WorldWideScience

Sample records for autonomic nervous system diseases

  1. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  2. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  3. The characteristics of autonomic nervous system disorders in burning mouth syndrome and Parkinson disease.

    Science.gov (United States)

    Koszewicz, Magdalena; Mendak, Magdalena; Konopka, Tomasz; Koziorowska-Gawron, Ewa; Budrewicz, Sławomir

    2012-01-01

    To conduct a clinical electrophysiologic evaluation of autonomic nervous system functions in patients with burning mouth syndrome and Parkinson disease and estimate the type and intensity of the autonomic dysfunction. The study involved 83 subjects-33 with burning mouth syndrome, 20 with Parkinson disease, and 30 controls. The BMS group included 27 women and 6 men (median age, 60.0 years), and the Parkinson disease group included 15 women and 5 men (median age, 66.5 years). In the control group, there were 20 women and 10 men (median age, 59.0 years). All patients were subjected to autonomic nervous system testing. In addition to the Low autonomic disorder questionnaire, heart rate variability (HRV), deep breathing (exhalation/inspiration [E/I] ratio), and sympathetic skin response (SSR) tests were performed in all cases. Parametric and nonparametric tests (ANOVA, Kruskal-Wallis, and Scheffe tests) were used in the statistical analysis. The mean values for HRV and E/I ratios were significantly lower in the burning mouth syndrome and Parkinson disease groups. Significant prolongation of SSR latency in the foot was revealed in both burning mouth syndrome and Parkinson disease patients, and lowering of the SSR amplitude occurred in only the Parkinson disease group. The autonomic questionnaire score was significantly higher in burning mouth syndrome and Parkinson disease patients than in the control subjects, with the Parkinson disease group having the highest scores. In patients with burning mouth syndrome, a significant impairment of both the sympathetic and parasympathetic nervous systems was found but sympathetic/parasympathetic balance was preserved. The incidence and intensity of autonomic nervous system dysfunction was similar in patients with burning mouth syndrome and Parkinson disease, which may suggest some similarity in their pathogeneses.

  4. When do the symptoms of autonomic nervous system malfunction appear in patients with Parkinson's disease?

    Science.gov (United States)

    De Luka, Silvio R; Svetel, Marina; Pekmezović, Tatjana; Milovanović, Branislav; Kostić, Vladimir S

    2014-04-01

    Dysautonomia appears in almost all patients with Parkinson's disease (PD) in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson's disease rating score (UPDRS) (p nervous system disturbances among PD patients from the near onset of disease, with a predominant sympathetic nervous system involvement. The patients who developed complete autonomic neuropathy (both sympathetic and parasympathetic) were individuals with considerable level of functional failure, more severe clinical

  5. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    Science.gov (United States)

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  6. Effects of the Autonomic Nervous System, Central Nervous System ...

    African Journals Online (AJOL)

    The gastrointestinal tract is chiefly involved in the digestion of ingested food, facilitation of absorption process and expulsion of the undigested food material through motility process. Motility is influenced by neurohormonal system which is associated with the enteric nervous system , autonomic nervous system and the ...

  7. PET imaging of the autonomic nervous system

    International Nuclear Information System (INIS)

    THACKERAY, James T.; BENGEL, Frank M.

    2016-01-01

    The autonomic nervous system is the primary extrinsic control of heart rate and contractility, and is subject to adaptive and maladaptive changes in cardiovascular disease. Consequently, noninvasive assessment of neuronal activity and function is an attractive target for molecular imaging. A myriad of targeted radiotracers have been developed over the last 25 years for imaging various components of the sympathetic and parasympathetic signal cascades. While routine clinical use remains somewhat limited, a number of larger scale studies in recent years have supplied momentum to molecular imaging of autonomic signaling. Specifically, the findings of the ADMIRE HF trial directly led to United States Food and Drug Administration approval of 123I-metaiodobenzylguanidine (MIBG) for Single Photon Emission Computed Tomography (SPECT) assessment of sympathetic neuronal innervation, and comparable results have been reported using the analogous PET agent 11C-meta-hydroxyephedrine (HED). Due to the inherent capacity for dynamic quantification and higher spatial resolution, regional analysis may be better served by PET. In addition, preliminary clinical and extensive preclinical experience has provided a broad foundation of cardiovascular applications for PET imaging of the autonomic nervous system. Recent years have witnessed the growth of novel quantification techniques, expansion of multiple tracer studies, and improved understanding of the uptake of different radiotracers, such that the transitional biology of dysfunctional subcellular catecholamine handling can be distinguished from complete denervation. As a result, sympathetic neuronal molecular imaging is poised to play a role in individualized patient care, by stratifying cardiovascular risk, visualizing underlying biology, and guiding and monitoring therapy.

  8. Complex Nonlinear Autonomic Nervous System Modulation Link Cardiac Autonomic Neuropathy and Peripheral Vascular Disease

    Directory of Open Access Journals (Sweden)

    Kinda eKhalaf

    2015-03-01

    Full Text Available Background: Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI and cardiovascular disease (CVD as been reported. Whether an association between vascular calcification - characterized by high ABPI and a different pathophysiology - is similarly associated with CVD, has not been established. The current study aims to investigate the association between ABPI, and cardiac rhythm, as an indicator of cardiovascular health and functionality, utilising heart rate variability (HRV.Methods and Results: Two hundred and thirty six patients underwent ABPI assessment. Standard time and frequency domain, and non-linear HRV measures were determined from 5-minute electrocardiogram. ABPI data were divided into normal (n=101, low (n=67 and high (n=66 and compared to HRV measures.(DFAα1 and SampEn were significantly different between the low ABPI, high ABPI and control groups (p<0.05.Conclusion: A possible coupling between arterial stenosis and vascular calcification with decreased and increased HRV respectively was observed. Our results suggest a model for interpreting the relationship between vascular pathophysiology and cardiac rhythm. The cardiovascular system may be viewed as a complex system comprising a number of interacting subsystems. These cardiac and vascular subsystems/networks may be coupled and undergo transitions in response to internal or external perturbations. From a clinical perspective, the significantly increased sample entropy compared to the normal ABPI group and the decreased and increased complex correlation properties measured by DFA for the low and high ABPI groups respectively, may be useful indicators that a more holistic treatment approach in line with this more complex clinical picture is required.

  9. Association between Depression, Pressure Pain Sensitivity, Stress and Autonomous Nervous System Function in Stable Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Bergmann, Natasha; Karpatschof, Benny

    2016-01-01

    Background: Depression and ischemic heart disease (IHD) are associated with persistent stress and autonomic nervous system (ANS) dysfunction. The former can be measured by pressure pain sensitivity (PPS) of the sternum, and the latter by the PPS and systolic blood pressure (SBP) response to a til...... in depression, reduction in persistent stress, and restoration of ANS dysfunction was only seen in non-users, suggesting a central role of beta-adrenergic receptors in the association between these factors....

  10. 50-57 Effects of the Autonomic Nervous System, Centra

    African Journals Online (AJOL)

    admin

    facilitation of absorption process and expulsion of the undigested food material through ... which is associated with the enteric nervous system , autonomic nervous system and the higher ..... short-chain neutralized fatty acids and 5-HT or radial ...

  11. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis

    NARCIS (Netherlands)

    Koopman, F. A.; van Maanen, M. A.; Vervoordeldonk, M. J.; Tak, P. P.

    2017-01-01

    Imbalance in the autonomic nervous system (ANS) has been observed in many established chronic autoimmune diseases, including rheumatoid arthritis (RA), which is a prototypic immune-mediated inflammatory disease (IMID). We recently discovered that autonomic dysfunction precedes and predicts arthritis

  12. Evaluating the autonomic nervous system in patients with laryngopharyngeal reflux.

    Science.gov (United States)

    Huang, Wan-Ju; Shu, Chih-Hung; Chou, Kun-Ta; Wang, Yi-Fen; Hsu, Yen-Bin; Ho, Ching-Yin; Lan, Ming-Ying

    2013-06-01

    The pathogenesis of laryngopharyngeal reflux (LPR) remains unclear. It is linked to but distinct from gastroesophageal reflux disease (GERD), which has been shown to be related to disturbed autonomic regulation. The aim of this study is to investigate whether autonomic dysfunction also plays a role in the pathogenesis of LPR. Case-control study. Tertiary care center. Seventeen patients with LPR and 19 healthy controls, aged between 19 and 50 years, were enrolled in the study. The patients were diagnosed with LPR if they had a reflux symptom index (RSI) ≥ 13 and a reflux finding score (RFS) ≥ 7. Spectral analysis of heart rate variability (HRV) analysis was used to assess autonomic function. Anxiety and depression levels measured by the Beck Anxiety Inventory (BAI) and Beck Depression Inventory II (BDI-II) were also conducted. In HRV analysis, high frequency (HF) represents the parasympathetic activity of the autonomic nervous system, whereas low frequency (LF) represents the total autonomic activity. There were no significant differences in the LF power and HF power between the 2 groups. However, significantly lower HF% (P = .003) and a higher LF/HF ratio (P = .012) were found in patients with LPR, who demonstrated poor autonomic modulation and higher sympathetic activity. Anxiety was also frequently observed in the patient group. The study suggests that autonomic dysfunction seems to be involved in the pathogenesis of LPR. The potential beneficial effect of autonomic nervous system modulation as a therapeutic modality for LPR merits further investigation.

  13. Association between depression, pressure pain sensitivity, stress and autonomous nervous system function in stable ischemic heart disease

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Bergmann, Natasha; Karpatschof, Benny

    2016-01-01

    Background: Depression and ischemic heart disease (IHD) are associated with persistent stress and autonomic nervous system (ANS) dysfunction. The former can be measured by pressure pain sensitivity (PPS) of the sternum, and the latter by the PPS and systolic blood pressure (SBP) response to a tilt...... table test (TTT). Beta-blocker treatment reduces the efferent beta-adrenergic ANS function, and thus, the physiological stress response. Objective: To test the effect of beta-blockers on changes in depression score in patients with IHD, as well as the influence on persistent stress and ANS dysfunction...... PPS score correlated in non-users, only (r = 0.69, p = 0.007). Reduction in resting PPS correlated with an increase in PPS and SBP response to TTT. Conclusions: Stress intervention in patients with IHD was anti-depres- sive in non-users, only. Similarly, the association between the reduction...

  14. The Cardiovascular Autonomic Nervous System and Anaesthesia

    African Journals Online (AJOL)

    QuickSilver

    system that continues to sustain and control our vital organ systems. .... vagal tone and increased sympathetic outflow to the sinus node due to the fall in blood pressure) ... intraoperative autonomic balance of a particular patient population.

  15. Autonomic Nervous System in Paralympic Athletes with Spinal Cord Injury.

    Science.gov (United States)

    Walter, Matthias; Krassioukov, Andrei V

    2018-05-01

    Individuals sustaining a spinal cord injury (SCI) frequently suffer from sensorimotor and autonomic impairment. Damage to the autonomic nervous system results in cardiovascular, respiratory, bladder, bowel, and sexual dysfunctions, as well as temperature dysregulation. These complications not only impede quality of life, but also affect athletic performance of individuals with SCI. This article summarizes existing evidence on how damage to the spinal cord affects the autonomic nervous system and impacts the performance in athletes with SCI. Also discussed are frequently used performance-enhancing strategies, with a special focus on their legal aspect and implication on the athletes' health. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Altered balance in the autonomic nervous system in schizophrenic patients

    DEFF Research Database (Denmark)

    Nielsen, B M; Mehlsen, J; Behnke, K

    1988-01-01

    .05). Heart-rate response to inspiration was greater in non-medicated schizophrenics compared to normal subjects (P less than 0.05), whereas no difference was found between medicated and non-medicated schizophrenics. The results show that the balance in the autonomic nervous system is altered in schizophrenic...... patients with a hyperexcitability in both the sympathetic and the parasympathetic division. Our study has thus indicated a dysfunction in the autonomic nervous system per se and the previous interpretations of attentional orienting responses in schizophrenia is questioned. Medication with neuroleptics......The aim of the present study was to evaluate the autonomic nervous function in schizophrenic patients. Twenty-eight patients (29 +/- 6 years) diagnosed as schizophrenics and in stable medication were included, together with ten schizophrenic patients (25 +/- 5 years) who were unmedicated. Eleven...

  17. Central- and autonomic nervous system coupling in schizophrenia

    Science.gov (United States)

    Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen

    2016-01-01

    The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback–feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central–autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age–gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS–ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986

  18. Acute irradiation injury and autonomic nervous system. 2

    International Nuclear Information System (INIS)

    Matsuu, Mutsumi; Sekine, Ichiro; Shichijo, Kazuko; Ito, Masahiro; Ikeda, Yuzi; Matsuzaki, Sumihiro; Zea-Iriate, W.-L.; Kondo, Takahito

    1996-01-01

    In order to elucidate the mechanism of occurrence of radiation sickness, whole body irradiation of various doses of X-ray was done on male spontaneously hypertensive rats (SHR) whose sympathetic nervous system is functionally activated and on their original male Wistar Kyoto rats (WKY) and the change of their body weights was examined. Further, changes of blood pressure in rats irradiated at 7.5 Gy, of norepinephrine contents in their gut as a parameter of sympathetic nervous function and of acetylcholine contents as that of parasympathetic nervous function were measured. Histopathological examinations were also performed. SHR died at smaller dose than WKY. The blood pressure as a parameter of systemic sympathetic nervous system varied greatly in SHR. Norepinephrine contents elevated rapidly and greatly in SHR after irradiation and acetylcholine contents rapidly elevated in WKY. Apoptosis was more frequently observed in the intestinal crypt of SHR. Participation of autonomic nervous system was thus shown in the appearance of acute radiation injury and sickness in SHR, which was thought to be a useful model for the investigation. (K.H.)

  19. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  20. The role of the autonomic nervous system in Tourette Syndrome

    Science.gov (United States)

    Hawksley, Jack; Cavanna, Andrea E.; Nagai, Yoko

    2015-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics) and one or more vocal (phonic) tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist) is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus, the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS). Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an implanted device

  1. Influences of lifestyle factors on cardiac autonomic nervous system activity over time

    NARCIS (Netherlands)

    Hu, Mandy Xian; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    Physical activity, alcohol use and smoking might affect cardiovascular disease through modifying autonomic nervous system (ANS) activity. We investigated: 1) whether there are consistent relationships between lifestyle factors and cardiac ANS activity over time, and 2) whether 2-year changes in

  2. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  3. Autonomic nervous system response patterns specificity to basic emotions.

    Science.gov (United States)

    Collet, C; Vernet-Maury, E; Delhomme, G; Dittmar, A

    1997-01-12

    The aim of this study was to test the assumption that the autonomic nervous system responses to emotional stimuli are specific. A series of six slides was randomly presented to the subjects while six autonomic nervous system (ANS) parameters were recorded: skin conductance, skin potential, skin resistance, skin blood flow, skin temperature and instantaneous respiratory frequency. Each slide induced a basic emotion: happiness, surprise, anger, fear, sadness and disgust. Results have been first considered with reference to electrodermal responses (EDR) and secondly through thermo-vascular and respiratory variations. Classical as well as original indices were used to quantify autonomic responses. The six basic emotions were distinguished by Friedman variance analysis. Thus, ANS values corresponding to each emotion were compared two-by-two. EDR distinguished 13 emotion-pairs out of 15. 10 emotion-pairs were separated by skin resistance as well as skin conductance ohmic perturbation duration indices whereas conductance amplitude was only capable of distinguishing 7 emotion-pairs. Skin potential responses distinguished surprise and fear from sadness, and fear from disgust, according to their elementary pattern analysis in form and sign. Two-by-two comparisons of skin temperature, skin blood flow (estimated by the new non-oscillary duration index) and instantaneous respiratory frequency, enabled the distinction of 14 emotion-pairs out of 15. 9 emotion-pairs were distinguished by the non-oscillatory duration index values. Skin temperature was demonstrated to be different i.e. positive versus negative in response to anger and fear. The instantaneous respiratory frequency perturbation duration index was the only one capable of separating sadness from disgust. From the six ANS parameters study, different autonomic patterns were identified, each characterizing one of the six basic emotion used as inducing signals. No index alone, nor group of parameters (EDR and thermovascular

  4. R1 autonomic nervous system in acute kidney injury.

    Science.gov (United States)

    Hering, Dagmara; Winklewski, Pawel J

    2017-02-01

    Acute kidney injury (AKI) is a rapid loss of kidney function resulting in accumulation of end metabolic products and associated abnormalities in fluid, electrolyte and acid-base homeostasis. The pathophysiology of AKI is complex and multifactorial involving numerous vascular, tubular and inflammatory pathways. Neurohumoral activation with heightened activity of the sympathetic nervous system and renin-angiotensin-aldosterone system play a critical role in this scenario. Inflammation and/or local renal ischaemia are underlying mechanisms triggering renal tissue hypoxia and resultant renal microcirculation dysfunction; a common feature of AKI occurring in numerous clinical conditions leading to a high morbidity and mortality rate. The contribution of renal nerves to the pathogenesis of AKI has been extensively demonstrated in a series of experimental models over the past decades. While this has led to better knowledge of the pathogenesis of human AKI, therapeutic approaches to improve patient outcomes are scarce. Restoration of autonomic regulatory function with vagal nerve stimulation resulting in anti-inflammatory effects and modulation of centrally-mediated mechanisms could be of clinical relevance. Evidence from experimental studies suggests that a therapeutic splenic ultrasound approach may prevent AKI via activation of the cholinergic anti-inflammatory pathway. This review briefly summarizes renal nerve anatomy, basic insights into neural control of renal function in the physiological state and the involvement of the autonomic nervous system in the pathophysiology of AKI chiefly due to sepsis, cardiopulmonary bypass and ischaemia/reperfusion experimental model. Finally, potentially preventive experimental pre-clinical approaches for the treatment of AKI aimed at sympathetic inhibition and/or parasympathetic stimulation are presented. © 2016 John Wiley & Sons Australia, Ltd.

  5. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.

    Science.gov (United States)

    Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M

    2016-06-13

    Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  6. Motor execution detection based on autonomic nervous system responses

    International Nuclear Information System (INIS)

    Marchal-Crespo, Laura; Riener, Robert; Zimmermann, Raphael; Lambercy, Olivier; Edelmann, Janis; Fluet, Marie-Christine; Gassert, Roger; Wolf, Martin

    2013-01-01

    Triggered assistance has been shown to be a successful robotic strategy for provoking motor plasticity, probably because it requires neurologic patients’ active participation to initiate a movement involving their impaired limb. Triggered assistance, however, requires sufficient residual motor control to activate the trigger and, thus, is not applicable to individuals with severe neurologic injuries. In these situations, brain and body–computer interfaces have emerged as promising solutions to control robotic devices. In this paper, we investigate the feasibility of a body–machine interface to detect motion execution only monitoring the autonomic nervous system (ANS) response. Four physiological signals were measured (blood pressure, breathing rate, skin conductance response and heart rate) during an isometric pinching task and used to train a classifier based on hidden Markov models. We performed an experiment with six healthy subjects to test the effectiveness of the classifier to detect rest and active pinching periods. The results showed that the movement execution can be accurately classified based only on peripheral autonomic signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity of 85.2%. These results are encouraging to perform further research on the use of the ANS response in body–machine interfaces. (paper)

  7. Anxiety, depression and autonomic nervous system dysfunction in hypertension.

    Science.gov (United States)

    Bajkó, Zoltán; Szekeres, Csilla-Cecília; Kovács, Katalin Réka; Csapó, Krisztina; Molnár, Sándor; Soltész, Pál; Nyitrai, Erika; Magyar, Mária Tünde; Oláh, László; Bereczki, Dániel; Csiba, László

    2012-06-15

    This study examined the relationship between autonomic nervous system dysfunction, anxiety and depression in untreated hypertension. 86 newly diagnosed hypertensive patients and 98 healthy volunteers were included in the study. The psychological parameters were assessed with Spielberger State-Trait Anxiety Inventory and Beck Depression Inventory by a skilled psychologist. Autonomic parameters were examined during tilt table examination (10min lying position, 10min passive tilt). Heart rate variability (HRV) was calculated by autoregressive methods. Baroreflex sensitivity (BRS) was calculated by non-invasive sequence method from the recorded beat to beat blood pressure values and RR intervals. Significantly higher state (42.6±9.3 vs. 39.6±10.7 p=0.05) and trait (40.1±8.9 vs. 35.1±8.6, p<0.0001) anxiety scores were found in the hypertension group. There was no statistically significant difference in the depression level. LF-RRI (Low Frequency-RR interval) of HRV in passive tilt (377.3±430.6 vs. 494.1±547, p=0.049) and mean BRS slope (11.4±5.5 vs. 13.2±6.4, p=0.07) in lying position were lower in hypertensives. Trait anxiety score correlates significantly with sympatho/vagal balance (LF/HF-RRI) in passive tilt position (Spearman R=-0.286, p=0.01). Anxiety could play a more important role than depression in the development of hypertension. Altered autonomic control of the heart could be one of the pathophysiological links between hypertension and psychological factors. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    NARCIS (Netherlands)

    B. Dierckx (Bram)

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate,

  9. A brief review of chronic exercise intervention to prevent autonomic nervous system changes during the aging process

    Directory of Open Access Journals (Sweden)

    Rogério Brandão Wichi

    2009-03-01

    Full Text Available The aging process is associated with alterations in the cardiovascular and autonomic nervous systems. Autonomic changes related to aging involve parasympathetic and sympathetic alterations leading to a higher incidence of cardiovascular disease morbidity and mortality. Several studies have suggested that physical exercise is effective in preventing deleterious changes. Chronic exercise in geriatrics seems to be associated with improvement in the cardiovascular system and seems to promote a healthy lifestyle. In this review, we address the major effects of aging on the autonomic nervous system in the context of cardiovascular control. We examine the use of chronic exercise to prevent cardiovascular changes during the aging process.

  10. A Brief Review of Chronic Exercise Intervention to Prevent Autonomic Nervous System Changes During the Aging Process

    Science.gov (United States)

    Wichi, Rogério Brandão; De Angelis, Kátia; Jones, Lia; Irigoyen, Maria Claudia

    2009-01-01

    The aging process is associated with alterations in the cardiovascular and autonomic nervous systems. Autonomic changes related to aging involve parasympathetic and sympathetic alterations leading to a higher incidence of cardiovascular disease morbidity and mortality. Several studies have suggested that physical exercise is effective in preventing deleterious changes. Chronic exercise in geriatrics seems to be associated with improvement in the cardiovascular system and seems to promote a healthy lifestyle. In this review, we address the major effects of aging on the autonomic nervous system in the context of cardiovascular control. We examine the use of chronic exercise to prevent cardiovascular changes during the aging process. PMID:19330253

  11. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  12. Aromatherapy Improves Work Performance Through Balancing the Autonomic Nervous System.

    Science.gov (United States)

    Huang, Lin; Capdevila, Lluis

    2017-03-01

    This study analyzed the efficacy of aromatherapy in improving work performance and reducing workplace stress. The initial sample comprised 42 administrative university workers (M age  = 42.21 years, standard deviation = 7.12; 10 male). All sessions were performed in a university computer classroom. The participants were randomly assigned into an aromatherapy group (AG) and a control group (CG), and they were invited to participate in a specific session only once. They were seated in front of a computer. During the intervention period, some oil diffusers were switched on and were in operation throughout the session with petitgrain essential oil for AG sessions and a neutral oil (almond) for CG sessions. At the same time, participants completed a computer task on a specific Web site typing on their keyboard until they had finished it. The single times were different for all participants and were recorded on the Web site as "performance time." Before and after the intervention, participants completed anxiety and mood state questionnaires (the Stait-Trait Anxiety Inventory [STAI] and the Profile of Mood States [POMS]). Heart-rate variability (HRV) was measured before (PRE), during (20-25 min), and after (POS) the intervention to analyze autonomic nervous system regulation. The AG performed the Web site task 2.28 min faster than the CG (p = 0.05). The two groups showed differences in the following HRV parameters: low frequency (p = 0.05), high frequency (p = 0.02), standard deviation of all RR intervals (p = 0.05), and root mean square of differences (p = 0.02). All participants in all groups showed a decrease from PRE to POST for STAI (p Aromatherapy (inhaling petitgrain essential oil) can improve performance in the workplace. These results could be explained by an autonomic balance on the sympathetic/parasympathetic system through a combined action of the petitgrain main components (linalyl acetate, linalool, and myrcene). The final

  13. Lost among the trees? The autonomic nervous system and paediatrics.

    Science.gov (United States)

    Rees, Corinne A

    2014-06-01

    The autonomic nervous system (ANS) has been strikingly neglected in Western medicine. Despite its profound importance for regulation, adjustment and coordination of body systems, it lacks priority in training and practice and receives scant attention in numerous major textbooks. The ANS is integral to manifestations of illness, underlying familiar physical and psychological symptoms. When ANS activity is itself dysfunctional, usual indicators of acute illness may prove deceptive. Recognising the relevance of the ANS can involve seeing the familiar through fresh eyes, challenging assumptions in clinical assessment and in approaches to practice. Its importance extends from physical and psychological well-being to parenting and safeguarding, public services and the functioning of society. Exploration of its role in conditions ranging from neurological, gastrointestinal and connective tissue disorders, diabetes and chronic fatigue syndrome, to autism, behavioural and mental health difficulties may open therapeutic avenues. The ANS offers a mechanism for so-called functional illnesses and illustrates the importance of recognising that 'stress' takes many forms, physical, psychological and environmental, desirable and otherwise. Evidence of intrauterine and post-natal programming of ANS reactivity suggests that neonatal care and safeguarding practice may offer preventive opportunity, as may greater understanding of epigenetic change of ANS activity through, for example, accidental or psychological trauma or infection. The aim of this article is to accelerate recognition of the importance of the ANS throughout paediatrics, and of the potential physical and psychological cost of neglecting it. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Role of the autonomic nervous system in rat liver regeneration.

    Science.gov (United States)

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  15. Neuronal degeneration in autonomic nervous system of Dystonia musculorum mice

    Directory of Open Access Journals (Sweden)

    Liu Kang-Jen

    2011-01-01

    Full Text Available Abstract Background Dystonia musculorum (dt is an autosomal recessive hereditary neuropathy with a characteristic uncoordinated movement and is caused by a defect in the bullous pemphigoid antigen 1 (BPAG1 gene. The neural isoform of BPAG1 is expressed in various neurons, including those in the central and peripheral nerve systems of mice. However, most previous studies on neuronal degeneration in BPAG1-deficient mice focused on peripheral sensory neurons and only limited investigation of the autonomic system has been conducted. Methods In this study, patterns of nerve innervation in cutaneous and iridial tissues were examined using general neuronal marker protein gene product 9.5 via immunohistochemistry. To perform quantitative analysis of the autonomic neuronal number, neurons within the lumbar sympathetic and parasympathetic ciliary ganglia were calculated. In addition, autonomic neurons were cultured from embryonic dt/dt mutants to elucidate degenerative patterns in vitro. Distribution patterns of neuronal intermediate filaments in cultured autonomic neurons were thoroughly studied under immunocytochemistry and conventional electron microscopy. Results Our immunohistochemistry results indicate that peripheral sensory nerves and autonomic innervation of sweat glands and irises dominated degeneration in dt/dt mice. Quantitative results confirmed that the number of neurons was significantly decreased in the lumbar sympathetic ganglia as well as in the parasympathetic ciliary ganglia of dt/dt mice compared with those of wild-type mice. We also observed that the neuronal intermediate filaments were aggregated abnormally in cultured autonomic neurons from dt/dt embryos. Conclusions These results suggest that a deficiency in the cytoskeletal linker BPAG1 is responsible for dominant sensory nerve degeneration and severe autonomic degeneration in dt/dt mice. Additionally, abnormally aggregated neuronal intermediate filaments may participate in

  16. Altered autonomic nervous system activity in women with unexplained recurrent pregnancy loss.

    Science.gov (United States)

    Kataoka, Kumie; Tomiya, Yumi; Sakamoto, Ai; Kamada, Yasuhiko; Hiramatsu, Yuji; Nakatsuka, Mikiya

    2015-06-01

    Autonomic nervous system activity was studied to evaluate the physical and mental state of women with unexplained recurrent pregnancy loss (RPL). Heart rate variability (HRV) is a measure of beat-to-beat temporal changes in heart rate and provides indirect insight into autonomic nervous system tone and can be used to assess sympathetic and parasympathetic tone. We studied autonomic nervous system activity by measuring HRV in 100 women with unexplained RPL and 61 healthy female volunteers as controls. The degree of mental distress was assessed using the Kessler 6 (K6) scale. The K6 score in women with unexplained RPL was significantly higher than in control women. HRV evaluated on standard deviation of the normal-to-normal interval (SDNN) and total power was significantly lower in women with unexplained RPL compared with control women. These indices were further lower in women with unexplained RPL ≥4. On spectral analysis, high-frequency (HF) power, an index of parasympathetic nervous system activity, was significantly lower in women with unexplained RPL compared with control women, but there was no significant difference in the ratio of low-frequency (LF) power to HF power (LF/HF), an index of sympathetic nervous system activity, between the groups. The physical and mental state of women with unexplained RPL should be evaluated using HRV to offer mental support. Furthermore, study of HRV may elucidate the risk of cardiovascular diseases and the mechanisms underlying unexplained RPL. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  17. Central nervous system involvement in the autonomic responses to psychological distress

    NARCIS (Netherlands)

    de Morree, H.M.; Szabó, B.M.; Rutten, G.J.; Kop, W.J.

    2013-01-01

    Psychological distress can trigger acute coronary syndromes and sudden cardiac death in vulnerable patients. The primary pathophysiological mechanism that plays a role in stress-induced cardiac events involves the autonomic nervous system, particularly disproportional sympathetic activation and

  18. Autonomic Nervous System Responses to Concussion: Arterial Pulse Contour Analysis

    Directory of Open Access Journals (Sweden)

    Michael F La Fountaine

    2016-02-01

    Full Text Available The arterial pulse wave (APW has a distinct morphology whose contours reflect dynamics in cardiac function and peripheral vascular tone as a result of sympathetic nervous system (SNS control. With a transition from rest to increased metabolic demand, the expected augmentation of SNS outflow will not only affect arterial blood pressure and heart rate, it will also induce changes to the contours of the APW. Following a sports concussion, a transient state cardiovascular autonomic dysfunction is present. How this state affects the APW, has yet to be described. A prospective, parallel-group study on cardiovascular autonomic control (i.e., digital electrocardiogram and continuous beat-to-beat blood pressure was performed in the seated upright position in ten athletes with concussion and 7 non-injured control athletes. Changes in APW were compared at rest and during the first 60 seconds (F60 of an isometric handgrip test (IHGT in concussed athletes and non-injured controls within 48 hours (48hr and 1 week (1wk of injury. The concussion group was further separated by the length of time until they were permitted to return to play (RTP>1wk; RTP≤1wk. SysSlope, an indirect measurement of stroke volume, was significantly lower in the concussion group at rest and during F60 at 48hr and 1wk; a paradoxical decline in SysSlope occurred at each visit during the transition from rest to IHGT F60. The RTP>1wk group had lower SysSlope (405±200; 420±88; 454±236 mmHg/s, respectively at rest 48hr compared to the RTP≤1wk and controls. Similarly at 48hr rest, several measurements of arterial stiffness were abnormal in RTP>1wk compared to RTP≤1wk and controls: Peak-to-Notch Latency (0.12±0.04; 0.16±0.02; 0.17±0.05, respectively, Notch Relative Amplitude (0.70±0.03; 0.71±0.04; 0.66±0.14, respectively and Stiffness Index (6.4±0.2; 5.7±0.4; 5.8±0.5, respectively. Use of APW revealed that concussed athletes have a transient increase in peripheral artery

  19. Autonomic nervous system mediated effects of food intake. Interaction between gastrointestinal and cardiovascular systems.

    NARCIS (Netherlands)

    van Orshoven, N.P.

    2008-01-01

    The studies presented in this thesis focused on the autonomic nervous system mediated interactions between the gastrointestinal and cardiovascular systems in response to food intake and on potential consequences of failure of these interactions. The effects of food intake on cardiovascular

  20. Analysis of Autonomic Nervous System Functional Age and Heart Rate Variability in Mine Workers

    Directory of Open Access Journals (Sweden)

    Vasicko T

    2016-04-01

    Full Text Available Introduction: Heavy working conditions and many unpropitious factors influencing workers health participate in development of various health disorders, among other autonomic cardiovascular regulation malfunction. The aim of this study is to draw a comparison of autonomic nervous system functional age and heart rate variability changes between workers with and without mining occupational exposure.

  1. Peripheral Nervous System Manifestations in Systemic Autoimmune Diseases

    OpenAIRE

    COJOCARU, Inimioara Mihaela; COJOCARU, Manole; SILOSI, Isabela; VRABIE, Camelia Doina

    2014-01-01

    The peripheral nervous system refers to parts of the nervous system outside the brain and spinal cord. Systemic autoimmune diseases can affect both the central and peripheral nervous systems in a myriad of ways and through a heterogeneous number of mechanisms leading to many different clinical manifestations. As a result, neurological complications of these disorders can result in significant morbidity and mortality. The most common complication of peripheral nervous system (PNS) involvement ...

  2. Effects of insula resection on autonomic nervous system activity

    NARCIS (Netherlands)

    de Morree, Helma; Rutten, Geert-Jan; Szabo, B.M.; Sitskoorn, Margriet; Kop, Wijo

    2016-01-01

    Background: The insula is an essential component of the central autonomic network and plays a critical role in autonomic regulation in response to environmental stressors. The role of the insula in human autonomic regulation has been primarily investigated following cerebrovascular accidents, but

  3. Neighborhood Stress and Autonomic Nervous System Activity during Sleep.

    Science.gov (United States)

    Mellman, Thomas Alan; Bell, Kimberly Ann; Abu-Bader, Soleman Hassan; Kobayashi, Ihori

    2018-04-04

    Stressful neighborhood environments are known to adversely impact health and contribute to health disparities but underlying mechanisms are not well understood. Healthy sleep can provide a respite from sustained sympathetic nervous system (SNS) activity. Our objective was to evaluate relationships between neighborhood stress and nocturnal and daytime SNS and parasympathetic nervous system (PNS) activity. Eighty five urban-residing African Americans (56.5% female; mean age of 23.0) participated. Evaluation included surveys of neighborhood stress and sleep-related vigilance; and continuous ECG and actigraphic recording in participants' homes from which heart rate variability (HRV) analysis for low frequency/high frequency (LF/HF) ratio and normalized high frequency (nHF), as indicators of SNS and PNS activity, respectively, and total sleep time (TST), and wake after sleep onset were derived. All significant relationships with HRV measures were from the sleep period. Neighborhood disorder correlated negatively with nHF (r = -.24, p = .035). There were also significant correlations of HRV indices with sleep duration and sleep fears. Among females, LF/HF correlated with exposure to violence, r = .39, p = .008 and nHF with census tract rates for violent crime (r = -.35, p = .035). In a stepwise regression, TST accounted for the variance contributed by violent crime to nHF in the female participants. Further investigation of relationships between neighborhood environments and SNS/PNS balance during sleep and their consequences, and strategies for mitigating such effects would have implications for health disparities.

  4. Hormones and the autonomic nervous system are involved in suprachiasmatic nucleus modulation of glucose homeostasis.

    Science.gov (United States)

    Ruiter, Marieke; Buijs, Ruud M; Kalsbeek, Andries

    2006-05-01

    Glucose is one of the most important energy sources for the body in general, and the brain in particular. It is essential for survival to keep glucose levels within strict boundaries. Acute disturbances of glucose homeostasis are rapidly corrected by hormonal and neuronal mechanisms. Furthermore, changes in energy expenditure associated with the light-dark cycle induce variations in the plasma glucose concentration that are more gradual. Organisms take advantage of adapting their internal physiology to the predictable daily changes in energy expenditure, because it enables them to anticipate these changes and to prevent unnecessary disturbance of homeostasis. The hypothalamic biological clock, located in the suprachiasmatic nucleus (SCN), receives light information from the eyes and transmits this information to the rest of the body to synchronize physiology to the environment. Here we review several studies providing evidence for biological clock control of the daily variation in several aspects of glucose metabolism. Although both hormones and the autonomic nervous system can stimulate glucose uptake or production by organs in the periphery, we have shown that the biological clock control of glucose metabolism mostly occurs through the autonomic nervous system. The critical involvement of the biological clock is also indicated by several studies, indicating that disturbance of the biological clock is often associated with metabolic diseases, such as obesity, diabetes mellitus and hypertension.

  5. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice

    Directory of Open Access Journals (Sweden)

    Laurie L. Baggio

    2017-11-01

    Conclusions: GLP-1R agonists increase HR through multiple mechanisms, including regulation of autonomic nervous system function, and activation of the atrial GLP-1R. Surprisingly, the isolated atrial GLP-1R does not transduce a direct chronotropic effect following exposure to GLP-1R agonists in the intact heart, or isolated atrium, ex vivo. Hence, cardiac GLP-1R circuits controlling HR require neural inputs and do not function in a heart-autonomous manner.

  6. Prions spread via the autonomic nervous system from the gut to the central nervous system in cattle incubating bovine spongiform encephalopathy.

    Science.gov (United States)

    Hoffmann, Christine; Ziegler, Ute; Buschmann, Anne; Weber, Artur; Kupfer, Leila; Oelschlegel, Anja; Hammerschmidt, Baerbel; Groschup, Martin H

    2007-03-01

    To elucidate the still-unknown pathogenesis of bovine spongiform encephalopathy (BSE), an oral BSE challenge and sequential kill study was carried out on 56 calves. Relevant tissues belonging to the peripheral and central nervous system, as well as to the lymphoreticular tract, from necropsied animals were analysed by highly sensitive immunohistochemistry and immunoblotting techniques to reveal the presence of BSE-associated pathological prion protein (PrPSc) depositions. Our results demonstrate two routes involving the autonomic nervous system through which BSE prions spread by anterograde pathways from the gastrointestinal tract (GIT) to the central nervous system (CNS): (i) via the coeliac and mesenteric ganglion complex, splanchnic nerves and the lumbal/caudal thoracic spinal cord (representing the sympathetic GIT innervation); and (ii) via the Nervus vagus (parasympathetic GIT innervation). The dorsal root ganglia seem to be subsequently affected, so it is likely that BSE prion invasion of the non-autonomic peripheral nervous system (e.g. sciatic nerve) is a secondary retrograde event following prion replication in the CNS. Moreover, BSE-associated PrPSc was already detected in the brainstem of an animal 24 months post-infection, which is 8 months earlier than reported previously. These findings are important for the understanding of BSE pathogenesis and for the development of new diagnostic strategies for this infectious disease.

  7. Role of the functional status of the autonomic nervous system in the clinical course of purulent meningitis

    Directory of Open Access Journals (Sweden)

    D. A. Zadiraka

    2014-04-01

    Full Text Available Purulent meningitis is defined by high indices of sickness and lethality rates, a great risk of cerebral and extracerebral complications development, steady residual consequences formation. During neuroinfections, the state of adaptation mechanisms, which is characterized by exhaustion of regulatory systems with the development of decompensation, plays a crucial part. Heart rate variability clearly reflects the degree of regulatory system tension caused by the influence of both physiological and pathological factors. Research aim: to increase the autonomic dysfunction diagnostics efficiency for patients suffering from purulent meningitis in the disease dynamics based on the complex of clinical evidence and functional status of autonomic nervous system. Materials and methods. There were 60 patients with purulent meningitis under medical observation. Wein’s questionnaire was used for the detection of clinical presentations of autonomic dysfunction. Functional status of autonomic nervous system was diagnosed using the method of computer-based cardiointervalometry. The screening group was formed of 20 healthy individuals. Research findings and theirs discussion. Cerebral meningeal symptom was dominant among the patients suffering from purulent meningitis at the peak of the disease. At hospitalization every fifth person (23,3% had the objective evidence of autonomic dysfunction in the form of a postural tremor of upper limbs and eyelids. The analysis of autonomic nervous system parameters functional status among the patients suffering from purulent meningitis at the peak of disease showed heart rate variability decrease in the main branches of autonomic regulation and the presence of autonomic imbalance towards vagotonia. Since the second week, clinical signs of autonomic dysfunction prevailed in the dynamics of patients suffering from purulent meningitis in the course of standard treatment, which was proved by Wein’s survey of the patients. The

  8. A Role for the Autonomic Nervous System in Modulating the Immune Response during Mild Emotional Stimuli

    NARCIS (Netherlands)

    Croiset, Gerda; Heijnen, Cobi J.; Wal, Wim E. van der; Boer, Sietse F. de; Wied, David de

    1990-01-01

    The role of the autonomic nervous system in the modulation of the immune response to emotional stimuli, was established in rats subjected to the passive avoidance test. An increase in splenic primary antibody response directed against SRBC was found after exposure of rats to the passive avoidance

  9. Nocturnal airflow obstruction, histamine, and the autonomic central nervous system in children with allergic asthma

    NARCIS (Netherlands)

    van Aalderen, W. M.; Postma, D. S.; Koëter, G. H.; Knol, K.

    1991-01-01

    A study was carried out to investigate whether an imbalance in the autonomic nervous system or release of histamine, or both, is responsible for the nocturnal increase in airflow obstruction in asthmatic children. The study comprised 18 children with allergic asthma, nine with (group 1) and nine

  10. Child Abuse and Autonomic Nervous System Hyporesponsivity among Psychiatrically Impaired Children

    Science.gov (United States)

    Ford, Julian D.; Fraleigh, Lisa A.; Albert, David B.; Connor, Daniel F.

    2010-01-01

    Objective: Sexually or physically abused children are at risk for neurobiological dysregulation as well as for internalizing and disruptive behavior disorders. Stress-related autonomic nervous system (ANS) down-regulation has been proposed as a sequela of abuse and was investigated in the present study. Methods: Child Protective Services…

  11. Case Studies in a Physiology Course on the Autonomic Nervous System: Design, Implementation, and Evaluation

    Science.gov (United States)

    Zimmermann, Martina

    2010-01-01

    The introduction of case studies on the autonomic nervous system in a fourth-semester physiology course unit for Pharmacy students is described in this article. This article considers how these case studies were developed and presents their content. Moreover, it reflects on their implementation and, finally, the reception of such a transformation…

  12. Autonomic nervous system function in chronic exogenous subclinical thyrotoxicosis and the effect of restoring euthyroidism

    NARCIS (Netherlands)

    Eustatia-Rutten, Carmen F. A.; Corssmit, Eleonora P. M.; Heemstra, Karen A.; Smit, Johannes W. A.; Schoemaker, Rik C.; Romijn, Johannes A.; Burggraaf, Jacobus

    2008-01-01

    Knowledge on the relationship between the autonomic nervous system and subclinical hyperthyroidism is mainly based upon cross-sectional studies in heterogeneous patient populations, and the effect of restoration to euthyroidism in subclinical hyperthyroidism has not been studied. We investigated the

  13. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome

    Science.gov (United States)

    Adults with irritable bowel syndrome (IBS) have been reported to have alterations in autonomic nervous system function as measured by vagal activity via heart rate variability. Whether the same is true for children is unknown. We compared young children 7 to 10 years of age with functional abdominal...

  14. Autonomic nervous system status and responsiveness and the ...

    African Journals Online (AJOL)

    inflexibility or decreased responsiveness in the face of a challenge.1,2 In view of the ... and parasympathetic control were seen with time domain and Poincare ... autonomic shift that results in heart rate acceleration.7 The differences between ...

  15. The Role of the Autonomic Nervous System in the Pathophysiology of Obesity

    Directory of Open Access Journals (Sweden)

    Daniela Guarino

    2017-09-01

    Full Text Available Obesity is reaching epidemic proportions globally and represents a major cause of comorbidities, mostly related to cardiovascular disease. The autonomic nervous system (ANS dysfunction has a two-way relationship with obesity. Indeed, alterations of the ANS might be involved in the pathogenesis of obesity, acting on different pathways. On the other hand, the excess weight induces ANS dysfunction, which may be involved in the haemodynamic and metabolic alterations that increase the cardiovascular risk of obese individuals, i.e., hypertension, insulin resistance and dyslipidemia. This article will review current evidence about the role of the ANS in short-term and long-term regulation of energy homeostasis. Furthermore, an increased sympathetic activity has been demonstrated in obese patients, particularly in the muscle vasculature and in the kidneys, possibily contributing to increased cardiovascular risk. Selective leptin resistance, obstructive sleep apnea syndrome, hyperinsulinemia and low ghrelin levels are possible mechanisms underlying sympathetic activation in obesity. Weight loss is able to reverse metabolic and autonomic alterations associated with obesity. Given the crucial role of autonomic dysfunction in the pathophysiology of obesity and its cardiovascular complications, vagal nerve modulation and sympathetic inhibition may serve as therapeutic targets in this condition.

  16. Nutritional and metabolic diseases involving the nervous system.

    Science.gov (United States)

    Kopcha, M

    1987-03-01

    This article will discuss eight diseases that alter normal nervous system function: hypovitaminosis A, water deprivation/salt toxicity, ammonia toxicosis, hypomagnesemia, hypocalcemia, nervous ketosis, hepatoencephalopathy, and rumen metabolic acidosis.

  17. DISORDERS OF THE AUTONOMIC NERVOUS SYSTEM IN THE CARDIOLOGY PRACTICE: FOCUS ON THE ANALYSIS OF HEART RATE VARIABILITY

    Directory of Open Access Journals (Sweden)

    E. B. Akhmedova

    2015-09-01

    Full Text Available Heart rate variability (HRV in patients with ischemic heart disease, a life-threatening heart rhythm disorders, as well as diabetes mellitus (DM is considered. A significant association between the autonomic regulation of the cardiovascular system and death from cardiovascular causes is identified. The reactions of the autonomic nervous system (ANS can serve as a precipitating factor of arrhythmias in patients with heart disorders. Analysis of HRV at rest is the main and informative method for determination of the ANS disorders. HRV decreases greatly in patients with acute myocardial infarction, cardiac arrhythmia, and DM, predicting a high risk of death. The leading cause of death in diabetic patients is cardiac autonomic neuropathy, with the development of "silent" ischemia and painless myocardial infarction. Autonomic regulation of the heart rate should be assessed for early diagnosis and prevention of complications in the form of sudden death.

  18. Hypothalamic control of energy metabolism via the autonomic nervous system

    NARCIS (Netherlands)

    Kalsbeek, A.; Bruinstroop, E.; Yi, C. X.; Klieverik, L. P.; La Fleur, S. E.; Fliers, E.

    2010-01-01

    The hypothalamic control of hepatic glucose production is an evident aspect of energy homeostasis. In addition to the control of glucose metabolism by the circadian timing system, the hypothalamus also serves as a key relay center for (humoral) feedback information from the periphery, with the

  19. Order of exposure to pleasant and unpleasant odors affects autonomic nervous system response.

    Science.gov (United States)

    Horii, Yuko; Nagai, Katsuya; Nakashima, Toshihiro

    2013-04-15

    When mammals are exposed to an odor, that odor is expected to elicit a physiological response in the autonomic nervous system. An unpleasant aversive odor causes non-invasive stress, while a pleasant odor promotes healing and relaxation in mammals. We hypothesized that pleasant odors might reduce a stress response previously induced by an aversive predator odor. Rats were thus exposed to pleasant and unpleasant odors in different orders to determine whether the order of odor exposure had an effect on the physiological response in the autonomic nervous system. The first trial examined autonomic nerve activity via sympathetic and parasympathetic nerve response while the second trial examined body temperature response. Initial exposure to a pleasant odor elicited a positive response and secondary exposure to an unpleasant odor elicited a negative response, as expected. However, we found that while initial exposure to an unpleasant odor elicited a negative stress response, subsequent secondary exposure to a pleasant odor not only did not alleviate that negative response, but actually amplified it. These findings were consistent for both the autonomic nerve activity response trial and the body temperature response trial. The trial results suggest that exposure to specific odors does not necessarily result in the expected physiological response and that the specific order of exposure plays an important role. Our study should provide new insights into our understanding of the physiological response in the autonomic nervous system related to odor memory and discrimination and point to areas that require further research. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Response of Autonomic Nervous System to Body Positions:

    Science.gov (United States)

    Xu, Aiguo; Gonnella, G.; Federici, A.; Stramaglia, S.; Simone, F.; Zenzola, A.; Santostasi, R.

    Two mathematical methods, the Fourier and wavelet transforms, were used to study the short term cardiovascular control system. Time series, picked from electrocardiogram and arterial blood pressure lasting 6 minutes, were analyzed in supine position (SUP), during the first (HD1) and the second parts (HD2) of 90° head down tilt, and during recovery (REC). The wavelet transform was performed using the Haar function of period T=2j (j=1,2,...,6) to obtain wavelet coefficients. Power spectra components were analyzed within three bands, VLF (0.003-0.04), LF (0.04-0.15) and HF (0.15-0.4) with the frequency unit cycle/interval. Wavelet transform demonstrated a higher discrimination among all analyzed periods than the Fourier transform. For the Fourier analysis, the LF of R-R intervals and VLF of systolic blood pressure show more evident difference for different body positions. For the wavelet analysis, the systolic blood pressures show much more evident differences than the R-R intervals. This study suggests a difference in the response of the vessels and the heart to different body positions. The partial dissociation between VLF and LF results is a physiologically relevant finding of this work.

  1. Effects of alpha-glucosylhesperidin on the peripheral body temperature and autonomic nervous system.

    Science.gov (United States)

    Takumi, Hiroko; Fujishima, Noboru; Shiraishi, Koso; Mori, Yuka; Ariyama, Ai; Kometani, Takashi; Hashimoto, Shinichi; Nadamoto, Tomonori

    2010-01-01

    We studied the effects of alpha-glucosylhesperidin (G-Hsp) on the peripheral body temperature and autonomic nervous system in humans. We first conducted a survey of 97 female university students about excessive sensitivity to the cold; 74% of them replied that they were susceptible or somewhat susceptible to the cold. We subsequently conducted a three-step experiment. In the first experiment, G-Hsp (500 mg) was proven to prevent a decrease in the peripheral body temperature under an ambient temperature of 24 degrees C. In the second experiment, a warm beverage containing G-Hsp promoted blood circulation and kept the finger temperature higher for a longer time. We finally used a heart-rate variability analysis to study whether G-Hsp changed the autonomic nervous activity. The high-frequency (HF) component tended to be higher, while the ratio of the low-frequency (LF)/HF components tended to be lower after the G-Hsp administration. These results suggest that the mechanism for temperature control by G-Hsp might involve an effect on the autonomic nervous system.

  2. Psychological traits influence autonomic nervous system recovery following esophageal intubation in health and functional chest pain.

    Science.gov (United States)

    Farmer, A D; Coen, S J; Kano, M; Worthen, S F; Rossiter, H E; Navqi, H; Scott, S M; Furlong, P L; Aziz, Q

    2013-12-01

    Esophageal intubation is a widely utilized technique for a diverse array of physiological studies, activating a complex physiological response mediated, in part, by the autonomic nervous system (ANS). In order to determine the optimal time period after intubation when physiological observations should be recorded, it is important to know the duration of, and factors that influence, this ANS response, in both health and disease. Fifty healthy subjects (27 males, median age 31.9 years, range 20-53 years) and 20 patients with Rome III defined functional chest pain (nine male, median age of 38.7 years, range 28-59 years) had personality traits and anxiety measured. Subjects had heart rate (HR), blood pressure (BP), sympathetic (cardiac sympathetic index, CSI), and parasympathetic nervous system (cardiac vagal tone, CVT) parameters measured at baseline and in response to per nasum intubation with an esophageal catheter. CSI/CVT recovery was measured following esophageal intubation. In all subjects, esophageal intubation caused an elevation in HR, BP, CSI, and skin conductance response (SCR; all p < 0.0001) but concomitant CVT and cardiac sensitivity to the baroreflex (CSB) withdrawal (all p < 0.04). Multiple linear regression analysis demonstrated that longer CVT recovery times were independently associated with higher neuroticism (p < 0.001). Patients had prolonged CSI and CVT recovery times in comparison to healthy subjects (112.5 s vs 46.5 s, p = 0.0001 and 549 s vs 223.5 s, p = 0.0001, respectively). Esophageal intubation activates a flight/flight ANS response. Future studies should allow for at least 10 min of recovery time. Consideration should be given to psychological traits and disease status as these can influence recovery. © 2013 John Wiley & Sons Ltd.

  3. Parkinson disease: the enteric nervous system spills its guts.

    Science.gov (United States)

    Derkinderen, P; Rouaud, T; Lebouvier, T; Bruley des Varannes, S; Neunlist, M; De Giorgio, R

    2011-11-08

    Lewy pathology in Parkinson disease (PD) extends well beyond the CNS, also affecting peripheral autonomic neuronal circuits, especially the enteric nervous system (ENS). The ENS is an integrative neuronal network also referred to as "the brain in the gut" because of its similarities to the CNS. We have recently shown that the ENS can be readily analyzed using routine colonic biopsies. This led us to propose that the ENS could represent a unique window to assess the neuropathology in living patients with PD. In this perspective, we discuss current evidence which indicates that the presence of ENS pathology may by exploited to improve our understanding and management of PD and likely other neurodegenerative disorders.

  4. Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders.

    Science.gov (United States)

    Kushki, Azadeh; Drumm, Ellen; Pla Mobarak, Michele; Tanel, Nadia; Dupuis, Annie; Chau, Tom; Anagnostou, Evdokia

    2013-01-01

    Assessment of anxiety symptoms in autism spectrum disorders (ASD) is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS) activity for this purpose. Specially, the objectives of the study were to 1) examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2) characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature) during a baseline (movie watching) and anxiety condition (Stroop task) in a sample of typically developing children (n = 17) and children with ASD (n = 12). The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1) signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2) ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal.

  5. Brain Hypoactivation, Autonomic Nervous System Dysregulation, and Gonadal Hormones in Depression: A Preliminary Study

    Science.gov (United States)

    Holsen, Laura M.; Lee, Jong-Hwan; Spaeth, Sarah B.; Ogden, Lauren A.; Klibanski, Anne; Whitfield-Gabrieli, Susan; Sloan, Richard P.; Goldstein, Jill M.

    2012-01-01

    The comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) is among the 10th leading cause of morbidity and mortality worldwide. Thus, understanding the co-occurrence of these disorders will have major public health significance. MDD is associated with an abnormal stress response, manifested in brain circuitry deficits, gonadal dysfunction, and autonomic nervous system (ANS) dysregulation. Contribution of the relationships between these systems to the pathophysiology of MDD is not well understood. The objective of this preliminary study was to investigate, in parallel, relationships between HPG-axis functioning, stress response circuitry activation, and parasympathetic reactivity in healthy controls and women with MDD. Using fMRI with pulse oximetry [from which we calculated the high frequency (HF) component of R-R interval variability (HF-RRV), a measure of parasympathetic modulation] and hormone data, we studied eight women with recurrent MDD in remission and six controls during a stress response paradigm. We demonstrated that hypoactivations of hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and subgenual ACC were associated with lower parasympathetic cardiac modulation in MDD women. Estradiol and progesterone attenuated group differences in the effect of HF-RRV on hypoactivation in the amygdala, hippocampus, ACC, and OFC in MDD women. Findings have implications for understanding the relationship between mood, arousal, heart regulation, and gonadal hormones, and may provide insights into MDD and CVD risk comorbidity. PMID:22395084

  6. Autonomic nervous system profile in fibromyalgia patients and its modulation by exercise: a mini review.

    Science.gov (United States)

    Kulshreshtha, Poorvi; Deepak, Kishore K

    2013-03-01

    This review imparts an impressionistic tone to our current understanding of autonomic nervous system abnormalities in fibromyalgia. In the wake of symptoms present in patients with fibromyalgia (FM), autonomic dysfunction seems plausible in fibromyalgia. A popular notion is that of a relentless sympathetic hyperactivity and hyporeactivity based on heart rate variability (HRV) analyses and responses to various physiological stimuli. However, some exactly opposite findings suggesting normal/hypersympathetic reactivity in patients with fibromyalgia do exist. This heterogeneous picture along with multiple comorbidities accounts for the quantitative and qualitative differences in the degree of dysautonomia present in patients with FM. We contend that HRV changes in fibromyalgia may not actually represent increased cardiac sympathetic tone. Normal muscle sympathetic nerve activity (MSNA) and normal autonomic reactivity tests in patients with fibromyalgia suggest defective vascular end organ in fibromyalgia. Previously, we proposed a model linking deconditioning with physical inactivity resulting from widespread pain in patients with fibromyalgia. Deconditioning also modulates the autonomic nervous system (high sympathetic tone and a low parasympathetic tone). A high peripheral sympathetic tone causes regional ischaemia, which in turn results in widespread pain. Thus, vascular dysregulation and hypoperfusion in patients with FM give rise to ischaemic pain leading to physical inactivity. Microvascular abnormalities are also found in patients with FM. Therapeutic interventions (e.g. exercise) that result in vasodilatation and favourable autonomic alterations have proven to be effective. In this review, we focus on the vascular end organ in patients with fibromyalgia in particular and its modulation by exercise in general. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  7. Diseases of the nervous system associated with calcium channelopathies

    NARCIS (Netherlands)

    Todorov, Boyan Bogdanov

    2010-01-01

    The aim of the studies described in this thesis was to investigate how abnormal CaV2.1 channel function can cause disease, in particular motor coordination dysfunction. The chapters illustrate how various neuronal cell types in the periphery (peripheral nervous system) and the central nervous system

  8. Autonomic nervous system function in chronic exogenous subclinical thyrotoxicosis and the effect of restoring euthyroidism.

    Science.gov (United States)

    Eustatia-Rutten, Carmen F A; Corssmit, Eleonora P M; Heemstra, Karen A; Smit, Johannes W A; Schoemaker, Rik C; Romijn, Johannes A; Burggraaf, Jacobus

    2008-07-01

    Knowledge on the relationship between the autonomic nervous system and subclinical hyperthyroidism is mainly based upon cross-sectional studies in heterogeneous patient populations, and the effect of restoration to euthyroidism in subclinical hyperthyroidism has not been studied. We investigated the long-term effects of exogenous subclinical hyperthyroidism on the autonomic nervous system and the potential effects of restoration of euthyroidism. This was a prospective single-blinded, placebo-controlled, randomized trial. The study was performed at a university hospital. A total of 25 patients who were on more than 10-yr TSH suppressive therapy after thyroidectomy was examined. Patients were studied at baseline and subsequently randomized to a 6-month thyroid hormone substitution regimen to obtain either euthyroidism or maintenance of the subclinical hyperthyroid state. Urinary excretion of catecholamines and heart rate variability were measured. Baseline data of the subclinical hyperthyroidism patients were compared with data obtained in patients with hyperthyroidism and controls. Urinary excretion of norepinephrine and vanillylmandelic acid was higher in the subclinical hyperthyroidism patients compared with controls and lower compared with patients with overt hyperthyroidism. Heart rate variability was lower in patients with hyperthyroidism, intermediate in subclinical hyperthyroidism patients, and highest in the healthy controls. No differences were observed after restoration of euthyroidism. Long-term exogenous subclinical hyperthyroidism has effects on the autonomic nervous system measured by heart rate variability and urinary catecholamine excretion. No differences were observed after restoration to euthyroidism. This may indicate the occurrence of irreversible changes or adaptation during long-term exposure to excess thyroid hormone that is not remedied by 6-month euthyroidism.

  9. Progress of radionuclide diagnostic methods in central nervous system diseases

    International Nuclear Information System (INIS)

    Badmaev, K.N.; Zen'kovich, S.G.

    1982-01-01

    A summarry on modern radionuclide diagnosis achivements of central nervous system diseases is presented. Most optimal tumorotropic preparations and compounds in the view of decreasing irradiation does and optimazing image are given

  10. Autonomic nervous system balance in children and adolescents with craniopharyngioma and hypothalamic obesity.

    Science.gov (United States)

    Cohen, Michal; Syme, Catriona; McCrindle, Brian W; Hamilton, Jill

    2013-06-01

    Dysregulation of the autonomic nervous system is thought to be involved in craniopharyngioma-related hypothalamic obesity (CRHO). Increased parasympathetic activity and decreased sympathetic activity have been suggested. We aimed to study autonomic activity using heart rate variability (HRV) and biochemical measures in youth with CRHO compared with controls and to explore relationships between obesity and autonomic indices. A cross-sectional study of 16 youth with CRHO and 16 controls matched for sex, age, and BMI. Anthropometrics, fasting blood-work, resting energy expenditure (REE), 24-h HRV, and 24-h urine catecholamines were assessed. Quality of life, sleepiness, and autonomic symptoms were evaluated. Power spectral analysis of the HRV was performed. HRV power spectral analysis parameters of both parasympathetic activity (mean high frequency (HF (ms(2))) 611±504 vs 459±336, P=0.325) and sympathetic activity (median low frequency/HF 1.62 (1.37, 2.41) vs 1.89 (1.44, 2.99), P=0.650) did not differ between the groups. Parasympathetic activity negatively correlated with central adiposity in both groups (r=-0.53, P=0.034 and r=-0.54, P=0.029) and sympathetic activity positively correlated with central adiposity in CRHO (r=0.51, P=0.043). Youth with CRHO had significantly lower REE; lower health and activity scores in the quality of life questionnaires, and higher sleepiness scores. Autonomic activity was similar in CRHO and control subjects. The degree of central adiposity correlated negatively with parasympathetic activity and positively with sympathetic activity in children with CRHO. These results provide a new perspective regarding autonomic balance in this unique patient population.

  11. Chinese-chi and Kundalini yoga Meditations Effects on the Autonomic Nervous System: Comparative Study

    Directory of Open Access Journals (Sweden)

    Anilesh Dey

    2016-06-01

    Full Text Available Cardiac disease is one of the major causes for death all over the world. Heart rate variability (HRV is a significant parameter that used in assessing Autonomous Nervous System (ANS activity. Generally, the 2D Poincare′ plot and 3D Poincaré plot of the HRV signals reflect the effect of different external stimuli on the ANS. Meditation is one of such external stimulus, which has different techniques with different types of effects on the ANS. Chinese Chi-meditation and Kundalini yoga are two different effective meditation techniques. The current work is interested with the analysis of the HRV signals under the effect of these two based on meditation techniques. The 2D and 3D Poincare′ plots are generally plotted by fitting respectively an ellipse/ellipsoid to the dense region of the constructed Poincare′ plot of HRV signals. However, the 2D and 3D Poincaré plots sometimes fail to describe the proper behaviour of the system. Thus in this study, a three-dimensional frequency-delay plot is proposed to properly distinguish these two famous meditation techniques by analyzing their effects on ANS. This proposed 3D frequency-delay plot is applied on HRV signals of eight persons practicing same Chi-meditation and four other persons practising same Kundalini yoga. To substantiate the result for larger sample of data, statistical Student t-test is applied, which shows a satisfactory result in this context. The experimental results established that the Chi-meditation has large impact on the HRVcompared to the Kundalini yoga.

  12. The role of the autonomic nervous system in the resting tachycardia of human hyperthyroidism.

    Science.gov (United States)

    Maciel, B C; Gallo, L; Marin Neto, J A; Maciel, L M; Alves, M L; Paccola, G M; Iazigi, N

    1987-02-01

    The mechanisms that control resting heart rate in hyperthyroidism were evaluated in six patients before and after treatment with propylthiouracil. The patients were subjected to pharmacological blockade under resting conditions in two experimental sessions: first session, propranolol (0.2 mg/kg body weight); second session, atropine (0.04 mg/kg body weight) followed by propranolol (0.2 mg/kg body weight). All drugs were administered intravenously. Resting heart rate was significantly reduced from 100 +/- 6.5 beats/min to 72 +/- 2.5 beats/min (P less than 0.005) after clinical and laboratory control of the disease. After double blockade, intrinsic heart rate was reduced from 105 +/- 6.8 beats/min before treatment to 98 +/- 6.0 beats/min after treatment (P less than 0.025). The reduction in heart rate caused by propranolol was not significantly different before (-13 +/- 1.4 beats/min) and after (-9 +/- 1.0 beats/min) propylthiouracil. In contrast, atropine induced a higher elevation of heart rate after treatment (45 +/- 8.6 beats/min) than before treatment (26 +/- 4.0 beats/min). The present results suggest no appreciable participation of the sympathetic component of the autonomic nervous system in the tachycardia of hyperthyroidism, at least under the conditions of the present study. The small change observed in intrinsic heart rate, although significant, seems to indicate that this is not the most important mechanism involved in this tachycardia. Our results suggest that an important reduction in the efferent activity of the parasympathetic component participates in the mechanisms that modify resting heart rte in hyperthyroidism.

  13. The role of the autonomic nervous system in hypertension: a bond graph model study

    International Nuclear Information System (INIS)

    Chen, Shuzhen; Gong, Yuexian; Dai, Kaiyong; Sui, Meirong; Yu, Yi; Ning, Gangmin; Zhang, Shaowen

    2008-01-01

    A bond graph model of the cardiovascular system with embedded autonomic nervous regulation was developed for a better understanding of the role of the autonomic nervous system (ANS) in hypertension. The model is described by a pump model of the heart and a detailed representation of the head and neck, pulmonary, coronary, abdomen and extremity circulation. It responds to sympathetic and parasympathetic activities by modifying systemic peripheral vascular resistance, heart rate, ventricular end-systolic elastance and venous unstressed volumes. The impairment of ANS is represented by an elevation of the baroreflex set point. The simulation results show that, compared with normotensive, in hypertension the systolic and diastolic blood pressure (SBP/DBP) rose from 112/77 mmHg to 144/94 mmHg and the left ventricular wall thickness (LVWT) increased from 10 mm to 12.74 mm. In the case that ANS regulation was absent, both the SBP and DBP further increased by 8 mmHg and the LVWT increased to 13.22 mm. The results also demonstrate that when ANS regulation is not severely damaged, e.g. the baroreflex set point is 97 mmHg, it still has an effect in preventing the rapid rise of blood pressure in hypertension; however, with the worsening of ANS regulation, its protective role weakens. The results agree with human physiological and pathological features in hemodynamic parameters and carotid baroreflex function curves, and indicate the role of ANS in blood pressure regulation and heart protection. In conclusion, the present model may provide a valid approach to study the pathophysiological conditions of the cardiovascular system and the mechanism of ANS regulation

  14. New methodology for preventing pressure ulcers using actimetry and autonomous nervous system recording.

    Science.gov (United States)

    Meffre, R; Gehin, C; Schmitt, P M; De Oliveira, F; Dittmar, A

    2006-01-01

    Pressure ulcers constitute an important health problem. They affect lots of people with mobility disorder and they are difficult to detect and prevent because the damage begins on the muscle. This paper proposes a new approach to study pressure ulcers. We aim at developing a methodology to analyse the probability for a patient to develop a pressure ulcer, and that can detect risky situation. The idea is to relate the mobility disorder to autonomic nervous system (ANS) trouble. More precisely, the evaluation of the consequence of the discomfort on the ANS (stress induced by discomfort) can be relevant for the early detection of the pressure ulcer. Mobility is evaluated through movement measurement. This evaluation, at the interface between soft living tissues and any support has to consider the specificity of the human environment. Soft living tissues have non-linear mechanical properties making conventional rigid sensors non suitable for interface parameters measurement. A new actimeter system has been designed in order to study movements of the human body whatever its support while seating. The device is based on elementary active cells. The number of pressure cells can be easily adapted to the application. The spatial resolution is about 4 cm(2). In this paper, we compare activity measurement of a seated subject with his autonomic nervous system activity, recorded by E.motion device. It has been developed in order to record six parameters: skin potential, skin resistance, skin temperature, skin blood rate, instantaneous cardiac frequency and instantaneous respiratory frequency. The design, instrumentation, and first results are presented.

  15. An Educational Board Game to Assist PharmD Students in Learning Autonomic Nervous System Pharmacology.

    Science.gov (United States)

    Jones, J Shawn; Tincher, Lindsay; Odeng-Otu, Emmanuel; Herdman, Michelle

    2015-10-25

    Objective. To examine whether playing a board game can assist PharmD students in learning autonomic nervous system (ANS) pharmacology. Design. Of 72 students enrolled in a required second-year pharmacology course, 22 students volunteered to play the board game, which was followed by an in-class examination consisting of 42 ANS questions (ANSQs) and 8 control questions (CTLQs). Participants were given a pretest and a posttest to assess immediate educational improvement. Participants' scores for pretest, posttest, in-class examination, and ANSQs were compared. Also, scores for examination, ANSQs, and CTLQs were compared between board game participants (PART) and nonparticipating classmates (NPART). Assessment. Board game participants scored progressively higher between the pretest, posttest, examination, and ANSQs. Additionally, PART scores were higher than NPART scores for examination and ANSQs. Difference between PART and NPART CTLQ scores was not significant. Conclusion. A board game can assist PharmD students in learning ANS pharmacology.

  16. Family conflict, autonomic nervous system functioning, and child adaptation: state of the science and future directions.

    Science.gov (United States)

    El-Sheikh, Mona; Erath, Stephen A

    2011-05-01

    The family is one of the primary contexts of child development. Marital and parent-child conflict (family conflict) are common and predict a wide range of negative behavioral and emotional outcomes in children. Thus, an important task for developmental researchers is to identify the processes through which family conflict contributes to children's psychological maladjustment, as well as vulnerability and protective factors in the context of family conflict. In the current paper, we aim to advance a conceptual model that focuses on indices of children's autonomic nervous system (ANS) functioning that increase vulnerability or provide protection against psychological maladjustment in the context of family conflict. In doing so, we provide a selective review that reflects the state of the science linking family conflict, children's ANS activity, and child psychological adjustment, and offer directions and guidance for future research. Our hope is to accelerate research at the intersection of family conflict and ANS functioning to advance understanding of risk and resilience among children.

  17. Does dysfunction of the autonomic nervous system affect success of renal denervation in reducing blood pressure?

    Science.gov (United States)

    Fricke, Lisa; Petroff, David; Desch, Steffen; Lurz, Philipp; Reinhardt, Sebastian; Sonnabend, Melanie; Classen, Joseph; Baum, Petra

    2017-01-01

    Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1) and normal or enhanced in nine patients (group 2). The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1-21 mmHg, p = 0.035) and from 166 to 145 mmHg (8-34 mmHg, p = 0.005), respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3-22 mmHg) greater in group 2 than in group 1 (p = 0.045). Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.

  18. Aromatherapy benefits autonomic nervous system regulation for elementary school faculty in taiwan.

    Science.gov (United States)

    Chang, Kang-Ming; Shen, Chuh-Wei

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.

  19. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    Directory of Open Access Journals (Sweden)

    Kang-Ming Chang

    2011-01-01

    Full Text Available Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P<.001∗∗∗ after application of the aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.

  20. Evaluation of Autonomic Nervous System, Saliva Cortisol Levels, and Cognitive Function in Major Depressive Disorder Patients

    Directory of Open Access Journals (Sweden)

    Sukonthar Ngampramuan

    2018-01-01

    Full Text Available Major depressive disorder (MDD is associated with changes in autonomic nervous system (ANS and cognitive impairment. Heart rate variability (HRV and Pulse pressure (PP parameters reflect influences of the sympathetic and parasympathetic nervous system. Cortisol exerts its greatest effect on the hippocampus, a brain area closely related to cognitive function. This study aims to examine the effect of HRV, PPG, salivary cortisol levels, and cognitive function in MDD patients by using noninvasive techniques. We have recruited MDD patients, diagnosed based on DSM-V-TR criteria compared with healthy control subjects. Their HRV and PP were measured by electrocardiogram (ECG and photoplethysmography (PPG. Salivary cortisol levels were collected and measured on the same day. MDD patients exhibited elevated values of mean HR, standard deviation of HR (SDHR, low frequency (LF power, low frequency/high frequency (LF/HF ratio, mean PP, standard deviation of pulse pressure (SDPP, and salivary cortisol levels. Simultaneously, they displayed lower values of mean of R-R intervals (mean NN, standard deviation of R-R intervals (SDNN, high frequency (HF power, and WCST scores. Results have shown that the ANS of MDD patients were dominated by the sympathetic activity and that they have cognitive deficits especially in the domain of executive functioning.

  1. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    Science.gov (United States)

    Chang, Kang-Ming; Shen, Chuh-Wei

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy. PMID:21584196

  2. Does dysfunction of the autonomic nervous system affect success of renal denervation in reducing blood pressure?

    Directory of Open Access Journals (Sweden)

    Lisa Fricke

    2017-04-01

    Full Text Available Objectives: Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. Methods: A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Results: Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1 and normal or enhanced in nine patients (group 2. The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1–21 mmHg, p = 0.035 and from 166 to 145 mmHg (8–34 mmHg, p = 0.005, respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3–22 mmHg greater in group 2 than in group 1 (p = 0.045. Conclusion: Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.

  3. Influence of tilt training on activation of the autonomic nervous system in patients with vasovagal syncope.

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Halawa, Bogumił; Mazurek, Walentyna

    2006-04-01

    Tilt training is a new treatment for vasovagal syncope. Its therapeutic efficacy is thought to be the result of the desensitization of cardiopulmonary receptors, but it could be the influence of the tilt training on the activation of the autonomic nervous system as well. The study group consisted of 24 vasovagal patients (17 women and 7 men) aged 32.5 +/- 11.8 years. The diagnostic head-up tilt test was performed according to the Italian protocol with nitroglycerin if necessary. The monitoring head-up tilt test was performed according to the Westminster protocol without provocation, after 1 to 3 months of tilt training. Holter ECG recordings for HRV parameters (time and frequency domain) were obtained from selected 2-min intervals before, during and after the diagnostic and monitoring tilt test. The diagnostic test was positive in the passive phase in 6 and after provocation in 18 patients. During the training period no syncope occurred. Analysing the HRV parameters we demonstrated the following findings: I. mRR decreases immediately after assumption of a vertical position in both tests (diagnostic and monitoring) but in the diagnostic test its further decrease occurs earlier than in the monitoring test; 2. the absolute power of the HF component is greater in the early phase of tilt after tilt training than in the corresponding period in the diagnostic test. After a longer period of tilt training the activation of the sympathetic nervous system in response to the erect position is diminished.

  4. Autonomic Nervous System Responses to Hearing-Related Demand and Evaluative Threat.

    Science.gov (United States)

    Mackersie, Carol L; Kearney, Lucia

    2017-10-12

    This paper consists of 2 parts. The purpose of Part 1 was to review the potential influence of internal (person-related) factors on listening effort. The purpose of Part 2 was to present, in support of Part 1, preliminary data illustrating the interactive effects of an external factor (task demand) and an internal factor (evaluative threat) on autonomic nervous system measures. For Part 1, we provided a brief narrative review of motivation and stress as modulators of listening effort. For Part 2, we described preliminary data from a study using a repeated-measures (2 × 2) design involving manipulations of task demand (high, low) and evaluative threat (high, low). The low-demand task consisted of repetition of sentences from a narrative. The high-demand task consisted of answering questions about the narrative, requiring both comprehension and recall. During the high evaluative threat condition, participants were filmed and told that their video recordings would be evaluated by a panel of experts. During the low evaluative threat condition, no filming occurred; participants were instructed to "do your best." Skin conductance (sympathetic nervous system activity) and heart rate variability (HRV, parasympathetic activity) were measured during the listening tasks. The HRV measure was the root mean square of successive differences of adjacent interbeat intervals. Twelve adults with hearing loss participated. Skin conductance increased and HRV decreased relative to baseline (no task) for all listening conditions. Skin conductance increased significantly with an increase in evaluative threat, but only for the more demanding task. There was no significant change in HRV in response to increasing evaluative threat or task demand. Listening effort may be influenced by factors other than task difficulty, as reviewed in Part 1. This idea is supported by the preliminary data indicating that the sympathetic nervous system response to task demand is modulated by social evaluative

  5. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats.

    Science.gov (United States)

    Dos Reis, Daniel Gustavo; Fortaleza, Eduardo Albino Trindade; Tavares, Rodrigo Fiacadori; Corrêa, Fernando Morgan Aguiar

    2014-07-01

    Restraint stress (RS) is an experimental model to study stress-related cardiovascular responses, characterized by sustained pressor and tachycardiac responses. We used pharmacologic and surgical procedures to investigate the role played by sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS) in the mediation of stress-evoked cardiovascular responses. Ganglionic blockade with pentolinium significantly reduced RS-evoked pressor and tachycardiac responses. Intravenous treatment with homatropine methyl bromide did not affect the pressor response but increased tachycardia. Pretreatment with prazosin reduced the pressor and increased the tachycardiac response. Pretreatment with atenolol did not affect the pressor response but reduced tachycardia. The combined treatment with atenolol and prazosin reduced both pressor and tachycardiac responses. Adrenal demedullation reduced the pressor response without affecting tachycardia. Sinoaortic denervation increased pressor and tachycardiac responses. The results indicate that: (1) the RS-evoked cardiovascular response is mediated by the autonomic nervous system without an important involvement of humoral factors; (2) hypertension results primarily from sympathovascular and sympathoadrenal activation, without a significant involvement of the cardiac sympathetic component (CSNS); (3) the abrupt initial peak in the hypertensive response to restraint is sympathovascular-mediated, whereas the less intense but sustained hypertensive response observed throughout the remaining restraint session is mainly mediated by sympathoadrenal activation and epinephrine release; (4) tachycardia results from CSNS activation, and not from PSNS inhibition; (5) RS evokes simultaneous CSNS and PSNS activation, and heart rate changes are a vector of both influences; (6) the baroreflex is functional during restraint, and modulates both the vascular and cardiac responses to restraint.

  6. Effects of Betel chewing on the central and autonomic nervous systems.

    Science.gov (United States)

    Chu, N S

    2001-01-01

    Betel chewing has been claimed to produce a sense of well-being, euphoria, heightened alertness, sweating, salivation, a hot sensation in the body and increased capacity to work. Betel chewing also leads to habituation, addiction and withdrawal. However, the mechanisms underlying these effects remain poorly understood. Arecoline, the major alkaloid of Areca nut, has been extensively studied, and several effects of betel chewing are thought to be related to the actions of this parasympathomimetic constituent. However, betel chewing may produce complex reactions and interactions. In the presence of lime, arecoline and guvacoline in Areca nut are hydrolyzed into arecaidine and guvacine, respectively, which are strong inhibitors of GABA uptake. Piper betle flower or leaf contains aromatic phenolic compounds which have been found to stimulate the release of catecholamines in vitro. Thus, betel chewing may affect parasympathetic, GABAnergic and sympathetic functions. Betel chewing produces an increase in heart rate, blood pressure, sweating and body temperature. In addition, EEG shows widespread cortical desynchronization indicating a state of arousal. In autonomic function tests, both the sympathetic skin response and RR interval variation are affected. Betel chewing also increases plasma concentrations of norepinephrine and epinephrine. These results suggest that betel chewing mainly affects the central and autonomic nervous systems. Future studies should investigate both the acute and chronic effects of betel chewing. Such studies may further elucidate the psychoactive mechanisms responsible for the undiminished popularity of betel chewing since antiquity. Copyright 2001 National Science Council, ROC and S. Karger AG, Basel.

  7. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    Science.gov (United States)

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart.

  8. Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice.

    Science.gov (United States)

    Shusterman, Vladimir; Usiene, Irmute; Harrigal, Chivonne; Lee, Joon Sup; Kubota, Toru; Feldman, Arthur M; London, Barry

    2002-06-01

    Transgenic mice are widely used to study cardiac function, but strain-dependent differences in autonomic nervous system activity (ANSA) have not been explored. We compared 1) short-term pharmacological responses of cardiac rhythm in FVB vs. C57Black6/SV129 wild-type mice and 2) long-term physiological dynamics of cardiac rhythm and survival in tumor necrosis factor (TNF)-alpha transgenic mice with heart failure (TNF-alpha mice) on defined backgrounds. Ambulatory telemetry electrocardiographic recordings and response to saline, adrenergic, and cholinergic agents were examined in FVB and C57Black6/SV129 mice. In FVB mice, baseline heart rate (HR) was higher and did not change after injection of isoproterenol or atropine but decreased with propranolol. In C57Black6/SV129 mice, HR did not change with propranolol but increased with isoproterenol or atropine. Mean HR, but not indexes of HR variability, was an excellent predictor of response to autonomic agents. The proportion of surviving animals was higher in TNF-alpha mice on an FVB background than on a mixed FVB/C57Black6 background. The homeostatic states of ANSA are strain specific, which can explain the interstrain differences in mean HR, pharmacological responses, and survival of animals with congestive heart failure. Strain-specific differences should be considered in selecting the strains of mice used for transgenic and gene targeting experiments.

  9. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    Directory of Open Access Journals (Sweden)

    Luba Sominsky

    Full Text Available Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p. exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA axis functioning. Altered autonomic nervous system (ANS activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH in the adrenal glands on postnatal days (PNDs 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli. Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of

  10. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    Science.gov (United States)

    Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.

  11. Time, touch, and compassion: effects on autonomic nervous system and well-being.

    Science.gov (United States)

    Shaltout, Hossam A; Tooze, Janet A; Rosenberger, Erica; Kemper, Kathi J

    2012-01-01

    Compassion is critical for complementary and conventional care, but little is known about its direct physiologic effects. This study tested the feasibility of delivering two lengths of time (10 and 20 minutes) and two strategies (tactile and nontactile) for a practitioner to nonverbally communicate compassion to subjects who were blind to the interventions. Healthy volunteers were informed that we were testing the effects of time and touch on the autonomic nervous system. Each subject underwent five sequential study periods in one study session: (1) warm-up; (2) control-with the practitioner while both read neutral material; (3) rest; (4) intervention-with practitioner meditating on loving-kindness toward the subject; and (5) rest. Subjects were randomized to receive one of four interventions: (1) 10 minutes tactile; (2) 20 minutes tactile; (3) 10 minutes nontactile; or (4) 20 minutes nontactile. During all interventions, the practitioner meditated on loving-kindness toward the subject. For tactile interventions, the practitioner touched subjects on arms, legs, and hands; for nontactile interventions, the practitioner pretended to read. Subjects' autonomic activity, including heart rate, was measured continuously. Subjects completed visual analog scales for well-being, including relaxation and peacefulness, at warm-up; postcontrol; immediately postintervention; and after the postintervention rest and were asked about what they and the practitioner had done during each study period. The 20 subjects' mean age was 24.3 ± 4 years; 16 were women. The practitioner maintained a meditative state during all interventions as reflected in lower respiratory rate, and subjects remained blind to the practitioner's meditative activity. Overall, interventions significantly decreased heart rate (P < .01), and although other changes did not reach statistical significance, they were in the expected direction, with generally greater effects for the tactile than nontactile strategies

  12. Central nervous system involvement in Whipple's disease

    International Nuclear Information System (INIS)

    Ludwig, B.; Bohl, J.; Heferkamp, G.

    1981-01-01

    A case of Whipple's disease is presented manifesting itself predominantly with neurological and mental symptoms but without gastrointestinal complaints. Although the first cranial CT in the fourth year of the disease was normal, the second, 1.5 years later, revealed intensive hypodensity of the white matter and cortical enhancement. CT findings are compared with autopsy results and a review of the pertinent literature is given. (orig.)

  13. Potential benefits of mindfulness during pregnancy on maternal autonomic nervous system function and infant development : Mindfulness, ANS, and infant development

    NARCIS (Netherlands)

    Braeken, M.A.K.A.; Jones, Alexander; Otte, R.A.; Nyklicek, I.; Van Den Bergh, B.R.H.

    2017-01-01

    Mindfulness is known to decrease psychological distress. Possible benefits in pregnancy have rarely been explored. Our aim was to examine the prospective association of mindfulness with autonomic nervous system function during pregnancy and with later infant social-emotional development. Pregnant

  14. Dysregulation of the autonomic nervous system and its association with the presence and intensity of chronic widespread pain

    NARCIS (Netherlands)

    Barakat, A.; Vogelzangs, N.; Licht, C.M.M.; Geenen, R.; Macfarlane, G.J.; de Geus, E.J.C.; Smit, J.H.; Penninx, B.W.J.H.; Dekker, J.

    2012-01-01

    Objective To test the hypotheses that dysregulation of the autonomic nervous system (ANS) is associated with the presence of chronic widespread pain (CWP), and that dysregulation of the ANS is associated with higher pain intensity in CWP. Methods Cross-sectional data were obtained from 1,574

  15. Dysregulation of the Autonomic Nervous System and Its Association With the Presence and Intensity of Chronic Widespread Pain

    NARCIS (Netherlands)

    Barakat, Ansam; Vogelzangs, Nicole; Licht, Carmilla M. M.; Geenen, Rinie; Macfarlane, Gary J.; de Geus, Eco J. C.; Smit, Johannes H.; Penninx, Brenda W. J. H.; Dekker, Joost

    Objective. To test the hypotheses that dysregulation of the autonomic nervous system (ANS) is associated with the presence of chronic widespread pain (CWP), and that dysregulation of the ANS is associated with higher pain intensity in CWP. Methods. Cross-sectional data were obtained from 1,574

  16. NOCTURNAL AIR-FLOW OBSTRUCTION, HISTAMINE, AND THE AUTONOMIC CENTRAL-NERVOUS-SYSTEM IN CHILDREN WITH ALLERGIC-ASTHMA

    NARCIS (Netherlands)

    VANAALDEREN, WMC; POSTMA, DS; KOETER, GH; KNOL, K

    A study was carried out to investigate whether an imbalance in the autonomic nervous system or release of histamine, or both, is responsible for the nocturnal increase in airflow obstruction in asthmatic children. The study comprised 18 children with allergic asthma,nine with (group 1) and nine

  17. The influence of concentration/meditation on autonomic nervous system activity and the innate immune response: a case study.

    NARCIS (Netherlands)

    Kox, M.; Stoffels, M.; Smeekens, S.P.; Alfen, N. van; Gomes, M.E.R.; Eijsvogels, T.M.H.; Hopman, M.T.E.; Hoeven, J.G. van der; Netea, M.G.; Pickkers, P.

    2012-01-01

    OBJECTIVE: In this case study, we describe the effects of a particular individual's concentration/meditation technique on autonomic nervous system activity and the innate immune response. The study participant holds several world records with regard to tolerating extreme cold and claims that he can

  18. Alterations in HPA-axis and autonomic nervous system functioning in childhood anxiety disorders point to a chronic stress hypothesis

    NARCIS (Netherlands)

    Dieleman, G.C.; Huizink, A.C.; Tulen, J.H.M.; Utens, E.M.W.J.; Creemers, H.E.; van der Ende, J.; Verhulst, F.C.

    2015-01-01

    Background: It is of debate whether or not childhood anxiety disorders (AD) can be captured by one taxonomic construct. This study examined whether perceived arousal (PA), autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis measures can distinguish children with different

  19. Alterations in HPA-axis and autonomic nervous system functioning in childhood anxiety disorders point to a chronic stress hypothesis

    NARCIS (Netherlands)

    Dieleman, Gwendolyn C.; Huizink, Anja C.; Tulen, Joke H. M.; Utens, Elisabeth M. W. J.; Creemers, Hanneke E.; van der Ende, Jan; Verhulst, Frank C.

    2015-01-01

    It is of debate whether or not childhood anxiety disorders (AD) can be captured by one taxonomic construct. This study examined whether perceived arousal (PA), autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis measures can distinguish children with different primary

  20. Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature

    NARCIS (Netherlands)

    Bahler, L.; Molenaars, R. J.; Verberne, H. J.; Holleman, F.

    2015-01-01

    Brown adipose tissue (BAT) is able to convert calories into heat rather than storing them. Therefore, activated BAT could be a potential target in the battle against obesity and type 2 diabetes. This review focuses on the role of the autonomic nervous system in the activation of human BAT. Although

  1. Thyroid disease and the nervous system.

    Science.gov (United States)

    Wood-Allum, Clare A; Shaw, Pamela J

    2014-01-01

    Thyroid disorders are common in the general population and in hospitalized patients. Thyroid disease may present first with neurological complications or else may occur concurrently in patients suffering other neurological disorders, particularly those with an autoimmune etiology. For this reason neurologists will commonly encounter patients with thyroid disease. This chapter provides an overview of the neurological complications and associations of disorders of the thyroid gland. Particular emphasis is placed on conditions such as thyrotoxic periodic paralysis and myxedema coma in which the underlying thyroid disorder may be occult leading to a first, often emergency, presentation to a neurologist. Information about clinical features, diagnosis, pathogenesis, therapy, and prognosis is provided. Emphasis is placed on those aspects most likely to be relevant to the practicing neurologist and the interested reader is directed to references to good, recent review articles for further information. © 2014 Elsevier B.V. All rights reserved.

  2. Lack of circadian variation in the activity of the autonomic nervous system after major abdominal operations

    DEFF Research Database (Denmark)

    Gögenur, Ismail; Rosenberg-Adamsen, Susan; Lie, Claus

    2002-01-01

    OBJECTIVE: Most sudden postoperative deaths occur during the night and we conjectured that this was associated with circadian variations in the autonomic nervous tone, reflected in heart rate variability. DESIGN: Prospective clinical study. SETTINGS: University hospital, Denmark. SUBJECTS: 44...... OUTCOME MEASURES: Heart rate and heart rate variability. RESULTS: Circadian variation calculated from the SDNN (p = 0.43) the pNN50 (p = 0.11), the RMSSD (p = 0.47), and mean NN:SDNN ratio (p = 0.13) was absent postoperatively. Circadian variation in the heart rate was present but was set on a higher...... level compared with reference values. CONCLUSION: After major abdominal operations there was a lack of circadian variation in the autonomic nervous tone....

  3. Inflammatory and apoptotic remodeling in autonomic nervous system following myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Chen Gao

    Full Text Available Chronic myocardial infarction (MI triggers pathological remodeling in the heart and cardiac nervous system. Abnormal function of the autonomic nervous system (ANS, including stellate ganglia (SG and dorsal root ganglia (DRG contribute to increased sympathoexcitation, cardiac dysfunction and arrythmogenesis. ANS modulation is a therapeutic target for arrhythmia associated with cardiac injury. However, the molecular mechanism involved in the pathological remodeling in ANS following cardiac injury remains to be established.In this study, we performed transcriptome analysis by RNA-sequencing in thoracic SG and (T1-T4 DRG obtained from Yorkshire pigs following either acute (3 to 5 hours or chronic (8 weeks myocardial infarction. By differential expression and weighted gene co-expression network analysis (WGCNA, we identified significant transcriptome changes and specific gene modules in the ANS tissues in response to myocardial infarction at either acute or chronic phases. Both differential expressed genes and the member genes of the WGCNA gene module associated with post-infarct condition were significantly enriched for inflammatory signaling and apoptotic cell death. Targeted validation analysis supported a significant induction of inflammatory and apoptotic signal in both SG and DRG following myocardial infarction, along with cellular evidence of apoptosis induction based on TUNEL analysis. Importantly, these molecular changes were observed specifically in the thoracic segments but not in their counterparts obtained from lumbar sections.Myocardial injury leads to time-dependent global changes in gene expression in the innervating ANS. Induction of inflammatory gene expression and loss of neuron cell viability in SG and DRG are potential novel mechanisms contributing to abnormal ANS function which can promote cardiac arrhythmia and pathological remodeling in myocardium.

  4. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study.

    Directory of Open Access Journals (Sweden)

    Tanja G M Vrijkotte

    Full Text Available In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5-6 years.Cross-sectional data from an apparently healthy population (within the ABCD study were collected at age 5-6 years in 1540 children. Heart rate (HR, respiratory sinus arrhythmia (RSA; parasympathetic activity and pre-ejection period (PEP; sympathetic activity were assessed during rest. Metabolic components were waist-height ratio (WHtR, systolic blood pressure (SBP, fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed.In analysis adjusted for child's physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01, higher SBP (p<0.001 and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01. Lower PEP was only associated with higher SBP (p <0.05. Of all children, 5.6% had 3 or more (out of 5 adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001.This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5-6 years.

  5. Nervous system disease associated with dominant cellular radiosensitivity

    International Nuclear Information System (INIS)

    Kidson, C.; Chen, P.; Imray, F.P.; Gipps, E.

    1983-01-01

    Ionizing radiation sensitivity has been demonstrated in the following neurological diseases: sporadic and familial Alzheimer's disease, familial non-specific dementia, amyotrophic lateral sclerosis and Parkinsonism dementia of Guam, Huntington's disease, multiple sclerosis. Family studies in many cases give data consistent with dominant genetics, as does cell fusion analysis in the one disease so studied. In no case was there an absolute association between radiosensitivity and a given neurological disease. It is proposed that the underlying mutations are in genes controlling facets of nervous or immune system differentiation and development. 15 references, 2 tables

  6. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  7. The relationship between nature-based tourism and autonomic nervous system function among older adults.

    Science.gov (United States)

    Chang, Liang-Chih

    2014-01-01

    Nature-based tourism has recently become a topic of interest in health research. This study was aimed at examining relationships among nature-based tourism, stress, and the function of the autonomic nervous system (ANS). Three hundred and twenty-two older adults living in Taichung City, Taiwan, were selected as participants. Data were collected by a face-to-face survey that included measures of the frequency of participation in domestic and international nature-based tourism and the stress and ANS function of these participants. The data were analyzed using a path analysis. The results demonstrated that the frequency of participation in domestic nature-based tourism directly contributed to ANS function and that it also indirectly contributed to ANS function through stress reduction. Domestic nature-based tourism can directly and indirectly contribute to ANS function among older adults. Increasing the frequency of participation in domestic nature-based tourism should be considered a critical element of health programs for older adults. © 2014 International Society of Travel Medicine.

  8. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners.

    Science.gov (United States)

    Manzi, Vincenzo; Castagna, Carlo; Padua, Elvira; Lombardo, Mauro; D'Ottavio, Stefano; Massaro, Michele; Volterrani, Maurizio; Iellamo, Ferdinando

    2009-06-01

    In athletes, exercise training induces autonomic nervous system (ANS) adaptations that could be used to monitor training status. However, the relationship between training and ANS in athletes has been investigated without regard for individual training loads. We tested the hypothesis that in long-distance athletes, changes in ANS parameters are dose-response related to individual volume/intensity training load and could predict athletic performance. A spectral analysis of heart rate (HR), systolic arterial pressure variability, and baroreflex sensitivity by the sequences technique was investigated in eight recreational athletes during a 6-mo training period culminating with a marathon. Individualized training load responses were monitored by a modified training impulse (TRIMP(i)) method, which was determined in each athlete using the individual HR and lactate profiling determined during a treadmill test. Monthly TRIMP(i) steadily increased during the training period. All the ANS parameters were significantly and very highly correlated to the dose of exercise with a second-order regression model (r(2) ranged from 0.90 to 0.99; P marathon. These results suggest that in recreational athletes, ANS adaptations to exercise training are dose related on an individual basis, showing a progressive shift toward a sympathetic predominance, and that LF oscillations in HRV at peak training load could predict athletic achievement in this athlete population.

  9. Early postnatal low-protein nutrition, metabolic programming and the autonomic nervous system in adult life

    Directory of Open Access Journals (Sweden)

    de Oliveira Júlio

    2012-09-01

    Full Text Available Abstract Protein restriction during lactation has been used as a rat model of metabolic programming to study the impact of perinatal malnutrition on adult metabolism. In contrast to protein restriction during fetal life, protein restriction during lactation did not appear to cause either obesity or the hallmarks of metabolic syndrome, such as hyperinsulinemia, when individuals reached adulthood. However, protein restriction provokes body underweight and hypoinsulinemia. This review is focused on the regulation of insulin secretion and the influence of the autonomic nervous system (ANS in adult rats that were protein-malnourished during lactation. The data available on the topic suggest that the perinatal phase of lactation, when insulted by protein deficit, imprints the adult metabolism and thereby alters the glycemic control. Although hypoinsulinemia programs adult rats to maintain normoglycemia, pancreatic β-cells are less sensitive to secretion stimuli, such as glucose and cholinergic agents. These pancreatic dysfunctions may be attributed to an imbalance of ANS activity recorded in adult rats that experienced maternal protein restriction.

  10. Characterizing Psychological Dimensions in Non-Pathological Subjects through Autonomic Nervous System Dynamics

    Directory of Open Access Journals (Sweden)

    Mimma eNardelli

    2015-03-01

    Full Text Available The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS dynamics and specific dimensions such as anxiety, social phobia, stress and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and nonlinear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and nonlinear analysis was performed on Heart Rate Variability, InterBreath Interval series, and Inter-Beat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, nonlinear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions.

  11. Social Adversity and Antisocial Behavior: Mediating Effects of Autonomic Nervous System Activity.

    Science.gov (United States)

    Fagan, Shawn E; Zhang, Wei; Gao, Yu

    2017-11-01

    The display of antisocial behaviors in children and adolescents has been of interest to criminologists and developmental psychologists for years. Exposure to social adversity is a well-documented predictor of antisocial behavior. Additionally, measures of autonomic nervous system (ANS) activity, including heart rate variability (HRV), pre-ejection period (PEP), and heart rate, have been associated with antisocial behaviors including rule-breaking and aggression. Social neuroscience research has begun to investigate how neurobiological underpinnings affect the relationship between social adversity and antisocial/psychopathic behavior in children and adolescents. This study investigated the potential mediating effects of ANS activity on the relationship between social adversity and antisocial behavior in a group of 7- to 10-year-old children from the community (N = 339; 48.2% male). Moderated multiple mediation analyses revealed that low resting heart rate, but not PEP or HRV, mediated the relationship between social adversity and antisocial behavior in males only. Social adversity but not ANS measures were associated with antisocial behavior in females. Findings have implications for understanding the neural influences that underlie antisocial behavior, illustrate the importance of the social environment regarding the expression of these behaviors, and highlight essential gender differences.

  12. Autonomic nervous system dynamics for mood and emotional-state recognition significant advances in data acquisition, signal processing and classification

    CERN Document Server

    Valenza, Gaetano

    2014-01-01

    This monograph reports on advances in the measurement and study of autonomic nervous system (ANS) dynamics as a source of reliable and effective markers for mood state recognition and assessment of emotional responses. Its primary impact will be in affective computing and the application of emotion-recognition systems. Applicative studies of biosignals such as: electrocardiograms; electrodermal responses; respiration activity; gaze points; and pupil-size variation are covered in detail, and experimental results explain how to characterize the elicited affective levels and mood states pragmatically and accurately using the information thus extracted from the ANS. Nonlinear signal processing techniques play a crucial role in understanding the ANS physiology underlying superficially noticeable changes and provide important quantifiers of cardiovascular control dynamics. These have prognostic value in both healthy subjects and patients with mood disorders. Moreover, Autonomic Nervous System Dynamics for Mood and ...

  13. Prenatal stress and balance of the child's cardiac autonomic nervous system at age 5-6 years.

    Directory of Open Access Journals (Sweden)

    Aimée E van Dijk

    Full Text Available OBJECTIVE: Autonomic nervous system (ANS misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. METHODS: Mothers from a prospective birth cohort (ABCD study filled out a questionnaire at gestational week 16 [IQR 12-20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80(th percentiles. Indicators of cardiac ANS in the offspring at age 5-6 years are: pre-ejection period (PEP, heart rate (HR, respiratory sinus arrhythmia (RSA and cardiac autonomic balance (CAB, measured with electrocardiography and impedance cardiography in resting supine and sitting positions. RESULTS: 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p≥0.17. Accumulation of maternal stress was also not associated with HR, PEP, RSA and CAB (p≥0.07. CONCLUSION: Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac ANS balance in the offspring, at least in rest, and at the age of five-six years.

  14. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury.

    Science.gov (United States)

    La Fountaine, Michael F

    2017-11-29

    Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework

  15. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Petra Baum

    Full Text Available OBJECTIVE: To assess the distribution of autonomic nervous system (ANS dysfunction in overweight and obese children. METHODS: Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF, high frequency power, ln(HF; ln(LF/HF ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio, root mean square of successive differences (RMSSD; sympathetic skin response (SSR; and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity. The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. RESULTS: Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys. E/I ratio (p = 0.003, ln(HF (p = 0.03, pupil diameter in darkness (p = 0.01 were negatively correlated with BMI-SDS, whereas ln(LF/HF was positively correlated (p = 0.05. Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08. None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. CONCLUSION: These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction

  16. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.

    Science.gov (United States)

    Baum, Petra; Petroff, David; Classen, Joseph; Kiess, Wieland; Blüher, Susann

    2013-01-01

    To assess the distribution of autonomic nervous system (ANS) dysfunction in overweight and obese children. Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF), high frequency power, ln(HF); ln(LF/HF) ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio), root mean square of successive differences (RMSSD); sympathetic skin response (SSR); and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity). The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS) was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR) were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys). E/I ratio (p = 0.003), ln(HF) (p = 0.03), pupil diameter in darkness (p = 0.01) were negatively correlated with BMI-SDS, whereas ln(LF/HF) was positively correlated (p = 0.05). Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08). None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction raises the possibility that obesity may give

  17. The influence of oxazaphosphorines alkylating agents on autonomic nervous system activity in rat experimental cystitis model.

    Science.gov (United States)

    Dobrek, Łukasz; Baranowska, Agnieszka; Thor, Piotr J

    2013-01-01

    The oxazaphosphorines alkylating agents (cyclophosphamide; CP and ifosfamide; IF) are often used in common clinical practice. However, treatment with CP/IF is burdened with the risk of many adverse drug reactions, especially including hemorrhagic cystitis (HC) that is associated with bladder overactivity symptoms (OAB). The HC pathophysiology is still not fully displayed; it seems that autonomic nervous system (ANS) functional abnormalities play important role in this disturbance. The aim of our study was to reveal the potential ANS differences in rat experimental HC model, evoked by CP and IF by an indirect ANS assessment--heart rate variability (HRV) study. We carried out our experimental research in three essential groups: control group (group 1), cyclophosphamide-induced HC (CP-HC; group 2) one and ifosfamide-induced HC (IF-HC; group 3) one. CP was i.p. administrated four times in dose of 75 mg/kg body weight while IF-treated rats received i.p. five drug doses; 50 mg/kg body weight. Control rats were administrated i.p. vehicle in appropriate volumes as CP/IF treated animals. HRV studies were performed the next day after the last oxazaphosphorines dose. Standard time- and spectral (frequency) domain parameters were estimated. We confirmed the HC development after both CP/IF in macroscopic assessment and bladder wet weight measurement; however, it was more aggravated in CP-HC group. Moreover, we demonstrated HRV disturbances, suggesting ANS impairment after both studied oxazaphosphorines, however, consistent with the findings mentioned above, the autonomic dysfunction was more emphasized after CP. CP treatment was also associated with changes of non-normalized HRV spectral components percentage distribution--a marked very low frequency--VLF [%] increase together with low frequency--LF [%] and high frequency--HF [%] decrease were observed. Taking into consideration the next findings, demonstrating the lack of both normalized power spectral components (nLF and n

  18. Autonomic nervous system activity as risk predictor in the medical emergency department: a prospective cohort study.

    Science.gov (United States)

    Eick, Christian; Rizas, Konstantinos D; Meyer-Zürn, Christine S; Groga-Bada, Patrick; Hamm, Wolfgang; Kreth, Florian; Overkamp, Dietrich; Weyrich, Peter; Gawaz, Meinrad; Bauer, Axel

    2015-05-01

    To evaluate heart rate deceleration capacity, an electrocardiogram-based marker of autonomic nervous system activity, as risk predictor in a medical emergency department and to test its incremental predictive value to the modified early warning score. Prospective cohort study. Medical emergency department of a large university hospital. Five thousand seven hundred thirty consecutive patients of either sex in sinus rhythm, who were admitted to the medical emergency department of the University of Tübingen, Germany, between November 2010 and March 2012. None. Deceleration capacity of heart rate was calculated within the first minutes after emergency department admission. The modified early warning score was assessed from respiratory rate, heart rate, systolic blood pressure, body temperature, and level of consciousness as previously described. Primary endpoint was intrahospital mortality; secondary endpoints included transfer to the ICU as well as 30-day and 180-day mortality. One hundred forty-two patients (2.5%) reached the primary endpoint. Deceleration capacity was highly significantly lower in nonsurvivors than survivors (2.9 ± 2.1 ms vs 5.6 ± 2.9 ms; p model yielded an area under the receiver-operator characteristic curve of 0.706 (0.667-0.750). Implementing deceleration capacity into the modified early warning score model led to a highly significant increase of the area under the receiver-operator characteristic curve to 0.804 (0.770-0.835; p capacity was also a highly significant predictor of 30-day and 180-day mortality as well as transfer to the ICU. Deceleration capacity is a strong and independent predictor of short-term mortality among patients admitted to a medical emergency department.

  19. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome.

    Science.gov (United States)

    Jarrett, Monica; Heitkemper, Margaret; Czyzewski, Danita; Zeltzer, Lonnie; Shulman, Robert J

    2012-05-01

    Adults with irritable bowel syndrome (IBS) have been reported to have alterations in autonomic nervous system function as measured by vagal activity via heart rate variability. Whether the same is true for children is unknown. We compared young children 7 to 10 years of age with functional abdominal pain (FAP) or IBS to healthy children (HC) and explored the relationship of vagal activity and sympathovagal balance to psychological distress and stool type. Children completed questionnaires, kept a 2-week pain/stool diary, and wore a 24-hour Holter monitor to assess vagal activity. Group comparisons on vagal activity were controlled for age and body mass index. Indicators of vagal activity and sympathovagal balance did not differ between FAP/IBS children (70 girls, 30 boys) and HC (44 girls, 18 boys). Psychological distress measures were generally higher in FAP/IBS than HC, primarily in girls. Exploratory analyses suggest a potential negative correlation between vagal activity and psychological distress in FAP/IBS girls but not boys. In contrast to reports in women, no differences were found in vagal activity between FAP/IBS and HC. Preliminary findings suggest that in girls with FAP/IBS there is an inverse relationship between vagal activity and psychological distress. The results from this study suggest a possible relationship between emotional state and vagal activity in prepubertal girls (but not boys) with FAP/IBS. Age and/or duration of symptoms may explain our contrasting findings versus adults with IBS. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.

  20. Training-related modulations of the autonomic nervous system in endurance athletes: is female gender cardioprotective?

    Science.gov (United States)

    Fürholz, Monika; Radtke, Thomas; Roten, Laurent; Tanner, Hildegard; Wilhelm, Ilca; Schmid, Jean-Paul; Saner, Hugo; Wilhelm, Matthias

    2013-03-01

    The risk of sudden death is increased in athletes with a male predominance. Regular physical activity increases vagal tone, and may protect against exercise-induced ventricular arrhythmias. We investigated training-related modulations of the autonomic nervous system in female and male endurance athletes. Runners of a 10-mile race were invited. Of 873 applicants, 68 female and 70 male athletes were randomly selected and stratified according to their average weekly training hours in a low (≤4 h) and high (>4 h) volume training group. Analysis of heart rate variability was performed over 24 h. Spectral components (high frequency [HF] and low frequency [LF] power in normalized units) were analyzed for hourly 5 min segments and averaged for day- and nighttime. One hundred and fourteen athletes (50 % female, mean age 42 ± 7 years) were included. No significant gender difference was observed for training volume and 10-mile race time. Over the 24-h period, female athletes exhibited a higher HF and lower LF power for each hourly time-point. Female gender and endurance training hours were independent predictors of a higher HF and lower LF power. In female athletes, higher training hours were associated with a higher HF and lower LF power during nighttime. In male athletes, the same was true during daytime. In conclusion, female and male athletes showed a different circadian pattern of the training-related increase in markers of vagal tone. For a comparable amount of training volume, female athletes maintained their higher markers of vagal tone, possibly indicating a superior protection against exercise-induced ventricular arrhythmias.

  1. Autonomic nervous system activity and anxiety and depressive symptoms in mothers up to 2 years postpartum.

    Science.gov (United States)

    Izumi, Mie; Manabe, Emiko; Uematsu, Sayo; Watanabe, Ayako; Moritani, Toshio

    2016-01-01

    We investigated the association between autonomic nervous system (ANS) activity and symptoms of anxiety and depression for the first 2 years postpartum. A total of 108 participants within 2 years postpartum underwent physiological measurements of ANS activity using the heart rate variability (HRV) power spectrum and self-reported questionnaires (14-item Hospital Anxiety and Depression Score). The cutoff points for anxiety and depressive symptom scores in this questionnaire were as follows: 7 or less, non-cases; 8-10, doubtful cases; 11 or more, definite cases. This study was conducted from 2012 to 2014 at University Hospital in Kyoto Prefectural University of Medicine and a nearby obstetrics and gynecology department clinic in Japan. Anxiety and depression non-cases accounted for 67.6% (n = 73) of subjects, anxiety non-cases and depression doubtful and definite cases 7.4% (n = 8), anxiety doubtful and definite cases and depression non-cases 8.3% (n = 9), and anxiety and depression doubtful and definite cases 16.7% (n = 18). Findings were similar for women with anxiety or depression, with total power (TP), low-frequency (LF) and high-frequency (HF) components of HRV among doubtful and definite cases significantly lower than among non-cases for both anxiety (p = 0.006, 0.034, 0.029, respectively) and depression (p = 0.001, 0.004, 0.007). Significant correlations were observed between TP, LF and HF and anxiety and depression scores (respective values for anxiety: rs = -0.331, p <0.001; rs = -0.286, p = 0.003; rs = -0.269, p = 0.005; and depression: rs = -0.389, rs = -0.353, rs = -0.337, all p <0.001). The present study demonstrated that mothers with anxiety or depressive symptoms had significantly lower HRV (HF, LF and TP) than those without.

  2. Anxiety during pregnancy and autonomic nervous system activity: A longitudinal observational and cross-sectional study.

    Science.gov (United States)

    Mizuno, Taeko; Tamakoshi, Koji; Tanabe, Keiko

    2017-08-01

    To assess the longitudinal change in autonomic nervous system (ANS) activity during pregnancy and the association between anxiety during pregnancy and ANS activity. Pregnant Japanese women with a singleton fetus and normal pregnancy were recruited (n=65). ANS activity and anxiety were measured using a self-rating questionnaire at approximately 20, 30, and 36weeks of gestation. Very low (VLF) and high (HF) frequency bands of heart rate variability spectrums were used. Anxiety was assessed using the Japanese version of the State-Trait Anxiety Inventory. A score of 45 or more on trait-anxiety and the other represent the trait-anxiety group and the non- trait-anxiety group, respectively. The state-anxiety group and the non-state-anxiety group were defined in the same manner. Longitudinal observation of individual pregnant women indicated the significant increasing trend (p=0.002) of VLF power and the significant decreasing trend (p<0.001) of HF power during 20 to 36 gestation weeks. Compared with the non-trait-anxiety group, the trait-anxiety group had significantly lower VLF values at 20 gestational weeks (p=0.033) and had significantly lower HF values at 30 and 36 gestational weeks (p=0.015 and p=0.044, respectively). The increasing rate of VLF from 20 to 36 gestational weeks was higher among the trait-anxiety group. The same associations were observed between the state-anxiety and non-state-anxiety groups at 20 gestational weeks. Anxiety during pregnancy decreased heart rate variability. Anxiety in second trimester pregnancy promoted a subsequent increase in sympathetic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of the Fourth Ventricle Compression in the Regulation of the Autonomic Nervous System: A Randomized Control Trial

    Directory of Open Access Journals (Sweden)

    Ana Paula Cardoso-de-Mello-e-Mello-Ribeiro

    2015-01-01

    Full Text Available Introduction. Dysfunction of the autonomic nervous system is an important factor in the development of chronic pain. Fourth ventricle compression (CV-4 has been shown to influence autonomic activity. Nevertheless, the physiological mechanisms behind these effects remain unclear. Objectives. This study is aimed at evaluating the effects of fourth ventricle compression on the autonomic nervous system. Methods. Forty healthy adults were randomly assigned to an intervention group, on whom CV-4 was performed, or to a control group, who received a placebo intervention (nontherapeutic touch on the occipital bone. In both groups, plasmatic catecholamine levels, blood pressure, and heart rate were measured before and immediately after the intervention. Results. No effects related to the intervention were found. Although a reduction of norepinephrine, systolic blood pressure, and heart rate was found after the intervention, it was not exclusive to the intervention group. In fact, only the control group showed an increment of dopamine levels after intervention. Conclusion. Fourth ventricle compression seems not to have any effect in plasmatic catecholamine levels, blood pressure, or heart rate. Further studies are needed to clarify the CV-4 physiologic mechanisms and clinical efficacy in autonomic regulation and pain treatment.

  4. The effect of anaerobic and aerobic tests on autonomic nervous system activity in healthy young athletes

    Directory of Open Access Journals (Sweden)

    W Ratkowski

    2010-03-01

    Full Text Available INTRODUCTION. In the evaluation of physical efficiency in professional athletes two tests are used: Wingate test (WT and incremental test for maximal oxygen uptake (IT. In the former anaerobic power is evaluated and in the latter aerobic power. The influence of these tests on autonomic nervous system (ANS activity is not fully examined. The aim of the study was to assess the influence of anaerobic and aerobic tests performed on the consecutive days, on the ANS activity in young healthy athletes. MATERIALS AND METHODS. Ten athletes aged 17 ± 1 were included in the study. The ANS parameters (baroreflex sensitivity – BRS_WBA, heart rate variability–HRV were analysed on the basis of 10-minute systolic arterial pressure and heart period (HP records during controlled breathing (0.23 Hz. BRS_WBA, HRV indices and mean HP were analysed before (examination 1 and 1 hour after WT (examination 2, 1 hour after IT (examination 3, and on the day after the tests (examination 4. RESULTS. The borderline statistically significant decrease in BRS_WBA in examination 2 in comparison to 1 was found (16.4 ± 10.5 vs 9.4 ± 3.9 ms/mmHg, p=0.059. In examination 3 in comparison to 1 the significant decrease in BRS_WBA was found (8.8 ± 6.2 ms/mmHg, p<0.05. SDNN, PNN50, RMSSD and HF were significantly lower in examination 2 comparing to 1 (p<0.05; the changes of HFnu were borderline statistically significant (p=0.059. These lower values were also noticed after examination 3 and returned to the initial values in examination 4. The mean HP showed similar changes. LF/HF increased significantly in examination 2 in comparison to 1 (p<0.05. The changes in LFnu were borderline statistically significant. CONCLUSIONS. Anaerobic and aerobic exercise tests lead to the decrease in ANS parasympathetic activity and to the increase in sympathetic one in young healthy athletes. These changes persist for at least one hour after exertion. The return to the initial values is observed the

  5. Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system

    Science.gov (United States)

    Hideaki, Waki; Tatsuya, Hisajima; Shogo, Miyazaki; Naruto, Yoshida; Hideaki, Tamai; Yoichi, Minakawa; Yoshihiro, Okuma; Kazuo, Uebaba; Hidenori, Takahashi

    2015-01-01

    Background A previous study has reported that low-frequency (LF) electroacupuncture (EA) influences salivary secretory immunoglobulin A (sIgA) and the autonomic nervous system (ANS). The ANS is known to control the secretion volume of sIgA; however, the effect of high-frequency (HF) EA on salivary sIgA has not been determined. We investigated whether HF EA affects salivary sIgA levels and the ANS. Method Sixteen healthy subjects were randomly classified into two groups: a control group and an EA group. After a 5 min rest, subjects in the EA group received EA at 100 Hz bilaterally at LI4 and LI11 for 15 min before resting for a further 40 min post-stimulation. Subjects in the control group rested for a total of 60 min. Measurements of the ANS and sIgA levels in both groups were made before, immediately after, 20 min after, and 40 min after rest or 15 min EA treatment. HF and LF components of heart rate variability were analysed as markers of ANS function. LF/HF ratio and HF were taken as indices of sympathetic and parasympathetic nerve activity, respectively. Salivary protein concentrations and sIgA levels were determined by Bradford protein assay and ELISA, respectively. Results LF/HF ratio was significantly increased immediately after EA. HF was significantly increased at 20 min after EA and sIgA level was significantly increased at 40 min after EA. In addition, HF and salivary sIgA level were positively correlated with each another. Conclusions HF EA exerted sequential positive effects on sympathetic nerve activity, parasympathetic nerve activity, and salivary sIgA level (immediately and after 20 and 40 min, respectively). HF EA may increase salivary sIgA levels by influencing parasympathetic nerve activity. PMID:26449884

  6. Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system.

    Science.gov (United States)

    Hideaki, Waki; Tatsuya, Hisajima; Shogo, Miyazaki; Naruto, Yoshida; Hideaki, Tamai; Yoichi, Minakawa; Yoshihiro, Okuma; Kazuo, Uebaba; Hidenori, Takahashi

    2015-12-01

    A previous study has reported that low-frequency (LF) electroacupuncture (EA) influences salivary secretory immunoglobulin A (sIgA) and the autonomic nervous system (ANS). The ANS is known to control the secretion volume of sIgA; however, the effect of high-frequency (HF) EA on salivary sIgA has not been determined. We investigated whether HF EA affects salivary sIgA levels and the ANS. Sixteen healthy subjects were randomly classified into two groups: a control group and an EA group. After a 5 min rest, subjects in the EA group received EA at 100 Hz bilaterally at LI4 and LI11 for 15 min before resting for a further 40 min post-stimulation. Subjects in the control group rested for a total of 60 min. Measurements of the ANS and sIgA levels in both groups were made before, immediately after, 20 min after, and 40 min after rest or 15 min EA treatment. HF and LF components of heart rate variability were analysed as markers of ANS function. LF/HF ratio and HF were taken as indices of sympathetic and parasympathetic nerve activity, respectively. Salivary protein concentrations and sIgA levels were determined by Bradford protein assay and ELISA, respectively. LF/HF ratio was significantly increased immediately after EA. HF was significantly increased at 20 min after EA and sIgA level was significantly increased at 40 min after EA. In addition, HF and salivary sIgA level were positively correlated with each another. HF EA exerted sequential positive effects on sympathetic nerve activity, parasympathetic nerve activity, and salivary sIgA level (immediately and after 20 and 40 min, respectively). HF EA may increase salivary sIgA levels by influencing parasympathetic nerve activity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Differential Autonomic Nervous System Reactivity in Depression and Anxiety During Stress Depending on Type of Stressor.

    Science.gov (United States)

    Hu, Mandy X; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    2016-06-01

    It remains unclear whether depressive and anxiety disorders are associated with hyporeactivity or hyperreactivity of the autonomic nervous system (ANS) and whether deviant reactivity occurs in all types of stressors. This study compared ANS reactivity in people with current or remitted depression/anxiety with reactivity in healthy controls during two stress conditions. From the Netherlands Study of Depression and Anxiety, data of 804 individuals with current depression/anxiety, 913 individuals with remitted depression/anxiety, and 466 healthy controls (mean age = 44.1 years; 66.4% female) were available. Two conditions were used to evoke stress: a) an n-back task, a cognitively challenging stressor, and 2) a psychiatric interview, evoking personal-emotional stress related to the occurrence of symptoms of depression/anxiety. Indicators of ANS activity were heart rate (HR), root mean square of differences between successive interbeat intervals (RMSSD), respiratory sinus arrhythmia (RSA), and preejection period. As compared with controls, participants with psychopathology had significant hyporeactivity of HR (controls = 4.1 ± 4.2 beats/min; remitted = 3.5 ± 3.5 beats/min; current psychopathology = 3.1 ± 3.4 beats/min), RMSSD (controls = -6.2 ± 14.5 milliseconds; remitted = -5.4 ± 17.8 milliseconds; current psychopathology = -3.5 ± 15.4 milliseconds), and RSA (controls = -9.3 ± 17.0 milliseconds; remitted = -7.4 ± 16.5 milliseconds; current psychopathology = -6.9 ± 15.0 milliseconds) during the n-back task. In contrast, during the psychiatric interview, they showed significant hyperreactivity of HR (controls = 2.7 ± 3.4 beats/min; remitted = 3.5 ± 3.4 beats/min; current psychopathology = 4.0 ± 3.3 beats/min), RMSSD (controls = -3.4 ± 12.2 milliseconds; remitted = -4.1 ± 12.1 milliseconds; current psychopathology = -5.6 ± 11.8 milliseconds), and RSA (controls = -3.8 ± 8.1 milliseconds; remitted = -4.3 ± 7.9 milliseconds; current psychopathology = -5.0

  8. Neurotoxic impact of mercury on the central nervous system evaluated by neuropsychological tests and on the autonomic nervous system evaluated by dynamic pupillometry.

    Science.gov (United States)

    Milioni, Ana Luiza V; Nagy, Balázs V; Moura, Ana Laura A; Zachi, Elaine C; Barboni, Mirella T S; Ventura, Dora F

    2017-03-01

    Mercury vapor is highly toxic to the human body. The present study aimed to investigate the occurrence of neuropsychological dysfunction in former workers of fluorescent lamps factories that were exposed to mercury vapor (years after cessation of exposure), diagnosed with chronic mercurialism, and to investigate the effects of such exposure on the Autonomic Nervous System (ANS) using the non-invasive method of dynamic pupillometry. The exposed group and a control group matched by age and educational level were evaluated by the Beck Depression Inventory and with the computerized neuropsychological battery CANTABeclipse - subtests of working memory (Spatial Span), spatial memory (Spatial Recognition Memory), visual memory (Pattern Recognition Memory) and action planning (Stockings of Cambridge). The ANS was assessed by dynamic pupillometry, which provides information on the operation on both the sympathetic and parasympathetic functions. Depression scores were significantly higher among the former workers when compared with the control group. The exposed group also showed significantly worse performance in most of the cognitive functions assessed. In the dynamic pupillometry test, former workers showed significantly lower response than the control group in the sympathetic response parameter (time of 75% of pupillary recovery at 10cd/m 2 luminance). Our study found indications that are suggestive of cognitive deficits and losses in sympathetic autonomic activity among patients occupationally exposed to mercury vapor. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Myelin injury in the central nervous system and Alzheimer's diseases.

    Science.gov (United States)

    Wang, Sha-Sha; Zhang, Zhao; Zhu, Tian-Bi; Chu, Shi-Feng; He, Wen-Bin; Chen, Nai-Hong

    2018-05-03

    Myelin is a membrane wrapped around the axon of the nerve cell, which is composed of the mature oligodendrocytes. The role of myelin is to insulate and prevent the nerve electrical impulses from the axon of the neurons to the axons of the other neurons, which is essential for the proper functioning of the nervous system. Minor changes in myelin thickness could lead to substantial changes in conduction speed and may thus alter neural circuit function. Demyelination is the myelin damage, which characterized by the loss of nerve sheath and the relative fatigue of the neuronal sheath and axon. Studies have shown that myelin injury may be closely related to neurodegenerative diseases and may be an early diagnostic criteria and therapeutic target. Thus this review summarizes the recent result of pathologic effect and signal pathways of myelin injury in neurodegenerative diseases, especially the Alzheimer's disease to provide new and effective therapeutic targets. Copyright © 2018. Published by Elsevier Inc.

  10. The circadian system and the balance of the autonomic nervous system.

    Science.gov (United States)

    Buijs, Ruud M; Escobar, Carolina; Swaab, Dick F

    2013-01-01

    Our biological clock, the suprachiasmatic nucleus (SCN), sets the pace of our life: it provides a rhythmic function to our sleep-wake cycle. In order to do so properly the SCN synchronizes our physiology to behavioral patterns by directing the autonomic and hormonal output of the hypothalamus to the different organs of the body that require a different setting - activity or inactivity - during particular phases of the day or night. In this chapter we show that this delicate balance requires that the SCN should not only provide an output to these organs but also be informed about the physiological state of the organs in order to adapt its output. This occurs via a hypothalamic neuronal network that provides the necessary input to the SCN. We argue that the feedback that the SCN receives from its hypothalamic target structures is essential to maintain a balance in our physiological functions, which fluctuate during the sleep-wake cycle. We propose that this crucial role of the hypothalamus in the homeostatic response is the reason why, e.g., in aging or depression, changes in the functioning of the biological clock, the SCN, lead to the development of pathology. In addition, if this balance is not adequately organized, for example, if the signals of the biological clock are violated by being active and eating during the night, as in shift work, one will be more susceptible to diseases such as hypertension, obesity, diabetes, and metabolic syndrome. © 2013, Elsevier B.V. All rights reserved.

  11. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jørgensen, L S; Christiansen, P; Raundahl, U

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...

  12. Emotion Regulation via the Autonomic Nervous System in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    Musser, Erica D.; Backs, Richard W.; Schmitt, Colleen F.; Ablow, Jennifer C.; Measelle, Jeffery R.; Nigg, Joel T.

    2011-01-01

    Despite growing interest in conceptualizing ADHD as involving disrupted emotion regulation, few studies have examined the physiological mechanisms related to emotion regulation in children with this disorder. This study examined parasympathetic and sympathetic nervous system reactivity via measures of respiratory sinus arrhythmia (RSA) and cardiac…

  13. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture

    DEFF Research Database (Denmark)

    Benrick, Anna; Kokosar, Milana; Hu, Min

    2017-01-01

    was higher after EA in controls and women with PCOS. Plasma serotonin levels and homovanillic acid, markers of vagal activity, decreased in both controls and patients with PCOS. Adipose tissue expression of pro-nerve growth factor (proNGF) decreased, and the mature NGF/proNGF ratio increased after EA in PCOS...... of EA increases whole-body glucose uptake by activation of the sympathetic and partly the parasympathetic nervous systems, which could have important clinical implications for the treatment of insulin resistance.-Benrick, A., Kokosar, M., Hu, M., Larsson, M., Maliqueo, M., Marcondes, R. R., Soligo, M......., Protto, V., Jerlhag, E., Sazonova, A., Behre, C. J., Højlund, K., Thorén, P., Stener-Victorin, E. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture....

  14. Effects of gender and game type on autonomic nervous system physiological parameters in long-hour online game players.

    Science.gov (United States)

    Lin, Tung-Cheng

    2013-11-01

    Online game playing may induce physiological effects. However, the physical mechanisms that cause these effects remain unclear. The purpose of this study was to examine the physiological effects of long-hour online gaming from an autonomic nervous system (ANS) perspective. Heart rate variability (HRV), a valid and noninvasive electrocardiographic method widely used to investigate ANS balance, was used to measure physiological effect parameters. This study used a five-time, repeated measures, mixed factorial design. Results found that playing violent games causes significantly higher sympathetic activity and diastolic blood pressure than playing nonviolent games. Long-hour online game playing resulted in the gradual dominance of the parasympathetic nervous system due to physical exhaustion. Gaming workload was found to modulate the gender effects, with males registering significantly higher sympathetic activity and females significantly higher parasympathetic activity in the higher gaming workload group.

  15. Dissociation of sad facial expressions and autonomic nervous system responding in boys with disruptive behavior disorders

    OpenAIRE

    Marsh, Penny; Beauchaine, Theodore P.; Williams, Bailey

    2007-01-01

    Although deficiencies in emotional responding have been linked to externalizing behaviors in children, little is known about how discrete response systems (e.g., expressive, physiological) are coordinated during emotional challenge among these youth. We examined time-linked correspondence of sad facial expressions and autonomic reactivity during an empathy-eliciting task among boys with disruptive behavior disorders (n = 31) and controls (n = 23). For controls, sad facial expressions were ass...

  16. Dissociation of sad facial expressions and autonomic nervous system responding in boys with disruptive behavior disorders

    Science.gov (United States)

    Marsh, Penny; Beauchaine, Theodore P.; Williams, Bailey

    2009-01-01

    Although deficiencies in emotional responding have been linked to externalizing behaviors in children, little is known about how discrete response systems (e.g., expressive, physiological) are coordinated during emotional challenge among these youth. We examined time-linked correspondence of sad facial expressions and autonomic reactivity during an empathy-eliciting task among boys with disruptive behavior disorders (n = 31) and controls (n = 23). For controls, sad facial expressions were associated with reduced sympathetic (lower skin conductance level, lengthened cardiac preejection period [PEP]) and increased parasympathetic (higher respiratory sinus arrhythmia [RSA]) activity. In contrast, no correspondence between facial expressions and autonomic reactivity was observed among boys with conduct problems. Furthermore, low correspondence between facial expressions and PEP predicted externalizing symptom severity, whereas low correspondence between facial expressions and RSA predicted internalizing symptom severity. PMID:17868261

  17. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    Science.gov (United States)

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  18. Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder.

    Science.gov (United States)

    Matsumoto, Tamaki; Ushiroyama, Takahisa; Kimura, Tetsuya; Hayashi, Tatsuya; Moritani, Toshio

    2007-12-20

    Premenstrual syndrome (PMS) encompasses a wide variety of cyclic and recurrent physical, emotional, and behavioral symptoms occurring during the late luteal phase of the menstrual cycle and abating shortly following the beginning of menses. Although PMS is widely recognized, its etiopathogenesis is not yet understood. The present study investigates whether the activity of the autonomic nervous system, which plays a vital role in orchestrating physiological homeostasis within the human body, is altered during the menstrual cycle of women with different degrees of premenstrual symptomatology. Sixty-two women in their 20s to 40s with regular menstrual cycles participated in this study. All subjects were examined during the follicular and late luteal phases. Cycle phase was determined by the onset of menstruation and oral temperature and was verified by concentrations of ovarian hormones, estrone, and pregnanediol in a urine sample taken early in the morning. Autonomic nervous system activity was assessed by means of heart-rate variability (HRV) power spectral analysis during supine rest. The Menstrual Distress Questionnaire was used to evaluate physical, emotional, and behavioral symptoms accompanying the menstrual cycle of the subjects. The subjects were categorized in three groups, Control, PMS, and premenstrual dysphoric disorder (PMDD) groups, depending on the severity of premenstrual symptomatology. No intramenstrual cycle difference in any of the parameters of HRV was found in the Control group, which had no or a small increase in premenstrual symptoms. In contrast, Total power and high frequency power, which reflect overall autonomic and parasympathetic nerve activity, respectively, significantly decreased in the late luteal phase from the follicular phase in the PMS group. As for the PMDD group, which had more severe symptoms premenstrually, heart-rate fluctuation as well as all components of the power spectrum of HRV were markedly decreased regardless of the

  19. Imaging in the infectious diseases of the central nervous system

    International Nuclear Information System (INIS)

    Brunet, F.; Gandon, Y.; Heautot, J.F.; Montagne, C.; Michelet, C.; Carsin, M.

    1989-01-01

    The basic signs of the major bacterial, viral, parasitic or mycotic infections of the central nervous system with CT and MRI are described. The problems arising from the presence of the HIV virus are emphasized and the attitude required according to the findings of imaging, is defined [fr

  20. Odors generated from the Maillard reaction affect autonomic nervous activity and decrease blood pressure through the olfactory system.

    Science.gov (United States)

    Zhou, Lanxi; Ohata, Motoko; Owashi, Chisato; Nagai, Katsuya; Yokoyama, Issei; Arihara, Keizo

    2018-02-01

    Systolic blood pressure (SBP) of rats decreases significantly following exposure to the odor generated from the Maillard reaction of protein digests with xylose. This study identified active odorants that affect blood pressure and demonstrated the mechanism of action. Among the four potent odorants that contribute most to the odor of the Maillard reaction sample, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 5-methyl-2-pyrazinemethanol (MPM) decreased SBP significantly. The earliest decrease in blood pressure was observed 5 min after exposure to DMHF. Application of zinc sulfate to the nasal cavity eliminated the effect. Furthermore, gastric vagal (parasympathetic) nerve activity was elevated and renal sympathetic nerve activity was lowered after exposure to DMHF. It is indicated that DMHF affects blood pressure through the olfactory system, and the mechanism for the effect of DMHF on blood pressure involves the autonomic nervous system. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jorgensen, L.S.; Christiansen, P.; Raundahl, U.

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...... and serum cortisol did not increase at all in any of the groups. As a measure of parasympathetic neural activity, independent of sympathetic neural activity, the beat-to-beat variation of the heart rate was calculated. The functional patients had a significantly higher beat-to-beat variation expressed...... as the mean square successive differences of the R-R intervals (MSSD), indicating a higher basal parasympathetic neural activity (mean MSSD +/- SEM = 64 +/- 6 msec in the functional group, 46 +/- 6 msec in the healthy group, and 49 +/- 6 msec in the organic group; P = 0.03). A reduced sympathetic neural...

  2. Citation classics in central nervous system inflammatory demyelinating disease.

    Science.gov (United States)

    Kim, Jee-Eun; Park, Kang M; Kim, Yerim; Yoon, Dae Y; Bae, Jong S

    2017-06-01

    To identify and analyze the characteristics of the most influential articles about central nervous system (CNS) inflammatory demyelinating disease. The Institute for Scientific Information (ISI) Web of Science database and the 2014 Journal Citation Reports Science Edition were used to retrieve the top 100 cited articles on CNS inflammatory demyelinating disease. The citation numbers, journals, years of publication, authorships, article types, subjects and main issues were analyzed. For neuromyelitis optica (NMO), articles that were cited more than 100 times were regarded as a citation classic and described separately. The top 100 cited articles were published between 1972 and 2011 in 13 journals. The highest number of articles ( n  = 24) was published in Brain, followed by The New England Journal of Medicine ( n  = 21). The average number of citations was 664 (range 330-3,897), and 64% of the articles were from the United States and the United Kingdom. The majority of the top 100 cited articles were related to multiple sclerosis ( n  = 87), and only a few articles reported on other topics such as NMO ( n  = 9), acute disseminated encephalomyelitis ( n  = 2) and optic neuritis ( n  = 2). Among the top 100 cited articles, 77% were original articles. Forty-one citation classics were found for NMO. Our study provides a historical perspective on the research progress on CNS inflammatory demyelinating disease and may serve as a guide for important advances and trends in the field for associated researchers.

  3. Person perception and autonomic nervous system response: the costs and benefits of possessing a high social status.

    Science.gov (United States)

    Cloutier, J; Norman, G J; Li, T; Berntson, G G

    2013-02-01

    This research was designed to investigate the relationship between sympathetic and parasympathetic autonomic nervous system (ANS) responses to the perception of social targets varying in social status. Participants varying in subjective financial status were presented with faces assigned with either a low, average, or high financial status. Electrocardiographic and impedance cardiography signals were recorded and measures of sympathetic (pre-ejection period; PEP) and parasympathetic (high frequency heart rate variability; HF HRV) cardiac control were derived. These measures associated with the presentation of each face condition were examined in relation to the subjective status of the perceivers. Participants with high subjective financial status showed reduced sympathetic activity when viewing low- and medium-status targets as compared to high-status targets, and lower parasympathetic response when viewing high- and medium-status targets relative to low-status targets. Copyright © 2012. Published by Elsevier B.V.

  4. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Rovira Canellas, A. [Vall d' Hebron University Hospital, Magnetic Resonance Unit (I.D.I.), Department of Radiology, Barcelona (Spain); Rovira Gols, A. [Parc Tauli University Institute - UAB, UDIAT, Diagnostic Centre, Sabadell (Spain); Rio Izquierdo, J.; Tintore Subirana, M.; Montalban Gairin, X. [Vall d' Hebron University Hospital, Neuroimmunology Unit, Department of Neurology, Barcelona (Spain)

    2007-05-15

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  5. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    International Nuclear Information System (INIS)

    Rovira Canellas, A.; Rovira Gols, A.; Rio Izquierdo, J.; Tintore Subirana, M.; Montalban Gairin, X.

    2007-01-01

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  6. Changes in autonomic nervous system activity after treatment with alpha-blocker in men with lower urinary tract symptoms

    Directory of Open Access Journals (Sweden)

    Kang Hee Shim

    2018-01-01

    Full Text Available Purpose: To determine changes in autonomic nervous system activity after treatment in men with lower urinary tract symptoms (LUTS, we evaluated changes in patients' symptoms, uroflowmetry, and heart rate variability (HRV after treatment with alpha-blockers for 12 weeks. Materials and Methods: Ninety-five men who had LUTS (International Prostate Symptom Score [IPSS] ≥8 were included in this study. We divided them into two groups on the basis of a low frequency/high frequency (LF/HF ratio of 1.6. After treatment with Xatral XL (Handok Inc., Korea 10 mg for 3 months, we rechecked their IPSS, uroflowmetry, HRV and compared these with the baseline measurements. Results: Fifty-four men were assigned to the low LF/HF group (group A: LF/HF ≤1.6 and 41 men to the high LF/HF group (group B: LF/HF >1.6. At baseline and 12 weeks, none of the parameters differed significantly between the groups except for HF, which is one of the parameters of HRV. IPSS, the IPSS-voiding subscore, and the IPSS-storage subscore decreased and maximal uroflow increased significantly after 12 weeks of treatment. Whereas the baseline LF/HF ratio increased from 0.89±0.407 to 1.80±1.804 after treatment in group A, it decreased from 3.93±5.471 to 1.79±1.153 in group B. Conclusions: The efficacies of Xatral XL were clear in both groups. We found that the LF/HF ratio in the two groups merged to a value of approximately 1.79 after treatment. We suggest that this could be a clue to the importance of balance in autonomic nervous system activity in men with LUTS.

  7. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system

    NARCIS (Netherlands)

    Buijs, R. M.; Hermes, M. H.; Kalsbeek, A.

    1998-01-01

    Vasopressin (VP) is one of the principal neurotransmitters of the suprachiasmatic nucleus (SCN). By means of anatomical, physiological and electrophysiological techniques we have demonstrated that VP containing pathways from the SCN serve to affect neuroendocrine and 'autonomic' neurons in the

  8. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriëtte; van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous

  9. Explanation of diagnostic criteria for radiation-induced nervous system disease

    International Nuclear Information System (INIS)

    Xing Zhiwei; Jiang Enhai

    2012-01-01

    National occupational health standard-Diagnostic Criteria for Radiation-Induced Nervous System Disease has been issued and implemented by the Ministry of health. This standard contained three independent criteria of the brain, spinal cord and peripheral nerve injury. These three kinds of disease often go together in clinic,therefore,the three diagnostic criteria were merged into radioactive nervous system disease diagnostic criteria for entirety and maneuverability of the standard. This standard was formulated based on collection of the clinical practice experience, extensive research of relevant literature and foreign relevant publications. It is mainly applied to diagnosis and treatment of occupational radiation-induced nervous system diseases, and to nervous system diseases caused by medical radiation exposure as well. In order to properly implement this standard, also to correctly deal with radioactive nervous system injury, the main contents of this standard including dose threshold, clinical manifestation, indexing standard and treatment principle were interpreted in this article. (authors)

  10. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    International Nuclear Information System (INIS)

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data

  11. Food choice in hyperthyroidism: potential influence of the autonomic nervous system and brain serotonin precursor availability.

    Science.gov (United States)

    Pijl, H; de Meijer, P H; Langius, J; Coenegracht, C I; van den Berk, A H; Chandie Shaw, P K; Boom, H; Schoemaker, R C; Cohen, A F; Burggraaf, J; Meinders, A E

    2001-12-01

    We explored energy and macronutrient intake in patients with Graves' hyperthyroidism. We specifically hypothesized that hyperthyroidism is associated with increased appetite for carbohydrates, because of enhanced sympathetic tone and diminished serotonin mediated neurotransmission in the brain. To test this hypothesis, we measured food intake by dietary history and food selected for lunch in the laboratory in 14 patients with Graves' hyperthyroidism. Twenty-four-hour catecholamine excretion was used as a measure of activity of the sympathetic nervous system (SNS) and the plasma [Trp]/[NAA] ratio was measured to estimate (rate limiting) precursor availability for brain 5-hydroxytryptamine synthesis. All measurements were repeated after the subjects had been treated to establish euthyroidism. In addition, the effects of nonselective beta-adrenoceptor blockade upon these parameters were studied to evaluate the influence of beta-adrenergic hyperactivity on food intake. Hyperthyroidism was marked by increased SNS activity and reduced plasma [Trp]/[NAA] ratio. Accordingly, energy intake was considerably and significantly increased in hyper vs. euthyroidism, which was fully attributable to enhanced carbohydrate consumption, as protein and fat intake were not affected. These results suggest that hyperthyroidism alters the neurophysiology of food intake regulation. Increased SNS activity and reduced Trp precursor availability for 5-hydroxytryptamine synthesis in the brain may drive the marked hyperphagia and craving for carbohydrates that appears to characterize hyperthyroid patients. Because propranolol did not affect food intake in hyperthyroidism, the potential effect of catecholamines on food intake might be mediated by alpha-adrenoceptors.

  12. Social functioning and autonomic nervous system sensitivity across vocal and musical emotion in Williams syndrome and autism spectrum disorder.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2016-01-01

    Both Williams syndrome (WS) and autism spectrum disorders (ASD) are associated with unusual auditory phenotypes with respect to processing vocal and musical stimuli, which may be shaped by the atypical social profiles that characterize the syndromes. Autonomic nervous system (ANS) reactivity to vocal and musical emotional stimuli was examined in 12 children with WS, 17 children with ASD, and 20 typically developing (TD) children, and related to their level of social functioning. The results of this small-scale study showed that after controlling for between-group differences in cognitive ability, all groups showed similar emotion identification performance across conditions. Additionally, in ASD, lower autonomic reactivity to human voice, and in TD, to musical emotion, was related to more normal social functioning. Compared to TD, both clinical groups showed increased arousal to vocalizations. A further result highlighted uniquely increased arousal to music in WS, contrasted with a decrease in arousal in ASD and TD. The ASD and WS groups exhibited arousal patterns suggestive of diminished habituation to the auditory stimuli. The results are discussed in the context of the clinical presentation of WS and ASD. © 2015 Wiley Periodicals, Inc.

  13. [A role of the autonomic nervous system in cerebro-cardiac disorders].

    Science.gov (United States)

    Basantsova, N Yu; Tibekina, L M; Shishkin, A N

    The authors consider anatomical/physiological characteristics and a role of different autonomic CNS regions, including insula cortex, amygdala complex, anterior cingulate cortex, ventral medial prefrontal cortex, hypothalamus and epiphysis, involved in the regulation of cardiovascular activity. The damage of these structures, e.g., due to the acute disturbance of cerebral blood circulation, led to arrhythmia, including fatal arrhythmia, in previously intact myocardium; systolic and diastolic dysfunction, ischemic changes considered in the frames of cerebro-cardial syndrome. On the cellular level, the disturbance of autonomic regulation resulted in catechol amine excitotoxicity, oxidative stress and free radical myocardium injury.

  14. Heavy alcohol use, rather than alcohol dependence, is associated with dysregulation of the hypothalamic-pituitary-adrenal axis and the autonomic nervous system

    NARCIS (Netherlands)

    Boschloo, Lynn; Vogelzangs, Nicole; Licht, Carmilla M. M.; Vreeburg, Sophie A.; Smit, Johannes H.; van den Brink, Wim; Veltman, Dick J.; de Geus, Eco J. C.; Beekman, Aartjan T. F.; Penninx, Brenda W. J. H.

    2011-01-01

    Heavy alcohol use as well as alcohol dependence (AD) have been associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and the autonomic nervous system (ANS). However, the relative contribution of alcohol use and AD is unclear. Baseline data were derived from 2947 persons of

  15. Child maltreatment under the skin : basal activity and stress reactivity of the autonomic nervous system and attachment representations in maltreating parents

    NARCIS (Netherlands)

    Reijman, Sophie

    2015-01-01

    This dissertation comprises an empirical study and a meta-analytical study on autonomic nervous system (ANS) functioning and attachment representations in maltreating parents. For the empirical study we recruited a sample of 45 mothers with substantiated abuse and neglect and 45 non-maltreating

  16. Baroreflex Sensitivity And Autonomic Nervous System Function In Carotid Sinus Hypersensitivity

    DEFF Research Database (Denmark)

    Brinth, Louise Schouborg; Pors, Kirsten; Theibel, Ann Cathrine

    2015-01-01

    hypersensitivity ranging from reduced to increased sensitivity compared to controls. We wanted to establish whether measures of baroreflex sensitivity and autonomic function differed between patients diagnosed with carotid sinus hypersensitivity and age matched controls. We included 36 patients (12 women; 74 +/-10...... sensitivity may not follow the same neuronal pathways as those responding to the crude external pressures applied during carotid sinus massage...

  17. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders.

    Science.gov (United States)

    Pistorio, Elisabetta; Luca, Maria; Luca, Antonina; Messina, Vincenzo; Calandra, Carmela

    2011-10-28

    To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI) as a new possible biomarker. 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs). The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR) official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV) and lipid metabolism has been investigated. Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  18. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders

    Directory of Open Access Journals (Sweden)

    Messina Vincenzo

    2011-10-01

    Full Text Available Abstract Objective To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI as a new possible biomarker. Methods 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs. The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV and lipid metabolism has been investigated. Results Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Conclusions Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  19. DYNAMICS OF CLINICAL AND BIOCHEMICAL PARAMETERS AND FUNCTIONAL STATE OF THE AUTONOMIC NERVOUS SYSTEM IN PATIENTS WITH ACUTE HEPATITIS B WITH CHRONIC ALCOHOL USE IN HEPATOTOXIC DOSES

    Directory of Open Access Journals (Sweden)

    O. O. Furyk

    2014-02-01

    Full Text Available Relevance of hepatitis B due to the high incidence complexity of pathogenesis, ineffective treatment, severe consequences of the disease. Among combined lesions of the liver, special attention is paid to viral-alcoholic type. One of the mechanisms of chronic hepatitis of different etiology is violation of the functional activity of the autonomic nervous system. The aim of this work- to determine the dynamics of spectral indices of heart rate variability in patients with acute hepatitis B from chronic use of alcohol in hepatotoxic doses. Materials and methods. 133 patients with acute hepatitis B were under observation. Patients were divided into groups taking account the presence or absence of chronic use of alcohol in hepatotoxic doses and using the classification of alcohol consumption based on the frequency and dose of consumed alcohol. I group comprised 52 patients with chronic use of alcohol in the hepatotoxic doses, II group consisted of 81 patient without this factor. Heart rate variability was diagnosed using computer cardiointervalometry performed by electrocardiographic diagnostic system CardioLab-2000. 20 healthy individuals were in the control group. Results and discussion. Prodromal period in patients of the I group was longer (p0,05. However, only patients in group I had marked hemorrhagic manifestations (5,8 % and itching (7.7%. Average serum total bilirubin level was higher (p<0,05 in patients from the I group than in patients from II group. Functional state of autonomic nervous system in patients of both groups were decreased in acute period (vagotonia. Period of convalescence in patients from the I group was accompanied by more severe autonomic dysfunction in 33,6 % (p<0,05. Conclusions. 1. Acute hepatitis B in patients with chronic alcohol use in hepatotoxic doses is characterized by longer (p<0,05 prodrome, cholestatic (7,7% and hemorrhagic manifestations (5,8%, higher levels of hyperbilirubinemia (p<0,05, and during

  20. [Heart rate variability as a method of assessing the autonomic nervous system in polycystic ovary syndrome].

    Science.gov (United States)

    de Sá, Joceline Cássia Ferezini; Costa, Eduardo Caldas; da Silva, Ester; Azevedo, George Dantas

    2013-09-01

    Polycystic ovary syndrome (PCOS) is an endocrine disorder associated with several cardiometabolic risk factors, such as central obesity, insulin resistance, type 2 diabetes, metabolic syndrome, and hypertension. These factors are associated with adrenergic overactivity, which is an important prognostic factor for the development of cardiovascular disorders. Given the common cardiometabolic disturbances occurring in PCOS women, over the last years studies have investigated the cardiac autonomic control of these patients, mainly based on heart rate variability (HRV). Thus, in this review, we will discuss the recent findings of the studies that investigated the HRV of women with PCOS, as well as noninvasive methods of analysis of autonomic control starting from basic indexes related to this methodology.

  1. Changing trends in nervous system diseases among hospitalized children in the Chongqing region

    Institute of Scientific and Technical Information of China (English)

    Xin Zou; Nong Xiao; Bei Xu

    2008-01-01

    OBJECTIVE: To investigate the changing trends of nervous system diseases among hospitalized children and the risk factors of death. METHOD: The disease was statistically classified according to the International Statistical Classification of Disease and Health Problem (ICD10). The retrospective investigation includes demographic characteristics, as well as categories and fatality rates for nervous system diseases. All data was statistically analyzed. RESULTS: The percentage of nervous system diseases among inpatients in all wards was 2.4% (2 537/ 107 250) between January 1993 and December 1999, and 3.6% (6 082/170 619) between January 2000 and December 2006. The first ten patterns of various etiologic forms of nervous system diseases were identical-epilepsies and seizures, infections of the central nervous system, autoimmune and demyelination disorders, cerebral palsy, motor unit disorders, hypoxic-ischemic encephalopathy, hydrocephalus, extra-pyramidal disorders, congenital abnormalities of nervous system, and headache. Epilepsies and seizures took first place in both year groups, with 29.4% and 35%, respectively. Bacterial infections were responsible for the majority of cranial infections in both year groups, with 78.9% and 63.6% respectively. The death rate in the year group January 2000 to December 2006 was significantly less than in the year group January 1993 to December 1999 (X2= 27.832, P<0.01). CONCLUSION: Among all nervous system diseases, epilepsies and seizures were among the most common, with the lowest fatality rate.

  2. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder.

    Science.gov (United States)

    Streeter, C C; Gerbarg, P L; Saper, R B; Ciraulo, D A; Brown, R P

    2012-05-01

    A theory is proposed to explain the benefits of yoga practices in diverse, frequently comorbid medical conditions based on the concept that yoga practices reduce allostatic load in stress response systems such that optimal homeostasis is restored. It is hypothesized that stress induces (1) imbalance of the autonomic nervous system (ANS) with decreased parasympathetic nervous system (PNS) and increased sympathetic nervous system (SNS) activity, (2) underactivity of the gamma amino-butyric acid (GABA) system, the primary inhibitory neurotransmitter system, and (3) increased allostatic load. It is further hypothesized that yoga-based practices (4) correct underactivity of the PNS and GABA systems in part through stimulation of the vagus nerves, the main peripheral pathway of the PNS, and (5) reduce allostatic load. Depression, epilepsy, post traumatic stress disorder (PTSD), and chronic pain exemplify medical conditions that are exacerbated by stress, have low heart rate variability (HRV) and low GABAergic activity, respond to pharmacologic agents that increase activity of the GABA system, and show symptom improvement in response to yoga-based interventions. The observation that treatment resistant cases of epilepsy and depression respond to vagal nerve stimulation corroborates the need to correct PNS underactivity as part of a successful treatment plan in some cases. According to the proposed theory, the decreased PNS and GABAergic activity that underlies stress-related disorders can be corrected by yoga practices resulting in amelioration of disease symptoms. This has far-reaching implications for the integration of yoga-based practices in the treatment of a broad array of disorders exacerbated by stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Contribution of the autonomic nervous system to blood pressure and heart rate variability changes in early experimental hyperthyroidism.

    Science.gov (United States)

    Safa-Tisseront, V; Ponchon, P; Laude, D; Elghozi, J L

    1998-07-10

    A great deal of uncertainty persists regarding the exact nature of the interaction between autonomic nervous system activity and thyroid hormones in the control of heart rate and blood pressure. We now report on thyrotoxicosis produced by daily intraperitoneal (i.p.) injection of L-thyroxine (0.5 mg/kg body wt. in 1 ml of 5 mM NaOH for 5 days). Control rats received i.p. daily injections of the thyroxine solvent. In order to estimate the degree of autonomic activation in hyperthyroidism, specific blockers were administered intravenously: atropine (0.5 mg/kg), prazosin (1 mg/kg), atenolol (1 mg/kg) or the combination of atenolol and atropine. A jet of air was administered in other animals to induce sympathoactivation. Eight animals were studied in each group. The dose and duration of L-thyroxine treatment was sufficient to induce a significant degree of hyperthyroidism with accompanying tachycardia, systolic blood pressure elevation, increased pulse pressure, cardiac hypertrophy, weight loss, tachypnea and hyperthermia. In addition, the intrinsic heart period observed after double blockade (atenolol + atropine) was markedly decreased after treatment with L-thyroxine (121.5+/-3.6 ms vs. 141.2+/-3.7 ms, P hyperthyroidism and in these rats the jet of air did not significantly affect the heart period level. The thyrotoxicosis was associated with a reduction of the 0.4 Hz component of blood pressure variability (analyses on 102.4 s segments, modulus 1.10+/-0.07 vs. 1.41+/-0.06 mm Hg, P hyperthyroidism. The marked rise in the intrinsic heart rate could be the main determinant of tachycardia. The blood pressure elevation may reflexly induce vagal activation and sympathetic (vascular and cardiac) inhibition.

  4. [Hemodynamics, the autonomic nervous system and water metabolism as criteria for developing the general adaptation syndrome in pregnant women].

    Science.gov (United States)

    Gur'ianov, V A; Shepetovskaia, N L; Pivovarova, G M; Tolmachev, G N; Volodin, A V

    2007-01-01

    By taking into account the fact that the autonomic nervous and cardiovascular systems (ANS and CVS) are the major links of development of the general adaptation syndrome in pregnancy, which are affected by all the processes involved in the development of the syndrome, the author analyzed the state of these systems in healthy non-pregnant and pregnant women (HNPW and HPW) and in pregnant women with gestosis. HNPW were found to have already a prerequisite for impairing pregnancy adaptive processes as ANS and CVS dysfunction. In HPW, these impairments were more pronounced. In the pregnant women, impaired adaptive processes manifested themselves as excess sympathicotonia in 72% and parasympathicotonia in 23% of cases despite the treatment performed, which was accompanied by hypokinetic hemodynamics in 53 and 50%, respectively. In hyper- and eukinetic hemodynamics, there were no physiologically required decreases in total peripheral vascular resistance while in hypokinetic hemodynamics, there was its pathological increase. Such disorders enhance the significance of abdominal compartment syndrome, aortocaval compression, ischemia-reperfusion, hydrodynamic and membranogenic (capillary leakage) factors of impaired water metabolism, which contributes to adaptation derangement. Based on the findings, the authors have created a developmental modulation algorithm for the general adaptation syndrome by completed pregnancy and surgical delivery.

  5. Central Nervous System (CNS Disease Triggering Takotsubo Syndrome

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2016-01-01

    Full Text Available Takotsubo syndrome (TTS is usually triggered by psychological or physical stress. One of the many physical sources of stress are central nervous system (CNS disorders. CNS disorders most frequently triggering TTS include subarachnoid bleeding, epilepsy, ischemic stroke, migraine, and intracerebral bleeding. More rare CNS-triggers of TTS include posterior reversible encephalopathy syndrome (PRES, amyotrophic lateral sclerosis, encephalitis, or traumatic brain or spinal cord injury. TTS triggered by any of the CNS disorders needs to be recognized since adequate treatment of TTS may improve the general outcome from the CNS disorder as well. Neurologists need to be aware of TTS as a complication of specific CNS disorders but TTS may be triggered also by CNS disorders so far not recognised as causes of TTS.

  6. Sex-specific effects of intranasal oxytocin on autonomic nervous system and emotional responses to couple conflict

    Science.gov (United States)

    Nater, Urs M.; Schaer, Marcel; La Marca, Roberto; Bodenmann, Guy; Ehlert, Ulrike; Heinrichs, Markus

    2013-01-01

    Unhappy couple relationships are associated with impaired individual health, an effect thought to be mediated through ongoing couple conflicts. Little is known, however, about the underlying mechanisms regulating psychobiological stress, and particularly autonomic nervous system (ANS) reactivity, during negative couple interaction. In this study, we tested the effects of the neuropeptide oxytocin on ANS reactivity during couple conflict in a standardized laboratory paradigm. In a double-blind, placebo-controlled design, 47 heterosexual couples (total n = 94) received oxytocin or placebo intranasally prior to instructed couple conflict. Participants’ behavior was videotaped and salivary alpha-amylase (sAA), a measure of sympathetic activity, and emotional arousal were repeatedly measured during the experiment. Oxytocin significantly reduced sAA during couple conflict in women, whereas men showed increases in sAA levels (sex × group interaction: B = −49.36, t = −2.68, P = 0.009). In men, these increases were related to augmented emotional arousal (r = 0.286, P = 0.028) and more positive behavior (r = 0.291, P = 0.026), whereas there was no such association in women. Our results imply sex-specific effects of oxytocin on sympathetic activity, to negative couple interaction, with the neuropeptide reducing sAA responses and emotional arousal in women while increasing them in men. PMID:22842905

  7. Baseline autonomic nervous system arousal and physical and relational aggression in preschool: the moderating role of effortful control.

    Science.gov (United States)

    Gower, Amy L; Crick, Nicki R

    2011-09-01

    The current study investigates whether established associations between physical aggression and low autonomic nervous system arousal, as indexed by heart rate and blood pressure, also apply to the study of the development of relational aggression. Baseline heart rate and blood pressure were collected in two samples of preschoolers, and teachers reported on classroom physical and relational aggression. In Study 1, lower systolic and diastolic blood pressure were related to increased engagement in relational aggression among older preschoolers. In Study 2, lower heart rate and blood pressure predicted increased engagement in classroom physical and relational aggression concurrently and across a preschool year in some cases. Low baseline arousal-aggression associations were strongest for children with poorer self-regulation abilities, whereas high self-regulation appeared to protect children with low heart rate and blood pressure from engagement in aggressive classroom behavior. These findings suggest the utility of examining baseline physiological measures in the study of relational aggression as well as physical aggression. Implications for interventions targeted to physical and relational aggression in early childhood are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Effect of Forest Walking on Autonomic Nervous System Activity in Middle-Aged Hypertensive Individuals: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chorong Song

    2015-03-01

    Full Text Available There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0 ± 10.6 years were instructed to walk predetermined courses in forest and urban environments (as control. Course length (17-min walk, walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased “comfortable”, “relaxed”, “natural” and “vigorous” feelings and decreased “tension-anxiety,” “depression,” “anxiety-hostility,” “fatigue” and “confusion”. A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.

  9. Assessment of autonomic nervous system by using empirical mode decomposition-based reflection wave analysis during non-stationary conditions

    International Nuclear Information System (INIS)

    Chang, C C; Hsiao, T C; Kao, S C; Hsu, H Y

    2014-01-01

    Arterial blood pressure (ABP) is an important indicator of cardiovascular circulation and presents various intrinsic regulations. It has been found that the intrinsic characteristics of blood vessels can be assessed quantitatively by ABP analysis (called reflection wave analysis (RWA)), but conventional RWA is insufficient for assessment during non-stationary conditions, such as the Valsalva maneuver. Recently, a novel adaptive method called empirical mode decomposition (EMD) was proposed for non-stationary data analysis. This study proposed a RWA algorithm based on EMD (EMD-RWA). A total of 51 subjects participated in this study, including 39 healthy subjects and 12 patients with autonomic nervous system (ANS) dysfunction. The results showed that EMD-RWA provided a reliable estimation of reflection time in baseline and head-up tilt (HUT). Moreover, the estimated reflection time is able to assess the ANS function non-invasively, both in normal, healthy subjects and in the patients with ANS dysfunction. EMD-RWA provides a new approach for reflection time estimation in non-stationary conditions, and also helps with non-invasive ANS assessment. (paper)

  10. Parent emotion socialization and pre-adolescent's social and emotional adjustment: Moderating effects of autonomic nervous system reactivity.

    Science.gov (United States)

    McQuade, Julia D; Breaux, Rosanna P

    2017-12-01

    This study examined whether measures of children's autonomic nervous system (ANS) reactivity to social stress moderated the effect of parent emotion socialization on children's social and emotional adjustment. Sixty-one children (9-13 years) completed a peer rejection task while their respiratory sinus arrhythmia reactivity (RSA-R) and skin conductance level reactivity (SCL-R) were assessed. Parents' report of supportive and non-supportive reactions to their child's negative emotions served as measures of emotion socialization. Measures of children's social and emotional adjustment included: teacher-rated peer rejection, aggression, and prosocial behavior and parent-rated aggressive/dysregulated behavior and emotion regulation skills. Measures of children's ANS reactivity moderated the effect of parent emotion socialization on children's adjustment. Supportive responses were more protective for children evidencing RSA augmentation whereas non-supportive responses were more detrimental for children evidencing low SCL-R. Thus children's ANS reactivity during social stress may represent a biological vulnerability that influences sensitivity to parent emotion socialization. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of different "relaxing" music styles on the autonomic nervous system.

    Science.gov (United States)

    Perez-Lloret, Santiago; Diez, Joaquín; Domé, María Natalia; Delvenne, Andrea Alvarez; Braidot, Nestor; Cardinali, Daniel P; Vigo, Daniel Eduardo

    2014-01-01

    The objective of this study was to assess the effects on heart rate variability (HRV) of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melody that they would use to relax. The low-to-high-frequency ratio was significantly higher when subjects were exposed to "new age" music when compared with silence (3.4 ± 0.3 vs. 2.6 ± 0.3, respectively, P classical" or "romantic" melodies (2.1 ± 0.4 and 2.2 ± 0.3). These results were related to a reduction in the high frequency component with "new age" compared to silence (17.4 ± 1.9 vs. 23.1 ± 1.1, respectively P music induced a shift in HRV from higher to lower frequencies, independently on the music preference of the listener.

  12. Neuron-glia crosstalk in the autonomic nervous system and its possible role in the progression of metabolic syndrome: A new hypothesis

    Directory of Open Access Journals (Sweden)

    RODRIGO eDEL RIO

    2015-12-01

    Full Text Available Metabolic syndrome (MS is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.

  13. Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: the role of the autonomic nervous system.

    Science.gov (United States)

    Scridon, Alina; Gallet, Clément; Arisha, Moussa M; Oréa, Valérie; Chapuis, Bruno; Li, Na; Tabib, Alain; Christé, Georges; Barrès, Christian; Julien, Claude; Chevalier, Philippe

    2012-08-01

    Experimental models of unprovoked atrial tachyarrhythmias (AT) in conscious, ambulatory animals are lacking. We hypothesized that the aging, spontaneously hypertensive rat (SHR) may provide such a model. Baseline ECG recordings were acquired with radiotelemetry in eight young (14-wk-old) and eight aging (55-wk-old) SHRs and in two groups of four age-matched Wistar-Kyoto (WKY) rats. Quantification of AT and heart rate variability (HRV) analysis were performed based on 24-h ECG recordings in unrestrained rats. All animals were submitted to an emotional stress protocol (air-jet). In SHRs, carbamylcholine injections were also performed. Spontaneous AT episodes were observed in all eight aging SHRs (median, 91.5; range, 4-444 episodes/24 h), but not in young SHRs or WKY rats. HRV analysis demonstrated significantly decreased low frequency components in aging SHRs compared with age-matched WKY rats (P aging (P = 0.01) SHRs compared with normotensive controls. In aging SHRs, emotional stress significantly reduced the number of arrhythmic events, whereas carbamylcholine triggered AT and significantly increased atrial electrical instability. This study reports the occurrence of unprovoked episodes of atrial arrhythmia in hypertensive rats, and their increased incidence with aging. Our results suggest that autonomic imbalance with relative vagal hyperactivity may be responsible for the increased atrial arrhythmogenicity observed in this model. We also provide evidence that, in this model, the sympatho-vagal imbalance preceded the occurrence of arrhythmia. These results indicate that aging SHRs may provide valuable insight into the understanding of atrial arrhythmias.

  14. Influence of the autonomic nervous system on calcium homeostasis in the rat.

    Science.gov (United States)

    Stern, J E; Cardinali, D P

    1994-01-01

    The local surgical manipulation of sympathetic and parasympathetic nerves innervating the thyroid-parathyroid territory was employed to search for the existence of a peripheral neuroendocrine link controlling parathyroid hormone (PTH) and calcitonin (CT) release. From 8 to 24 h after superior cervical ganglionectomy (SCGx), at the time of wallerian degeneration of thyroid-parathyroid sympathetic nerve terminals, an alpha-adrenergic inhibition, together with a minor beta-adrenergic stimulation, of hypercalcemia-induced CT release, and an alpha-adrenoceptor inhibition of hypocalcemia-induced PTH release were found. In chronically SCGx rats PTH response to EDTA was slower, and after CaCl2 injection, serum calcium attained higher levels in face of normal CT levels. SCGx blocked the PTH increase found in sham-operated rats stressed by a subcutaneous injection of turpentine oil, but did not affect the greater response to EDTA. The higher hypocalcemia seen after turpentine oil was no longer observed in SCGx rats. The effects of turpentine oil stress on calcium and CT responses to a bolus injection of CaCl2 persisted in rats subjected to SCGx 14 days earlier. Interruption of thyroid-parathyroid parasympathetic input conveyed by the thyroid nerves (TN) and the inferior laryngeal nerves (ILN) caused a fall in total serum calcium, an increase of PTH levels and a decrease of CT levels, when measured 10 days after surgery. Greater responses of serum CT and PTH were detected in TN-sectioned, and in TN- or ILN-sectioned rats, respectively. Physiological concentrations of CT decreased, and those of PTH increased, in vitro cholinergic activity in rat SCG, measured as specific choline uptake, and acetylcholine synthesis and release. The results indicate that cervical autonomic nerves constitute a pathway through which the brain modulates calcium homeostasis.

  15. Central Nervous System Vasculitis

    Science.gov (United States)

    ... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...

  16. Investigation of the Effects of Continuous Low-Dose Epidural Analgesia on the Autonomic Nervous System Using Hilbert Huang Transform

    Directory of Open Access Journals (Sweden)

    Wei-Ren Chuang

    2010-01-01

    Full Text Available Effects of continuous low-dose epidural bupivacaine (0.05-0.1% infusion on the Doppler velocimetry for labor analgesia have been well documented. The aim of this study was to monitor the activity of the autonomic nervous system (ANS for women in labor based on Hilbert Huang transform (HHT, which performs signal processing for nonlinear systems, such as human cardiac systems. Thirteen pregnant women were included in the experimental group for labor analgesia. They received continuous epidural bupivacaine 0.075% infusion. The normal-to-normal intervals (NN-interval were downloaded from an ECG holter. Another 20 pregnant women in non-anesthesia labor (average gestation age was 38.6 weeks were included in the comparison group. In this study, HHT was used to decompose components of ECG signals, which reflect three different frequency bands of a person's heart rate spectrum (viz. high frequency (HF, low frequency (LF and very low frequency (VLF. It was found that the change of energy in subjects without anesthesia was more active than that with continuous epidural bupivacaine 0.075% infusion. The energy values of the experimental group (i.e., labor analgesia of HF and LF of ANS activities were significantly lower (P < 0.05 than the values of the comparison group (viz. labor without analgesia, but the trend of energy ratio of LF/HF was opposite. In conclusion, the sympathetic and parasympathetic components of ANS are all suppressed by continuous low-dose epidural bupivacaine 0.075% infusion, but parasympathetic power is suppressed more than sympathetic power.

  17. Response of Autonomic Nervous System to Body Positions: Fourier and Wavelet Analysis

    OpenAIRE

    Xu, Aiguo; Gonnella, G.; Federici, A.; Stramaglia, S.; Simone, F.; Zenzola, A.; Santostasi, R.

    2003-01-01

    Two mathematical methods, the Fourier and wavelet transforms, were used to study the short term cardiovascular control system. Time series, picked from electrocardiogram and arterial blood pressure lasting 6 minutes, were analyzed in supine position (SUP), during the first (HD1), and the second parts (HD2) of $90^{\\circ}$ head down tilt and during recovery (REC). The wavelet transform was performed using the Haar function of period $T=2^j$ ($% j=1$,2,$... $,6) to obtain wavelet coefficients. ...

  18. Magnetic resonance imaging study of lumbosacral spinal cord nerves before artificial somatic-central nervous system-autonomic reflex pathway establish ment

    International Nuclear Information System (INIS)

    Deng Xianbo; Kong Xiangquan; Feng Gansheng; Han Ping; Liu Dingxi; Ma Hui

    2005-01-01

    Objective: To investigate the value of MRI as imaging technique for lumbosacral spinal nerves before artificial somatic-central nervous system-autonomic reflex pathway establish ment. Methods: Conventional MRI and T 2 W CISS 3D were performed in 10 patients with neurogenic bladder planned for the operation of artificial somatic-central nervous system-autonomic reflex pathway. The Three-dimensional data were then constructed into composite images using a standard multiple planar reformation (MPR). Results: Five patients showed tethered spinal cord syndrome, whose spinal cord nerves were circuitous distributed and had abnormity number when penetrated the dura. Of these 5 patients, one patient was accompanied by spinal cord vas malformation. Four patients had vertebral fracture and spinal injury, and the other one patients demonstrated tumor in vertebral canal on MRI examinations. The spinal cord nerves in these 5 patients floated down river and had normal number of spinal cord nerves. Conclusion: Conventional MRI and T 2 W CISS 3D MRI were essential for the pre-operative planning of artificial somatic-central nervous system-autonomic reflex pathway, especially in patients with tethered spinal cord syndrome. Spinal cord nerves distribute and anterior and posterior roots array can be clearly showed by MPR. (authors)

  19. Autonomic nervous system dysfunction in children with severe tetanus: dissociation of cardiac and vascular sympathetic control

    Directory of Open Access Journals (Sweden)

    Mazzei de Davila C.A.

    2003-01-01

    Full Text Available The medical records of ten pediatric patients with a clinical diagnosis of tetanus were reviewed retrospectively. The heart rate and blood pressure of all tetanus patients were measured noninvasively every hour during the first two weeks of hospitalization. Six of ten tetanus patients presented clinical evidence of sympathetic hyperactivity (group A and were compared with a control group consisting of four children who required mechanical ventilation for diseases other than tetanus (group B. Heart rate and blood pressure simultaneously and progressively increased to a maximum by day 7. The increase over baseline was 43.70 ± 11.77 bpm (mean ± SD for heart rate (P<0.01 and 38.60 ± 26.40 mmHg for blood pressure (P<0.01. These values were higher and significantly different from those of the control group (group B at day 6, which had an average heart rate increase over baseline of 19.35 ± 12.26 bpm (P<0.05 and blood pressure of 10.24 ± 13.30 mmHg (P<0.05. By the end of the second week of hospitalization, in group A the increase of systolic blood pressure over baseline had diminished to 9.60 ± 15.37 mmHg (P<0.05, but the heart rate continued to be elevated (27.80 ± 33.92 bpm, P = NS, when compared to day 7 maximal values. The dissociation of these two cardiovascular variables at the end of the second week of hospitalization suggests the presence of asymmetric cardiac and vascular sympathetic control. One possible explanation for these observations is a selective and delayed action of tetanus toxin on the inhibitory neurons which control sympathetic outflow to the heart.

  20. Nervous system

    Science.gov (United States)

    Histopathology and immunohistochemistry are two analytic methods used in veterinary medicine for diagnosis and control of animal diseases. This book chapter provides specialized information for the veterinary pathologist and poultry veterinarians on the histopathological changes associated with dise...

  1. Autonomic nervous system modulation and clinical outcome after pulmonary vein isolation using the second-generation cryoballoon.

    Science.gov (United States)

    Miyazaki, Shinsuke; Nakamura, Hiroaki; Taniguchi, Hiroshi; Hachiya, Hitoshi; Kajiyama, Takatsugu; Watanabe, Tomonori; Igarashi, Miyako; Ichijo, Sadamitsu; Hirao, Kenzo; Iesaka, Yoshito

    2017-09-01

    The intrinsic cardiac autonomic nervous system (ANS) plays a significant role in atrial fibrillation (AF) mechanisms. This study evaluated the incidence and impact of intraprocedural vagal reactions and ANS modulation by pulmonary vein isolation (PVI) using second-generation cryoballoons on outcomes. One hundred three paroxysmal AF patients underwent PVI with one 28-mm second-generation balloon. The median follow-up was 15.0 (12.0-18.0) months. ANS modulation was defined as a >20% cycle length decrease on 3-minute resting electrocardiograms at 1, 3, 6, and 12 months postindex procedure relative to baseline if sinus rhythm was maintained. Marked sinus arrests/bradycardia and atrioventricular block (intraprocedural vagal reaction) occurred in 14 and 2 patients, and all sinus arrest/bradycardia occurred in 44 patients with left superior pulmonary veins (PVs) targeted before right PVs. ANS modulation was identified in 66 of 95 (69.5%) patients, and it persisted 12-month postprocedure in 36 (37.9%) patients. Additional β-blocker administration was required in 9 patients for sinus tachycardia. ANS modulation was similarly observed in patients with and without intraprocedural vagal reactions (P = 0.443). Forty-eight (46.6%) patients experienced early recurrences, and the single procedure success at 12 months was 72.7%. Neither intraprocedural vagal reactions nor ANS modulation predicted AF freedom within or after the blanking period. Thirty-three patients underwent second procedures, and reconnections were detected in 39 of 130 (30.0%) PVs among 23 (69.7%) patients. The incidence of reconnections was similar in patients with and without ANS modulation. Increased heart rate persisted in 37.9% of patients even at 12-month post-second-generation cryoballoon PVI. Neither intraprocedural vagal reactions nor increased heart rate predicted a single procedure clinical outcome. © 2017 Wiley Periodicals, Inc.

  2. Alterations in HPA-axis and autonomic nervous system functioning in childhood anxiety disorders point to a chronic stress hypothesis.

    Science.gov (United States)

    Dieleman, Gwendolyn C; Huizink, Anja C; Tulen, Joke H M; Utens, Elisabeth M W J; Creemers, Hanneke E; van der Ende, Jan; Verhulst, Frank C

    2015-01-01

    It is of debate whether or not childhood anxiety disorders (AD) can be captured by one taxonomic construct. This study examined whether perceived arousal (PA), autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis measures can distinguish children with different primary diagnoses of clinical anxiety disorders (AD) from each other, and from a general population reference group (GP). The study sample consisted of 152 AD children (comparing separation anxiety disorder, generalized anxiety disorder, social phobia and specific phobia), aged 8- to 12-years, and 200 same-aged reference children. HPA-axis functioning was measured by a diurnal cortisol profile. ANS functioning was measured by continuous measures of skin conductance level in rest and during a mental arithmetic task and high frequency heart rate variability in rest. PA was assessed by a questionnaire. The AD sample showed lower high frequency heart rate variability during rest, heightened anticipatory PA, higher basal and reactive skin conductance levels and lower basal HPA-axis functioning compared to the GP sample. The existence of three or more clinical disorders, i.e. a high clinical 'load', was associated with lower basal HPA-axis functioning, higher skin conductance level and lower posttest PA. Specific phobia could be discerned from social phobia and separation anxiety disorder on higher skin conductance level. Our findings indicated that children with AD have specific psychophysiological characteristics, which resemble the psychophysiological characteristics of chronic stress. A high clinical 'load' is associated with an altered ANS and HPA-axis functioning. Overall, ANS and HPA-axis functioning relate to AD in general, accept for specific phobia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study.

    Directory of Open Access Journals (Sweden)

    Karin A M Janssens

    Full Text Available Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS. However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous system (ANS levels during a standardized stressful situation, and whether these associations are symptom-specific.We examined 715 adolescents (16.1 years, 51.3% girls from the Dutch cohort study Tracking Adolescents' Individual Lives Sample during the Groningen Social Stress Test (GSST. FSS were assessed by the Youth Self-Report, and clustered into a cluster of overtiredness, dizziness and musculoskeletal pain and a cluster of headache and gastrointestinal symptoms. Perceived stress levels (i.e. unpleasantness and arousal were assessed by the Self-Assessment Manikin, and cardiac ANS activity by assessing heart rate variability (HRV-HF and pre-ejection period (PEP. Perceived stress and cardiac ANS levels before, during, and after the GSST were studied as well as cardiac ANS reactivity. Linear regression analyses were used to examine the associations.Perceived arousal levels during (beta = 0.09, p = 0.04 and after (beta = 0.07, p = 0.047 the GSST, and perceived unpleasantness levels before (beta = 0.07, p = 0.048 and during (beta = 0.12, p = 0.001 the GSST were related to FSS during the past couple of months. The association between perceived stress and FSS was stronger for the FSS cluster of overtiredness, dizziness and musculoskeletal pain than for the cluster of headache and gastrointestinal symptoms. Neither ANS activity levels before, during, and after the GSST, nor maximal HF-HRV and PEP reactivity were related to FSS.This study suggests that perceived stress levels during social stress are related to FSS, whereas cardiac ANS activity and reactivity are not related to FSS.

  4. Distraction or cognitive overload? Using modulations of the autonomic nervous system to discriminate the possible negative effects of advanced assistance system.

    Science.gov (United States)

    Ruscio, D; Bos, A J; Ciceri, M R

    2017-06-01

    The interaction with Advanced Driver Assistance Systems has several positive implications for road safety, but also some potential downsides such as mental workload and automation complacency. Malleable attentional resources allocation theory describes two possible processes that can generate workload in interaction with advanced assisting devices. The purpose of the present study is to determine if specific analysis of the different modalities of autonomic control of nervous system can be used to discriminate different potential workload processes generated during assisted-driving tasks and automation complacency situations. Thirty-five drivers were tested in a virtual scenario while using head-up advanced warning assistance system. Repeated MANOVA were used to examine changes in autonomic activity across a combination of different user interactions generated by the advanced assistance system: (1) expected take-over request without anticipatory warning; (2) expected take-over request with two-second anticipatory warning; (3) unexpected take-over request with misleading warning; (4) unexpected take-over request without warning. Results shows that analysis of autonomic modulations can discriminate two different resources allocation processes, related to different behavioral performances. The user's interaction that required divided attention under expected situations produced performance enhancement and reciprocally-coupled parasympathetic inhibition with sympathetic activity. At the same time, supervising interactions that generated automation complacency were described specifically by uncoupled sympathetic activation. Safety implications for automated assistance systems developments are considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Myocardial ischaemia and the cardiac nervous system.

    Science.gov (United States)

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some

  6. Occupational exposure to extremely low-frequency magnetic fields and risk for central nervous system disease

    DEFF Research Database (Denmark)

    Pedersen, Camilla; Poulsen, Aslak Harbo; Rod, Naja Hulvej

    2017-01-01

    Purpose: Evidence of whether exposure to extremely low-frequency magnetic fields (ELF-MF) is related to central nervous system diseases is inconsistent. This study updates a previous study of the incidence of such diseases in a large cohort of Danish utility workers by almost doubling the period...

  7. Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Brisebois, Marcel; Tran, Elise

    2003-01-01

    that transgenic mice constitutively expressing the costimulatory ligand B7.2/CD86 on microglia in the central nervous system (CNS) and on related cells in the proximal peripheral nervous tissue spontaneously develop autoimmune demyelinating disease. Disease-affected nervous tissue in transgenic mice showed...... recipients but not into non-transgenic recipients. These data provide evidence that B7/CD28 interactions within the nervous tissue are critical determinants of disease development. Our findings have important implications for understanding the etiology of nervous system autoimmune diseases such as multiple...

  8. Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: a case-controlled feasibility study.

    Science.gov (United States)

    Adams, Scott C; Schondorf, Ronald; Benoit, Julie; Kilgour, Robert D

    2015-05-18

    Preliminary evidence suggests cancer- and chemotherapy-related autonomic nervous system (ANS) dysfunction may contribute to the increased cardiovascular (CV) morbidity- and mortality-risks in cancer survivors. However, the reliability of these findings may have been jeopardized by inconsistent participant screening and assessment methods. Therefore, good laboratory practices must be established before the presence and nature of cancer-related autonomic dysfunction can be characterized. The purpose of this study was to assess the feasibility of conducting concurrent ANS and cardiovascular evaluations in young adult cancer patients, according to the following criteria: i) identifying methodological pitfalls and proposing good laboratory practice criteria for ANS testing in cancer, and ii) providing initial physiologic evidence of autonomic perturbations in cancer patients using the composite autonomic scoring scale (CASS). Thirteen patients (mixed diagnoses) were assessed immediately before and after 4 cycles of chemotherapy. Their results were compared to 12 sex- and age-matched controls. ANS function was assessed using standardized tests of resting CV (tilt-table, respiratory sinus arrhythmia and Valsalva maneuver) and sudomotor (quantitative sudomotor axon reflex test) reactivity. Cardiovascular reactivity during exercise was assessed using a modified Astrand-Ryhming cycle ergometer protocol. Our feasibility criteria addressed: i) recruitment potential, ii) retention rates, iii) pre-chemotherapy assessment potential, iv) test performance/tolerability, and v) identification and minimizing the influence of potentially confounding medication. T-tests and repeated measures ANOVAs were used to assess between- and within-group differences at baseline and follow-up. The overall success rate in achieving our feasibility criteria was 98.4 %. According to the CASS, there was evidence of ANS impairment at baseline in 30.8 % of patients, which persisted in 18.2 % of patients

  9. Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: a case-controlled feasibility study

    International Nuclear Information System (INIS)

    Adams, Scott C.; Schondorf, Ronald; Benoit, Julie; Kilgour, Robert D.

    2015-01-01

    Preliminary evidence suggests cancer- and chemotherapy-related autonomic nervous system (ANS) dysfunction may contribute to the increased cardiovascular (CV) morbidity- and mortality-risks in cancer survivors. However, the reliability of these findings may have been jeopardized by inconsistent participant screening and assessment methods. Therefore, good laboratory practices must be established before the presence and nature of cancer-related autonomic dysfunction can be characterized. The purpose of this study was to assess the feasibility of conducting concurrent ANS and cardiovascular evaluations in young adult cancer patients, according to the following criteria: i) identifying methodological pitfalls and proposing good laboratory practice criteria for ANS testing in cancer, and ii) providing initial physiologic evidence of autonomic perturbations in cancer patients using the composite autonomic scoring scale (CASS). Thirteen patients (mixed diagnoses) were assessed immediately before and after 4 cycles of chemotherapy. Their results were compared to 12 sex- and age-matched controls. ANS function was assessed using standardized tests of resting CV (tilt-table, respiratory sinus arrhythmia and Valsalva maneuver) and sudomotor (quantitative sudomotor axon reflex test) reactivity. Cardiovascular reactivity during exercise was assessed using a modified Astrand-Ryhming cycle ergometer protocol. Our feasibility criteria addressed: i) recruitment potential, ii) retention rates, iii) pre-chemotherapy assessment potential, iv) test performance/tolerability, and v) identification and minimizing the influence of potentially confounding medication. T-tests and repeated measures ANOVAs were used to assess between- and within-group differences at baseline and follow-up. The overall success rate in achieving our feasibility criteria was 98.4 %. According to the CASS, there was evidence of ANS impairment at baseline in 30.8 % of patients, which persisted in 18.2 % of patients

  10. [Treatable diseases of the nervous system with cataract formation].

    Science.gov (United States)

    Baumgartner, R W; Waespe, W

    1993-02-01

    The detection of a cataract in combination with a neurological deficit may provide the physician with important diagnostic help. But a minority of underlying diseases (angiokeratoma corporis diffusum, cerebrotendinous xanthomatosis, diabetes mellitus, galactosemia, hypocalcemia, Refsum's disease, Wilson's disease; Charles Bonnet syndrome; relapsing Perichondritis; adverse effects of medication and intoxications) can be treated causally. Therefore they are summed up and discussed in this paper.

  11. Hydatid disease of the Central Nervous System: imaging characteristics and general features

    International Nuclear Information System (INIS)

    Abbassioun, K.; Amirjamshidi, A.; Sabouri Deylamie, M.

    2003-01-01

    Background: Hydatid disease primarily affects the liver and typically demonstrates characteristic imaging findings. Secondary involvement due to hematogenous dissemination may be seen in almost any locations, e.g., lung, kidney, spleen, bone and central nervous system. Objectives: To review the different aspects of hydatidosis of the central nervous system briefly and discuss the pathognomonic features and rare varieties of radiological findings useful in preoperative diagnosis of the disease in the human central nervous system. Materials and Methods: In a retrospective study, the records of almost 100 cases of central nervous system hydatidosis were analyzed . The available images were reviewed by independent observers, either a radiologist or a neurosurgeon, and reported separately. Results: In skull x-ray films, nonspecific changes denoted increased intracranial pressure, skull asymmetry and curvilinear calcification in rare instances. Computed tomography and magnetic resonance imaging demonstrated the round or oval, well-defined cystic mass with an attenuation or signal intensity similar to that of cerebrospinal fluid, with no associated perifocal edema, and no contrast enhancement as the pathognomonic findings of brain hydatidosis. Similar findings were detected in hydatid cysts involving the orbit, spinal column and spinal cord with some variations. Such findings as mild perifocal edema, non homogenous contrast enhancement, non-uniform shapes, calcification and multiplicity or septations have been the atypical radiological findings. Conclusion: In endemic areas, familiarity with typical and atypical radiological manifestations of hydatid disease of the central nervous system, will be helpful in making prompt and correct preoperative diagnosis leading to a better surgical outcome

  12. Acrolein-mediated injury in nervous system trauma and diseases

    Science.gov (United States)

    Shi, Riyi; Rickett, Todd; Sun, Wenjing

    2012-01-01

    Acrolein, an α,β-unsaturated aldehyde, is a ubiquitous pollutant that is also produced endogenously through lipid peroxidation. This compound is hundreds of times more reactive than other aldehydes such as 4-hydroxynonenal, is produced at much higher concentrations, and persists in solution for much longer than better known free radicals. It has been implicated in disease states known to involve chronic oxidative stress, particularly spinal cord injury and multiple sclerosis. Acrolein may overwhelm the anti-oxidative systems of any cell by depleting glutathione reserves, preventing glutathione regeneration, and inactivating protective enzymes. On the cellular level, acrolein exposure can cause membrane damage, mitochondrial dysfunction, and myelin disruption. Such pathologies can be exacerbated by increased concentrations or duration of exposure, and can occur in normal tissue incubated with injured spinal cord, showing that acrolein can act as a diffusive agent, spreading secondary injury. Several chemical species are capable of binding and inactivating acrolein. Hydralazine in particular can reduce acrolein concentrations and inhibit acrolein-mediated pathologies in vivo. Acrolein scavenging appears to be a novel effective treatment which is primed for rapid translation to the clinic. PMID:21823221

  13. [Pathomechanism of Autoantibody Production in the Nervous System Diseases].

    Science.gov (United States)

    Shimizu, Fumitaka; Kanda, Takashi

    2018-04-01

    Antibodies to different brain and peripheral nerve proteins have recently been found to be associated with several different autoimmune diseases. They can bind to either neuronal or non-neuronal antigens and may have a pathogenic role by themselves or in synergy with other inflammatory mediators after penetrating the blood-brain barrier or the blood-nerve barrier. In this review, we will describe the association with the impairment of immune tolerance, innate immunity, and autoantibody production of myasthenia gravis (MG), systemic lupus erythematosus (SLE), and Guillain-Barré syndrome (GBS). Impairment of central tolerance, which is characterized by the repertoire selection of immature T-lymphocytes in the thymus, is seen in patients with MG who are positive for anti-Ach R antibodies. Impairment of peripheral tolerance due to activation of autoreactive T-cells and suppression of regulatory T-cells is seen in SLE. In addition, molecular mimicry between the lipooligosaccharides of Campylobacter jejuni and gangliosides of the peripheral nerves results in the production of anti-gangliosides antibodies in GBS. Next, we will describe the antibody-mediated pathology in neuromyelitis optica and anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. The binding of anti-aquaporin-4 antibodies or anti-NMDAR antibodies to their respective targets initiates target internalization and complement- or antibody-dependent cellular cytotoxicity of the target cells. Further understanding of antibody-mediated pathology may suggest novel therapeutic strategies.

  14. Cardiovascular risk and mortality in end-stage renal disease patients undergoing dialysis: sleep study, pulmonary function, respiratory mechanics, upper airway collapsibility, autonomic nervous activity, depression, anxiety, stress and quality of life: a prospective, double blind, randomized controlled clinical trial.

    Science.gov (United States)

    dos Reis Santos, Israel; Danaga, Aline Roberta; de Carvalho Aguiar, Isabella; Oliveira, Ezequiel Fernandes; Dias, Ismael Souza; Urbano, Jessica Julioti; Martins, Aline Almeida; Ferraz, Leonardo Macario; Fonsêca, Nina Teixeira; Fernandes, Virgilio; Fernandes, Vinicius Alves Thomaz; Lopes, Viviane Cristina Delgado; Leitão Filho, Fernando Sérgio Studart; Nacif, Sérgio Roberto; de Carvalho, Paulo de Tarso Camillo; Sampaio, Luciana Maria Malosá; Giannasi, Lílian Christiane; Romano, Salvatore; Insalaco, Giuseppe; Araujo, Ana Karina Fachini; Dellê, Humberto; Souza, Nadia Karina Guimarães; Giannella-Neto, Daniel; Oliveira, Luis Vicente Franco

    2013-10-08

    Chronic kidney disease (CKD) is one of the most serious public health problems. The increasing prevalence of CKD in developed and developing countries has led to a global epidemic. The hypothesis proposed is that patients undergoing dialysis would experience a marked negative influence on physiological variables of sleep and autonomic nervous system activity, compromising quality of life. A prospective, consecutive, double blind, randomized controlled clinical trial is proposed to address the effect of dialysis on sleep, pulmonary function, respiratory mechanics, upper airway collapsibility, autonomic nervous activity, depression, anxiety, stress and quality of life in patients with CKD. The measurement protocol will include body weight (kg); height (cm); body mass index calculated as weight/height(2); circumferences (cm) of the neck, waist, and hip; heart and respiratory rates; blood pressures; Mallampati index; tonsil index; heart rate variability; maximum ventilatory pressures; negative expiratory pressure test, and polysomnography (sleep study), as well as the administration of specific questionnaires addressing sleep apnea, excessive daytime sleepiness, depression, anxiety, stress, and quality of life. CKD is a major public health problem worldwide, and its incidence has increased in part by the increased life expectancy and increasing number of cases of diabetes mellitus and hypertension. Sleep disorders are common in patients with renal insufficiency. Our hypothesis is that the weather weight gain due to volume overload observed during interdialytic period will influence the degree of collapsibility of the upper airway due to narrowing and predispose to upper airway occlusion during sleep, and to investigate the negative influences of haemodialysis in the physiological variables of sleep, and autonomic nervous system, and respiratory mechanics and thereby compromise the quality of life of patients. The protocol for this study is registered with the Brazilian

  15. Autonomic nervous system activity in purebred Arabian horses evaluated according to the low frequency and high frequency spectrum versus racing performance

    Directory of Open Access Journals (Sweden)

    Iwona Janczarek

    2016-01-01

    Full Text Available Emotional excitability influences horses’ performance in sports and races. The aim of the study was to analyse whether the balance of the autonomic system which can occur when sympathetic system activity is at various levels might impact the horses’ racing performance. The study was carried out on 67 purebred Arabian horses trained for racing. The following indices were analysed: low frequency (LF, high frequency (HF, and the ratio of spectrum power at low frequencies to high frequencies (LF/HF. The autonomic nervous system activity was measured × 3 during the training season, at three-month intervals. Each examination included a 30-min measurement at rest and after a training session. The racing performance indices in these horses were also analysed. Better racing results were found in horses with enhanced LF/HF. The worst racing results were determined in horses with low LF.

  16. Marcapasso com sensor de contratilidade regulado pelas variações do sistema nervoso autônomo na miocardiopatia chagásica crônica Chagas heart disease and contractility rate responsive pacing controlled by autonomic nervous system variations

    Directory of Open Access Journals (Sweden)

    Oswaldo Tadeu Greco

    1998-12-01

    Full Text Available OBJETIVO: Analisar o desempenho da estimulação cardíaca artificial com marcapasso do tipo VVIR cujo sensor é regulado pelas variações do sistema nervoso autônomo em pacientes chagásicos com distúrbio no sistema de condução. MÉTODOS: Estudados 47 chagásicos, 28 do sexo masculino, com idades entre 24 e 68 anos, 36 tinham bloqueio atrioventricular (AV total; 8, bloqueio AV de 2º grau 2; e 3 doença do nódulo sinusal, e encontravam-se, de acordo com a NYHA, em classe I (4, II (15, III (16 e IV (12. Após o implante de marcapasso do tipo VVIR os pacientes foram acompanhados durante 12 meses. A resposta de freqüência foi registrada em gravações de Holter de 24h e divididos em dois grupos de acordo com a FC em repouso - grupo 1: >65bpm e grupo 2: PURPOSE: To analyse the performance of the artificial cardiac stimulation with the VVIR pacemaker whose sensor is adjusted by the variations of the autonomic nervous system in Chagas disease patients with deficiency of the conduction system. METHODS: Forty-seven Chagas disease patients have been studied, 28 male between 24 and 68 years old, 36 patients had complete AV block, 8 had 2nd degree AV block and the other 3 had sinus node disease. The patients were in class I (4, II (15, III (16 and IV (12 according to the NYHA. A 12-month-follow-up with constant clinical evaluations was carried out after pacemaker implantation. Patients were divided in 2 different groups according to the HR at rest - group 1: >65 beats per minute (bpm and group 2: <=65bpm, for a comparative study considering: 1 HR at stress test after the implantation; 2 arterial blood pressure at rest after the implantation and, 3 evaluation of the identified electrodes such as TIR-60-UP and others. RESULTS: The group 1 had greater HR at rest, and a smaller variation of values at stress than group 2. This shows that with this type of stimulation system it is possible to control each patient separately. The values of blood pressure

  17. CT and MRI analysis of central nervous system Rosai-Dorfman disease

    International Nuclear Information System (INIS)

    Zhang Jiatang; Lang Senyang; Pu Chuanqiang; Zhu Ruyuan; Wang Dianjun

    2008-01-01

    Objective: To study the CT and MRI imaging features of central nervous system Rosai-Dorfman disease and to enhance knowledge and differential diagnostic ability for central nervous system Rosai-Doffman disease. Methods: The CT and MRI imaging appearances in 4 cases of pathologically proven Rosai-Dorfman disease were retrospectively evaluated and the literature of central nervous system Rosai- Dorfman disease were reviewed. Results: Two cases had cranial CT scans, 4 cases had cranial MRI scans. On CT scans, cerebral edema was demonstrated in one case and the other case was normal. MRI scans showed the lesions were solitary in saddle area in 3 cases, and multiple in anterior cranial fossa in 1 case. The lesions exhibited iso- to hypointensity on both T 1 WI and T 2 WI images. Following intravenous injection of contrast medium, ring-like enhancement was seen in 2 cases and homogeneous enhancement in 1 case. Nodular enhancement was seen in the case of multiple lesions in the anterior cranial fossa. All lesions were dural-based. Conclusions: In patients with fever, headache, elevation of the erythrocyte sedimentation rate (ESR) and a polyclonal increase in γ-globulins, the possibility of central nervous system Rosai-Dorfman disease should be considered when single or multiple dural-based mass lesions, especially in sellar region, were identified by CT and MRI. (authors)

  18. Diagnostic evaluation of brain SPECT imaging in diseases of nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Yongsheng, Jiang; Chengmo, Zhu; Jixian, Zhang; Weijia, Tian [Shanghai Second Medical Univ. (China). Ruijing Hospital

    1992-11-01

    The dynamic distributions of home made ECD and the Amersham brain SPECT imaging agent 'Ceretec' in normal person as well as their diagnostic use in diseases of nervous system were investigated. Semi-quantitative analysis combined with direct observation was more accurate for the diagnosis. Aside from cerebrovascular diseases, SPECT brain imaging has its unique value for the diagnosis of transient ischemic attack, Alzheimer disease, multiple ischemic dementia and epilepsy etc.

  19. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  20. Autonomic skin responses in females with Fabry disease

    DEFF Research Database (Denmark)

    Møller, Anette Torvin; Bach, Flemming W.; Feldt-Rasmussen, Ulla

    2009-01-01

    Fabry disease is a genetic lysosomal disorder with dysfunction of the lysosomal enzyme alpha-galactosidase A causing accumulation of glycolipids in multiple organs including the nervous system and with neuropathy as a prominent manifestation. Neurological symptoms include pain and autonomic...... dysfunction. This study examined peripheral autonomic nerve function in 19 female patients with Fabry disease and 19 sex and age-matched controls by measuring (1) sweat production following acetylcholine challenge; (2) the sympathetically mediated vasoconstrictor responses to inspiratory gasp, stress...

  1. Epilepsy and other central nervous system diseases in atypical autism: a case control study

    DEFF Research Database (Denmark)

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2011-01-01

    There is an increased but variable risk of epilepsy in autism spectrum disorders. The objective of this study is to compare the prevalence and types of epilepsy and other central nervous system (CNS) diseases in a clinical sample of 89 individuals diagnosed as children with atypical autism (AA...

  2. Cerebrospinal fluid pleocytosis in infectious and noninfectious central nervous system disease

    DEFF Research Database (Denmark)

    Baunbæk Egelund, Gertrud; Ertner, Gideon; Langholz Kristensen, Kristina

    2017-01-01

    Cerebrospinal fluid (CSF) analysis is the most important tool for assessing central nervous system (CNS) disease. An elevated CSF leukocyte count rarely provides the final diagnosis, but is almost always an indicator of inflammation within the CNS.The present study investigated the variety...

  3. The Diagnostic Value of Brain Scanning in the Diseases of the Central Nervous System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Won; Lee, Myung Chul; Koh, Chang Soon; Lee, Mun Ho; Chang, Kee Hyun; Han, Man Chung; Choi, Kil Su; Son, Hyo Chung; Cho, Byung Kyu [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1974-03-15

    The purpose of this study is to evaluate the diagnostic value of the brain scanning and compare the diagnostic accuracy between the scan and carotid angiography. 109 cases which are proved by specific method to each disease, are analyzed to evaluate the diagnostic value of the brain scanning. The 70 cases among the proven 109 case are performed both the scanning and the arteriography and analyzed to compare the accuracy between the scanning and the arteriography. The results are as follows; 1) The diagnostic accuracy of the brain scanning in the diseases of the central nervous system is 64.2%. 2) The diagnostic accuracy of the brain scanning in the brain tumor is 88%, especially brain abscess, glioma, glioblastoma multiforme, meningioma and metastic tumor show high positive rate. 3) The diagnostic accuracy in the disease of the brain vessels is 54%. The comparison of the diagnostic value between the scanning and the arteriography is as follows;1) The diagnostic value in all diseases of the central nervous system is nearly equal. 2) The diagnostic accuracy in the intracranial tumor is slightly higher in the brain scanning (90. 9%) than in the arteriography (81.8%). 3) The diagnostic accuracy in the disease of the brain vessel is higher in the arteriography (77.3%) than in the scanning (54.5%). 5) The diagnostic value when combining the scanning and the arteriography, is 83% in the all central nervous system-lesions, 97% in the cranial tumor and 81.8% in the disease of the central nervous system-vessel. The brain scanning is simple and safe procedure, and moreover has excellent diagnostic value in the diagnosis of the central nervous system lesion.

  4. The Diagnostic Value of Brain Scanning in the Diseases of the Central Nervous System

    International Nuclear Information System (INIS)

    Kim, Kwang Won; Lee, Myung Chul; Koh, Chang Soon; Lee, Mun Ho; Chang, Kee Hyun; Han, Man Chung; Choi, Kil Su; Son, Hyo Chung; Cho, Byung Kyu

    1974-01-01

    The purpose of this study is to evaluate the diagnostic value of the brain scanning and compare the diagnostic accuracy between the scan and carotid angiography. 109 cases which are proved by specific method to each disease, are analyzed to evaluate the diagnostic value of the brain scanning. The 70 cases among the proven 109 case are performed both the scanning and the arteriography and analyzed to compare the accuracy between the scanning and the arteriography. The results are as follows; 1) The diagnostic accuracy of the brain scanning in the diseases of the central nervous system is 64.2%. 2) The diagnostic accuracy of the brain scanning in the brain tumor is 88%, especially brain abscess, glioma, glioblastoma multiforme, meningioma and metastic tumor show high positive rate. 3) The diagnostic accuracy in the disease of the brain vessels is 54%. The comparison of the diagnostic value between the scanning and the arteriography is as follows;1) The diagnostic value in all diseases of the central nervous system is nearly equal. 2) The diagnostic accuracy in the intracranial tumor is slightly higher in the brain scanning (90. 9%) than in the arteriography (81.8%). 3) The diagnostic accuracy in the disease of the brain vessel is higher in the arteriography (77.3%) than in the scanning (54.5%). 5) The diagnostic value when combining the scanning and the arteriography, is 83% in the all central nervous system-lesions, 97% in the cranial tumor and 81.8% in the disease of the central nervous system-vessel. The brain scanning is simple and safe procedure, and moreover has excellent diagnostic value in the diagnosis of the central nervous system lesion.

  5. Early and late endocrine effects in pediatric central nervous system diseases.

    Science.gov (United States)

    Aslan, Ivy R; Cheung, Clement C

    2014-01-01

    Endocrinopathies are frequently linked to central nervous system disease, both as early effects prior to the disease diagnosis and/or late effects after the disease has been treated. In particular, tumors and infiltrative diseases of the brain and pituitary, such as craniopharyngioma, optic pathway and hypothalamic gliomas, intracranial germ cell tumor, and Langerhans cell histiocytosis, can present with abnormal endocrine manifestations that precede the development of neurological symptoms. Early endocrine effects include diabetes insipidus, growth failure, obesity, and precocious or delayed puberty. With improving prognosis and treatment of childhood brain tumors, many survivors experience late endocrine effects related to medical and surgical interventions. Chemotherapeutic agents and radiation therapy can affect the hypothalamic-pituitary axes governing growth, thyroid, gonadal, and adrenal function. In addition, obesity and metabolic alterations are frequent late manifestations. Diagnosing and treating both early and late endocrine manifestations can dramatically improve the growth, well-being, and quality of life of patients with childhood central nervous system diseases.

  6. The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke.

    Science.gov (United States)

    Winek, Katarzyna; Dirnagl, Ulrich; Meisel, Andreas

    2016-10-01

    Research on commensal microbiota and its contribution to health and disease is a new and very dynamically developing field of biology and medicine. Recent experimental and clinical investigations underscore the importance of gut microbiota in the pathogenesis and course of stroke. Importantly, microbiota may influence the outcome of cerebral ischemia by modulating central nervous system antigen-specific immune responses. In this review we summarize studies linking gut microbiota with physiological function and disorders of the central nervous system. Based on these insights we speculate about targeting the gut microbiome in order to treat stroke.

  7. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS)

    DEFF Research Database (Denmark)

    Asgari, N; Owens, T; Frøkiaer, J

    2010-01-01

    Asgari N, Owens T, Frøkiaer J, Stenager E, Lillevang ST, Kyvik KO. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS).
Acta Neurol Scand: DOI: 10.1111/j.1600-0404.2010.01416.x.
© 2010 John Wiley & Sons A/S. In the past 10 years, neuromyelitis optica (NMO) has...... or by intrathecal administration to naive mice. NMO may be characterized as a channelopathy of the central nervous system with autoimmune characteristics....

  8. Acute effects of Finnish sauna and cold-water immersion on haemodynamic variables and autonomic nervous system activity in patients with heart failure.

    Science.gov (United States)

    Radtke, Thomas; Poerschke, Daniel; Wilhelm, Matthias; Trachsel, Lukas D; Tschanz, Hansueli; Matter, Friederike; Jauslin, Daniel; Saner, Hugo; Schmid, Jean-Paul

    2016-04-01

    The haemodynamic response to Finnish sauna and subsequent cold-water immersion in heart failure patients is unknown. Haemodynamic response to two consecutive Finnish sauna (80℃) exposures, followed by a final head-out cold-water immersion (12℃) was measured in 37 male participants: chronic heart failure (n = 12, 61.8 ± 9.2 years), coronary artery disease (n = 13, 61.2 ± 10.6 years) and control subjects (n = 12, 60.9 ± 8.9 years). Cardiac output was measured non-invasively with an inert gas rebreathing method prior to and immediately after the first sauna exposure and after cold-water immersion, respectively. Blood pressure was measured before, twice during and after sauna. The autonomic nervous system was assessed by power spectral analysis of heart rate variability. Total power, low-frequency and high-frequency components were evaluated. The low frequency/high frequency ratio was used as a marker of sympathovagal balance. Sauna and cold-water immersion were well tolerated by all subjects. Cardiac output and heart rate significantly increased in all groups after sauna and cold-water immersion (p heart failure patients. In coronary artery disease patients and controls a prolonged increase in low frequency/high frequency ratio was observed after the first sauna exposure. Acute exposure to Finnish sauna and cold-water immersion causes haemodynamic alterations in chronic heart failure patients similarly to control subjects and in particular did not provoke an excessive increase in adrenergic activity or complex arrhythmias. © The European Society of Cardiology 2015.

  9. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future.

    Science.gov (United States)

    Plog, Benjamin A; Nedergaard, Maiken

    2018-01-24

    The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudolymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters the brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and then drives the perivenous drainage of interstitial fluid (ISF) and its solute. Here, we review the role of the glymphatic pathway in CNS physiology, the factors known to regulate glymphatic flow, and the pathologic processes in which a breakdown of glymphatic CSF-ISF exchange has been implicated in disease initiation and progression. Important areas of future research, including manipulation of glymphatic activity aiming to improve waste clearance and therapeutic agent delivery, are also discussed.

  10. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot

  11. Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system--a fMRI study in healthy volunteers.

    Science.gov (United States)

    Rubio, Amandine; Van Oudenhove, Lukas; Pellissier, Sonia; Ly, Huynh Giao; Dupont, Patrick; Lafaye de Micheaux, Hugo; Tack, Jan; Dantzer, Cécile; Delon-Martin, Chantal; Bonaz, Bruno

    2015-02-15

    The human brain responds both before and during the application of aversive stimuli. Anticipation allows the organism to prepare its nociceptive system to respond adequately to the subsequent stimulus. The context in which an uncomfortable stimulus is experienced may also influence neural processing. Uncertainty of occurrence, timing and intensity of an aversive event may lead to increased anticipatory anxiety, fear, physiological arousal and sensory perception. We aimed to identify, in healthy volunteers, the effects of uncertainty in the anticipation of uncomfortable rectal distension, and the impact of the autonomic nervous system (ANS) activity and anxiety-related psychological variables on neural mechanisms of anticipation of rectal distension using fMRI. Barostat-controlled uncomfortable rectal distensions were preceded by cued uncertain or certain anticipation in 15 healthy volunteers in a fMRI protocol at 3T. Electrocardiographic data were concurrently registered by MR scanner. The low frequency (LF)-component of the heart rate variability (HRV) time-series was extracted and inserted as a regressor in the fMRI model ('LF-HRV model'). The impact of ANS activity was analyzed by comparing the fMRI signal in the 'standard model' and in the 'LF-HRV model' across the different anticipation and distension conditions. The scores of the psychological questionnaires and the rating of perceived anticipatory anxiety were included as covariates in the fMRI data analysis. Our experiments led to the following key findings: 1) the subgenual anterior cingulate cortex (sgACC) is the only activation site that relates to uncertainty in healthy volunteers and is directly correlated to individual questionnaire score for pain-related anxiety; 2) uncertain anticipation of rectal distension involved several relevant brain regions, namely activation of sgACC and medial prefrontal cortex and deactivation of amygdala, insula, thalamus, secondary somatosensory cortex, supplementary

  12. Research progress on the role of virtual reality technology in rehabilitation of nervous system diseases

    Directory of Open Access Journals (Sweden)

    Bei-bei LIU

    2018-04-01

    Full Text Available With a standard and repeatable environment, virtual reality (VR technology can precisely detect even a single sense. As a novel tool to test neural activities, VR is a brand new method to explore the connections between actions and senses. In this review, we summarize the application, prospect and limitation of VR technology in the rehabilitations of nervous system diseases. DOI: 10.3969/j.issn.1672-6731.2018.03.012

  13. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system

    Directory of Open Access Journals (Sweden)

    Marta Chaverra

    2017-05-01

    Full Text Available Hereditary sensory and autonomic neuropathies (HSANs are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS dysfunction. HSAN type III, known as familial dysautonomia (FD, results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1 for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4 are associated with central nervous system (CNS disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on

  14. Evaluation of central nervous system in patients with glycogen storage disease type 1a.

    Science.gov (United States)

    Aydemir, Yusuf; Gürakan, Figen; Saltık Temizel, İnci Nur; Demir, Hülya; Oğuz, Kader Karlı; Yalnızoğlu, Dilek; Topçu, Meral; Özen, Hasan; Yüce, Aysel

    2016-01-01

    We aimed to evaluate structure and functions of central nervous system (CNS) in children with glycogen storage disease (GSD) type 1a. Neurological examination, psychometric tests, electroencephalography (EEG), magnetic resonance imaging (MRI), visual evoked potentials (VEP) and brainstem auditory evoked potentials (BAEP) were performed. The results were compared between patients with good and poor metabolic control and healthy children. Twenty-three patients with GSD type 1a were studied. Twelve patients were in poor metabolic control group and 11 patients in good metabolic control group. Five patients had intellectual disability, 10 had EEG abnormalities, seven had abnormal VEP and two had abnormal BAEP results. MRI was abnormal in five patients. There was significant correlation between the number of hypoglycemic attacks and MRI abnormalities. Central nervous system may be affected in GSD type 1a even in patients with normal neurologic examination. Accumulation of abnormal results in patients with poor metabolic control supports the importance of metabolic control in GSD type 1a.

  15. Correction of autonomic nervous system indicators due to the effect of geomagnetic perturbations in patients with remote after effects of closed traumatic brain injury

    Directory of Open Access Journals (Sweden)

    V. A. Коrshnyak

    2016-08-01

      Abstract The authors show that in modern biology, life is seen as the ability of living matter, and namely in medicine – the ability of human body, to maintain the existence in natural environment. From this perspective, it is extremely necessary to synchronize the activity of body structures among themselves taking into account the changes of environmental factors. Achieving the harmony between the body activity and environmental changes is carried out using an external pacemaker of life processes’ activity, the role of which is performed by the geomagnetic field (GMF.  This became possible due to the fact that the life processes are cyclical, i.e. they possess rhythmic characteristics, and GMF is an electromagnetic field which is changing its characteristics rhythmically.  The material for the present study were the data obtained during the neurological examination of 20 healthy people and 100 patients with remote consequences of CTBI which were treated in the clinic of autonomic nervous system pathology of the SI "Institute of neurology, psychiatry and narcology of the NAMS of Ukraine". The results investigations have showed that geomagnetic perturbations, which modify the GMF parameters, exacerbate the disorders of VNS in patients with remote after effects of CTBI. It is associated with the increased desynchronization of the activity of suprasegmental structures of VNS and with breach of brain vascular system’s status that occurs during a magnetic storm. The acupuncture that is aimed at restoring of synchronization of activity of suprasegmental structures of VNS significantly reduces its sensitivity to the geomagnetic disturbances. Keywords: magnetic storm, closed head injury, autonomic nervous system.

  16. Neutron activation analysis of the central nervous system tissues in neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1994-07-01

    As the diseases due to excessive metals in living bodies and the metals of their causes, Minamata disease due to Hg, itai-itai disease due to Cd, dialysis brain disease due to Al, hemochromatosis due to Fe, Wilson disease due to Cu and so on have been known. Also as the neural diseases, in which the possibility that metals take part in them is presumed, there are amyotrophic lateral sclerosis, Alzheimer disease, Parkinson disease, Parkinsonism dementia and so on. In order to know the causes of the diseases due to excessive metals in living bodies and neurological diseases, the authors have measured Cu, Ca, Al, Mn, Zn and Fe in central nervous system tissues by activation analysis nondestructive method. The cases investigated were 4 cases of hepatocerebral diseases, 6 cases of ALS, 4 cases of Parkinson disease, 4 cases of Parkinsonism dementia, 4 cases of multiple sclerosis and 5 cases without CNS disease for the control. The method of measurement is described. The results for respective diseases are reported. Cu and Fe are in the relation of mirror images, and Cu formed Cu-superoxide dismutase (SOD) similarly to Zn and Mn as SOD carrier metals, and protects living bodies and CNS from oxidative stress. (K.I.).

  17. The impact of occurrence of exceptional solar events on mortality from diseases of the nervous system

    Science.gov (United States)

    Podolska, Katerina

    2015-04-01

    The aim of this conference paper is to analyse relationships between strong changes of solar, geomagnetic and ionospheric physical parameters, and mortality by medical cause of death from diagnosis group Diseases of the nervous system by ICD-10 WHO. The aggregated daily number of deaths of 6 largest individual causes of death of group VI. Diseases of the nervous system on the occurrence of exceptional solar and geomagnetic events is investigated. Analysis is performed for the period of the solar cycles No. 23 and 24 (years 1994-2013) in the Czech Republic. The correlation between the intensity of mortality from diseases Multiple sclerosis, Epilepsy, Cerebral palsy, Parkinson disease, Secondary parkinsonism and Alzheimer disease and the solar, geomagnetic and ionospheric physical parameters is examined using stochastic method of graphical models of conditional dependences. We study the daily number of deaths separately for both sexes at the age groups under 39 and 40+. Differences are found for maximum solar activity and during the ascending and descending epoch of the solar cycles.

  18. Review: the role of vitamin D in nervous system health and disease.

    Science.gov (United States)

    DeLuca, G C; Kimball, S M; Kolasinski, J; Ramagopalan, S V; Ebers, G C

    2013-08-01

    Vitamin D and its metabolites have pleomorphic roles in both nervous system health and disease. Animal models have been paramount in contributing to our knowledge and understanding of the consequences of vitamin D deficiency on brain development and its implications for adult psychiatric and neurological diseases. The conflation of in vitro, ex vivo, and animal model data provide compelling evidence that vitamin D has a crucial role in proliferation, differentiation, neurotrophism, neuroprotection, neurotransmission, and neuroplasticity. Vitamin D exerts its biological function not only by influencing cellular processes directly, but also by influencing gene expression through vitamin D response elements. This review highlights the epidemiological, neuropathological, experimental and molecular genetic evidence implicating vitamin D as a candidate in influencing susceptibility to a number of psychiatric and neurological diseases. The strength of evidence varies for schizophrenia, autism, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, and is especially strong for multiple sclerosis. © 2013 British Neuropathological Society.

  19. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed. © 2016 Elsevier Inc. All rights reserved.

  20. Effects of Music Therapy on the Cardiovascular and Autonomic Nervous System in Stress-Induced University Students: A Randomized Controlled Trial.

    Science.gov (United States)

    Lee, Kyoung Soon; Jeong, Hyeon Cheol; Yim, Jong Eun; Jeon, Mi Yang

    2016-01-01

    Stress is caused when a particular relationship between the individual and the environment emerges. Specifically, stress occurs when an individual's abilities are challenged or when one's well-being is threatened by excessive environmental demands. The aim of this study was to measure the effects of music therapy on stress in university students. Randomized controlled trial. Sixty-four students were randomly assigned to the experimental group (n = 33) or the control group (n = 31). Music therapy. Initial measurement included cardiovascular indicators (blood pressure and pulse), autonomic nervous activity (standard deviation of the normal-to-normal intervals [SDNN], normalized low frequency, normalized high frequency, low/high frequency), and subjective stress. After the first measurement, participants in both groups were exposed to a series of stressful tasks, and then a second measurement was conducted. The experimental group then listened to music for 20 minutes and the control group rested for 20 minutes. A third and final measurement was then taken. There were no significant differences between the two groups in the first or second measurement. However, after music therapy, the experimental group and the control group showed significant differences in all variables, including systolic blood pressure (p = .026), diastolic blood pressure (p = .037), pulse (p music tends to relax the body and may stimulate the parasympathetic nervous system. These results suggest music therapy as an intervention for stress reduction.

  1. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases.

    Science.gov (United States)

    De Luca, Ciro; Virtuoso, Assunta; Maggio, Nicola; Papa, Michele

    2017-10-12

    Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.

  2. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue.

    Science.gov (United States)

    Caine, Sally; Heraud, Philip; Tobin, Mark J; McNaughton, Donald; Bernard, Claude C A

    2012-02-15

    In the last two decades the field of infrared spectroscopy has seen enormous advances in both instrumentation and the development of bioinformatic methods for spectral analysis, allowing the examination of a large variety of healthy and diseased samples, including biological fluids, isolated cells, whole tissues, and tissue sections. The non-destructive nature of the technique, together with the ability to directly probe biochemical changes without the addition of stains or contrast agents, enables a range of complementary analyses. This review focuses on the application of Fourier transform infrared (FTIR) microspectroscopy to analyse central nervous system tissues, with the aim of understanding the biochemical and structural changes associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, multiple sclerosis, as well as brain tumours. Modern biospectroscopic methods that combine FTIR microspectroscopy with bioinformatic analysis constitute a powerful new methodology that can discriminate pathology from normal healthy tissue in a rapid, unbiased fashion, with high sensitivity and specificity. Notably, the ability to detect protein secondary structural changes associated with Alzheimer's plaques, neurons in Parkinson's disease, and in some spectra from meningioma, as well as in the animal models of Alzheimer's disease, transmissible spongiform encephalopathies, and multiple sclerosis, illustrates the power of this technology. The capacity to offer insight into the biochemical and structural changes underpinning aetio-pathogenesis of diseases in tissues provides both a platform to investigate early pathologies occurring in a variety of experimentally induced and naturally occurring central nervous system diseases, and the potential to evaluate new therapeutic approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Gadolinium-enhanced MRI in central nervous system Behcet's disease

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, E. (Dept. of Radiology (Neuroradiology), Hopital de Bicetre, Paris-Sud Univ. (France)); Carlier, R. (Dept. of Radiology (Neuroradiology), Hopital de Bicetre, Paris-Sud Univ. (France)); Idir, A.B.C. (Dept. of Radiology (Neuroradiology), Hopital de Bicetre, Paris-Sud Univ. (France)); Masnou, P.O. (Dept. of Neurology, Hopital de Bicetre, Paris-Sud Univ. (France)); Moulonguet, A. (Dept. of Neurology, Hopital de Bicetre, Paris-Sud Univ. (France)); Adams, D. (Dept. of Neurology, Hopital de Bicetre, Paris-Sud Univ. (France)); Doyon, D. (Dept. of Radiology (Neuroradiology), Hopital de Bicetre, Paris-Sud Univ. (France))

    1993-02-01

    Two cases of central nervous system Behcet's disease, studied by gadolinium-enhanced MRI, are presented. In one patient, whose clinical picture was dominated by a brain stem syndrome, the gadolinium enhancement resolved with clinical improvement, although the hyperintense areas in the mesencephalon on T2-weighted images persisted. In the second, who had a pseudobulbar palsy and a mild right hemiparesis, there were many abnormal areas, but an enhancing focus in the posterior limb of the left internal capsule was probably the lesion responsible for the hemiparesis. (orig.)

  4. Magnetic resonance imaging findings of central nervous system in lysosomal storage diseases: A pictorial review.

    Science.gov (United States)

    Fagan, Nathan; Alexander, Allen; Irani, Neville; Saade, Charbel; Naffaa, Lena

    2017-06-01

    Lysosomal storage diseases (LSD) are a complex group of genetic disorders that are a result of inborn errors of metabolism. These errors result in a variety of metabolic dysfunction and build-up certain molecules within the tissues of the central nervous system (CNS). Although, they have discrete enzymatic deficiencies, symptomology and CNS imaging findings can overlap with each other, which can become challenging to radiologists. The purpose of this paper is to review the most common CNS imaging findings in LSD in order to familiarize the radiologist with their imaging findings and help narrow down the differential diagnosis. © 2016 The Royal Australian and New Zealand College of Radiologists.

  5. Brain and Nervous System

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Brain and Nervous System KidsHealth / For Parents / Brain and ... healthy, and remove waste products. All About the Brain The brain is made up of three main ...

  6. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  7. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report.

  8. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report

  9. Immunotherapeutics in Pediatric Autoimmune Central Nervous System Disease: Agents and Mechanisms.

    Science.gov (United States)

    Nosadini, Margherita; Sartori, Stefano; Sharma, Suvasini; Dale, Russell C

    2017-08-01

    Beyond the major advances produced by careful clinical-radiological phenotyping and biomarker development in autoimmune central nervous system disorders, a comprehensive knowledge of the range of available immune therapies and a deeper understanding of their action should benefit therapeutic decision-making. This review discusses the agents used in neuroimmunology and their mechanisms of action. First-line treatments typically include corticosteroids, intravenous immunoglobulin, and plasmapheresis, while for severe disease second-line "induction" agents such as rituximab or cyclophosphamide are used. Steroid-sparing agents such as mycophenolate, azathioprine, or methotrexate are often used in potentially relapsing or corticosteroid-dependent diseases. Lessons from adult neuroimmunology and rheumatology could be translated into pediatric autoimmune central nervous system disease in the future, including the potential utility of monoclonal antibodies targeting lymphocytes, adhesion molecules for lymphocytic migration, cytokines or their receptors, or complement. Finally, many agents used in other fields have multiple mechanisms of action, including immunomodulation, with potential usefulness in neuroimmunology, such as antibiotics, psychotropic drugs, probiotics, gut health, and ketogenic diet. All currently accepted and future potential agents have adverse effects, which can be severe; therefore, a "risk-versus-benefit" determination should guide therapeutic decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    Directory of Open Access Journals (Sweden)

    Bruno Rodrigues

    2014-01-01

    Full Text Available The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week and detraining (DT on inflammatory and metabolic profile after myocardial infarction (MI in rats. Male Wistar rats were divided into control (C, n=8, sedentary infarcted (SI, n=9, trained infarcted (TI,  n=10; 3 months of ET, and detrained infarcted (DI, n=11; 2 months of ET + 1 month of DT. After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis, and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI.

  11. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    Science.gov (United States)

    Santana, Aline Alves; Santamarina, Aline Boveto; Oyama, Lila Missae; Caperuto, Érico Chagas; de Souza, Cláudio Teodoro; Barboza, Catarina de Andrade; Rocha, Leandro Yanase; Figueroa, Diego; Mostarda, Cristiano; Irigoyen, Maria Cláudia; Lira, Fábio Santos

    2014-01-01

    The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week) and detraining (DT) on inflammatory and metabolic profile after myocardial infarction (MI) in rats. Male Wistar rats were divided into control (C, n = 8), sedentary infarcted (SI, n = 9), trained infarcted (TI, n = 10; 3 months of ET), and detrained infarcted (DI, n = 11; 2 months of ET + 1 month of DT). After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis), and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI. PMID:25045207

  12. The Autonomic Nervous System Regulates the Heart Rate through cAMP-PKA Dependent and Independent Coupled-Clock Pacemaker Cell Mechanisms.

    Science.gov (United States)

    Behar, Joachim; Ganesan, Ambhighainath; Zhang, Jin; Yaniv, Yael

    2016-01-01

    Sinoatrial nodal cells (SANCs) generate spontaneous action potentials (APs) that control the cardiac rate. The brain modulates SANC automaticity, via the autonomic nervous system, by stimulating membrane receptors that activate (adrenergic) or inactivate (cholinergic) adenylyl cyclase (AC). However, these opposing afferents are not simply additive. We showed that activation of adrenergic signaling increases AC-cAMP/PKA signaling, which mediates the increase in the SANC AP firing rate (i.e., positive chronotropic modulation). However, there is a limited understanding of the underlying internal pacemaker mechanisms involved in the crosstalk between cholinergic receptors and the decrease in the SANC AP firing rate (i.e., negative chronotropic modulation). We hypothesize that changes in AC-cAMP/PKA activity are crucial for mediating either decrease or increase in the AP firing rate and that the change in rate is due to both internal and membrane mechanisms. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, PKA activity and AP firing rate were tightly linked in response to either adrenergic receptor stimulation (by isoproterenol, ISO) or cholinergic stimulation (by carbachol, CCh). To identify the main molecular targets that mediate between PKA signaling and pacemaker function, we developed a mechanistic computational model. The model includes a description of autonomic-nervous receptors, post- translation signaling cascades, membrane molecules, and internal pacemaker mechanisms. Yielding results similar to those of the experiments, the model simulations faithfully reproduce the changes in AP firing rate in response to CCh or ISO or a combination of both (i.e., accentuated antagonism). Eliminating AC-cAMP-PKA signaling abolished the core effect of autonomic receptor stimulation on the AP firing rate. Specifically, disabling the phospholamban modulation of the SERCA activity resulted in a significantly reduced effect

  13. Up in arms: Immune and nervous system response to sea star wasting disease

    Science.gov (United States)

    Fuess, Lauren E; Eiselord, Morgan E.; Closek, Collin J.; Tracy, Allison M.; Mauntz, Ruth; Gignoux-Wolfsohn, Sarah; Moritsch, Monica M; Yoshioka, Reyn; Burge, Colleen A.; Harvell, Drew; Friedman, Carolyn S.; Hershberger, Paul K.; Roberts, Steven B.

    2015-01-01

    Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013–2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.

  14. NSDNA: a manually curated database of experimentally supported ncRNAs associated with nervous system diseases.

    Science.gov (United States)

    Wang, Jianjian; Cao, Yuze; Zhang, Huixue; Wang, Tianfeng; Tian, Qinghua; Lu, Xiaoyu; Lu, Xiaoyan; Kong, Xiaotong; Liu, Zhaojun; Wang, Ning; Zhang, Shuai; Ma, Heping; Ning, Shangwei; Wang, Lihua

    2017-01-04

    The Nervous System Disease NcRNAome Atlas (NSDNA) (http://www.bio-bigdata.net/nsdna/) is a manually curated database that provides comprehensive experimentally supported associations about nervous system diseases (NSDs) and noncoding RNAs (ncRNAs). NSDs represent a common group of disorders, some of which are characterized by high morbidity and disabilities. The pathogenesis of NSDs at the molecular level remains poorly understood. ncRNAs are a large family of functionally important RNA molecules. Increasing evidence shows that diverse ncRNAs play a critical role in various NSDs. Mining and summarizing NSD-ncRNA association data can help researchers discover useful information. Hence, we developed an NSDNA database that documents 24 713 associations between 142 NSDs and 8593 ncRNAs in 11 species, curated from more than 1300 articles. This database provides a user-friendly interface for browsing and searching and allows for data downloading flexibility. In addition, NSDNA offers a submission page for researchers to submit novel NSD-ncRNA associations. It represents an extremely useful and valuable resource for researchers who seek to understand the functions and molecular mechanisms of ncRNA involved in NSDs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Diseases of the nervous system among miners of the Far North and questions of prophylaxis

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, A G

    1982-10-01

    In the Far North and arctic regions of the USSR mine workers experience effects on the organism of extreme meteorologic factors (low temperature, shortened daylight and permafrost) in addition to professional hazards of vibration and noise. Diets may be deficient in water-soluble vitamins necessary for normal functioning of the nervous system. For 4 years 3,575 miners of the Far North and Arctic were observed. At times, noise and vibration are more intense in areas of permafrost. Temperature of mine air in winter is -20 to -40/sup 0/C, in summer -4 to -15/sup 0/C. As miners adapt to work in cold climates, their resistance weakens. Data showed only 1% of miners developed vibrational disease. Major neuropathology was damage to the peripheral nervous system caused by osteochondrosis, particularly of the spine with or without inflammation of spinal nerve roots. Other neurological diseases (vascular pathology of brain, diffuse neuritis, cerebral arachnoiditis) were observed in miners of different professional groups. Preventive treatment is recommended: observation of hygienic norms of work; rational rearrangement of work regimens of sick miners; periodic work on related tasks; hospital rest; twice yearly study units on physical therapy, massage, conditioning; use of preventive measures. (5 refs.)

  16. The significance of amlodipine on autonomic nervous system adjustment (ANSA method: A new approach in the treatment of hypertension

    Directory of Open Access Journals (Sweden)

    Milovanović Branislav

    2009-01-01

    Full Text Available Introduction. Cardiovascular autonomic modulation is altered in patients with essential hypertension. Objective To evaluate acute and long-term effects of amlodipine on cardiovascular autonomic function and haemodynamic status in patients with mild essential hypertension. Methods. Ninety patients (43 male, mean age 52.12 ±10.7 years with mild hypertension were tested before, 30 minutes after the first 5 mg oral dose of amlodipine and three weeks after monotherapy with amlodipine. A comprehensive study protocol was done including finger blood pressure variability (BPV and heart rate variability (HRV beat-to-beat analysis with impedance cardiography, ECG with software short-term HRV and nonlinear analysis, 24-hour Holter ECG monitoring with QT and HRV analysis, 24-hour blood pressure (BP monitoring with systolic and diastolic BPV analysis, cardiovascular autonomic reflex tests, cold pressure test, mental stress test. The patients were also divided into sympathetic and parasympathetic groups, depending on predominance in short time spectral analysis of sympathovagal balance according to low frequency and high frequency values. Results. We confirmed a significant systolic and diastolic BP reduction, and a reduction of pulse pressure during day, night and early morning hours. The reduction of supraventricular and ventricular ectopic beats during the night was also achieved with therapy, but without statistical significance. The increment of sympathetic activity in early phase of amlodipine therapy was without statistical significance and persistence of sympathetic predominance after a few weeks of therapy detected based on the results of short-term spectral HRV analysis. All time domain parameters of long-term HRV analysis were decreased and low frequency amongst spectral parameters. Amlodipne reduced baroreflex sensitivity after three weeks of therapy, but increased it immediately after the administration of the first dose. Conclusion. The results

  17. Pathology of the Nervous System in Von Hippel-Lindau Disease

    Directory of Open Access Journals (Sweden)

    Alexander O. Vortmeyer

    2015-06-01

    Full Text Available Von Hippel-Lindau (VHL disease is a tumor syndrome that frequently involves the central nervous system (CNS. It is caused by germline mutation of the VHL gene. Subsequent VHL inactivation in selected cells is followed by numerous well-characterized molecular consequences, in particular, activation and stabilization of hypoxia-inducible factors HIF1 and HIF2. The link between VHL gene inactivation and tumorigenesis remains poorly understood. Hemangioblastomas are the most common manifestation in the CNS; however, CNS invasion by VHL disease-associated endolymphatic sac tumors or metastatic renal cancer also occur, and their differentiation from primary hemangioblastoma may be challenging. Finally, in this review, we present recent morphologic insights on the developmental concept of VHL tumorigenesis which is best explained by pathologic persistence of temporary embryonic progenitor cells. 

  18. Differential effects of high-fat and high-carbohydrate isoenergetic meals on cardiac autonomic nervous system activity in lean and obese women.

    Science.gov (United States)

    Tentolouris, N; Tsigos, C; Perea, D; Koukou, E; Kyriaki, D; Kitsou, E; Daskas, S; Daifotis, Z; Makrilakis, K; Raptis, S A; Katsilambros, N

    2003-11-01

    Food ingestion can influence autonomic nervous system activity. This study compares the effects of 2 different isoenergetic meals on sympathetic nervous system (SNS) activity, assessed by heart rate variability (HRV) and plasma norepinephrine (NE) levels, in lean and obese women. Fifteen lean and 15 obese healthy women were examined on 2 occasions: after a carbohydrate (CHO)-rich and after a fat-rich test meal. Measurements of blood pressure, heart rate, resting energy expenditure, plasma glucose, lipids, insulin, leptin, and NE, as well as spectral analysis of the HRV, were performed at baseline and every 1 hour for 3 hours after meals. At baseline, obese women had higher SNS activity than lean controls (higher values of low-to-high frequency ratio [LF/HF], 1.52 +/- 0.31 v 0.78 +/- 0.13, P=.04; and plasma NE levels, 405.6 +/- 197.9 v 240.5 +/- 95.8 pg/mL, Pmeal a greater increase in LF/HF and in plasma NE levels was observed in lean, compared to obese women (1.21 +/- 0.6 v 0.32 +/- 0.06, P=.04; and 102.9 +/- 35.4 v 38.7 +/- 12.3 pg/mL, P=.01, respectively), while no differences were observed after the fat-rich meal. Meal-induced thermogenesis was higher after the CHO-rich as compared to the fat-rich meal and was comparable between lean and obese women. Changes in HRV were not associated with the thermogenic response to the test meals. In conclusion, consumption of a CHO-rich meal causes greater cardiac SNS activation in lean than in obese women, while fat ingestion does not result in any appreciable change in either group. SNS activation does not appear to influence the thermic effect of the food in either lean or obese women.

  19. The central nervous system

    International Nuclear Information System (INIS)

    Holmes, R.A.

    1984-01-01

    The first section presents a comprehensive evaluation of radionuclide imaging of the central nervous system and provides a comparison of the detection accuracies of radionuclide imaging (RNI) and XCT in certain lesions, realizing that the XCT results may vary when radiocontrast or newer generation XCT scanners are used. Although conventional radionuclide imaging of the central nervous system has experienced no significant changes over the last 7 years except for mild refinements, a new section has been added on positron emission tomography (PET). Most positron radiopharmaceuticals passively cross the intact blood-brain barrier, and their localization has catalyzed renewed interest in our ability to metabolically study and obtain images of the central nervous system. The section on radionuclide cisternography has been rewritten to reflect present day practice and the wider application of XCT in describing conditions affecting the ventricular system

  20. Does Virtual Reality-based Kinect Dance Training Paradigm Improve Autonomic Nervous System Modulation in Individuals with Chronic Stroke?

    Science.gov (United States)

    Sampaio, Luciana Maria Malosá; Subramaniam, Savitha; Arena, Ross; Bhatt, Tanvi

    2016-10-01

    Physical inactivity and low resting heart rate variability (HRV) are associated with an increased cardiovascular deconditioning, risk of secondary stroke and mortality. Aerobic dance is a multidimensional physical activity and recent research supports its application as a valid alternative cardiovascular training. Furthermore, technological advances have facilitated the emergence of new approaches for exercise training holding promise, especially those methods that integrate rehabilitation with virtual gaming. The purpose of this study was to evaluate cardiac autonomic modulation in individuals with chronic stroke post-training using a virtual reality - based aerobic dance training paradigm. Eleven community-dwelling individuals with hemiparetic stroke [61.7( ± 4.3) years] received a virtual reality-based dance paradigm for 6 weeks using the commercially available Kinect dance video game "Just Dance 3." The training was delivered in a high-intensity tapering method with the first two weeks consisting of 5 sessions/week, next two weeks of 3 sessions/week and last two weeks of 2 sessions/week, with a total of 20 sessions. Data obtained for HRV analysis pre- and post-intervention consists of HRV for ten minutes in (1) supine resting position; (2) quiet standing. High-frequency (HF) power measures as indicators of cardiac parasympathetic activity, low-frequency (LF) power of parasympathetic-sympathetic balance and LF/HF of sympatho-vagal balance were calculated. YMCA submaximal cycle Ergometer test was used to acquire VO 2 max pre- and post-intervention. Changes in physical activity during dance training were assessed using Omran HJ-321 Tri-Axis Pedometer. After training, participants demonstrated a significant improvement in autonomic modulation in the supine position, indicating an improvement in LF=48.4 ( ± 20.1) to 40.3 ( ± 8.0), p =0.03; HF=51.5 ( ± 19) to 59.7 ( ± 8), p = 0.02 and LF/HF=1.6 ( ± 1.9) to 0.8 ( ± 0.26), p =0.05]. Post-training the

  1. Herpesvirus-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Wu, Meiqing; Huang, Fen; Jiang, Xinmiao; Fan, Zhiping; Zhou, Hongsheng; Liu, Can; Jiang, Qianli; Zhang, Yu; Zhao, Ke; Xuan, Li; Zhai, Xiao; Zhang, Fuhua; Yin, Changxin; Sun, Jing; Feng, Ru; Liu, Qifa

    2013-01-01

    Herpesvirus infections of the central nervous system (CNS) are associated with encephalitis/myelitis and lymphoproliferative diseases in immunocompromised individuals. As of now, data of herpesvirus-associated CNS diseases in transplant recipients is limited. Hence, in this prospective study, we investigated the incidence of herpesvirus-associated CNS diseases and explored the diagnosis of these diseases in 281 allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Herpesvirus-DNA and cerebrospinal fluid (CSF) cells were sampled from 58 recipients with herpesvirus-associated diseases or with unexplainable CNS manifestations. Results showed that 23 patients were diagnosed as herpesvirus-associated CNS diseases, including 15 Epstein-Barr virus (EBV)-associated diseases (4 encephalitis and 11 lymphoproliferative diseases), 5 herpes simplex virus type 1 encephalitis, 2 cytomegalovirus encephalitis/myelitis and 1 varicella zoster virus encephalitis. The median time of diseases onset was 65 (range 22-542) days post-transplantation. The 3-year cumulative incidence of herpesvirus-associated encephalitis/myelitis and post-transplant lymphoproliferative disorder (PTLD) was 6.3% ± 1.9% and 4.1% ± 1.2%, respectively. Of the evaluable cases, CSF cells mainly consisted of CD19(+)CD20(+) B cells (7/11) and had clonal rearrangement of immunoglobulin genes (3/11) in patients with CNS-PTLD. On the contrary, in patients with encephalitis/myelitis, CSF cells were comprised of different cell populations and none of the gene rearrangement was detected. Herpesvirus-associated CNS diseases are common in the early stages of allo-HSCT, wherein EBV is the most frequent causative virus. The immunophenotypic and clonal analysis of CSF cells might be helpful in the differential diagnosis between encephalitis and lymphoproliferative diseases.

  2. Artifacts produced during electrical stimulation of the vestibular nerve in cats. [autonomic nervous system components of motion sickness

    Science.gov (United States)

    Tang, P. C.

    1973-01-01

    Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.

  3. Children’s Autonomic Nervous System Reactivity Moderates the Relations between Family Adversity and Sleep Problems in Latino 5-Year Olds in the CHAMACOS Study

    Directory of Open Access Journals (Sweden)

    Abbey Alkon

    2017-06-01

    Full Text Available Sleep problems are common for young children especially if they live in adverse home environments. Some studies investigate if young children may also be at a higher risk of sleep problems if they have a specific biological sensitivity to adversity. This paper addresses the research question, does the relations between children’s exposure to family adversities and their sleep problems differ depending on their autonomic nervous system’s sensitivity to challenges? As part of a larger cohort study of Latino, low-income families, we assessed the cross-sectional relations among family demographics (education, marital status, adversities [routines, major life events (MLE], and biological sensitivity as measured by autonomic nervous system (ANS reactivity associated with parent-rated sleep problems when the children were 5 years old. Mothers were interviewed in English or Spanish and completed demographic, family, and child measures. The children completed a 15-min standardized protocol while continuous cardiac measures of the ANS [respiratory sinus arrhythmia (RSA, preejection period (PEP] were collected during resting and four challenge conditions. Reactivity was defined as the mean of the responses to the four challenge conditions minus the first resting condition. Four ANS profiles, co-activation, co-inhibition, reciprocal low RSA and PEP reactivity, and reciprocal high RSA and PEP reactivity, were created by dichotomizing the reactivity scores as high or low reactivity. Logistic regression models showed there were significant main effects for children living in families with fewer daily routines having more sleep problems than for children living in families with daily routines. There were significant interactions for children with low PEP reactivity and for children with the reciprocal, low reactivity profiles who experienced major family life events in predicting children’s sleep problems. Children who had a reciprocal, low reactivity

  4. Central nervous system tumors

    International Nuclear Information System (INIS)

    Curran, W.J. Jr.

    1991-01-01

    Intrinsic tumors of the central nervous system (CNS) pose a particularly challenging problem to practicing oncologists. These tumors rarely metastasize outside the CNS, yet even histologically benign tumors can be life-threatening due to their local invasiveness and strategic location. The surrounding normal tissues of the nervous system is often incapable of full functional regeneration, therefore prohibiting aggressive attempts to use either complete surgical resection or high doses of irradiation. Despite these limitations, notable achievements have recently been recorded in the management of these tumors

  5. Larval nervous systems

    DEFF Research Database (Denmark)

    Nielsen, Claus

    2015-01-01

    as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords......, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence...

  6. Spectral convergence in tapping and physiological fluctuations: Coupling and independence of 1/f noise in the central and autonomic nervous systems

    Directory of Open Access Journals (Sweden)

    Lillian M. Rigoli

    2014-09-01

    Full Text Available When humans perform a response task or timing task repeatedly, fluctuations in measures of timing from one action to the next exhibit long-range correlations known as 1/f noise. The origins of 1/f noise in timing have been debated for over twenty years, with one common explanation serving as a default: Humans are composed of physiological processes throughout the brain and body that operate over a wide range of timescales, and these processes combine to be expressed as a general source of 1/f noise. To test this explanation, the present study investigated the coupling versus independence of 1/f noise in timing deviations, key-press durations, pupil dilations, and heartbeat intervals while tapping to an audiovisual metronome. All four dependent measures exhibited clear 1/f noise, regardless of whether tapping was synchronized or syncopated. 1/f spectra for timing deviations were found to match those for key-press durations on an individual basis, and 1/f spectra for pupil dilations matched those in heartbeat intervals. Results indicate a complex, multiscale relationship among 1/f noises arising from common sources, such as those arising from timing functions versus those arising from autonomic nervous system functions. Results also provide further evidence against the default hypothesis that 1/f noise in human timing is just the additive combination of processes throughout the brain and body. Our findings are better accommodated by theories of complexity matching that begin to formalize multiscale coordination as a foundation of human behavior.

  7. Effects of Short Forest Bathing Program on Autonomic Nervous System Activity and Mood States in Middle-Aged and Elderly Individuals

    Science.gov (United States)

    Yu, Chia-Pin; Lin, Chia-Min; Tsai, Ming-Jer; Tsai, Yu-Chieh; Chen, Chun-Yu

    2017-01-01

    The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h) forest bathing program in the Xitou Nature Education Area (XNEA), Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years) middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV), and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of “tension-anxiety”, “anger-hostility”, “fatigue-inertia”, “depression-dejection”, and “confusion-bewilderment” were significantly lower, whereas the positive mood subscale score of “vigor-activity” was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals. PMID:28792445

  8. Sensitivity of the autonomic nervous system to visual and auditory affect across social and non-social domains in Williams syndrome

    Directory of Open Access Journals (Sweden)

    Anna Maaria Järvinen

    2012-09-01

    Full Text Available Although individuals with Williams syndrome (WS typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of peaks and valleys of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS responsivity, in individuals with WS contrasted with a typically developing (TD group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR reactivity, and a failure for electrodermal activity (EDA to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social-affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested.

  9. Latino children’s autonomic nervous system reactivity moderates the relations between cumulative socioeconomic adversity in the first five years and externalizing behavior problems at seven years

    Directory of Open Access Journals (Sweden)

    Abbey Alkon

    2016-05-01

    Full Text Available Background: Thirty-seven percent of Hispanic and Latino children under 5 years of age are living in poverty in the United States. Children growing up under conditions of cumulative adversity are at much greater risk for compromised psychosocial adjustment with long-lasting ramifications for mental and physical health. This study assessed whether the relations between adversity early in life and later externalizing behaviors was moderated by children’s autonomic nervous system (ANS reactivity for immigrant, poor, MexicanAmerican children. Methods: A cumulative socioeconomic adversity index of children’s exposure to poverty, father’s absence, household crowding, mothers speaking Spanish, and poor housing condition at 6 months and 1, 3.5, and 5 years of age was calculated. At 5 years, ANS profiles during resting and social- and emotion-evoking challenges were calculated as combined parasympathetic and sympathetic difference scores. At 7 years, parents assessed children’s externalizing behavior problems. Results: Multiple regression models (n=220 showed that the relations between cumulative socioeconomic adversity and externalizing behaviors were moderated by children’s ANS profiles of coactivation during a social, not emotion-evoking, challenge, controlling for relevant covariates. Conclusions: Children living in adverse conditions early in life with specific psychobiologic responses to social challenges may be at risk for developing externalizing behavior problems later in life.

  10. Effects of Short Forest Bathing Program on Autonomic Nervous System Activity and Mood States in Middle-Aged and Elderly Individuals.

    Science.gov (United States)

    Yu, Chia-Pin; Lin, Chia-Min; Tsai, Ming-Jer; Tsai, Yu-Chieh; Chen, Chun-Yu

    2017-08-09

    The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h) forest bathing program in the Xitou Nature Education Area (XNEA), Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years) middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV), and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of "tension-anxiety", "anger-hostility", "fatigue-inertia", "depression-dejection", and "confusion-bewilderment" were significantly lower, whereas the positive mood subscale score of "vigor-activity" was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals.

  11. Effects of Short Forest Bathing Program on Autonomic Nervous System Activity and Mood States in Middle-Aged and Elderly Individuals

    Directory of Open Access Journals (Sweden)

    Chia-Pin Yu

    2017-08-01

    Full Text Available The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h forest bathing program in the Xitou Nature Education Area (XNEA, Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV, and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of “tension-anxiety”, “anger-hostility”, “fatigue-inertia”, “depression-dejection”, and “confusion-bewilderment” were significantly lower, whereas the positive mood subscale score of “vigor-activity” was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals.

  12. Sensitivity of the Autonomic Nervous System to Visual and Auditory Affect Across Social and Non-Social Domains in Williams Syndrome

    Science.gov (United States)

    Järvinen, Anna; Dering, Benjamin; Neumann, Dirk; Ng, Rowena; Crivelli, Davide; Grichanik, Mark; Korenberg, Julie R.; Bellugi, Ursula

    2012-01-01

    Although individuals with Williams syndrome (WS) typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of “peaks and valleys” of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS) responsivity, in individuals with WS contrasted with a typically developing (TD) group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR) reactivity, and a failure for electrodermal activity to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested. PMID:23049519

  13. Central Nervous System Infections in Denmark

    Science.gov (United States)

    2018-02-04

    Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis

  14. [Spectral analysis of Heart Rate Variability in psychiatric patients: autonomic nervous system evaluation in psychotic, anxiety and depressive disorders].

    Science.gov (United States)

    Lo Turco, Giovanni; Grimaldi Di Terresena, Liria

    2012-01-01

    The aim of this study was to test the primary hypothesis of altered Heart Rate Variability (HRV) and heart rate in a sample of patients with mental disorders and the secondary hypothesis of normalization of HRV values as a result of clinical improvement. The study was conducted on a sample of 90 patients with psychotic, anxiety and mood disorders. Each patient was subjected to detection of HRV and heart rate via a photoplethysmographic sensor and evaluated with rating scales based on the specific disorder. The parameters detected in the sample were compared with a control group of healthy subjects. There were no significant differences of cardiac autonomic modulation between the group of patients in whom is possible exclude the drug influence and the control group; significantly lower values of HRV parameters in the group of patients with drug influence, and especially in subgroup of psychotic patients, compared to controls, are, instead, detected. The study also shows a significant increase in heart rate as a common feature in mental disorders, regardless of treatment. Clinical improvement appears to promote the normalization of the variability in patients with high DS of tachogram. The study suggests a potential increased risk of cardiovascular mortality in patients, as evidenced by the increased values of heart rate, regardless of drug treatment. This risk is even more pronounced in psychotic patients in drug treatment because of the simultaneous significant reduction of HRV parameters.

  15. Renal denervation in an animal model of diabetes and hypertension: Impact on the autonomic nervous system and nephropathy

    Directory of Open Access Journals (Sweden)

    Machado Ubiratan F

    2011-04-01

    Full Text Available Abstract Background The effects of renal denervation on cardiovascular reflexes and markers of nephropathy in diabetic-hypertensive rats have not yet been explored. Methods Aim: To evaluate the effects of renal denervation on nephropathy development mechanisms (blood pressure, cardiovascular autonomic changes, renal GLUT2 in diabetic-hypertensive rats. Forty-one male spontaneously hypertensive rats (SHR ~250 g were injected with STZ or not; 30 days later, surgical renal denervation (RD or sham procedure was performed; 15 days later, glycemia and albuminuria (ELISA were evaluated. Catheters were implanted into the femoral artery to evaluate arterial pressure (AP and heart rate variability (spectral analysis one day later in conscious animals. Animals were killed, kidneys removed, and cortical renal GLUT2 quantified (Western blotting. Results Higher glycemia (p vs. nondiabetics (p vs. SHR. Conclusions Renal denervation in diabetic-hypertensive rats improved previously reduced heart rate variability. The GLUT2 equally overexpressed by diabetes and renal denervation may represent a maximal derangement effect of each condition.

  16. Autonomic nervous system function, activity patterns, and sleep after physical or cognitive challenge in people with chronic fatigue syndrome.

    Science.gov (United States)

    Cvejic, Erin; Sandler, Carolina X; Keech, Andrew; Barry, Benjamin K; Lloyd, Andrew R; Vollmer-Conna, Uté

    2017-12-01

    To explore changes in autonomic functioning, sleep, and physical activity during a post-exertional symptom exacerbation induced by physical or cognitive challenge in participants with chronic fatigue syndrome (CFS). Thirty-five participants with CFS reported fatigue levels 24-h before, immediately before, immediately after, and 24-h after the completion of previously characterised physical (stationary cycling) or cognitive (simulated driving) challenges. Participants also provided ratings of their sleep quality and sleep duration for the night before, and after, the challenge. Continuous ambulatory electrocardiography (ECG) and physical activity was recorded from 24-h prior, until 24-h after, the challenge. Heart rate (HR) and HR variability (HRV, as high frequency power in normalized units) was derived from the ECG trace for periods of wake and sleep. Both physical and cognitive challenges induced an immediate exacerbation of the fatigue state (pfatigue in a well-defined group of participants with CFS. Larger studies employing challenge paradigms are warranted to further explore the underlying pathophysiological mechanisms of post-exertional fatigue in CFS. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Cardiac effects produced by long-term stimulation of thoracic autonomic ganglia or nerves: implications for interneuronal interactions within the thoracic autonomic nervous system.

    Science.gov (United States)

    Butler, C; Watson-Wright, W M; Wilkinson, M; Johnstone, D E; Armour, J A

    1988-03-01

    Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long

  18. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  19. [Characteristics of communication systems of suspected occupational disease in the Autonomous Communities, Spain].

    Science.gov (United States)

    García Gómez, Montserrat; Urbaneja Arrúe, Félix; García López, Vega; Estaban Buedo, Valentín; Rodríguez Suárez, Valentín; Miralles Martínez-Portillo, Lourdes; González García, Isabel; Egea Garcia, Josefa; Corraliza Infanzon, Emma; Ramírez Salvador, Laura; Briz Blázquez, Santiago; Armengol Rosell, Ricard; Cisnal Gredilla, José María; Correa Rodríguez, Juan Francisco; Coto Fernández, Juan Carlos; Díaz Peral, Mª Rosario; Elvira Espinosa, Mercedes; Fernández Fernández, Iñigo; García-Ramos Alonso, Eduardo; Martínez Arguisuelas, Nieves; Rivas Pérez, Ana Isabel

    2017-03-17

    There are several initiatives to develop systems for the notification of suspected occupational disease (OD) in different autonomous communities. The objective was to describe the status of development and characteristics of these systems implemented by the health authorities. A cross-sectional descriptive study was carried out on the existence of systems for the information and surveillance of suspected OD, their legal framework, responsible institution and availability of information. A specific meeting was held and a survey was designed and sent to all autonomous communities and autonomous cities (AACC). Information was collected on the existence of a regulatory standard, assigned human resources, notifiers, coverage and number of suspected OD received, processed and recognized. 18 of 19 AACC responded. 10 have developed a suspected OD notification system, 3 of them supported by specific autonomic law. The notifiers were physicians of the public health services, physicians of the occupational health services and, in 2 cases, medical inspectors. 7 AACC had specific software to support the system. The OD recognition rate of suspected cases was 53% in the Basque Country; 41% in Castilla-La Mancha; 36% in Murcia; 32.6% in the Valencian Community and 31% in La Rioja. The study has revealed an heterogeneous development of suspected OD reporting systems in Spain. Although the trend is positive, only 55% of the AACC have some type of development and 39% have specific software supporting it. Therefore unequal OD recognition rates have been obtained depending on the territory.

  20. Influence of yearlong training on the state of cardiovascular, autonomic nervous system and physical performance in female 400 meters runners

    Directory of Open Access Journals (Sweden)

    Ye. L. Mikhalyuk

    2016-04-01

    Full Text Available Aim of the research – identification and comparison of heart rate variability, central hemodynamics and physical performance in 400 meters runners from the III category to masters of sports of international class (MSIC in the annual cycle of the training process. Materials and methods. The study included 22 female athletes, 400 meters runners between the ages of 14 and 27 years (mean age – 16.8 ± 0.67 years, running experience – from 2 to 13 years (average – 4.4 ± 0.68 years in the preparatory and competitive periods. Body length and weight of athletes were 167.9 ± 0.91 cm and 52.5 ± 0.98 kg, respectively. For the analysis of the autonomic regulation of cardiac activity mathematical methods of HRV analysis were used. Analysis and evaluation of periodic components of heart rate were carried out by means of the research of spectral parameters of autocorrelation functions. Determination of physical performance was carried out under the practical standard on the cycle ergometer. It was established that in high class sportswomen (n=12 and ones with qualifications of the II–III category (n=10 in the competitive period there were strengthening of parasympathetic effects of ANS, transformation of eukinetic circulation type (CT into hypokinetic CT and absence of sportswomen with hyperkinetic CT. In high class sportswomen there were significant increase of the relative value of physical working capacity (PWC170/kg by 12.33% and tendency to increase of index of functional state (IFS by 9.46%, in sportswomen with qualifications of II–III category PWC170/kg significantly increased by 19.26%, and IFS by 17.87%. Correlation analysis conducted in both periods in the group and separately in high class sportswomen and ones with qualifications of II–III category found the relationship indicating that the increase of PWC170/kg and IFS is associated with the prevalence of hypokinetic CT and parasympathetic ANS influences. In the competitive period

  1. The central nervous system manifestation and CT findings of Fabry's disease

    International Nuclear Information System (INIS)

    Toyonaga, Kazutaka; Nishihira, Takeo

    1983-01-01

    A case of Fabry's disease with central nervous system dysfunction is reported. This 27-year-old man had recurrent episodes of pains in the extremities when he was a child. Spontaneous clinical remission occured around puberty. He had been well until age 22 when he experienced transient weakness of the left arm. The following year he developed transient blindness of the right eye. Then, he developed weakness in the extremities, dysphagia, dysarthria, and was brought to the hospital in unconscious state. Several members of his family are affected with the same disease presenting leg pains, kidney disease and angiokeratoma. Physical examination disclosed an optic atrophy, pseudobulbar palsy with spastic weakness in the all extremities and multiple angiokeratoma in the flank, buttocks and thighs. Abnormal laboratory findings included leukocytosis, increased ESR and strongly positive CRP. Biopsy of the skin disclosed dilated capilaries with numerous vacuoles in the cytoplasm of the epithelial cells. Thin-layer chromatography of the urine sediment showed a marked increase in ceramide trihexoside. Leukocyte alphagalactosidase level was abnormally low. CT scan showed diffuse cerebral atrophy and multiple low density areas in the thalamus, ventral pons and centrum semiovale. The CT findings and possible mechanism of the response to predonisolone were also discussed. (author)

  2. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Dan-Dan Cao

    2016-05-01

    Full Text Available MicroRNAs (miRNAs are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.

  3. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease.

    Science.gov (United States)

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.

  4. Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Deepti Pilli

    2017-06-01

    Full Text Available It is being increasingly recognized that a dysregulation of the immune system plays a vital role in neurological disorders and shapes the treatment of the disease. Aberrant T cell responses, in particular, are key in driving autoimmunity and have been traditionally associated with multiple sclerosis. Yet, it is evident that there are other neurological diseases in which autoreactive T cells have an active role in pathogenesis. In this review, we report on the recent progress in profiling and assessing the functionality of autoreactive T cells in central nervous system (CNS autoimmune disorders that are currently postulated to be primarily T cell driven. We also explore the autoreactive T cell response in a recently emerging group of syndromes characterized by autoantibodies against neuronal cell-surface proteins. Common methodology implemented in T cell biology is further considered as it is an important determinant in their detection and characterization. An improved understanding of the contribution of autoreactive T cells expands our knowledge of the autoimmune response in CNS disorders and can offer novel methods of therapeutic intervention.

  5. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    Science.gov (United States)

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  6. Microtubule-Targeting Agents Enter the Central Nervous System (CNS: Double-edged Swords for Treating CNS Injury and Disease

    Directory of Open Access Journals (Sweden)

    Eun-Mi Hur

    2014-12-01

    Full Text Available Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  7. [Evaluation of autonomic nervous system function with heart rate variability analysis in patients with hyperthyroidism and during euthyroidism after pharmacologic and surgical treatment].

    Science.gov (United States)

    Barczyński, M; Tabor, S; Thor, P

    1997-01-01

    The aim of the present study was both to estimate autonomic nervous system (ANS) function in patients with hyperthyroidism by the heart rate variability (HRV) analysis and to evaluate the impact of pharmacological and surgical treatment on the ANS function. Analysis of the HRV underwent 10 female patients in course of thyreotoxicosis and after reaching full clinical and biochemical euthyroidism, after pharmacological therapy and in month after surgical treatment. The 10 minutes records at rest, in horizontal position were evaluated. The HRV parameters like mean of the heart rate, mean of RR intervals, standard deviation of all normal RR intervals (SDNN), range of the heart rate variability, low frequency (LF), high frequency (HF) components of the heart rate power spectral density and LF/HF ratio were assessed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. The statistical significance (p hyperthyroidism in comparison to the control group (151.6/346.8 ms; 2.4/0.74; 24.4/57.2 ms2). In course of pharmacological euthyroidism there were statistically significant (p hyperthyroidism (270/151.6 ms; 0.995/2.4; 39/24.4 ms2). In euthyroidism after surgical treatment all the above parameters kept the similar levels as in pharmacological euthyroidism (no statistical significance for p hyperthyroid patients there is advantage of sympathetic part of ANS over parasympathetic one which is due to sharp reduction of parasympathetic system activity. Pharmacological therapy with thyreostatics normalises balance of ANS to the level of the control group and after surgical treatment the balance keeps the same. Moreover, in the estimation of ANS as important as LF/HF ratio is the mean range of RR intervals.

  8. Cryptic etiopathological conditions of equine nervous system with special emphasis on viral diseases

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2017-12-01

    Full Text Available The importance of horse (Equus caballus to equine practitioners and researchers cannot be ignored. An unevenly distributed population of equids harbors numerous diseases, which can affect horses of any age and breed. Among these, the affections of nervous system are potent reason for death and euthanasia in equids. Many episodes associated with the emergence of equine encephalitic conditions have also pose a threat to human population as well, which signifies their pathogenic zoonotic potential. Intensification of most of the arboviruses is associated with sophisticated interaction between vectors and hosts, which supports their transmission. The alphaviruses, bunyaviruses, and flaviviruses are the major implicated groups of viruses involved with equines/humans epizootic/epidemic. In recent years, many outbreaks of deadly zoonotic diseases such as Nipah virus, Hendra virus, and Japanese encephalitis in many parts of the globe addresses their alarming significance. The equine encephalitic viruses differ in their global distribution, transmission and main vector species involved, as discussed in this article. The current review summarizes the status, pathogenesis, pathology, and impact of equine neuro-invasive conditions of viral origin. A greater understanding of these aspects might be able to provide development of advances in neuro-protective strategies in equine population.

  9. IgG4-Related Disease Presenting as Recurrent Mastoiditis With Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    April L. Barnado MD

    2013-09-01

    Full Text Available We report a case of a 43-year-old female who presented with right ear fullness and otorrhea. She was initially diagnosed with mastoiditis that was not responsive to multiple courses of antibiotics and steroids. She was then diagnosed with refractory inflammatory pseudotumor, and subsequent treatments included several mastoidectomies, further steroids, and radiation therapy. The patient went on to develop mastoiditis on the contralateral side as well as central nervous system involvement with headaches and right-sided facial paresthesias. Reexamination of the mastoid tissue revealed a significantly increased number of IgG4-positive cells, suggesting a diagnosis of IgG4-related disease. The patient improved clinically and radiographically with rituximab and was able to taper off azathioprine and prednisone. IgG4-related disease should be considered in patients with otologic symptoms and be on the differential diagnosis in patients with inflammatory pseudotumor. Staining for IgG and IgG4 is essential to ensure a prompt diagnosis and treatment.

  10. [The role of the autonomic nervous system on malfunction of gastric motor and myoelectric activity in patients with hyperthyroidism].

    Science.gov (United States)

    Barczyński, M; Thor, P J; Słowiaczek, M; Pitala, A

    2000-01-01

    The aim of this study was to determine both the type of gastric mioelectric and emptying disorders in correlation to degree of severity of hyperthyroidism (clinical and thyroid hormones' blood levels) and ANS function estimated in HRV analysis. The study was performed on a group of 50 patients (35 with multinodular toxic goitre and 15 with Graves' disease, 45 females and 5 males, mean age 39.6 years, mean BMI 23.72) with newly diagnosed and so far untreated hyperthyroidism. The control group were 50 healthy volunteers age-, sex-, and BMI-matched to the studied group. Patients were studied twice, within newly diagnosed thyreotoxicosis and after treatment (Metizol) and reaching stable euthyroid state. The study consisted of: a) percutaneous EGG analysis (Synectics): 30 minutes before and after a test meal (ENRICH Liquid 250 ml), b) HRV analysis (ECG POSTER 2002): 10 minutes at rest and during deep breathing test, c) ultrasound measurement of gastric emptying by Bolondi method. Statistical analysis of collected data was performed. In hyperthyroid patients significant both preprandial and postprandial dysrhythmia (33.01% of bradygastria and 16.49% of tachygastria) was found. In some patients decrease of amplitude of EGG signal was marked as a result of antral hypomotility with coexisting significantly prolonged gastric emptying (110 min). Among severe hyperthyroid patients both the antral food distribution (antrum 35% bigger than in a control group) and impaired proximal stomach relaxation were evident. The degree of gastric mioelectric activity and emptying disorders was proportional to the degree of both severity of clinical manifestation of hyperthyroidism in Zgliczynski scale (from I degree to III degrees) and free thyroid hormones' blood levels (positive correlation). In HRV analysis at rest in hyperthyroid patients comparing to a control group the decrease of both the heart rate variability and a total power was found particularly in HF component resulting in

  11. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives.

    Directory of Open Access Journals (Sweden)

    Renata Roland Teixeira

    Full Text Available The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive

  12. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives.

    Science.gov (United States)

    Teixeira, Renata Roland; Díaz, Miguel Mauricio; Santos, Tatiane Vanessa da Silva; Bernardes, Jean Tofoles Martins; Peixoto, Leonardo Gomes; Bocanegra, Olga Lucia; Neto, Morun Bernardino; Espindola, Foued Salmen

    2015-01-01

    The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female) and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS) reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive performance.

  13. [The prognostic significance of brain-derived neurotrophic factor (BDNF) for phobic anxiety disorders, vegetative and cognitive impairments during conservative treatment including adaptol of some functional and organic diseases of nervous system].

    Science.gov (United States)

    Zhivolupov, S A; Samartsev, I N; Marchenko, A A; Puliatkina, O V

    2012-01-01

    We have studied the efficacy of adaptol in the treatment of 45 patients with somatoform dysfunction of the autonomic nervous system and 30 patients with closed head injury. The condition of patients during the treatment was evaluated with clinical and neuropsychological scales. The serum level of BDNF before and after the treatment has been studied as well. Adaptol has been shown to enhance the production of BDNF, reduce significantly the intensity of anxiety, autonomic disorders and improve intellectual processes. The dose-dependent effect of the drug has been demonstrated. In conclusion, adaptol can be recommended for treatment of diseases that demand stimulation of neuroplasticity in the CNS.

  14. The clinicopathology and pathology of selective toxicoses and storage diseases of the nervous system of ruminants in Southern Africa

    NARCIS (Netherlands)

    Lugt, Jacob Jan van der

    2002-01-01

    In this study the clinical signs and pathology of five plant poisonings and a mycotoxicosis affecting the nervous system of domestic ruminants in southern Africa are described. For comparative purposes, an inherited storage disease (bèta-mannosidosis) and a drug-induced neurotoxicosis (closantel

  15. The zebrafish as a gerontology model in nervous system aging, disease, and repair.

    Science.gov (United States)

    Van Houcke, Jessie; De Groef, Lies; Dekeyster, Eline; Moons, Lieve

    2015-11-01

    Considering the increasing number of elderly in the world's population today, developing effective treatments for age-related pathologies is one of the biggest challenges in modern medical research. Age-related neurodegeneration, in particular, significantly impacts important sensory, motor, and cognitive functions, seriously constraining life quality of many patients. Although our understanding of the causal mechanisms of aging has greatly improved in recent years, animal model systems still have much to tell us about this complex process. Zebrafish (Danio rerio) have gained enormous popularity for this research topic over the past decade, since their life span is relatively short but, like humans, they are still subject to gradual aging. In addition, the extensive characterization of its well-conserved molecular and cellular physiology makes the zebrafish an excellent model to unravel the underlying mechanisms of aging, disease, and repair. This review provides a comprehensive overview of the progress made in zebrafish gerontology, with special emphasis on nervous system aging. We review the evidence that classic hallmarks of aging can also be recognized within this small vertebrate, both at the molecular and cellular level. Moreover, we illustrate the high level of similarity with age-associated human pathologies through a survey of the functional deficits that arise as zebrafish age. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    areas, which is consistent with the Braak hypothesis. In the narcolepsy patients, it was shown that a reduced HRR to arousals was primarily predicted by hypocretin deficiency in both rapid-eye-movement (REM) and non-REM sleep, independent of cataplexy and other factors. The results confirm...... that hypocretin deficiency affects the autonomic nervous system of patients with narcolepsy and that the hypocretin system is important for proper heart rate modulation at rest.Furthermore, it was shown that hypocretin deficiency and cataplexy are associated with signs of destabilized sleep-wake and REM sleep...... control, indicating that the disorder may serve as a human model for the sleep-wake and REM sleep flip-flop switches. The increased frequency of transitions may cause increased sympathetic activity during sleep and thereby increased heart rate, or the increased heart rate could be caused by decreased...

  17. Measures of Autonomic Nervous System

    Science.gov (United States)

    2011-04-01

    from the hypothalamus and binds to receptors on the anterior pituitary lobe. This activates release of adrenocorticotropic hormone (ACTH) from the... anterior pituitary . Cortisol is released when ACTH binds to receptors in the adrenal medulla. In addition to stress or trauma, many studies link...target organ. There are two exceptions in which preganglionic sympathetic nerve fibers directly innervate the target organ: the sweat glands and the

  18. Cognitive behavioral therapy for irritable bowel syndrome: the effects on state and trait anxiety and the autonomic nervous system during induced rectal distensions - An uncontrolled trial.

    Science.gov (United States)

    Edebol-Carlman, Hanna; Schrooten, Martien; Ljótsson, Brjánn; Boersma, Katja; Linton, Steven; Brummer, Robert Jan

    2018-01-26

    Irritable bowel syndrome (IBS), is a common multifactorial gastrointestinal disorder linked to disturbances in the microbe gut-brain axis. Cognitive behavioral therapy (CBT), in face-to-face format has showed promising results on IBS and its associated psychological symptoms. The present study explored for the first time if CBT for IBS affects the autonomic nervous system (ANS) during experimentally induced visceral pain and cognitive stress, respectively. The levels of state and trait anxiety, current and perceived stress were also evaluated. In this uncontrolled trial, individual CBT was performed in face-to-face format for 12 weeks in 18 subjects with IBS. Heart rate variability and skin conductance were measured during experimentally induced visceral pain and during a cognitive task (Stroop color-word test), before and after intervention. The levels of state and trait anxiety as well as self-rated current and perceived stress were also measured before and after the intervention. CBT did not affect ANS activity during experimentally induced visceral pain and cognitive stress. The sympathetic activity was high, typical for IBS and triggered during both visceral pain and cognitive stress. The levels of state and trait anxiety significantly decreased after the intervention. No significant changes in self-rated current or perceived stress were found. Results suggest that face-to-face CBT for IBS improved anxiety- a key psychological mechanism for the IBS pathophysiology, rather than the autonomic stress response to experimentally induced visceral pain and cognitive stress, respectively. This study indicates that IBS patients present high levels of stress and difficulties coping with anxiety and ANS activity during visceral pain and a cognitive stress test, respectively. These manifestations of IBS are however not targeted by CBT, and do not seem to be central for the study participants IBS symptoms according to the current and our previous study. Face-to-face CBT

  19. Primary angiitis of the central nervous system presenting with subacute and fatal course of disease: a case report

    Directory of Open Access Journals (Sweden)

    Börnke Christian

    2005-09-01

    Full Text Available Abstract Background Primary angiitis of the central nervous system is an idiopathic disorder characterized by vasculitis within the dural confines. The clinical presentation shows a wide variation and the course and the duration of disease are heterogeneous. This rare but treatable disease provides a diagnostic challenge owing to the lack of pathognomonic tests and the necessity of a histological confirmation. Case presentation A 28-year-old patient presenting with headache and fluctuating signs of encephalopathy was treated on the assumption of viral meningoencephalitis. The course of the disease led to his death 10 days after hospital admission. Postmortem examination revealed primary angiitis of the central nervous system. Conclusion Primary angiitis of the central nervous system should always be taken into consideration when suspected infectious inflammation of the central nervous system does not respond to treatment adequately. In order to confirm the diagnosis with the consequence of a modified therapy angiography and combined leptomeningeal and brain biopsy should be considered immediately.

  20. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson's disease with autonomic failure

    International Nuclear Information System (INIS)

    Braune, S.; Luecking, C.H.; Reinhardt, M.; Bathmann, J.; Krause, T.; Lehmann, M.

    1998-01-01

    Objective - To selectively investigate postganglionic sympathetic cardiac neurons in patients with Parkinson's disease and autonomic failure. Material and methods - Metaiodobenzylguanidine (MIBG) is a pharmacologically inactive analogue of noradrenaline, which is similarly metabolized in noradrenergic neurons. Therefore the uptake of radiolabelled MIBG represents not only the localization of postganglionic sympathetic neurons but also their functional integrity. Ten patients with Parkinson's disease and autonomic failure underwent standardized autonomic testing, assessment of catecholamine plasma levels and scintigraphy with [ 123 I]MIGB. Results - The cardiac uptake of MIBG, as demonstrated by the heart/mediastinum ratio, was significantly lower in patients in comparison with controls. Scintigraphy with MIBG allowed the selective in-vivo investigation of postganglionic sympathetic cardiac efferent in patients with autonomic failure, a procedure which was previously confined to post-mortem examination. Conclusion - These findings point to a relevant postganglionic pattern of involvement of the autonomic nervous system (ANS) in Parkinson's disease and autonomic failure. (au)

  1. Central Nervous System Disease, Education, and Race Impact Radiation Refusal in Pediatric Cancer Patients.

    Science.gov (United States)

    Patel, Chirayu G; Stavas, Mark; Perkins, Stephanie; Shinohara, Eric T

    2017-07-01

    To investigate the determinants of radiation therapy refusal in pediatric cancer, we used the Surveillance, Epidemiology, and End Results registry to identify 24,421 patients who met the eligibility criteria, diagnosed between 1974 and 2012. Patients had any stage of cancer, were aged 0 to 19, and received radiation therapy or refused radiation therapy when it was recommended. One hundred twenty-eight patients (0.52%) refused radiation therapy when it was recommended. Thirty-two percent of patients who refused radiation therapy ultimately died from their cancer, at a median of 7 months after diagnosis (95% confidence interval, 3-11 mo), as compared with 29.0% of patients who did not refuse radiation therapy died from their cancer, at a median of 17 months after diagnosis (95% confidence interval, 17-18 mo). On multivariable analysis, central nervous system (CNS) site, education, and race were associated with radiation refusal. The odds ratio for radiation refusal for patients with CNS disease was 1.62 (P=0.009) as compared with patients without CNS disease. For patients living in a county with ≥10% residents having less than ninth grade education, the odds ratio for radiation refusal was 1.71 (P=0.008) as compared with patients living in a county with education. Asian, Pacific Islander, Alaska Native, and American Indian races had an odds ratio of 2.12 (P=0.002) for radiation refusal as compared with black or white race. Although the radiation refusal rate in the pediatric cancer population is low, we show that CNS site, education level, and race are associated with a significant difference in radiation refusal.

  2. Clinical and electrodiagnostic findings in a cohort of 61 dogs with peripheral nervous system diseases - a retrospective study

    Directory of Open Access Journals (Sweden)

    EG Giza, JE Nicpon and MA Wrzosek

    2014-04-01

    Full Text Available The electrodiagnostic examination provides the basis for a diagnostic workup in diseases involving nerve roots, peripheral nerves, neuromuscular junctions and muscles in humans and animals. It is a functional test that enables identification, localization and characterization of the disease within the peripheral nervous system. The study was carried out retrospectively on a group of 61 dogs of different breeds referred for an electrodiagnostic examination because of local or generalized peripheral nervous system impairment. The electrodiagnostic examination consisted of electromyography, electroneurography, F-wave and repetitive nerve stimulation testing. The results of electrodiagnostic studies and their impact on the diagnosis of neuromuscular diseases of different etiology is presented in the study. The lesion was localized to peripheral nerves in 38%, nerve roots in 34%, skeletal muscles in 18% and the neuromuscular junction in 10% of cases. Electrodiagnostics enabled an objective assessment of the extent, distribution and nature of the disease in the study group. However, only when it is used in conjunction with a complete physical and neurological examination and appropriate laboratory or imaging studies, it may be helpful in determining the etiological diagnosis in patients with peripheral nervous system disease.

  3. On cerebrae blood circulation from data of radiocirculography in some diseases of central nervous system in children

    International Nuclear Information System (INIS)

    Dolgov, A.G.; Stroganova, L.I.; Chirkin, N.I.

    1980-01-01

    Results of radioisotope investigation of cerebral blood circulation in 202 children with different pathology of central nervous system are presented. Velocity of cerebral blood flow and time of semiaccumulation and semimoving a preparate were investigated by means of sup(113m)In. It is established that radiocirculography shows clearly the changes in the system of cerebral blood supply and in such diseases as vegetovascular distonia and hypertension syndrome, the radiocirculography data pass ahead the clinical picture

  4. Plasticity and Neural Stem Cells in the Enteric Nervous System

    NARCIS (Netherlands)

    Schaefer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-01-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to

  5. Adult central nervous system

    International Nuclear Information System (INIS)

    Sutton, M.L.

    1985-01-01

    Historically, the adult central nervous system (CNS) was regarded as relatively immune to the effects of ionising radiation, and the recognition of the CNS as a radio-vulnerable structure occurred later than was the case for many other tissues. Increasingly precise knowledge of the time-dose-volume relationships for CNS tolerance has had two important consequences: (1) it has permitted the avoidance of catastrophic and usually lethal late effects in the brain and spinal cord when these tissues are unavoidably irradiated during the treatment of adjacent non-CNS tumours, and (2) it has encouraged referral for irradiation of certain technically benign lesions which, although compatible with prolonged survival, represent a continuing threat to the patient - for example arteriovenous malformations, pituitary adenomas, and some meningiomas. Many of these can now be controlled for very long periods following radiation doses consistent with the long-term functional integrity of the CNS

  6. An overview of travel-associated central nervous system infectious diseases: risk assessment, general considerations and future directions.

    Science.gov (United States)

    Izadi, Morteza; Is'haqi, Arman; Is'haqi, Mohammad Ali; Jonaidi Jafari, Nematollah; Rahamaty, Fatemeh; Banki, Abdolali

    2014-08-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors.

  7. Peripheral nervous system involvement in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    P. R. Kamchatnov

    2016-01-01

    Full Text Available Diabetes mellitus is a widespread disease often affecting peripheral nervous system. This include diabetic autonomous neuropathy that can endanger the patient's life. Timely detection of complications of diabetes mellitus as well as its adequate therapy can improve prognosis of the disease. The possibilities of Milgamma and Tiogamma for pathogenic therapy in patients with diabetic polyneuropathy are considered in this paper. Gabagamma can be effectively relieve neuropathic pain and used together with other drugs that normalize nerve tissue metabolism.

  8. Methodological aspects in quantitative translational neuroimaging in central nervous system diseases with Positron Emission Tomography

    International Nuclear Information System (INIS)

    Müllauer, J.

    2013-01-01

    Patients suffering from central nervous system (CNS) diseases crucially depend on a sufficient supply with CNS active drugs that help them to control and endure their illness. As the site of action of CNS drugs is in the brain, these substances need to pass the blood-brain barrier (BBB), a physiological barrier seperating the blood circulation and the brain. However, CNS drug treatment is often accompanied by pharmacoresistance (drug resistance). Multidrug transporters, such as permeable glycoprotein (Pgp) are responsible for a gradient dependent transport of substances over the BBB. Drug resistance is hypothesised as a result of overactivity of multidrug transporters at the BBB, with the result of insufficient and poor CNS drug levels in the brain. In the case of epilepsy in up to 20 - 40% of patients drug resistance is observed. The influence of Ppg overexpression on drug resistance in epilepsy was studied using positron emission tomography (PET), a novel non-invasive nuclear imaging method, together with radioligands that interact with Pgp. Radiolabeled Pgp-substrates ((R)-[11C]verapamil), and inhibitors ([11C]elacridar and [11C]tariquidar) were developed and used to study the influence of Pgp and other transporters at the BBB in a translational research approach; in animal models of epilepsy and in humans. The aim in translational PET research is a direct comparision of gathered animal and human data. Consequently diverse methodological challenges arise, that need to be addressed and observed in order to enable a translation between species. To achieve full quantification of the function and density of drug transporters at the BBB in both, humans and rodents, kinetic modeling (compartmental modeling) was applied to the PET pharmacokinetic data. Estimated modeling parameters were in succession used to estimate biological and physiological processes of Pgp at the BBB. Subsequently, nonlinear mixed effects modeling was deployed to increase the mechanistic

  9. Infectious and inflammatory diseases of the central nervous system-the spectrum of imaging findings and differential diagnosis.

    Science.gov (United States)

    Rozell, Joseph M; Mtui, Edward; Pan, Yu-Ning; Li, Shan

    2017-12-01

    The infectious and inflammatory diseases of the central nervous system (CNS) including the brain and spine can present with a wide spectrum of clinical symptoms, locations, and appearance. The purpose of this exhibit is to review the different patterns of their presentations, to illustrate their imaging characteristics and techniques, and to discuss their clinical features and pathology so that the correct diagnosis can be made and prompt intervention can be initiated on a timely fashion.

  10. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential

  11. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  12. Improving cerebral oxygenation, cognition and autonomic nervous system control of a chronic alcohol abuser through a three-month running program

    Directory of Open Access Journals (Sweden)

    Daniel Aranha Cabral

    2017-12-01

    Full Text Available The abusive use of alcohol has shown to be associated to cerebral damage, impaired cognition, poor autonomic nervous control, impaired cardiovascular health, increased levels of stress and anxiety, depression symptoms and poor quality of life. Aerobic exercise has shown to be an efficient tool to reduce and overcome these issues. In this case report, a patient (forty-four years old, male under treatment in public psychiatric hospital, classified as having a substance use disorder, underwent a three-month running program. The maximal oxygen consumption increased from 24.2ml/kg/min to 30.1ml/kg/min, running time increased from 6min to 45min (650% and distance covered from 765m to 8700m (1037.2%. In prefrontal cortex oxygenation, oxyhemoglobin levels improved by 76.1%, deoxyhemoglobin decreased 96.9% and total hemoglobin increased 78.8% during exercise. Reaction time in the cognitive test during rest decreased 23%, and the number of correct answers increased by 266.6%. Parasympathetic cardiac parameters increased in several heart rate variability indices. Thus, we conclude that running exercise performed by an alcoholic patient hospitalized in a psychiatric hospital improves cerebral function, cognition and cardiovascular health. Keywords: Alcohol addiction, Near infrared spectroscopy, Prefrontal cortex, Running exercise, Treatment

  13. DAMAGE OF NERVOUS SYSTEM IN TICK-BITE BORRELIOSIS (LYME DISEASE IN СHILDREN IN THE KIROV REGION

    Directory of Open Access Journals (Sweden)

    T. V. Egorova

    2017-01-01

    Full Text Available During 1993—2016 there were treated 1255 children 9 months — 14 ages old with tick-bite infections in Kirov Infectious Clinical Hospital and 1214 children from them with the verified diagnosis of Lyme disease. Damage of nervous system was detected in 98 (8.1% patients in the forms of serous meningitis, meningoencephalitis, polyneuropathies, neuropathies, disseminated encephalomyelitis, diencephalic syndrome with impaired thermal regulation. 45.9 % of cases were mixed-infection (tick-bite encephalitis and Lyme disease

  14. Bacterial Signaling to the Nervous System through Toxins and Metabolites.

    Science.gov (United States)

    Yang, Nicole J; Chiu, Isaac M

    2017-03-10

    Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The nervous systems of cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Westfall, J A

    1995-01-01

    specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions......Cnidarians have simple nervous systems and it was probably within this group or a closely-related ancestor that nervous systems first evolved. The basic plan of the cnidarian nervous system is that of a nerve net which, at some locations, has condensed to form nerve plexuses, or circular...... that the peptides are located in neuronal dense-cored vesicles associated with both synaptic and non-synaptic release sites. All these data indicate that evolutionarily "old" nervous systems use peptides as transmitters. We have also investigated the biosynthesis of the cnidarian neuropeptides. These neuropeptides...

  16. Autonomous Systems and Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Systems and Operations (ASO) project will develop an understanding of the impacts of increasing communication time delays on mission operations,...

  17. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Oey, P.L.; Vos, P.E.; Wieneke, G.H.; Wokke, J.H.J.; Blankestijn, P.J.; Karemaker, J.M.

    2002-01-01

    The literature on the involvement of the autonomic nervous system (ANS) in amyotrophic lateral sclerosis (ALS) is conflicting. We therefore investigated several aspects of autonomic function, namely muscle sympathetic nerve activity (MSNA), blood pressure, cardiac function (electrocardiogram; ECG),

  18. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Oey, P. Liam; Vos, Pieter E.; Wieneke, George H.; Wokke, John H. J.; Blankestijn, Peter J.; Karemaker, John M.

    2002-01-01

    The literature on the involvement of the autonomic nervous system (ANS) in amyotrophic lateral sclerosis (ALS) is conflicting. We therefore investigated several aspects of autonomic function, namely muscle sympathetic nerve activity (MSNA), blood pressure, cardiac function (electrocardiogram; ECG),

  19. Central nervous system tumors

    International Nuclear Information System (INIS)

    Gavin, P.R.; Fike, J.R.; Hoopes, P.J.

    1995-01-01

    Central nervous system (CNS) tumors are relatively common in veterinary medicine, with most diagnoses occurring in the canine and feline species. Numerous tumor types from various cells or origins have been identified with the most common tumors being meningiomas and glial cell tumors. Radiation therapy is often used as an aid to control the clinical signs associated with these neoplasms. In general, these tumors have a very low metastatic potential, such that local control offers substantial benefit. Experience in veterinary radiation oncology would indicate that many patients benefit from radiation treatment. Current practice indicates the need for computed tomography or magnetic resonance imaging studies. These highly beneficial studies are used for diagnosis, treatment planning, and to monitor treatment response. Improvements in treatment planning and radiation delivered to the tumor, while sparing the normal tissues, should improve local control and decrease potential radiation related problems to the CNS. When possible, multiple fractions of 3 Gy or less should be used. The tolerance dose to the normal tissue with this fractionation schedule is 50 to 55 Gy. The most common and serious complications of radiation for CNS tumors is delayed radiation myelopathy and necrosis. Medical management of the patient during radiation therapy requires careful attention to anesthetic protocols, and medications to reduce intracranial pressure that is often elevated in these patients. Canine brain tumors have served as an experimental model to test numerous new treatments. Increased availability of advanced imaging modalities has spawned increased detection of these neoplasms. Early detection of these tumors with appropriate aggressive therapy should prove beneficial to many patients

  20. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study.

    Science.gov (United States)

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-Ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension-Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes

  1. Professional risk of developing diseases of the peripheral nervous system in tractor drivers – machine operators of agricultural production

    Directory of Open Access Journals (Sweden)

    G.A. Bezrukova

    2015-09-01

    Full Text Available Based on the results of the hygienic assessment of working conditions in the domestic agricultural machinery of old and new models when performing the main types of seasonal agricultural work during the annual production cycle and analysis of accumulated occupational diseases’ nosology structure in agricultural workers of the Saratov region over the period from 2004 to 2014, the estimation of professional risk diseases of the peripheral nervous system in tractor drivers – machine operators of agricultural production is given. Professional risk assessment carried out under the procedure set forth in P2.2.1766-03 has shown that the category of a priori risk to their health during an annual production cycle ranged from high to very high (unbearable. It was revealed that the most important factors shaping the harmful working conditions when working on agricultural machinery that can act as a trigger in the formation of vertebral diseases of the peripheral nervous system, are general and local vibration, adverse micro-climatic conditions, long uncomfortable static working posture and physical stress. The risk of diseases in the peripheral uneven system in machine operators of agriculture was attributed to the high risk category with an index of professional diseases (IPD equal to 0,5 %.

  2. The oral cavity as a guide for the application of low level laser energy and its direct effect on the autonomic nervous system providing true energy healing for all health practitioners

    Science.gov (United States)

    Yolin, Herbert S.

    2008-03-01

    This manuscript is intended to demonstrate the important role that dentistry plays in regulating the balance of the Autonomic Nervous System (ANS) through the proprioceptive feedback of the posterior teeth to the brain. An old paradigm called Dental Distress Syndrome, relatively unknown in dentistry today, has at its core, the importance of the height of the posterior (back) teeth and its impact on total body health which is greatly aided by low level laser energy. The rationale behind the belief that the alteration of the posterior teeth affects the ANS begins with basic concepts in embryology. The functioning of the ANS will support the fact of Dental Distress Syndrome. Health practitioners of all disciplines can learn to recognize Dental Distress Syndrome and initiate non-invasive treatment and team with a trained dentist to enhance the wellness and health of the patient if they so desire. A synopsis of my oral paper presented to the Academy of Laser Dentistry demonstrating temporary balancing of the Autonomic Nervous System with three minutes of cold laser energy, as well as my rationale as to why results vary with different cold lasers will be discussed. Clinical case studies will be presented.

  3. Your Brain and Nervous System

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Brain & Nervous System KidsHealth / For Kids / Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  4. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Science.gov (United States)

    2009-01-01

    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic

  5. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Directory of Open Access Journals (Sweden)

    Moulton Alan

    2009-10-01

    Full Text Available Abstract Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS, screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1 the thoracospinal concept for right thoracic AIS in girls; (2 the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3 white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4 central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively, with asymmetry as an adverse response (hormesis; this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept. In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic

  6. Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies.

    Science.gov (United States)

    Palma, Jose-Alberto; Kaufmann, Horacio

    2018-03-01

    Dysfunction of the autonomic nervous system afflicts most patients with Parkinson disease and other synucleinopathies such as dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure, reducing quality of life and increasing mortality. For example, gastrointestinal dysfunction can lead to impaired drug pharmacodynamics causing a worsening in motor symptoms, and neurogenic orthostatic hypotension can cause syncope, falls, and fractures. When recognized, autonomic problems can be treated, sometimes successfully. Discontinuation of potentially causative/aggravating drugs, patient education, and nonpharmacological approaches are useful and should be tried first. Pathophysiology-based pharmacological treatments that have shown efficacy in controlled trials of patients with synucleinopathies have been approved in many countries and are key to an effective management. Here, we review the treatment of autonomic dysfunction in patients with Parkinson disease and other synucleinopathies, summarize the nonpharmacological and current pharmacological therapeutic strategies including recently approved drugs, and provide practical advice and management algorithms for clinicians, with focus on neurogenic orthostatic hypotension, supine hypertension, dysphagia, sialorrhea, gastroparesis, constipation, neurogenic overactive bladder, underactive bladder, and sexual dysfunction. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  7. Relapsing Remitting Multiple Sclerosis in X-Linked Charcot-Marie-Tooth Disease with Central Nervous System Involvement

    OpenAIRE

    Koutsis, Georgios; Karadima, Georgia; Floroskoufi, Paraskewi; Raftopoulou, Maria; Panas, Marios

    2015-01-01

    We report a patient with relapsing remitting multiple sclerosis (MS) and X-linked Charcot-Marie-Tooth disease (CMTX), carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr) which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS) involvement (diffuse white matter hyperintensity on bra...

  8. Central nervous system: brain

    International Nuclear Information System (INIS)

    Mishkin, F.S.

    1975-01-01

    Present radiopharmaceuticals and detector systems have provided nuclear medicine physicians with tools capable of detecting a variety of brain abnormalities with little radiation exposure to pediatric patients. It is essential that the referring physician as well as the physician performing the procedure recognize both the limitations and virtues of these techniques. Appropriate selection of brain imaging procedures in each specific case must be the rule. Brain scintigraphy reliably solves certain problems, such as detecting or excluding intracranial tumors and identifying early cerebral inflammatory disease, cerebral ischemic disease, and a variety of congenital anomalies. Other situations, such as seizures without a focal neurologic deficit, acute meningitis, and hydrocephalus, are less often benefited by these studies. The role of these procedures in acute trauma and its sequelae is at the present time limited in pediatric practice. (auth)

  9. Gpr124 is essential for blood-brain barrier integrity in central nervous system disease.

    Science.gov (United States)

    Chang, Junlei; Mancuso, Michael R; Maier, Carolina; Liang, Xibin; Yuki, Kanako; Yang, Lu; Kwong, Jeffrey W; Wang, Jing; Rao, Varsha; Vallon, Mario; Kosinski, Cynthia; Zhang, J J Haijing; Mah, Amanda T; Xu, Lijun; Li, Le; Gholamin, Sharareh; Reyes, Teresa F; Li, Rui; Kuhnert, Frank; Han, Xiaoyuan; Yuan, Jenny; Chiou, Shin-Heng; Brettman, Ari D; Daly, Lauren; Corney, David C; Cheshier, Samuel H; Shortliffe, Linda D; Wu, Xiwei; Snyder, Michael; Chan, Pak; Giffard, Rona G; Chang, Howard Y; Andreasson, Katrin; Kuo, Calvin J

    2017-04-01

    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption.

  10. Hemodynamic and autonomic nervous system responses to mixed meal ingestion in healthy young and old subjects and dysautonomic patients with postprandial hypotension

    Science.gov (United States)

    Lipsitz, L. A.; Ryan, S. M.; Parker, J. A.; Freeman, R.; Wei, J. Y.; Goldberger, A. L.

    1993-01-01

    BACKGROUND. Although postprandial hypotension is a common cause of falls and syncope in elderly persons and in patients with autonomic insufficiency, the pathophysiology of this disorder remains unknown. METHODS AND RESULTS. We examined the hemodynamic, splanchnic blood pool, plasma norepinephrine (NE), and heart rate (HR) power spectra responses to a standardized 400-kcal mixed meal in 11 healthy young (age, 26 +/- 5 years) and nine healthy elderly (age, 80 +/- 5 years) subjects and 10 dysautonomic patients with symptomatic postprandial hypotension (age, 65 +/- 16 years). Cardiac and splanchnic blood pools were determined noninvasively by radionuclide scans, and forearm vascular resistance was determined using venous occlusion plethysmography. In healthy young and old subjects, splanchnic blood volume increased, but supine blood pressure remained unchanged after the meal. In both groups, HR increased and systemic vascular resistance remained stable. Forearm vascular resistance and cardiac index increased after the meal in elderly subjects, whereas these responses were highly variable and of smaller magnitude in the young. Young subjects demonstrated postprandial increases in low-frequency HR spectral power, representing cardiac sympatho-excitation, but plasma NE remained unchanged. In elderly subjects, plasma NE increased after the meal but without changes in the HR power spectrum. Patients with dysautonomia had a large postprandial decline in blood pressure associated with no change in forearm vascular resistance, a fall in systemic vascular resistance, and reduction in left ventricular end diastolic volume index. HR increased in these patients but without changes in plasma NE or the HR power spectrum. CONCLUSIONS. 1) In healthy elderly subjects, the maintenance of blood pressure homeostasis after food ingestion is associated with an increase in HR, forearm vascular resistance, cardiac index, and plasma NE. In both young and old, systemic vascular resistance is

  11. Chemistry and biology of radiotracers that target changes in sympathetic and parasympathetic nervous systems in heart disease.

    Science.gov (United States)

    Eckelman, William C; Dilsizian, Vasken

    2015-06-01

    Following the discovery of the sympathetic and parasympathetic nervous system, numerous adrenoceptor drugs were radiolabeled and potent radioligands were prepared in order to image the β-adrenergic and the muscarinic systems. But the greatest effort has been in preparing noradrenaline analogs, such as norepinephrine, (11)C-metahydroxyephedrine, and (123)I-metaiodobenzylguanidine that measure cardiac sympathetic nerve varicosities. Given the technical and clinical challenges in designing and validating targeted adrenoceptor-binding radiotracers, namely the heavily weighted flow dependence and relatively low target-to-background ratio, both requiring complicated mathematic analysis, and the inability of targeted adrenoceptor radioligands to have an impact on clinical care of heart disease, the emphasis has been on radioligands monitoring the norepinephrine pathway. The chemistry and biology of such radiotracers, and the clinical and prognostic impact of these innervation imaging studies in patients with heart disease, are examined. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Property of lysosomal storage disease associated with midbrain pathology in the central nervous system of Lamp-2-deficient mice.

    Science.gov (United States)

    Furuta, Akiko; Kikuchi, Hisae; Fujita, Hiromi; Yamada, Daisuke; Fujiwara, Yuuki; Kabuta, Tomohiro; Nishino, Ichizo; Wada, Keiji; Uchiyama, Yasuo

    2015-06-01

    Lysosome-associated membrane protein-2 (LAMP-2) is the gene responsible for Danon disease, which is characterized by cardiomyopathy, autophagic vacuolar myopathy, and variable mental retardation. To elucidate the function of LAMP-2 in the central nervous system, we investigated the neuropathological changes in Lamp-2-deficient mice. Immunohistochemical observations revealed that Lamp-1 and cathepsin D-positive lysosomal structures increased in the large neurons of the mouse brain. Ubiquitin-immunoreactive aggregates and concanavalin A-positive materials were detected in these neurons. By means of ultrastructural studies, we found various-shaped accumulations, including lipofuscin, glycolipid-like materials, and membranous structures, in the neurons and glial cells of Lamp-2-deficient brains. In deficient mice, glycogen granules accumulated in hepatocyte lysosomes but were not observed in neurons. These pathological features indicate lysosomal storage disease; however, the findings are unlikely a consequence of deficiency of a single lysosomal enzyme. Although previous study results have shown a large amount of autophagic vacuoles in parenchymal cells of the visceral organs, these findings were rarely detected in the brain tissue except for some axons in the substantia nigra, in which abundant activated microglial cells with increased lipid peroxidation were observed. Thus, LAMP-2 in the central nervous system has a possible role in the degradation of the various macromolecules in lysosomes and an additional function concerning protection from oxidative stress, especially in the substantia nigra. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. New Functions of APC/C Ubiquitin Ligase in the Nervous System and Its Role in Alzheimer's Disease.

    Science.gov (United States)

    Fuchsberger, Tanja; Lloret, Ana; Viña, Jose

    2017-05-14

    The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including axon guidance, synaptic plasticity, neurogenesis, and neuronal survival. Interestingly, some of the identified APC/C substrates have been related to neurodegenerative diseases. There is an accumulation of some degradation targets of APC/C in Alzheimer's disease (AD) brains, which suggests a dysregulation of the protein complex in the disorder. Moreover, recently evidence has been provided for an inactivation of APC/C in AD. It has been shown that oligomers of the AD-related peptide, Aβ, induce degradation of the APC/C activator subunit cdh1, in vitro in neurons in culture and in vivo in the mouse hippocampus. Furthermore, in the AD mouse model APP/PS1, lower cdh1 levels were observed in pyramidal neurons in CA1 when compared to age-matched wildtype mice. In this review, we provide a complete list of APC/C substrates that are involved in the nervous system and we discuss their functions. We also summarize recent studies that show neurobiological effects in cdh1 knockout mouse models. Finally, we discuss the role of APC/C in the pathophysiology of AD.

  14. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    Science.gov (United States)

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  15. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  16. In vivo imaging in autoimmune diseases in the central nervous system.

    Science.gov (United States)

    Kawakami, Naoto

    2016-07-01

    Intravital imaging is becoming more popular and is being used to visualize cellular motility and functions. In contrast to in vitro analysis, which resembles in vivo analysis, intravital imaging can be used to observe and analyze cells directly in vivo. In this review, I will summarize recent imaging studies of autoreactive T cell infiltration into the central nervous system (CNS) and provide technical background. During their in vivo journey, autoreactive T cells interact with many different cells. At first, autoreactive T cells interact with endothelial cells in the airways of the lung or with splenocytes, where they acquire a migratory phenotype to infiltrate into the CNS. After arriving at the CNS, they interact with endothelial cells of the leptomeningeal vessels or the choroid plexus before passing through the blood-brain barrier. CNS-infiltrating T cells become activated by recognizing endogenous autoantigens presented by local antigen-presenting cells (APCs). This activation was visualized in vivo by using protein-based sensors. One such sensor detects changes in intracellular calcium concentration as an early marker of T cell activation. Another sensor detects translocation of Nuclear factor of activated T-cells (NFAT) from cytosol to nucleus as a definitive sign of T cell activation. Importantly, intravital imaging is not just used to visualize cellular behavior. Together with precise analysis, intravital imaging deepens our knowledge of cellular functions in living organs and also provides a platform for developing therapeutic treatments. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  17. Identification of GLI Mutations in Patients With Hirschsprung Disease That Disrupt Enteric Nervous System Development in Mice.

    Science.gov (United States)

    Liu, Jessica Ai-Jia; Lai, Frank Pui-Ling; Gui, Hong-Sheng; Sham, Mai-Har; Tam, Paul Kwong-Hang; Garcia-Barcelo, Maria-Mercedes; Hui, Chi-Chung; Ngan, Elly Sau-Wai

    2015-12-01

    Hirschsprung disease is characterized by a deficit in enteric neurons, which are derived from neural crest cells (NCCs). Aberrant hedgehog signaling disrupts NCC differentiation and might cause Hirschsprung disease. We performed genetic analyses to determine whether hedgehog signaling is involved in pathogenesis. We performed deep-target sequencing of DNA from 20 patients with Hirschsprung disease (16 men, 4 women), and 20 individuals without (controls), and searched for mutation(s) in GLI1, GLI2, GLI3, SUFU, and SOX10. Biological effects of GLI mutations were tested in luciferase reporter assays using HeLa or neuroblastoma cell lines. Development of the enteric nervous system was studied in Sufu(f/f), Gli3(Δ699), Wnt1-Cre, and Sox10(NGFP) mice using immunohistochemical and whole-mount staining procedures to quantify enteric neurons and glia and analyze axon fasciculation, respectively. NCC migration was studied using time-lapse imaging. We identified 3 mutations in GLI in 5 patients with Hirschsprung disease but no controls; all lead to increased transcription of SOX10 in cell lines. SUFU, GLI, and SOX10 form a regulatory loop that controls the neuronal vs glial lineages and migration of NCCs. Sufu mutants mice had high Gli activity, due to loss of Sufu, disrupting the regulatory loop and migration of enteric NCCs, leading to defective axonal fasciculation, delayed gut colonization, or intestinal hypoganglionosis. The ratio of enteric neurons to glia correlated inversely with Gli activity. We identified mutations that increase GLI activity in patients with Hirschsprung disease. Disruption of the SUFU-GLI-SOX10 regulatory loop disrupts migration of NCCs and development of the enteric nervous system in mice. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Hypersensitivity Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals...

  19. microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases

    DEFF Research Database (Denmark)

    Christensen, Mette; Schratt, Gerhard M

    2009-01-01

    microRNAs, small non-coding RNAs that regulate gene expression at the post-transcriptional level, are emerging as important regulatory molecules involved in the fine-tuning of gene expression during neuronal development and function. microRNAs have roles during neuronal stem cell commitment...... and early differentiation as well as in later stages of neuronal development, such as dendritogenesis and synaptic plasticity. A link between microRNAs and neurological diseases, such as neurodegeneration or synaptic dysfunction, is becoming increasingly clear. This review summarizes the current knowledge...... of the function of microRNAs in the developing and adult nervous system and their potential contribution to the etiology of neurological diseases....

  20. [Central nervous system control of energy homeostasis].

    Science.gov (United States)

    Machleidt, F; Lehnert, H

    2011-03-01

    The brain is continuously supplied with information about the distribution and amount of energy stores from the body periphery. Endocrine, autonomic and cognitive-hedonic signals are centrally integrated and exert effects on the whole organism via anabolic and catabolic pathways. The adiposity signals insulin and leptin reflect the amount of body fat and are part of a negative feedback mechanism between the periphery and the central nervous system. The hypothalamic arcuate nucleus is the most important central nervous structure, which integrates this information. Furthermore, the CNS is able to directly measure and to respond to changes in the concentration of certain nutrients. In order to develop effective therapies for the treatment of disorders of energy balance the further elucidation of these neuro-biological processes is of crucial importance. This article provides an overview of the CNS regulation of metabolism and its underlying molecular mechanisms. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Relationships between thermic effect of food, insulin resistance and autonomic nervous activity

    OpenAIRE

    Watanabe, Tomonori; Nomura, Masahiro; Nakayasu, Kimiko; Kawano, Tomohito; Ito, Susumu; Nakaya, Yutaka

    2006-01-01

    Background: The thermic effect of food (TEF) is higher in lean than in obese human subjects. Objective: Relationships between TEF and insulin resistance during meals, from the point of view of autonomic nervous activity, were evaluated. Methods : Autonomic nervous activity was evaluated in 20 young adults using the spectral analysis of heart rate variability from one hour before to two hours after a meal. Heart rate data were analyzed based on low frequency components (LF power, 0.04 - 0.15Hz...

  2. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  3. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

    OpenAIRE

    Patrick eMcConnell; Patrick eMcConnell; Brett eFroeliger; Eric L. Garland; Jeffrey C. Ives; Gary A. Sforzo

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics (heart-rate variability (HRV)) during post-exercise relaxation...

  4. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

    OpenAIRE

    McConnell, Patrick A.; Froeliger, Brett; Garland, Eric L.; Ives, Jeffrey C.; Sforzo, Gary A.

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation...

  5. Relationships between sensory stimuli and autonomic nervous regulation during real and virtual exercises

    Directory of Open Access Journals (Sweden)

    Iijima Atsuhiko

    2007-10-01

    Full Text Available Abstract Background Application of virtual environment (VE technology to motor rehabilitation increases the number of possible rehabilitation tasks and/or exercises. However, enhancing a specific sensory stimulus sometimes causes unpleasant sensations or fatigue, which would in turn decrease motivation for continuous rehabilitation. To select appropriate tasks and/or exercises for individuals, evaluation of physical activity during recovery is necessary, particularly the changes in the relationship between autonomic nervous activity (ANA and sensory stimuli. Methods We estimated the ANA from the R-R interval time series of electrocardiogram and incoming sensory stimuli that would activate the ANA. For experiments in real exercise, we measured vehicle data and electromyogram signals during cycling exercise. For experiments in virtual exercise, we measured eye movement in relation to image motion vectors while the subject was viewing a mountain-bike video image from a first-person viewpoint. Results For the real cycling exercise, the results were categorized into four groups by evaluating muscle fatigue in relation to the ANA. They suggested that fatigue should be evaluated on the basis of not only muscle activity but also autonomic nervous regulation after exercise. For the virtual exercise, the ANA-related conditions revealed a remarkable time distribution of trigger points that would change eye movement and evoke unpleasant sensations. Conclusion For expanding the options of motor rehabilitation using VE technology, approaches need to be developed for simultaneously monitoring and separately evaluating the activation of autonomic nervous regulation in relation to neuromuscular and sensory systems with different time scales.

  6. Chapter 1. Central nervous system

    International Nuclear Information System (INIS)

    Planiol, T.; Veyre, A.; Plagne, R.

    1975-01-01

    The present situation with regard to explorations of the central nervous system by radioactive compounds is reviewed. For the sake of clarity the brain and cerebrospinal fluid examinations are described separately, with emphasis nevertheless on their complementarity. The tracers used in each of these examinations are listed, together with the criteria governing their choice. The different techniques employed are described. Scintigraphy is presented apart from gamma-angio-encephalography since it is not possible with rectilinear scintigraphs to observe the circulatory phase. The results are interpreted by an analysis of normal and pathological aspects of the different stages of the central nervous system [fr

  7. Relapsing Remitting Multiple Sclerosis in X-Linked Charcot-Marie-Tooth Disease with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Georgios Koutsis

    2015-01-01

    Full Text Available We report a patient with relapsing remitting multiple sclerosis (MS and X-linked Charcot-Marie-Tooth disease (CMTX, carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS involvement (diffuse white matter hyperintensity on brain MRI and extensor plantars. Although this may be a chance association, the increasing number of cases with CMTX and MS, especially with mutations involving the CNS, may imply some causative effect and provide insights into MS pathogenesis.

  8. Relapsing remitting multiple sclerosis in x-linked charcot-marie-tooth disease with central nervous system involvement.

    Science.gov (United States)

    Koutsis, Georgios; Karadima, Georgia; Floroskoufi, Paraskewi; Raftopoulou, Maria; Panas, Marios

    2015-01-01

    We report a patient with relapsing remitting multiple sclerosis (MS) and X-linked Charcot-Marie-Tooth disease (CMTX), carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr) which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS) involvement (diffuse white matter hyperintensity on brain MRI and extensor plantars). Although this may be a chance association, the increasing number of cases with CMTX and MS, especially with mutations involving the CNS, may imply some causative effect and provide insights into MS pathogenesis.

  9. Vitamin D and the central nervous system.

    Science.gov (United States)

    Wrzosek, Małgorzata; Łukaszkiewicz, Jacek; Wrzosek, Michał; Jakubczyk, Andrzej; Matsumoto, Halina; Piątkiewicz, Paweł; Radziwoń-Zaleska, Maria; Wojnar, Marcin; Nowicka, Grażyna

    2013-01-01

    Vitamin D is formed in human epithelial cells via photochemical synthesis and is also acquired from dietary sources. The so-called classical effect of this vitamin involves the regulation of calcium homeostasis and bone metabolism. Apart from this, non-classical effects of vitamin D have recently gained renewed attention. One important yet little known of the numerous functions of vitamin D is the regulation of nervous system development and function. The neuroprotective effect of vitamin D is associated with its influence on neurotrophin production and release, neuromediator synthesis, intracellular calcium homeostasis, and prevention of oxidative damage to nervous tissue. Clinical studies suggest that vitamin D deficiency may lead to an increased risk of disease of the central nervous system (CNS), particularly schizophrenia and multiple sclerosis. Adequate intake of vitamin D during pregnancy and the neonatal period seems to be crucial in terms of prevention of these diseases.

  10. Mobile Intelligent Autonomous Systems

    OpenAIRE

    Jitendra R. Raol; Ajith Gopal

    2010-01-01

    Mobile intelligent autonomous systems (MIAS) is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i) perception and reasoning, (ii) mobility and navigation,(iii) haptics and teleoperation, (iv) image fusion/computervision, (v) modelling of manipulators, (vi) hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii) ve...

  11. Some of the structural and functional features of the autonomic nervous system and diagnosis in clinical practice in the treatment and rehabilitation of patients from diverse backgrounds with vegetative violations

    Directory of Open Access Journals (Sweden)

    N. I. Samosyuk

    2015-03-01

    educational-methodical manual "some structural and functional features of the autonomic nervous system and their Diagnostics in clinical and resort practice in the treatment and rehabilitation of patients from diverse backgrounds with vegetative violations" are known and new data on the operation of the autonomic nervous system. In particular, describes the effect of the left and right hemispheres of the brain, function of the insula sympathetic and parasympathetic divisions of the autonomic nervous system. The manual briefly describes the enteric nervous system, with its powerful vegetative-trophic and immuno-corrective function. An important place in the manual is the modern samples and tests to determine the functional of the autonomic nervous system, which together with the study of variational pulsometry parameters may serve as an objective criterion of the autonomic nervous system. The manual also provides autonomic disorders in different parts of the autonomic nervous system. Manual is intended for a wide range of doctors-clinicians involved in the treatment and rehabilitation of patients with neurological and therapeutic profile, etc.

  12. Phenylketonuria: central nervous system and microbiome interaction

    Directory of Open Access Journals (Sweden)

    Demian Arturo Herrera Morban

    2017-06-01

    Full Text Available Phenylketonuria (PKU is an autosomal recessive inborn error of metabolism characterized by increased phenylalanine (Phe levels causing an inadequate neurodevelopment; the treatment of PKU is a Phe-restricting diet, and as such it can modulate the intestinal microbiome of the individual, generating central nervous system secondary disturbances that, added to the baseline disturbance, can influence the outcome of the disease.

  13. Patterns of Sensitivity to Emotion in Children with Williams Syndrome and Autism: Relations between Autonomic Nervous System Reactivity and Social Functioning

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Grichanik, Mark; Arnold, Andrew J.; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2015-01-01

    Williams syndrome (WS) and autism spectrum disorder (ASD) are associated with atypical social-emotional functioning. Affective visual stimuli were used to assess autonomic reactivity and emotion identification, and the social responsiveness scale was used to determine the level social functioning in children with WS and ASD contrasted with typical…

  14. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  15. Central nervous system infectious diseases mimicking multiple sclerosis: recognizing distinguishable features using MRI

    Directory of Open Access Journals (Sweden)

    Antonio Jose da Rocha

    2013-09-01

    Full Text Available The current diagnostic criteria for multiple sclerosis (MS confirm the relevant role of magnetic resonance imaging (MRI, supporting the possibility of characterizing the dissemination in space (DIS and the dissemination in time (DIT in a single scan. To maintain the specificity of these criteria, it is necessary to determine whether T2/FLAIR visible lesions and the gadolinium enhancement can be attributed to diseases that mimic MS. Several diseases are included in the MS differential diagnosis list, including diseases with exacerbation, remitting periods and numerous treatable infectious diseases, which can mimic the MRI features of MS. We discuss the most relevant imaging features in several infectious diseases that resemble MS and examine the primary spatial distributions of lesions and the gadolinium enhancement patterns related to MS. Recognizing imaging "red flags" can be useful for the proper diagnostic evaluation of suspected cases of MS, facilitating the correct differential diagnosis by assessing the combined clinical, laboratory and MR imaging information.

  16. What Are the Parts of the Nervous System?

    Science.gov (United States)

    ... Email Print What are the parts of the nervous system? The nervous system consists of two main parts: the central nervous system and the peripheral nervous system: The central nervous system is made up of the brain and ...

  17. Gaucher disease in children: radiology of non-central nervous system manifestations

    International Nuclear Information System (INIS)

    McHugh, K.; Olsen, Oe.E.; Vellodi, A.

    2004-01-01

    The radiological findings in paediatric Gaucher disease (GD) are reviewed and future challenges for radiology are discussed. This overview is based on a literature review and our experience of children with GD in one of two national institutions for paediatric GD in the UK. GD is known to progress more rapidly in childhood. Current imaging is mainly suitable for ascertaining the complications of GD. The UK recommendations for routine radiological surveillance are discussed. With enzyme replacement therapy (ERT), which dramatically modifies the course of the disorder, the challenge for radiology in the future is likely to be assessing treatment efficacy rather than the detection of disease complications. Disease manifestations are likely to change in those on ERT and the most notable recent alteration in the disease profile in childhood is the virtual disappearance of the acute bone crisis in this population

  18. Gaucher disease in children: radiology of non-central nervous system manifestations

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K. E-mail: kmchugh@gosh.nhs.uk; Olsen, Oe.E.; Vellodi, A

    2004-02-01

    The radiological findings in paediatric Gaucher disease (GD) are reviewed and future challenges for radiology are discussed. This overview is based on a literature review and our experience of children with GD in one of two national institutions for paediatric GD in the UK. GD is known to progress more rapidly in childhood. Current imaging is mainly suitable for ascertaining the complications of GD. The UK recommendations for routine radiological surveillance are discussed. With enzyme replacement therapy (ERT), which dramatically modifies the course of the disorder, the challenge for radiology in the future is likely to be assessing treatment efficacy rather than the detection of disease complications. Disease manifestations are likely to change in those on ERT and the most notable recent alteration in the disease profile in childhood is the virtual disappearance of the acute bone crisis in this population.

  19. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases

    Directory of Open Access Journals (Sweden)

    Carmen I. Nussbaum-Krammer

    2014-01-01

    Full Text Available Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.

  20. Regulating activity and expression of cell signaling molecules in nervous system development and disease

    NARCIS (Netherlands)

    Erp, S. van

    2015-01-01

    The development of a fully functional brain requires the orchestration of simultaneously coordinated migration, projection and network formation to connect millions of neurons. When neuronal connections are lost or neurons die as a result of neurodegenerative disease or injury, the regenerative

  1. Antibody response against gastrointestinal antigens in demyelinating diseases of the central nervous system

    DEFF Research Database (Denmark)

    Banati, M; Csecsei, P; Koszegi, E

    2013-01-01

    TG), intrinsic factor (IF), parietal cells (PC) and Saccharomyces cerevisiae (ASCA) were screened in the sera of 45 patients with AQP4-seropositive neuromyelitis optica (NMO) and NMO spectrum diseases (NMO/NMO-SD), 17 patients with AQP4-seronegative NMO, 85 patients with clinically definite multiple sclerosis...

  2. Central Nervous System Brucellosis Granuloma and White Matter Disease in Immunocompromised Patient.

    Science.gov (United States)

    Alqwaifly, Mohammed; Al-Ajlan, Fahad S; Al-Hindi, Hindi; Al Semari, Abdulaziz

    2017-06-01

    Brucellosis is a multisystem zoonotic disease. We report an unusual case of neurobrucellosis with seizures in an immunocompromised patient in Saudi Arabia who underwent renal transplantation. Magnetic resonance imaging of the brain showed diffuse white matter lesions. Serum and cerebrospinal fluid were positive for Brucella sp. Granuloma was detected in a brain biopsy specimen.

  3. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  4. The ApoE receptors Vldlr and Apoer2 in central nervous system function and disease.

    Science.gov (United States)

    Lane-Donovan, Courtney; Herz, Joachim

    2017-06-01

    The LDL receptor (LDLR) family has long been studied for its role in cholesterol transport and metabolism; however, the identification of ApoE4, an LDLR ligand, as a genetic risk factor for late-onset Alzheimer's disease has focused attention on the role this receptor family plays in the CNS. Surprisingly, it was discovered that two LDLR family members, ApoE receptor 2 (Apoer2) and VLDL receptor (Vldlr), play key roles in brain development and adult synaptic plasticity, primarily by mediating Reelin signaling. This review focuses on Apoer2 and Vldlr signaling in the CNS and its role in human disease. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. The Role of the Peripheral and Central Nervous Systems in Rotator Cuff Disease

    Science.gov (United States)

    Bachasson, Damien; Singh, Anshuman; Shah, Sameer; Lane, John G.; Ward, Samuel R.

    2015-01-01

    Rotator cuff (RC) disease is an extremely common condition associated with shoulder pain, reduced functional capacities and impaired quality of life. It primarily involves alterations in tendon health and mechanical properties that can ultimately lead to tendon failure. RC tendon tears induce progressive muscular changes that negatively impact surgical reparability of the RC tendons and clinical outcomes. At the same time, a significant base of clinical data suggests a relatively weak relationship between RC integrity and clinical presentation, emphasizing the multifactorial aspects of RC disease. This review aims to summarize the potential contribution of peripheral, spinal and supraspinal neural factors that may: (i) exacerbate structural and functional muscle changes induced by tendon tear, (ii) compromise the reversal of these changes during surgery and rehabilitation, (iii) contribute to pain generation and persistence of pain, iv) impair shoulder function through reduced proprioception, kinematics and muscle recruitment, and iv) help to explain interindividual differences and response to treatment. Given the current clinical and scientific interest in peripheral nerve injury in the context of RC disease and surgery, we carefully reviewed this body of literature with a particular emphasis for suprascapular neuropathy that has generated a large number of studies in the past decade. Within this process, we highlight the gaps in current knowledge and suggest research avenues for scientists and clinicians. PMID:26189809

  6. Central nervous system mesenchymal chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Salvati, M.; Frati, A.; Piccirilli, M.; Agrillo, A.; Brogna, C.; Occhiogrosso, G.; Giangaspero, F. [INM Neuromed IRCCS, Pozzilli (Italy). Dept. of Neurosurgery; Caroli, E. [Policlinico S. Andrea, Rome (Italy). Dept. of Neurological Sciences, Neurosurgery

    2005-06-15

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival.

  7. Central nervous system mesenchymal chondrosarcoma

    International Nuclear Information System (INIS)

    Salvati, M.; Frati, A.; Piccirilli, M.; Agrillo, A.; Brogna, C.; Occhiogrosso, G.; Giangaspero, F.; Caroli, E.

    2005-01-01

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival

  8. The role of transposable elements in health and diseases of the central nervous system.

    Science.gov (United States)

    Reilly, Matthew T; Faulkner, Geoffrey J; Dubnau, Joshua; Ponomarev, Igor; Gage, Fred H

    2013-11-06

    First discovered in maize by Barbara McClintock in the 1940s, transposable elements (TEs) are DNA sequences that in some cases have the ability to move along chromosomes or "transpose" in the genome. This revolutionary finding was initially met with resistance by the scientific community and viewed by some as heretical. A large body of knowledge has accumulated over the last 60 years on the biology of TEs. Indeed, it is now known that TEs can generate genomic instability and reconfigure gene expression networks both in the germline and somatic cells. This review highlights recent findings on the role of TEs in health and diseases of the CNS, which were presented at the 2013 Society for Neuroscience meeting. The work of the speakers in this symposium shows that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings on TE expression and function in the CNS have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in shaping individual behavior and contribute to vulnerability to disease.

  9. Aging changes in the nervous system

    Science.gov (United States)

    ... ency/article/004023.htm Aging changes in the nervous system To use the sharing features on this page, please enable JavaScript. The brain and nervous system are your body's central control center. They control ...

  10. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal.

    Science.gov (United States)

    McConnell, Patrick A; Froeliger, Brett; Garland, Eric L; Ives, Jeffrey C; Sforzo, Gary A

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18-29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats ('wide-band' theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  11. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

    Directory of Open Access Journals (Sweden)

    Patrick eMcConnell

    2014-11-01

    Full Text Available Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation, few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics (heart-rate variability (HRV during post-exercise relaxation. Subjects (n = 21; 18-29 years old participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design. At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats (‘wide-band’ theta-frequency binaural beats or placebo (carrier tone for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high frequency (HF, reflecting parasympathetic activity, low frequency (LF, reflecting sympathetic and parasympathetic activity and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural beat visit resulted in greater self-reported relaxation, as well as increased parasympathetic activation and sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  12. [Medicinal cannabis for diseases of the nervous system: no convincing evidence of effectiveness].

    Science.gov (United States)

    Killestein, J; Bet, P M; van Loenen, A C; Polman, C H

    2004-11-27

    --In 1996, the Netherlands Health Council issued a negative recommendation regarding the use of medication on the basis of cannabis (marihuana). However, interest in medicinal cannabis has certainly not waned since. --The neurological diseases for which cannabis could presently be used therapeutically are: multiple sclerosis, chronic (neuropathic) pain and the syndrome of Gilles de la Tourette. --Since September 2003, the Dutch Ministry of Health, Welfare and Sport delivers medicinal cannabis to Dutch pharmacies, so that now for the first time, medicinal cannabis can be given to patients on a prescription basis within the framework of the Opium Law. The result of this is that doctors and patients now assume that this is a medication for which the efficacy and safety have been established. --The question arises whether new scientific data have become available since 1996 that provide scientific support for the current Governmental policy. --In a recent clinical trial that has aroused much discussion, patients with multiple sclerosis and problematic spasticity were treated with oral cannabis or a placebo. There was no significant effect of treatment on the primary outcome measure, i.e. objectively determined spasticity. Nevertheless, it was concluded that the mobility was improved and that the pain was subjectively decreased. --Until now, convincing scientific evidence that cannabinoids are effective in neurological conditions is still lacking. --However, it is also not possible to conclude definitely that cannabinoids are ineffective; still, this is no basis for official stimulation of their use.

  13. Hand, Foot and Mouth Disease Complicated with Central Nervous System Involvement in Taiwan in 1980–1981

    Directory of Open Access Journals (Sweden)

    Luan-Yin Chang

    2007-01-01

    Full Text Available Sixteen cases from the 1980-1981 Taiwan outbreak of hand, foot and mouth disease (HFMD associated with central nervous system involvement were identified: nine had polio-like syndrome, four had encephalitis or encephalomyelitis, one had cerebellitis, and two had aseptic meningitis. They all had fever, five (31% had documented myoclonic jerk, and 15 (93% had HFMD. Their mean blood leukocyte count was 12,490/mL, and five (31% had leukocytosis (> 15,000/mL; mean cerebrospinal fluid (CSF leukocyte count was 156/mL, CSF protein was 57 mg/dL and CSF glucose was 57 mg/dL. Two patients with HFMD plus encephalitis died within 1 day of hospitalization, and one of them had acute cardiopulmonary failure mimicking myocarditis. Twenty years later, at least one male patient had sequelae of polio-like syndrome and was therefore exempted from military service. Clinical severity was comparable to the 1998 EV71 epidemic. [J Formos Med Assoc 2007;106(2:173-176

  14. Pathological and Clinical Features and Management of Central Nervous System Hemangioblastomas in von Hippel-Lindau Disease

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanno

    2014-08-01

    Full Text Available Central nervous system (CNS hemangioblastoma is the most common manifestation of von Hippel-Lindau (VHL disease. It is found in 70-80% of VHL patients. Hemangioblastoma is a rare form of benign vascular tumor of the CNS, accounting for 2.0% of CNS tumors. It can occur sporadically or as a familial syndrome. CNS hemangioblastomas are typically located in the posterior fossa and the spinal cord. VHL patients usually develop a CNS hemangioblastoma at an early age. Therefore, they require a special routine for diagnosis, treatment and follow-up. The surgical management of symptomatic tumors depends on many factors such as symptom, location, multiplicity, and progression of the tumor. The management of asymptomatic tumors in VHL patients is controversial since CNS hemangioblastomas grow with intermittent quiescent and rapid-growth phases. Preoperative embolization of large solid hemangioblastomas prevents perioperative hemorrhage but is not necessary in every case. Radiotherapy should be reserved for inoperable tumors. Because of complexities of VHL, a better understanding of the pathological and clinical features of hemangioblastoma in VHL is essential for its proper management.

  15. Assistive technology in occupational therapy practice with a child with degenerative disease of the central nervous system

    Directory of Open Access Journals (Sweden)

    Tácia Caroline de Lima Rodrigues

    2015-07-01

    Full Text Available This paper aims to report the effects of the interventions, using the resource of assistive technology, carried out with a child with degenerative disease of the central nervous system at his home. This is a study case, which was conducted in seven meetings, addressing the child and his caregivers during a process of evaluation, preparation of assistive devices, family orientation, and evaluation of the family environment repercussion. The results showed that the child presents significant motor, cognitive, and psychosocial impairments, resulting in difficulties in performing activities of daily living, communication, and play. Adjustments were proposed to facilitate the child’s involvement and alleviate family difficulties on equipment and environments, such as wheelchair, bedroom, bathroom, orthosis, toys and communication. Finally, it was possible to note that the assistive technology resources were used according to the child’s needs and his own reality, and that the domiciliary visits contributed positively to the family’s life because they facilitated the child’s care, despite the limitations faced.

  16. Masked assessment of MRI findings: is it possible to differentiate neuro-Behcet`s disease from other central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Coban, O.; Bahar, S.; Akman-Demir, G.; Tasci, B.; Serdaroglu, P. [Univ. of Istanbul (Turkey). Dept. of Neurology; Yurdakul, S.; Yazici, H. [Univ. of Istanbul (Turkey). Dept. of Internal Medicine

    1999-04-01

    Two neuroradiologists reviewed MRI studies of 34 patients with neuro-Behcet`s disease (NBD), 22 with multiple sclerosis (MS) and 7 with systemic lupus erythematosus (SLE) with central nervous system involvement, masked to the clinical diagnosis, age and sex of the patients. Of the patients with NBD 12 were in an acute attack; the others had chronic disease. MRI was assessed using a set of criteria, looking at atrophy, the site of discrete parenchymal lesions, regions of predominant involvement and the extent of the lesion(s). The observers also made a guess at the clinical diagnosis. The brain stem and/or basal ganglia were the most predominantly involved sites in all patients with acute NBD; 75 % of these lesions were large and confluent, mainly extending from the brain stem to the diencephalon and basal ganglia. However, in chronic cases, the predominant involvement was in the brain stem and/or basal ganglia in only 36 %, and in cerebral hemisphere white matter in another 36 %; 27 % of these patients showed no parenchymal lesion. Hemisphere white-matter lesions were equally distributed between periventricular and other areas in NBD, while in MS more were periventricular, and in SLE more were nonperiventricular. Brain-stem atrophy was seen in 21 % of patients with NBD, with a specificity of 96.5 %. In the absence of cortical atrophy, its specificity was 100 %. The attempt at making a radiological diagnosis was successful in all cases of acute NBD and 95.5 % of patients with MS, but in only 40 % of patients with chronic NBD. Most of this latter groups MRI studies were interpreted as MS. An extensive lesion involving the brain stem and basal ganglia seemed to be diagnostic of acute NBD. However, hemisphere white-matter lesions could not be differentiated from those in MS. (orig.) With 3 figs., 6 tabs., 18 refs.

  17. Autonomic dysfunction in different subtypes of multiple system atrophy.

    Science.gov (United States)

    Schmidt, Claudia; Herting, Birgit; Prieur, Silke; Junghanns, Susann; Schweitzer, Katherine; Globas, Christoph; Schöls, Ludger; Reichmann, Heinz; Berg, Daniela; Ziemssen, Tjalf

    2008-09-15

    Multiple system atrophy (MSA) can clinically be divided into the cerebellar (MSA-C) and the parkinsonian (MSA-P) variant. However, till now, it is unknown whether autonomic dysfunction in these two entities differs regarding severity and profile. We compared the pattern of autonomic dysfunction in 12 patients with MSA-C and 26 with MSA-P in comparison with 27 age- and sex-matched healthy controls using a standard battery of autonomic function tests and a structured anamnesis of the autonomic nervous system. MSA-P patients complained significantly more often about the symptoms of autonomic dysfunctions than MSA-C patients, especially regarding vasomotor, secretomotor, and gastrointestinal subsystems. However, regarding cardiovascular, sudomotor pupil, urogenital, and sleep subsystems, there were no significant quantitative or qualitative differences as analyzed by autonomic anamnesis and testing. Our results suggest that there are only minor differences in the pattern of autonomic dysfunction between the two clinical MSA phenotypes. (c) 2007 Movement Disorder Society.

  18. Mobile Autonomous Reconfigurable System

    Directory of Open Access Journals (Sweden)

    Pavliuk N.A.

    2018-04-01

    Full Text Available The object of this study is a multifunctional modular robot able to assemble independently in a given configuration and responsively change it in the process of operation depending on the current task. In this work we aim at developing and examining unified modules for a modular robot, which can both perform autonomous movement and form a complex structure by connecting to other modules. The existing solutions in the field of modular robotics were reviewed and classified by power supply, the ways of interconnection, the ways of movement and the possibility of independent movement of separate modules. Basing on the analysis of the shortcomings of existing analogues, we have developed a module of mobile autonomous reconfigurable system, including a base unit, a set of magneto-mechanical connectors and two motor wheels. The basic kinematic scheme of the modular robot, the features of a single module, as well as the modular structure formed by an array of similar modules were described. Two schemes for placing sets of magneto-mechanical connectors in the basic module have been proposed. We described the principle of operation of a magneto-mechanical connector based on redirection of the magnetic flux of a permanent magnet. This solution simplifies the system for controlling a mechanism of connection with other modules, increases energy efficiency and a battery life of the module. Since the energy is required only at the moment of switching the operating modes of the connector, there is no need to power constantly the connector mechanism to maintain the coupling mode.

  19. Circadian profile of cardiac autonomic nervous modulation in healthy subjects

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Richardt, Gert; Potratz, Jürgen

    2003-01-01

    UNLABELLED: Circadian Profile of Heart Rate Variability. INTRODUCTION: Although heart rate variability (HRV) has been established as a tool to study cardiac autonomic activity, almost no data are available on the circadian patterns of HRV in healthy subjects aged 20 to 70 years. METHODS AND RESULTS...... higher in men. Younger men also exhibited significantly higher values...... parasympathetic activity. The significant gender-related difference of HRV decreases with aging. These findings emphasize the need to determine age-, gender-, and nycthemeral-dependent normal ranges for HRV assessment....

  20. “Denervation” of autonomous nervous system in idiopathic pulmonary arterial hypertension by low-dose radiation: a case report with an unexpected outcome

    Directory of Open Access Journals (Sweden)

    Hohenforst-Schmidt W

    2014-03-01

    Full Text Available Wolfgang Hohenforst-Schmidt,1 Paul Zarogoulidis,2 Filiz Oezkan,3 Christian Mahnkopf,4 Gerhard Grabenbauer,5 Alfons Kreczy,6 Rolf Bartunek,7 Kaid Darwiche,3 Lutz Freitag,3 Qiang Li,8 Haidong Huang,8 Thomas Vogl,9 Patrick LePilvert,10 Theodora Tsiouda,11 Kosmas Tsakiridis,12 Konstantinos Zarogoulidis,2 Johannes Brachmann11II Medical Clinic, Coburg Clinic, University of Würzburg, Coburg, Germany; 2Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece; 3Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University of Duisburg-Essen, Essen, Germany; 4II Medizinische Klinik, Klinik für Kardiologie, Angiologie, Pneumologie, Klinikum Coburg, 5Department of Radiotherapy, 6Department of Pathology, Cytology and Molecular Diagnostics, 7Institute of Diagnostic and Interventional Radiology, Coburg Clinic, University of Wüerzburg, Coburg, Germany; 8Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People’s Republic of China; 9Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Frankfurt, Germany; 10Interventional Drug Delivery Systems and Strategies (ID2S2, Medical Cryogenics, Lakeland Court Jupiter, FL, USA; 11Internal Medicine Unit, Theagenio Cancer Hospital, Thessaloniki, 12Cardiothoracic Surgery Department, Saint Luke Private Hospital, Thessaloniki, GreeceAbstract: Vasointestinal peptide metabolism plays a key physiological role in multimodular levels of vasodilatory, smooth muscle cell proliferative, parenchymal, and inflammatory lung reactions. In animal studies, vasointestinal peptide relaxes isolated pulmonary arterial segments from several mammalian species in vitro and neutralizes the pulmonary vasoconstrictor effect of endothelin. In some animal models, it reduces pulmonary vascular resistance in vivo and

  1. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  2. Central nervous system complications after liver transplantation.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  4. Relationships between thermic effect of food, insulin resistance and autonomic nervous activity.

    Science.gov (United States)

    Watanabe, Tomonori; Nomura, Masahiro; Nakayasu, Kimiko; Kawano, Tomohito; Ito, Susumu; Nakaya, Yutaka

    2006-02-01

    The thermic effect of food (TEF) is higher in lean than in obese human subjects. Relationships between TEF and insulin resistance during meals, from the point of view of autonomic nervous activity, were evaluated. Autonomic nervous activity was evaluated in 20 young adults using the spectral analysis of heart rate variability from one hour before to two hours after a meal. Heart rate data were analyzed based on low frequency components (LF power, 0.04-0.15 Hz), high frequency components (HF power, 0.15-0.40 Hz), and LF/HF ratios. Energy expenditure and the TEF were measured 30 min after a meal. Homeostasis model of insulin resistance index (HOMA-IR) was also measured. The LF/HF ratio was significantly increased 30 min after a meal (pinsulin sensitivity induces a poor response of sympathetic nervous activity in the postprandial phase and a reduction in postprandial energy expenditure.

  5. Study of risc factors affecting the number of mental disorders and nervous system diseases for people who participated in liquidation of consequences of ChNPP accident

    International Nuclear Information System (INIS)

    Ivanov, V.K.; Chekin, S.Yu.; Mikhal'skij, A.I.; Petrovskij, A.M.

    1992-01-01

    Interrelation of disease incidence for liquidators and factors affecting it has been studied. The diseases (mental disorders and nervous system diseases) have been taken into account provided more than 10% of people have suffered of the above diseases. Date of getting into the accident zone; duration of work within the zone; the radiation dose accumulated were considered to be risc factors. Getting into the accident zone and duration of work within the zone of accident have been though to be the main risc factors. 3 figs.; 2 tabs

  6. Occupational therapy for patients with chronic diseases: CVA, rheumatoid arthritis and progressive diseases of the central nervous system.

    NARCIS (Netherlands)

    Driessen, M.J.; Dekker, J.; Lankhorst, G.; Zee, J. van der

    1997-01-01

    A substantial proportion of the patients treated by occupational therapists have a chronic disease. The aim of this study was to describe the outlines of occupational therapy treatment for three specific groups of chronic diseases: progressive neurological diseases, cerebrovascular accident and

  7. Microbiota-gut-brain axis and the central nervous system.

    Science.gov (United States)

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  8. Administration of an Amino Acid–Based Regimen for the Management of Autonomic Nervous System Dysfunction Related to Combat-Induced Illness

    Directory of Open Access Journals (Sweden)

    William E Shell

    2014-01-01

    Full Text Available The etiology and pathophysiology of posttraumatic stress disorder (PTSD remains poorly understood. The nutritional deficiencies associated with the altered metabolic processes of PTSD have not previously been studied in detail. This pilot study measured the reduction in symptoms in 21 military veterans reporting moderate to severe symptoms associated with PTSD. Two amino acid-based medical foods specifically formulated with biogenic amines and other nutrients were administered to study subjects targeting specific neurotransmitter deficiencies resulting from altered metabolic activity associated with PTSD. This study included the Physician Checklist – Military (PCL-M, Short Form General Health Survey (SF-36, and Epworth Sleepiness Scale to measure the change in each subject's score after 30 days of administration. An average decrease of 17 points was seen in the PCL-M, indicating a reduction in PTSD symptoms ( P < 0.001. The mental health component of the SF-36 showed an average 57% increase in the subjects’ mental health rating ( P < 0.001. The results of this initial study demonstrate that addressing the increased dietary requirements of PTSD can improve symptoms of the disease while eliminating significant side effects. A larger, double-blind, randomized, placebo-controlled trial is warranted.

  9. Central nervous system in leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Phair, J P; Anderson, R E; Namiki, Hideo

    1964-03-12

    The present report summarizes the pertinent clinical and pathologic findings in 165 cases of leukemia in atomic bomb exposed victims autopsied during the period 1949 to 1962 at ABCC in Hiroshima and Nagasaki, Japan. Significant parenchymal hemorrhage occurred most often in acute myelogenous leukemia and was markedly increased in patients dying with high terminal white blood cell counts. Possible mechanisms involved in the pathogenesis of cerebral hemorrhage in leukemia are discussed. Subarachnoid hemorrhage and subdural hematoma were not related to leukocytosis but appeared to be influenced by marked thrombocytopenia. Leukemic infiltrates of a diffuse nature involving the meninges were paradoxically increased in patients receiving adequate chemotherapy. Meningeal tumors did not show this peculiar relationship to therapy and were not found in association with lymphatic leukemia. Infections involving the central nervous system were confined to patients receiving chemotherapy including steroids. 39 references, 3 figures, 4 tables.

  10. Central nervous system disease and genital disease in harbor porpoises (Phocoena phocoena) are associated with different herpesviruses

    NARCIS (Netherlands)

    C.E. van Elk; M.W.G. van de Bildt (Marco); P.R.W.A. van Run (Peter); De Jong, A. (Anton); S. Getu (Sarah); G.M.G.M. Verjans (George); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2016-01-01

    textabstractHerpesvirus infection causes disease of variable severity in many species, including cetaceans. However, little is known about herpesvirus infection in harbor porpoises (Phocoena phocoena), despite being widespread in temperate coastal waters of the Northern Hemisphere. Therefore, we

  11. Item condition of the autonomic nervous system in patients with hypertension stage II low additional cardiovascular risk depending on the status of smokers

    Directory of Open Access Journals (Sweden)

    E. A. Poznanskaya

    2013-12-01

    Full Text Available Beckground. This century is characterized by steady growth in the number of patients who have cardiac pathology combined with other factors, aggravating the disease and prognosis. High prevalence of smoking among young patients with hypertension. Research devoted to the study of influence of risk factors , including smoking, on the structural and geometric and functional changes of the heart is not enough. Aim. Explore the contribution of modifiable risk factors for smoking in a pathological process of structural and geometrical and functional restructuring infarction in hypertensive patients. Material and methods. Examined by transthoracic echocardiography 100 patients (30 smokers and 70 non-smokers with essential hypertension stage II, 53 men and 47 women. Group of patients matched for age, sex, body mass index, level of fasting glucose, value "office" SBP, DBP, PAP, mean arterial pressure, heart rate. For data analysis methods of parametric (t-test for dependent and independent variables, ANOVA ANOVA and nonparametric (Wald-Wolfowitz runs test, Kolmogorov-Smirnov two-sample test, Mann-Whitney U test statistics. Differences considered statistically significant at a value of p<0,05. Results. Hypertensive patients who had smoking status, revealed significantly larger left atrial diastolic by 8.1 % (p = 0.014, systolic 10.8% (p = 0.026, the prevalence of thickness PWLVs 6.1% ( p = 0.028, the thickness IVSd 11.6 % (p = 0.004 , the thickness PWLVs 10.7 % (p = 0.034 LVMI 12.2% (p = 0.034 and diastolic intramyocardial stresses 13.9 % (p = 0.025 , lengthening of the period of isometric relaxation by 33.3 % (p = 0.026 compared with those in non-smoking hypertensive patients. Conclusion. Modulatory effect of smoking on the pathological processes of cardiac remodeling in hypertensive patients manifested by an increase in systolic and diastolic dimensions of the left atrium, wall thickness and left ventricular mass, without an extension of the heart

  12. Relationship between the mismatch of 123I-BMIPP and 201Tl myocardial single-photon emission computed tomography and autonomic nervous system activity in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Yamanaka, Hiroyuki; Suzuki, Takeshi; Kishida, Hiroshi; Nagasawa, Koichi; Takano, Teruo

    2006-01-01

    The purpose of this study was to elucidate the relationship between the mismatch of thallium-201 (Tl) and iodine-123-beta-methyl-iodophenyl-pentadecanoic acid (BMIPP) myocardial single-photon emission computed tomography (SPECT) and autonomic nervous system activity in myocardial infarction (MI) patients. The subjects were 40 patients (34 males, 6 females) who underwent examinations by 123 I-BMIPP and 201 Tl myocardial SPECT imaging and 24-hour Holter monitoring within a 3-day period 3 weeks after the onset of their first MI. R-R intervals were analyzed every hour over a period of 24 hours by fast Fourier transformation (FFT). High frequency (HF) and low frequency (LF) were defined as markers of cardiac vagal activity in the former and the LF/HF ratio as sympathetic activity. Greater or more extensive decreases in the BMIPP image than that in the Tl image were defined as a positive mismatch. Patients were divided into positive and negative mismatch groups of 20 patients each. There were no significant differences between the 2 groups in age, sex, site of infarction, max CK (creatine kinase), max CK-MB, or left ventricular ejection fraction. The incidences of clinical signs suggesting residual myocardial ischemia were significantly greater in the positive than in the negative mismatch group (P 123 I-BMIPP and 201 Tl myocardial SPECT 3 weeks after a first acute myocardial infarction with uncomplicated moderate or severe heart failure and decreased heart rate variability are related to residual myocardial ischemia. A combined assessment of heart rate variability in 24 hour Holter electrocardiogram (ECG) monitoring and perfusion-metabolism mismatch in 123 I-BMIPP and 201 Tl myocardial SPECT is useful for determining residual myocardial ischemia in the follow-up of those with acute myocardial infarction. (author)

  13. Microvolt T-wave alternans and autonomic nervous system parameters can be helpful in the identification of low-arrhythmic risk patients with ischemic left ventricular systolic dysfunction.

    Science.gov (United States)

    Daniłowicz-Szymanowicz, Ludmiła; Kaufmann, Damian; Rozwadowska, Katarzyna; Kempa, Maciej; Lewicka, Ewa; Raczak, Grzegorz

    2018-01-01

    The role of implantable cardioverter-defibrillator (ICD) placement in the primary prevention of sudden cardiac death (SCD) in all consecutive patients with left ventricular ejection fraction (LVEF) ≤ 35% is still a matter of hot debate due to the fact that the population of these patients is highly heterogeneous in terms of the SCD risk. Nevertheless, reduced LVEF is still the only established criterion during qualification of patients for ICD implantation in the primary prevention of SCD, therefore identification of persons with particularly high risk among patients with LVEF ≤35% is currently of lesser importance. More important seems to be the selection of individuals with relatively low risk of SCD in whom ICD implantation can be safely postponed. The aim of the study was to determine whether well-known, non-invasive parameters, such as microvolt T-wave alternans (MTWA), baroreflex sensitivity (BRS) and short-term heart rate variability (HRV), can be helpful in the identification of low-arrhythmic risk patients with ischemic left ventricular systolic dysfunction. In 141 patients with coronary artery disease and LVEF ≤ 35%, MTWA testing, as well as BRS and short-term HRV parameters, were analysed. During 34 ± 13 months of follow-up 37 patients had arrhythmic episode (EVENT): SCD, non-fatal sustained ventricular arrhythmia (ventricular tachycardia [VT] or ventricular fibrillation [VF]), or adequate high-voltage ICD intervention (shock) due to a rapid ventricular arrhythmia ≥200/min. LVEF, non-negative MTWA (MTWA_non-neg), BRS and low frequency power in normalized units (LFnu) turned out to be associated with the incidence of EVENT in univariate Cox analysis. The cut-off values for BRS and LFnu that most accurately distinguished between patients with and without EVENT were 3 ms/mmHg and 23, respectively. The only variable that provided 100% negative predictive value (NPV) for EVENT was negative MTWA result (MTWA_neg), but solely for initial 12 months of

  14. human immunodeficiency virus and the nervous system

    African Journals Online (AJOL)

    drclement

    pathogenicity, drug resistance and predisposition to ... tropical countries, antiretroviral therapy is not available ... induced peripheral nervous system disorders ... ataxia and intractable vomiting. ... eligibility for chemotherapy and survival after.

  15. Central Nervous System Infection with Borna Disease Virus Causes Kynurenine Pathway Dysregulation and Neurotoxic Quinolinic Acid Production.

    Science.gov (United States)

    Formisano, Simone; Hornig, Mady; Yaddanapudi, Kavitha; Vasishtha, Mansi; Parsons, Loren H; Briese, Thomas; Lipkin, W Ian; Williams, Brent L

    2017-07-15

    Central nervous system infection of neonatal and adult rats with Borna disease virus (BDV) results in neuronal destruction and behavioral abnormalities with differential immune-mediated involvement. Neuroactive metabolites generated from the kynurenine pathway of tryptophan degradation have been implicated in several human neurodegenerative disorders. Here, we report that brain expression of key enzymes in the kynurenine pathway are significantly, but differentially, altered in neonatal and adult rats with BDV infection. Gene expression analysis of rat brains following neonatal infection showed increased expression of kynurenine amino transferase II (KATII) and kynurenine-3-monooxygenase (KMO) enzymes. Additionally, indoleamine 2,3-dioxygenase (IDO) expression was only modestly increased in a brain region- and time-dependent manner in neonatally infected rats; however, its expression was highly increased in adult infected rats. The most dramatic impact on gene expression was seen for KMO, whose activity promotes the production of neurotoxic quinolinic acid. KMO expression was persistently elevated in brain regions of both newborn and adult BDV-infected rats, with increases reaching up to 86-fold. KMO protein levels were increased in neonatally infected rats and colocalized with neurons, the primary target cells of BDV infection. Furthermore, quinolinic acid was elevated in neonatally infected rat brains. We further demonstrate increased expression of KATII and KMO, but not IDO, in vitro in BDV-infected C6 astroglioma cells. Our results suggest that BDV directly impacts the kynurenine pathway, an effect that may be exacerbated by inflammatory responses in immunocompetent hosts. Thus, experimental models of BDV infection may provide new tools for discriminating virus-mediated from immune-mediated impacts on the kynurenine pathway and their relative contribution to neurodegeneration. IMPORTANCE BDV causes persistent, noncytopathic infection in vitro yet still elicits

  16. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  17. [Central nervous system involvement in systemic lupus erythematosus - diagnosis and therapy].

    Science.gov (United States)

    Szmyrka, Magdalena

    Nervous system involvement in lupus belongs to its severe complications and significantly impacts its prognosis. Neuropsychiatric lupus includes 19 disease manifestations concerning both central and peripheral nervous system. This paper presents clinical aspects of central nervous system involvement in lupus. It reviews its epidemiology, risk factors and principles of diagnosis and therapy.

  18. Autonomic Function Impairment and Brain Perfusion Deficit in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Wei-Che Lin

    2017-06-01

    Full Text Available IntroductionAutonomic disorders have been recognized as important Parkinson’s disease (PD components. Some vulnerable structures are related to the central autonomic network and have also been linked to autonomic function alterations. The aims of the study are to evaluate the severity of the autonomic dysfunction and the cortical hypoperfusion using arterial spin labeling (ASL MRI. And then, possible relationships of significant between-group differences in perfusion pattern to clinical variables and autonomic functions were examined to determine the pharmaceutical effects of dopaminergic treatment on cerebral blood flow (CBF in patients with PD.MethodsBrain ASL MRI was carried out in 20 patients with PD (6 men and 14 women, mean age: 63.3 ± 6.4 years and 22 sex- and age-matched healthy volunteers to assess whole-brain CBF and the effects of dopaminergic therapy on perfusion. All subjects underwent a standardized evaluation of cardiovagal and adrenergic function including a deep breathing, Valsalva maneuver, and 5-min head-up tilt test. Perfusion MRI data were acquired on a 3.0 T scanner with a pulsed continuous ASL technique. The CBF, autonomic parameters, and clinical data were analyzed after adjusting for age and sex.ResultsPatients exhibited a decline in autonomic function (rapid heart rate in response to deep breathing, low baroreflex sensitivity, high systolic and diastolic pressure, and altered tilting test response, widespread low CBF, and robust response to dopaminergic therapy. Lower perfusion in the middle frontal gyrus was associated with increased clinical disease severity (Unified Parkinson’s Disease Rating Scale I score, P < 0.001. Lower perfusion in autonomic control areas, such as the frontal lobe and insula, were significantly associated with autonomic impairment (P < 0.001.ConclusionsOur study indicates that PD is a progressive neurodegenerative disorder that changes the perfusion of central nervous system

  19. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases

    Directory of Open Access Journals (Sweden)

    Maulilio John Kipanyula

    2016-01-01

    Full Text Available The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA and regulator of calcineurin 1 (RCAN1 also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.

  20. On heart rate variability and autonomic activity in homeostasis and in systemic inflammation.

    Science.gov (United States)

    Scheff, Jeremy D; Griffel, Benjamin; Corbett, Siobhan A; Calvano, Steve E; Androulakis, Ioannis P

    2014-06-01

    Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Central nervous system tuberculosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kioumehr, F.; Dadsetan, M.R.; Rooholamini, S.A.; Au, A.

    1994-02-01

    The MRI findings of 18 proven cases of central nervous system (CNS) tuberculosis were reviewed; 10 patients were seropositive for HIV. All had medical, laboratory, or surgical proof of CNS tuberculosis. Eleven patients had meningitis, of whom two also had arachnoiditis. Five patients had focal intra-axial tuberculomas: four brain masses and one an intramedullary spinal lesion. Two patients had focal extra-axial tuberculomas: one in the pontine cistern, and one in the spine. In all 11 patients with meningitis MRI showed diffuse, thick, meningeal enhancement. All intraparenchymal tuberculomas showed low signal intensity on T2-weighted images and ring or nodular enhancement. The extra-axial tuberculomas had areas isointense or hypointense relative to normal brain and spinal cord on T2-weighted images. Although tuberculous meningitis cannot be differentiated from other meningitides on the basis of MR findings, intraparenchymal tuberculomas show characteristic T2 shortening, not found in most other space-occupying lesions. In the appropriate clinical setting, tuberculoma should be considered. (orig.)

  2. Understanding and controlling the enteric nervous system

    NARCIS (Netherlands)

    Boeckxstaens, G. E.

    2002-01-01

    The enteric nervous system or the `Little Brain' of the gut controls gastrointestinal motility and secretion, and is involved in visceral sensation. In this chapter, new developments in understanding the function of the enteric nervous system are described. In particular, the interaction of this

  3. Dietary Carotenoids and the Nervous System

    Directory of Open Access Journals (Sweden)

    Billy R. Hammond

    2015-12-01

    Full Text Available This issue of Foods is focused on the general topic of carotenoids within the nervous system. The focus is on the effects of the xanthophylls on the central nervous system (CNS, reflecting the majority of work in this area. [...

  4. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  5. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  6. Effects of Brazilian scorpion venoms on the central nervous system.

    Science.gov (United States)

    Nencioni, Ana Leonor Abrahão; Neto, Emidio Beraldo; de Freitas, Lucas Alves; Dorce, Valquiria Abrão Coronado

    2018-01-01

    In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus , T. bahiensis , T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus , T. silvestres, T. brazilae , T. confluens , T. costatus , T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis . Little information is available regarding the other Brazilian Tityus species.

  7. Necrotizing Liver Granuloma/Abscess and Constrictive Aspergillosis Pericarditis with Central Nervous System Involvement: Different Remarkable Phenotypes in Different Chronic Granulomatous Disease Genotypes

    Directory of Open Access Journals (Sweden)

    Sanem Eren Akarcan

    2017-01-01

    Full Text Available Chronic granulomatous disease (CGD is a primary immune deficiency causing predisposition to infections with specific microorganisms, Aspergillus species and Staphylococcus aureus being the most common ones. A 16-year-old boy with a mutation in CYBB gene coding gp91phox protein (X-linked disease developed a liver abscess due to Staphylococcus aureus. In addition to medical therapy, surgical treatment was necessary for the management of the disease. A 30-month-old girl with an autosomal recessive form of chronic granulomatous disease (CYBA gene mutation affecting p22phox protein had invasive aspergillosis causing pericarditis, pulmonary abscess, and central nervous system involvement. The devastating course of disease regardless of the mutation emphasizes the importance of early diagnosis and intervention of hematopoietic stem cell transplantation as soon as possible in children with CGD.

  8. Acute urinary retention due to benign inflammatory nervous diseases.

    Science.gov (United States)

    Sakakibara, Ryuji; Yamanishi, Tomonori; Uchiyama, Tomoyuki; Hattori, Takamichi

    2006-08-01

    Both neurologists and urologists might encounter patients with acute urinary retention due to benign inflammatory nervous diseases. Based on the mechanism of urinary retention, these disorders can be divided into two subgroups: disorders of the peripheral nervous system (e.g., sacral herpes) or the central nervous system (e.g., meningitis-retention syndrome [MRS]). Laboratory abnormalities include increased herpes virus titers in sacral herpes, and increased myelin basic protein in the cerebrospinal fluid (CSF) in some cases with MRS. Urodynamic abnormality in both conditions is detrusor areflexia; the putative mechanism of it is direct involvement of the pelvic nerves in sacral herpes; and acute spinal shock in MRS. There are few cases with CSF abnormality alone. Although these cases have a benign course, management of the acute urinary retention is necessary to avoid bladder injury due to overdistension. Clinical features of sacral herpes or MRS differ markedly from those of the original "Elsberg syndrome" cases.

  9. In patient's with Parkinson disease, autonomic symptoms are frequent and associated with other non-motor symptoms.

    Science.gov (United States)

    Arnao, Valentina; Cinturino, Antonio; Valentino, Francesca; Perini, Valentina; Mastrilli, Sergio; Bellavia, Gabriele; Savettieri, Giovanni; Realmuto, Sabrina; D'Amelio, Marco

    2015-10-01

    Autonomic symptoms and sleep disorders are common non-motor symptoms of Parkinson disease (PD), which are correlated with poor quality of life for patients. To assess the frequency of autonomic symptoms in a consecutive series of PD patients and to correlate them with other motor and non-motor symptoms. All consecutive non-demented PD patients who underwent an extensive evaluation including Hoehn and Yahr staging, Unified Parkinson's Disease Rating Scale, Beck's Depression Inventory, Neuropsychiatric Inventory, PDQ-39 Scale, the Parkinson's diseases Sleep Scale, the Epworth Sleepiness Scale and SCOPA-AUT scale were enrolled. Comorbidity has been also considered. Supine to standing position blood pressure and cardiac frequency changes were also measured. 135 PD patients were included (mean age at interview 67.7; mean disease duration: 5.3 years). Patients were stratified according to mean SCOPA-AUT scale score (13.1). Those with higher SCOPA-AUT scale score were significantly older, had longer disease duration, worse disease stage, worse quality of sleep, were more severely affected, and were also taking a higher dosage of levodopa. At multivariate analysis, older age, longer disease duration, and worse quality of sleep were independently associated with higher SCOPA-AUT scale scores. Our results remark the role of autonomic symptoms in PD. In our patient population, characterized by mild to moderate disease severity, most of the patients complained of autonomic nervous system involvement (84%). A significant association between autonomic symptoms and sleep disorders was also observed.

  10. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    Science.gov (United States)

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  11. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  12. Morbidity rate of nervous system among medical personnel occupationally exposed to chronic low dose irradiation

    International Nuclear Information System (INIS)

    Jonkova, A.

    1987-01-01

    The morbidity rate of the nervous system among 1190 subjects, medical personnel, working with sources and environment of ionizing radiation was studied by the personal analysis of the diseases, written down in the personal out-patient department cards as well as of a control group of 870 medical workers of various other specialities. The morbidity rate of the nervous system among the medical personnel, exposed to chronic occupational radiation effect, was established not to be higher than that of the other medical workers - 38.0 and 40.3% respectively. Neuroses and peripheral nervous diseases have the greatest relative share in the structure of morbidity rate of the nervous system in both groups examined, with no statistical significance in the differences of the indices. The significantly higher incidence of autonome dystonias, established among the personnel from the X-ray departments and consulting rooms could be discussed in connection with the great relative share of the subjects from that group with a length of service over 15 years and had received the possible maximum cumulative equivalent doses. 3 tabs., 21 refs

  13. Involvement of autonomic nervous activity changes in gastroesophageal reflux in neonates during sleep and wakefulness.

    Directory of Open Access Journals (Sweden)

    Djamal-Dine Djeddi

    Full Text Available BACKGROUND: It has been suggested that disturbed activity of the autonomic nervous system is one of the factors involved in gastroesophageal reflux (GER in adults. We sought to establish whether transient ANS dysfunction (as assessed by heart rate variability is associated with the occurrence of GER events in neonates during sleep and wakefulness. METHODS: Nineteen neonates with suspected GER underwent simultaneous, synchronized 12-hour polysomnography and esophageal multichannel impedance-pH monitoring. We compared changes in HRV parameters during three types of periods (control and prior to and during reflux with respect to the vigilance state. RESULTS: The vigilance state influenced the distribution of GER events (P<0.001, with 53.4% observed during wakefulness, 37.6% observed during active sleep and only 9% observed during quiet sleep. A significant increase in the sympathovagal ratio (+32%, P=0.013 was observed in the period immediately prior to reflux (due to a 15% reduction in parasympathetic activity (P=0.017, relative to the control period. This phenomenon was observed during both wakefulness and active sleep. CONCLUSION: Our results showed that GER events were preceded by a vigilance-state-independent decrease in parasympathetic tone. This suggests that a pre-reflux change in ANS activity is one of the factors contributing to the mechanism of reflux in neonates.

  14. Overfeeding, autonomic regulation and metabolic consequences.

    NARCIS (Netherlands)

    Scheurink, A.J.W.; Balkan, B; Strubbe, J.H.; van Dijk, G.; Steffens, A.B

    The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The

  15. Central nervous system depressant activityof Leonurus sibiricus ...

    African Journals Online (AJOL)

    The methanol extract of aerial parts of Leonurus sibiricus was shown to possess central nervous system depressant action by significantly decreased the time of onset of sleep and potentiated the pentobarbital induced sleeping time in mice. Keywords: Leonurus sibiricus, labiatae, central nervous depressant, sedation

  16. CT diagnosis of congenital anomalies of the central nervous system

    International Nuclear Information System (INIS)

    Mori, Koreaki

    1980-01-01

    In the diagnosis of central nervous system congenital anomalies, understanding of embryology of the central nervous system and pathophysiology of each anomaly are essential. It is important for clinical approach to central nervous system congenital anomalies to evaluate the size of the head and tention of the anterior fontanelle. Accurate diagnosis of congenital anomalies depends on a correlation of CT findings to clinical pictures. Clinical diagnosis of congenital anomalies should include prediction of treatability and prognosis, in addition to recognition of a disease. (author)

  17. Insights into the background of autonomic medicine.

    Science.gov (United States)

    Laranjo, Sérgio; Geraldes, Vera; Oliveira, Mário; Rocha, Isabel

    2017-10-01

    Knowledge of the physiology underlying the autonomic nervous system is pivotal for understanding autonomic dysfunction in clinical practice. Autonomic dysfunction may result from primary modifications of the autonomic nervous system or be secondary to a wide range of diseases that cause severe morbidity and mortality. Together with a detailed history and physical examination, laboratory assessment of autonomic function is essential for the analysis of various clinical conditions and the establishment of effective, personalized and precise therapeutic schemes. This review summarizes the main aspects of autonomic medicine that constitute the background of cardiovascular autonomic dysfunction. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system

    NARCIS (Netherlands)

    Weekamp, H H; Huygen, P L M; Merx, J L; Kremer, H P H; Cremers, Cor W R J; Longridge, Neil S

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs.

  19. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    NARCIS (Netherlands)

    Weekamp, H.; Huygen, P.L.M.; Merx, J.L.; Kremer, H.P.H.; Cremers, C.W.R.J.; Longridge, N.S.

    2003-01-01

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs.

  20. Central nervous system involvement by multiple myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, Artur; Grzasko, Norbert; Gozzetti, Alessandro

    2016-01-01

    The multicenter retrospective study conducted in 38 centers from 20 countries including 172 adult patients with CNS MM aimed to describe the clinical and pathological characteristics and outcomes of patients with multiple myeloma (MM) involving the central nervous system (CNS). Univariate......, 97% patients received initial therapy for CNS disease, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. After a median follow-up of 3.5 years, the median overall survival (OS) from the onset of CNS involvement for the entire group was 7 months. Untreated...... untreated patients and patients with favorable cytogenetic profile might be prolonged due to systemic treatment and/or radiotherapy. This article is protected by copyright. All rights reserved....

  1. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    Langer, Oliver; Halldin, Christer

    2002-01-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[ 18 F]fluorodopamine, (-)-6-[ 18 F]fluoronorepinephrine and (-)-[ 11 C]epinephrine, and radiolabelled catecholamine analogues, such as [ 123 I]meta-iodobenzylguanidine, [ 11 C]meta-hydroxyephedrine, [ 18 F]fluorometaraminol, [ 11 C]phenylephrine and meta-[ 76 Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[ 18 F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  2. A longitudinal study of epilepsy and other central nervous system diseases in individuals with and without a history of infantile autism

    DEFF Research Database (Denmark)

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2011-01-01

    the nationwide Danish National Hospital Register (DNHR). The average observation time was 30.3years (range 27-30years), and mean age at follow-up was 42.7years (range 27-57years). Results: Of the 118 individuals with IA, 29 (24.6%) were registered with at least one epilepsy diagnosis against 5 (1......Objective: To compare the prevalence and types of epilepsy and other central nervous system (CNS) diseases in a clinical sample of 118 individuals diagnosed as children with infantile autism (IA) with 336 matched controls from the general population. Methods: All participants were screened through...

  3. Radiation injury to the nervous system

    International Nuclear Information System (INIS)

    Gutin, P.H.; Leibel, S.A.; Sneline, G.E.

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system

  4. Nervous system examination on YouTube

    OpenAIRE

    Azer Samy A; AlEshaiwi Sarah M; AlGrain Hala A; AlKhelaif Rana A

    2012-01-01

    Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “...

  5. Monitoring the autonomic nervous activity as the objective evaluation of music therapy for severely and multiply disabled children.

    Science.gov (United States)

    Orita, Makiko; Hayashida, Naomi; Shinkawa, Tetsuko; Kudo, Takashi; Koga, Mikitoshi; Togo, Michita; Katayama, Sotetsu; Hiramatsu, Kozaburo; Mori, Shunsuke; Takamura, Noboru

    2012-07-01

    Severely and multiply disabled children (SMDC) are frequently affected in more than one area of development, resulting in multiple disabilities. The aim of the study was to evaluate the efficacy of music therapy in SMDC using monitoring changes in the autonomic nervous system, by the frequency domain analysis of heart rate variability. We studied six patients with SMDC (3 patients with cerebral palsy, 1 patient with posttraumatic syndrome after head injury, 1 patient with herpes encephalitis sequelae, and 1 patient with Lennox-Gastaut syndrome characterized by frequent seizures, developmental delay and psychological and behavioral problems), aged 18-26 (mean 22.5 ± 3.5). By frequency domain method using electrocardiography, we measured the high frequency (HF; with a frequency ranging from 0.15 to 0.4 Hz), which represents parasympathetic activity, the low frequency/high frequency ratio, which represents sympathetic activity between the sympathetic and parasympathetic activities, and heart rate. A music therapist performed therapy to all patients through the piano playing for 50 min. We monitored each study participant for 150 min before therapy, 50 min during therapy, and 10 min after therapy. Interestingly, four of 6 patients showed significantly lower HF components during music therapy than before therapy, suggesting that these four patients might react to music therapy through the suppression of parasympathetic nervous activities. Thus, music therapy can suppress parasympathetic nervous activities in some patients with SMDC. The monitoring changes in the autonomic nervous activities could be a powerful tool for the objective evaluation of music therapy in patients with SMDC.

  6. Aquaporin-4 Immuneglobulin G testing in 36 consecutive Jamaican patients with inflammatory central nervous system demyelinating disease

    Directory of Open Access Journals (Sweden)

    Sherri Sandy

    2014-08-01

    Full Text Available Epidemiological studies of neuromyelitis optica (NMO in Jamaica are lacking. Here we reviewed the clinical records of 700 patients undergoing neurological evaluation at the Kingston Public Hospital, the largest tertiary institution in Jamaica over a 4 month period. We investigated the diagnostic utility of Aquaporin-4 ImmuneglobulinG (AQP4-IgG testing in 36 consecutive patients with a diagnosis of an inflammatory demyelinating disorder (IDD of the central nervous system (CNS. Patients were classified into 3 categories: i NMO, n=10; ii multiple sclerosis (MS, n=14 and iii unclassified IDD (n=12. All sera were tested for AQP-IgG status by cell binding assay (Euroimmun. No MS cases were positive. Ninety per cent of NMO cases were positive. Four of 12 patients with unclassified IDD tested positive for AQP4-IgG. AQP4-IgG seropositivity was associated with a lower socioeconomic status, higher EDSS (P=0.04 and lower pulmonary function than the seronegative cases (P=0.007. Aquaporin-4 autoimmunity may account for a significant proportion of Jamaican CNS IDDs.

  7. Central nervous system lupus erythematosus in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Shumpei; Kimura, Kazue; Yoshida, Naotaka; Mitsuda, Toshihiro; Ibe, Masa-aki; Shimizu, Hiroko (Yokohama City Univ. (Japan). Faculty of Medicine)

    1989-12-01

    Clinical features of central nervous system (CNS) invlvement in childhood systemic lupus erythematosus (SLE) was investigated. Neuropsychiatric manifestations including seizures, chorea, headache, overt psychosis, tremor, increase of muscle spastisity, and disturbed memory were found in 47% of 15 patients with SLE. There was a well correlatin between CNS abnormalities and SLE disease activity judged by serum complement levels and anti-nuclear antibody and anti-DNA antibody titers. The administration of Prednisolon was effective for the treatment of these CNS abnormalities and steroid psychosis was rare in the present study. EEG abnormalities involving diffuse slowing and slowing bursts were found in 73% of the patients. Cranial CT scan revealed basel ganglia calcifications in 2 patients, and marked brain atrophy in 3 patients. This study indicated that in the long term following of SLE children CNS abnormalities need to be serially checked by EEG and cranial CT scans as well as serological investigations. (author).

  8. [Tumors of the central nervous system].

    Science.gov (United States)

    Alegría-Loyola, Marco Antonio; Galnares-Olalde, Javier Andrés; Mercado, Moisés

    2017-01-01

    Central nervous system (CNS) tumors constitute a heterogeneous group of neoplasms that share a considerable morbidity and mortality rate. Recent advances in the underlying oncogenic mechanisms of these tumors have led to new classification systems, which, in turn, allow for a better diagnostic approach and therapeutic planning. Most of these neoplasms occur sporadically and several risk factors have been found to be associated with their development, such as exposure to ionizing radiation or electromagnetic fields and the concomitant presence of conditions like diabetes, hypertension and Parkinson's disease. A relatively minor proportion of primary CNS tumors occur in the context of hereditary syndromes. The purpose of this review is to analyze the etiopathogenesis, clinical presentation, diagnosis and therapy of CNS tumors with particular emphasis in the putative risk factors mentioned above.

  9. Central nervous system lupus erythematosus in childhood

    International Nuclear Information System (INIS)

    Yokota, Shumpei; Kimura, Kazue; Yoshida, Naotaka; Mitsuda, Toshihiro; Ibe, Masa-aki; Shimizu, Hiroko

    1989-01-01

    Clinical features of central nervous system (CNS) invlvement in childhood systemic lupus erythematosus (SLE) was investigated. Neuropsychiatric manifestations including seizures, chorea, headache, overt psychosis, tremor, increase of muscle spastisity, and disturbed memory were found in 47% of 15 patients with SLE. There was a well correlatin between CNS abnormalities and SLE disease activity judged by serum complement levels and anti-nuclear antibody and anti-DNA antibody titers. The administration of Prednisolon was effective for the treatment of these CNS abnormalities and steroid psychosis was rare in the present study. EEG abnormalities involving diffuse slowing and slowing bursts were found in 73% of the patients. Cranial CT scan revealed basel ganglia calcifications in 2 patients, and marked brain atrophy in 3 patients. This study indicated that in the long term following of SLE children CNS abnormalities need to be serially checked by EEG and cranial CT scans as well as serological investigations. (author)

  10. Development of autonomous operation system

    International Nuclear Information System (INIS)

    Endou, Akira; Watanabe, Kenshiu; Miki, Tetsushi

    1992-01-01

    To enhance operation reliability of nuclear plants by removing human factors, study on an autonomous operation system has been carried out to substitute artificial intelligence (AI) for plant operators and, in addition, traditional controllers used in existing plants. For construction of the AI system, structurization of knowledge on the basis of the principles such as physical laws, function and structure of relevant objects and generalization of problem solving process are intended. A hierarchical distributed cooperative system configuration in employed because it is superior from the viewpoint of dynamical reorganization of system functions. This configuration is realized by an object-oriented multi-agent system. Construction of a prototype system was planned and the conceptual design was made for FBR plant in order to evaluate applicability of AI to the autonomous operation and to have a prospect for the realization of the system. The prototype system executes diagnosis, state evaluation, operation and control for the main plant subsystems. (author)

  11. Focal lesions in the central nervous system

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Budinger, T.F.; Tobias, C.A.; Born, J.L.

    1980-01-01

    This report reviews the animal and human studies currently in progress at LBL with heavy-ion beams to induce focal lesions in the central nervous system, and discusses the potential future prospects of fundamental and applied brain research with heavy-ion beams. Methods are being developed for producing discrete focal lesions in the central nervous system using the Bragg ionization peak to investigate nerve pathways and neuroendocrine responses, and for treating pathological disorders of the brain

  12. Autonomous photovoltaic lighting system

    OpenAIRE

    Hafez, Ahmed A. A.; Montesinos Miracle, Daniel; Sudrià Andreu, Antoni

    2012-01-01

    This paper introduces a comparison between the conventional and Photovoltaic (PV) lighting systems. A simple sizing procedure for a PV stand-alone system was advised. The paper also proposes a novel PV lighting system. The proposed system is simple, compact and reliable. The system operation was investigated by thoroughly mathematical and simulation work.

  13. Nervous system and receptors. Chapter 3.5

    International Nuclear Information System (INIS)

    Beaumariage, M.L.

    1975-01-01

    The literature is reviewed for the effects of sulphur-containing radioprotective agents on the nervous system and receptors. Studies of the neurological changes observed in alert animals and their modification by anaesthetics have indicated that a direct effect is exerted on the cortical and subcortical structures. Some local anaesthetic effects may result from nerve endings being squeezed by the edematous papule formed on the site of the injection. MEA and, to a lesser extent, cystamine, competitively block the neuromuscular junction by inhibiting the action of acetylcholine on the motor end-plate. The effects of radioprotective substances on the autonomic nervous system in different species have also been considered. The sensitivity of the chemo- and pressor-sensitive endings of the aortic branch, the carotids and the lungs is not affected by the administration of radioprotective agents. (U.K.)

  14. Advances in Primary Central Nervous System Lymphoma.

    Science.gov (United States)

    Patrick, Lauren B; Mohile, Nimish A

    2015-12-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that is limited to the CNS. Although novel imaging techniques aid in discriminating lymphoma from other brain tumors, definitive diagnosis requires brain biopsy, vitreoretinal biopsy, or cerebrospinal fluid analysis. Survival rates in clinical studies have improved over the past 20 years due to the addition of high-dose methotrexate-based chemotherapy regimens to whole-brain radiotherapy. Long-term survival, however, is complicated by clinically devastating delayed neurotoxicity. Newer regimens are attempting to reduce or eliminate radiotherapy from first-line treatment with chemotherapy dose intensification. Significant advances have also been made in the fields of pathobiology and treatment, with more targeted treatments on the horizon. The rarity of the disease makes conducting of prospective clinical trials challenging, requiring collaborative efforts between institutions. This review highlights recent advances in the biology, detection, and treatment of PCNSL in immunocompetent patients.

  15. The role of sympathetic nervous system in the progression of chronic kidney disease in the era of catheter based sympathetic renal denervation.

    Science.gov (United States)

    Petras, Dimitrios; Koutroutsos, Konstantinos; Kordalis, Athanasios; Tsioufis, Costas; Stefanadis, Christodoulos

    2013-08-01

    The kidney has been shown to be critically involved as both trigger and target of sympathetic nervous system overactivity in both experimental and clinical studies. Renal injury and ischemia, activation of renin angiotensin system and dysfunction of nitric oxide system have been implicated in adrenergic activation from kidney. Conversely, several lines of evidence suggest that sympathetic overactivity, through functional and morphological alterations in renal physiology and structure, may contribute to kidney injury and chronic kidney disease progression. Pharmacologic modulation of sympathetic nervous system activity has been found to have a blood pressure independent renoprotective effect. The inadequate normalization of sympathoexcitation by pharmacologic treatment asks for novel treatment options. Catheter based renal denervation targets selectively both efferent and afferent renal nerves and functionally denervates the kidney providing blood pressure reduction in clinical trials and renoprotection in experimental models by ameliorating the effects of excessive renal sympathetic drive. This review will focus on the role of sympathetic overactivity in the pathogenesis of kidney injury and CKD progression and will speculate on the effect of renal denervation to these conditions.

  16. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    Science.gov (United States)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  17. Mobile intelligent autonomous systems

    National Research Council Canada - National Science Library

    Raol, J. R; Gopal, Ajith K

    2013-01-01

    "Written for systems, mechanical, aero, electrical, civil, industrial, and robotics engineers, this book covers robotics from a theoretical and systems point of view, with an emphasis on the sensor...

  18. Autonomously managed electrical power systems

    Science.gov (United States)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  19. Abnormal hyperintensity within the subarachnoid space evaluated by fluid-attenuated inversion-recovery MR imaging: a spectrum of central nervous system diseases

    International Nuclear Information System (INIS)

    Maeda, M.; Sakuma, H.; Takeda, K.; Yagishita, A.; Yamamoto, T.

    2003-01-01

    A variety of central nervous system (CNS) diseases are associated with abnormal hyperintensity within the subarachnoid space (SAS) by fluid-attenuated inversion-recovery (FLAIR) MR imaging. Careful attention to the SAS can provide additional useful information that may not be available with conventional MR sequences. The purpose of this article is to provide a pictorial essay about CNS diseases and FLAIR images with abnormal hyperintensity within the SAS. We present several CNS diseases including subarachnoid hemorrhage, meningitis, leptomeningeal metastases, acute infarction, and severe arterial occlusive diseases such as moya-moya disease. We also review miscellaneous diseases or normal conditions that may exhibit cerebrospinal fluid hyperintensity on FLAIR images. Although the detection of abnormal hyperintensity suggests the underlying CNS diseases and narrows differential diagnoses, FLAIR imaging sometimes presents artifactual hyperintensity within the SAS that can cause the misinterpretation of normal SAS as pathologic conditions; therefore, radiologists should be familiar with such artifactual conditions as well as pathologic conditions shown as hyperintensity by FLAIR images. This knowledge is helpful in establishing the correct diagnosis. (orig.)

  20. Time perception mechanisms at central nervous system

    Directory of Open Access Journals (Sweden)

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  1. Time Perception Mechanisms at Central Nervous System.

    Science.gov (United States)

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-04-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson's disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  2. Autonomously managed high power systems

    International Nuclear Information System (INIS)

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  3. Effect of PF-00547659 on Central Nervous System Immune Surveillance and Circulating beta 7+T Cells in Crohn's Disease: Report of the TOSCA Study

    NARCIS (Netherlands)

    D'Haens, Geert; Vermeire, Séverine; Vogelsang, Harald; Allez, Matthieu; Desreumaux, Pierre; van Gossum, Andre; Sandborn, William J.; Baumgart, Daniel C.; Ransohoff, Richard M.; Comer, Gail M.; Ahmad, Alaa; Cataldi, Fabio; Cheng, John; Clare, Robert; Gorelick, Kenneth J.; Kaminski, Annamarie; Pradhan, Vivek; Rivers, Sunday; Sikpi, Matthew O.; Zhang, Yanhua; Hassan-Zahraee, Mina; Reinisch, Walter; Stuve, Olaf

    2018-01-01

    Background and Aims: Progressive multifocal leukoencephalopathy [PML], a brain infection associated with anti-integrin drugs that inhibit lymphocyte translocation from bloodstream to tissue, can be fatal. Decreased central nervous system [CNS] immune surveillance leading to this infection has been

  4. Biologically-Inspired Concepts for Autonomic Self-Protection in Multiagent Systems

    Science.gov (United States)

    Sterritt, Roy; Hinchey, Mike

    2006-01-01

    Biologically-inspired autonomous and autonomic systems (AAS) are essentially concerned with creating self-directed and self-managing systems based on metaphors &om nature and the human body, such as the autonomic nervous system. Agent technologies have been identified as a key enabler for engineering autonomy and autonomicity in systems, both in terms of retrofitting into legacy systems and in designing new systems. Handing over responsibility to systems themselves raises concerns for humans with regard to safety and security. This paper reports on the continued investigation into a strand of research on how to engineer self-protection mechanisms into systems to assist in encouraging confidence regarding security when utilizing autonomy and autonomicity. This includes utilizing the apoptosis and quiescence metaphors to potentially provide a self-destruct or self-sleep signal between autonomic agents when needed, and an ALice signal to facilitate self-identification and self-certification between anonymous autonomous agents and systems.

  5. Substance P immunoreactivity in the enteric nervous system in Rett syndrome.

    Science.gov (United States)

    Deguchi, K; Reyes, C; Chakraborty, S; Antalffy, B; Glaze, D; Armstrong, D

    2001-12-01

    Rett syndrome is associated with profound mental retardation and motor disability in girls. It has a characteristic clinical phenotype which includes abnormalities of the autonomic nervous system. Feeding impairment and severe constipation are two symptoms of this autonomic dysfunction. Substance P, an important peptide in the autonomic nervous system, is decreased in the cerebrospinal fluid of Rett syndrome. We have demonstrated that substance P immunoreactivity is significantly decreased in Rett syndrome brain-stem and may be related to the autonomic dysfunction. In this study, we have continued the investigation of substance P in the enteric nervous system. We immunohistochemically examined the normal developing bowel in 22 controls (ages, 14 gestational weeks to 31 years) using formalin fixed tissue, with antibodies to substance P, tyrosine hydroxylase and vasoactive intestinal peptide. We compared the immunoreactivity of normal controls with 14 cases of Rett syndrome (ages, 5-41 years) and observed that the expression of substance P, tyrosine hydroxylase and vasoactive intestinal peptide immunoreactivity in the bowel in Rett syndrome was not significantly different from that of controls. This suggests that the feeding impairment and constipation in Rett syndrome relate to dysfunction of the autonomic nervous system originating outside of the bowel, in the brain-stem, as suggested by our previous study.

  6. Evaluation of autonomic functions of patients with multiple system atrophy and Parkinson's disease by head-up tilt test.

    Science.gov (United States)

    Watano, Chikako; Shiota, Yuri; Onoda, Keiichi; Sheikh, Abdullah Md; Mishima, Seiji; Nitta, Eri; Yano, Shozo; Yamaguchi, Shuhei; Nagai, Atsushi

    2018-02-01

    The aim of this study was to evaluate the autonomic neural function in Parkinson's disease (PD) and multiple system atrophy (MSA) with head-up tilt test and spectral analysis of cardiovascular parameters. This study included 15 patients with MSA, 15 patients with PD, and 29 healthy control (HC) subjects. High frequency power of the RR interval (RR-HF), the ratio of low frequency power of RR interval to RR-HF (RR-LF/HF) and LF power of systolic BP were used to evaluate parasympathetic, cardiac sympathetic and vasomotor sympathetic functions, respectively. Both patients with PD and MSA showed orthostatic hypotension and lower parasympathetic function (RR-HF) at tilt position as compared to HC subjects. Cardiac sympathetic function (RR-LF/HF) was significantly high in patients with PD than MSA at supine position. RR-LF/HF tended to increase in MSA and HC, but decreased in PD by tilting. Consequently, the change of the ratio due to tilting (ΔRR-LF/HF) was significantly lower in patients with PD than in HC subjects. Further analysis showed that compared to mild stage of PD, RR-LF/HF at the supine position was significantly higher in advanced stage. By tilting, it was increased in mild stage and decreased in the advanced stage of PD, causing ΔRR-LF/HF to decrease significantly in the advanced stage. Thus, we demonstrated that spectral analysis of cardiovascular parameters is useful to identify sympathetic and parasympathetic disorders in MSA and PD. High cardiac sympathetic function at the supine position, and its reduction by tilting might be a characteristic feature of PD, especially in the advanced stage.

  7. Laser puncture therapy of nervous system disorders

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  8. Effects of glucose ingestion on autonomic and cardiovascular measures during rest and mental challenge

    NARCIS (Netherlands)

    Synowski, S.J.; Kop, W.J.; Warwick, Z.S.; Waldstein, S.R.

    2013-01-01

    Background High levels of dietary sugar consumption may result in dysregulated glucose metabolism and lead to elevated cardiovascular disease risk via autonomic nervous system and cardiovascular dysfunction. Altered cardiovascular function can be examined using perturbation tasks such as mental

  9. Sjogrens Syndrome Presenting with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Tülay Terzi

    2012-01-01

    Full Text Available Sjogren’s syndrome is a slowly progressive autoimmune disease. Neurological involvement occurs in approximately 20-25% cases in Sjogren’s syndrome. 87% of the neurological involvement is peripheral nervous system, almost 13% in the form of central nervous system involvement. Affected central nervous system may show similar clinical and radiological findings as in multiple sclerosis (MS. In this paper, a 43-year-old patient is discussed who was referred with the complaint of dizziness, there was MS- like lesions in brain imaging studies and was diagnosed with Sjogren’s syndrome. MS- like clinical and radiologic tables can be seen, albeit rarely in Sjogren’s syndrome. In these cases, early diagnosis and early treatment for the sjögren has a great importance for the prognosis of the disease.

  10. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  11. Effects of work stress and home stress on autonomic nervous function in Japanese male workers.

    Science.gov (United States)

    Maeda, Eri; Iwata, Toyoto; Murata, Katsuyuki

    2015-01-01

    Autonomic imbalance is one of the important pathways through which psychological stress contributes to cardiovascular diseases/sudden death. Although previous studies have focused mainly on stress at work (work stress), the association between autonomic function and stress at home (home stress) is still poorly understood. The purpose was to clarify the effect of work/home stress on autonomic function in 1,809 Japanese male workers. We measured corrected QT (QTc) interval and QT index on the electrocardiogram along with blood pressure and heart rate. Participants provided self-reported information about the presence/absence of work/home stress and the possible confounders affecting QT indicators. Home stress was related positively to QT index (p=0.040) after adjusting for the possible confounders, though work stress did not show a significant relation to QTc interval or QT index. The odds ratio of home stress to elevated QT index (≥105) was 2.677 (95% CI, 1.050 to 6.822). Work/home stress showed no significant relation to blood pressure or heart rate. These findings suggest that autonomic imbalance, readily assessed by QT indicators, can be induced by home stress in Japanese workers. Additional research is needed to identify different types of home stress that are strongly associated with autonomic imbalance.

  12. Four novel connexin 32 mutations in X-linked Charcot-Marie-Tooth disease. Phenotypic variability and central nervous system involvement.

    Science.gov (United States)

    Karadima, Georgia; Koutsis, Georgios; Raftopoulou, Maria; Floroskufi, Paraskewi; Karletidi, Karolina-Maria; Panas, Marios

    2014-06-15

    Charcot-Marie-Tooth (CMT) disease, the most common hereditary neuropathy, is clinically and genetically heterogeneous. X-linked CMT (CMTX) is usually caused by mutations in the gap junction protein b 1 gene (GJB1) coding for connexin 32 (Cx32). The clinical manifestations of CMTX are characterized by significant variability, with some patients exhibiting central nervous system (CNS) involvement. We report four novel mutations in GJB1, c.191G>A (p.Cys64Tyr), c.508G>T (p.Val170Phe), c.778A>G (p.Lys260Glu) and c.300C>G (p.His100Gln) identified in four unrelated Greek families. These mutations were characterized by variable phenotypic expression, including a family with the Roussy-Lévy syndrome, and three of them were associated with mild clinical CNS manifestations. Copyright © 2014. Published by Elsevier B.V.

  13. MRT of the central nervous system. 2. rev. and enl. ed.; MRT des Zentralnervensystems

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, Michael [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie; Jansen, Olav (ed.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Radiologie und Neuroradiologie

    2014-11-01

    The book on MRT of the central nervous system includes the following chapters: anatomy, vascular diseases, brain tumors, craniocerebral injuries, infectious diseases, multiple sclerosis and related diseases, metabolic diseases, degenerative diseases, malformations and developmental disorders, hydrocephalus and intracranial hypertension, spinal marrow, degenerative caused spinal and foraminal stenosis, traumata, tumors and tumor-like neoplasm, vascular diseases, inflammations, infections and related diseases, diseases of the peripheral nervous system.

  14. Epstein-Barr virus (EBV) load in cerebrospinal fluid and peripheral blood of patients with EBV-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Liu, Q-F; Ling, Y-W; Fan, Z-P; Jiang, Q-L; Sun, J; Wu, X-L; Zhao, J; Wei, Q; Zhang, Y; Yu, G-P; Wu, M-Q; Feng, R

    2013-08-01

    To evaluate the diagnostic and prognostic utility of monitoring the Epstein-Barr virus (EBV) load in the cerebrospinal fluid (CSF) and peripheral blood for the patients with EBV-associated central nervous system (CNS) diseases after allogeneic hematopoietic stem cell transplantation (allo-HSCT), 172 patients undergoing allo-HSCT were enrolled in the study. The EBV DNA levels of blood were monitored regularly in recipients of transplants for 3 years post transplantation. The EBV DNA levels of CSF were monitored in patients with EBV-associated CNS diseases before the treatment and at different points following the treatment. Post-transplant EBV-associated diseases developed in 27 patients, including 12 patients with EBV-associated CNS diseases. The 3-year cumulative incidences of EBV-associated diseases and EBV-associated CNS diseases were 19.5 ± 3.5% and 8.6 ± 2.4%, respectively. Patients with EBV-associated diseases showed higher loads of EBV DNA in their blood compared with patients with EBV DNA-emia. No difference was seen between the EBV DNA levels of blood in patients with CNS involvement and patients without CNS involvement. The EBV DNA loads of blood increased 3-14 days before the clinical manifestations of EBV-associated diseases emerged. The EBV DNA loads of CSF were higher than that of blood in patients with EBV-associated CNS diseases. In 12 patients with EBV-associated CNS diseases, EBV DNA levels were declining in both blood and CSF with the control of diseases, and the EBV DNA loads of CSF decreased faster than that of blood in 5 patients who responded to treatment, and the EBV DNA levels of CSF increased in 5 patients who were unresponsive to treatment. On multivariate analysis, the use of anti-thymocyte globulin and intensified conditioning regimens were independent risk factors for EBV-associated diseases and EBV-associated CNS diseases. EBV-associated CNS diseases are not rare after allo-HSCT. The EBV DNA loads of CSF could act as an important

  15. Role of T cell – glial cell interactions in creating and amplifying Central Nervous System inflammation and Multiple Sclerosis disease symptoms

    Directory of Open Access Journals (Sweden)

    Eric S. Huseby

    2015-08-01

    Full Text Available Multiple Sclerosis (MS is an inflammatory disease of the Central Nervous System (CNS that causes the demyelination of nerve cells and destroys oligodendrocytes, neurons and axons. Historically, MS has been thought of as a T cell-mediated autoimmune disease of CNS white matter. However, recent studies have identified gray matter lesions in MS patients, suggesting that CNS antigens other than myelin proteins may be involved during the MS disease process. We have recently found that T cells targeting astrocyte-specific antigens can drive unique aspects of inflammatory CNS autoimmunity, including the targeting of gray matter and white matter of the brain and inducing heterogeneous clinical disease courses. In addition to being a target of T cells, astrocytes play a critical role in propagating the inflammatory response within the CNS through cytokine induced NF-ΚB signaling. Here, we will discuss the pathophysiology of CNS inflammation mediated by T cell – glial cell interactions and its contributions to CNS autoimmunity.

  16. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer's Disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Waldemar, Gunhild; Staehelin Jensen, Troels

    2015-01-01

    BACKGROUND: Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function. OBJECTIVE: To investigate autonomic...

  17. Structural and functional features of central nervous system lymphatic vessels.

    Science.gov (United States)

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  18. Structural Nervous System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — GTL's SNS technology aids in the operation of new or existing structural health monitoring (SHM) systems by integrating data and power pathways into the structure....

  19. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2018-01-01

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity, metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympathoexcitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel therapeutic

  20. Gross anatomy and development of the peripheral nervous system.

    Science.gov (United States)

    Catala, Martin; Kubis, Nathalie

    2013-01-01

    The nervous system is divided into the central nervous system (CNS) composed of the brain, the brainstem, the cerebellum, and the spinal cord and the peripheral nervous system (PNS) made up of the different nerves arising from the CNS. The PNS is divided into the cranial nerves III to XII supplying the head and the spinal nerves that supply the upper and lower limbs. The general anatomy of the PNS is organized according to the arrangement of the fibers along the rostro-caudal axis. The control of the development of the PNS has been unravelled during the last 30 years. Motor nerves arise from the ventral neural tube. This ventralization is induced by morphogenetic molecules such as sonic hedgehog. In contrast, the sensory elements of the PNS arise from a specific population of cells originating from the roof of the neural tube, namely the neural crest. These cells give rise to the neurons of the dorsal root ganglia, the autonomic ganglia and the paraganglia including the adrenergic neurons of the adrenals. Furthermore, the supportive glial Schwann cells of the PNS originate from the neural crest cells. Growth factors as well as myelinating proteins are involved in the development of the PNS. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Injectable hydrogels for central nervous system therapy

    International Nuclear Information System (INIS)

    Pakulska, Malgosia M; Shoichet, Molly S; Ballios, Brian G

    2012-01-01

    Diseases and injuries of the central nervous system (CNS) including those in the brain, spinal cord and retina are devastating because the CNS has limited intrinsic regenerative capacity and currently available therapies are unable to provide significant functional recovery. Several promising therapies have been identified with the goal of restoring at least some of this lost function and include neuroprotective agents to stop or slow cellular degeneration, neurotrophic factors to stimulate cellular growth, neutralizing molecules to overcome the inhibitory environment at the site of injury, and stem cell transplant strategies to replace lost tissue. The delivery of these therapies to the CNS is a challenge because the blood–brain barrier limits the diffusion of molecules into the brain by traditional oral or intravenous routes. Injectable hydrogels have the capacity to overcome the challenges associated with drug delivery to the CNS, by providing a minimally invasive, localized, void-filling platform for therapeutic use. Small molecule or protein drugs can be distributed throughout the hydrogel which then acts as a depot for their sustained release at the injury site. For cell delivery, the hydrogel can reduce cell aggregation and provide an adhesive matrix for improved cell survival and integration. Additionally, by choosing a biodegradable or bioresorbable hydrogel material, the system will eventually be eliminated from the body. This review discusses both natural and synthetic injectable hydrogel materials that have been used for drug or cell delivery to the CNS including hyaluronan, methylcellulose, chitosan, poly(N-isopropylacrylamide) and Matrigel. (paper)

  2. Neutron activation analysis in the central nervous system tissues of neurological diseases and rats maintained on minerally unbalanced diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa.

    1995-01-01

    Epidemiological surveys on Guam have suggested that low calcium (Ca), magnesium (Mg) and high Al and Mn in river, soil and drinking water may be implicated in the pathogenesis of PD. Experimentally, low Ca-Mg diets with or without added Al have been found to accelerate Al deposition in the CNS of rats and monkeys. Although excessive deposition of Mn produces neurotoxic action similar to Al in CNS tissues, the mechanism of Mn deposition coupled with Al loading in the presence of low Ca-Mg intake is not yet known. In this animal study, the deposition and metal-metal interaction of both Al and Mn in the CNS, visceral organs and bones of rats fed unbalanced mineral diets were analyzed. Male Wistar rats, weighing 200 g, were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn content were determined in the frontal cortex, spinal cord, kidney, muscle, abdominal aorta, femur and lumbar spine using neutron activation analysis (NAA). Intake of low Ca and Mg with added Al in rats led to the high concentrations of Mn and Al in bones and in the frontal cortex. It is likely that unbalanced mineral diets and metal-metal interactions may lead to the unequal distribution of Al and Mn in bones and ultimately in the CNS inducing CNS degeneration. On the other hand, concentrations of copper (Cu), calcium (Ca) and aluminum (Al) for 26 subanatomical regions of the CNS were measured by neutron activation analysis (NAA) in two cases of Wilson's disease, two of portal systemic encephalopathy, six pathologically verified cases of ALS, four of Parkinson's disease and five neurologically normal controls. Also zinc (Zn) and iron (Fe) concentrations were measured by NAA for frontal and occipital lobes of parkinsonism-dementia. (author)

  3. The administration of the Rorschach inkblot method and changes in autonomic nervous system activity [Aplikace Rorschachovy metody a změny v aktivitě autonomního nervového systému

    Directory of Open Access Journals (Sweden)

    Emil Šiška

    2009-09-01

    Full Text Available BACKGROUND: The administration of some psychological methods can be a temporary source of stress and evoke in some patients a pathophysiological reaction with a negative health outcome. OBJECTIVE: The aim of the study was to find out whether the administration of the Rorschach Inkblot Method (RIM can change the autonomic nervous system (ANS activity in terms of shifting the sympathovagal balance towards sympathetic activity. METHODS: The RIM test was applied to 39 healthy females (22.8 ± 2.4 years. ANS activity was measured by the spectral analysis of heart rate variability (SA HRV before, during, and after the RIM test. The same algorithm as in the previous procedure was employed in 30 healthy females (21.41 ± 1.7 years, however the Stroop color word test (SCWD, a very powerful stressor with a marked impact on ANS activity, instead of the RIM, was administered. Five relative parameters of SA HRV were used: percentages of VLF (very low frequency, LF (low frequency and HF (high frequency components (from the spectral power total and VLF/HF and LF/HF ratios. Changes in VLF/HF and LF/HF during the RIM and SCWT tests were used to compare the tests. RESULTS: During the RIM administration, a significant decrease in spectral power in HF (%, a significant increase in VLF (% and LF (%, and a significant increase in LF/HF and VLF/HF ratios have been shown. No significant differences in VLF/HF (markers of stressful situations among the RIM and the SCWT were found. CONCLUSIONS: The administration of the RIM can act as a powerful stressor and causes a significant decrease in parasympathetic activity and the shift of sympathovagal balance towards sympathetic activity. Administration of RIM and SCWT tests can produce stress of comparable intensity, with a similar impact on ANS activity. [VÝCHODISKA: Použití některých psychologických metod může přechodně působit jako zdroj stresu a u některých pacientů vyvolat patofyziologické reakce s negativn

  4. Nervous system examination on YouTube.

    Science.gov (United States)

    Azer, Samy A; Aleshaiwi, Sarah M; Algrain, Hala A; Alkhelaif, Rana A

    2012-12-22

    Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words "nervous system examination", "nervous system clinical examination", "cranial nerves examination", "CNS examination", "examination of cerebellum", "balance and coordination examination". Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Currently, YouTube provides an adequate resource for learning nervous system examination, which can be used by medical students

  5. Nervous system examination on YouTube

    Directory of Open Access Journals (Sweden)

    Azer Samy A

    2012-12-01

    Full Text Available Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47% of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2 and mainly covered examination of the whole nervous system (8 videos, 13%, cranial nerves (42 videos, 69%, upper limbs (6 videos, 10%, lower limbs (3 videos, 5%, balance and co-ordination (2 videos, 3%. The other 68 (53% videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0. The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers. The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD. Conclusions Currently, YouTube provides an adequate resource

  6. Nervous system examination on YouTube

    Science.gov (United States)

    2012-01-01

    Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Conclusions Currently, YouTube provides an adequate resource for learning

  7. Central nervous system tuberculomata presenting as internuclear ...

    African Journals Online (AJOL)

    Central nervous system (CNS) tuberculoma can have variable presentation depending upon the site and number of tuberculomata. We are reporting a rare case of a 15 years old girl who presented to our hospital with binocular diplopia on right gaze. Clinical examination revealed left sided internuclear ophthalmoplegia ...

  8. Central nervous system tuberculosis | Cherian | African Health ...

    African Journals Online (AJOL)

    Central nervous system (CNS) involvement, one of the most devastating clinical manifestations of tuberculosis (TB) is noted in 5 to 10% of extrapulmonary TB cases, and accounts for approximately 1% of all TB cases. Definitive diagnosis of tuberculous meningitis (TBM) depends upon the detection of the tubercle bacilli in ...

  9. Imaging of the fetal central nervous system

    NARCIS (Netherlands)

    Pistorius, L.R.

    2008-01-01

    Introduction : Ultrasound and MR imaging of the fetal central nervous system (CNS) develop at an ever-increasing rate. Theoretically, the two modalities should be synergistic, but a literature review revealed the difficulties of determining the merit of either technique and revealed gaps in our

  10. Cardiac autonomic testing and treating heart disease. 'A clinical perspective'

    Directory of Open Access Journals (Sweden)

    Nicholas L. DePace

    2014-12-01

    Full Text Available Background Coronary heart disease (CHD is a major health concern, affecting nearly half the middle-age population and responsible for nearly one-third of all deaths. Clinicians have several major responsibilities beyond diagnosing CHD, such as risk stratification of patients for major adverse cardiac events (MACE and treating risks, as well as the patient. This second of a two-part review series discusses treating risk factors, including autonomic dysfunction, and expected outcomes. Methods Therapies for treating cardiac mortality risks including cardiovascular autonomic neuropathy (CAN, are discussed. Results While risk factors effectively target high-risk patients, a large number of individuals who will develop complications from heart disease are not identified by current scoring systems. Many patients with heart conditions, who appear to be well-managed by traditional therapies, experience MACE. Parasympathetic and Sympathetic (P&S function testing provides more information and has the potential to further aid doctors in individualizing and titrating therapy to minimize risk. Advanced autonomic dysfunction (AAD and its more severe form cardiovascular autonomic neuropathy have been strongly associated with an elevated risk of cardiac mortality and are diagnosable through autonomic testing. This additional information includes patient-specific physiologic measures, such as sympathovagal balance (SB. Studies have shown that establishing and maintaining proper SB minimizes morbidity and mortality risk. Conclusions P&S testing promotes primary prevention, treating subclinical disease states, as well as secondary prevention, thereby improving patient outcomes through (1 maintaining wellness, (2 preventing symptoms and disorder and (3 treating subclinical manifestations (autonomic dysfunction, as well as (4 disease and symptoms (autonomic neuropathy.

  11. Conventional external beam radiotherapy for central nervous system malignancies

    International Nuclear Information System (INIS)

    Halperin, E.C.; Burger, P.C.

    1985-01-01

    Fractionated external beam photon radiotherapy is an important component of the clinical management of malignant disease of the central nervous system. The practicing neurologist or neurosurgeon frequently relies on the consultative and treatment skills of a radiotherapist. This article provides a review for the nonradiotherapist of the place of conventional external beam radiotherapy in neuro-oncology. 23 references

  12. Brain Facts: A Primer on the Brain and Nervous System.

    Science.gov (United States)

    Carey, Joseph, Ed.

    This booklet describes only a glimpse of what is known about the nervous system, brain disorders, and the exciting avenues of research that promise new therapies for many of the most devastating neurological and psychiatric diseases. The neuron, brain development, sensation and perception, learning and memory, movement, advances and challenges in…

  13. Magnetic Resonance Spectroscopy in evaluation of central nervous system

    International Nuclear Information System (INIS)

    Krolicki, L.; Bak, M.; Grieb, P.

    1996-01-01

    The article presents the current results of MR spectroscopy in evaluation of central nervous system. This method is useful in examination of brain ischemia, brain tumors, epilepsy; white matter disorders and degeneration diseases. MR spectroscopy is unique technique for in vivo examination of the brain in physiological and pathophysiological states. (author)

  14. Computed tomography of the central nervous system in small animals

    International Nuclear Information System (INIS)

    Tipold, A.; Tipold, E.

    1991-01-01

    With computed tomography in 44 small animals some well defined anatomical structures and pathological processes of the central nervous system are described. Computed tomography is not only necessary for the diagnosis of tumors; malformations, inflammatory, degenerative and vascular diseases and traumas are also visible

  15. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  16. Influence of thyroid in nervous system growth.

    Science.gov (United States)

    Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L

    2001-08-01

    Nervous system growth and differentiation are closely correlated with the presence of iodine and thyroid hormones in initial development stages. In the human species, encephalon maturation during the first quarter of pregnancy is affected according to recent studies by the transplacenta passage of maternal thyroid hormones while it depends on initial iodiothyronin secretion by the foetal gland after the 12th week of pregnancy. Thyroid hormone deficiency during nervous system development causes altered noble nervous cells, such as the pyramidal cortical and Purkinje cells, during glial cell proliferation and differentiation alike. Neurons present cell hypoplasia with reduced axon count, dendritic branching, synaptic spikes and interneuron connections. Oligodendrocytes decrease in number and average myelin content consequently drops. Biochemical studies on hypothyroid rats have demonstrated alterations to neuron intraplasmatic microtubule content and organisation, changed mitochondria number and arrangement and anomalies in T3 nuclear and citoplasmatic receptor maturation. Alterations to microtubules are probably responsible for involvement of the axon-dendrite system, and are the consequence of deficient thyroid hormone action on the mitochondria, the mitochondria enzymes and proteins associated with microtubules. Nuclear and citoplasmatic receptors have been identified and gene clonation studies have shown two families of nuclear receptors that include several sub-groups in their turn. A complex scheme of temporal and spatial expression of these receptors exists, so they probably contribute with one complementary function, although their physiological role differs. The action of thyroid hormones occurs by changing cell protein levels because of their regulation at the transcriptional or post-transcriptional level. Genes submitted to thyroid hormone control are either expressed by oligodendrytes, which are myelin protein coders or glial differentiation mediators, or

  17. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  18. Differention of parkinson's disease, multiple system atrophy and pure autonomic failure using I-123 MIBG myocardial scintigraphy

    International Nuclear Information System (INIS)

    Zhang, Z.; Religiosol, D.; Machac, J.; Nahm, K.F.; Kaufmann, H.C.; Yahr, M.D.

    2004-01-01

    Purpose: Clinical differentiation of Parkinson's disease (PD), multiple system atrophy (MSA), and pure autonomic failure (PAF) may be difficult. 123I MIBG studies have shown significantly reduced cardiac uptake in patient with PD but not in MSA suggesting that postganglionic neurons are only affected in PD. No systematic study using 123I MIBG in patients with PAF has been reported. The Objective of this study is to investigate whether MSA, PD, and PAF can be differentiated by 1231 MIBG myocardial scintigraphy. Methods: 1231 MIBG was synthesized using Cu(I) assisted kit method (labeling efficiency 99.84±0.47%, n = 17). Five patients with a clinical diagnosis of MSA (age 63±11), 4 with PD (62±10), 4 with PAF (60±7), and 3 normal controls (50±19) were referred to NM blinded to the categories of the patients. SPECT and planar chest imaging was taken 15 min (early) and 4 hours (delayed) postinjection of 200-351 MBq 123I MIBG using a Picker triple head SPECT camera. Regions of interest were placed over the heart (H) and mediastinum (M); the average count ratios (H/M) were calculated. Each subject had a separate 201Tl perfusion imaging to exclude significant myocardial perfusion defects. Results: As shown in the Table, the H/M ratio in patients with MSA was significantly lower than that in normal subjects (P = 0.027) in early imaging, but not in the delayed imaging. Both H/M ratios in PD and PAF were significantly lower than that in MSA in early (P = 0.006, P = 0.008) and delayed (P< 0.0001, P < 0.00001) imaging. Only delayed uptake ratio showed significant difference (P = 0.013) between PD and PAF. Conclusions: 123I MIBG cardiac uptake in delayed imaging was significantly reduced in patients with PD and PAF while it was normal in MSA. Significant cardiac uptake difference was also found between PD and PAF. 123I MIBG myocardial scintigraphy appears to provide helpful information in the differential diagnosis of these disorders. (authors)

  19. Successful treatment with cladribine of Erdheim-Chester disease with orbital and central nervous system involvement developing after treatment of langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Perić Predrag

    2016-01-01

    Full Text Available Introduction. Erdheim-Chester disease (ECD is a rare, systemic form of non-Langerhans cell histiocytosis of the juvenile xantho-granuloma family with characteristic bilateral symmetrical long bone osteosclerosis, associated with xanthogranulomatous extras-keletal organ involvement. In ECD, central nervous system (CNS and orbital lesions are frequent, and more than half of ECD patients carry the V600E mutation of the proto-oncogene BRAF. The synchronous or metachronous development of ECD and Langerhans cell histiocytosis (LCH in the same patients is rare, and the possible connection between them is still obscure. Cladribine is a purine substrate analogue that is toxic to lymphocytes and monocytes with good hematoencephalic penetration. Case report. We presented a 23-year-old man successfully treated with cladribine due to BRAF V600E-mutation-negative ECD with bilateral orbital and CNS involvement. ECD developed metachronously, 6 years after chemotherapy for multisystem LCH with complete disease remission and remaining central diabetes insipidus. During ECD treatment, the patient received 5 single-agent chemotherapy courses of cladribine (5 mg/m2 for 5 consecutive days every 4 weeks, with a reduction in dose to 4 mg/m2 in a fifth course, delayed due to severe neutropenia and thoracic dermatomal herpes zoster infection following the fourth course. Radiologic signs of systemic and CNS disease started to resolve 3 months after the end of chemotherapy, and CNS lesions completely resolved within 2 years after the treatment. After 12-year follow-up, there was no recurrence or appearance of new systemic or CNS xanthogranu-lomatous lesions or second malignancies. Conclusion. In accordance with our findings and recommendations provided by other authors, cladribine can be considered an effective alternative treatment for ECD, especially with CNS involvement and BRAF V600E-mutation-negative status, when interferon-α as the first-line therapy fails.

  20. Learning by Heart: Students Use Heart Rate Patterns To Identify Nervous System Imbalances.

    Science.gov (United States)

    Ackerly, Spafford C.

    2001-01-01

    Introduces a science unit on heart rate variability (HVR) patterns. Uses spectral analysis to determine the effects of environmental stimulants such as music and emotional stress on heart rate. Observes relaxation techniques and their effects on the autonomous nervous system. (Contains 12 references.) (YDS)

  1. Diagnosis abnormalities of limb movement in disorders of the nervous system

    Science.gov (United States)

    Tymchik, Gregory S.; Skytsiouk, Volodymyr I.; Klotchko, Tatiana R.; Bezsmertna, Halyna; Wójcik, Waldemar; Luganskaya, Saule; Orazbekov, Zhassulan; Iskakova, Aigul

    2017-08-01

    The paper deals with important issues of diagnosis early signs of diseases of the nervous system, including Parkinson's disease and other specific diseases. Small quantities of violation trajectory of spatial movement of the extremities of human disease at the primary level as the most appropriate features are studied. In modern medical practice is very actual the control the emergence of diseases of the nervous system, including Parkinson's disease. In work a model limbs with six rotational kinematic pairs for diagnosis of early signs of diseases of the nervous system is considered. subject.

  2. Epidemiology and phospholipase activity of oral Candida spp. among patients with central nervous system diseases before and after dental cleaning procedure

    Directory of Open Access Journals (Sweden)

    Aurélia Silva Ribeiro

    2010-03-01

    Full Text Available Patients suffering of diseases that affect central nervous system may be considered more susceptible to the infectious diseases of mouth. Sixty-nine patients suffering of cerebral palsy, Down's syndrome and metal retardation were submitted to saliva examination for the presence of Candida spp. before and after a procedure of dental cleaning. The isolates were submitted to assay for verifying phospholipase production. 55.10% of the patients provided isolation of Candida spp. The frequency of isolation obtained before dental procedure was: C. albicans (83.33%, C. krusei (8.33% and C. kefyr, C. parapsilosis and C. glabrata (2.78% each. The frequency after the procedure was: C. albicans (68.57%, C. parapsilosis (11.43%, C. krusei and C. kefyr (8.57% each and Candida glabrata (2.86%. We verified significantly difference (p < 0.01 between populations obtained at the two examinations. Phospholipase production was verified only among C. albicans strains and the proportion of producers was higher when testing isolates obtained after dental cleaning procedure. Studies focused on Candida spp. isolation are useful for better comprehension of the role of these yeasts on the oral flora from patients with cerebral palsy, Down's syndrome and metal retardation.

  3. INSULIN AND INSULIN RESISTANCE: NEW MOLECULE MARKERS AND TARGET MOLECULE FOR THE DIAGNOSIS AND THERAPY OF DISEASES OF THE CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    A. B. Salmina

    2013-01-01

    Full Text Available The review summarizes current data on the role of insulin in the regulation of t glucose metabolism in the central nervous system at physiologic and pathologic conditions. For many years, the brain has been considered as an insulin-independent organ which utilizes glucose without insulin activity. However, it is become clear now that insulin not only regulates glucose transport and metabolism, but also has modulatory efftects in impact on excitability, proliferation and differentiation of brain progenitor cells, synaptic plasticity and memory formation, secretion of neurotransmitters, apoptosis. We have critically reviewed literature information and our own data on the role of insulin and insulin resistance in neuron-glia metabolic coupling, regulation of NAD+ metabolism and action of NAdependent enzymes, neurogenesis, brain development in (pathophysiological conditions. The paper clarifies interrelations between alterations in glucose homeostasis, development of insulin resistance and development of neurodegeneration (Alzheimer's disease and Parkinson's disease, autism, stroke, and depression. We discuss the application of novel molecular markers of insulin resistance (adipokines, α-hydroxybutyrate, BDNF, insulin-regulated aminopeptidase, provasopressin and molecular targets for diagnostics and treatment of brain disorders associated with insulin resistance.

  4. Effect of autogenic training on cardiac autonomic nervous activity in high-risk fire service workers for posttraumatic stress disorder.

    Science.gov (United States)

    Mitani, Satoko; Fujita, Masatoshi; Sakamoto, Satoko; Shirakawa, Taro

    2006-05-01

    We investigated the effect of autogenic training (AT) on cardiac autonomic nervous activity in fire services workers with the use of the questionnaire of the Japanese-language version of Impact of Event Scale-Revised (IES-R-J) and indexes of heart rate variability. We studied 22 male fire services workers who were divided into posttraumatic stress disorder (PTSD)-related stress group (n=10) and control group (n=12). They underwent AT twice or three times a week for 2 months. Posttraumatic stress disorder-related stress group showed a significantly higher cardiac sympathetic nervous activity and a significantly lower cardiac parasympathetic nervous activity than control group at baseline. Autogenic training significantly decreased cardiac sympathetic nervous activity and significantly increased cardiac parasympathetic nervous activity in both groups. These changes were accompanied by a significant decrease in the total points of IES-R-J. Autogenic training is effective for ameliorating the disturbance of cardiac autonomic nervous activity and psychological issues secondary to PTSD.

  5. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    Science.gov (United States)

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  6. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    Science.gov (United States)

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  7. Adult primary angiitis of the central nervous system: isolated small-vessel vasculitis represents distinct disease pattern.

    Science.gov (United States)

    de Boysson, Hubert; Boulouis, Grégoire; Aouba, Achille; Bienvenu, Boris; Guillevin, Loïc; Zuber, Mathieu; Touzé, Emmanuel; Naggara, Olivier; Pagnoux, Christian

    2017-03-01

    We aimed to identify whether presentations and outcomes in adult patients with isolated small-vessel primary angiitis of the CNS (PACNS) would differ from other patients with large/medium-vessel involvement. In the French PACNS cohort, we compared the characteristics, treatments and outcomes of patients with isolated small-vessel disease (normal CT, MR and/or conventional angiograms, brain biopsy positive for vasculitis) with other patients who had large/medium-vessel involvement (vessel abnormalities on CT, MR or conventional angiograms). A good functional outcome was defined as a modified Rankin scale ⩽2 at last follow-up, regardless of the occurrence of relapse. Among the 102 patients in the cohort, 26 (25%) had isolated small-vessel PACNS, whereas the 76 others demonstrated large/medium-vessel involvement. Patients with isolated small-vessel PACNS had more seizures (P adult patients with isolated small-vessel PACNS presented some distinct disease features and relapsed more often than other PACNS patients who had large/medium-vessel involvement. Functional outcomes and mortality did not differ. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Radiation risks to the developing nervous system

    International Nuclear Information System (INIS)

    Kriegel, H.; Schmahl, W.; Stieve, F.E.; Gerber, G.B.

    1986-01-01

    A symposium dealing with 'Radiation Risks to the Developing Nervous System' held at Neuherberg, June 18-20, 1985 was organised by the Radiation Protection Programme of the Commission of the European Communities and the Gesellschaft fuer Strahlen- und Umweltforschung mbH. The proceedings of this symposium present up-to-date information on the development of the nervous system and the modifications caused by prenatal radiation there upon. A large part of the proceedings is devoted to the consequences of prenatal irradiation in experimental animals with respect to alterations in morphology, biochemistry and behaviour, to the influence of dose, dose rate and radiation quality and to the question whether damage of the brain can arise from a synergistic action of radiation together with other agents. Since animal models for damage to the human central nervous system have inherent short-comings due to the differences in structure, complexity and development it is discussed how experimental studies could be applied to the human situation. The most recent data on persons exposed in utero at Hiroshima and Nagasaki are reviewed. A round table discussion, published in full, analyses all this information with a view to radiation protection, and defines the areas where future studies are needed. Separate abstracts were prepared for papers in these proceedings. (orig./MG)

  9. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  10. Diverse roles of neurotensin agonists in the central nervous system

    Directory of Open Access Journals (Sweden)

    Mona eBoules

    2013-03-01

    Full Text Available NT is a tridecapeptide that is found in the central nervous system and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several central nervous system (CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and Parkinson’s disease.

  11. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com [National Research Tomsk State University, 634050, Tomsk, Lenin Avenue, 36 (Russian Federation)

    2015-11-17

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  12. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    International Nuclear Information System (INIS)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-01-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  13. Autonomous navigation system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  14. The Central Nervous System and Bone Metabolism: An Evolving Story.

    Science.gov (United States)

    Dimitri, Paul; Rosen, Cliff

    2017-05-01

    Our understanding of the control of skeletal metabolism has undergone a dynamic shift in the last two decades, primarily driven by our understanding of energy metabolism. Evidence demonstrating that leptin not only influences bone cells directly, but that it also plays a pivotal role in controlling bone mass centrally, opened up an investigative process that has changed the way in which skeletal metabolism is now perceived. Other central regulators of bone metabolism have since been identified including neuropeptide Y (NPY), serotonin, endocannabinoids, cocaine- and amphetamine-regulated transcript (CART), adiponectin, melatonin and neuromedin U, controlling osteoblast and osteoclast differentiation, proliferation and function. The sympathetic nervous system was originally identified as the predominant efferent pathway mediating central signalling to control skeleton metabolism, in part regulated through circadian genes. More recent evidence points to a role of the parasympathetic nervous system in the control of skeletal metabolism either through muscarinic influence of sympathetic nerves in the brain or directly via nicotinic receptors on osteoclasts, thus providing evidence for broader autonomic skeletal regulation. Sensory innervation of bone has also received focus again widening our understanding of the complex neuronal regulation of bone mass. Whilst scientific advance in this field of bone metabolism has been rapid, progress is still required to understand how these model systems work in relation to the multiple confounders influencing skeletal metabolism, and the relative balance in these neuronal systems required for skeletal growth and development in childhood and maintaining skeletal integrity in adulthood.

  15. Doenças do sistema nervoso de bovinos no semiárido nordestino Diseases of the nervous system of cattle in the semiarid of Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Glauco J.N. Galiza

    2010-03-01

    Full Text Available Para determinar as doenças que ocorrem no sistema nervoso de bovinos no semiárido nordestino, foi realizado um estudo retrospectivo em 411 necropsias de bovinos realizadas no Hospital Veterinário da Universidade Federal de Campina Grande, Patos, Paraíba, entre janeiro de 2000 a dezembro de 2008. Dos 411 casos analisados 139 (33,81% apresentaram alterações clínicas do sistema nervoso e as fichas foram revisadas para determinar os principais achados referentes à epidemiologia, aos sinais clínicos e às alterações macroscópicas e microscópicas. Em 28 (20,14% casos o diagnóstico foi inconclusivo. As principais enfermidades foram raiva (48,7% dos casos com sinais nervosos, abscessos cerebrais (7,2% incluindo três casos de abscesso da pituitária, febre catarral maligna (6,3%, botulismo (6,3%, alterações congênitas (4,5%, traumatismo (4,5%, tuberculose (2,7%, tétano (2,7%, infecção por herpesvírus bovino-5 (2,7%, encefalomielite não supurativa (2,7%, intoxicação por Prosopis juliflora (2,7%, status spongiosus congênito de causa desconhecida (1,8% e polioencefalomalacia (1,8%. Outras doenças diagnosticadas numa única oportunidade (0,9% foram criptococose, listeriose, encefalite tromboembólica, linfossarcoma, tripanossomíase e babesiose por Babesia bovis.Diseases of the nervous system of cattle in the semiarid region of northeastern Brazil were evaluated by a retrospective study of 411 cattle necropsies performed in the Veterinary Hospital of the Federal University of Campina Grande, Patos, Paraíba, from January 2000 to December 2008. Of the 411 cases analyzed, 139 (33.81% were from cattle that presented nervous signs and the records were reviewed to determine the epidemiological, clinical, and macroscopic and histologic main features. Diagnosis was inconclusive in 28 cases (20.14%. In cases with diagnosis the main diseases were rabies (48.7% of the cases with nervous signs, brain abscesses (7.2% including three cases of

  16. The BIRN Project: Imaging the Nervous System

    International Nuclear Information System (INIS)

    Ellisman, Mark

    2006-01-01

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences and protein products. The general premise of the neuroscience goal is simple; namely that with 'complete' knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their cell and tissue contexts.

  17. Congenital tumors of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Severino, Mariasavina [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); Schwartz, Erin S. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Thurnher, Majda M. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Rydland, Jana [MR Center, St. Olav' s Hospital HF, Trondheim (Norway); Nikas, Ioannis [Agia Sophia Children' s Hospital, Imaging Department, Athens (Greece); Rossi, Andrea [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); G. Gaslini Children' s Hospital, Department of Pediatric Neuroradiology, Genoa (Italy)

    2010-06-15

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into ''definitely congenital'' (present or producing symptoms at birth), ''probably congenital'' (present or producing symptoms within the first week of life), and ''possibly congenital'' (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors

  18. Congenital tumors of the central nervous system

    International Nuclear Information System (INIS)

    Severino, Mariasavina; Schwartz, Erin S.; Thurnher, Majda M.; Rydland, Jana; Nikas, Ioannis; Rossi, Andrea

    2010-01-01

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into ''definitely congenital'' (present or producing symptoms at birth), ''probably congenital'' (present or producing symptoms within the first week of life), and ''possibly congenital'' (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors, where aggressive surgical treatment leads to disease

  19. Central nervous system affecting drugs and road traffic accidents ...

    African Journals Online (AJOL)

    Central nervous system affecting drugs and road traffic accidents among commercial motorcyclists. ... including driving under the influence of drugs that affect the central nervous system (CNS). ... Keywords: Brain, influence, riders, substances ...

  20. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    nervous system. The present .... In the vertebrate nervous system, special types of cells called radial glia .... As men- tioned earlier, astrocytes extend a 'foot process' (Figure 3) that ... capillaries that for a long time it was thought that these cells.

  1. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    Science.gov (United States)

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.

  2. Optical cuff for optogenetic control of the peripheral nervous system

    Science.gov (United States)

    Michoud, Frédéric; Sottas, Loïc; Browne, Liam E.; Asboth, Léonie; Latremoliere, Alban; Sakuma, Miyuki; Courtine, Grégoire; Woolf, Clifford J.; Lacour, Stéphanie P.

    2018-02-01

    Objective. Nerves in the peripheral nervous system (PNS) contain axons with specific motor, somatosensory and autonomic functions. Optogenetics offers an efficient approach to selectively activate axons within the nerve. However, the heterogeneous nature of nerves and their tortuous route through the body create a challenging environment to reliably implant a light delivery interface. Approach. Here, we propose an optical peripheral nerve interface—an optocuff—, so that optogenetic modulation of peripheral nerves become possible in freely behaving mice. Main results. Using this optocuff, we demonstrate orderly recruitment of motor units with epineural optical stimulation of genetically targeted sciatic nerve axons, both in anaesthetized and in awake, freely behaving animals. Behavioural experiments and histology show the optocuff does not damage the nerve thus is suitable for long-term experiments. Significance. These results suggest that the soft optocuff might be a straightforward and efficient tool to support more extensive study of the PNS using optogenetics.

  3. Intelligent autonomous systems 12. Vol. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukhan [Sungkyunkwan Univ., Gyeonggi-Do (Korea, Republic of). College of Information and Communication Engineering; Yoon, Kwang-Joon [Konkuk Univ., Seoul (Korea, Republic of); Cho, Hyungsuck [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Lee, Jangmyung (eds.) [Pusan National Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2013-02-01

    Recent research in Intelligent and Autonomous Systems. Volume 2 of the proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, jeju Island, Korea. Written by leading experts in the field. Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of ''Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 2 includes contributions devoted to Service Robotics and Human-Robot Interaction and Autonomous Multi-Agent Systems and Life Engineering.

  4. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    Science.gov (United States)

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  5. Imposing limits on autonomous systems.

    Science.gov (United States)

    Hancock, P A

    2017-02-01

    Our present era is witnessing the genesis of a sea-change in the way that advanced technologies operate. Amongst this burgeoning wave of untrammelled automation there is now beginning to arise a cadre of ever-more independent, autonomous systems. The degree of interaction between these latter systems with any form of human controller is becoming progressively more diminished and remote; and this perhaps necessarily so. Here, I advocate for human-centred and human favouring constraints to be designed, programmed, promulgated and imposed upon these nascent forms of independent entity. I am not sanguine about the collective response of modern society to this call. Nevertheless, the warning must be voiced and the issue debated, especially among those who most look to mediate between people and technology. Practitioner Summary: Practitioners are witnessing the penetration of progressively more independent technical orthotics into virtually all systems' operations. This work enjoins them to advocate for sentient, rational and mindful human-centred approaches towards such innovations. Practitioners need to place user-centred concerns above either the technical or the financial imperatives which motivate this line of progress.

  6. Stereotactic Radiation Therapy can Safely and Durably Control Sites of Extra-Central Nervous System Oligoprogressive Disease in Anaplastic Lymphoma Kinase-Positive Lung Cancer Patients Receiving Crizotinib

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Gregory N., E-mail: gregory.gan@ucdenver.edu [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Weickhardt, Andrew J.; Scheier, Benjamin; Doebele, Robert C. [Department of Medical Oncology, University of Colorado, Aurora, Colorado (United States); Gaspar, Laurie E.; Kavanagh, Brian D. [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Camidge, D. Ross [Department of Medical Oncology, University of Colorado, Aurora, Colorado (United States)

    2014-03-15

    Purpose: To analyze the durability and toxicity of radiotherapeutic local ablative therapy (LAT) applied to extra-central nervous system (eCNS) disease progression in anaplastic lymphoma kinase-positive non-small cell lung cancer (NSCLC) patients. Methods and Materials: Anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib and manifesting ≤4 discrete sites of eCNS progression were classified as having oligoprogressive disease (OPD). If subsequent progression met OPD criteria, additional courses of LAT were considered. Crizotinib was continued until eCNS progression was beyond OPD criteria or otherwise not suitable for further LAT. Results: Of 38 patients, 33 progressed while taking crizotinib. Of these, 14 had eCNS progression meeting OPD criteria suitable for radiotherapeutic LAT. Patients with eCNS OPD received 1-3 courses of LAT with radiation therapy. The 6- and 12-month actuarial local lesion control rates with radiation therapy were 100% and 86%, respectively. The 12-month local lesion control rate with single-fraction equivalent dose >25 Gy versus ≤25 Gy was 100% versus 60% (P=.01). No acute or late grade >2 radiation therapy-related toxicities were observed. Median overall time taking crizotinib among those treated with LAT versus those who progressed but were not suitable for LAT was 28 versus 10.1 months, respectively. Patients continuing to take crizotinib for >12 months versus ≤12 months had a 2-year overall survival rate of 72% versus 12%, respectively (P<.0001). Conclusions: Local ablative therapy safely and durably eradicated sites of individual lesion progression in anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib. A dose–response relationship for local lesion control was observed. The suppression of OPD by LAT in patients taking crizotinib allowed an extended duration of exposure to crizotinib, which was associated with longer overall survival.

  7. Autonomous Operations System: Development and Application

    Science.gov (United States)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  8. Autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  9. Rituximab treatment in primary angiitis of the central nervous system.

    Science.gov (United States)

    Patel, Shreeya; Ross, Laura; Oon, Shereen; Nikpour, Mandana

    2018-06-01

    Primary angiitis of the central nervous system (PACNS) is a rare autoimmune vasculitis affecting the brain and spinal cord. Treatment with biological agents has revolutionised the treatment of many rheumatic conditions but there is scant literature regarding the use of biological agents in PACNS. We present three cases of PACNS treated with rituximab, including two cases of relapsed disease, and a literature review suggesting a role for rituximab in this condition. © 2018 Royal Australasian College of Physicians.

  10. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed w