measuring multi-component data from helicopter systems have so far been unclear and a study of what can potentially be gained is presented. In mineral exploration and similar...

  16. Black Hawk Down?: Establishing Helicopter Parenting as a Distinct Construct from Other Forms of Parental Control during Emerging Adulthood

    Science.gov (United States)

    Padilla-Walker, Laura M.; Nelson, Larry J.

    2012-01-01

    The purpose of the current study was to establish a measure of helicopter parenting that was distinct from other forms of parental control, and to examine parental and behavioral correlates of helicopter parenting. Participants included 438 undergraduate students from four universities in the United States (M[subscript age] = 19.65, SD = 2.00,…

  17. Gulf of Mexico Helicopter Offshore System Technologies Engineering Needs Assessment

    Science.gov (United States)

    Koenke, Edmund J.; Carpenter, Elisabeth J.; Williams, Larry; Caiafa, Caesar

    1999-01-01

    The National Aeronautics and Space Administration (NASA), in partnership with the Federal Aviation Administration (FAA), is conducting a research and development program to modernize the National Airspace System (NAS). The mission of NASA's Advanced Air Transportation Technologies (AATT) project is to develop advanced Air Traffic Management (ATM) concepts and decision support tools for eventual deployment and implementation by the FAA and the private sector. One major objective of the NASA AATT project is to understand and promote the needs of all user classes. The Gulf of Mexico (GoMex) airspace has unique needs. A large number of helicopters operate in this area with only limited surveillance and sometimes-severe environmental conditions. Thunderstorms are the most frequent weather hazard during the spring, summer, and fall. In winter, reduced hours of daylight, low ceilings, strong winds, and icing conditions may restrict operations. Hurricanes impose the most severe weather hazard. The hurricane season, from June through October, normally requires at least one mass evacuation of all offshore platforms.

  18. Rapid determination of soil contamination by helicopter gamma ray spectrometry

    International Nuclear Information System (INIS)

    The paper describes aerial nuclide specific measurements of surface contamination that were performed after the Chernobyl reactor accident in the southern region of the Federal Republic of Germany in August 1989. For these measurements, a helicopter equipped with a gamma ray spectrometer system including an HPGe detector with a relative efficiency of 50% was used. Soil contamination due to 134Cs and 137Cs was measured during a number of flights covering a total distance of about 300 km. The average flying altitude measured by a laser altimeter was about 70 m above ground level and the speed was about 130 km/h. The measuring time was chosen to be 60 s for each spectrum, corresponding to a flight path distance of about 2.2 km over which the average soil contamination was determined. The measured 137Cs values of up to 25 kBq/m2 are in good agreement with the results of measurements obtained by other methods. The values measured for 134Cs were lower by a factor of 5. (author). 5 refs, 4 figs

  19. Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades

    Science.gov (United States)

    Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.

    1992-01-01

    A fully integrated aerodynamic/dynamic optimization procedure is described for helicopter rotor blades. The procedure combines performance and dynamic analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuvers; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case, the objective function involves power required (in hover, forward flight and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.

  20. Apollo 11 Astronaut Neil Armstrong Approaches Practice Helicopter

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11, crew members underwent training to practice activities they would be performing during the mission. In this photograph Neil Armstrong approaches the helicopter he flew to practice landing the Lunar Module (LM) on the Moon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished

  1. Efficient sensitivity analysis and optimization of a helicopter rotor

    Science.gov (United States)

    Lim, Joon W.; Chopra, Inderjit

    1989-01-01

    Aeroelastic optimization of a system essentially consists of the determination of the optimum values of design variables which minimize the objective function and satisfy certain aeroelastic and geometric constraints. The process of aeroelastic optimization analysis is illustrated. To carry out aeroelastic optimization effectively, one needs a reliable analysis procedure to determine steady response and stability of a rotor system in forward flight. The rotor dynamic analysis used in the present study developed inhouse at the University of Maryland is based on finite elements in space and time. The analysis consists of two major phases: vehicle trim and rotor steady response (coupled trim analysis), and aeroelastic stability of the blade. For a reduction of helicopter vibration, the optimization process requires the sensitivity derivatives of the objective function and aeroelastic stability constraints. For this, the derivatives of steady response, hub loads and blade stability roots are calculated using a direct analytical approach. An automated optimization procedure is developed by coupling the rotor dynamic analysis, design sensitivity analysis and constrained optimization code CONMIN.

  2. Multi-agent autonomous system

    Science.gov (United States)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  3. Plant Watering Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Hema Nagaraja

    2012-07-01

    Full Text Available Now days, due to busy routine life, people forget to water their plants. In this paper, we present a completely autonomous and a cost-effective system for watering indoor potted plants placed on an even surface. The system comprises of a mobile robot and a temperature-humidity sensing module. The system is fully adaptive to any environment and takes into account the watering needs of the plants using the temperature-humidity sensing module. The paper describes the hardware architecture of the fully automated watering system, which uses wireless communication to communicate between the mobile robot and the sensing module. This gardening robot is completely portable and is equipped with a Radio Frequency Identification (RFID module, a microcontroller, an on-board water reservoir and an attached water pump. It is capable of sensing the watering needs of the plants, locating them and finally watering them autonomously without any human intervention. Mobilization of the robot to the potted plant is achieved by using a predefined path. For identification, an RFID tag is attached to each potted plant. The paper also discusses the detailed implementation of the system supported with complete circuitry. Finally, the paper concludes with system performance including the analysis of the water carrying capacity and time requirements to water a set of plants.

  4. Autonomous Robotic Inspection in Tunnels

    Science.gov (United States)

    Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.

    2016-06-01

    In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.

  5. Sliding Mode Implementation of an Attitude Command Flight Control System for a Helicopter in Hover

    Directory of Open Access Journals (Sweden)

    D. J. McGeoch

    2005-01-01

    Full Text Available This paper presents an investigation into the design of a flight control system, using a decoupled non-linear sliding mode control structure, designed using a linearised, 9th order representation of the dynamics of a PUMA helicopter in hover. The controllers are then tested upon a higher order, non-linear helicopter model, called RASCAL. This design approach is used for attitude command flight control implementation and the control performance is assessed in the terms of handling qualities through the Aeronautical Design Standards for Rotorcraft (ADS-33. In this context a linearised approximation of the helicopter system is used to design an SMC control scheme. These controllers have been found to yield a system that satisfies the Level 1 handling qualities set out by ADS-33. 

  6. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    Science.gov (United States)

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  7. Numerical Analysis of Helicopter Rotor Hovering in Close Proximity to the Ground with a Wall

    Science.gov (United States)

    Itoga, Noriaki; Iboshi, Naohiro; Horimoto, Mitsumasa; Saito, Shigeru; Tanabe, Yasutada

    In rescue operations and emergency medical services, helicopters are frequently required to operate near the ground with obstacles such as buildings and sidewalls of highway. In this paper, numerical analysis of helicopter rotor hovering in close proximity to the ground with an obstacle is done by solving unsteady 3D compressible Euler equations with an overlapped grid system. The obstacle is simulated by a wall vertically set up on the ground. The parameters for numerical analysis are the rotor height and distance from the rotor-hub-center to the wall. The effects of combinations of these parameters on the flowfields around the rotor, inflow distributions on the rotor disc and behaviors of blade flapping motion are discussed. It is also clarified the cause that the helicopter rotor hovering in close proximity to the ground with a wall does not have the enough ground effect depending on the combinations of these parameters.

  8. ADAPTIVE FLIGHT CONTROL SYSTEM OF ARMED HELICOPTER USING WAVELET NEURAL NETWORK METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHURong-gang; JIANGChangsheng; FENGBin

    2004-01-01

    A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic inversion scheme in a quick loop and a slow loop. respectively. Then, in order to compensate the error caused by dynamic inversion, the adaptive flight control system of the armed helicopter using wavelet neural network method is put forward, so the BP wavelet neural network and the Lyapunov stable wavelet neural network are used to design the helicopter flight control system. Finally, the typical maneuver flight is simulated to demonstrate its validity and effectiveness. Result proves that the wavelet neural network has an engineering practical value and the effect of WNN is good.

  9. Application of the ABC helicopter to the emergency medical service role

    Science.gov (United States)

    Levine, L. S.

    1981-01-01

    Attention is called to the use of helicopters in transporting the sick and injured to medical facilities. It is noted that the helicopter's speed of response and delivery increases patient survival rates and may reduce the cost of medical care and its burden on society. Among the vehicle characteristics desired for this use are a cruising speed of 200 knots, a single engine hover capability at 10,000 ft, and an absence of a tail rotor. Three designs for helicopters incorporating such new technologies as digital/optical control systems, all composite air-frames, and third-generation airfoils are presented. A sensitivity analysis is conducted to show the effect of design speed, mission radius, and single engine hover capability on vehicle weight, fuel consumption, operating costs, and productivity.

  10. Intelligent autonomous systems 12. Vol. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukhan [Sungkyunkwan Univ., Gyeonggi-Do (Korea, Republic of). College of Information and Communication Engineering; Yoon, Kwang-Joon [Konkuk Univ., Seoul (Korea, Republic of); Cho, Hyungsuck [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Lee, Jangmyung (eds.) [Pusan National Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2013-02-01

    Recent research in Intelligent and Autonomous Systems. Volume 2 of the proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, jeju Island, Korea. Written by leading experts in the field. Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of ''Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 2 includes contributions devoted to Service Robotics and Human-Robot Interaction and Autonomous Multi-Agent Systems and Life Engineering.

  11. An autonomous weeding robot for organic farming

    NARCIS (Netherlands)

    Bakker, T.; Asselt, van C.J.; Bontsema, J.; Müller, J.; Straten, van G.

    2006-01-01

    The objective of this research is the replacement of hand weeding in organic farming by a device working autonomously at ¯eld level. The autonomous weeding robot was designed using a structured design approach, giving a good overview of the total design. A vehicle was developed with a diesel engine,

  12. Autonomous Control of Space Reactor Systems

    International Nuclear Information System (INIS)

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are available to perform intelligent control functions that are necessary for both normal and abnormal operational conditions

  13. Autonomous Control of Space Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  14. Autonomic Management for Multi-agent Systems

    Directory of Open Access Journals (Sweden)

    Nadir kamal Salih

    2011-09-01

    Full Text Available Autonomic computing is a computing system that can manage itself by self-configuration, self-healing, self-optimizing and self-protection. Researchers have been emphasizing the strong role that multi agent systems can play progressively towards the design and implementation of complex autonomic systems. The important of autonomic computing is to create computing systems capable of managing themselves to a far greater extent than they do today. With the nature of autonomy, reactivity, sociality and pro-activity, software agents are promising to make autonomic computing system a reality. This paper mixed multi-agent system with autonomic feature that completely hides its complexity from users/services. Mentioned Java Application Development Framework (JADE as platform example of this environment, could applied to web services as front end to users. With multi agent support it also provides adaptability, intelligence, collaboration, goal oriented interactions, flexibility, mobility and persistence in software systems.

  15. Cardiovascular autonomic neuropathy in the diabetic patients.

    Directory of Open Access Journals (Sweden)

    Maria Eugenia Niño Mantilla

    2007-11-01

    Full Text Available the dysfunction of the autonomic nervous system is a serious problem in diabetic patients. The cardiovacular autonomic neuropathy is the most important autonomic dysfuntion for it´s implication in the increasesof the mortality rate in diabetis patients. tis ethiopatogenesis is the result of a multifactorial process caused by chronic hyperglycemia, ending up in damage of the autonomic fibers thet innervate the heart and blood vessels, leading to dysfuntional hearth rate control and abnormal vascular dynamics. the associated clinical manifestations include orthotatic hypotension, excecise intolerance, intraoperative cardiovascular liability and silent myocardial ischemia. Being important its recognition, quantitative test to evaluate the cardiovascular funtion, to value its evolution and the effects of the treatment ahould be done, being the most used, the hearth rate response to standing test, and teh valsalva maneuver. the handling of this entity is done improving control of glucose blood levels its the most effective way to prevent the cardiovascular autonomic neuropathy in the diabetic patients.

  16. Spray nozzle investigation for the Improved Helicopter Icing Spray System (IHISS)

    Science.gov (United States)

    Peterson, Andrew A.; Oldenburg, John R.

    1990-01-01

    A contract has been awarded by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System. Data are shown for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle. The IHISS, capable of deployment from any CH-47 helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.

  17. Minor Component Analysis-based Landing Forecast System for Ship-borne Helicopter

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bo,; SHI Ai-guo; WAN Lin; YANG Bao-zhang

    2005-01-01

    The general structure of ship-borne helicopter landing forecast system is presented, and a novel ship motion prediction model based on minor component analysis (MCA) is built up to improve the forecast effectiveness. To validate the feasibility of this landing forecast system, time series for the roll, pitch and heave are generated by simulation and then forecasted based on MCA. Simulation results show that ship-borne helicopters can land safely in higher sea condition while carrying on rescue or replenishment tasks at sea in terms of the landing forecast system.

  18. Maneuver Acoustic Flight Test of the Bell 430 Helicopter Data Report

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Smith, Charles D.; Snider, Royce; Conner, David A.

    2014-01-01

    A cooperative ight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 test points over 10 test days and compiled an extensive database of dynamic maneuver measurements. Three microphone arrays with up to 31 microphon. es in each were used to acquire acoustic data. Aircraft data included Differential Global Positioning System, aircraft state and rotor state information. This paper provides an overview of the test and documents the data acquired.

  19. Design of a simple active controller to suppress helicopter air resonance

    Science.gov (United States)

    Takahashi, M. D.; Friedmann, P. P.

    1988-01-01

    A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. Using this mathematical model, a nominal configuration is selected that experiences an air resonance instability throughout most of its flight envelope. A simple multivariable compensator using conventional swashplate inputs and a single body roll rate measurement is then designed. The controller design is based on a linear estimator in conjunction with optimal feedback gains, and the design is done in the frequency domain using the Loop Transfer Recovery method. The controller is shown to suppress the air resonance instability throughout wide range helicopter loading conditions and forward flight speeds.

  20. Impact of a physician-staffed helicopter on a regional trauma system

    DEFF Research Database (Denmark)

    Hesselfeldt, R; Steinmetz, J; Jans, H;

    2013-01-01

    This study aims to compare the trauma system before and after implementing a physician-staffed helicopter emergency medical service (PS-HEMS). Our hypothesis was that PS-HEMS would reduce time from injury to definitive care for severely injured patients.......This study aims to compare the trauma system before and after implementing a physician-staffed helicopter emergency medical service (PS-HEMS). Our hypothesis was that PS-HEMS would reduce time from injury to definitive care for severely injured patients....

  1. Identifying and analyzing methods for reducing the energy consumption of helicopters

    Science.gov (United States)

    Davis, S. J.; Rosenstein, H. J.

    1976-01-01

    Reductions in helicopter energy consumption can be accomplished through the use of advanced technology in the areas of powerplant design, improved rotor efficiency, reduced parasite drag, and reduced structural empty weight. Baseline helicopters incorporating technology were designed for a short range (200 n mi) and a very short haul (100 n mi) mission scenario. Parametric analyses were then conducted to determine the impact of technology improvement. Many of the parameters varied are interrelated. A summary of such interactions is presented, and some additional sensitivity values were added so that energy reduction and DOC as affected by the major technological factors or operational modes are clearly defined.

  2. A helicopter emergency medical service may allow faster access to highly specialised care

    DEFF Research Database (Denmark)

    Afzali, Monika; Hesselfeldt, Rasmus; Steinmetz, Jacob;

    2013-01-01

    Centralization of the hospital system entails longer transport for some patients. A physician-staffed helicopter may provide effective triage, advanced management and fast transport to highly specialized treatment for time-critical patients. The aim of this study was to describe activity and poss......Centralization of the hospital system entails longer transport for some patients. A physician-staffed helicopter may provide effective triage, advanced management and fast transport to highly specialized treatment for time-critical patients. The aim of this study was to describe activity...

  3. Failure analysis of a bearing in a helicopter turbine engine due to electrical discharge damage

    Directory of Open Access Journals (Sweden)

    Michael K. Budinski

    2014-10-01

    Full Text Available This article documents the metallurgical evaluation of a rolling element bearing that failed due to electrical discharge damage. This rolling element bearing was used in a helicopter turbine engine that failed in-flight, resulting in a hard landing of the helicopter. Optical and electron microscopy as well as energy dispersive spectroscopy were used to evaluate the bearing. Pitting and material transfer on the external bearing races bearing and mating surfaces revealed that the electrical discharge damage occurred while the engine's components were not rotating.

  4. An Autonomous Flight Safety System

    Science.gov (United States)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  5. Testbed for an autonomous system

    Science.gov (United States)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok K.; Larsen, Ronald L.

    1989-01-01

    In previous works we have defined a general architectural model for autonomous systems, which can easily be mapped to describe the functions of any automated system (SDAG-86-01), and we illustrated that model by applying it to the thermal management system of a space station (SDAG-87-01). In this note, we will further develop that application and design the detail of the implementation of such a model. First we present the environment of our application by describing the thermal management problem and an abstraction, which was called TESTBED, that includes a specific function for each module in the architecture, and the nature of the interfaces between each pair of blocks.

  6. Wireless autonomous device data transmission

    Science.gov (United States)

    Sammel, Jr., David W. (Inventor); Cain, James T. (Inventor); Mickle, Marlin H. (Inventor); Mi, Minhong (Inventor)

    2013-01-01

    A method of communicating information from a wireless autonomous device (WAD) to a base station. The WAD has a data element having a predetermined profile having a total number of sequenced possible data element combinations. The method includes receiving at the WAD an RF profile transmitted by the base station that includes a triggering portion having a number of pulses, wherein the number is at least equal to the total number of possible data element combinations. The method further includes keeping a count of received pulses and wirelessly transmitting a piece of data, preferably one bit, to the base station when the count reaches a value equal to the stored data element's particular number in the sequence. Finally, the method includes receiving the piece of data at the base station and using the receipt thereof to determine which of the possible data element combinations the stored data element is.

  7. Design of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Tadahiro Hyakudome

    2011-03-01

    Full Text Available There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. When such underwater vehicles are made, it is necessary to consider about the following things. 1 Seawater and Water Pressure Environment, 2 Sink, 3 There are no Gas or Battery Charge Stations, 4 Global Positioning System cannot use, 5 Radio waves cannot use. In the paper, outline of above and how deal about it are explained.

  8. Autonomous navigation system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  9. Autonomous Spacecraft Navigation With Pulsars

    CERN Document Server

    Becker, Werner; Jessner, Axel

    2013-01-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. In this paper we describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  10. Autonomous navigation system and method

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  11. APDS: Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

    2002-02-14

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

  12. BLAST Autonomous Daytime Star Cameras

    CERN Document Server

    Rex, M; Devlin, M J; Gundersen, J; Klein, J; Pascale, E; Wiebe, D; Rex, Marie; Chapin, Edward; Devlin, Mark J.; Gundersen, Joshua; Klein, Jeff; Pascale, Enzo; Wiebe, Donald

    2006-01-01

    We have developed two redundant daytime star cameras to provide the fine pointing solution for the balloon-borne submillimeter telescope, BLAST. The cameras are capable of providing a reconstructed pointing solution with an absolute accuracy < 5 arcseconds. They are sensitive to stars down to magnitudes ~ 9 in daytime float conditions. Each camera combines a 1 megapixel CCD with a 200 mm f/2 lens to image a 2 degree x 2.5 degree field of the sky. The instruments are autonomous. An internal computer controls the temperature, adjusts the focus, and determines a real-time pointing solution at 1 Hz. The mechanical details and flight performance of these instruments are presented.

  13. Digital autonomous terminal access communications

    Science.gov (United States)

    Novacki, S.

    1987-01-01

    A significant problem for the Bus Monitor Unit is to identify the source of a given transmission. This problem arises from the fact that the label which identifies the source of the transmission as it is put into the bus is intercepted by the Digital Autonomous Terminal Access Communications (DATAC) terminal and removed from the transmission. Thus, a given subsystem will see only data associated with a label and never the identifying label itself. The Bus Monitor must identify the source of the transmission so as to be able to provide some type of error identification/location in the event that some problem with the data transmission occurs. Steps taken to alleviate this problem by modifications to the DATAC terminal are discussed.

  14. Autonomous Infrastructure for Observatory Operations

    Science.gov (United States)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  15. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    Science.gov (United States)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  16. Autonomous caregiver following robotic wheelchair

    Science.gov (United States)

    Ratnam, E. Venkata; Sivaramalingam, Sethurajan; Vignesh, A. Sri; Vasanth, Elanthendral; Joans, S. Mary

    2011-12-01

    In the last decade, a variety of robotic/intelligent wheelchairs have been proposed to meet the need in aging society. Their main research topics are autonomous functions such as moving toward some goals while avoiding obstacles, or user-friendly interfaces. Although it is desirable for wheelchair users to go out alone, caregivers often accompany them. Therefore we have to consider not only autonomous functions and user interfaces but also how to reduce caregivers' load and support their activities in a communication aspect. From this point of view, we have proposed a robotic wheelchair moving with a caregiver side by side based on the MATLAB process. In this project we discussing about robotic wheel chair to follow a caregiver by using a microcontroller, Ultrasonic sensor, keypad, Motor drivers to operate robot. Using camera interfaced with the DM6437 (Davinci Code Processor) image is captured. The captured image are then processed by using image processing technique, the processed image are then converted into voltage levels through MAX 232 level converter and given it to the microcontroller unit serially and ultrasonic sensor to detect the obstacle in front of robot. In this robot we have mode selection switch Automatic and Manual control of robot, we use ultrasonic sensor in automatic mode to find obstacle, in Manual mode to use the keypad to operate wheel chair. In the microcontroller unit, c language coding is predefined, according to this coding the robot which connected to it was controlled. Robot which has several motors is activated by using the motor drivers. Motor drivers are nothing but a switch which ON/OFF the motor according to the control given by the microcontroller unit.

  17. Feasibility Study for an Autonomous UAV -Magnetometer System -- Final Report on SERDP SEED 1509:2206

    Energy Technology Data Exchange (ETDEWEB)

    Roelof Versteeg; Mark McKay; Matt Anderson; Ross Johnson; Bob Selfridge; Jay Bennett

    2007-09-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area scanning is a multi-level one, in which medium altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry followed by surface investigations using either towed geophysical sensor arrays or man portable sensors. In order to be effective for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements means that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus, other systems are needed allowing for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it would be safer for the operators, cheaper in initial and O&M costs, and more effective in terms of site characterization. However, while UAV data acquisition from fixed wing platforms for large (> 200 feet) stand off distances is relatively straight forward, a host of challenges exist for low stand-off distance (~ 6 feet) UAV geophysical data acquisition. The objective of SERDP SEED 1509:2006 was to identify the primary challenges

  18. Current challenges in autonomous vehicle development

    Science.gov (United States)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  19. Autonomous Demand Response for Primary Frequency Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  20. Autonomic symptoms in idiopathic REM behavior disorder

    DEFF Research Database (Denmark)

    Ferini-Strambi, Luigi; Oertel, Wolfgang; Dauvilliers, Yves;

    2014-01-01

    Patients with idiopathic REM sleep behavior disorder (iRBD) are at very high risk of developing neurodegenerative synucleinopathies, which are disorders with prominent autonomic dysfunction. Several studies have documented autonomic dysfunction in iRBD, but large-scale assessment of autonomic...... symptoms has never been systematically performed. Patients with polysomnography-confirmed iRBD (318 cases) and controls (137 healthy volunteers and 181 sleep center controls with sleep diagnoses other than RBD) were recruited from 13 neurological centers in 10 countries from 2008 to 2011. A validated scale...

  1. 78 FR 40063 - Airworthiness Directives; Erickson Air-Crane Incorporated Helicopters (Type Certificate...

    Science.gov (United States)

    2013-07-03

    ... Directive (AD) 90-26-12 (55 FR 51406, December 14, 1990), and adding the following new AD: Erickson Air.... Discussion On December 6, 1990, we issued AD 90-26-12, Amendment 39-6841 (55 FR 51406, December 14, 1990) for... Issued Since we issued AD 90-26-12 (55 FR 51406, December 14, 1990) for Model S-64E helicopters,...

  2. 77 FR 73265 - Airworthiness Directives; Erickson Air-Crane Incorporated Helicopters

    Science.gov (United States)

    2012-12-10

    ... . SUPPLEMENTARY INFORMATION: Discussion On November 26, 2008, at 73 FR 71952, the Federal Register published our... control of the helicopter. Comments After our NPRM (73 FR 71952, November 26, 2008) was published, we... bulkhead assembly, P/N 6420-66340-041, from the applicability and compliance section of the NPRM (73...

  3. Indian under fire : just how effective will the Comanche scout/attack helicopter be?

    NARCIS (Netherlands)

    Heerkens, Hans

    2004-01-01

    The Boeing Sikorsky RAH-66 Comanche helicopter has been in development for some 20 years. Threats have evolved that today cast doubts on its design philosophy . Its fly-by-wire control system provides unprecedented flight efficiency, agility, handling qualities, flight safety and reduction in pilot

  4. Trauma-related dispatch criteria for Helicopter Emergency Medical Services in Europe

    NARCIS (Netherlands)

    L.D. Wigman (Laura); E.M.M. van Lieshout (Esther); G. de Ronde (Gijs); P. Patka (Peter); I.B. Schipper (Inger)

    2011-01-01

    textabstractIntroduction: Helicopter Emergency Medical Services (HEMS) are used worldwide in order to provide potentially life-saving pre-hospital medical support to trauma patients at the accident scene. It is currently unclear how much overlap exists regarding the number and type of dispatch crite

  5. Wind tunnel testing of a full scale helicopter blade section with an upstream active Gurney flap

    NARCIS (Netherlands)

    Loendersloot, R.; Freire Gomez, J.; Booker, J.D.

    2014-01-01

    Wind tunnel tests were performed on an aerofoil section comparable to that of a full scale helicopter blade section with an upstream active Gurney flap in the framework of the European project CleanSky ITD Green RotorCraft. A modified NACA0012 profile was used, with 23 Kulite pressure transducers em

  6. Initial experience of an emergency helicopter transport service in the Outer Hebrides.

    Science.gov (United States)

    Hawksworth, C R

    1992-06-01

    The outcome of patients transported by coastguard helicopter to the Lewis Hospital, Stornoway was studied for the first 30 months of the service. Although undoubtedly life-saving in some cases, some patients were transferred for trivial reasons. Feedback between the hospital and ships' captains and owners may reduce possible abuse of this service. Most patients were uplifted entirely appropriately. PMID:1496357

  7. Framework of Combined Adaptive and Non-adaptive Attitude Control System for a Helicopter Experimental System

    Institute of Scientific and Technical Information of China (English)

    Akira Inoue; Ming-Cong Deng

    2006-01-01

    This paper presents a framework of a combined adaptive and non-adaptive attitude control system for a helicopter experimental system. The design method is based on a combination of adaptive nonlinear control and non-adaptive nonlinear control. With regard to detailed attitude control system design, two schemes are shown for different application cases.

  8. 14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).

    Science.gov (United States)

    2010-01-01

    ... evacuation service (HEMES). 135.271 Section 135.271 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... 24-consecutive hour period of a HEMES assignment, unless an emergency medical evacuation operation...

  9. 75 FR 79950 - Airworthiness Directives; Kaman Aerospace Corporation (Kaman) Model K-1200 Helicopters

    Science.gov (United States)

    2010-12-21

    ... Continued Airworthiness (ICA) by establishing a life limit of 8,000 hours time-in-service (TIS) for each... to prevent blade failure and subsequent loss of control of the helicopter. DATES: This AD is... requires revising the Airworthiness Limitations section of the ICA by establishing a life limit of...

  10. 77 FR 23109 - Airworthiness Directives; Agusta S.p.A. Helicopters

    Science.gov (United States)

    2012-04-18

    ... detect and prevent a crack in a T/R blade, which could lead to failure of a T/R blade and subsequent loss... AB139 and AW139 helicopters that requires establishing a revised life limit for each tail rotor (T/R... block. That Emergency AD requires establishing a revised life limit for each T/R blade and updating...

  11. Helicopter Rotor Load Prediction Using a Geometrically Exact Beam with Multicomponent Model

    DEFF Research Database (Denmark)

    Lee, Hyun-Ku; Viswamurthy, S.R.; Park, Sang Chul;

    2010-01-01

    In this paper, an accurate structural dynamic analysis was developed for a helicopter rotor system including rotor control components, which was coupled to various aerodynamic and wake models in order to predict an aeroelastic response and the loads acting on the rotor. Its blade analysis was based...

  12. Smart actuation mechanisms for helicopter blades: design case for a mach-scaled model blade

    NARCIS (Netherlands)

    Paternoster, A.R.A.

    2013-01-01

    This work is part of the European project “Clean Sky”, which aims at improving the efficiency and the global transport quality of aircraft. The research, in this project, is currently focussing on active flap systems for helicopters to adapt the blade aerodynamic properties to local aerodynamic cond

  13. Power harvesting in a helicopter rotor using a piezo stack in the lag damper

    NARCIS (Netherlands)

    Jong, de P.H.; Boer, de A.; Loendersloot, R.; Hoogt, van der P.J.M.

    2012-01-01

    A piezoelectrically augmented helicopter lag damper has been simulated for the purpose of harvesting electrical energy within the rotor of the aircraft. This energy can then be consumed locally for sensing, processing and transmission of data to the cockpit. An 8.15m radius rotor is considered and i

  14. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors

    NARCIS (Netherlands)

    Kruyt, J.W.; Quicazan Rubio, E.M.; Heijst, van G.J.F.; Altshuler, D.L.; Lentink, D.

    2014-01-01

    Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Pre

  15. 76 FR 66615 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    Science.gov (United States)

    2011-10-27

    ... required because the previously described critical unsafe condition can adversely affect the structural integrity and controllability of the helicopter. Therefore, limiting the maximum groundspeed for normal... April 11, 2000 (65 FR 19477-78). Regulatory Findings We have determined that this AD will not...

  16. Survival benefit of physician-staffed Helicopter Emergency Medical Services (HEMS) assistance for severely injured patients

    NARCIS (Netherlands)

    D. den Hartog (Dennis); J. Romeo (Jamie); A.N. Ringburg (Akkie); M.H.J. Verhofstad (Michiel); E.M.M. van Lieshout (Esther)

    2015-01-01

    markdownabstractBackground: Physician-staffed Helicopter Emergency Medical Services (HEMS) provide specialist medical care to the accident scene and aim to improve survival of severely injured patients. Previous studies were often underpowered and showed heterogeneous results, leaving the subject at

  17. Development of a Commercially Viable, Modular Autonomous Robotic Systems for Converting any Vehicle to Autonomous Control

    Science.gov (United States)

    Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.

    1994-01-01

    A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.

  18. The use of helicopter-borne neutron detectors to detect nuclear warheads in the USSR-US Black Sea experiment

    International Nuclear Information System (INIS)

    This paper reports that the Soviet Navy used a helicopter/ship system called Sovietnik to detect a cruise-missile warhead in the joint USSR-US experiment on the Black Sea, which took place on 5 July 1989. The system consists of a ship-based helicopter, equipped with a neutron detector and processing equipment, associated ship-based equipment. The neutron detector, together with instrumentation for recording preliminary processing, and analysis of initial information, is located on the helicopter, which carries out the measurement while flying slowly past the ship in question

  19. Procedural guide for modeling and analyzing the flight dynamics of the SH-60B helicopter using Flightlab

    OpenAIRE

    Wagner, Roy C.

    1995-01-01

    This thesis uses Flightlab to model and analyze the flight dynamics of the SH-6OB Seahawk helicopter. Flightlab runs on computers utilizing the UNIX operating system and is used for design, analysis and testing of an aircraft using non-linear modeling techniques. It is capable of modeling conventional main rotor-tail rotor and tandem rotor helicopters and tilt rotor aircraft. A procedural guide for modeling and analyzing a single main rotor helicopter is presented using the SH-60B. The non-li...

  20. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer's Disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Waldemar, Gunhild; Staehelin Jensen, Troels;

    2015-01-01

    BACKGROUND: Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function. OBJECTIVE: To investigate autonomic...

  1. Autonomic testing: common techniques and clinical applications.

    Science.gov (United States)

    Weimer, Louis H

    2010-07-01

    Laboratories able to test autonomic function are increasingly available and rely on batteries of well-accepted, noninvasive tests. Tests of parasympathetic cardiovagal, sympathetic vasoconstriction, and sudomotor (sweating) function are most commonly employed. Common examples include heart rate variability to various challenges, Valsalva maneuver, standing and tilt-table studies, and various sudomotor methods. New techniques and technical refinements continue to be described. Most studies rely on perturbations of complex systems and not direct assessment. Testing has helped to improve disease recognition and prompted advances in classification, pathophysiology, and treatment. Major areas impacted include hereditary and immune-mediated autonomic neuropathy, diabetic autonomic neuropathy, distal symmetric polyneuropathy, Parkinson disease and other autonomic failure syndromes, orthostatic intolerance, and unexplained syncope. PMID:20592565

  2. An introduction to autonomous control systems

    Science.gov (United States)

    Antsaklis, Panos J.; Passino, Kevin M.; Wang, S. J.

    1991-01-01

    The functions, characteristics, and benefits of autonomous control are outlined. An autonomous control functional architecture for future space vehicles that incorporates the concepts and characteristics described is presented. The controller is hierarchical, with an execution level (the lowest level), coordination level (middle level), and management and organization level (highest level). The general characteristics of the overall architecture, including those of the three levels, are explained, and an example to illustrate their functions is given. Mathematical models for autonomous systems, including 'logical' discrete event system models, are discussed. An approach to the quantitative, systematic modeling, analysis, and design of autonomous controllers is also discussed. It is a hybrid approach since it uses conventional analysis techniques based on difference and differential equations and new techniques for the analysis of the systems described with a symbolic formalism such as finite automata. Some recent results from the areas of planning and expert systems, machine learning, artificial neural networks, and the area restructurable controls are briefly outlined.

  3. Comparative anatomy of the autonomic nervous system.

    Science.gov (United States)

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves.

  4. Autonomic Closure for Large Eddy Simulation

    Science.gov (United States)

    King, Ryan; Hamlington, Peter; Dahm, Werner J. A.

    2015-11-01

    A new autonomic subgrid-scale closure has been developed for large eddy simulation (LES). The approach poses a supervised learning problem that captures nonlinear, nonlocal, and nonequilibrium turbulence effects without specifying a predefined turbulence model. By solving a regularized optimization problem on test filter scale quantities, the autonomic approach identifies a nonparametric function that represents the best local relation between subgrid stresses and resolved state variables. The optimized function is then applied at the grid scale to determine unknown LES subgrid stresses by invoking scale similarity in the inertial range. A priori tests of the autonomic approach on homogeneous isotropic turbulence show that the new approach is amenable to powerful optimization and machine learning methods and is successful for a wide range of filter scales in the inertial range. In these a priori tests, the autonomic closure substantially improves upon the dynamic Smagorinsky model in capturing the instantaneous, statistical, and energy transfer properties of the subgrid stress field.

  5. LEO AUTONOMOUS NAVIGATION BASED ON IMAGE MOTION

    Institute of Scientific and Technical Information of China (English)

    DUANFang; LIUJian-ye; YUFeng

    2005-01-01

    A method of LEO autonomous navigation is presented based on the nonlinear satellite velocity relative to the earth. The velocity is detected by a high-speed camera, with the attitude information detected by a star sensor. Compared with traditional autonomous navigation by landmark identification, the satellite velocity relarive to the earth is obtained by correlativity analysis of images. It does not need to recognize ground objects or views. Since it is not necessary to pre-store the database of ground marks, lots of memory space can be saved.The state and observation equations are constructed, and the filtering is processed by the Kalman filter. Simulation results show that the system has high autonomous navigation precision in LEO autonomous navigation.

  6. Cranial Autonomic Symptoms in Pediatric Migraine

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-09-01

    Full Text Available Investigators at the University of California, San Francisco, examined the frequency of cranial autonomic symptoms in all pediatric and adolescent patients with migraine seen in 4 different clinical settings during July 2010 to June 2012.

  7. Rover: Autonomous concepts for Mars exploration

    Science.gov (United States)

    Baiget, A.; Castets, B.; Chochon, H.; Hayard, M.; Lamarre, H.; Lamothe, A.

    1993-01-01

    The development of a mobile, autonomous vehicle that will be launched towards an unknown planet is considered. The rover significant constraints are: Ariane 5 compatibility, Earth/Mars transfer capability, 1000 km autonomous moving in Mars environment, on board localization, and maximum science capability. Two different types of subsystem were considered: classical subsystems (mechanical and mechanisms, thermal, telecommunications, power, onboard data processing) and robotics subsystem, (perception/navigation, autonomous displacement generation, autonomous localization). The needs of each subsystem were studied in terms of energy and data handling capability, in order to choose an on board architecture which best use the available capability, by means of specialized parts. A compromise must always be done between every subsystem in order to obtain the real need with respect to the goal, for example: between perception/navigation and the motion capability. A compromise must also be found between mechanical assembly and calibration need, which is a real problem.

  8. Autonomic Nervous System Dysfunction in Parkinson's Disease.

    Science.gov (United States)

    Zesiewicz, Theresa A.; Baker, Matthew J.; Wahba, Mervat; Hauser, Robert A.

    2003-03-01

    Autonomic nervous system (ANS) dysfunction is common in Parkinson's disease (PD), affects 70% to 80% of patients, and causes significant morbidity and discomfort. Autonomic nervous system dysfunction symptoms in PD include sexual dysfunction, swallowing and gastrointestinal disorders, bowel and bladder abnormalities, sleep disturbances, and derangements of cardiovascular regulation, particularly, orthostatic hypotension. Autonomic nervous system dysfunction in PD may be caused by an underlying degenerative process that affects the autonomic ganglia, brainstem nuclei, and hypothalamic nuclei. Anti-parkinsonian medications can cause or worsen symptoms of ANS dysfunction. The care of a PD patient with ANS dysfunction relies on its recognition and directed treatment, including coordinated care between the neurologist and appropriate subspecialist. Pharmacotherapy may be useful to treat orthostasis, gastrointestinal, urinary, and sexual dysfunction.

  9. Autonomic html interface generator for web applications

    CERN Document Server

    Bassil, Youssef; 10.5121/ijwest.2012.3104

    2012-01-01

    Recent advances in computing systems have led to a new digital era in which every area of life is nearly interrelated with information technology. However, with the trend towards large-scale IT systems, a new challenge has emerged. The complexity of IT systems is becoming an obstacle that hampers the manageability, operability, and maintainability of modern computing infrastructures. Autonomic computing popped up to provide an answer to these ever-growing pitfalls. Fundamentally, autonomic systems are self-configuring, self-healing, self-optimizing, and self-protecting; hence, they can automate all complex IT processes without human intervention. This paper proposes an autonomic HTML web-interface generator based on XML Schema and Style Sheet specifications for self-configuring graphical user interfaces of web applications. The goal of this autonomic generator is to automate the process of customizing GUI web-interfaces according to the ever-changing business rules, policies, and operating environment with th...

  10. AGATE: Autonomous Go and Touch Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation (AGATE, for Autonomous Go And Touch Exploration) will enable single-sol "go and touch" instrument placement from distances of up to five meters for...

  11. The Acoustic Signal of a Helicopter can be Used to Track it With Seismic Arrays

    Science.gov (United States)

    Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert

    2016-04-01

    We apply traditional frequency domain methods usually applied to volcanic tremor on seismic recordings of a helicopter. On a volcano the source can be repeating, closely spaced earthquakes whereas for a helicopter the source are repeating pressure pulses from the rotor blades that are converted through acoustic-to-seismic coupling. In both cases the seismic signal is referred to as tremor. As frequency gliding is in this case merely caused by the Doppler effect, not a change in the source, we can use its shape to deduce properties of the helicopter. We show in this analysis that the amount of rotor blades, rotor revolutions per minute (RPM), flight direction, height and location can be deduced. The signal was recorded by a seven station broadband array with an aperture of 1.6 km. Our spacing is close enough to record the signal at all stations and far enough to observe traveltime differences. We perform a detailed spectral and location analysis of the signal, and compare our results with the known information on the helicopter's speed, location, height, the frequency of the blades rotation and the amount of blades. This analysis is based on the characteristic shape of the curve i.e. speed of the gliding, minimum and maximum fundamental frequency, amplitudes at the inflection points at different stations and traveltimes deduced from the inflection points at different stations. The helicopter GPS track gives us a robust way of testing the method. This observation has an educative value, because the same principles can be applied to signals in different disciplines.

  12. Autonomic contributions to empathy: evidence from patients with primary autonomic failure.

    Science.gov (United States)

    Chauhan, Bina; Mathias, Christopher J; Critchley, Hugo D

    2008-06-01

    Empathy for the emotions of others may require simulatory engagement of corresponding autonomic arousal states. We tested the hypothesis that disruption of autonomic control impairs the ability to empathize emotionally with others. Fifteen patients with primary autonomic failure showed attenuated scores on the Mehrabian Balanced Emotional Empathy Scale (BEES), compared to both younger and older controls. This effect was not accounted for by age, gender, mood state or functional disability. These early observations provide preliminary evidence for a direct contribution of autonomic responsivity to the 'higher-order' social cognitive process of empathy, and may inform the dynamics of supportive care.

  13. Semi-Autonomous Vehicle Project

    Science.gov (United States)

    Stewart, Christopher

    2016-01-01

    The primary objective this summer is "evaluating standards for wireless architecture for the internet of things". The Internet of Things is the network of physical objects or "things" embedded with electronics, software, sensors and network connectivity which enables these objects to collect and exchange data and make decisions based on said data. This was accomplished by creating a semi-autonomous vehicle that takes advantage of multiple sensors, cameras, and onboard computers and combined them with a mesh network which enabled communication across large distances with little to no interruption. The mesh network took advantage of what is known as DTN - Disruption Tolerant Networking which according to NASA is the new communications protocol that is "the first step towards interplanetary internet." The use of DTN comes from the fact that it will store information if an interruption in communications is detected and even forward that information via other relays within range so that the data is not lost. This translates well into the project because as the car moves further away from whatever is sending it commands (in this case a joystick), the information can still be forwarded to the car with little to no loss of information thanks to the mesh nodes around the driving area.

  14. Autonomic dysregulation in headache patients.

    Science.gov (United States)

    Gass, Jason J; Glaros, Alan G

    2013-12-01

    To analyze autonomic nervous system activity in headache subjects, measurements of heart rate variability (HRV), skin temperature, skin conductance, and respiration were compared to a matched control group. HRV data were recorded in time and frequency domains. Subjects also completed self-report questionnaires assessing psychological distress, fatigue, and sleep dysfunction. Twenty-one headache and nineteen control subjects participated. In the time domain, the number of consecutive R-to-R intervals that varied by more than 50 ms and the standard deviation of the normalized R-to-R intervals, both indices of parasympathetic nervous system activity, were significantly lower in the headache group than the control group. Groups did not differ statistically on HRV measures in the frequency domain. Self-report measures showed significantly increased somatization, hostility, anxiety, symptom distress, fatigue, and sleep problems in the headache group. The results suggest headache subjects have increased sympathetic nervous system activity and decreased parasympathetic activity compared to non-headache control subjects. Headaches subjects also showed greater emotional distress, fatigue, and sleep problems. The results indicate an association between headaches and cardiovascular functioning suggestive of sympathetic nervous system activation in this sample of mixed migraine and tension-type headache sufferers. PMID:23912525

  15. Autonomous Systems Developments and Trends

    CERN Document Server

    Kyamaky, Kyandoghere; Kacprzyk, Janusz

    2012-01-01

    The Workshops on Autonomous Systems emanated from a gathering with the doctoral students of just three chairs at Fernuniversität in Hagen, which we organise twice per year for a number of years now. Their purpose is to discuss on-going research and to create a community spirit. Furthermore, they serve as a means of structuring the students' research processes. The workshop has grown and matured in several respects. The doctoral students presenting their work do not come from a single university anymore, but from three. Besides them and their supervisors, also other scientists became interested in the event and contribute to its programme. Following the model of Advanced Study Institutes, they are available on the premises for relaxed, informal discussions outside the formal sessions. Finally, with the co-sponsorship of Gesellschaft für Informatik, the German Computer Society, and this surprisingly comprehensive volume of contributions published by Springer-Verlag the workshop turned into a visible scientifi...

  16. Autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  17. Mechanical Autonomous Stochastic Heat Engine

    Science.gov (United States)

    Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara

    2016-07-01

    Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.

  18. Environmental data collection using autonomous Wave Gliders

    OpenAIRE

    Hermsdorfer, Kathryn M.

    2014-01-01

    Approved for public release; distribution is unlimited The Sensor Hosting Autonomous Remote Craft (SHARC), also known as Wave Glider, is an autonomous ocean vehicle powered by wave motion. This slow-moving platform makes long-term deployments and environmental data collection feasible, especially in data sparse regions or hazardous environments. The standard SHARC hosts a meteorological station (Airmar PB200) that samples air pressure, temperature, wind speed and wind direction at 1.12 m. ...

  19. A middleware architecture for autonomic software deployment

    OpenAIRE

    Matougui, Mohamed El Amine; LERICHE, Sébastien

    2012-01-01

    International audience Autonomic software deployment in open networked environments such as mobile and ad hoc networks is an open issue. Some solutions to software deployment exist; but, they are usable only within static topologies of devices. We propose a middleware architecture providing a constraint-based language guiding the deployment process at a high level and an autonomous agent-based system for establishing and maintaining a software deployment according to a deployment plan. Con...

  20. Decentralized Coordination of Autonomous Vehicles at intersections

    OpenAIRE

    Makarem, Laleh; Gillet, Denis

    2011-01-01

    In this paper, the decentralized coordination of point-mass autonomous vehicles at intersections using navigation functions is considered. As main contribution, the inertia of the vehicles is taken into account to enable on-board energy optimization for crossing. In such a way, heavier vehicles that need more energy and time for acceleration or breaking are given an indirect priority at intersections. The proposed decentralized coordination scheme of autonomous vehicles at intersection is com...

  1. Omnidirectional Stereo Vision for Autonomous Vehicles

    OpenAIRE

    Schönbein, Miriam

    2014-01-01

    Environment perception with cameras is an important requirement for many applications for autonomous vehicles and robots. This work presents a stereoscopic omnidirectional camera system for autonomous vehicles which resolves the problem of a limited field of view and provides a 360° panoramic view of the environment. We present a new projection model for these cameras and show that the camera setup overcomes major drawbacks of traditional perspective cameras in many applications.

  2. TRIDENT: A Framework for Autonomous Underwater Intervention

    OpenAIRE

    Sanz Valero, Pedro José; Ridao, Pere; Oliver, Gabriel; Melchiorri, Claudio; Casalino, Giuseppe; Silvestre, Carlos; Petillot, Yvan; Turetta, Alessio

    2011-01-01

    TRIDENT is a STREP project recently approved by the European Commission whose proposal was submitted to the ICT call 4 of the 7th Framework Program. The project proposes a new methodology for multipurpose underwater intervention tasks. To that end, a cooperative team formed with an Autonomous Surface Craft and an Intervention Autonomous Underwater Vehicle will be used. The proposed methodology splits the mission in two stages mainly devoted to survey and intervention tasks, res...

  3. Visual navigation for an autonomous mobile vehicle

    OpenAIRE

    Peterson, Kevin Robert

    1992-01-01

    Approved for public release; distribution is unlimited Image understanding for a mobile robotic vehicle is an important and complex task for ensuring safe navigation and extended autonomous operations. The goal of this work is to implement a working vision-based navigation control mechanism within a known environment onboard the autonomous mobile vehicle Yamabico-II. Although installing a working hardware system was not accomplished, the image processing, model description, pattern match...

  4. Automated cartography by an autonomous mobile robot

    OpenAIRE

    Merrell, Mark L.

    1999-01-01

    The major goal of this thesis was to create a map of a room by an autonomous mobile robot using the robot's internal odometry measurements and ultrasonic sensors. Yamabico, an autonomous mobile robot, will be controlled by Model-based Mobile robot Language (MML). The research for this thesis included the development of an algorithm to use information from the line-fitting capability of MML. It also included research about the inherent errors that are incurred using sonar for precise measureme...

  5. Control of the MARES Autonomous Underwater Vehicle

    OpenAIRE

    Bruno Ferreira; Miguel Pinto; Anibal Matos; Nuno Cruz

    2009-01-01

    This paper focuses the control problem of a nonholonomic autonomous underwater vehicle, moving in the tridimensional space. The dynamic of a body in submarine environments is strongly nonlinear. This implies that classical linear controllers are often inadequate whereby Lyapunov theory is here considered. Methods based in this theory are promising tools to design controllers and are applied to the case of MARES, a small-sized autonomous underwater vehicle. Several controllers based only on Ly...

  6. Autonomous vehicle development for vertical submarine observation

    OpenAIRE

    Gomáriz Castro, Spartacus; Prat Tasias, Jordi; Arbós, Alejandro; Viñolo Monzoncillo, Carlos; Pallares, Oriol

    2009-01-01

    This work proposes the development of an ocean observation vehicle. This vehicle, a hybrid between Autonomous Underwater Vehicles (AUV) and Autonomous Surface Vehicles (ASV) moves on the surface of the sea and makes vertical immersions to obtain the profiles of a water column according to a pre-established plan. Its design provides lower production cost and higher efficiency. GPS navigation allows the platform to move along the surface of the water while a radio-modem provid...

  7. Operations on Rigid Formations of Autonomous Agents

    OpenAIRE

    Eren, Tolga; Anderson, Brian D. O.; Morse, A. Stephen; Whiteley, Walter; Belhumeur, Peter N.

    2003-01-01

    This paper is concerned with the maintenance of rigid formations of mobile autonomous agents. A key element in all future multi-agent systems will be the role of sensor and communication networks as an integral part of coordination. Network topologies are critically important for autonomous systems involving mobile underwater, ground and air vehicles and for sensor networks. This paper focuses on developing techniques and strategies for the analysis and design of sensor a...

  8. Autonomous control systems - Architecture and fundamental issues

    Science.gov (United States)

    Antsaklis, P. J.; Passino, K. M.; Wang, S. J.

    1988-01-01

    A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).

  9. Advancing Autonomous Operations for Deep Space Vehicles

    Science.gov (United States)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  10. [Autonomic dysfunction syndrome and diabetic cardiac autonomic neuropathy in children with diabetes mellitus type I. The correction method].

    Science.gov (United States)

    Manukian, V Iu; Bolotova, N V; Aver'ianov, A P; Filina, N Iu; Raĭgorodskiĭ, Iu M

    2011-01-01

    We assessed the state of the autonomic nervous system in 90 children with diabetes mellitus type I. The autonomic dysfunction syndrome was found in 58,9% and diabetic cardiac autonomic neuropathy in 28,9% of patients. We revealed the high risk of the development of diabetic cardiac autonomic neuropathy in children with diabetes mellitus type I in the presence of the autonomic dysfunction syndrome. It has been shown that the early treatment of functional disturbances of the autonomic nervous system using transcranial magnetic stimulation is necessary to prevent the manifestation of diabetic cardiac autonomic neuropathy.

  11. Technology for vertical flight. 5. Flight control and autopilot; Helicopter kogaku no kiso to oyo. 5. soju sochi to jidoka

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Y.; Yamada, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    2000-03-05

    The paper explained a flight control of helicopter. Fundamental compositional elements of the flight control of helicopter are a pilot operating device, linkage, centering device/trimming gear, and actuator. The related device is an autopilot which is for controllability and reduction of work loads of pilot. In the fixed wing aircraft, the wing generating lift, engine giving thrust, and aileron/rudder/elevator in charge of control are playing each role. However, in helicopter, a rotor plays 3 roles: lift generation, going ahead, and control of fuselage. As to the control method, the control stick and pedal are operated in the fixed wing aircraft, and the cyclic stick and pedal are operated also in helicopter. In addition, another control stick, collective stick, is also operated. In this operation, lift of rotor increases/decreases to control the vertical movement of fuselage. (NEDO)

  12. Utilization of 3-D Imaging Flash Lidar Technology for Autonomous Safe Landing on Planetary Bodies

    Science.gov (United States)

    Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrotter, Diego; Busch, George; Bulyshev, Alexander

    2010-01-01

    NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight computer can use the 3-D map of terrain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing aircraft. The aircraft flight tests were performed over Moon-like terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.

  13. Compact Autonomous Hemispheric Vision System

    Science.gov (United States)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  14. Improved autonomous star identification algorithm

    Science.gov (United States)

    Luo, Li-Yan; Xu, Lu-Ping; Zhang, Hua; Sun, Jing-Rong

    2015-06-01

    The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014_CXJJ-DH_12), the Fundamental Research Funds for the Central Universities, China (Grant Nos. JB141303 and 201413B), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), and the Xi’an Science and Technology Plan, China (Grant. No CXY1350(4)).

  15. An Examination of Headset, Hearing Sensitivity, Flight Workload, and Communication Signal Quality on Black Hawk Helicopter Simulator Pilot Performance

    OpenAIRE

    Casto, Kristen Lee

    2009-01-01

    Among the many occupational hazards to which Army rotary-wing aviators are exposed is intense noise generated from the aircraft. The potential for permanent hearing loss and difficulty communicating in helicopter noise is well known; an appropriate way to evaluate a hearing-impaired pilotâ s safety risk due to hearing loss is not as well known. Previous research has studied communication ability in helicopter cockpit noise under different headsets, but there are not conclusive data on the ...

  16. Estimation of Rice Crop Quality and Harvest Amount from Helicopter Mounted NIR Camera Data and Remote Sensing Satellite Data

    OpenAIRE

    Kohei Arai; Masanoori Sakashita; Osamu Shigetomi; Yuko Miura

    2015-01-01

    Estimation of rice crop quality and harvest amount in paddy fields with the different rice stump density derived from helicopter mounted NIR camera and remote sensing satellite data is made. Using the intensive study site of rice paddy fields with managing, estimation of protein content in rice crop and nitrogen content in rice leaves through regression analysis with Normalized Difference Vegetation Index: NDVI derived from camera mounted on a radio-control helicopter is made together with ha...

  17. Relation between Rice Crop Quality (Protein Content) and Fertilizer Amount as Well as Rice Stump Density Derived from Helicopter Data

    OpenAIRE

    Kohei Arai; Masanoori Sakashita; Osamu Shigetomi; Yuko Miura

    2015-01-01

    Relation between protein content in rice crops and fertilizer amount as well as rice stump density is clarified with a multi-spectral camera data mounted on a radio-wave controlled helicopter. Estimation of protein content in rice crop and total nitrogen content in rice leaves through regression analysis with Normalized Difference Vegetation Index: NDVI derived from camera mounted radio-controlled helicopter is already proposed. Through experiments at rice paddy fields which is situated at Sa...

  18. Capability of State-of-the-Art Navier-Stokes Solvers for the Prediction of Helicopter Fuselage Aerodynamics

    DEFF Research Database (Denmark)

    N., Kroll; P., Renzoni; M., Amato;

    1998-01-01

    The purpose of this paper is to describe the influence of different Navier-Stokes solvers and grids on the prediction of the global coefficients for a simplified geometry of a helicopter fuselage.......The purpose of this paper is to describe the influence of different Navier-Stokes solvers and grids on the prediction of the global coefficients for a simplified geometry of a helicopter fuselage....

  19. System Research Of Multi-Barrel Machine Guns Installed On Board Of The Helicopter Of Mi-17 Type

    Directory of Open Access Journals (Sweden)

    Bęczkowski Grzegorz

    2015-08-01

    Full Text Available This article presents tests of a multi-barreled machine gun system built on board of a helicopter. The described weapon system consists of three 7.62 mm M-134G multi-barreled machine guns built on the designed frames of shooting positions located in the escape hatch window, the side doors and the rear doors of the transport cabin of the Mi-17-1V helicopter.

  20. Autonomous and autonomic systems with applications to NASA intelligent spacecraft operations and exploration systems

    CERN Document Server

    Truszkowski, Walt; Rouff, Christopher; Karlin, Jay; Rash, James; Hinchey, Michael; Sterritt, Roy

    2009-01-01

    This book provides an in-depth discussion of autonomous and autonomic systems, their interdependencies, differences and similarities. Current and pending issues in these evermore increasingly important subjects are highlighted and discussed. Concepts, ideas and experiences are explored in relation to real-life NASA systems in spacecraft control and in the exploration domain.

  1. Supervised autonomous robotic soft tissue surgery.

    Science.gov (United States)

    Shademan, Azad; Decker, Ryan S; Opfermann, Justin D; Leonard, Simon; Krieger, Axel; Kim, Peter C W

    2016-05-01

    The current paradigm of robot-assisted surgeries (RASs) depends entirely on an individual surgeon's manual capability. Autonomous robotic surgery-removing the surgeon's hands-promises enhanced efficacy, safety, and improved access to optimized surgical techniques. Surgeries involving soft tissue have not been performed autonomously because of technological limitations, including lack of vision systems that can distinguish and track the target tissues in dynamic surgical environments and lack of intelligent algorithms that can execute complex surgical tasks. We demonstrate in vivo supervised autonomous soft tissue surgery in an open surgical setting, enabled by a plenoptic three-dimensional and near-infrared fluorescent (NIRF) imaging system and an autonomous suturing algorithm. Inspired by the best human surgical practices, a computer program generates a plan to complete complex surgical tasks on deformable soft tissue, such as suturing and intestinal anastomosis. We compared metrics of anastomosis-including the consistency of suturing informed by the average suture spacing, the pressure at which the anastomosis leaked, the number of mistakes that required removing the needle from the tissue, completion time, and lumen reduction in intestinal anastomoses-between our supervised autonomous system, manual laparoscopic surgery, and clinically used RAS approaches. Despite dynamic scene changes and tissue movement during surgery, we demonstrate that the outcome of supervised autonomous procedures is superior to surgery performed by expert surgeons and RAS techniques in ex vivo porcine tissues and in living pigs. These results demonstrate the potential for autonomous robots to improve the efficacy, consistency, functional outcome, and accessibility of surgical techniques. PMID:27147588

  2. Cutaneous autonomic denervation in Parkinson's disease.

    Science.gov (United States)

    Navarro-Otano, Judith; Casanova-Mollà, Jordi; Morales, Merche; Valls-Solé, Josep; Tolosa, Eduard

    2015-08-01

    Numerous studies have detailed involvement of the peripheral autonomic nervous system (PANS) in Parkinson's disease (PD). We assessed autonomic innervation of dermal annexes through quantitative fluorescence measurement from skin obtained via punch biopsies at distal leg region in PD and control subjects. We defined a ratio between the area corresponding to protein gen product (PGP) immunoreactivity and the area corresponding to blood vessel or sweat gland as a quantitative measure of autonomic innervation. Presence of alpha-synuclein (AS) deposits in dermis and hypodermis was also assessed by immunohistochemistry. Skin biopsies form six PD patients and six healthy controls were studied. Autonomic innervation scores were lower in PD than in controls in both blood vessels and sweat glands. No AS or phosphorylated AS (pAS) immunoreactivity was detected in dermis or hypodermis in any of the studied subjects. The results of this investigation suggest that autonomic innervation of dermal annexes in living patients with PD is reduced compared to controls. AS or pAS deposits were not found in dermis or hypodermis suggesting that distal leg skin study is not useful for in vivo detection of AS in PD.

  3. Cardiovascular autonomic dysfunction in Parkinson's disease.

    Science.gov (United States)

    Ziemssen, Tjalf; Reichmann, Heinz

    2010-02-15

    Symptoms of cardiovascular dysautonomia are a common occurrence in Parkinson's disease (PD). In addition to this dysautonomia as part of PD itself, dysfunction of the autonomic nervous system (ANS) can be triggered as a side-effect of drug treatment interacting with the ANS or - if prominent and early - an indication of a different disease such as multiple system atrophy (MSA). Various diagnostic tests are available to demonstrate autonomic failure. While autonomic function tests can differentiate parasympathetic from sympathetic dysfunction, cardiac imaging can define the pathophysiologically involved site of a lesion. Standard tests such as 24-h ambulatory blood pressure measurements can identify significant autonomic failure which needs treatment. The most frequent and disturbing symptom of cardiovascular autonomic dysfunction is orthostatic hypotension. Symptoms include generalized weakness, light-headiness, mental "clouding" up to syncope. Factors like heat, food, alcohol, exercise, activities which increase intrathoraric pressure (e.g. defecation, coughing) and certain drugs (e.g. vasodilators) can worsen a probably asymptomatic orthostatic hypotension. Non-medical and medical therapies can help the patient to cope with a disabling symptomatic orthostatic hypotension. Supine hypertension is often associated with orthostatic hypotension. The prognostic role of cardiovagal and baroreflex dysfunction is still not yet known.

  4. Autonomous Learning and Improving Communicative Competence

    Institute of Scientific and Technical Information of China (English)

    李宝红; 孙晓黎

    2013-01-01

    Nowadays, English as a world language becomes more and more important. Consequently, English learning becomes more and more popular. As we know, an important object for English learners is to improve their communicative competence. So autonomous learning is a good way to improve communicative competence. In this paper, two terms, autonomous learning and communicative competence, and their relationship will be introduced from the perspective of English learning. Autonomous learning is self-managed learning, which is contrary to passive learning and mechanical learning, according to intrinsic property of language learning. Communicative competence is a concept introduced by Dell Hymes and is discussed and refined by many oth⁃er linguists. According to Hymes, communicative competence is the ability not only to apply the grammatical rules of language in order to form grammatically correct sentences but also to know when and where to use these sentences and to whom. Communi⁃cative competence includes 4 aspects: Possibility, feasibility, appropriateness and performance. Improving communicative compe⁃tence is the result of autonomous learning, autonomous learning is the motivation of improving communicative competence. English, of course, is a bridge connecting China to the world, and fostering students’communicative competence through auton⁃omous learning is the vital element of improving English learning in China.

  5. Law of Torsional Vibration and Discussion on Vibration Suppression Based on Helicopter/Engine System

    Science.gov (United States)

    Miao, Lizhen; Zhang, Haibo; Ning, Jingtao

    2016-04-01

    With both the advantages like attacking close targets and the disadvantages especially like dynamic coupling, helicopter deserves more investigations these days. This paper did dynamic study both in a simplified and a multi-degree of freedom, comprehensive helicopter model, so that to reveal the law of torsional vibration. In the simplified model, the law how arbitrary parameter affects the first-order vibration mode, is discussed. Then, the validation is done in a multi-degree of freedom model by means of the fast Fourier transformation (FFT) method. In this case, how the low-frequency vibration mode relates with the first-order vibration mode is clearly presented, as well as the research direction to design a filter. Lastly, a simple filter is designed with some simulations.

  6. Integral Sliding Mode Control for Helicopter via Disturbance Observer and Quantum Information Technique

    Directory of Open Access Journals (Sweden)

    Qiang Qu

    2015-01-01

    Full Text Available A novel self-repairing control scheme is proposed for a helicopter with unknown disturbance. Firstly, a disturbance observer is introduced to observe the disturbance of the system, which can produce corresponding control signals according to the disturbance signals. Secondly, an integral sliding mode controller is designed to compensate the unobserved disturbance and uncertainties. All of the closed-loop poles can be arbitrarily placed and the output errors converge to zero effectively through the controller. Besides, a robust closed-loop system against disturbance and parameter uncertainties is achieved. In addition, quantum information technique is used to increase the self-repairing control accuracy of helicopter. Finally, simulation results demonstrate the effectiveness and feasibility of the proposed self-repairing control scheme.

  7. Specific exercise training for reducing neck and shoulder pain among military helicopter pilots and crew members

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling;

    2015-01-01

    BACKGROUND: Flight-related neck/shoulder pain is frequent among military helicopter pilots and crew members. With a lifetime prevalence of 81 % for pilots and 84 % for crew members, the prevalence of neck pain is considered high compared to the general population. The aim of this study...... was to investigate whether a specifically tailored exercise intervention would reduce the prevalence and incidence rate of neck/shoulder pain among helicopter pilots and crew members. METHOD: This study used a prospective, parallel group, single blinded, randomized controlled design. Participants were military...... status at enrollment, and 3) operational flying within the previous 6 months. Primary outcome was change in neck and shoulder pain assessed by 1) a modified version of the "Standardized Nordic questionnaire for the analysis of musculoskeletal symptoms" and by 2) pressure pain threshold measurements...

  8. Experimental study of flight noise on AS350B2 helicopter

    Institute of Scientific and Technical Information of China (English)

    WANG Huaming; ZHANG Qiang; HU Zhangwei; BAO Jinsong

    2005-01-01

    A joint flight experiment is conducted by China Aviation Establishment and German Aerospace Center on an Aerospatiale AS350B2 helicopter to investigate rotorcraft flight acoustics at Pingfang airport, Harbing City, China. This paper briefly introduces the methodologies and facilities used in the flight tests. The flight exposure noise levels for ten test flight conditions are showed in the paper and harmonic spectrum and wavelet analysis methods are used for the noise test data processing, which are measured in the flight test in taking off, climbing, forward and descent flight conditions. Results show that the flight noise levels are relatively higher in the climbing and descending flight conditions. The flight noise comes mainly from the tail rotor for the climbing and from the main rotor due to the blade vortex interaction (BVI) for the descending flight conditions. The highest noise level occurs in the forward rotating blade side when the helicopter flys at moderate speed with about 6° descending slide angle.

  9. Prediction and measurement of low-frequency harmonic noise of a hovering model helicopter rotor

    Science.gov (United States)

    Aggarawal, H. R.; Schmitz, F. H.; Boxwell, D. A.

    Far-field acoustic data for a model helicopter rotor have been gathered in a large open-jet, acoustically treated wind tunnel with the rotor operating in hover and out of ground-effect. The four-bladed Boeing 360 model rotor with advanced airfoils, planform, and tip shape was run over a range of conditions typical of today's modern helicopter main rotor. Near in-plane acoustic measurements were compared with two independent implementations of classical linear theory. Measured steady thrust and torque were used together with a free-wake analysis (to predict the thrust and drag distributions along the rotor radius) as input to this first-principles theoretical approach. Good agreement between theory and experiment was shown for both amplitude and phase for measurements made in those positions that minimized distortion of the radiated acoustic signature at low-frequencies.

  10. Evaluation of speech recognizers for use in advanced combat helicopter crew station research and development

    Science.gov (United States)

    Simpson, Carol A.

    1990-01-01

    The U.S. Army Crew Station Research and Development Facility uses vintage 1984 speech recognizers. An evaluation was performed of newer off-the-shelf speech recognition devices to determine whether newer technology performance and capabilities are substantially better than that of the Army's current speech recognizers. The Phonetic Discrimination (PD-100) Test was used to compare recognizer performance in two ambient noise conditions: quiet office and helicopter noise. Test tokens were spoken by males and females and in isolated-word and connected-work mode. Better overall recognition accuracy was obtained from the newer recognizers. Recognizer capabilities needed to support the development of human factors design requirements for speech command systems in advanced combat helicopters are listed.

  11. An analysis of the efficiency of Coanda - NOTAR anti-torque systems for small helicopters

    Directory of Open Access Journals (Sweden)

    Mircea BOŞCOIANU

    2010-12-01

    Full Text Available The use of jet thrust for anti-torque for monorotor small helicopters is based on thecirculation control concept, which result in a distributed side force along the entire tail boomassembly. High velocity jets of air from a pressurized tail boom is blown tangential to the surface outof narrow slots that run lengthwise on the side of the tail boom. In combination with the downstreamvelocity produced by the main rotor, Coanda jets cause the flow to remain attached to the tail boomsurface. The anti-torque NOTAR system is in fact the result of Coanda effect and the interest is toanalyze the efficiency of replacing the tail rotor on a small monorotor helicopter.

  12. Sensor selection of helicopter transmission systems based on physical model and sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    Lyu Kehong; Tan Xiaodong; Liu Guanjun; Zhao Chenxu

    2014-01-01

    In the helicopter transmission systems, it is important to monitor and track the tooth damage evolution using lots of sensors and detection methods. This paper develops a novel approach for sensor selection based on physical model and sensitivity analysis. Firstly, a physical model of tooth damage and mesh stiffness is built. Secondly, some effective condition indicators (CIs) are presented, and the optimal CIs set is selected by comparing their test statistics according to Mann-Kendall test. Afterwards, the selected CIs are used to generate a health indicator (HI) through sen slop estimator. Then, the sensors are selected according to the monotonic relevance and sensitivity to the damage levels. Finally, the proposed method is verified by the simulation and experimental data. The results show that the approach can provide a guide for health monitor-ing of helicopter transmission systems, and it is effective to reduce the test cost and improve the system’s reliability.

  13. The effect of trans-cockpit authority gradient on Navy/Marine helicopter mishaps.

    Science.gov (United States)

    Alkov, R A; Borowsky, M S; Williamson, D W; Yacavone, D W

    1992-08-01

    Navy and Marine Corps helicopter mishaps which had a pilot causal factor assigned were examined to determine if the relative military rank of the pilot and copilot was associated with the rate of occurrence per 100,000 flight hours. All class A and B helicopter flight mishaps for the 11 calendar year period 1980-1990 were examined. Although no statistically significant differences were noted, pairing pilots who were of equal rank yielded the lowest rate, seemingly refuting Elwyn Edward's notion that a flat "trans-cockpit authority gradient" may lead to greater problems in the cockpit than his hypothetical "optimum gradient." Moreover, when copilots flew with pilots who differed by two or more ranks, the largest pilot error rate was revealed. This last finding seems to support Edward's hypothesis that a steep "trans-cockpit authority gradient" may be detrimental to aviation safety.

  14. Sensor selection of helicopter transmission systems based on physical model and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Lyu Kehong

    2014-06-01

    Full Text Available In the helicopter transmission systems, it is important to monitor and track the tooth damage evolution using lots of sensors and detection methods. This paper develops a novel approach for sensor selection based on physical model and sensitivity analysis. Firstly, a physical model of tooth damage and mesh stiffness is built. Secondly, some effective condition indicators (CIs are presented, and the optimal CIs set is selected by comparing their test statistics according to Mann–Kendall test. Afterwards, the selected CIs are used to generate a health indicator (HI through sen slop estimator. Then, the sensors are selected according to the monotonic relevance and sensitivity to the damage levels. Finally, the proposed method is verified by the simulation and experimental data. The results show that the approach can provide a guide for health monitoring of helicopter transmission systems, and it is effective to reduce the test cost and improve the system’s reliability.

  15. Boosting multi-features with prior knowledge for mini unmanned helicopter landmark detection

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Without sufficient real training data, the data driven classification algorithms based on boosting method cannot solely be utilized to applications such as the mini unmanned helicopter landmark image detection. In this paper, we propose an approach which uses a boosting algorithm with the prior knowledge for the mini unmanned helicopter landmark image detection. The stage forward stagewise additive model of boosting is analyzed, and the approach how to combine it with the prior knowledge model is presented. The approach is then applied to landmark image detection, where the multi-features are boosted to solve a series of problems, such as rotation, noises affected, etc. Results of real flight experiments demonstrate that for small training examples the boosted learning system using prior knowledge is dramatically better than the one driven by data only.

  16. On the use of first order rotor dynamics in multiblade coordinates. [for compound helicopter

    Science.gov (United States)

    Hohenemser, K. H.; Yin, S. K.

    1974-01-01

    This paper is directed to the question of how to represent most efficiently rotor/body coupling in a linear flight dynamics analysis. Rigid body pitch, roll and vertical motions are considered for the rotor/body coupling studies. Flapping stability limits, eigenvalues, transient responses to control step inputs, to step gusts and to random gusts are determined for a hypothetical hingeless compound helicopter operating up to .8 advance ratio. Data are obtained for the basic helicopter and for the craft with two simple control feedback systems. While complete periodic system modeling is necessary for determining flapping stability limits and vibrations, constant system modeling using first order dynamics in each of the multiblade rotor coordinates was found to be adequate for rotor-craft stability and response computations.

  17. Design of a Stability Augmentation System for an Unmanned Helicopter Based on Adaptive Control Techniques

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The task of control of unmanned helicopters is rather complicated in the presence of parametric uncertainties and measurement noises. This paper presents an adaptive model feedback control algorithm for an unmanned helicopter stability augmentation system. The proposed algorithm can achieve a guaranteed model reference tracking performance and speed up the convergence rates of adjustable parameters, even when the plant parameters vary rapidly. Moreover, the model feedback strategy in the algorithm further contributes to the improvement in the control quality of the stability augmentation system in the case of low signal to noise ratios, mainly because the model feedback path is noise free. The effectiveness and superiority of the proposed algorithm are demonstrated through a series of tests.

  18. Continuous Trailing-Edge Flaps for Primary Flight Control of a Helicopter Main Rotor

    Science.gov (United States)

    Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Sekula, Martin K.; Shen, Jinwei

    2014-01-01

    The use of continuous trailing-edge flaps (CTEFs) for primary flight control of a helicopter main rotor is studied. A practical, optimized bimorph design with Macro-Fiber Composite actuators is developed for CTEF control, and a coupled structures and computational fluid dynamics methodology is used to study the fundamental behavior of an airfoil with CTEFs. These results are used within a comprehensive rotorcraft analysis model to study the control authority requirements of the CTEFs when utilized for primary flight control of a utility class helicopter. A study of the effect of blade root pitch index (RPI) on CTEF control authority is conducted, and the impact of structural and aerodynamic model complexity on the comprehensive analysis results is presented. The results show that primary flight control using CTEFs is promising; however, a more viable option may include the control of blade RPI, as well.

  19. Flight tests with enhanced/synthetic vision system for rescue helicopter

    Science.gov (United States)

    Tsuda, Hiroka; Funabiki, Kohei; Iijima, Tomoko; Tawada, Kazuho; Yoshida, Takashi

    2011-06-01

    JAXA (Japan Aerospace Exploration Agency) has been conducting a research project named SAVERH (Situation Awareness and Visual Enhancer for Rescue Helicopter) with Shimadzu Corporation and NEC from 2008. SAVERH aims at inventing a method of presenting suitable information to the pilot to support search and rescue missions. An integrated system comprising an HMD (Helmet-Mounted Display) and a FLIR (Forward Looking Infrared) sensor were installed in a JAXA research helicopter, and a series of flight tests was conducted to evaluate the benefit of presenting FLIR images on the HMD in night flight. Three pilots evaluated the display system during six night flights, considering terrain and position awareness. The tests showed that use of FLIR gave better route tracking performance, and the effectiveness of head-slaved FLIR on an approach task was shown by subjective pilot rating.

  20. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  1. Loads and Performance Data from a Wind-Tunnel Test of Generic Model Helicopter Rotor Blades

    Science.gov (United States)

    Yeager, William T., Jr.; Wilbur, Matthew L.

    2005-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to acquire data for use in assessing the ability of current and future comprehensive analyses to predict helicopter rotating-system and fixed-system vibratory loads. The investigation was conducted with a generic model helicopter rotor system using blades with rectangular planform, no built-in twist, uniform radial distribution of mass and stiffnesses, and a NACA 0012 airfoil section. Rotor performance data, as well as mean and vibratory components of blade bending and torsion moments, fixed-system forces and moments, and pitch link loads were obtained at advance ratios up to 0.35 for various combinations of rotor shaft angle-of-attack and collective pitch. The data are presented without analysis.

  2. Development of circumferential seal for helicopter transmissions: Results of bench and flight tests

    Science.gov (United States)

    Strom, T. N.; Ludwig, L. P.

    1975-01-01

    A modified circumferential segmented ring seal was designed for direct replacement of a helicopter transmission elastomeric lip seal operating on a shaft diameter of 13.91 centimeters (5.481 in.) at sliding velocities to 52.48 m/sec (10 330 ft/min). The modifications involved the garter spring tension, shaft roundness, seal housing flatness, and pumping grooves to inhibit leakage. Operation of the seals in bench tests under simulated helicopter transmission conditions revealed that the seal leakage rate was within acceptable limits and that the wear rate was negligible. The low leakage and wear rates were confirmed in flight tests of 600 and 175 hours (sliding speed, 48.11 m/sec (9470 ft/min)). An additional 200 hours of air worthiness qualification testing (aircraft tie down) demonstrated that the seal can operate at the advanced sliding conditions of 52.48 m/sec (10 330 ft/min).

  3. Modeling and Backstepping-based Nonlinear Control Strategy for a 6 DOF Quadrotor Helicopter

    Institute of Scientific and Technical Information of China (English)

    Ashfaq Ahmad Mian; Wang Daobo

    2008-01-01

    In this article,a nonlinear model of an underactuated six degrees of freedom (6 DOF) quadrotor helicopter is derived on the basis of the Newton-Euler formalism.The derivation comprises determining equations of the motion of the quadrotor in three dimensions andapproximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics.The derived modelcomposed of translatioual and rotational subsystems is dynamically unstable,so a sequential nonlinear control strategy is used.The con-trol strategy includes feedback linearization coupled with a PD controller for the translational subsystem and a backstepping-based PID nonlinear controller for the rotational subsystem of the quadrotor.The performances of the nonlinear control method are evaluated by nonlinear simulation and the results demonstrate the effectiveness of the proposed control strategy for the quadrotor helicopter inquasi-stationary flights.

  4. Point-of-care ultrasonography during rescue operations on board a Polish Medical Air Rescue helicopter.

    Science.gov (United States)

    Darocha, Tomasz; Gałązkowski, Robert; Sobczyk, Dorota; Żyła, Zbigniew; Drwiła, Rafał

    2014-12-01

    Point-of-care ultrasound examination has been increasingly widely used in pre-hospital care. The use of ultrasound in rescue medicine allows for a quick differential diagnosis, identification of the most important medical emergencies and immediate introduction of targeted treatment. Performing and interpreting a pre-hospital ultrasound examination can improve the accuracy of diagnosis and thus reduce mortality. The authors' own experiences are presented in this paper, which consist in using a portable, hand-held ultrasound apparatus during rescue operations on board a Polish Medical Air Rescue helicopter. The possibility of using an ultrasound apparatus during helicopter rescue service allows for a full professional evaluation of the patient's health condition and enables the patient to be brought to a center with the most appropriate facilities for their condition. PMID:26674604

  5. Finite element analysis using NASTRAN applied to helicopter transmission vibration/noise reduction

    Science.gov (United States)

    Howells, R. W.; Sciarra, J. J.

    1975-01-01

    A finite element NASTRAN model of the complete forward rotor transmission housing for the Boeing Vertol CH-47 helicopter was developed and applied to reduce transmission vibration/noise at its source. In addition to a description of the model, a technique for vibration/noise prediction and reduction is outlined. Also included are the dynamic response as predicted by NASTRAN, test data, the use of strain energy methods to optimize the housing for minimum vibration/noise, and determination of design modifications which will be manufactured and tested. The techniques presented are not restricted to helicopters but are applicable to any power transmission system. The transmission housing model developed can be used further to evaluate static and dynamic stresses, thermal distortions, deflections and load paths, fail-safety/vulnerability, and composite materials.

  6. Elements of Autonomous Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan

    In this thesis, we study several central elements of autonomous self-reconfigurable modular robots. Unlike conventional robots such robots are: i) Modular, since robots are assembled from numerous robotic modules. ii) Reconfigurable, since the modules can be combined in a variety of ways. iii) Self......-reconfigurable, since the modules themselves are able to change how they are combined. iv) Autonomous, since robots control themselves without human guidance. Such robots are attractive to study since they in theory have several desirable characteristics, such as versatility, reliability and cheapness. In practice...... however, it is challenging to realize such characteristics since state-of-the-art systems and solutions suffer from several inherent technical and theoretical problems and limitations. In this thesis, we address these challenges by exploring four central elements of autonomous self-reconfigurable modular...

  7. A Collaborative Knowledge Plane for Autonomic Networks

    Science.gov (United States)

    Mbaye, Maïssa; Krief, Francine

    Autonomic networking aims to give network components self-managing capabilities. Several autonomic architectures have been proposed. Each of these architectures includes sort of a knowledge plane which is very important to mimic an autonomic behavior. Knowledge plane has a central role for self-functions by providing suitable knowledge to equipment and needs to learn new strategies for more accuracy.However, defining knowledge plane's architecture is still a challenge for researchers. Specially, defining the way cognitive supports interact each other in knowledge plane and implementing them. Decision making process depends on these interactions between reasoning and learning parts of knowledge plane. In this paper we propose a knowledge plane's architecture based on machine learning (inductive logic programming) paradigm and situated view to deal with distributed environment. This architecture is focused on two self-functions that include all other self-functions: self-adaptation and self-organization. Study cases are given and implemented.

  8. An Autonomous Reference Frame for Relativistic GNSS

    CERN Document Server

    Kostić, Uroš; Carloni, Sante; Delva, Pacôme; Gomboc, Andreja

    2014-01-01

    Current GNSS systems rely on global reference frames which are fixed to the Earth (via the ground stations) so their precision and stability in time are limited by our knowledge of the Earth dynamics. These drawbacks could be avoided by giving to the constellation of satellites the possibility of constituting by itself a primary and autonomous positioning system, without any a priori realization of a terrestrial reference frame. Our work shows that it is possible to construct such a system, an Autonomous Basis of Coordinates, via emission coordinates. Here we present the idea of the Autonomous Basis of Coordinates and its implementation in the perturbed space-time of Earth, where the motion of satellites, light propagation, and gravitational perturbations are treated in the formalism of general relativity.

  9. Autonomic dysfunction in chronic liver disease

    Directory of Open Access Journals (Sweden)

    Frith J

    2011-08-01

    Full Text Available James Frith, Julia L NewtonNIHR Biomedical Research Centre in Ageing, Institute for Ageing and Health, Newcastle University, Newcastle, UKAbstract: It is becoming increasingly clear that quality of life (QOL is impaired in those with chronic liver disease (CLD. One of the most important contributors to impaired QOL is the symptomatic burden which can range from slight to debilitating. Autonomic dysfunction accounts for a significant proportion of these symptoms, which can be common, non-specific and challenging to treat. Investigating the autonomic nervous system can be straight forward and can assist the clinician to diagnose and treat specific symptoms. Evidence-based treatment options for autonomic symptoms, specifically in CLD, can be lacking and must be extrapolated from other studies and expert opinion. For those with severely impaired quality of life, liver transplantation may offer an improvement; however, more research is needed to confirm this.Keywords: quality of life, treatment, fatigue, angiotensin II

  10. Enhanced mission performance from autonomous instrument guidance

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Jørgensen, Peter Siegbjørn; Betto, Maurizio;

    2006-01-01

    During the last decade improvements in electronics, on-board processing power and software design has lead to significant advances in the development of autonomous instrumentation for spacecraft use. The Advanced Stellar Compass (ASC) and the newly developed micro-ASC (mu ASC) are excellent...... and power consumption makes the mu ASC an ideal instrument for small, high yielding satellite missions. The ASC has hitherto been used by the satellite AOCS and the high accuracy scientific instrument for attitude recovery (among others onboard ORSTED, CHAMP, and GRACE), and satellite high accuracy target...... acquisition and pointing (PROBA). Here three applications of the mu ASC as an autonomous onboard precision guide for precision vector instrumentation are presented. These are autonomous onboard antenna guidance, telescope guidance and tracking and high accuracy and wide range laser rangers....

  11. Autonomous driving technical, legal and social aspects

    CERN Document Server

    Gerdes, J; Lenz, Barbara; Winner, Hermann

    2016-01-01

    This book takes a look at fully automated, autonomous vehicles and discusses many open questions: How can autonomous vehicles be integrated into the current transportation system with diverse users and human drivers? Where do automated vehicles fall under current legal frameworks? What risks are associated with automation and how will society respond to these risks? How will the marketplace react to automated vehicles and what changes may be necessary for companies? Experts from Germany and the United States define key societal, engineering, and mobility issues related to the automation of vehicles. They discuss the decisions programmers of automated vehicles must make to enable vehicles to perceive their environment, interact with other road users, and choose actions that may have ethical consequences. The authors further identify expectations and concerns that will form the basis for individual and societal acceptance of autonomous driving. While the safety benefits of such vehicles are tremendous, the auth...

  12. Autonomous forward inference via DNA computing

    Institute of Scientific and Technical Information of China (English)

    Fu Yan; Li Gen; Li Yin; Meng Dazhi

    2007-01-01

    Recent studies direct the researchers into building DNA computing machines with intelligence, which is measured by three main points: autonomous, programmable and able to learn and adapt. Logical inference plays an important role in programmable information processing or computing. Here we present a new method to perform autonomous molecular forward inference for expert system.A novel repetitive recognition site (RRS) technique is invented to design rule-molecules in knowledge base. The inference engine runs autonomously by digesting the rule-molecule, using a Class ⅡB restriction enzyme PpiⅠ. Concentration model has been built to show the feasibility of the inference process under ideal chemical reaction conditions. Moreover, we extend to implement a triggering communication between molecular automata, as a further application of the RRS technique in our model.

  13. Technology readiness level six and autonomous mobility

    Science.gov (United States)

    Bodt, Barry A.; Camden, Rick S.

    2004-09-01

    During FY03, the U.S. Army Research Laboratory undertook a series of experiments designed to assess the maturity of autonomous mobility technology for the Future Combat Systems Armed Robotic Vehicle concept. The experiments assessed the technology against a level 6 standard in the technology readiness level (TRL) maturation schedule identified by a 1999 Government Accounting Office report. During the course of experimentation, 646 missions were conducted over a total distance of ~560 km and time of ~100 hr. Autonomous operation represented 96% and 88% of total distance and time, respectively. To satisfy the TRL 6 "relevant environment" standard, several experimental factors were varied over the three-site test as part of a formal, statistical, experimental design. This paper reports the specific findings pertaining to relevant-environment questions that were posed for the study and lends additional support to the Lead System Integrator decision that TRL 6 has been attained for the autonomous navigation system.

  14. Blood pressure regulation in diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1985-01-01

    Defective blood pressure responses to standing, exercise and epinephrine infusions have been demonstrated in diabetic patients with autonomic neuropathy. The circulatory mechanisms underlying blood pressure responses to exercise and standing up in these patients are well characterized: In both...... experimental situations insufficient contraction of resistance vessels has been demonstrated. The vasoconstrictor defects demonstrated are of a magnitude sufficient to account for the prevailing hypotension. Furthermore, during exercise cardiac output is low in patients with autonomic neuropathy, a finding...... which may contribute to exercise hypotension in these patients. During hypoglycemia, blood pressure regulation seems intact in patients with autonomic neuropathy. This is probably due to release of substantial amounts of catecholamines during these experiments. During epinephrine infusions a substantial...

  15. Time domain System Identification of Longitudinal Dynamics of Single Rotor Model Helicopter using SIDPAC

    OpenAIRE

    Arbab Nighat Khizer; Imtiaz Hussain; Wanod Kumar

    2015-01-01

    This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane©. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identifi...

  16. Testing a wheeled landing gear system for the TH-57 helicopter.

    OpenAIRE

    Heckman, Nancy L.

    1992-01-01

    Using the main gear from a Cessna 182 and the nose gear from a Grumman AAI-B, (patent pending) a comparison with the skid gear currently installed on the TH-57 helicopters was conducted. The initial comparison was done using a structural analysis program, GIFTS, to simultaneously analyze and compare the gear systems. Experimental data was used to verify program results. Experimental testing was conducted for further code validation and analysis of each system's advantages and disadvantages. W...

  17. ANALYSIS OF THE INFLUENCE OF HELICOPTER DESCENT VELOCITY CHANGES ON THE PHENOMENON OF VORTEX RING STATE

    Directory of Open Access Journals (Sweden)

    Katarzyna Grzegorczyk

    2013-03-01

    Full Text Available The paper presents the results of a numerical aerodynamic analysis whose purpose was to determine the influence of the rate of descent on the vortex ring state (VRS. This phenomenon occurs for an appropriate combination of induced velocity and the velocity of the incoming airstream from the bottom. The rates of change of velocities delimit dangerous areas of flight. The simulations were performed using FLUENT software and the geometry of helicopter W-3 „Sokół”.

  18. ANALYSIS OF THE INFLUENCE OF HELICOPTER DESCENT VELOCITY CHANGES ON THE PHENOMENON OF VORTEX RING STATE

    OpenAIRE

    Katarzyna Grzegorczyk

    2013-01-01

    The paper presents the results of a numerical aerodynamic analysis whose purpose was to determine the influence of the rate of descent on the vortex ring state (VRS). This phenomenon occurs for an appropriate combination of induced velocity and the velocity of the incoming airstream from the bottom. The rates of change of velocities delimit dangerous areas of flight. The simulations were performed using FLUENT software and the geometry of helicopter W-3 „Sokół”.

  19. Selected Methods for Locking Screw Joints, Including the Use of Adhesives, Used in the Helicopter Construction

    Science.gov (United States)

    Rudawska, Anna; Cisz, Sławomir; Warda, Tomasz

    2014-12-01

    The paper presents the problems of preventing screw joints from self-loosening on one of helicopter. The research examines selected locking methods used in aircraft produced by different manufacturers. Experimental tests were performed to investigate the loosening torque of screw joints locked by various devices: cotter pin, locknut, centre punching, self-locking nut and adhesive. A comparative analysis of the investigated locking methods is made with respect to their locking strength and efficiency.

  20. Attitude Control of a Small Coaxial Helicopter with a Bell Type Stabilizer Bar

    Science.gov (United States)

    Sunada, Shigeru; Hirosue, Wataru; Kawashima, Kenta

    We analyzed the small coaxial helicopter recently developed for entertainment. The upper rotor is connected with a stabilizer bar alone and the lower rotor is not connected with it. The cyclic pitch of the upper rotor is controlled by this stabilizer bar, and that of the lower rotor is controlled by servo motors. We investigated how this stabilizer bar varies the cyclic pitch of the upper rotor and how it contributes to attitude control of a fuselage.

  1. A Study on a Bell Type Stabilizer Bar of a Small Coaxial Helicopter

    Science.gov (United States)

    Sunada, Shigeru; Kikuchi, Atsushi; Tokutake, Hiroshi

    The motion of a stabilizer bar of the small coaxial helicopter was analyzed in the previous study. It has been made clear by the measurements on the motion of the stabilizer bar that the following two revisions are required in the analysis. (1) The motion of stabilizer bar is affected by the upper rotor. (2) Neither of the terms in the moment acting on the stabilizer bar at its hinge, kββ+kββ, can be ignored.

  2. NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration

    Science.gov (United States)

    Erickson, R. E.; Kufeld, R. M.; Cross, J. L.; Hodge, R. W.; Ericson, W. F.; Carter, R. D. G.

    1984-01-01

    The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg.

  3. Development of Novel Methods for the Reduction of Noise and Weight in Helicopter Transmissions

    Science.gov (United States)

    Dimofte, Florin; Keith, Theo G., Jr.

    2003-01-01

    Over the 70-year evolution of the helicopter, man's understanding of vibration control has greatly increased. However, in spite of the increased performance, the extent of helicopter vibration problems has not significantly diminished. Crew vibration and noise remains important factors in the design of all current helicopters. With more complex and critical demands being placed on aircrews, it is essential that vibration and noise not impair their performance. A major source of helicopter cabin noise (which has been measured at a sound pressure level of over 100 dB) is the gearbox. Reduction of this noise has been a goal of NASA and the U.S. Army. Gear mesh noise is typically in the frequency range of 1000 to 3000 Hz, a range important for speech. A requirement for U.S. Army/NASA Advanced Rotorcraft Transmission project has been a 10-dB reduction compared to current designs. A combined analytical/experimental effort has been underway, since the end of the 80's, to study effects of design parameters on noise production. The noise generated by the gear mesh can be transmitted to the surrounding media through the bearings that support the gear shaft. Therefore, the use of fluid film bearings instead of rolling element bearings could reduce the transmission noise by 10 dB. In addition, the fluid film bearings that support the gear shaft can change the dynamics of the gear assembly by providing damping to the system and by being softer than rolling element bearings. Wave bearings can attenuate, and filter, the noise generated by a machine component due to the dynamic stiffness and damping coefficients. The attenuation ratio could be as large as 35-40 dB. The noise components at higher frequencies than a synchronous frequency can be almost eliminated.

  4. Unified results of several analytical and experimental studies of helicopter handling qualities in visual terrain flight

    Science.gov (United States)

    Chen, R. T. N.

    1982-01-01

    The studies were undertaken to investigate the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation on the flying qualities of helicopters performing low-level, terrain-flying tasks in visual meteorological conditions. Some unified results are presented, and the validity and limitations of the flying-qualities data obtained are interpreted. Selected results, related to various design parameters, provide guidelines for the preliminary design of rotor systems and aircraft augmentation systems.

  5. Red-Eye: A Helicopter-Based Architecture for Tactical Wildfire Monitoring Strategies

    OpenAIRE

    Pastor Llorens, Enric; Barrado Muxí, Cristina; Royo Chic, Pablo; López Rubio, Juan; Santamaria Barnadas, Eduard; Prats Menéndez, Xavier; Batlle, Josep Mª

    2009-01-01

    This work introduces a flexible and reusable architecture designed to facilitate the development of remote sensing applications. Based on it, we are developing a helicopter system, called Red-Eye, devoted to the detection, control and analysis of wild land forest fires in the Mediterranean area. The design of the proposed system is composed of five main components. Each component will work collaboratively to constitute a platform of high added value. The general architecture designed for wild...

  6. The practical implementation of fatigue requirements to military aircraft and helicopters in the United Kingdom

    Science.gov (United States)

    Maxwell, R. D. J.

    1972-01-01

    The methods adopted in the United Kingdom to ensure the structural integrity of military aeroplanes and helicopters from the fatigue point of view are described. The procedure adopted from the writing of the specification to the monitoring of fatigue life in service are presented along with the requirements to be met and the way in which they are satisfied. Some of the outstanding problems that remain to be solved are indicated.

  7. Cetacean surveys in the Southern Ocean using icebreaker-supported helicopters

    OpenAIRE

    Scheidat, M.; Friedlaender, A.; Kock, K.H.; Lehnert, L.; Boebel, O.; Roberts, J.; Williams, R.

    2011-01-01

    Cetaceans in the Southern Ocean are potentially impacted by anthropogenic activities, such as direct hunting or through indirect effects of a reduced sea ice due to climate change. Knowledge on the distribution of cetacean species in this area is important for conservation, but the remoteness of the study area and the presence of sea ice make it difficult to conduct shipboard surveys to obtain this information. In this study, aerial surveys were conducted from ship-based helicopters. In the 2...

  8. Stress analysis of advanced attack helicopter composite main rotor blade root end lug

    Science.gov (United States)

    Baker, D. J.

    1982-01-01

    Stress analysis of the Advanced Attack Helicopter (AAH) composite main rotor blade root end lug is described. The stress concentration factor determined from a finite element analysis is compared to an empirical value used in the lug design. The analysis and test data indicate that the stress concentration is primarily a function of configuration and independent of the range of material properties typical of Kevlar-49/epoxy and glass epoxy.

  9. Connecting orbits of autonomous Lagrangian systems

    International Nuclear Information System (INIS)

    In contrast to the time-dependent case, the time-t-section of Mañé set of autonomous Lagrangian systems is independent of time, thus, it is nowhere disconnected. This causes some difference in the study of dynamics, for instance, Mather's c-equivalence cannot exist among different cohomology classes if they are not in a flat of the α-function (cf (Bernard 2002 Ann. Inst. Fourier 52 1533–68.)). In this paper, we show how to construct connecting orbits in autonomous systems, and propose a modified notion of c-equivalence. We also apply the result to construct diffusion orbits in an energy surface

  10. Dynamic biomaterials: toward engineering autonomous feedback.

    Science.gov (United States)

    Morris, Eliza; Chavez, Michael; Tan, Cheemeng

    2016-06-01

    Dynamic biomaterials are biocompatible engineered systems capable of sensing and actively responding to their surrounding environment. They are of growing interest, both as models in basic research to understand complex cellular systems and in medical applications. Here, we review recent advances in nano-scale and micro-scale biomaterials, specifically artificial cells consisting of compartmentalized biochemical reactions and biologically compatible hydrogels. These dynamic biomaterials respond to stimuli through triggered reactions, reaction cascades, logic gates, and autonomous feedback loops. We outline the advances and remaining challenges in implementing such 'smart' biomaterials capable of autonomously responding to environmental stimuli. PMID:26974245

  11. Autonomous operations through onboard artificial intelligence

    Science.gov (United States)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  12. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  13. Autonomous control of distributed storages in microgrids

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    Operation of distributed generators in microgrids has widely been discussed, but would not be fully autonomous, if distributed storages are not considered. Storages in general are important, since they provide energy buffering to load changes, energy leveling to source variations and ride......-through enhancement to the overall microgrids. Recognizing their importance, this paper presents a scheme for sharing power among multiple distributed storages, in coordination with the distributed sources and loads. The scheme prompts the storages to autonomously sense for system conditions, requesting for maximum...

  14. Towards Autonomous Control of HVAC Systems

    DEFF Research Database (Denmark)

    Brath, P.

    This thesis considered development of an autonomous control system for heating ventilation and air conditioning applications. By including auto-tuning, adaptation, diagnosis and supervision functions in the control system used in the HVAC industry will move the control of HVAC systems towards...... autonomous control. Together with better tuned controllers and more dedicated control it would be possible to decrease the energy consumption, save money and increase the indoor air climate. A flexible HVAC test system was designed and implemented. Standard components and sensors were used in the design...... experiments on the HVAC test system and by using simulations....

  15. Evolutionary strategy for achieving autonomous navigation

    Science.gov (United States)

    Gage, Douglas W.

    1999-01-01

    An approach is presented for the evolutionary development of supervised autonomous navigation capabilities for small 'backpackable' ground robots, in the context of a DARPA- sponsored program to provide robotic support to small units of dismounted warfighters. This development approach relies on the implementation of a baseline visual serving navigation capability, including tools to support operator oversight and override, which is then enhanced with semantically referenced commands and a mission scripting structure. As current and future machine perception techniques are able to automatically designate visual serving goal points, this approach should provide a natural evolutionary pathway to higher levels of autonomous operation and reduced requirements for operator intervention.

  16. Blunted autonomic response in cluster headache patients

    DEFF Research Database (Denmark)

    Barloese, Mads; Brinth, Louise; Mehlsen, Jesper;

    2015-01-01

    BACKGROUND: Cluster headache (CH) is a disabling headache disorder with chronobiological features. The posterior hypothalamus is involved in CH pathophysiology and is a hub for autonomic control. We studied autonomic response to the head-up tilt table test (HUT) including heart rate variability...... (HRV) in CH patients and compared results to healthy controls. METHODS AND MATERIALS: Twenty-seven episodic and chronic CH patients and an equal number of age-, sex- and BMI-matched controls were included. We analyzed responses to HUT in the time and frequency domain and by non-linear analysis. RESULTS...

  17. Emerging Technologies for Autonomous Language Learning

    Directory of Open Access Journals (Sweden)

    Mark Warschauer

    2011-09-01

    Full Text Available Drawing on a lengthier review completed for the US National Institute for Literacy, this paper examines emerging technologies that are applicable to self-access and autonomous learning in the areas of listening and speaking, collaborative writing, reading and language structure, and online interaction. Digital media reviewed include podcasts, blogs, wikis, online writing sites, text-scaffolding software, concordancers, multiuser virtual environments, multiplayer games, and chatbots. For each of these technologies, we summarize recent research and discuss possible uses for autonomous language learning.

  18. Autonomous control of multi-fingered hand

    Institute of Scientific and Technical Information of China (English)

    JIANG Li; LIU Hong

    2006-01-01

    This paper describes a novel autonomous control strategy of multi-fingered hand based on a modular control system of dexterous manipulation. A simple proportional-integral-derivative(PID) position control with friction compensation, which requires few friction parameters, is used to realize accurate and smooth trajectory tracking in pregrasp phase. In grasp and manipulation phases, an event-driven switcher is adopted to determine the switching between unconstrained position control and constrained torque control, and an improved explicit integral force control strategy is implemented to realize simultaneously stable contact transition and accurate force tracking. Experimental results have verified the effectiveness of the proposed autonomous control strategy of multi-fingered hand.

  19. Systematic Process for Building a Fault Diagnoser Based on Petri Nets Applied to a Helicopter

    Directory of Open Access Journals (Sweden)

    Miguel A. Trigos

    2015-01-01

    Full Text Available This work presents a systematic process for building a Fault Diagnoser (FD, based on Petri Nets (PNs which has been applied to a small helicopter. This novel tool is able to detect both intermittent and permanent faults. The work carried out is discussed from theoretical and practical point of view. The procedure begins with a division of the whole system into subsystems, which are the devices that have to be modeled by using PN, considering both the normal and fault operations. Subsequently, the models are integrated into a global Petri Net diagnoser (PND that is able to monitor a whole helicopter and show critical variables to the operator in order to determine the UAV health, preventing accidents in this manner. A Data Acquisition System (DAQ has been designed for collecting data during the flights and feeding PN diagnoser with them. Several real flights (nominal or under failure have been carried out to perform the diagnoser setup and verify its performance. A summary of the validation results obtained during real flight tests is also included. An extensive use of this tool will improve preventive maintenance protocols for UAVs (especially helicopters and allow establishing recommendations in regulations.

  20. Simulation Study on the Feasibility of Gun-Launched Missile Against Attack Helicopters

    Institute of Scientific and Technical Information of China (English)

    王狂飙; 张天桥

    2001-01-01

    The feasibility of providing the tank a limited anti-helicopterability with gun-launched missile is studied. A type of simulation model of gun-launched missile against attack helicopters is established. The simulation and the parameter optimization of missile control system under various circumstances are done. The gun-launched missile can directly hit the helicopters in the typical tracks, all the missdistances are less than 1 m and the maximum overload is less than available overload. Gun-launched missile is a feasible choice for tanks against attack helicopters.%研究通过炮射反坦克导弹赋予坦克有限反武装直升机能力的可行性.建立了一种炮射导弹与武装直升机对抗的仿真模型,并在各种情况下进行了系统仿真与导弹控制系统参数优化.经参数优化的炮射导弹在给定的武装直升机各种航迹下,均可直接命中,脱靶量均小于1m,最大过载不超过可用过载.仿真结果表明炮射导弹是坦克对抗武装直升机的一种可行的选择.

  1. Decentralized PID neural network control for a quadrotor helicopter subjected to wind disturbance

    Institute of Scientific and Technical Information of China (English)

    陈彦民; 何勇灵; 周岷峰

    2015-01-01

    A decentralized PID neural network (PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton−Euler formalism. For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field. Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.

  2. Using Helicopter Electromagnetic Surveys to Identify Potential Hazards at Mine Waste Impoundments

    Energy Technology Data Exchange (ETDEWEB)

    Hammack, R.W.

    2008-01-01

    In July 2003, helicopter electromagnetic surveys were conducted at 14 coal waste impoundments in southern West Virginia. The purpose of the surveys was to detect conditions that could lead to impoundment failure either by structural failure of the embankment or by the flooding of adjacent or underlying mine works. Specifically, the surveys attempted to: 1) identify saturated zones within the mine waste, 2) delineate filtrate flow paths through the embankment or into adjacent strata and receiving streams, and 3) identify flooded mine workings underlying or adjacent to the waste impoundment. Data from the helicopter surveys were processed to generate conductivity/depth images. Conductivity/depth images were then spatially linked to georeferenced air photos or topographic maps for interpretation. Conductivity/depth images were found to provide a snapshot of the hydrologic conditions that exist within the impoundment. This information can be used to predict potential areas of failure within the embankment because of its ability to image the phreatic zone. Also, the electromagnetic survey can identify areas of unconsolidated slurry in the decant basin and beneath the embankment. Although shallow, flooded mineworks beneath the impoundment were identified by this survey, it cannot be assumed that electromagnetic surveys can detect all underlying mines. A preliminary evaluation of the data implies that helicopter electromagnetic surveys can provide a better understanding of the phreatic zone than the piezometer arrays that are typically used.

  3. An Algebraic Approach for the MIMO Control of Small Scale Helicopter

    CERN Document Server

    Budiyono, A

    2008-01-01

    The control of small-scale helicopter is a MIMO problem. To use of classical control approach to formally solve a MIMO problem, one needs to come up with multidimensional Root Locus diagram to tune the control parameters. The problem with the required dimension of the RL diagram for MIMO design has forced the design procedure of classical approach to be conducted in cascaded multi-loop SISO system starting from the innermost loop outward. To implement this control approach for a helicopter, a pitch and roll attitude control system is often subordinated to a, respectively, longitudinal and lateral velocity control system in a nested architecture. The requirement for this technique to work is that the inner attitude control loop must have a higher bandwidth than the outer velocity control loop which is not the case for high performance mini helicopter. To address the above problems, an algebraic design approach is proposed in this work. The designed control using s-CDM approach is demonstrated for hovering cont...

  4. Flight investigation of helicopter IFR approaches to oil rigs using airborne weather and mapping radar

    Science.gov (United States)

    Bull, J. S.; Hegarty, D. M.; Phillips, J. D.; Sturgeon, W. R.; Hunting, A. W.; Pate, D. P.

    1979-01-01

    Airborne weather and mapping radar is a near-term, economical method of providing 'self-contained' navigation information for approaches to offshore oil rigs and its use has been rapidly expanding in recent years. A joint NASA/FAA flight test investigation of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico was initiated in June 1978 and conducted under contract to Air Logistics. Approximately 120 approaches were flown in a Bell 212 helicopter by 15 operational pilots during the months of August and September 1978. The purpose of the tests was to collect data to (1) support development of advanced radar flight director concepts by NASA and (2) aid the establishment of Terminal Instrument Procedures (TERPS) criteria by the FAA. The flight test objectives were to develop airborne radar approach procedures, measure tracking errors, determine accpetable weather minimums, and determine pilot acceptability. Data obtained will contribute significantly to improved helicopter airborne radar approach capability and to the support of exploration, development, and utilization of the Nation's offshore oil supplies.

  5. A Priori User Acceptance and the Perceived Driving Pleasure in Semi-autonomous and Autonomous Vehicles

    DEFF Research Database (Denmark)

    Bjørner, Thomas

    The aim of this minor pilot study is, from a sociological user perspective, to explore a priori user acceptance and the perceived driving pleasure in semi- autonomous and autonomous vehicles. The methods used were 13 in-depth interviews while having participants watch video examples within four...... different scenarios. After each scenario, two different numerical rating scales were used. There was a tendency toward positive attitudes regarding semi- autonomous driving systems, especially the use of a parking assistant and while driving in city traffic congestion. However, there were also major...

  6. Advances in autonomous systems for space exploration missions

    Science.gov (United States)

    Smith, B. D.; Gross, A. R.; Clancy, D. J.; Cannon, H. N.; Barrett, A.; Mjolssness, E.; Muscettola, N.; Chien, S.; Johnson, A.

    2001-01-01

    This paper focuses on new and innovative software for remote, autonomous, space systems flight operation, including distributed autonomous systems, flight test results, and implications and directions for future systems.

  7. A Rare Association of Trigeminal Autonomic Cephalgia: Pontine Capillary Telangiectasia

    OpenAIRE

    Gocmen, Rahsan; Kurt, Erdal; Arslan, Sabina; Unal-Cevik, Isin; Karli Oguz, Kader; Tezer, F Irsel

    2015-01-01

    This report describes a case of pontine capillary telangiectasia in a 43-year-old woman with a clinical diagnosis of trigeminal autonomic cephalgia. The possible association with pontine capillary telangiectasia and trigeminal autonomic cephalgia is discussed.

  8. Earlier reperfusion in patients with ST-elevation Myocardial infarction by use of helicopter

    Directory of Open Access Journals (Sweden)

    Knudsen Lars

    2012-10-01

    Full Text Available Abstract Background In patients with ST-elevation myocardial infarction (STEMI reperfusion therapy should be initiated as soon as possible. This study evaluated whether use of a helicopter for transportation of patients is associated with earlier initiation of reperfusion therapy. Material and methods A prospective study was conducted, including patients with STEMI and symptom duration less than 12 hours, who had primary percutaneous coronary intervention (PPCI performed at Aarhus University Hospital in Skejby. Patients with a health care system delay (time from emergency call to first coronary intervention of more than 360 minutes were excluded. The study period ran from 1.1.2011 until 31.12.2011. A Western Denmark Helicopter Emergency Medical Service (HEMS project was initiated 1.6.2011 for transportation of patients with time-critical illnesses, including STEMI. Results The study population comprised 398 patients, of whom 376 were transported by ambulance Emergency Medical Service (EMS and 22 by HEMS. Field-triage directly to the PCI-center was used in 338 of patients. The median system delay was 94 minutes among those field-triaged, and 168 minutes among those initially admitted to a local hospital. Patients transported by EMS and field-triaged were stratified into four groups according to transport distance from the scene of event to the PCI-center: ≤25 km., 26–50 km., 51–75 km. and > 75 km. For these groups, the median system delay was 78, 89, 99, and 141 minutes. Among patients transported by HEMS and field-triaged the estimated median transport distance by ground transportation was 115 km, and the observed system delay was 107 minutes. Based on second order polynomial regression, it was estimated that patients with a transport distance of >60 km to the PCI-center may benefit from helicopter transportation, and that transportation by helicopter is associated with a system delay of less than 120 minutes even at a transport

  9. College English Students’ Autonomous Learning Motivation and Cultivation Model Research

    Institute of Scientific and Technical Information of China (English)

    王艳荣; 李娥

    2015-01-01

    Studying the autonomous learning motivation and excitation model can stimulate intrinsic motivation of foreign language learners,develop students self-management strategy evaluation are very necessary.The purpose of this paper is to give students the skills of listening and speaking for their autonomous learning.Then study the cultivation and motivation of college English students autonomous learning,hoping to make students to learn autonomous learning and stimulate their motivation fully.

  10. Geometric integration of non-autonomous Hamiltonian problems

    OpenAIRE

    Marthinsen, Håkon; Owren, Brynjulf

    2014-01-01

    Symplectic integration of autonomous Hamiltonian systems is a well-known field of study in geometric numerical integration, but for non-autonomous systems the situation is less clear, since symplectic structure requires an even number of dimensions. We show that one possible extension of symplectic methods in the autonomous setting to the non-autonomous setting is obtained by using canonical transformations. Many existing methods fit into this framework. We also perform experiments which indi...

  11. Engineering an Ontology for Autonomous Systems - The OASys Ontology

    OpenAIRE

    Bermejo Alonso, Julita; Sanz Bravo, Ricardo; Rodríguez, Manuel; Hernández Corbato, Carlos

    2011-01-01

    This paper describes the development of an ontology for autonomous systems, as the initial stage of a research programe on autonomous systems’ engineering within a model-based control approach. The ontology aims at providing a unified conceptual framework for the autonomous systems’ stakeholders, from developers to software engineers. The modular ontology contains both generic and domain-specific concepts for autonomous systems description and engineering. The ontology serves as the basis in a ...

  12. A programming model and execution environment for autonomous systems

    OpenAIRE

    Razafimahefa, Chrislain

    2004-01-01

    This thesis presents the design and implementation of a programming model for autonomous systems. Autonomous systems are distributed systems based on wireless networks, mobile devices and the Internet. They are characterized by the high dynamics with which their configuration evolves. Ad hoc networks, a member of autonomous systems, illustrate this point since in these networks participants can join and leave at any time. Similarly in Peer-to-Peer networks, another member of autonomous system...

  13. Spatial abstraction for autonomous robot navigation.

    Science.gov (United States)

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel. PMID:26227680

  14. The CASCADAS Framework for Autonomic Communications

    Science.gov (United States)

    Baresi, Luciano; Ferdinando, Antonio Di; Manzalini, Antonio; Zambonelli, Franco

    An interesting approach to the design and development of the future Internet foresees a networked service eco-system capable of seamlessly offering services for human-to-human, human-to-machine and machine-to-machine interactions. This chapter builds in this direction by describing a distributed component-ware framework for autonomic and situation-aware communication developed within the CASCADAS project. The core of this framework is the Autonomic Communication Element (ACE), an innovative software abstraction capable of providing dynamically adaptable services that can be built, composed, and let evolve according to autonomic principles. Services are capable of adapting their logic to the dynamically changing context they operate in without human intervention. As a result, whenever the need arises, ACEs can be federated autonomously and produce new services on a situation-aware basis. Systems and, in particular, eco-systems can thus be conceived as collections of ACEs. The chapter introduces the concept of ACE and its different facets. It also presents the architecture of a prototype ACE-based platform and exemplifies the different concepts through a future Pervasive Behavioral Advertisement scenario.

  15. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  16. Distributed formation control for autonomous robots

    NARCIS (Netherlands)

    Garcia de Marina Peinado, Hector Jesús

    2016-01-01

    This thesis addresses several theoretical and practical problems related to formation-control of autonomous robots. Formation-control aims to simultaneously accomplish the tasks of forming a desired shape by the robots and controlling their coordinated collective motion. This kind of robot performan

  17. Autonomous Robot Navigation In Public Nature Park

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole;

    2005-01-01

    This extended abstract describes a project to make a robot travel autonomously across a public nature park. The challenge is to detect and follow the right path across junctions and open squares avoiding people and obstacles. The robot is equipped with a laser scanner, a (low accuracy) GPS, wheel...

  18. Simple autonomic seizures and ictal enuresis

    DEFF Research Database (Denmark)

    Rosenzweig, Ivana; Varga, Edina T; Akeson, Per;

    2011-01-01

    manifestation of the de novo post-traumatic simple autonomic seizures. Source analysis of the ictal epileptiform discharges showed activation of the cortical areas surrounding the right inferior frontal sulcus, adjacent to the lesional zone. The case depicted here further endorses recent neuroimaging studies...

  19. Autonomous biomorphic robots as platforms for sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-10-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.

  20. Autonomous biomorphic robots as platforms for sensors

    International Nuclear Information System (INIS)

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology

  1. Autonomous behavior of hematopoietic stem cells

    NARCIS (Netherlands)

    Kamminga, LM; Akkerman, [No Value; Weersing, E; Ausema, A; Dontje, B; Van Zant, G; de Haan, G

    2000-01-01

    Objective. Mechanisms that affect the function of primitive hematopoietic stem cells with long-term proliferative potential remain largely unknown. Here we assessed whether properties of stem cells are cell-extrinsically or cell-autonomously regulated. Materials and Methods. We developed a model in

  2. [Emotion, amygdala, and autonomic nervous system].

    Science.gov (United States)

    Ueyama, Takashi

    2012-10-01

    Emotion refers to the dynamic changes of feeling accompanied by the alteration of physical and visceral activities. Autonomic nervous system (sympathetic and parasympathetic) regulates the visceral activities. Therefore, monitoring and analyzing autonomic nervous activity help understand the emotional changes. To this end, the survey of the expression of immediate early genes (IEGs), such as c-Fos in the brain and target organs, and the viral transneuronal labeling method using the pseudorabies virus (PRV) have enabled the visualization of the neurocircuitry of emotion. By comparing c-Fos expression and data from PRV or other neuroanatomical labeling techniques, the central sites that regulate emotional stress-induced autonomic activation can be deduced. Such regions have been identified in the limbic system (e. g., the extended amygdaloid complex; lateral septum; and infralimbic, insular, and ventromedial temporal cortical regions), as well as in several hypothalamic and brainstem nuclei. The amygdala is structurally diverse and comprises several subnuclei, which play a role in emotional process via projections from the cortex and a variety of subcortical structures. All amygdaloid subnuclei receive psychological information from other limbic systems, while the lateral and central subnuclei receive peripheral and sensory information. Output to the hypothalamus and peripheral sympathetic system mainly originates from the medial amygdala. As estrogen receptor α, estrogen receptor β, and androgen receptor are expressed in the medial amygdala, sex steroids may modulate the autonomic nervous activities.

  3. Information Engineering in Autonomous Robot Software

    NARCIS (Netherlands)

    Ziafati, P.

    2015-01-01

    In order to engage and help in our daily life, autonomous robots are to operate in dynamic and unstructured environments and interact with people. As the robot's environment and its behaviour are getting more complex, so are the robot's software and the knowledge that the robot needs to carry out it

  4. Autonomous Learning from a Social Cognitive Perspective

    Science.gov (United States)

    Ponton, Michael K.; Rhea, Nancy E.

    2006-01-01

    The current perspective of autonomous learning defines it as the agentive exhibition of resourcefulness, initiative, and persistence in self-directed learning. As a form of human agency, it has been argued in the literature that this perspective should be consistent with Bandura's (1986) Social Cognitive Theory (SCT). The purpose of this article…

  5. Control algorithms for autonomous robot navigation

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  6. Autonomous operation of distributed storages in microgrids

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Chai, Yi Kai; Li, Ding;

    2014-01-01

    Operation of distributed generators in microgrids has been widely discussed, but would not be fully autonomous if distributed energy storages are not considered. Storages are important since they provide energy buffering to load changes, energy levelling to source variations and ride-through enha......Operation of distributed generators in microgrids has been widely discussed, but would not be fully autonomous if distributed energy storages are not considered. Storages are important since they provide energy buffering to load changes, energy levelling to source variations and ride......-through enhancement to the microgrids. Recognising their importance, this study presents a scheme for sharing power among multiple distributed storages in coordination with the distributed sources and loads. The scheme prompts the storages to autonomously sense for local operating conditions, requesting for maximum...... to help with meeting the extra load demand. The described process takes place autonomously with energy eventually shared among the storages in proportion to their ratings. To test the concepts discussed, experiments have been performed with favourable results obtained for performance verification....

  7. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  8. Integrating the autonomous subsystems management process

    Science.gov (United States)

    Ashworth, Barry R.

    1992-01-01

    Ways in which the ranking of the Space Station Module Power Management and Distribution testbed may be achieved and an individual subsystem's internal priorities may be managed within the complete system are examined. The application of these results in the integration and performance leveling of the autonomously managed system is discussed.

  9. Spatial abstraction for autonomous robot navigation.

    Science.gov (United States)

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel.

  10. Autonomic Modification of Intestinal Smooth Muscle Contractility

    Science.gov (United States)

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  11. My Understanding on Cultivation of Autonomous Learning

    Institute of Scientific and Technical Information of China (English)

    张金玉

    2007-01-01

    Autonomous learning has been popular in western education system for some time, this article aims to analyze the connotation and the necessity of cultivating learner autonomy, and then offer some strategies about the cultivation of learner autonomy from a chinese perspective.

  12. Applying energy autonomous robots for dike inspection

    NARCIS (Netherlands)

    Dresscher, Douwe; Vries, de Theo J.A.; Stramigioli, Stefano

    2015-01-01

    This article presents an exploratory study of an energy-autonomous robot that can be deployed on the Dutch dykes. Based on theory in energy harvesting from sun and wind and the energy-cost of locomotion an analytic expression to determine the feasible daily operational time of such a vehicle is comp

  13. Autonomic dysfunction in a Jack Russell terrier

    OpenAIRE

    Caines, Deanne; Pinard, Chantale L.; Kruth, Stephen; Orr, Jeremy; James, Fiona

    2011-01-01

    A 4-year-old Jack Russell terrier was presented with an array of clinical signs suggestive of autonomic dysfunction. Many of the clinical signs were consistent with a diagnosis of dysautonomia; however, both chronicity and resolution of signs contradicted a diagnosis of this disease.

  14. Non-autonomous second order Hamiltonian systems

    OpenAIRE

    Pipan, J; Schechter, M

    2014-01-01

    We study the existence of periodic solutions for a second order non-autonomous dynamical system containing variable kinetic energy terms. Our assumptions balance the interaction between the kinetic energy and the potential energy with neither one dominating the other. We study sublinear problems and the existence of non-constant solutions. © 2014 Elsevier Inc.

  15. Advanced manipulation for autonomous mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, S.M.; Hamel, W.R.; Killough, S.M.

    1986-01-01

    This paper describes the development, mechanical configuration, and control system architecture of a lightweight, high performance, seven-degree-of-freedom manipulator at the Center for Engineering Systems Advanced Research (CESAR). Current activities focusing on modeling and parameter identification will provide a well-characterized manipulator for analytical and experimental research in manipulator dynamics and controls, coordinated manipulation, and autonomous mobile robotics.

  16. Magnetorheological fluids and applications to adaptive landing gear for a lightweight helicopter

    Science.gov (United States)

    Ahure-Powell, Louise A.

    During hard landing or crash events of a helicopter there are impact loads that can be injurious to crew and other occupants as well as damaging to the helicopter structure. Landing gear systems are the first in line to protect crew and passengers from detrimental crash loads. The main focus of this research is to improve landing gear systems of a lightweight helicopter. Magnetorheological fluids (MRFs) provide potential solutions to several engineering challenges in a broad range of applications. One application that has been considered recently is the use of magnetorheological (MR) dampers in helicopter landing gear systems. In such application, the adaptive landing gear systems have to continuously adjust their stroking load in response to various operating conditions. In order to support this rotorcraft application, there is a necessity to validate that MRFs are qualified for landing gear applications. First, MRF composites, synthesized utilizing three hydraulic oils certified for use in landing gear systems, two average diameters of spherical magnetic particles, and a lecithin surfactant, are formulated to investigate their performance for potential use in a helicopter landing gear. The magnetorheology of these MR fluids is characterized through a range of tests, including (a) magnetorheology (yield stress and viscosity) as a function of magnetic field, (b) sedimentation analysis using an inductance-based sensor, (c) cycling of a small-scale MR damper undergoing sinusoidal excitations (at 2.5 and 5 Hz), and (d) impact testing of an MR damper for a range of magnetic field strengths and velocities using a free-flight drop tower facility. The performance of these MR fluids was analyzed, and their behavior was compared to standard commercial MR fluids. Based on this range of tests used to characterize the MR fluids synthesized, it was shown that it is feasible to utilize certified landing gear hydraulic oils as the carrier fluids to make suitable MR fluids

  17. Geometric formulations and variational integrators of discrete autonomous Birkhoff systems

    International Nuclear Information System (INIS)

    The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Geometric formulations and variational integrators of discrete autonomous Birkhoff systems

    Institute of Scientific and Technical Information of China (English)

    Liu Shi-Xing; Liu Chang; Guo Yong-Xin

    2011-01-01

    The variational integrators of autonomous Birkhoff systems are obtained by the discrete variational principle. The geometric structure of the discrete autonomous Birkhoff system is formulated. The discretization of mathematical pendulum shows that the discrete variational method is as effective as symplectic scheme for the autonomous Birkhoff systems.

  19. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  20. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    OpenAIRE

    Tianhong Yan; Yan Liang; Shujing Zhang; Chao Li; Bo He; Hongjin Zhang

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespec...