WorldWideScience

Sample records for autonomic nervous system diseases

  1. Autonomic Nervous System Dysfunction in Parkinson's Disease.

    Science.gov (United States)

    Zesiewicz, Theresa A.; Baker, Matthew J.; Wahba, Mervat; Hauser, Robert A.

    2003-03-01

    Autonomic nervous system (ANS) dysfunction is common in Parkinson's disease (PD), affects 70% to 80% of patients, and causes significant morbidity and discomfort. Autonomic nervous system dysfunction symptoms in PD include sexual dysfunction, swallowing and gastrointestinal disorders, bowel and bladder abnormalities, sleep disturbances, and derangements of cardiovascular regulation, particularly, orthostatic hypotension. Autonomic nervous system dysfunction in PD may be caused by an underlying degenerative process that affects the autonomic ganglia, brainstem nuclei, and hypothalamic nuclei. Anti-parkinsonian medications can cause or worsen symptoms of ANS dysfunction. The care of a PD patient with ANS dysfunction relies on its recognition and directed treatment, including coordinated care between the neurologist and appropriate subspecialist. Pharmacotherapy may be useful to treat orthostasis, gastrointestinal, urinary, and sexual dysfunction.

  2. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  3. Involvement of the autonomic nervous system in Chagas heart disease

    Directory of Open Access Journals (Sweden)

    Edison Reis Lopes

    1983-12-01

    Full Text Available The autonomic nervous system and especially the intracardiac autonomic nervous system is involved in Chagas' disease. Ganglionitis and periganglionitis were noted in three groups ofpatients dying with Chagas'disease: 1 Those in heart failure; 2 Those dying a sudden, non violent death and; 3 Those dying as a consequence ofaccidents or homicide. Hearts in the threegroups also revealed myocarditis and scattered involvement of intramyocardial ganglion cells as well as lesions of myelinic and unmyelinic fibers ascribable to Chagas'disease. In mice with experimentally induced Chagas' disease weobserved more intensive neuronal lesions of the cardiac ganglia in the acute phase of infection. Perhaps neuronal loss has a role in the pathogenesis of Chagas cardiomyopathy. However based on our own experience and on other data from the literature we conclude that the loss of neurones is not the main factor responsible for the manifestations exhibited by chronic chagasic patients. On the other hand the neuronal lesions may have played a role in the sudden death ofone group of patients with Chagas'disease but is difficult to explain the group of patients who did not die sudderly but instead progressed to cardiac failure.

  4. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  5. Immunomodulation by the autonomic nervous system: therapeutic approach for cancer, collagen diseases, and inflammatory bowel diseases.

    Science.gov (United States)

    Abo, Toru; Kawamura, Toshihiko

    2002-10-01

    The distribution of leukocytes is regulated by the autonomic nervous system in humans and animals. The number and function of granulocytes are stimulated by sympathetic nerves whereas those of lymphocytes are stimulated by parasympathetic nerves. This is because granulocytes bear adrenergic receptors, but lymphocytes bear cholinergic receptors on the surface. These regulations may be beneficial to protect the body of living beings. However, when the autonomic nervous system deviates too much to one direction, we fall victim to certain diseases. For example, severe physical or mental stress --> sympathetic nerve activation --> granulocytosis --> tissue damage, including collagen diseases, inflammatory bowel diseases, and cancer. If we introduce the concept of immunomodulation by the autonomic nervous system, a new approach for collagen diseases, inflammatory bowel diseases, and even cancer is raised. With this approach, we believe that these diseases are no longer incurable.

  6. Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases.

    Science.gov (United States)

    He, Bo; Lu, Zhibing; He, Wenbo; Huang, Bing; Jiang, Hong

    2016-06-01

    The cardiac autonomic nervous system has been known to play an important role in the development and progression of cardiovascular diseases. Autonomic modulation by electrical stimulation of the parasympathetic nervous system, which increases the parasympathetic activity and suppresses the sympathetic activity, is emerging as a therapeutic strategy for the treatment of cardiovascular diseases. Here, we review the recent literature on autonomic modulation by electrical stimulation of the parasympathetic nervous system, including vagus nerve stimulation, transcutaneous auricular vagal stimulation, spinal cord stimulation, and ganglionated plexi stimulation, in the treatment of heart failure, atrial fibrillation, and ventricular arrhythmias.

  7. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases.

    Science.gov (United States)

    Tobaldini, Eleonora; Costantino, Giorgio; Solbiati, Monica; Cogliati, Chiara; Kara, Tomas; Nobili, Lino; Montano, Nicola

    2017-03-01

    Sleep deprivation (SD) has become a relevant health problem in modern societies. We can be sleep deprived due to lifestyle habits or due to sleep disorders, such as insomnia, obstructive sleep apnea (OSA) and neurological disorders. One of the common element of sleep disorders is the condition of chronic SD, which has complex biological consequences. SD is capable of inducing different biological effects, such as neural autonomic control changes, increased oxidative stress, altered inflammatory and coagulatory responses and accelerated atherosclerosis. All these mechanisms links SD and cardiovascular and metabolic disorders. Epidemiological studies have shown that short sleep duration is associated with increased incidence of cardiovascular diseases, such as coronary artery disease, hypertension, arrhythmias, diabetes and obesity, after adjustment for socioeconomic and demographic risk factors and comorbidities. Thus, an early assessment of a condition of SD and its treatment is clinically relevant to prevent the harmful consequences of a very common condition in adult population.

  8. The role of the autonomic nervous system in diabetes and cardiovascular disease : an epidemiological approach

    NARCIS (Netherlands)

    Hillebrand, Stefanie

    2015-01-01

    The main objective of this thesis was to study the role of autonomic nervous system (ANS) function in the development of diabetes and cardiovascular disease using an epidemiological approach. Based on earlier studies it has remained unclear whether impaired ANS function is a risk factor for the deve

  9. Autonomic nervous system and risk factors for vascular disease. Effects of autonomic unbalance in schizophrenia and Parkinson's disease.

    Science.gov (United States)

    Scigliano, Giulio; Ronchetti, Gabriele; Girotti, Floriano

    2008-02-01

    Alterations of the cardiovascular system and of the glucose and lipid metabolism can represent important factors of vascular risk. The autonomic nervous system, through its two efferent branches, the parasympatheticcholinergic and the sympathetic-adrenergic, plays an important role in the control of the cardiovascular activity and of the glucose and lipid metabolism, and its impaired working can interfere with these functions. An increased sympathetic activity and an increased frequency of diabetes, dyslipidemia, hypertension and obesity have been reported in untreated schizophrenic patients, and a further worsening of these vascular risk factors has been signalled as a side effect of treatment with neuroleptic drugs. The opposite is observed in Parkinson's disease, where the reduced autonomic activity induced by the illness is associated with a decreased frequency of vascular risk factors, and their occurrence is further reduced by the treatment with dopaminergic drugs.

  10. Autonomic nervous system and immune system interactions.

    Science.gov (United States)

    Kenney, M J; Ganta, C K

    2014-07-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease

  11. Autonomic nervous system response to L-dopa in patients with advanced Parkinson's disease.

    Science.gov (United States)

    Ruonala, Verneri; Tarvainen, Mika P; Karjalainen, Pasi A; Pekkonen, Eero; Rissanen, Saara M

    2015-01-01

    Levodopa is the main treatment method for reducing the symptoms of Parkinson's disease. Whereas it reduces the motor symptoms efficiently, its effect on autonomous nervous system is not clear. The information about effect of levodopa on heart rate variability is not coherent between the studies. In this study, ECG of 11 patients with Parkinson's disease was measured during levodopa challenge with pronounced dose of fast release levodopa to ensure the positive drug effect for deep brain stimulation treatment. Heart rate variability analysis was done at three time points, before administration of levodopa, 30 and 60 minutes after administration. After 30 minutes of administration, the HRV parameters show that parasympathetic nervous system activity is decreased and the sympatho-vagal balance is shifted towards sympathetic control. At 60 minutes after administration the parasympathetic nervous system activates slightly and causes a decrease in heart rate.

  12. [Autonomic nervous system as a source of biomarkers in Parkinson's disease].

    Science.gov (United States)

    Pouclet, Hélène; Lebouvier, Thibaud; Flamant, Mathurin; Coron, Emmanuel; Neunlist, Michel; Derkinderen, Pascal; Rouaud, Tiphaine

    2012-07-01

    No validated biomarker is yet available for Parkinson's disease (PD). Clinical PD symptoms include dopa-responsive motor symptoms and dopa-resistant non motor symptoms. Some of the non motor symptoms begin during the premotor stage, like constipation, hyposmia or REM-sleep disorders. Dementia, gait disorders and dysarthria occur in later stages of the disease. PD pathology extends well beyond the substantia nigra. It affects autonomic and non autonomic nuclei in the brainstem and in the medulla, the olfactory bulb and the peripheral autonomic nervous system. Alpha-synuclein aggregates, called Lewy bodies and Lewy neurites, are detectable in these structures at early stages. The study of the enteric nervous system (ENS) displays the Lewy pathology in living patients through the digestive biopsies. Minor salivary glands analysis could be a good marker as well, but this needs confirmation. An anatomopathologic PD biomarker would be interesting at different stages of PD: for the positive diagnosis, to follow the progression and to develop neuroprotective treatments.

  13. Autonomous requirements of the Menkes disease protein in the nervous system.

    Science.gov (United States)

    Hodgkinson, Victoria L; Zhu, Sha; Wang, Yanfang; Ladomersky, Erik; Nickelson, Karen; Weisman, Gary A; Lee, Jaekwon; Gitlin, Jonathan D; Petris, Michael J

    2015-11-15

    Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7a(Nes) mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle (mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7a(Nes) mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7a(Nes) mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients.

  14. Autonomous requirements of the Menkes disease protein in the nervous system

    Science.gov (United States)

    Hodgkinson, Victoria L.; Zhu, Sha; Wang, Yanfang; Ladomersky, Erik; Nickelson, Karen; Weisman, Gary A.; Lee, Jaekwon; Gitlin, Jonathan D.

    2015-01-01

    Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7aNes mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle (mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7aNes mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7aNes mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients. PMID:26269458

  15. Autonomic nervous system modulation affects the inflammatory immune response in mice with acute Chagas disease.

    Science.gov (United States)

    Machado, Marcus Paulo Ribeiro; Rocha, Aletheia Moraes; de Oliveira, Lucas Felipe; de Cuba, Marília Beatriz; de Oliveira Loss, Igor; Castellano, Lucio Roberto; Silva, Marcus Vinicius; Machado, Juliana Reis; Nascentes, Gabriel Antonio Nogueira; Paiva, Luciano Henrique; Savino, Wilson; Junior, Virmondes Rodrigues; Brum, Patricia Chakur; Prado, Vania Ferreira; Prado, Marco Antonio Maximo; Silva, Eliane Lages; Montano, Nicola; Ramirez, Luis Eduardo; Dias da Silva, Valdo Jose

    2012-11-01

    The aim of the present study was to evaluate the effects of changes to the autonomic nervous system in mice during the acute phase of Chagas disease, which is an infection caused by the parasite Trypanosoma cruzi. The following types of mice were inoculated with T. cruzi (CHG): wild-type (WT) and vesicular acetylcholine transporter knockdown (KDVAChT) C57BL/6j mice; wild-type non-treated (NT) FVB mice; FVB mice treated with pyridostigmine bromide (PYR) or salbutamol (SALB); and β(2)-adrenergic receptor knockout (KOβ2) FVB mice. During infection and at 18-21 days after infection (acute phase), the survival curves, parasitaemia, electrocardiograms, heart rate variability, autonomic tonus and histopathology of the animals were evaluated. Negative control groups were matched for age, genetic background and treatment. The KDVAChT-CHG mice exhibited a significant shift in the electrocardiographic, autonomic and histopathological profiles towards a greater inflammatory immune response that was associated with a reduction in blood and tissue parasitism. In contrast, the CHG-PYR mice manifested reduced myocardial inflammation and lower blood and tissue parasitism. Similar results were observed in CHG-SALB animals. Unexpectedly, the KOβ2-CHG mice exhibited less myocardial inflammation and higher blood and tissue parasitism, which were associated with reduced mortality. These findings could have been due to the increase in vagal tone observed in the KOβ2 mice, which rendered them more similar to the CHG-PYR animals. In conclusion, our results indicate a marked immunomodulatory role for the parasympathetic and sympathetic autonomic nervous systems, which inhibit both the inflammatory immune response and parasite clearance during the acute phase of experimental Chagas heart disease in mice.

  16. Trypanosoma cruzi strains and autonomic nervous system pathology in experimental chagas disease

    Directory of Open Access Journals (Sweden)

    Márcia Maria de Souza

    1996-04-01

    Full Text Available Lesions involving the sympathetic (para-vertebral ganglia and para-sympathetic ganglia of intestines (Auerbach plexus and heart (right atrial ganglia were comparatively analyzed in mice infected with either of three different strain types of Trypanosoma cruzi, during acute and chronic infection, in an attempt to understand the influence of parasite strain in causing autonomic nervous system pathology. Ganglionar involvement with neuronal destruction appeared related to inflammation, which most of the times extended from neighboring adipose and cardiac, smooth and striated muscular tissues. Intraganglionic parasitism was exceptional. Inflammation involving peripheral nervous tissue exhibited a focal character and its variability in the several groups examined appeared unpredictable. Although lesions were generally more severe with the Y strain, comparative qualitative study did not allow the conclusion, under the present experimental conditions, that one strain was more pathogenic to the autonomic nervous system than others. No special tropism of the parasites from any strain toward autonomic ganglia was disclosed.

  17. Effects of subthalamic nucleus stimulation and levodopa on the autonomic nervous system in Parkinson's disease.

    Science.gov (United States)

    Ludwig, Janne; Remien, Piet; Guballa, Christoph; Binder, Andreas; Binder, Sabine; Schattschneider, Jörn; Herzog, Jan; Volkmann, Jens; Deuschl, Günther; Wasner, Gunnar; Baron, Ralf

    2007-07-01

    Dysfunctions of the autonomic nervous system (ANS) are common in Parkinson's disease (PD). Regarding motor disability, deep brain stimulation of the subthalamic nucleus (STN) is an effective treatment option in long lasting PD. The aims of this study were to examine whether STN stimulation has an influence on functions of the ANS and to compare these effects to those induced by levodopa. Blood pressure (BP) and heart rate (HR) during rest and orthostatic conditions, HR variability (HRV) and breathing-induced cutaneous sympathetic vasoconstriction (CVC) were tested in 14 PD patients treated with STN stimulation during "ON" and "OFF" condition of the stimulator. The effects of a single dose of levodopa on ANS were tested in 15 PD patients without DBS. STN stimulation had no influence on cardiovascular ANS functions, whereas CVC was significantly increased. In contrast, levodopa significantly lowered BP and HR at rest and enhanced orthostatic hypotension. Further, HRV, skin perfusion and temperature increased after administration of levodopa. Our results suggest that in contrast to levodopa, STN stimulation has only minor effects on autonomic functions. Since less pharmacotherapy is needed after STN stimulation, reduced levodopa intake results in relative improvement of autonomic function in deep brain stimulated PD patients.

  18. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Ineke Nederend

    2016-04-01

    Full Text Available Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that measure both branches of the nervous system for prolonged periods of time in well-defined patient cohorts in various phases of childhood and adolescence are currently lacking. Pending such studies, there is not yet a good grasp on the extent and direction of sympathetic and parasympathetic autonomic function in pediatric congenital heart disease. Longitudinal studies in homogenous patient groups linking autonomic nervous system function and clinical outcome are warranted.

  19. Autonomic nervous system dysfunction and their relationship with disease severity in children with atopic asthma.

    Science.gov (United States)

    Emin, Ozkaya; Esra, Gursoy; Aysegül, Demir; Ufuk, Erenberk; Ayhan, Sogut; Rusen, Dundaroz M

    2012-09-30

    The involvement of autonomic imbalance has been reported in the pathogenesis of allergic diseases. The aim of this study was to investigate the association between the clinical severity of childhood asthma with autonomic nervous system (ANS) dysfunction and to define whether the severity of asthma correlates with ANS activity. In this case-control study, we evaluated the ANS activity by testing heart rate variability (HRV) and sympathetic skin response (SRR) in 77 asthmatic children, age 7-12 yrs, who had no co-morbidity and compared them with 40 gender- and age-matched control subjects. According to the severity of their asthma, study subjects were further divided into three groups: I (mild asthmatics), II (moderate asthmatics), and III (severe asthmatics). Inter-group ANS scale scores differed significantly (p<0.01) between Groups I and III and between Groups II and III. Combined use of HRV and SSR provides a higher degree of sensitivity for assessing disease severity in cases of pediatric asthma.

  20. Circadian rhythm of rest activity and autonomic nervous system activity at different stages in Parkinson's disease.

    Science.gov (United States)

    Niwa, Fumitoshi; Kuriyama, Nagato; Nakagawa, Masanori; Imanishi, Jiro

    2011-12-01

    Patients with Parkinson's disease (PD) often suffer from non-motor symptoms, including sleep and autonomic dysfunctions, controlled by circadian regulation. To evaluate the alteration of circadian rhythm in PD patients, we investigated both rest activities and autonomic functions. Twenty-seven patients with idiopathic PD and 30 age-matched control subjects were recruited. Group comparisons of controls (mean age: 68.93 years), early-PD patients classified as Hoehn-Yahr (HY) stage 1&2 (mean age: 70.78 years), and advanced-PD as HY 3&4 (mean age: 68.61 years) were conducted. Measurement of rest activities was performed using Actigraph for 7 continuous days, and included measuring rhythm patterns (activity patterns recorded in or out of bed) and circadian rhythm amplitudes (power of the cycle being closest to 24h). A power spectral analysis of heart rate variability (HRV) using 24-hour ambulatory ECG was also performed. The actigraphic measurements indicated that statistically PD patients have lower activity levels when out of bed and higher activity levels when in bed, and that, the circadian rest-activity rhythm in PD decreases with disease severity. The HRV analysis showed that the total frequency component and low frequency/high frequency ratio were low in PD patients, suggesting that autonomic activities and the circadian rhythm of the sympathetic nervous system are attenuated in PD. This study elucidated the disorganization in the rest activities and HRV of PD patients as well as the gradual alterations in the circadian rhythm. The circadian rhythm disturbances are important to consider the mechanism of non-motor symptoms that occur from early stage of PD.

  1. Autonomic nervous system dysregulation in pediatric hypertension.

    Science.gov (United States)

    Feber, Janusz; Ruzicka, Marcel; Geier, Pavel; Litwin, Mieczyslaw

    2014-05-01

    Historically, primary hypertension (HTN) has been prevalent typically in adults. Recent data however, suggests an increasing number of children diagnosed with primary HTN, mainly in the setting of obesity. One of the factors considered in the etiology of HTN is the autonomous nervous system, namely its dysregulation. In the past, the sympathetic nervous system (SNS) was regarded as a system engaged mostly in buffering major acute changes in blood pressure (BP), in response to physical and emotional stressors. Recent evidence suggests that the SNS plays a much broader role in the regulation of BP, including the development and maintenance of sustained HTN by a chronically elevated central sympathetic tone in adults and children with central/visceral obesity. Consequently, attempts have been made to reduce the SNS hyperactivity, in order to intervene early in the course of the disease and prevent HTN-related complications later in life.

  2. Comparative anatomy of the autonomic nervous system.

    Science.gov (United States)

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves.

  3. [Autonomic nervous system in diabetes].

    Science.gov (United States)

    Emdin, M

    2001-08-01

    Hyperglycemia and hyperinsulinemia have a primary role in determining the early functional and later anatomic changes at the level of the autonomic pathways controlling the circulation, and besides in directly influencing cardiac and vascular cellular targets and feed-back baroreceptor system sensitivity to neurohumoral modulation in patients with diabetes mellitus. The basic mechanisms of dysfunction and damage, and the clinical and prognostic value of diabetic cardiovascular dysautonomia are discussed together with the diagnostic apparatus and the possible therapeutic approaches.

  4. Nutritional stimulation of the autonomic nervous system

    Institute of Scientific and Technical Information of China (English)

    Misha DP Luyer; Quirine Habes; Richard van Hak; Wim Buurman

    2011-01-01

    Disturbance of the inflammatory response in the gut is important in several clinical diseases ranging from inflammatory bowel disease to postoperative ileus. Several feedback mechanisms exist that control the inflammatory cascade and avoid collateral damage. In the gastrointestinal tract, it is of particular importance to control the immune response to maintain the balance that allows dietary uptake and utilization of nutrients on one hand, while preventing invasion of bacteria and toxins on the other hand. The process of digestion and absorption of nutrients requires a relative hyporesponsiveness of the immune cells in the gut to luminal contents which is not yet fully understood. Recently, the autonomic nervous system has been identified as an important pathway to control local and systemic inflammation and gut barrier integrity. Activation of the pathway is possible via electrical or via pharmacological interventions, but is also achieved in a physiological manner by ingestion of dietary lipids. Administration of dietary lipids has been shown to be very effective in reducing the inflammatory cascade and maintaining intestinal barrier integrity in several experimental studies. This beneficial effect of nutrition on the inflammatory inflammatory response and intestinal barrier integrity opens new therapeutic opportunities for treatment of certain gastrointestinal disorders. Furthermore, this neural feedback mechanism provides more insight in the relative hyporesponsiveness of the immune cells in the gut. Here, we will discuss the regulatory function of the autonomic nervous system on the inflammatory response and gut barrier function and the potential benefit in a clinical setting.

  5. [Emotion, amygdala, and autonomic nervous system].

    Science.gov (United States)

    Ueyama, Takashi

    2012-10-01

    Emotion refers to the dynamic changes of feeling accompanied by the alteration of physical and visceral activities. Autonomic nervous system (sympathetic and parasympathetic) regulates the visceral activities. Therefore, monitoring and analyzing autonomic nervous activity help understand the emotional changes. To this end, the survey of the expression of immediate early genes (IEGs), such as c-Fos in the brain and target organs, and the viral transneuronal labeling method using the pseudorabies virus (PRV) have enabled the visualization of the neurocircuitry of emotion. By comparing c-Fos expression and data from PRV or other neuroanatomical labeling techniques, the central sites that regulate emotional stress-induced autonomic activation can be deduced. Such regions have been identified in the limbic system (e. g., the extended amygdaloid complex; lateral septum; and infralimbic, insular, and ventromedial temporal cortical regions), as well as in several hypothalamic and brainstem nuclei. The amygdala is structurally diverse and comprises several subnuclei, which play a role in emotional process via projections from the cortex and a variety of subcortical structures. All amygdaloid subnuclei receive psychological information from other limbic systems, while the lateral and central subnuclei receive peripheral and sensory information. Output to the hypothalamus and peripheral sympathetic system mainly originates from the medial amygdala. As estrogen receptor α, estrogen receptor β, and androgen receptor are expressed in the medial amygdala, sex steroids may modulate the autonomic nervous activities.

  6. When do the symptoms of autonomic nervous system malfunction appear in patients with Parkinson’s disease?

    Directory of Open Access Journals (Sweden)

    De Luka Silvio R.

    2014-01-01

    Full Text Available Background/Aim. Dysautonomia appears in almost all patients with Parkinson’s disease (PD in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. Methods. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Results. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson’s disease rating score (UPDRS (p < 0.01, activities of daily living scores (p < 0.05, Schwab-England scale (p < 0.001 and Hoehn-Yahr scale. There was no difference between the patients in other clinical-demographic characteristics (sex, age at the time of diagnosis, actual age, duration of

  7. Autonomous requirements of the Menkes disease protein in the nervous system

    OpenAIRE

    Hodgkinson, Victoria L.; Zhu, Sha; Wang, Yanfang; Ladomersky, Erik; Nickelson, Karen; Weisman, Gary A.; Lee, Jaekwon; Gitlin, Jonathan D.; Petris, Michael J.

    2015-01-01

    Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A wi...

  8. Cardiac autonomic nervous system activity in obesity.

    Science.gov (United States)

    Liatis, Stavros; Tentolouris, Nikolaos; Katsilambros, Nikolaos

    2004-08-01

    The development of obesity is caused by a disturbance of energy balance, with energy intake exceeding energy expenditure. As the autonomic nervous system (ANS) has a role in the regulation of both these variables, it has become a major focus of investigation in the fields of obesity pathogenesis. The enhanced cardiac sympathetic drive shown in most of the studies in obese persons might be due to an increase in their levels of circulating insulin. The role of leptin needs further investigation with studies in humans. There is a blunted response of the cardiac sympathetic nervous system (SNS) activity in obese subjects after consumption of a carbohydrate-rich meal as well as after insulin administration. This might be due to insulin resistance. It is speculated that increased SNS activity in obesity may contribute to the development of hypertension in genetically susceptible individuals. It is also speculated that the increase in cardiac SNS activity under fasting conditions in obesity may be associated with high cardiovascular morbidity and mortality.

  9. Role of the autonomic nervous system in modulating cardiac arrhythmias.

    Science.gov (United States)

    Shen, Mark J; Zipes, Douglas P

    2014-03-14

    The autonomic nervous system plays an important role in the modulation of cardiac electrophysiology and arrhythmogenesis. Decades of research has contributed to a better understanding of the anatomy and physiology of cardiac autonomic nervous system and provided evidence supporting the relationship of autonomic tone to clinically significant arrhythmias. The mechanisms by which autonomic activation is arrhythmogenic or antiarrhythmic are complex and different for specific arrhythmias. In atrial fibrillation, simultaneous sympathetic and parasympathetic activations are the most common trigger. In contrast, in ventricular fibrillation in the setting of cardiac ischemia, sympathetic activation is proarrhythmic, whereas parasympathetic activation is antiarrhythmic. In inherited arrhythmia syndromes, sympathetic stimulation precipitates ventricular tachyarrhythmias and sudden cardiac death except in Brugada and J-wave syndromes where it can prevent them. The identification of specific autonomic triggers in different arrhythmias has brought the idea of modulating autonomic activities for both preventing and treating these arrhythmias. This has been achieved by either neural ablation or stimulation. Neural modulation as a treatment for arrhythmias has been well established in certain diseases, such as long QT syndrome. However, in most other arrhythmia diseases, it is still an emerging modality and under investigation. Recent preliminary trials have yielded encouraging results. Further larger-scale clinical studies are necessary before widespread application can be recommended.

  10. The Relationship between Vascular Function and the Autonomic Nervous System.

    Science.gov (United States)

    Amiya, Eisuke; Watanabe, Masafumi; Komuro, Issei

    2014-01-01

    Endothelial dysfunction and autonomic nervous system dysfunction are both risk factors for atherosclerosis. There is evidence demonstrating that there is a close interrelationship between these two systems. In hypertension, endothelial dysfunction affects the pathologic process through autonomic nervous pathways, and the pathophysiological process of autonomic neuropathy in diabetes mellitus is closely related with vascular function. However, detailed mechanisms of this interrelationship have not been clearly explained. In this review, we summarize findings concerning the interrelationship between vascular function and the autonomic nervous system from both experimental and clinical studies. The clarification of this interrelationship may provide more comprehensive risk stratification and a new effective therapeutic strategy against atherosclerosis.

  11. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    OpenAIRE

    Veronica Dusi; Alice Ghidoni; Alice Ravera; De Ferrari, Gaetano M.; Laura Calvillo

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the a...

  12. Is There Anything "Autonomous" in the Nervous System?

    Science.gov (United States)

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  13. Perturbed autonomic nervous system function in metabolic syndrome.

    Science.gov (United States)

    Tentolouris, Nicholas; Argyrakopoulou, Georgia; Katsilambros, Nicholas

    2008-01-01

    The metabolic syndrome is characterized by the clustering of various common metabolic abnormalities in an individual and it is associated with increased risk for the development of type 2 diabetes and cardiovascular diseases. Its prevalence in the general population is approximately 25%. Central fat accumulation and insulin resistance are considered as the common denominators of the abnormalities of the metabolic syndrome. Subjects with metabolic syndrome have autonomic nervous system dysfunction characterized by predominance of the sympathetic nervous system in many organs, i.e. heart, kidneys, vasculature, adipose tissue, and muscles. Sympathetic nervous system activation in metabolic syndrome is detected as increased heart rate and blood pressure, diminished heart rate variability, baroreceptor dysfunction, enhanced lipolysis in visceral fat, increased muscle sympathetic nerve activity, and high urine or plasma catecholamine concentrations as well as turnover rates. The augmented sympathetic activity in individuals with metabolic syndrome worsens prognosis of this high-risk population. The mechanisms linking metabolic syndrome with sympathetic activation are complex and not clearly understood. Whether sympathetic overactivity is involved in the development of the metabolic syndrome or is a consequence of it remains to be elucidated since data from prospective studies are missing. Intervention studies have demonstrated that the autonomic disturbances of the metabolic syndrome may be reversible.

  14. Autonomic Nervous System in Viral Myocarditis: Pathophysiology and Therapy.

    Science.gov (United States)

    Cheng, Zheng; Li-Sha, Ge; Yue-Chun, Li

    2016-01-01

    Myocarditis, which is caused by viral infection, can lead to heart failure, malignant arrhythmias, and even sudden cardiac death in young patients. It is also one of the most important causes of dilated cardiomyopathy worldwide. Although remarkable advances in diagnosis and understanding of pathophysiological mechanisms of viral myocarditis have been gained during recent years, no standard treatment strategies have been defined as yet. Fortunately, recent studies present some evidence that immunomodulating therapy is effective for myocarditis. The immunomodulatory effect of the autonomic nervous system has raised considerable interest over recent decades. Studying the influence on the inflammation and immune system of the sympathetic and parasympathetic nervous systems will not only increase our understanding of the mechanism of disease but could also lead to the identification of potential new therapies for viral myocarditis. Studies have shown that the immunomodulating effect of the sympathetic and parasympathetic nervous system is realized by the release of neurotransmitters to their corresponding receptors (catecholamine for α or β adrenergic receptor, acetylcholine for α7 nicotinic acetylcholinergic receptor). This review will discuss the current knowledge of the roles of both the sympathetic and parasympathetic nervous system in inflammation, with a special focus on their roles in viral myocarditis.

  15. Altered balance in the autonomic nervous system in schizophrenic patients

    DEFF Research Database (Denmark)

    Nielsen, B M; Mehlsen, J; Behnke, K

    1988-01-01

    .05). Heart-rate response to inspiration was greater in non-medicated schizophrenics compared to normal subjects (P less than 0.05), whereas no difference was found between medicated and non-medicated schizophrenics. The results show that the balance in the autonomic nervous system is altered in schizophrenic...... patients with a hyperexcitability in both the sympathetic and the parasympathetic division. Our study has thus indicated a dysfunction in the autonomic nervous system per se and the previous interpretations of attentional orienting responses in schizophrenia is questioned. Medication with neuroleptics......The aim of the present study was to evaluate the autonomic nervous function in schizophrenic patients. Twenty-eight patients (29 +/- 6 years) diagnosed as schizophrenics and in stable medication were included, together with ten schizophrenic patients (25 +/- 5 years) who were unmedicated. Eleven...

  16. Gyrosonics a Novel Stimulant for Autonomic Nervous System

    CERN Document Server

    Ghatak, S K; Choudhuri, R; Banerjee, S

    2009-01-01

    Gyrosonics refers to novel audio binaural stimulus that produces rotational perceptions of sound movement in head at a particular predetermined frequency. Therapeutic effect observed with this is considered to be associated with modification of arousal of autonomic nervous system. The heart rate variability (HRV), non-invasive measure of autonomic nervous system, has been measured for group of 30 subjects for pre- and post- gyrosonic installation. The time- and frequency- domain analysis of HRV results show overall decrease in sympathetic response and increase in para- sympathetic response due to listening of gyro sonics.

  17. An Electerophisioligic Study Of Autonomic Nervous System In Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Noorolahi Moghaddam H

    2003-11-01

    Full Text Available Autonomic nervous system dysfunction in diabetics can occur apart from peripheral sensorimotor polyneuropathy and sometimes leads to complaints which may be diagnosed by electrodiagnostic methods. Moreover glycemic control of these patients may prevent such a complications."nMaterials and Methods: 30 diabetic patients were compared to the same number of age and sex-matched controls regarding to electrophysiologic findings of autonomic nervous system. Symptoms referable to autonomic disorder including nightly diarrhea, dizziness, urinary incontinence, constipation, nausea, and mouth dryness were recorded in all diabetic patients. Palmar and plantar SSR and expiration to inspiration ratio (E: I and Valsalva ratio were recorded in all diabetics and control individuals by electromyography device. In addition NCS was performed on two sensory and two motor nerves in diabetic patients."nResults: There was no relation between age of diabetics and abnormal D: I ratio, Valsalva ratio and degree of electrophysiologic autonomic impairment. Also no relation between peripheral sensorimotor polyneuropathy and electrophysiologic autonomic impairment was found. Plantar SSR was absent in 80% of diabetics with orthostatic hypotension (p~ 0.019. Palmar and plantar SSR were absent in many diabetics in comparison to control group (for palmar SSR p~ 0.00 and for plantar SSR p< 0.015. There was no relation between diabetes duration since diagnosis and electrophysiologic autonomic impairment."nConclusion: According to the above mentioned findings diabetic autonomic neuropathy develops apart from peripheral sensorimotor polyneuropathy and probably with different mechanisms. Remarkable absence of palmar SSR in diabetics with orthostatic hypotension can be due to its sympathetic origin. Absence of any relation between diabetes duration and electrophysiologic autonomic impairment can be due to late diagnosis of type 2 diabetes or no pathophysiologic relation between chronic

  18. Central- and autonomic nervous system coupling in schizophrenia.

    Science.gov (United States)

    Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen; Voss, Andreas

    2016-05-13

    The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback-feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central-autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age-gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS-ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity.

  19. Autonomic nervous system correlates in movement observation and motor imagery

    Directory of Open Access Journals (Sweden)

    Christian eCollet

    2013-07-01

    Full Text Available The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding on the autonomic nervous system (ANS correlates in motor imagery (MI and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system. We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes.

  20. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  1. Regulation of autonomic nervous system in space and magnetic storms

    Science.gov (United States)

    Baevsky, R. M.; Petrov, V. M.; Chernikova, A. G.

    Variations in the earth's magnetic field and magnetic storms are known to be a risk factor for the development of cardiovascular disorders. The main ``targets'' for geomagnetic perturbations are the central nervous system and the neural regulation of vascular tone and heart rate variability. This paper presents the data about effect of geomagnetic fluctuations on human body in space. As a method for research the analysis of heart rate variability was used, which allows evaluating the state of the sympathetic and parasympathetic parts of the autonomic nervous system, vasomotor center and subcortical neural centers activity. Heart rate variability data were analyzed for 30 cosmonauts at the 2-nd day of space flight on transport spaceship Soyuz (32nd orbit). There were formed three groups of cosmonauts: without magnetic storm (n=9), on a day with magnetic storm (n=12) and 1-2 days after magnetic storm (n=9). The present study was the first to demonstrate a specific impact of geomagnetic perturbations on the system of autonomic circulatory control in cosmonauts during space flight. The increasing of highest nervous centers activity was shown for group with magnetic storms, which was more significant on 1-2 days after magnetic storm. The use of discriminate analysis allowed to classify indicated three groups with 88 % precision. Canonical variables are suggested to be used as criterions for evaluation of specific and non-specific components of cardiovascular reactions to geomagnetic perturbations. The applied aspect of the findings from the present study should be emphasized. They show, in particular, the need to supplement the medical monitoring of cosmonauts with predictions of probable geomagnetic perturbations in view of the prevention of unfavorable states appearances if the adverse reactions to geomagnetic perturbations are added to the tension experienced by regulatory systems during various stresses situations (such as work in the open space).

  2. Effects of music therapy on autonomic nervous system activity, incidence of heart failure events, and plasma cytokine and catecholamine levels in elderly patients with cerebrovascular disease and dementia.

    Science.gov (United States)

    Okada, Kaoru; Kurita, Akira; Takase, Bonpei; Otsuka, Toshiaki; Kodani, Eitaro; Kusama, Yoshiki; Atarashi, Hirotsugu; Mizuno, Kyoichi

    2009-01-01

    Music therapy (MT) has been used in geriatric nursing hospitals, but there has been no extensive research into whether it actually has beneficial effects on elderly patients with cerebrovascular disease (CVD) and dementia. We investigated the effects of MT on the autonomic nervous system and plasma cytokine and catecholamine levels in elderly patients with CVD and dementia, since these are related to aging and chronic geriatric disease. We also investigated the effects of MT on congestive heart failure (CHF) events.Eighty-seven patients with pre-existing CVD were enrolled in the study. We assigned patients into an MT group (n = 55) and non-MT group (n = 32). The MT group received MT at least once per week for 45 minutes over 10 times. Cardiac autonomic activity was assessed by heart rate variability (HRV). We measured plasma cytokine and catecholamine levels in both the MT group and non-MT group. We compared the incidence of CHF events between these two groups. In the MT group, rMSSD, pNN50, and HF were significantly increased by MT, whereas LF/HF was slightly decreased. In the non-MT group, there were no significant changes in any HRV parameters. Among cytokines, plasma interleukin-6 (IL-6) in the MT group was significantly lower than those in the non-MT group. Plasma adrenaline and noradrenaline levels were significantly lower in the MT group than in the non-MT group. CHF events were less frequent in the MT group than in the non-MT group (P < 0.05). These findings suggest that MT enhanced parasympathetic activities and decreased CHF by reducing plasma cytokine and catecholamine levels.

  3. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    NARCIS (Netherlands)

    B. Dierckx (Bram)

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate, respiratory

  4. Conditioned nausea after cancer chemotherapy and autonomic nervous system conditionability.

    Science.gov (United States)

    Fredrikson, M; Hursti, T; Salmi, P; Börjeson, S; Fürst, C J; Peterson, C; Steineck, G

    1993-12-01

    There are marked individual differences in conditioned nausea after cancer chemotherapy. To examine if part of this variation is associated with individual differences in autonomic nervous system conditionability, the present study addressed whether patients with conditioned nausea acquired conditioned heart rate and electrodermal responses at a different rate than patients without conditioned nausea. Of 28 relapse-free patients who had completed cisplatinum treatment for testicular cancer between 1981 and 1986, 10 reported persistent conditioned nausea, 8 extinguished conditioned nausea and 10 no conditioned nausea. These three groups were subjected to a differential conditioning paradigm with 8 sec pictorial stimuli (circles and triangles) serving as conditioned stimuli for an unconditioned electric shock while heart rate and electrodermal activity was monitored. There were 4 habituation, 8 acquisition and 8 extinction trials with each of the two cues. Analyses of variance using nausea status as the independent variable and physiological responses as the dependent lended some support to the notion that conditioned heart rate deceleration developed in response to the reinforced compared to the nonreinforced cue during acquisition in the two groups with persistent or extinguished conditioned nausea but not in the group with no conditioned nausea. In addition, patients that displayed good, as compared to poor heart rate conditionability during acquisition, were more likely to have persistent conditioned nausea, whereas those who showed poor heart rate conditioning mostly were those without conditioned nausea. Electrodermal variables revealed no systematic differences between groups. This tentatively supports that individual differences in parasympathetic but not sympathetic nervous system conditionability may be associated with individual differences in conditioned nausea resulting from cancer chemotherapy.

  5. Lost among the trees? The autonomic nervous system and paediatrics.

    Science.gov (United States)

    Rees, Corinne A

    2014-06-01

    The autonomic nervous system (ANS) has been strikingly neglected in Western medicine. Despite its profound importance for regulation, adjustment and coordination of body systems, it lacks priority in training and practice and receives scant attention in numerous major textbooks. The ANS is integral to manifestations of illness, underlying familiar physical and psychological symptoms. When ANS activity is itself dysfunctional, usual indicators of acute illness may prove deceptive. Recognising the relevance of the ANS can involve seeing the familiar through fresh eyes, challenging assumptions in clinical assessment and in approaches to practice. Its importance extends from physical and psychological well-being to parenting and safeguarding, public services and the functioning of society. Exploration of its role in conditions ranging from neurological, gastrointestinal and connective tissue disorders, diabetes and chronic fatigue syndrome, to autism, behavioural and mental health difficulties may open therapeutic avenues. The ANS offers a mechanism for so-called functional illnesses and illustrates the importance of recognising that 'stress' takes many forms, physical, psychological and environmental, desirable and otherwise. Evidence of intrauterine and post-natal programming of ANS reactivity suggests that neonatal care and safeguarding practice may offer preventive opportunity, as may greater understanding of epigenetic change of ANS activity through, for example, accidental or psychological trauma or infection. The aim of this article is to accelerate recognition of the importance of the ANS throughout paediatrics, and of the potential physical and psychological cost of neglecting it.

  6. Imaging of the autonomic nervous system: focus on cardiac sympathetic innervation.

    Science.gov (United States)

    Goldstein, David S

    2003-12-01

    Symptoms or signs of abnormal autonomic nervous system function occur commonly in several neurological disorders. Clinical evaluations have depended on physiological, pharmacological, and neurochemical approaches. Recently, imaging of sympathetic noradrenergic innervation has been introduced and applied especially in the heart. Most studies have used the radiolabeled sympathomimetic amine, (123)I-metaiodobenzylguanidine. Decreased uptake or increased "washout" of (123)I-metaiodobenzylguanidine-derived radioactivity is associated with worse prognosis or more severe disease in hypertension, congestive heart failure, arrhythmias, and diabetes mellitus. This pattern may reflect a high rate of postganglionic sympathetic nerve traffic to the heart. Many recent studies have agreed on the remarkable finding that all patients with Parkinson's disease and orthostatic hypotension have a loss of cardiac sympathetic innervation, whereas all patients with multiple system atrophy, often difficult to distinguish clinically from Parkinson's disease, have intact cardiac sympathetic innervation. Because Parkinson's disease entails a postganglionic sympathetic noradrenergic lesion, the disease appears to be not only a movement disorder, with dopamine loss in the nigrostriatal system of the brain, but also a dysautonomia, with noradrenaline loss in the sympathetic nervous system of the heart. As new ligands are developed, one may predict further discoveries of involvement of components of the autonomic nervous system in neurological diseases.

  7. Non-linear HRV indices under autonomic nervous system blockade.

    Science.gov (United States)

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  8. Modulation of Autonomous Nervous System activity by gyrosonic stimulation

    CERN Document Server

    Ghatak, S K; Choudhuri, R; Bandopadhaya, S

    2010-01-01

    A novel audio binaural stimulus that generates rotational perceptions of sound movement in brain at a particular predetermined frequency is referred as gyrosonics. The influence of gyrosonics on autonomic nervous system of healthy subjects has been examined by analyzing heart rate variability (HRV) in time- and frequency- domain. The M-lagged Poincare plot shows that the parameters SD1, SD2 and ratio SD12 (SD1/SD2) increases with lagged number M, and M-dependence is well described by Pade' approximant $\\chi \\frac{1+\\beta M}{1+\\gamma M}$ where values of $\\chi$, $\\beta$ and $ \\gamma$ depend on parameters SD1,SD2 and SD12. The values of these parameters for different M are augmented after gyrosonic stimulation. The slope and magnitude of curvature of SD1 and SD12 vs M plot increase considerably due to stimulation. The DFA analysis exhibits decrease in value of exponent $\\alpha$ due to stimulation. This stimulation results slower Heart rate, higher values of the standard deviation SD and the root-mean squared suc...

  9. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  10. Relationship between Vitamin D Status and Autonomic Nervous System Activity

    Science.gov (United States)

    Burt, Morton G.; Mangelsdorf, Brenda L.; Stranks, Stephen N.; Mangoni, Arduino A.

    2016-01-01

    Vitamin D deficiency is associated with increased arterial stiffness. However, the mechanisms underlying this association have not been clarified. The aim was to investigate whether changes in autonomic nervous system activity could underlie an association between 25 hydroxy vitamin D and arterial stiffness. A total of 49 subjects (age = 60 ± 8 years, body mass index = 26.7 ± 4.6 kg/m2, 25 hydroxy vitamin D = 69 ± 22 nmol/L) underwent measurements of pulse wave velocity (PWV) and augmentation index (AIx), spontaneous baroreflex sensitivity, plasma metanephrines and 25 hydroxy vitamin D. Subjects with 25 hydroxy vitamin D ≤ 50 nmol/L were restudied after 200,000 International Units 25 hydroxy vitamin D. Plasma metanephrine was positively associated with AIx (p = 0.02) independent of age, sex, smoking and cholesterol and negatively associated with 25 hydroxy vitamin D (p = 0.002) independent of age, sex and season. In contrast, there was no association between baroreflex sensitivity and 25 hydroxy vitamin D (p = 0.54). Treatment with vitamin D increased 25 hydroxy vitamin D from 43 ± 5 to 96 ± 24 nmol/L (p < 0.0001) but there was no significant change in plasma metanephrine (115 ± 25 vs. 99 ± 39 pmol/L, p = 0.12). We conclude that as plasma metanephrine was negatively associated with 25 hydroxy vitamin D and positively with AIx, it could mediate an association between these two variables. This hypothesis should be tested in larger interventional studies. PMID:27649235

  11. Relationship between Vitamin D Status and Autonomic Nervous System Activity

    Directory of Open Access Journals (Sweden)

    Morton G. Burt

    2016-09-01

    Full Text Available Vitamin D deficiency is associated with increased arterial stiffness. However, the mechanisms underlying this association have not been clarified. The aim was to investigate whether changes in autonomic nervous system activity could underlie an association between 25 hydroxy vitamin D and arterial stiffness. A total of 49 subjects (age = 60 ± 8 years, body mass index = 26.7 ± 4.6 kg/m2, 25 hydroxy vitamin D = 69 ± 22 nmol/L underwent measurements of pulse wave velocity (PWV and augmentation index (AIx, spontaneous baroreflex sensitivity, plasma metanephrines and 25 hydroxy vitamin D. Subjects with 25 hydroxy vitamin D ≤ 50 nmol/L were restudied after 200,000 International Units 25 hydroxy vitamin D. Plasma metanephrine was positively associated with AIx (p = 0.02 independent of age, sex, smoking and cholesterol and negatively associated with 25 hydroxy vitamin D (p = 0.002 independent of age, sex and season. In contrast, there was no association between baroreflex sensitivity and 25 hydroxy vitamin D (p = 0.54. Treatment with vitamin D increased 25 hydroxy vitamin D from 43 ± 5 to 96 ± 24 nmol/L (p < 0.0001 but there was no significant change in plasma metanephrine (115 ± 25 vs. 99 ± 39 pmol/L, p = 0.12. We conclude that as plasma metanephrine was negatively associated with 25 hydroxy vitamin D and positively with AIx, it could mediate an association between these two variables. This hypothesis should be tested in larger interventional studies.

  12. Relationship between autonomic nervous system function and acute mountain sickness

    Institute of Scientific and Technical Information of China (English)

    Long Min; Huang Lan; Tian Kaixin; Yu Shiyong; Yu Yang; Qin Jun

    2008-01-01

    Objective: To elucidate the role of the autonomic nervous system (ANS) in acute mountain sickness (AMS) during the initial phase at acute high-altitude exposure. Methods: Ninety-nine healthy sea-level residents rapidly ascended to Tibet plateau (3 675 m altitude) by airplane from Chengdu plain (560 m altitude). ANS function was tested in plain and day 2-4 in Tibet by heart rate variability (HRV), cold pressor test (CPT). AMS was evaluated by clinic symptomatic scores. All subjects were divided into non-AMS group (57, scores(4). Results: Compared with non-AMS group, AMS group had higher standard deviation of normal to normal intervals (SDNN), root mean square of delta RR (rMSSD), low-frequency (LF) power, and normalized low-frequency (Lfnu) power in plain (P50 ms(PNN50), rMSSD (P<0.01) and SDNN, LF, total power (TP) (P<0.05). Although no significant differences in the increase of SP and DP during CPT were found between 2 groups in plain, the SP increase during CPT of AMS group was less than non-AMS group (P<0.05) at 3 675 m altitude. AMS symptomatic scores was not only positively correlated with SDNN,rMSSD, LF/HF in plain (P<0.05), but also negatively correlated with Hfnu in plain (P<0.05). Conclusion: During the initial high altitude exposure, ANS modulation is generally blunted, but the relatively predominant sympathetic control is enhanced, and this characteristic change of ANS function is positively correlated with the development of AMS.

  13. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis.

    Science.gov (United States)

    Koopman, Frieda A; Stoof, Susanne P; Straub, Rainer H; Van Maanen, Marjolein A; Vervoordeldonk, Margriet J; Tak, Paul P

    2011-01-01

    The immunomodulatory effect of the autonomic nervous system has raised considerable interest over the last decades. Studying the influence on the immune system and the role in inflammation of the sympathetic as well as the parasympathetic nervous system not only will increase our understanding of the mechanism of disease, but also could lead to the identification of potential new therapeutic targets for chronic immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). An imbalanced autonomic nervous system, with a reduced parasympathetic and increased sympathetic tone, has been a consistent finding in RA patients. Studies in animal models of arthritis have shown that influencing the sympathetic (via α- and β-adrenergic receptors) and the parasympathetic (via the nicotinic acetylcholine receptor α7nAChR or by electrically stimulating the vagus nerve) nervous system can have a beneficial effect on inflammation markers and arthritis. The immunosuppressive effect of the parasympathetic nervous system appears less ambiguous than the immunomodulatory effect of the sympathetic nervous system, where activation can lead to increased or decreased inflammation depending on timing, doses and kind of adrenergic agent used. In this review we will discuss the current knowledge of the role of both the sympathetic (SNS) and parasympathetic nervous system (PNS) in inflammation with a special focus on the role in RA. In addition, potential antirheumatic strategies that could be developed by targeting these autonomic pathways are discussed.

  14. Adrenergic receptor polymorphisms and autonomic nervous system function in human obesity.

    Science.gov (United States)

    Yasuda, Koichiro; Matsunaga, Tetsuro; Adachi, Tetsuya; Aoki, Norihiko; Tsujimoto, Gozoh; Tsuda, Kinsuke

    2006-09-01

    Adrenergic receptors (ARs) are cell-surface G-protein-coupled receptors for catecholamines. They are essential components of the sympathetic nervous system, organized within the autonomic nervous system (ANS), which controls various physiological functions, including energy homeostasis and metabolism of glucose and lipids. An impairment of ANS function in metabolism is considered to be one of the pathological states associated with human obesity and related metabolic diseases; thus, alterations in AR function might be implicated in the pathophysiology of these diseases. Several studies have suggested an association between obesity phenotypes and some AR polymorphisms. In vitro and human clinical studies indicate that some of these polymorphisms have functional and pathophysiological significance, including the linkage to ANS function. This review summarizes present knowledge of AR polymorphisms related to human obesity, and their association with ANS function.

  15. Autonomic Nervous System Responses to Concussion: Arterial Pulse Contour Analysis

    Directory of Open Access Journals (Sweden)

    Michael F La Fountaine

    2016-02-01

    Full Text Available The arterial pulse wave (APW has a distinct morphology whose contours reflect dynamics in cardiac function and peripheral vascular tone as a result of sympathetic nervous system (SNS control. With a transition from rest to increased metabolic demand, the expected augmentation of SNS outflow will not only affect arterial blood pressure and heart rate, it will also induce changes to the contours of the APW. Following a sports concussion, a transient state cardiovascular autonomic dysfunction is present. How this state affects the APW, has yet to be described. A prospective, parallel-group study on cardiovascular autonomic control (i.e., digital electrocardiogram and continuous beat-to-beat blood pressure was performed in the seated upright position in ten athletes with concussion and 7 non-injured control athletes. Changes in APW were compared at rest and during the first 60 seconds (F60 of an isometric handgrip test (IHGT in concussed athletes and non-injured controls within 48 hours (48hr and 1 week (1wk of injury. The concussion group was further separated by the length of time until they were permitted to return to play (RTP>1wk; RTP≤1wk. SysSlope, an indirect measurement of stroke volume, was significantly lower in the concussion group at rest and during F60 at 48hr and 1wk; a paradoxical decline in SysSlope occurred at each visit during the transition from rest to IHGT F60. The RTP>1wk group had lower SysSlope (405±200; 420±88; 454±236 mmHg/s, respectively at rest 48hr compared to the RTP≤1wk and controls. Similarly at 48hr rest, several measurements of arterial stiffness were abnormal in RTP>1wk compared to RTP≤1wk and controls: Peak-to-Notch Latency (0.12±0.04; 0.16±0.02; 0.17±0.05, respectively, Notch Relative Amplitude (0.70±0.03; 0.71±0.04; 0.66±0.14, respectively and Stiffness Index (6.4±0.2; 5.7±0.4; 5.8±0.5, respectively. Use of APW revealed that concussed athletes have a transient increase in peripheral artery

  16. Autonomic nervous system mediated effects of food intake. Interaction between gastrointestinal and cardiovascular systems.

    NARCIS (Netherlands)

    van Orshoven, N.P.

    2008-01-01

    The studies presented in this thesis focused on the autonomic nervous system mediated interactions between the gastrointestinal and cardiovascular systems in response to food intake and on potential consequences of failure of these interactions. The effects of food intake on cardiovascular parameter

  17. Analysis of Autonomic Nervous System Functional Age and Heart Rate Variability in Mine Workers

    Directory of Open Access Journals (Sweden)

    Vasicko T

    2016-04-01

    Full Text Available Introduction: Heavy working conditions and many unpropitious factors influencing workers health participate in development of various health disorders, among other autonomic cardiovascular regulation malfunction. The aim of this study is to draw a comparison of autonomic nervous system functional age and heart rate variability changes between workers with and without mining occupational exposure.

  18. Chinese-chi and Kundalini yoga Meditations Effects on the Autonomic Nervous System: Comparative Study

    OpenAIRE

    Anilesh Dey; D. K. Bhattacha; Tibarewala, D. N.; Nilanjan Dey; Amira Ashour; Dac-Nhuong Le; Evgeniya Gospodinova; Mitko Gospodinov

    2016-01-01

    Cardiac disease is one of the major causes for death all over the world. Heart rate variability (HRV) is a significant parameter that used in assessing Autonomous Nervous System (ANS) activity. Generally, the 2D Poincare′ plot and 3D Poincaré plot of the HRV signals reflect the effect of different external stimuli on the ANS. Meditation is one of such external stimulus, which has different techniques with different types of effects on the ANS. Chinese Chi-meditation and Kundalini yoga are two...

  19. (Non-invasive evaluation of the cardiac autonomic nervous system by PET)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  20. Central Nervous System Involvement in Whipple Disease

    OpenAIRE

    Compain, Caroline; Sacre, Karim; Puéchal, Xavier; Klein, Isabelle; Vital-Durand, Denis; Houeto, Jean-Luc; De Broucker, Thomas; Raoult, Didier; Papo, Thomas

    2013-01-01

    Abstract Whipple disease (WD) is a rare multisystemic infection with a protean clinical presentation. The central nervous system (CNS) is involved in 3 situations: CNS involvement in classic WD, CNS relapse in previously treated WD, and isolated CNS infection. We retrospectively analyzed clinical features, diagnostic workup, brain imaging, cerebrospinal fluid (CSF) study, treatment, and follow-up data in 18 patients with WD and CNS infection. Ten men and 8 women were included with a median ag...

  1. Causal interactions between the cerebral cortex and the autonomic nervous system.

    Science.gov (United States)

    Yu, XiaoLin; Zhang, Chong; Zhang, JianBao

    2014-05-01

    Mental states such as stress and anxiety can cause heart disease. On the other hand, meditation can improve cardiac performance. In this study, the heart rate variability, directed transfer function and corrected conditional entropy were used to investigate the effects of mental tasks on cardiac performance, and the functional coupling between the cerebral cortex and the heart. When subjects tried to decrease their heart rate by volition, the sympathetic nervous system was inhibited and the heart rate decreased. When subjects tried to increase their heart rate by volition, the parasympathetic nervous system was inhibited and the sympathetic nervous system was stimulated, and the heart rate increased. When autonomic nervous system activity was regulated by mental tasks, the information flow from the post-central areas to the pre-central areas of the cerebral cortex increased, and there was greater coupling between the brain and the heart. Use of directed transfer function and corrected conditional entropy techniques enabled analysis of electroencephalographic recordings, and of the information flow causing functional coupling between the brain and the heart.

  2. Autonomic nervous system function in type 2 diabetes using conventional clinical autonomic tests, heart rate and blood pressure variability measures

    Directory of Open Access Journals (Sweden)

    S Sucharita

    2011-01-01

    Full Text Available Background: There are currently approximately 40.9 million patients with diabetes mellitus in India and this number is expected to rise to about 69.9 million by the year 2025. This high burden of diabetes is likely to be associated with an increase in associated complications. Materials and Methods: A total of 23 (15 male and 8 female patients with type 2 diabetes of 10-15 years duration and their age and gender matched controls (n=23 were recruited. All subjects underwent detailed clinical proforma, questionnaire related to autonomic symptoms, anthropometry, peripheral neural examination and tests of autonomic nervous system including both conventional and newer methods (heart rate and blood pressure variability. Results: Conventional tests of cardiac parasympathetic and sympathetic activity were significantly lower in patients with diabetes compared to the controls (P<0.05. The diabetic patients group had significantly lower high frequency and low-frequency HRV when expressed in absolute units (P<0.05 and total power (P<0.01 compared to the controls. Conclusion: Data from the current study demonstrated that diabetics had both cardiac sympathetic and cardiac parasympathetic nervous system involvement. The presence of symptoms and involvement of both components of the autonomic nervous system suggest that dysfunction has been present for a while in these diabetics. There is a strong need for earlier and regular evaluation of autonomic nervous system in type 2 diabetics to prevent further complications.

  3. Neuronal types and their specification dynamics in the autonomic nervous system

    OpenAIRE

    2016-01-01

    The autonomic nervous system is formed by a sympathetic and a parasympathetic division that have complementary roles in the maintenance of body homeostasis. Autonomic neurons, also known as visceral motor neurons, are tonically active and innervate virtually every organ in our body. For instance, cardiac outflow, thermoregulation and even the focusing of our eyes are just some of the plethora of physiological functions under the control of this system. Consequently, perturbatio...

  4. Hormones and the autonomic nervous system are involved in suprachiasmatic nucleus modulation of glucose homeostasis.

    Science.gov (United States)

    Ruiter, Marieke; Buijs, Ruud M; Kalsbeek, Andries

    2006-05-01

    Glucose is one of the most important energy sources for the body in general, and the brain in particular. It is essential for survival to keep glucose levels within strict boundaries. Acute disturbances of glucose homeostasis are rapidly corrected by hormonal and neuronal mechanisms. Furthermore, changes in energy expenditure associated with the light-dark cycle induce variations in the plasma glucose concentration that are more gradual. Organisms take advantage of adapting their internal physiology to the predictable daily changes in energy expenditure, because it enables them to anticipate these changes and to prevent unnecessary disturbance of homeostasis. The hypothalamic biological clock, located in the suprachiasmatic nucleus (SCN), receives light information from the eyes and transmits this information to the rest of the body to synchronize physiology to the environment. Here we review several studies providing evidence for biological clock control of the daily variation in several aspects of glucose metabolism. Although both hormones and the autonomic nervous system can stimulate glucose uptake or production by organs in the periphery, we have shown that the biological clock control of glucose metabolism mostly occurs through the autonomic nervous system. The critical involvement of the biological clock is also indicated by several studies, indicating that disturbance of the biological clock is often associated with metabolic diseases, such as obesity, diabetes mellitus and hypertension.

  5. Does the autonomic nervous system contribute to the initiation and progression of prostate cancer?

    Science.gov (United States)

    Ventura, Sabatino; Evans, Bronwyn A

    2013-11-01

    In the July 12 issue of Science magazine, researchers from the Albert Einstein College of Medicine, the Mount Sinai School of Medicine, the Durham VA Medical Centre and Duke University published an elegant study demonstrating that the sympathetic nervous system, acting through β2 and β3-adrenoceptors in the prostate, plays an important role in the initiation of prostate cancer, while the parasympathetic nervous system plays a role in the dissemination of tumour metastases via M1 muscarinic receptors. These findings are significant because they indicate that receptors associated with the autonomic nervous system may be viable targets for prostate cancer therapy.

  6. Prions spread via the autonomic nervous system from the gut to the central nervous system in cattle incubating bovine spongiform encephalopathy.

    Science.gov (United States)

    Hoffmann, Christine; Ziegler, Ute; Buschmann, Anne; Weber, Artur; Kupfer, Leila; Oelschlegel, Anja; Hammerschmidt, Baerbel; Groschup, Martin H

    2007-03-01

    To elucidate the still-unknown pathogenesis of bovine spongiform encephalopathy (BSE), an oral BSE challenge and sequential kill study was carried out on 56 calves. Relevant tissues belonging to the peripheral and central nervous system, as well as to the lymphoreticular tract, from necropsied animals were analysed by highly sensitive immunohistochemistry and immunoblotting techniques to reveal the presence of BSE-associated pathological prion protein (PrPSc) depositions. Our results demonstrate two routes involving the autonomic nervous system through which BSE prions spread by anterograde pathways from the gastrointestinal tract (GIT) to the central nervous system (CNS): (i) via the coeliac and mesenteric ganglion complex, splanchnic nerves and the lumbal/caudal thoracic spinal cord (representing the sympathetic GIT innervation); and (ii) via the Nervus vagus (parasympathetic GIT innervation). The dorsal root ganglia seem to be subsequently affected, so it is likely that BSE prion invasion of the non-autonomic peripheral nervous system (e.g. sciatic nerve) is a secondary retrograde event following prion replication in the CNS. Moreover, BSE-associated PrPSc was already detected in the brainstem of an animal 24 months post-infection, which is 8 months earlier than reported previously. These findings are important for the understanding of BSE pathogenesis and for the development of new diagnostic strategies for this infectious disease.

  7. GERD and obesity: is the autonomic nervous system the missing link?

    Science.gov (United States)

    Devendran, Neranjani; Chauhan, Nita; Armstrong, David; Upton, Adrian R M; Kamath, Markad V

    2014-01-01

    Gastroesophageal reflux disease (GERD) is a common chronic condition that not only impairs the quality of life of those who are affected by it but also poses a significant economic burden. It encompasses a wide spectrum of symptoms as a result of gastric content moving into the esophagus. The most common cause of GERD, other than a hiatus hernia, is considered to be transient lower esophageal sphincter relaxation. The lower esophageal sphincter (LES) normally has a higher resting tone than the stomach, thus preventing the reflux of gastric contents into the esophagus. The greater prevalence of GERD and GERD symptoms in obese individuals has generated significant interest in understanding the association between these 2 conditions and the underlying physiological mechanisms. The potential relationship between GERD and obesity and the exact mechanism by which obesity may cause reflux, however, remains uncertain. It has been proposed that patients with GERD have altered autonomic nervous function and, more specifically, have reduced parasympathetic activity. Obese individuals also have shown diminished parasympathetic activity, which may be reversed after weight reduction through exercise, diet control, and bariatric surgery. Given that contraction and relaxation of the LES are vagally mediated, the question that arises is whether the autonomic nervous system is, in fact, the missing link between obesity and GERD. In this article we examine the current evidence and hypothesize that the potential imbalance in sympathovagal stimulation to the LES is a key contributing factor to the increased prevalence of GERD symptoms in obese individuals.

  8. The Olig family affects central nervous system development and disease

    Institute of Scientific and Technical Information of China (English)

    Botao Tan; Jing Yu; Ying Yin; Gongwei Jia; Wei Jiang; Lehua Yu

    2014-01-01

    Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop-ment and related diseases.

  9. Parasitic diseases of the central nervous system.

    Science.gov (United States)

    Chacko, Geeta

    2010-08-01

    Parasitic infections, though endemic to certain regions, have over time appeared in places far removed from their original sites of occurrence facilitated probably by the increase in world travel and the increasing migration of people from their native lands to other, often distant, countries. The frequency of occurrence of some of these diseases has also changed based on a variety of factors, including the presence of intermediate hosts, geographic locations, and climate. One factor that has significantly altered the epidemiology of parasitic diseases within the central nervous system (CNS) is the HIV pandemic. In this review of the pathology of parasitic infections that affect the CNS, each parasite is discussed in the sequence of epidemiology, life cycle, pathogenesis, and pathology.

  10. Autonomic nervous system responses to viewing green and built settings: differentiating between sympathetic and parasympathetic activity

    NARCIS (Netherlands)

    van den Berg, Magdalena; Maas, Jolanda; Mulder, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille; van Mechelen, Willem; van den Berg, Agnes

    2015-01-01

    his laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram

  11. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome

    Science.gov (United States)

    Adults with irritable bowel syndrome (IBS) have been reported to have alterations in autonomic nervous system function as measured by vagal activity via heart rate variability. Whether the same is true for children is unknown. We compared young children 7 to 10 years of age with functional abdominal...

  12. Child Abuse and Autonomic Nervous System Hyporesponsivity among Psychiatrically Impaired Children

    Science.gov (United States)

    Ford, Julian D.; Fraleigh, Lisa A.; Albert, David B.; Connor, Daniel F.

    2010-01-01

    Objective: Sexually or physically abused children are at risk for neurobiological dysregulation as well as for internalizing and disruptive behavior disorders. Stress-related autonomic nervous system (ANS) down-regulation has been proposed as a sequela of abuse and was investigated in the present study. Methods: Child Protective Services…

  13. Case Studies in a Physiology Course on the Autonomic Nervous System: Design, Implementation, and Evaluation

    Science.gov (United States)

    Zimmermann, Martina

    2010-01-01

    The introduction of case studies on the autonomic nervous system in a fourth-semester physiology course unit for Pharmacy students is described in this article. This article considers how these case studies were developed and presents their content. Moreover, it reflects on their implementation and, finally, the reception of such a transformation…

  14. Dysregulation of the Autonomic Nervous System Predicts the Development of the Metabolic Syndrome

    NARCIS (Netherlands)

    Licht, Carmilla M. M.; de Geus, Eco J. C.; Penninx, Brenda W. J. H.

    2013-01-01

    Context: Stress is suggested to lead to metabolic dysregulations as clustered in the metabolic syndrome. Although dysregulation of the autonomic nervous system is found to associate with the metabolic syndrome and its dysregulations, no longitudinal study has been performed to date to examine the pr

  15. DISORDERS OF THE AUTONOMIC NERVOUS SYSTEM IN THE CARDIOLOGY PRACTICE: FOCUS ON THE ANALYSIS OF HEART RATE VARIABILITY

    Directory of Open Access Journals (Sweden)

    E. B. Akhmedova

    2015-09-01

    Full Text Available Heart rate variability (HRV in patients with ischemic heart disease, a life-threatening heart rhythm disorders, as well as diabetes mellitus (DM is considered. A significant association between the autonomic regulation of the cardiovascular system and death from cardiovascular causes is identified. The reactions of the autonomic nervous system (ANS can serve as a precipitating factor of arrhythmias in patients with heart disorders. Analysis of HRV at rest is the main and informative method for determination of the ANS disorders. HRV decreases greatly in patients with acute myocardial infarction, cardiac arrhythmia, and DM, predicting a high risk of death. The leading cause of death in diabetic patients is cardiac autonomic neuropathy, with the development of "silent" ischemia and painless myocardial infarction. Autonomic regulation of the heart rate should be assessed for early diagnosis and prevention of complications in the form of sudden death.

  16. DISORDERS OF THE AUTONOMIC NERVOUS SYSTEM IN THE CARDIOLOGY PRACTICE: FOCUS ON THE ANALYSIS OF HEART RATE VARIABILITY

    Directory of Open Access Journals (Sweden)

    E. B. Akhmedova

    2015-01-01

    Full Text Available Heart rate variability (HRV in patients with ischemic heart disease, a life-threatening heart rhythm disorders, as well as diabetes mellitus (DM is considered. A significant association between the autonomic regulation of the cardiovascular system and death from cardiovascular causes is identified. The reactions of the autonomic nervous system (ANS can serve as a precipitating factor of arrhythmias in patients with heart disorders. Analysis of HRV at rest is the main and informative method for determination of the ANS disorders. HRV decreases greatly in patients with acute myocardial infarction, cardiac arrhythmia, and DM, predicting a high risk of death. The leading cause of death in diabetic patients is cardiac autonomic neuropathy, with the development of "silent" ischemia and painless myocardial infarction. Autonomic regulation of the heart rate should be assessed for early diagnosis and prevention of complications in the form of sudden death.

  17. Autonomic Nervous System Responses Can Reveal Visual Fatigue Induced by 3D Displays

    Directory of Open Access Journals (Sweden)

    Eui Chul Lee

    2013-09-01

    Full Text Available Previous research has indicated that viewing 3D displays may induce greater visual fatigue than viewing 2D displays. Whether viewing 3D displays can evoke measureable emotional responses, however, is uncertain. In the present study, we examined autonomic nervous system responses in subjects viewing 2D or 3D displays. Autonomic responses were quantified in each subject by heart rate, galvanic skin response, and skin temperature. Viewers of both 2D and 3D displays showed strong positive correlations with heart rate, which indicated little differences between groups. In contrast, galvanic skin response and skin temperature showed weak positive correlations with average difference between viewing 2D and 3D. We suggest that galvanic skin response and skin temperature can be used to measure and compare autonomic nervous responses in subjects viewing 2D and 3D displays.

  18. Assessment of autonomic nervous system activity by heart rate recovery response

    Institute of Scientific and Technical Information of China (English)

    MENG Zhaohui; BAI Jing

    2004-01-01

    The assessment of autonomic nervous system (ANS) activity is a tool for diagnosing or predicting cardiovascular diseases,while heart rate recovery response (HRRR) after exercise has been promoted as a process under the regulation of ANS (sympathetic and parasympathetic nervous systems).Therefore,assessment of ANS activity was performed by HRRR in this study.Firstly,HRRR signal was extracted based on wavelet decomposition and difference curve of coarse component from heart rate signal.Then,HRRR was divided into quickly descending interval (QDI) and slowly descending interval (SDI).Finally,3 groups of indexes (Difference,Exponential and Quadratic Groups) from QDI and SDI were compared between 50 normotensive and 61 hypertensive subjects.The results showed that the indexes of Difference Group were better choices than others in analyzing the features of HRRR.Furthermore,parasympathetic activity is dominant in QDI,while sympathetic and parasympathetic activities affect SDI together.In conclusion,the proposed method was effective to assess ANS activity.

  19. Autonomic nervous functions in fetal type Minamata disease patients: assessment of heart rate variability.

    Science.gov (United States)

    Oka, Tomoko; Matsukura, Makoto; Okamoto, Miwako; Harada, Noriaki; Kitano, Takao; Miike, Teruhisa; Futatsuka, Makoto

    2002-12-01

    In order to assess the cardiovascular autonomic nervous functions in patients with fetal type Minamata disease (FMD), we investigated blood pressure (BP), and conducted time and frequency domain analysis of heart rate variability (HRV). Subjects were 9 patients in Meisuien recognized as FMD, and 13 healthy age matched control subjects. HRV and BP were assessed after subjects rested in a supine position for 10 minutes. Electrocardiographic (ECG) data were collected for 3 minutes during natural breathing. Time domain analysis (the average of R-R intervals [Mean RR], standard deviation of R-R intervals [SD RR], coefficient of variation [CV]), and frequency domain analysis by fast Fourier transformation (FFT) (power of low frequency [LF] and high frequency [HF] component, expressed in normalized units[nu]) were then conducted. In the time domain analysis, the mean RR of the FMD group was significantly lower than that of the control group. Neither SD RR nor CV showed significant differences between the two groups, but both tended to be lower in the FMD group. In the frequency domain analysis, the HF component of the FMD group was significantly lower than that of the control group. Pulse pressure (PP) was significantly lower in the FMD subjects. These findings suggest that parasympathetic nervous dysfunction might exist in FMD patients, who were exposed to high doses of methylmercury (MeHg) during the prenatal period. Decrease of PP might be due to degenerative changes of blood vessels driven by exposure to high doses of MeHg.

  20. Restoring the Balance of the Autonomic Nervous System as an Innovative Approach to the Treatment of Rheumatoid Arthritis

    NARCIS (Netherlands)

    Koopman, F.A.; Stoof, S.P.; Straub, R.H.; van Maanen, M.A.; Vervoordeldonk, M.J.; Tak, P.P.

    2011-01-01

    The immunomodulatory effect of the autonomic nervous system has raised considerable interest over the last decades. Studying the influence on the immune system and the role in inflammation of the sympathetic as well as the parasympathetic nervous system not only will increase our understanding of th

  1. Effect Of Haemodialysis On Intra Dialytic Calcium, Phosphorus,Magnesium, Levels In Relation To AutonomicNervous System Activity

    OpenAIRE

    Mona Hosny, Sahar Shawky, Ahmed Ramadan , Hany Refaat

    2004-01-01

    Autonomic nervous system dysfunction is common in uremia and in patients under hemodialysis. Changes in serum calcium, serum phosphorus and serum magnesuim always occur during hemodialysis. The relation between these changes and autonomic nervous system activity during hemodialysis has not been fully studied. This study was carried out on 30 patients with chronic renal failure on regular hemo-dialysis with nearly similar age group. We measured serum calcium, serum phosphorus and serum magnesi...

  2. Autologous Adipose Stem Cell Therapy for Autonomic Nervous System Dysfunction in Two Young Patients

    Science.gov (United States)

    Kamdar, Ankur; Young, Jane; Butler, Ian. J.

    2017-01-01

    Postural orthostatic tachycardia syndrome and neurocardiogenic syncope are clinical manifestations of autonomic nervous system dysfunction (dysautonomia) that can lead to impaired daily functions. We report two young patients presenting with dysautonomia and autoimmune disease who both received autologous adipose stem cells (ASCs) infusions. This report is the first description of ASCs therapy for patients with combined dysautonomia and autoimmune disease. Case 1: A 21-year-old female presented at 12 years of age with escalating severe dysautonomia with weight loss and gastrointestinal symptoms. She had elevated autoantibodies and cytokines and received multiple immune modulation therapies. Her dysautonomia was treated by volume expanders, vasoconstrictors, and beta blockers with mild improvement. She received ASCs about 2 years before this report with dramatic improvement in her dysautonomia and autoimmune symptoms with a 10 kg weight gain. Case 2: A 7-year-old boy presented at 2 years of age with polyarthritis. At 5 years of age, he manifested orthostatic intolerance. He received immune modulatory therapies with mild improvement. He received ASCs and showed marked improvement of his dysautonomia and immune symptoms. Dysautonomia symptoms of these two patients improved significantly after modulation of autoimmune components by ASC therapy. Favorable clinical responses of these two cases warrant further case–control studies. PMID:27959743

  3. The unexplored relationship between urinary tract infections and the autonomic nervous system.

    Science.gov (United States)

    Hibbing, Michael E; Conover, Matt S; Hultgren, Scott J

    2016-10-01

    Urinary tract infections (UTIs), the majority of which are caused by uropathogenic E. coli (UPEC), are extremely common infections that preferentially effect women. Additional complicating factors, such as catheterization, diabetes, and spinal cord injuries can increase the frequency and severity of UTIs. The rise of antimicrobial resistant uropathogens and the ability of this disease to chronically recur make the development of alternative preventative and therapeutic modalities a priority. The major symptoms of UTIs, urgency, frequency, and dysuria, are readouts of the autonomic nervous system (ANS) and the majority of the factors that lead to complicated UTIs have been shown to impact ANS function. This review summarizes the decades' long efforts to understand the molecular mechanisms of the interactions between UPEC and the host, with a particular focus on the recent findings revealing the molecular, bacteriological, immunological and epidemiological complexity of pathogenesis. Additionally, we describe the progress that has been made in: i) generating vaccines and anti-virulence compounds that prevent and/or treat UTI by blocking bacterial adherence to urinary tract tissue and; and ii) elucidating the mechanism by which anti-inflammatories are able to alleviate symptoms and improve disease prognosis. Finally, the potential relationships between the ANS and UTI are considered throughout. While these relationships have not been experimentally explored, the known interactions between numerous UTI characteristics (symptoms, complicating factors, and inflammation) and ANS function suggest that UTIs are directly impacting ANS stimulation and that ANS (dys)function may alter UTI prognosis.

  4. Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders.

    Science.gov (United States)

    Kushki, Azadeh; Drumm, Ellen; Pla Mobarak, Michele; Tanel, Nadia; Dupuis, Annie; Chau, Tom; Anagnostou, Evdokia

    2013-01-01

    Assessment of anxiety symptoms in autism spectrum disorders (ASD) is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS) activity for this purpose. Specially, the objectives of the study were to 1) examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2) characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature) during a baseline (movie watching) and anxiety condition (Stroop task) in a sample of typically developing children (n = 17) and children with ASD (n = 12). The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1) signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2) ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal.

  5. Investigating the Autonomic Nervous System Response to Anxiety in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Kushki, Azadeh; Drumm, Ellen; Pla Mobarak, Michele; Tanel, Nadia; Dupuis, Annie; Chau, Tom; Anagnostou, Evdokia

    2013-01-01

    Assessment of anxiety symptoms in autism spectrum disorders (ASD) is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS) activity for this purpose. Specially, the objectives of the study were to 1) examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2) characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature) during a baseline (movie watching) and anxiety condition (Stroop task) in a sample of typically developing children (n = 17) and children with ASD (n = 12). The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1) signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2) ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal. PMID:23577072

  6. Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Azadeh Kushki

    Full Text Available Assessment of anxiety symptoms in autism spectrum disorders (ASD is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS activity for this purpose. Specially, the objectives of the study were to 1 examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2 characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature during a baseline (movie watching and anxiety condition (Stroop task in a sample of typically developing children (n = 17 and children with ASD (n = 12. The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1 signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2 ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal.

  7. Diseases of the nervous system associated with calcium channelopathies

    NARCIS (Netherlands)

    Todorov, Boyan Bogdanov

    2010-01-01

    The aim of the studies described in this thesis was to investigate how abnormal CaV2.1 channel function can cause disease, in particular motor coordination dysfunction. The chapters illustrate how various neuronal cell types in the periphery (peripheral nervous system) and the central nervous system

  8. Evaluation of malnutrition in patients with nervous system disease.

    Science.gov (United States)

    Li, Feng; Liu, Yao-wen; Wang, Xue-feng; Liu, Guang-wei

    2014-10-01

    Nutritional deficiencies are independent risk factors for adverse outcomes in patients with nervous system disease. Patients with nervous system disease can often become malnourished due to swallowing difficulties or unconsciousness. This malnourishment increases hospitalization duration; average total hospital cost; occurrence of infection, pressure ulcers, and other complications. These problems need to be addressed in the clinic. In this paper, we review the relevant literature, including studies on influencing factors, evaluations, indexes, and methods: Our aim is to understand the current status of malnutrition in patients with nervous system disease and reasons associated with nutritional deficiencies by using malnutrition evaluation methods to assess the risk of nutritional deficiencies in the early stages.

  9. Stress, acute hyperglycemia, and hyperlipidemia role of the autonomic nervous system and cytokines.

    Science.gov (United States)

    Nonogaki, K; Iguchi, A

    1997-07-01

    Stress is accompanied by metabolic alterations that could contribute to the etiology of diabetes mellitus, arteriosclerosis, and cardiovascular diseases; however, the mechanisms by which stress affects glucose and lipid metabolism remain to be resolved. Stress-induced effects on neurotransmission and interleukin-1 (IL-1) signaling rapidly produce hyperglycemia by increasing sympathetic outflow. Activation of the sympathetic nervous system can also rapidly stimulate lipolysis and hepatic triglyceride secretion. Furthermore, stress increases serum interleukin-6 (IL-6) and nerve growth factor (NGF) levels by activating neuroendocrine systems. IL-6 and NGF can rapidly increase lipolysis and hepatic triglyceride secretion without inducing hyperglycemia. The sympathetic nervous system does not mediate cytokine-induced hypertriglyceridemia. Thus, the central nervous system plays an important role in regulation of hepatic glucose and lipid metabolism via the sympathetic nervous system and cytokines. (Trends Endocrinol Metab 1997;8:192-197). (c) 1997, Elsevier Science Inc.

  10. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity.

    Science.gov (United States)

    van den Berg, Magdalena M H E; Maas, Jolanda; Muller, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille N M; van Mechelen, Willem; van den Berg, Agnes E

    2015-12-14

    This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA) and pre-ejection period (PEP), indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space.

  11. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    Science.gov (United States)

    van den Berg, Magdalena M.H.E.; Maas, Jolanda; Muller, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille N.M.; van Mechelen, Willem; van den Berg, Agnes E.

    2015-01-01

    This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA) and pre-ejection period (PEP), indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space. PMID:26694426

  12. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    Directory of Open Access Journals (Sweden)

    Magdalena M.H.E. van den Berg

    2015-12-01

    Full Text Available This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA and pre-ejection period (PEP, indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space.

  13. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report, September 1991--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  14. Dynamics of autonomic nervous system responses and facial expressions to odors

    Directory of Open Access Journals (Sweden)

    Wei eHe

    2014-02-01

    Full Text Available Why we like or dislike certain products may be better captured by physiological and behavioral measures of the autonomic nervous system than by conscious or classical sensory tests. Responses to pleasant and unpleasant food odors presented in varying concentrations were assessed continuously using facial expressions and responses of the autonomic nervous system (ANS. Results of 26 young and healthy female participants showed that the unpleasant fish odor triggered higher heart rates and skin conductance responses, lower skin temperature, fewer neutral facial expressions and more disgusted and angry expressions (p < .05. Neutral facial expressions differentiated between odors within 100 ms, after the start of the odor presentation followed by expressions of disgust (180 ms, anger (500 ms, surprised (580 ms, sadness (820 ms, scared (1020 ms, and happy (1780 ms (all p values < .05. Heart rate differentiated between odors after 400 ms, whereas skin conductance responses differentiated between odors after 3920 ms. At shorter intervals (between 520 and 1000 ms and between 2690 and 3880 ms skin temperature for fish was higher than that for orange, but became considerable lower after 5440 ms. This temporal unfolding of emotions in reactions to odors, as seen in facial expressions and physiological measurements supports sequential appraisal theories.

  15. Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges.

    Science.gov (United States)

    Bush, Nicole R; Caron, Zoe K; Blackburn, Katherine S; Alkon, Abbey

    2016-02-25

    The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences (1). ANS measures in children have been found to be related to behavior problems, emotion regulation, and health (2-7). Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change (8-11). However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence

  16. Chinese-chi and Kundalini yoga Meditations Effects on the Autonomic Nervous System: Comparative Study

    Directory of Open Access Journals (Sweden)

    Anilesh Dey

    2016-06-01

    Full Text Available Cardiac disease is one of the major causes for death all over the world. Heart rate variability (HRV is a significant parameter that used in assessing Autonomous Nervous System (ANS activity. Generally, the 2D Poincare′ plot and 3D Poincaré plot of the HRV signals reflect the effect of different external stimuli on the ANS. Meditation is one of such external stimulus, which has different techniques with different types of effects on the ANS. Chinese Chi-meditation and Kundalini yoga are two different effective meditation techniques. The current work is interested with the analysis of the HRV signals under the effect of these two based on meditation techniques. The 2D and 3D Poincare′ plots are generally plotted by fitting respectively an ellipse/ellipsoid to the dense region of the constructed Poincare′ plot of HRV signals. However, the 2D and 3D Poincaré plots sometimes fail to describe the proper behaviour of the system. Thus in this study, a three-dimensional frequency-delay plot is proposed to properly distinguish these two famous meditation techniques by analyzing their effects on ANS. This proposed 3D frequency-delay plot is applied on HRV signals of eight persons practicing same Chi-meditation and four other persons practising same Kundalini yoga. To substantiate the result for larger sample of data, statistical Student t-test is applied, which shows a satisfactory result in this context. The experimental results established that the Chi-meditation has large impact on the HRVcompared to the Kundalini yoga.

  17. Clinical assessment of the autonomic nervous system in diabetes mellitus and its correlation with glycemic control

    Directory of Open Access Journals (Sweden)

    Uday B Nayak

    2013-01-01

    Full Text Available Aim: Clinical assessment of the autonomic nervous system in Diabetes mellitus (DM and its correlation with glycemic control. STUDY DESIGN: Cross sectional study of 50 adult diabetes patients. Materials and Methods: Fifty patients with DM who were on regular treatment with either insulin and/or oral hypoglycemic agents were studied. Cardiovascular autonomic neuropathy (CAN score was calculated using the clinical test variables. Results: Of the 50 patients 30 had no CAN, 10 had early CAN and 10 had severe CAN. The mean of CAN score increased with duration of diabetes. The mean HbA 1C was 7.73. The mean CAN score was higher in patients who had complication of diabetes as compared to patients without complications. The heart rate variability with respiration was found to be 15.84 ± 7.02/min. The mean valsalva ratio was 1.31 ± 0.23. The mean drop in BP on standing was 7.30 ± 7.24 mmHg. The mean 30:15 ratio was 1.06 ± 0.04. The mean rise in diastolic BP on sustained hand grip was 16.04 ± 4.11 mmHg. Conclusions: The prevalence of autonomic neuropathy in DM as assessed by CAN score was 40%. The CAN score did not correlate with the duration of DM. The HbA 1C had a significant correlation with the severity of autonomic neuropathy. Occurrence of CAN correlated with the presence of peripheral neuropathy but not with the presence of retinopathy or nephropathy. All individual tests in the battery of CAN score were significantly associated with the presence of autonomic neuropathy, except 30:15 ratio.

  18. Deciphering Human Cell-Autonomous Anti-HSV-1 Immunity in the Central Nervous System.

    Science.gov (United States)

    Lafaille, Fabien G; Ciancanelli, Michael J; Studer, Lorenz; Smith, Gregory; Notarangelo, Luigi; Casanova, Jean-Laurent; Zhang, Shen-Ying

    2015-01-01

    Herpes simplex virus 1 (HSV-1) is a common virus that can rarely invade the human central nervous system (CNS), causing devastating encephalitis. The permissiveness to HSV-1 of the various relevant cell types of the CNS, neurons, astrocytes, oligodendrocytes, and microglia cells, as well as their response to viral infection, has been extensively studied in humans and other animals. Nevertheless, human CNS cell-based models of anti-HSV-1 immunity are of particular importance, as responses to any given neurotropic virus may differ between humans and other animals. Human CNS neuron cell lines as well as primary human CNS neurons, astrocytes, and microglia cells cultured/isolated from embryos or cadavers, have enabled the study of cell-autonomous anti-HSV-1 immunity in vitro. However, the paucity of biological samples and their lack of purity have hindered progress in the field, which furthermore suffers from the absence of testable primary human oligodendrocytes. Recently, the authors have established a human induced pluripotent stem cells (hiPSCs)-based model of anti-HSV-1 immunity in neurons, oligodendrocyte precursor cells, astrocytes, and neural stem cells, which has widened the scope of possible in vitro studies while permitting in-depth explorations. This mini-review summarizes the available data on human primary and iPSC-derived CNS cells for anti-HSV-1 immunity. The hiPSC-mediated study of anti-viral immunity in both healthy individuals and patients with viral encephalitis will be a powerful tool in dissecting the disease pathogenesis of CNS infections with HSV-1 and other neurotropic viruses.

  19. Anxiety and depression are related to autonomic nervous system function in women with irritable bowel syndrome.

    Science.gov (United States)

    Jarrett, Monica E; Burr, Robert L; Cain, Kevin C; Hertig, Vicky; Weisman, Pam; Heitkemper, Margaret M

    2003-02-01

    This study compared women with irritable bowel syndrome who had a history of an anxiety or depressive disorder to those without symptoms of either disorder on indicators of cardiac parasympathetic activity, autonomic nervous system balance, and general autonomic activity. The Diagnostic Interview Schedule was used to determine anxiety or depressive disorders, and a Holter monitor was used to record R-R intervals over 24 hr. A similar comparison was done with healthy controls. Among women with irritable bowel syndrome, those with a positive history had lower parasympathetic and general activity throughout the 24-hr period than did women without a diagnosis. Indicators of autonomic balance were slightly higher in women with a positive history compared to those without a history. Similar differences were seen in controls. Thus, a history of anxiety and depressive disorders is associated with lower parasympathetic activity, both in women with IBS and healthy controls. Further exploration is needed to understand if lower parasympathetic activity influences the pain and stool pattern changes seen in persons with irritable bowel syndrome.

  20. Objective evaluation of stress with the blind by the monitoring of autonomic nervous system activity.

    Science.gov (United States)

    Massot, Bertrand; Baltenneck, Nicolas; Gehin, Claudine; Dittmar, Andre; McAdams, Eric

    2010-01-01

    Accessibility for the blind in an urban space must be studied under real conditions in their daily environment. A new approach for evaluating the impact of environmental conditions on blind pedestrians is the objective measure of stress by the monitoring of the autonomic nervous system (ANS) activity. Original techniques of data analysis and spatial representation are proposed for the detection of the ANS activity through the assessment of the electrodermal activity. Skin resistance was recorded with an EmoSense system on 10 blind subjects who followed a charted course independently. The course was 1065 meters long and consisted of various environmental conditions in an urban space. The spatial frequency of the non-specific skin resistance responses was used to provide a more relevant representation of geographic hotspots. Results of statistical analysis based on this new parameter are discussed to conclude on phenomena causing mental stress with the blind moving in an urban space.

  1. Drug-Free Correction of the Tone of the Autonomic Nervous System in the Management of Cardiac Arrhythmia in Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Sergey V. Popov, PhD, ScD

    2013-06-01

    Full Text Available Background: The aim of our study was to examine the possibility of ventricular extrasystole (VES management in CAD (coronary artery disease patients by attenuating the sympathetic activity with a course of electrical stimulation of the vagus nerve. Methods: A decrease in sympathetic tone was achieved via vagus nerve electrical stimulation (VNES. VNES was performed in 48 male CAD patients, mean age 53.5±4.1 years. Antiarrhythmic drug therapy was canceled prior to VNES therapy. The effect of VNES on heart rate variability (HRV and VES were carefully studied. All the patients received a 24-hour ECG monitoring. HRV was calculated for high frequency (HF and low frequency (LF bands and the LF/HF index was determined. Results: Immediately following VNES therapy, 30 patients (group 1 reported alleviation of angina signs and the LF/HF index was significantly decreased (p=0.001. Eighteen patients (group 2 showed no change either in health or the LF/HF index. According to ECG and echocardiography, the VES number did not significantly change immediately after VNES therapy. One month after the VNES course, group 1 reported further improvement in health; the LF/HF index approached normal values. In group 2, the LF/HF significantly decreased (p=0.043. However, in the entire study sample, the VES number significantly decreased overall (p=0.025. Conclusion: VNES attenuated the cardiac effects of hypersympathicotonia decreased the ischemic impact on the myocardium, alleviated the cardiac angina signs, and beneficially influenced the VES number in CAD patients.

  2. An Educational Board Game to Assist PharmD Students in Learning Autonomic Nervous System Pharmacology.

    Science.gov (United States)

    Jones, J Shawn; Tincher, Lindsay; Odeng-Otu, Emmanuel; Herdman, Michelle

    2015-10-25

    Objective. To examine whether playing a board game can assist PharmD students in learning autonomic nervous system (ANS) pharmacology. Design. Of 72 students enrolled in a required second-year pharmacology course, 22 students volunteered to play the board game, which was followed by an in-class examination consisting of 42 ANS questions (ANSQs) and 8 control questions (CTLQs). Participants were given a pretest and a posttest to assess immediate educational improvement. Participants' scores for pretest, posttest, in-class examination, and ANSQs were compared. Also, scores for examination, ANSQs, and CTLQs were compared between board game participants (PART) and nonparticipating classmates (NPART). Assessment. Board game participants scored progressively higher between the pretest, posttest, examination, and ANSQs. Additionally, PART scores were higher than NPART scores for examination and ANSQs. Difference between PART and NPART CTLQ scores was not significant. Conclusion. A board game can assist PharmD students in learning ANS pharmacology.

  3. Cardiovascular autonomic nervous system function and aerobic capacity in type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Harriet eHägglund

    2012-09-01

    Full Text Available Impaired cardiovascular autonomic nervous system (ANS function has been reported in type 1 diabetes patients. ANS function, evaluated by heart rate variability (HRV, systolic blood pressure variability (SBPV and baroreflex sensitivity (BRS, has been linked to aerobic capacity (VO2peak in healthy subjects, but relationship is unknown in type 1 diabetes. We examined cardiovascular ANS function at rest and during function tests, and its relations to VO2peak in type 1 diabetes individuals. Ten type 1 diabetes patients (T1D (34 ± 7 years and 11 healthy control (CON (31 ± 6 years age and leisure-time physical activity-matched men were studied. Autonomic nervous system function was recorded at rest and during active standing and handgrip. Determination of VO2peak was obtained with graded cycle ergometer test. During ANS recordings SBPV, BRS, and resting HRV did not differ between groups, but alpha1 responses to manoeuvres in detrended fluctuation analyses were smaller in T1D (active standing; 32%, handgrip; 20%, medians than in CON (active standing; 71%, handgrip; 54%, p < 0.05. VO2peak was lower in T1D (36 ± 4 ml ∙ kg-1 ∙ min-1 than in CON (45 ± 9 ml ∙ kg-1 ∙ min-1, p < 0.05. Resting HRV measures, RMSSD, HF and SD1 correlated with VO2peak in CON (p < 0.05 and when analysing groups together. These results suggest that T1D had lower VO2peak, weaker HRV response to manoeuvres, but not impaired cardiovascular ANS function at rest compared with CON. Resting parasympathetic cardiac activity correlated with VO2peak in CON but not in T1D. Detrended fluctuation analysis could be a sensitive detector of changes in cardiac ANS function in type 1 diabetes.

  4. Induced Effects of Transcranial Magnetic Stimulation on the Autonomic Nervous System and the Cardiac Rhythm

    Directory of Open Access Journals (Sweden)

    Mercedes Cabrerizo

    2014-01-01

    Full Text Available Several standard protocols based on repetitive transcranial magnetic stimulation (rTMS have been employed for treatment of a variety of neurological disorders. Despite their advantages in patients that are retractable to medication, there is a lack of knowledge about the effects of rTMS on the autonomic nervous system that controls the cardiovascular system. Current understanding suggests that the shape of the so-called QRS complex together with the size of the different segments and intervals between the PQRST deflections of the heart could predict the nature of the different arrhythmias and ailments affecting the heart. This preliminary study involving 10 normal subjects from 20 to 30 years of age demonstrated that rTMS can induce changes in the heart rhythm. The autonomic activity that controls the cardiac rhythm was indeed altered by an rTMS session targeting the motor cortex using intensity below the subject’s motor threshold and lasting no more than 5 minutes. The rTMS activation resulted in a reduction of the RR intervals (cardioacceleration in most cases. Most of these cases also showed significant changes in the Poincare plot descriptor SD2 (long-term variability, the area under the low frequency (LF power spectrum density curve, and the low frequency to high frequency (LF/HF ratio. The RR intervals changed significantly in specific instants of time during rTMS activation showing either heart rate acceleration or heart rate deceleration.

  5. Autonomic nervous system modulation during an archery competition in novice and experienced adolescent archers.

    Science.gov (United States)

    Carrillo, Andres E; Christodoulou, Vasilios X; Koutedakis, Yiannis; Flouris, Andreas D

    2011-06-01

    We assessed autonomic nervous system modulation through changes in heart rate variability during an archery competition as well as archery performance by comparing novice and experienced adolescent archers. Seven novice (age 14.0 ± 8.5 years, body mass index 22.9 ± 4.3 kg · m(-2), training experience 0.4 ± 0.3 years) and ten experienced archers (age 16.5 ± 10.3 years, body mass index 22.4 ± 3.1 kg · m(-2), training experience 4.1 ± 0.9 years) volunteered. Using beat-by-beat heart rate monitoring, heart rate variability was measured for 20 s before each arrow shot during two rounds of competition. We found that, compared with novices, experienced adolescent archers: (i) take more time per shot; (ii) have a higher low frequency band, square root of the mean of squared differences between successive R-R intervals (i.e. the time elapsing between two consecutive R waves in the electrocardiogram), and percentage of successive normal-to-normal intervals greater than 50 ms; and (iii) demonstrate an increase in parasympathetic nervous system activity compared with pre-competition values. We propose that these characteristics of experienced archers are appropriate for optimal performance during competition.

  6. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    Directory of Open Access Journals (Sweden)

    Kang-Ming Chang

    2011-01-01

    Full Text Available Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P<.001∗∗∗ after application of the aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.

  7. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    Science.gov (United States)

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart.

  8. Potential benefits of mindfulness during pregnancy on maternal autonomic nervous system function and infant development.

    Science.gov (United States)

    Braeken, Marijke A K A; Jones, Alexander; Otte, Renée A; Nyklíček, Ivan; Van den Bergh, Bea R H

    2017-02-01

    Mindfulness is known to decrease psychological distress. Possible benefits in pregnancy have rarely been explored. Our aim was to examine the prospective association of mindfulness with autonomic nervous system function during pregnancy and with later infant social-emotional development. Pregnant women (N = 156) completed self-report mindfulness and emotional distress questionnaires, and had their autonomic function assessed in their first and third trimesters, including heart rate (HR), indices of heart rate variability (HRV), preejection period (PEP), and systolic (SBP) and diastolic blood pressure (DBP). The social-emotional development of 109 infants was assessed at 4 months of age. More mindful pregnant women had less prenatal and postnatal emotional distress (p mindful mothers, parasympathetic activity decreased less (RMSSD: p = .01; HF HRV: p = .03) and sympathetic activity (inversely related to PEP) increased less (PEP: p = .02) between trimesters. Their offspring displayed less negative social-emotional behavior (p = .03) compared to offspring of less mindful mothers. Mindfulness in pregnancy was associated with ANS changes likely to be adaptive and with better social-emotional offspring development. Interventions to increase mindfulness during pregnancy might improve maternal and offspring health, but randomized trials are needed to demonstrate this.

  9. Stimulation of the autonomic nervous system in colorectal surgery: a study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Berghmans Tim MP

    2012-06-01

    Full Text Available Abstract Background Postoperative ileus (POI is a well-known complication of abdominal surgery and is considered to be caused by a local inflammation in the gut. Previously it has been shown that both local and systemic inflammation can be reduced by stimulation of the autonomic nervous system via lipid rich nutrition. Stimulation of the autonomic nervous system releases acetylcholine from efferent vagal nerve endings that binds to nicotinic receptors located on the inflammatory cells leading to a decrease of pro-inflammatory mediators. Besides administration of nutrition there are other ways of stimulating the autonomic nervous system such as gum chewing. Methods/design This prospective, placebo-controlled randomized trial will include 120 patients undergoing colorectal surgery which are randomized for gum chewing preoperatively and in the direct postoperative phase or a placebo. Postoperative ileus will be assessed both clinically by time to first flatus and time to first defecation and by determination of gastric motility using ultrasound to measure dimensions of the antrum. Furthermore the inflammatory response is quantified by analyzing pro-inflammatory mediators. Finally, markers of gut barrier integrity will be measured as well as occurrence of postoperative complications. Discussion We hypothesize that chewing gum preoperatively and in the direct postoperative phase in patients undergoing colorectal surgery dampens local and systematic inflammation, via activation of the autonomic nervous system. Down-regulation of the inflammatory cascade via stimulation of the vagus nerve will ameleriote POI and enhance postoperative recovery. Trial registration NTR2867

  10. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    Directory of Open Access Journals (Sweden)

    Luba Sominsky

    Full Text Available Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p. exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA axis functioning. Altered autonomic nervous system (ANS activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH in the adrenal glands on postnatal days (PNDs 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli. Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of

  11. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    Science.gov (United States)

    Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.

  12. The impact of emotion-related autonomic nervous system responsiveness on pain sensitivity in female patients with fibromyalgia

    NARCIS (Netherlands)

    Middendorp, H. van; Lumley, M.A.; Houtveen, J.H.; Jacobs, J.W.G.; Bijlsma, J.W.J.; Geenen, R.

    2013-01-01

    OBJECTIVE: Patients with fibromyalgia have shown hyporeactive autonomic nervous system (ANS) responses to physical stressors, augmented pain to ANS changes, and heightened negative emotions, which can increase pain. This study examined ANS reactivity to negative emotions and its association with pai

  13. Autonomic nervous system activity assessement by heart rate variability in experimental bladder outlet obstruction 

    Directory of Open Access Journals (Sweden)

    Łukasz Dobrek

    2013-04-01

    Full Text Available A syndrome with urgency, with or without associated urine incontinence and usually accompanied by higher urinary frequency and nocturia has been named “overactive bladder; OAB”. OAB is an entity with complex pathophysiology, involving both myogenic and neurogenic (afferent / efferent bladder innervation disturbances. OAB symptoms accompany benign prostatic hypertrophy - BPH (“obstructive OAB”. The aim of the study was to estimate the autonomic nervous system activity (ANS in the experimental bladder outlet obstruction (BOO which was an animal model of the human BPH. The study was conducted using 30 female rats, divided into two groups: BOO animals (n=15, with surgically induced BOO (by partial ligation of the proximal urethra and control ones (n=15, which underwent sham procedure (without urethral ligation. Two weeks after the surgery, in both groups, ANS activity was estimated using time- and spectral analysis of the heart rate variability recordings. The bladder overactivity in BOO animals was confirmed using urodynamic recordings and bladder histological assessment, juxtaposed against the results of the control group. The key finding of our study was the development of autonomic disturbances in bladder outlet obstruction (BOO rats. Our study revealed that BOO animals were characterised by diminished rMSSD and spectral HRV parameters: TP, LF and HF, in comparison with the control group. The normalised nLF and nHF parameters did not differ significantly in both groups, although slight changes in the nLF (increased and nHF (decreased were noted in BOO group. The absolute VLF value was almost the same in both studied populations, however, the percentage part of this component in the appropriate HRV spectrum differed considerably in both studied groups. In BOO animals, VLF percentage amounted to about 90�20whereas in control animals this parameter reached only about 53�0of the total power spectrum.Thus, to sum up, our findings suggest

  14. Error awareness revisited: accumulation of multimodal evidence from central and autonomic nervous systems.

    Science.gov (United States)

    Wessel, Jan R; Danielmeier, Claudia; Ullsperger, Markus

    2011-10-01

    The differences between erroneous actions that are consciously perceived as errors and those that go unnoticed have recently become an issue in the field of performance monitoring. In EEG studies, error awareness has been suggested to influence the error positivity (Pe) of the response-locked event-related brain potential, a positive voltage deflection prominent approximately 300 msec after error commission, whereas the preceding error-related negativity (ERN) seemed to be unaffected by error awareness. Erroneous actions, in general, have been shown to promote several changes in ongoing autonomic nervous system (ANS) activity, yet such investigations have only rarely taken into account the question of subjective error awareness. In the first part of this study, heart rate, pupillometry, and EEG were recorded during an antisaccade task to measure autonomic arousal and activity of the CNS separately for perceived and unperceived errors. Contrary to our expectations, we observed differences in both Pe and ERN with respect to subjective error awareness. This was replicated in a second experiment, using a modified version of the same task. In line with our predictions, only perceived errors provoke the previously established post-error heart rate deceleration. Also, pupil size yields a more prominent dilatory effect after an erroneous saccade, which is also significantly larger for perceived than unperceived errors. On the basis of the ERP and ANS results as well as brain-behavior correlations, we suggest a novel interpretation of the implementation and emergence of error awareness in the brain. In our framework, several systems generate input signals (e.g., ERN, sensory input, proprioception) that influence the emergence of error awareness, which is then accumulated and presumably reflected in later potentials, such as the Pe.

  15. New insights into the pathology of Parkinson's disease: does the peripheral autonomic system become central?

    Science.gov (United States)

    Probst, A; Bloch, A; Tolnay, M

    2008-04-01

    Recent studies in aged, neurologically unimpaired subjects have pointed to a specific induction site of the pathological process of Parkinson's disease (PD) in the region of the dorsal glossopharyngeus-vagus complex as well as in the anterior olfactory nucleus. From the lower brainstem, the disease process would then pursue an ascending course and involve more rostral brainstem areas, limbic structures, and eventually the cerebral cortex. One barrier to the acceptance of the caudal medullary structures as the induction site of PD pathology is that not all parts of the nervous system have been investigated for the presence of PD-associated lesions in cases of early asymptomatic PD. Using alpha-synuclein immunostaining, we investigated the brain, the sacral, and thoracic autonomic nuclei of the spinal cord as well as several components of the peripheral autonomic nervous system in a autopsy cohort of 98 neurologically unimpaired subjects aged 64 or more. Our data indicate that the autonomic nuclei of the spinal cord and the peripheral autonomic nervous system belong to the most constantly and earliest affected regions next to medullary structures and the olfactory nerves in neurologically unimpaired older individuals, thus providing a pathological basis for early premotor autonomic dysfunctions at a prodromal stage of PD.

  16. Effects of a Passive Online Software Application on Heart Rate Variability and Autonomic Nervous System Balance

    Science.gov (United States)

    2017-01-01

    Abstract Objective: This study investigated whether short-term exposure to a passive online software application of purported subtle energy technology would affect heart rate variability (HRV) and associated autonomic nervous system measures. Methods: This was a randomized, double-blinded, sham-controlled clinical trial (RCT). The study took place in a nonprofit laboratory in Emeryville, California. Twenty healthy, nonsmoking subjects (16 females), aged 40–75 years, participated. Quantum Code Technology™ (QCT), a purported subtle energy technology, was delivered through a passive software application (Heart+ App) on a smartphone placed <1 m from subjects who were seated and reading a catalog. HRV was measured for 5 min in triplicate for each condition via finger plethysmography using a Food and Drug Administration medically approved HRV measurement device. Measurements were made at baseline and 35 min following exposure to the software applications. The following parameters were calculated and analyzed: heart rate, total power, standard deviation node-to-node, root mean square sequential difference, low frequency to high frequency ratio (LF/HF), low frequency (LF), and high frequency (HF). Results: Paired samples t-tests showed that for the Heart+ App, mean LF/HF decreased (p = 9.5 × 10–4), while mean LF decreased in a trend (p = 0.06), indicating reduced sympathetic dominance. Root mean square sequential difference increased for the Heart+ App, showing a possible trend (p = 0.09). Post–pre differences in LF/HF for sham compared with the Heart+ App were also significant (p < 0.008) by independent t-test, indicating clinical relevance. Conclusions: Significant beneficial changes in mean LF/HF, along with possible trends in mean LF and root mean square sequential difference, were observed in subjects following 35 min exposure to the Heart+ App that was working in the background on an active smartphone untouched by the subjects

  17. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    Science.gov (United States)

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  18. Involvement of the autonomic nervous system in diurnal variation of corrected QT intervals in common marmosets.

    Science.gov (United States)

    Honda, Masaki; Komatsu, Ryuichi; Isobe, Takehito; Tabo, Mitsuyasu; Ishikawa, Tomohisa

    2013-01-01

    Our previous study has shown that the corrected QT (QTc) interval of the electrocardiogram is longer during the dark period than during the light period in telemetered common marmosets. In the present study, we investigated the involvement of sympathetic and parasympathetic nervous activities in the changes of QTc interval associated with the light-dark cycle.Telemetry transmitters were implanted in six common marmosets to continuously record the electrocardiogram. The QT intervals obtained were corrected for the RR interval by applying individual probabilistic QT-rate correction formulae. Power spectral analysis of heart rate variability was performed to quantify each autonomic nervous function. Changes in QTc intervals and autonomic nervous tones were associated with the light-dark cycle. Parasympathetic nervous activity and QTc intervals significantly increased by approximately 10 ms during the dark period.Atropine, a muscarinic receptor antagonist, suppressed the increased parasympathetic tone and QTc prolongation during the dark period. In contrast, propranolol, a β-adrenoceptor antagonist, decreased the sympathetic activity and increased QTc intervals during the light period. These results suggest that the parasympathetic nerve functions prolong QTc intervals during the dark period, while the sympathetic nerve functions shorten them during the light period in common marmosets.

  19. [Eales' disease involving central nervous system white matter].

    Science.gov (United States)

    Antigüedad, A; Zarranz, J J

    1994-01-01

    Eales' disease (ED) is a rare condition characterized by repeated retinal and vitreous hemorrhages. The only extraocular involvement described occasionally in the literature is neurological. Histologically, vasculitis in ED is usually restricted to the eye, but occasionally involves the central nervous system, where demyelinizing lesions may also occur. We present a 34-year-old male with ED and subclinical central nervous system involvement. Craneal magnetic resonance images (MR) suggested demyelinization; brainstem auditory and somatosensory evoked potentials were abnormal. There was moderate pleocytosis in CSF and intratecal production of immunoglobulins with oligoclonal bands. Follow-up over a period of 2.5 years showed no clinical, MR or CSF changes in spite of continued opthamological impairment. Little is known about factors that affect the development or not of demyelinizing lesions in ED patients with neurological involvement demonstrated by intratecal production of immunoglobulins. Identification of such factors may contribute to our understanding of other diseases, such as multiple sclerosis.

  20. Effects of diving and oxygen on autonomic nervous system and cerebral blood flow.

    Science.gov (United States)

    Winklewski, Pawel J; Kot, Jacek; Frydrychowski, Andrzej F; Nuckowska, Magdalena K; Tkachenko, Yurii

    2013-09-01

    Recreational scuba diving is a popular leisure activity with the number of divers reaching several millions worldwide. Scuba diving represents a huge challenge for integrative physiology. In mammalian evolution, physiological reflexes developed to deal with lack of oxygen, rather than with an excess, which makes adaptations to scuba diving more difficult to describe and understand than those associated with breath-hold diving. The underwater environment significantly limits the use of equipment to register the organism's functions, so, in most instances, scientific theories are built on experiments that model real diving to some extent, like hyperbaric exposures, dive reflexes or water immersion. The aim of this review is to summarise the current knowledge related to the influence exerted by physiological conditions specific to diving on the autonomic nervous system and cerebral blood flow. The main factors regulating cerebral blood flow during scuba diving are discussed as follows: 1) increased oxygen partial pressure; 2) immersion-related trigemino-cardiac reflexes and 3) exposure to cold, exercise and stress. Also discussed are the potential mechanisms associated with immersion pulmonary oedema.

  1. Characterizing Psychological Dimensions in Non-Pathological Subjects through Autonomic Nervous System Dynamics

    Directory of Open Access Journals (Sweden)

    Mimma eNardelli

    2015-03-01

    Full Text Available The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS dynamics and specific dimensions such as anxiety, social phobia, stress and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and nonlinear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and nonlinear analysis was performed on Heart Rate Variability, InterBreath Interval series, and Inter-Beat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, nonlinear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions.

  2. Exercise training improves cardiac autonomic nervous system activity in type 1 diabetic children.

    Science.gov (United States)

    Shin, Ki Ok; Moritani, Toshio; Woo, Jinhee; Jang, Ki Soeng; Bae, Ju Yong; Yoo, Jaeho; Kang, Sunghwun

    2014-01-01

    [Purpose] We investigated the effect exercise training has on cardiac autonomic nervous system (ANS) and cardiovascular risk profiles in children with type 1 diabetes mellitus (DM). [Subjects] Fifteen type 1 DM children (all boys; 13.0±1.0 years of age) were enrolled in the study. [Methods] The subjects received exercise training three times a week in a 12-week program. Each child was asked to walk on a treadmill to achieve an exercise intensity of VO2max 60%. ANS activity was measured by power spectral analysis of the electrocardiogram (ECG). Blood samples were obtained for serum lipid profiles. To evaluate Doppler-shifted Fourier pulsatility index (PI) analysis, a 5-MHz continuous wave Doppler (VASCULAB D10) set was used to measure forward blood flow velocity (FLOW) in the radial artery. [Results] Total and low-frequency (LF) power of heart rate variability increased significantly after exercise intervention. Total cholesterol (TC) levels were significant lower after exercise intervention. Total and high-frequency (HF) power were significantly correlated with higher TC levels, but diastolic blood pressure and HF was significantly correlated with lower TC levels. [Conclusion] Regular exercise intervention should be prescribed for children with type 1 DM.

  3. Early postnatal low-protein nutrition, metabolic programming and the autonomic nervous system in adult life

    Directory of Open Access Journals (Sweden)

    de Oliveira Júlio

    2012-09-01

    Full Text Available Abstract Protein restriction during lactation has been used as a rat model of metabolic programming to study the impact of perinatal malnutrition on adult metabolism. In contrast to protein restriction during fetal life, protein restriction during lactation did not appear to cause either obesity or the hallmarks of metabolic syndrome, such as hyperinsulinemia, when individuals reached adulthood. However, protein restriction provokes body underweight and hypoinsulinemia. This review is focused on the regulation of insulin secretion and the influence of the autonomic nervous system (ANS in adult rats that were protein-malnourished during lactation. The data available on the topic suggest that the perinatal phase of lactation, when insulted by protein deficit, imprints the adult metabolism and thereby alters the glycemic control. Although hypoinsulinemia programs adult rats to maintain normoglycemia, pancreatic β-cells are less sensitive to secretion stimuli, such as glucose and cholinergic agents. These pancreatic dysfunctions may be attributed to an imbalance of ANS activity recorded in adult rats that experienced maternal protein restriction.

  4. Early postnatal low-protein nutrition, metabolic programming and the autonomic nervous system in adult life.

    Science.gov (United States)

    de Oliveira, Júlio Cezar; Grassiolli, Sabrina; Gravena, Clarice; de Mathias, Paulo Cezar Freitas

    2012-09-11

    Protein restriction during lactation has been used as a rat model of metabolic programming to study the impact of perinatal malnutrition on adult metabolism. In contrast to protein restriction during fetal life, protein restriction during lactation did not appear to cause either obesity or the hallmarks of metabolic syndrome, such as hyperinsulinemia, when individuals reached adulthood. However, protein restriction provokes body underweight and hypoinsulinemia. This review is focused on the regulation of insulin secretion and the influence of the autonomic nervous system (ANS) in adult rats that were protein-malnourished during lactation. The data available on the topic suggest that the perinatal phase of lactation, when insulted by protein deficit, imprints the adult metabolism and thereby alters the glycemic control. Although hypoinsulinemia programs adult rats to maintain normoglycemia, pancreatic β-cells are less sensitive to secretion stimuli, such as glucose and cholinergic agents. These pancreatic dysfunctions may be attributed to an imbalance of ANS activity recorded in adult rats that experienced maternal protein restriction.

  5. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  6. Effect of Autonomic Nervous System on the Transmurai Dispersion of Ventricular Repolarization in Intact Canine

    Institute of Scientific and Technical Information of China (English)

    张存泰; 徐大文; 李泱; 刘念; 王琳; 陆再英

    2004-01-01

    Summary: The effect of the autonomic nerves on the transmural dispersion of ventricular repolarization in intact canine was investigated. By using the monophasic action potential (MAP) recording technique, monophasic action potentials (MAPs) of the epicardium (Epi), midmyocardium (Mid)and endocardium (Endo) were recorded simultaneously by specially designed plunge-needle electrodes at the left ventricular free wall in 12 open-chest dogs. MAPD90 and transmural dispersion of repolarization among three myocardial layers as well as the incidence of the EAD before autonomic nervous stimulation and during autonomic nervous stimulation were compared. The results showed that the MAPD90 of Epi, Mid and Endo before autonomic nervous stimulation were 278±11 ms,316± 16 ms and 270± 12 ms respectively, the MAPD90of Mid was significantly longer than that of Epi or Endo (P<0.01). MAPD90 of Epi, Mid and Endo were shortened by 19±4 ms, 45±6 ms,18± 3 ms respectively during sympathetic stimulation. Compared with that of the control, the transmural dispersion of repolarization during sympathetic stimulation was shortened from 44 ± 4 ms to 15±3 ms (P<0. 01), but early afterdepolarizations were elicited in the Mid of 5 dogs (41 0%)during sympathetic stimulation. Parasympathetic stimulation did not significantly affect the MAPD90 in the three layers. It is concluded that there is the transmural dispersion of ventricular repolarization in intact canine. Sympathetic stimulation can reduce transmural dispersion of repolarization, but it can produce early afterdepolarizations in the Mid. Parasympathetic stimulation does not significantly affect the transmural dispersion of ventricular repolarization.

  7. Prenatal stress and balance of the child's cardiac autonomic nervous system at age 5-6 years.

    Directory of Open Access Journals (Sweden)

    Aimée E van Dijk

    Full Text Available OBJECTIVE: Autonomic nervous system (ANS misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. METHODS: Mothers from a prospective birth cohort (ABCD study filled out a questionnaire at gestational week 16 [IQR 12-20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80(th percentiles. Indicators of cardiac ANS in the offspring at age 5-6 years are: pre-ejection period (PEP, heart rate (HR, respiratory sinus arrhythmia (RSA and cardiac autonomic balance (CAB, measured with electrocardiography and impedance cardiography in resting supine and sitting positions. RESULTS: 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p≥0.17. Accumulation of maternal stress was also not associated with HR, PEP, RSA and CAB (p≥0.07. CONCLUSION: Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac ANS balance in the offspring, at least in rest, and at the age of five-six years.

  8. Autonomic nervous system dynamics for mood and emotional-state recognition significant advances in data acquisition, signal processing and classification

    CERN Document Server

    Valenza, Gaetano

    2014-01-01

    This monograph reports on advances in the measurement and study of autonomic nervous system (ANS) dynamics as a source of reliable and effective markers for mood state recognition and assessment of emotional responses. Its primary impact will be in affective computing and the application of emotion-recognition systems. Applicative studies of biosignals such as: electrocardiograms; electrodermal responses; respiration activity; gaze points; and pupil-size variation are covered in detail, and experimental results explain how to characterize the elicited affective levels and mood states pragmatically and accurately using the information thus extracted from the ANS. Nonlinear signal processing techniques play a crucial role in understanding the ANS physiology underlying superficially noticeable changes and provide important quantifiers of cardiovascular control dynamics. These have prognostic value in both healthy subjects and patients with mood disorders. Moreover, Autonomic Nervous System Dynamics for Mood and ...

  9. The impact of paclitaxel and carboplatin chemotherapy on the autonomous nervous system of patients with ovarian cancer

    OpenAIRE

    2016-01-01

    Background Paclitaxel-based regimens are frequently associated with the development of peripheral neuropathy. The autonomous nervous system (ANS) effects, however, of this chemotherapeutic agent remain unexplored. Methods We investigated a group of 31 female patients with ovarian cancer receiving treatment with paclitaxel and carboplatin, as well as a group of 16 healthy age- and gender-matched healthy volunteers. All study participants completed a questionnaire and were assessed neurophysiol...

  10. Assessment of Fetal Autonomic Nervous System Activity by Fetal Magnetocardiography: Comparison of Normal Pregnancy and Intrauterine Growth Restriction

    OpenAIRE

    2011-01-01

    Objective. To clarify the developmental activity of the autonomic nervous system (ANS) of the normal fetus and intrauterine growth restriction (IUGR) cases using fetal magnetocardiography (FMCG). Subjects and Methods. Normal pregnancy (n = 35) and IUGR (n = 12) cases at 28–39 and 32–37 weeks of gestation, respectively, were included in this study. The R-R interval variability was used to calculate the coefficient of variance (CVRR) and low frequency/high frequency (LF/HF) ratio. Results. The ...

  11. Dysregulation of the autonomous nervous system in patients with temporomandibular disorder: a pupillometric study.

    Directory of Open Access Journals (Sweden)

    Annalisa Monaco

    Full Text Available The role of the autonomic nervous system (ANS was recently investigated in Temporomandibular disorders (TMD. Several authors argue that in subjects with TMD there is a dysregulation of ANS. Recent literature support that Pupillometry is a simple non-invasive tool to study ANS. The aim of this study was to investigate the relationship between TMD and ANS activity using pupillometry recording in Infrared light at rest Mandible Position (RP; Infrared light at Forced Habitual Occlusion (FHO; Yellow-green light at RP; Yellow-green light at FHO. Forty female subjects were enrolled: 20 case patients showed TMD based on the Research Diagnostic Criteria for TMD, and 20 control patients, aged matched, had no signs or symptoms of TMD. Statistical analysis was performed on average pupil size. Ratio between pupil size in FHO and RP (FHO/RP ratio and yellow-green and infrared (light/darkness ratio lighting were carried out. Within group differences of pupil size and of "ratio" were analyzed using a paired t test, while differences of pupil size between groups were tested using an unpaired t test. Statistical comparisons between groups showed no significant differences of absolute values of pupil dimension in RP and FHO, both in yellow-green and in infrared lighting. In addition, there were no significant differences within groups comparing RP and FHO in yellow-green light. In within group comparison of pupil size, differences between RP and FHO were significant in infrared conditions. Control subjects increased, whereas TMD patients decreased pupil size at FHO in infrared lightening. FHO/RP ratio in darkness and light/darkness ratio in RP were significantly different between groups. Taken together, these data suggest that TMD subjects have an impairment of the sympathetic-adrenergic component of the ANS to be activated under stress. The present study provides preliminary pupillometric data confirming that adrenergic function is dysregulated in patients with

  12. Autonomic nervous system regulation of the sinoatrial cell depolarization rate: Unifying computational models.

    Science.gov (United States)

    Castellanos, P; Godinez, R

    2015-01-01

    In the last years different computational models have been proposed to simulate the sinoatrial node cell (SANC) action potential. Also, there has been a great effort to model the heart regulation mechanism by the autonomic nervous system (ANS) through the sympathetic and parasympathetic pathways. Both computational models have tried to fit the rabbit and/or the guinea-pig experimental heart rate data with an increasing success. Thus, the aim of this work was to unify the available models that have been reported to study the heart rate behavior when the SANC is stimulated by using different frequency patterns. Our results contribute to the unification of part of the Scepanovic's model [1] (involved with second messengers dynamics and its influence over specific SANC ionic channels), and the SANC ionic channels computational model proposed by Severi et al. [2] in 2012. In this model unification we did refit some parameters, particularly, those related to the Hill functions in the dynamic modeling of phosphokinase and its effect on the ionic channels currents If and ICaL, and over the Pup, parameter that is related to the Ca(++) uptake by the sarcoplasmic reticulum. Also, we eliminated the neurotransmitter effect over the ionic current IKr that is not presented in the Severi's model. These modifications were enough to successfully reproduce the heart rate experimental recordings under acetylcholine (Ach) or norepinephrine (NE) for independent stimulation: Ach 10 nM stimulation showed a 21.54% action potential shift compared with the 20% reported for experimental recordings; Isoprenaline 1 μM, also displayed a depolarization increased rate of 29.3%, compared with the experimental data of 28.2%. Furthermore, we were able to reproduce the guinea-pig experimental heart rate recordings, when the SANC model was vagal stimulated by using a 2 Hz, 10 Hz and 20 Hz frequency for 10 seconds and the experimental heart rate data for a sympathetic stimulation of 10 Hz frequency for

  13. Hypoxemia and hypoxic pulmonary vasoconstriction: autonomic nervous system versus mixed venous PO2.

    Science.gov (United States)

    Pellett, A A; Cairo, J M; Levitzky, M G

    1997-09-01

    Hypoxemia interferes with hypoxic pulmonary vasoconstriction (HPV). We investigated the respective roles of the autonomic nervous system and the mixed venous PO2 (PVO2) in the attenuation of HPV by hypoxemia. Pentobarbital-anesthetized dogs had their lungs separately ventilated with a dual-lumen endotracheal tube. Left (Ql) and total (Qt) pulmonary blood flows were determined using electromagnetic flow probes. HPV was initiated by ventilating the left lung with nitrogen for 5-10 min while the right lung received 100% oxygen. The animals were subsequently made hypoxemic by switching the right lung to room air ventilation (5-10 min). Two different protocol groups received either intravenous atropine during hypoxemia (group I) or intravenous propranolol prior to protocol initiation (group II). A third group of dogs (group III) had their mixed venous PO2S maintained above 30 torr during hypoxemia. In response to left lung hypoxia, Ql/Qt decreased from 44 +/- 5, 48 +/- 3 and 46 +/- 2% to 25 +/- 4, 28 +/- 2 and 26 +/- 3% in the three groups, respectively. During hypoxemia Ql/Qt increased to 50 +/- 7 and 47 +/- 3% in groups I and II. In group III dogs, Ql/Qt remained significantly decreased at 31 +/- 3%. Subsequent administration of atropine in group I had no effect on Ql/Qt. We conclude that the loss of flow diversion from a hypoxic lung during hypoxemia may be mediated primarily by a decreased in mixed venous PO2 when PVO2 is allowed to decrease to 15-20 torr.

  14. Effect Of Haemodialysis On Intra Dialytic Calcium, Phosphorus,Magnesium, Levels In Relation To AutonomicNervous System Activity

    Directory of Open Access Journals (Sweden)

    Mona Hosny, Sahar Shawky, Ahmed Ramadan , Hany Refaat

    2004-03-01

    Full Text Available Autonomic nervous system dysfunction is common in uremia and in patients under hemodialysis. Changes in serum calcium, serum phosphorus and serum magnesuim always occur during hemodialysis. The relation between these changes and autonomic nervous system activity during hemodialysis has not been fully studied. This study was carried out on 30 patients with chronic renal failure on regular hemo-dialysis with nearly similar age group. We measured serum calcium, serum phosphorus and serum magnesium throughout the session (at predialysis state, middialysis state: after 2 hours of the session and postdialysis: at the end of the hemodialysis Session. We have also assessed autonomic function (sympathetic by cold pressor test and parasympathetic by Valsalva maneuver test. Autonomic function tests were assessed at predialysis state, middialysis state and postdialysis state. Calcuim level uncreased throughout the session (P<0.05, phosphorus leuel and Magnesium levels decreased , (P<0.001 and (P<0.05, throghout session . As reguards parasympathetie dysfunetion, there was a significamt relation (P<0.05 with calcuim changes at predialytic and post dialytic states, a highly significant relation (P<0.001 with phosphorus and (P<0.05 with magnesiun, both at predialysis states. Concerging sympathetie dysfunction, there was a significant relation (P<0.05 with calcium levels at end of session. There was a signifcant relation (P<0.05 with predialytic and postdialytic phosphorus levels .There was also significant relation (P<0.05 with predialytic magnesium level.

  15. Bright light therapy for depression: a review of its effects on chronobiology and the autonomic nervous system.

    Science.gov (United States)

    Oldham, Mark A; Ciraulo, Domenic A

    2014-04-01

    Bright light therapy (BLT) is considered among the first-line treatments for seasonal affective disorder (SAD), yet a growing body of literature supports its use in other neuropsychiatric conditions including non-seasonal depression. Despite evidence of its antidepressant efficacy, clinical use of BLT remains highly variable internationally. In this article, we explore the autonomic effects of BLT and suggest that such effects may play a role in its antidepressant and chronotherapeutic properties. After providing a brief introduction on the clinical application of BLT, we review the chronobiological effects of BLT on depression and on the autonomic nervous system in depressed and non-depressed individuals with an emphasis on non-seasonal depression. Such a theory of autonomic modulation via BLT could serve to integrate aspects of recent work centered on alleviating allostatic load, the polyvagal theory, the neurovisceral integration model and emerging evidence on the roles of glutamate and gamma-hydroxybutyric acid (GABA).

  16. Chemokines and their receptors in central nervous system disease.

    Science.gov (United States)

    Biber, Knut; de Jong, Eiko K; van Weering, Hilmar R J; Boddeke, Hendrikus W G M

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today that chemokine signaling orchestrates the immune system and is widely involved in both physiological and pathophysiological processes. Since the chemokine system offers various targets through which pathology could be influenced, most pharmaceutical companies have chosen this system as a therapeutic target for a variety of diseases. Here recent developments concerning the role of chemokines in diseases of the central nervous system (CNS) as well as their possible therapeutic relevance are discussed.

  17. Lack of circadian variation in the activity of the autonomic nervous system after major abdominal operations

    DEFF Research Database (Denmark)

    Gögenur, Ismail; Rosenberg-Adamsen, Susan; Lie, Claus;

    2002-01-01

    patients who had had major abdominal operations. INTERVENTIONS: Patients were monitored with 24-hour Holter ECG on the second postoperative day-evening-night. We calculated heart rate variability from the standard deviation of all normal R-R intervals (excluding ectopics-NN intervals) around the mean NN......OBJECTIVE: Most sudden postoperative deaths occur during the night and we conjectured that this was associated with circadian variations in the autonomic nervous tone, reflected in heart rate variability. DESIGN: Prospective clinical study. SETTINGS: University hospital, Denmark. SUBJECTS: 44...... OUTCOME MEASURES: Heart rate and heart rate variability. RESULTS: Circadian variation calculated from the SDNN (p = 0.43) the pNN50 (p = 0.11), the RMSSD (p = 0.47), and mean NN:SDNN ratio (p = 0.13) was absent postoperatively. Circadian variation in the heart rate was present but was set on a higher...

  18. The circadian system and the balance of the autonomic nervous system.

    Science.gov (United States)

    Buijs, Ruud M; Escobar, Carolina; Swaab, Dick F

    2013-01-01

    Our biological clock, the suprachiasmatic nucleus (SCN), sets the pace of our life: it provides a rhythmic function to our sleep-wake cycle. In order to do so properly the SCN synchronizes our physiology to behavioral patterns by directing the autonomic and hormonal output of the hypothalamus to the different organs of the body that require a different setting - activity or inactivity - during particular phases of the day or night. In this chapter we show that this delicate balance requires that the SCN should not only provide an output to these organs but also be informed about the physiological state of the organs in order to adapt its output. This occurs via a hypothalamic neuronal network that provides the necessary input to the SCN. We argue that the feedback that the SCN receives from its hypothalamic target structures is essential to maintain a balance in our physiological functions, which fluctuate during the sleep-wake cycle. We propose that this crucial role of the hypothalamus in the homeostatic response is the reason why, e.g., in aging or depression, changes in the functioning of the biological clock, the SCN, lead to the development of pathology. In addition, if this balance is not adequately organized, for example, if the signals of the biological clock are violated by being active and eating during the night, as in shift work, one will be more susceptible to diseases such as hypertension, obesity, diabetes, and metabolic syndrome.

  19. Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system

    Science.gov (United States)

    Hideaki, Waki; Tatsuya, Hisajima; Shogo, Miyazaki; Naruto, Yoshida; Hideaki, Tamai; Yoichi, Minakawa; Yoshihiro, Okuma; Kazuo, Uebaba; Hidenori, Takahashi

    2015-01-01

    Background A previous study has reported that low-frequency (LF) electroacupuncture (EA) influences salivary secretory immunoglobulin A (sIgA) and the autonomic nervous system (ANS). The ANS is known to control the secretion volume of sIgA; however, the effect of high-frequency (HF) EA on salivary sIgA has not been determined. We investigated whether HF EA affects salivary sIgA levels and the ANS. Method Sixteen healthy subjects were randomly classified into two groups: a control group and an EA group. After a 5 min rest, subjects in the EA group received EA at 100 Hz bilaterally at LI4 and LI11 for 15 min before resting for a further 40 min post-stimulation. Subjects in the control group rested for a total of 60 min. Measurements of the ANS and sIgA levels in both groups were made before, immediately after, 20 min after, and 40 min after rest or 15 min EA treatment. HF and LF components of heart rate variability were analysed as markers of ANS function. LF/HF ratio and HF were taken as indices of sympathetic and parasympathetic nerve activity, respectively. Salivary protein concentrations and sIgA levels were determined by Bradford protein assay and ELISA, respectively. Results LF/HF ratio was significantly increased immediately after EA. HF was significantly increased at 20 min after EA and sIgA level was significantly increased at 40 min after EA. In addition, HF and salivary sIgA level were positively correlated with each another. Conclusions HF EA exerted sequential positive effects on sympathetic nerve activity, parasympathetic nerve activity, and salivary sIgA level (immediately and after 20 and 40 min, respectively). HF EA may increase salivary sIgA levels by influencing parasympathetic nerve activity. PMID:26449884

  20. Autonomic nervous system dysfunction predicts poor prognosis in patients with mild to moderate tetanus

    Directory of Open Access Journals (Sweden)

    Shamsi Rohmah

    2005-01-01

    Full Text Available Abstract Background Autonomic nervous system (ANS dysfunction is present in up to one third of patients with tetanus. The prognostic value of ANS dysfunction is known in severe tetanus but its value is not well established in mild to moderate tetanus. Methods Medical records of all patients admitted with tetanus at two academic tertiary care centers in Karachi, Pakistan were reviewed. The demographic, clinical and laboratory data was recorded and analyzed. ANS dysfunction was defined as presence of labile or persistent hypertension or hypotension and sinus tachycardia, tachyarrythmia or bradycardia on EKG. Patients were divided into two groups based on presence of ANS dysfunction (ANS group and non ANS group. Tetanus severity was classified on the basis of Ablett criteria. Results Ninety six (64 males; 32 females patients were admitted with the diagnosis over a period of 10 years. ANS group had 31 (32% patients while non ANS group comprised of 65 (68% patients. Both groups matched for age, gender, symptom severity, use of tetanus immunoglobulin and antibiotics. Twelve patients in ANS group had mild to moderate tetanus (Ablett I and II and 19 patients had severe/very severe tetanus (Ablett III and IV. Fifteen (50% patients in ANS group required ventilation as compared to 28 (45% in non-ANS group (p = 0.09. Fourteen (47% patients died in ANS group as compared to 10 (15% in non ANS group (p= 0.002. Out of those 14 patients died in ANS group, six patients had mild to moderate tetanus and eight patients had severe/ very severe tetanus. Major cause of death was cardiac arrhythmias (13/14; 93% in ANS group and respiratory arrest (7/10; 70% in non ANS group. Ten (33% patients had complete recovery in ANS group while in non ANS group 35(48% patients had complete recovery (p= 0.05. Conclusions ANS dysfunction was present in one third of our tetanus population. 40% patients with ANS dysfunction had only mild to moderate tetanus. ANS dysfunction

  1. [Application of linear and nonlinear characteristics of heart rate variability in assessment of autonomic nervous system activity].

    Science.gov (United States)

    Shi, Ping; Yu, Hongliu

    2014-04-01

    Calculation of linear parameters, such as time-domain and frequency-domain analysis of heart rate variability (HRV), is a conventional method for assessment of autonomic nervous system activity. Nonlinear phenomena are certainly involved in the genesis of HRV. In a seemingly random signal the Poincaré plot can easily demonstrate whether there is an underlying determinism in the signal. Linear and nonlinear analysis methods were applied in the computer words inputting experiments in this study for physiological measurement. This study therefore demonstrated that Poincaré plot was a simple but powerful graphical tool to describe the dynamics of a system.

  2. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jørgensen, L S; Christiansen, P; Raundahl, U

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...

  3. Emotion Regulation via the Autonomic Nervous System in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    Musser, Erica D.; Backs, Richard W.; Schmitt, Colleen F.; Ablow, Jennifer C.; Measelle, Jeffery R.; Nigg, Joel T.

    2011-01-01

    Despite growing interest in conceptualizing ADHD as involving disrupted emotion regulation, few studies have examined the physiological mechanisms related to emotion regulation in children with this disorder. This study examined parasympathetic and sympathetic nervous system reactivity via measures of respiratory sinus arrhythmia (RSA) and cardiac…

  4. Systematic morphology and evolutionary anatomy of the autonomic cardiac nervous system in the lesser apes, gibbons (hylobatidae).

    Science.gov (United States)

    Kawashima, Tomokazu; Thorington, Richard W; Kunimatsu, Yutaka; Whatton, James F

    2008-08-01

    We examined the morphology of the autonomic cardiac nervous system (ACNS) on 20 sides of 10 gibbons (Hylobatidae) of three genera, and we have inferred the evolution of the anatomy of the primate ACNS. We report the following. (1) Several trivial intraspecific and interspecific variations are present in gibbons, but the general arrangement of the ACNS in gibbons is consistent. (2) Although the parasympathetic vagal cardiac nervous system is extremely consistent, the sympathetic cardiac nervous system, such as the composition of the sympathetic ganglia and the range of origin of the sympathetic cardiac nerves, exhibit topographical differences among primates. (3) The vertebral ganglion, seldom observed in the Old World monkeys (Cercopithecidae), was consistently present in gibbons as well as in humans. (4) There are fewer thoracic ganglia contributing to the cervicothoracic ganglion in humans than in gibbons and in gibbons than in Old World monkeys. (5) The superior cardiac nerve originating from the superior cervical ganglion, rarely observed in Old World monkeys but commonly observed in humans, was present in 13 of 20 sides (65%), mostly on the left. Accordingly, the ACNS morphology exhibits evolutionary changes within the primate lineage. These evolutionary differences between Old World monkeys, gibbons, and humans are most parsimoniously interpreted as resulting from regular changes in the lineages leading from their common ancestor to the extant species that we dissected. They include the reduction in the number of thoracic ganglia contributing to the cervicothoracic ganglion and the expansion of the range of the cardiac nervous origin.

  5. POSTMENOPAUSAL METABOLIC SYNDROME: CORRECTION OF AUTONOMIC NERVOUS SYSTEM DISBALANCE WITH COMBINATION OF ACE-INHIBITOR AND STATIN

    Directory of Open Access Journals (Sweden)

    I. V. Logacheva

    2006-01-01

    Full Text Available Aim. To study dynamics of the indices of heart rate variability (HRV and heart remodeling in response on combined therapy with fosinopril and simvastatin in postmenopausal metabolic syndrome (MS. Material and methods. 95 women were dynamically examined (before and after 12 months of therapy with fosinopril and simvastatin to assess heart rhythm variability (time and spectral domains and remodeling with Holter ECG monitoring and echocardiography. Results. Fosinopril has resulted in blood pressure decrease, reduction in heart remodeling andmyocardial heterogeneity , which accompanied HRV rise with increase in parasympathetic activity. Simvastatin potentiated fosinopril positive effects on left ventricular hypertrophy , myocardial electric heterogeneity and autonomic modulation due to its prominent hypolipidemic and pleiotropic effect. Conclusion. In patients with postmenopausal MS medicines, which modified different elements of MS (ACE inhibitor and statin, not only have antihypertensive and hypolipidemic action, but also reduce the heart remodeling and improve the autonomic nervous system balance.

  6. Cerebrospinal fluid interleukin-6 in central nervous system inflammatory diseases.

    Directory of Open Access Journals (Sweden)

    Alexandre Wullschleger

    Full Text Available BACKGROUND: Interleukin (IL-6 is recognised as an important cytokine involved in inflammatory diseases of the central nervous system (CNS. OBJECTIVE: To perform a large retrospective study designed to test cerebrospinal fluid (CSF IL-6 levels in the context of neurological diseases, and evaluate its usefulness as a biomarker to help discriminate multiple sclerosis (MS from other inflammatory neurological diseases (OIND. PATIENTS AND METHODS: We analyzed 374 CSF samples for IL-6 using a quantitative enzyme-linked immunosorbent assay. Groups tested were composed of demyelinating diseases of the CNS (DD, n = 117, including relapsing-remitting MS (RRMS, n = 65, primary progressive MS (PPMS, n = 11, clinically isolated syndrome (CIS, n = 11, optic neuritis (ON, n = 30; idiopathic transverse myelitis (ITM, n = 10; other inflammatory neurological diseases (OIND, n = 35; and non-inflammatory neurological diseases (NIND, n = 212. Differences between groups were analysed using Kruskal-Wallis test and Mann-Whitney U-test. RESULTS: CSF IL-6 levels exceeded the positivity cut-off of 10 pg/ml in 18 (51.4% of the 35 OIND samples, but in only three (3.9% of the 76 MS samples collected. CSF IL-6 was negative for all NIND samples tested (0/212. IL-6 cut-off of 10 pg/ml offers 96% sensitivity to exclude MS. CONCLUSION: CSF IL-6 may help to differentiate MS from its major differential diagnosis group, OIND.

  7. Prenatal adversities and Latino children's autonomic nervous system reactivity trajectories from 6 months to 5 years of age.

    Science.gov (United States)

    Alkon, Abbey; Boyce, W Thomas; Tran, Linh; Harley, Kim G; Neuhaus, John; Eskenazi, Brenda

    2014-01-01

    The purpose of the study was to determine whether mothers' adversities experienced during early pregnancy are associated with offspring's autonomic nervous system (ANS) reactivity trajectories from 6 months to 5 years of age. This cohort study of primarily Latino families included maternal interviews at 13-14 weeks gestation about their experience of a range of adversities: father's absence, general social support, poverty level, and household density. ANS measures of heart rate, respiratory sinus arrhythmia (parasympathetic nervous system) and preejection period (sympathetic nervous system) were collected during resting and challenging conditions on children at 6 months and 1, 3.5 and 5 years of age. Reactivity measures were calculated as the mean of the responses to challenging conditions minus a resting condition. Fixed effects models were conducted for the 212 children with two or more timepoints of ANS measures. Interactions between maternal prenatal adversity levels and child age at time of ANS protocol were included in the models, allowing the calculation of separate trajectories or slopes for each level of adversity. Results showed no significant relations between mothers' prenatal socioeconomic or social support adversity and offspring's parasympathetic nervous system trajectories, but there was a statistically significant relationship between social support adversity and offspring's heart rate trajectories (pnervous system trajectories (p = .05). Children whose mothers experienced one, not two, social support adversity had the smallest increases in heart rate reactivity compared to children whose mothers experienced no adversity. The children whose mothers experienced no social support and no socioeconomic adversity had the largest increases in heart rate and preejection period respectively from 6 months to 5 years showing the most plasticity. Mothers' prenatal adverse experiences may program their children's physiologic trajectory to dampen their

  8. Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system.

    Science.gov (United States)

    Havas, Magda

    2013-01-01

    Exposure to electrosmog generated by electric, electronic, and wireless technology is accelerating to the point that a portion of the population is experiencing adverse reactions when they are exposed. The symptoms of electrohypersensitivity (EHS), best described as rapid aging syndrome, experienced by adults and children resemble symptoms experienced by radar operators in the 1940s to the 1960s and are well described in the literature. An increasingly common response includes clumping (rouleau formation) of the red blood cells, heart palpitations, pain or pressure in the chest accompanied by anxiety, and an upregulation of the sympathetic nervous system coincident with a downregulation of the parasympathetic nervous system typical of the "fight-or-flight" response. Provocation studies presented in this article demonstrate that the response to electrosmog is physiologic and not psychosomatic. Those who experience prolonged and severe EHS may develop psychologic problems as a consequence of their inability to work, their limited ability to travel in our highly technologic environment, and the social stigma that their symptoms are imagined rather than real.

  9. Cell replacement therapy for central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Danju Tso; Randall D. McKinnon

    2015-01-01

    The brain and spinal cord can not replace neurons or supporting glia that are lost through trau-matic injury or disease. In pre-clinical studies, however, neural stem and progenitor cell transplants can promote functional recovery. Thus the central nervous system is repair competent but lacks endogenous stem cell resources. To make transplants clinically feasible, this ifeld needs a source of histocompatible, ethically acceptable and non-tumorgenic cells. One strategy to generate pa-tient-speciifc replacement cells is to reprogram autologous cells such as ifbroblasts into pluripotent stem cells which can then be differentiated into the required cell grafts. However, the utility of pluripotent cell derived grafts is limited since they can retain founder cells with intrinsic neoplastic potential. A recent extension of this technology directly reprograms ifbroblasts into the ifnal graft-able cells without an induced pluripotent stem cell intermediate, avoiding the pluripotent caveat. For both types of reprogramming the conversion efficiency is very low resulting in the need to amplify the cells in culture which can lead to chromosomal instability and neoplasia. Thus to make reprogramming biology clinically feasible, we must improve the efifciency. The ultimate source of replacement cells may reside in directly reprogramming accessible cells within the brain.

  10. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Rovira Canellas, A. [Vall d' Hebron University Hospital, Magnetic Resonance Unit (I.D.I.), Department of Radiology, Barcelona (Spain); Rovira Gols, A. [Parc Tauli University Institute - UAB, UDIAT, Diagnostic Centre, Sabadell (Spain); Rio Izquierdo, J.; Tintore Subirana, M.; Montalban Gairin, X. [Vall d' Hebron University Hospital, Neuroimmunology Unit, Department of Neurology, Barcelona (Spain)

    2007-05-15

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  11. Discrimination between Healthy and Sick Cardiac Autonomic Nervous System by Detrended Heart Rate Variability Analysis

    CERN Document Server

    Ashkenazy, Yu; Levitan, J; Havlin, S; Saermark, K; Moelgaard, H; Bloch-Thomsen, P E

    1998-01-01

    Multiresolution Wavelet Transform and Detrended Fluctuation Analysis have been recently proven as excellent methods in the analysis of Heart Rate Variability, and in distinguishing between healthy subjects and patients with various dysfunctions of the cardiac nervous system. We argue that it is possible to obtain a distinction between healthy subjects/patients of at least similar quality by, first, detrending the time-series of RR-intervals by subtracting a running average based on a local window with a length of around 32 data points, and then, calculating the standard deviation of the detrended time-series. The results presented here indicate that the analysis can be based on very short time-series of RR-data (7-8 minutes), which is a considerable improvement relative to 24-hours Holter recordings.

  12. On the Persistance of Dualism in our so-called Unified Neurosciences: The case of the autonomic nervous system

    Directory of Open Access Journals (Sweden)

    Nathalie Pattyn

    2009-06-01

    Full Text Available In the present paper, the historical overview of descriptions of the autonomic nervous system (ANS is applied as a case study to serve the demonstration of the persistence of dualisms in our current framework of neurosciences. First, the four main views on the ANS are briefly summarised, with an emphasis on the latest one, being the neurovisceral integration perspectives, striving for an integrative view on cognition, emotion regulation and physiological adaptation. Second, an explanation is offered on why we are so reluctant to give up the explanatory framework of dualisms, based on both developmental psychology accounts and postmodernism philosophy. To conclude, an attitude based on positivism and epistemological anarchism is suggested for scientists.

  13. Autonomic nervous system dysfunction in obesity and Prader-Willi syndrome: current evidence and implications for future obesity therapies.

    Science.gov (United States)

    Haqq, A M; DeLorey, D S; Sharma, A M; Freemark, M; Kreier, F; Mackenzie, M L; Richer, L P

    2011-08-01

    The autonomic nervous system (ANS) controls essential functions like breathing, heart rate, digestion, body temperature and hormone levels. Evidence suggests that ANS dysfunction is associated with adult and childhood obesity and plays a role in the distribution of total body fat and the development of obesity-related complications in humans. This review summarizes our current understanding of ANS involvement in the pathogenesis of obesity and Prader-Willi syndrome. Available evidence of ANS dysfunction in the control of energy balance is limited and, in some cases, contradictory. Further investigation in this area is warranted in order to better understand the important contributions of the ANS to regulation of body fat, development of obesity and its comorbidities. Results from these studies will guide the development of novel obesity therapeutics targeting specific ANS dysfunction.

  14. Measurement of the effect of Isha Yoga on cardiac autonomic nervous system using short-term heart rate variability

    Directory of Open Access Journals (Sweden)

    Krishnan Muralikrishnan

    2012-01-01

    Full Text Available Background: Beneficial effects of Yoga have been postulated to be due to modulation of the autonomic nervous system. Objective: To assess the effect of Isha Yoga practices on cardiovascular autonomic nervous system through short-term heart rate variability (HRV. Design of the Study: Short-term HRV of long-term regular healthy 14 (12 males and 2 females Isha Yoga practitioners was compared with that of age- and gender-matched 14 (12 males and 2 females non-Yoga practitioners. Methods and Materials: ECG Lead II and respiratory movements were recorded in both groups using Polyrite during supine rest for 5 min and controlled deep breathing for 1 minute. Frequency domain analysis [RR interval is the mean of distance between subsequent R wave peaks in ECG], low frequency (LF power, high frequency (HF power, LF normalized units (nu, HF nu, LF/HF ratio] and time domain analysis [Standard Deviation of normal to normal interval (SDNN, square of mean squared difference of successive normal to normal intervals (RMSSD, normal to normal intervals which are differing by 50 ms (NN50, and percentage of NN50 (pNN50] of HRV variables were analyzed for supine rest. Time domain analysis was recorded for deep breathing. Results: Results showed statistically significant differences between Isha Yoga practitioners and controls in both frequency and time domain analyses of HRV indices, with no difference in resting heart rate between the groups. Conclusions: Practitioners of Isha Yoga showed well-balanced beneficial activity of vagal efferents, an overall increased HRV, and sympathovagal balance, compared to non-Yoga practitioners during supine rest and deep breathing.

  15. Peripheral nervous system lesion syndromes and the mechanisms of their formation in connective tissue diseases.

    Science.gov (United States)

    Spirin, N N; Bulanova, V A; Pizova, N V; Shilkina, N P

    2007-01-01

    Systemic rheumatological diseases are often accompanied by the development of central and peripheral nervous system pathology. Data providing evidence of the high incidence of peripheral nervous system lesions in systemic lupus erythematosus and systemic scleroderma are presented. These diseases in particular are characterized by polyneuropathies and tunnel syndromes. Our own observations, along with published data, revealed the following major pathogenetic mechanisms of peripheral nervous system lesions in diffuse connective tissue diseases - ischemic, immunological, and metabolic. Consideration of these mechanisms will lead to pathogenetically based treatment and improved therapeutic outcomes.

  16. Responses of the autonomic nervous system in altitude adapted and high altitude pulmonary oedema subjects

    Science.gov (United States)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Radhakrishnan, U.; Sen Gupta, J.; Nayar, H. S.

    1985-06-01

    Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500 4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.

  17. Social functioning and autonomic nervous system sensitivity across vocal and musical emotion in Williams syndrome and autism spectrum disorder.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2016-01-01

    Both Williams syndrome (WS) and autism spectrum disorders (ASD) are associated with unusual auditory phenotypes with respect to processing vocal and musical stimuli, which may be shaped by the atypical social profiles that characterize the syndromes. Autonomic nervous system (ANS) reactivity to vocal and musical emotional stimuli was examined in 12 children with WS, 17 children with ASD, and 20 typically developing (TD) children, and related to their level of social functioning. The results of this small-scale study showed that after controlling for between-group differences in cognitive ability, all groups showed similar emotion identification performance across conditions. Additionally, in ASD, lower autonomic reactivity to human voice, and in TD, to musical emotion, was related to more normal social functioning. Compared to TD, both clinical groups showed increased arousal to vocalizations. A further result highlighted uniquely increased arousal to music in WS, contrasted with a decrease in arousal in ASD and TD. The ASD and WS groups exhibited arousal patterns suggestive of diminished habituation to the auditory stimuli. The results are discussed in the context of the clinical presentation of WS and ASD.

  18. Comparing the accuracy of ES-BC, EIS-GS, and ES Oxi on body composition, autonomic nervous system activity, and cardiac output to standardized assessments

    Directory of Open Access Journals (Sweden)

    Lewis JE

    2011-09-01

    < 0.001. Absolute agreement was found at baseline and after both bouts of exercise; ES Oxi overestimated baseline and stage 1 exercise cardiac output by 0.3 L/minute and 0.1 L/minute, respectively, but exactly estimated stage 2 exercise cardiac output. Conclusion: ES-BC and ES Oxi accurately assessed body composition and cardiac output compared to standardized instruments, whereas EIS-GS showed marginal predictive ability for autonomic nervous system activity. The ESC software managing the three devices would be useful to help detect complications related to metabolic syndrome, diabetes, and cardiovascular disease and to noninvasively and rapidly manage treatment follow-up. Keywords: fat mass, autonomic nervous system activity, Electro Sensor Complex, dual-energy X-ray absorptiometry, heart rate variability, and bioimpedance cardiography

  19. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  20. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  1. Nervous system Lyme disease, chronic Lyme disease, and none of the above.

    Science.gov (United States)

    Halperin, John J

    2016-03-01

    Lyme borreliosis, infection with the tick-borne spirochete Borrelia burgdorferi sensu lato, causes nervous system involvement in 10-15 % of identified infected individuals. Not unlike the other well-known spirochetosis, syphilis, infection can be protracted, but is microbiologically curable in virtually all patients, regardless of disease duration. Diagnosis relies on 2-tier serologic testing, which after the first 4-6 weeks of infection is both highly sensitive and specific. After this early, acute phase, serologic testing should rely only on IgG reactivity. Nervous system involvement most commonly presents with meningitis, cranial neuritis and radiculoneuritis, but can also present with a broader array of peripheral nervous system manifestations. Central nervous system infection typically elicits a cerebrospinal fluid pleocytosis and, often, intrathecal production of specific antibody, findings that should not be expected in disease not affecting the CNS. Treatment with recommended courses of oral or, when necessary, parenteral antibiotics is highly effective. The attribution of chronic, non-specific symptoms to "chronic Lyme disease", in the absence of specific evidence of ongoing B. burgdorferi infection, is inappropriate and unfortunate, leading not only to unneeded treatment and its associated complications, but also to missed opportunities for more appropriate management of patients' often disabling symptoms.

  2. Changing trends in nervous system diseases among hospitalized children in the Chongqing region

    Institute of Scientific and Technical Information of China (English)

    Xin Zou; Nong Xiao; Bei Xu

    2008-01-01

    OBJECTIVE: To investigate the changing trends of nervous system diseases among hospitalized children and the risk factors of death. METHOD: The disease was statistically classified according to the International Statistical Classification of Disease and Health Problem (ICD10). The retrospective investigation includes demographic characteristics, as well as categories and fatality rates for nervous system diseases. All data was statistically analyzed. RESULTS: The percentage of nervous system diseases among inpatients in all wards was 2.4% (2 537/ 107 250) between January 1993 and December 1999, and 3.6% (6 082/170 619) between January 2000 and December 2006. The first ten patterns of various etiologic forms of nervous system diseases were identical-epilepsies and seizures, infections of the central nervous system, autoimmune and demyelination disorders, cerebral palsy, motor unit disorders, hypoxic-ischemic encephalopathy, hydrocephalus, extra-pyramidal disorders, congenital abnormalities of nervous system, and headache. Epilepsies and seizures took first place in both year groups, with 29.4% and 35%, respectively. Bacterial infections were responsible for the majority of cranial infections in both year groups, with 78.9% and 63.6% respectively. The death rate in the year group January 2000 to December 2006 was significantly less than in the year group January 1993 to December 1999 (X2= 27.832, P<0.01). CONCLUSION: Among all nervous system diseases, epilepsies and seizures were among the most common, with the lowest fatality rate.

  3. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders

    Directory of Open Access Journals (Sweden)

    Messina Vincenzo

    2011-10-01

    Full Text Available Abstract Objective To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI as a new possible biomarker. Methods 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs. The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV and lipid metabolism has been investigated. Results Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Conclusions Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  4. [Heart rate variability as a method of assessing the autonomic nervous system in polycystic ovary syndrome].

    Science.gov (United States)

    de Sá, Joceline Cássia Ferezini; Costa, Eduardo Caldas; da Silva, Ester; Azevedo, George Dantas

    2013-09-01

    Polycystic ovary syndrome (PCOS) is an endocrine disorder associated with several cardiometabolic risk factors, such as central obesity, insulin resistance, type 2 diabetes, metabolic syndrome, and hypertension. These factors are associated with adrenergic overactivity, which is an important prognostic factor for the development of cardiovascular disorders. Given the common cardiometabolic disturbances occurring in PCOS women, over the last years studies have investigated the cardiac autonomic control of these patients, mainly based on heart rate variability (HRV). Thus, in this review, we will discuss the recent findings of the studies that investigated the HRV of women with PCOS, as well as noninvasive methods of analysis of autonomic control starting from basic indexes related to this methodology.

  5. How Can Music Influence the Autonomic Nervous System Response in Patients with Severe Disorder of Consciousness?

    Science.gov (United States)

    Riganello, Francesco; Cortese, Maria D; Arcuri, Francesco; Quintieri, Maria; Dolce, Giuliano

    2015-01-01

    Activations to pleasant and unpleasant musical stimuli were observed within an extensive neuronal network and different brain structures, as well as in the processing of the syntactic and semantic aspects of the music. Previous studies evidenced a correlation between autonomic activity and emotion evoked by music listening in patients with Disorders of Consciousness (DoC). In this study, we analyzed retrospectively the autonomic response to musical stimuli by mean of normalized units of Low Frequency (nuLF) and Sample Entropy (SampEn) of Heart Rate Variability (HRV) parameters, and their possible correlation to the different complexity of four musical samples (i.e., Mussorgsky, Tchaikovsky, Grieg, and Boccherini) in Healthy subjects and Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS) patients. The complexity of musical sample was based on Formal Complexity and General Dynamics parameters defined by Imberty's semiology studies. The results showed a significant difference between the two groups for SampEn during the listening of Mussorgsky's music and for nuLF during the listening of Boccherini and Mussorgsky's music. Moreover, the VS/UWS group showed a reduction of nuLF as well as SampEn comparing music of increasing Formal Complexity and General Dynamics. These results put in evidence how the internal structure of the music can change the autonomic response in patients with DoC. Further investigations are required to better comprehend how musical stimulation can modify the autonomic response in DoC patients, in order to administer the stimuli in a more effective way.

  6. How can music influence the Autonomic Nervous System response in patients with severe Disorder of Consciousness?

    Directory of Open Access Journals (Sweden)

    Francesco eRiganello

    2015-12-01

    Full Text Available Activations to pleasant and unpleasant musical stimuli were observed within an extensive neuronal network and different brain structures, as well as in the processing of the syntactic and semantic aspects of the music. Previous studies evidenced a correlation between autonomic activity and emotion evoked by music listening in patients with Disorders of Consciousness (DoC. In this study, we analyzed retrospectively the autonomic response to musical stimuli by mean of normalized units of Low Frequency (nuLF and Sample Entropy (SampEn of Heart Rate Variability (HRV parameters, and their possible correlation to the different complexity of four musical samples (i.e. Mussorgsky, Tchaikovsky, Grieg and Boccherini in Healthy subjects and Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS patients.The complexity of musical sample was based on Formal Complexity and General Dynamics parameters defined by Imberty’s semiology studies.The results showed a significant difference between the two groups for SampEn during the listening of Mussorgsky’s music and for nuLF during the listening of Boccherini and Mussorgsky’s music.Moreover, the VS/UWS group showed a reduction of nuLF as well as SampEn comparing music of increasing Formal Complexity and General Dynamics.These results put in evidence how the internal structure of the music can change the autonomic response in patients with DoC. Further investigations are required to better comprehend how musical stimulation can modify the autonomic response in DoC patients, in order to administer the stimuli in a more effective way.

  7. Dysfunction of pre- and post-operative cardiac autonomic nervous system in elderly patients with diabetes mellitus.

    Science.gov (United States)

    Zhang, Junlong; Tu, Weifeng; Dai, Jianqiang; Lv, Qing; Yang, Xiaoqi

    2011-01-01

    The pre- and post-operative cardiac autonomic nervous functions were compared in elderly, non-cardiac surgery patients with diabetes mellitus (DM) and without diabetes mellitus (NDM). A group of 30 unpremedicated elderly patients scheduled to undergo elective non-cardiac surgery were studied, including 15 DM patients and 15 NDM patients. Each component of heart rate variability (HRV) analysis in the frequency domain was monitored with Holter during the nights of the day before and on 1st and 2nd day after operation. After surgery, total power (TP), high frequency (HF), low frequency (LF) and very low frequency (VLF) significantly decreased as compared to the baseline values before operation in both groups (p<0.05). The LF/HF ratio was significantly changed in DM group but did not change in NDM group. On the 2nd postoperative day, TP, HF, LF and VLF in DM group were further decreased as compared to those on the 1st postoperative day and were significantly lower than those in NDM group (p<0.01 or 0.05), but these indices in NDM group did not show significant decreases. Surgery induced the cardiac autonomic nervous dysfunction in elderly patients not only with DM but also without diabetes. On the 2nd postoperative day, the disturbances of cardiac autonomic nervous activity were more sever in DM patients, compared to the 1st postoperative day, but was not significantly more sever than in the NDM patients.

  8. Effects of different "relaxing" music styles on the autonomic nervous system

    Directory of Open Access Journals (Sweden)

    Santiago Pérez-Lloret

    2014-01-01

    Full Text Available The objective of this study was to assess the effects on heart rate variability (HRV of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melody that they would use to relax. The low-to-high-frequency ratio was significantly higher when subjects were exposed to "new age" music when compared with silence (3.4 ± 0.3 vs. 2.6 ± 0.3, respectively, P < 0.02, while no differences were found with "classical" or "romantic" melodies (2.1 ± 0.4 and 2.2 ± 0.3. These results were related to a reduction in the high frequency component with "new age" compared to silence (17.4 ± 1.9 vs. 23.1 ± 1.1, respectively P < 0.004. Significant differences across melodies were also found for nonlinear HRV indexes. Subjects′ preferences did not correlate with autonomic responses to melodies. The results suggest that "new age" music induced a shift in HRV from higher to lower frequencies, independently on the music preference of the listener.

  9. Neuron-glia crosstalk in the autonomic nervous system and its possible role in the progression of metabolic syndrome: A new hypothesis

    Directory of Open Access Journals (Sweden)

    RODRIGO eDEL RIO

    2015-12-01

    Full Text Available Metabolic syndrome (MS is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.

  10. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis.

    Science.gov (United States)

    Del Rio, Rodrigo; Quintanilla, Rodrigo A; Orellana, Juan A; Retamal, Mauricio A

    2015-01-01

    Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.

  11. Assessment of the autonomic nervous system is an appropriate biological marker for the well-being in erectile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Tolga Dogru; Orhan Murat Kocak; Nurper Erberk-Ozen; Murat Basar

    2008-01-01

    Aim: To investigate whether the autonomic nervous system (ANS) components are suitable biological markers for representing well-being in patients with erectile dysfunction (ED). Methods: The present study included 74 male patients who had applied for check-ups in the cardiology outpatient clinic at Kirikkale University (Kirikkale, Turkey) and who had been diagnosed as having hyperlipidemia. Of these patients, 26 had an additional diagnosis of ED and made up the patient group. The remaining 48 patients formed the control group. Well-being was assessed with short- form 36 (SF-36). The International Index of Erectile Function (IIEF) was used as a measure of libido and erectile function. Quantitative assessment of the ANS was made based on the analysis of heart rate variability by means of 24-h holter monitorization. Results: Comparisons between the ED and control groups showed significant differences only in energy scale of SF-36. The ED group also had significantly higher values of sympathetic activity. Except for the general health score of SF-36, which was found to be correlated with parasympathetic activity only in ED group, there were similar correlation patterns within the groups. Although well-being and sympathetic activity were corre- lated negatively, parasympathetic activity and well-being were correlated positively. Conclusion: Quantitative as- sessment of the ANS by heart rate variability analysis might be a suitable marker for well-being of patients with ED. (Asian J Androl 2008 Jul; 10: 643-650)

  12. Sex-specific effects of intranasal oxytocin on autonomic nervous system and emotional responses to couple conflict

    Science.gov (United States)

    Nater, Urs M.; Schaer, Marcel; La Marca, Roberto; Bodenmann, Guy; Ehlert, Ulrike; Heinrichs, Markus

    2013-01-01

    Unhappy couple relationships are associated with impaired individual health, an effect thought to be mediated through ongoing couple conflicts. Little is known, however, about the underlying mechanisms regulating psychobiological stress, and particularly autonomic nervous system (ANS) reactivity, during negative couple interaction. In this study, we tested the effects of the neuropeptide oxytocin on ANS reactivity during couple conflict in a standardized laboratory paradigm. In a double-blind, placebo-controlled design, 47 heterosexual couples (total n = 94) received oxytocin or placebo intranasally prior to instructed couple conflict. Participants’ behavior was videotaped and salivary alpha-amylase (sAA), a measure of sympathetic activity, and emotional arousal were repeatedly measured during the experiment. Oxytocin significantly reduced sAA during couple conflict in women, whereas men showed increases in sAA levels (sex × group interaction: B = −49.36, t = −2.68, P = 0.009). In men, these increases were related to augmented emotional arousal (r = 0.286, P = 0.028) and more positive behavior (r = 0.291, P = 0.026), whereas there was no such association in women. Our results imply sex-specific effects of oxytocin on sympathetic activity, to negative couple interaction, with the neuropeptide reducing sAA responses and emotional arousal in women while increasing them in men. PMID:22842905

  13. Effect of Forest Walking on Autonomic Nervous System Activity in Middle-Aged Hypertensive Individuals: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chorong Song

    2015-03-01

    Full Text Available There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0 ± 10.6 years were instructed to walk predetermined courses in forest and urban environments (as control. Course length (17-min walk, walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased “comfortable”, “relaxed”, “natural” and “vigorous” feelings and decreased “tension-anxiety,” “depression,” “anxiety-hostility,” “fatigue” and “confusion”. A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.

  14. Investigation of the Effects of Continuous Low-Dose Epidural Analgesia on the Autonomic Nervous System Using Hilbert Huang Transform

    Directory of Open Access Journals (Sweden)

    Wei-Ren Chuang

    2010-01-01

    Full Text Available Effects of continuous low-dose epidural bupivacaine (0.05-0.1% infusion on the Doppler velocimetry for labor analgesia have been well documented. The aim of this study was to monitor the activity of the autonomic nervous system (ANS for women in labor based on Hilbert Huang transform (HHT, which performs signal processing for nonlinear systems, such as human cardiac systems. Thirteen pregnant women were included in the experimental group for labor analgesia. They received continuous epidural bupivacaine 0.075% infusion. The normal-to-normal intervals (NN-interval were downloaded from an ECG holter. Another 20 pregnant women in non-anesthesia labor (average gestation age was 38.6 weeks were included in the comparison group. In this study, HHT was used to decompose components of ECG signals, which reflect three different frequency bands of a person's heart rate spectrum (viz. high frequency (HF, low frequency (LF and very low frequency (VLF. It was found that the change of energy in subjects without anesthesia was more active than that with continuous epidural bupivacaine 0.075% infusion. The energy values of the experimental group (i.e., labor analgesia of HF and LF of ANS activities were significantly lower (P < 0.05 than the values of the comparison group (viz. labor without analgesia, but the trend of energy ratio of LF/HF was opposite. In conclusion, the sympathetic and parasympathetic components of ANS are all suppressed by continuous low-dose epidural bupivacaine 0.075% infusion, but parasympathetic power is suppressed more than sympathetic power.

  15. Brain and Nervous System

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... brain is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  16. The impact of maternal depression and overcrowded housing on associations between autonomic nervous system reactivity and externalizing behavior problems in vulnerable Latino children.

    Science.gov (United States)

    Waters, Sara F; Boyce, W Thomas; Eskenazi, Brenda; Alkon, Abbey

    2016-01-01

    The study of autonomic nervous system responses and contextual factors has shed light on the development of children's negative outcomes, but the majority of these studies have not focused on minority populations living under adversity. To address these gaps, the current longitudinal study included a sample of poor, immigrant Latino families to examine whether associations between children's autonomic nervous system reactivity at 6 months and their externalizing behavior problems at 7 years of age were moderated by two risk factors associated with poverty: the interpersonal factor of chronic maternal depression and the environmental factor of chronic overcrowded housing. Multiple linear regression (N = 99) revealed that children who exhibited less parasympathetic nervous system withdrawal in response to challenge during infancy had more externalizing problems during childhood only if they had mothers who experienced chronic depression. Children who exhibited greater sympathetic nervous system reactivity during infancy had the lowest levels of externalizing problems during childhood only if they had mothers who chronic depression. Chronic overcrowded housing did not moderate associations between physiological reactivity and level of externalizing problems. These findings extend our understanding of the interaction of physiology and context on child outcomes to the understudied population of impoverished Latino families.

  17. Changes of autonomic nervous system function in healthy young men during initial phase at acute high-altitude exposure

    Institute of Scientific and Technical Information of China (English)

    Qin Jun; Huang Lan; Tian Kaixin; Yu Shiyong; Yu Yang; Long Min

    2008-01-01

    Objective: To investigate the changes of autonomic nervous system (ANS) function during the initial phase at acute high-altitude exposure. Methods: Ninety-nine healthy sea-level male residents were studied in Chengdu plain and then Tibet plateau. Heart rate variability (HRV), cold pressor test (CPT), resting heart rate (HR) and blood pressure (BP) were measured at baseline (560 m altitude) and in 2 to 4 d after arriving at Tibet plateau (3 675 m altitude) to assess the ANS function. Results: Compared with baseline, on day 2 in Tibet the standard deviation of normal to normal intervals (SDNN), high-frequency (HF) power, total power (TP), root mean square of delta RR (rMSSD), percentage of delta RR>50 ms (PNN50), normalized high-frequency (Hfnu) and fractal dimension (FD) decreased significantly (SDNN, HF,TP P<0.01, rMSSD, PNNs0, Hfnu, FD P<0.05), while the normalized low-frequency (Lfnu) and LF/HF increased significantly (P<0.01). During day 3-4 in Tibet, SDNN, rMSSD, HF, TP and Hfnu tended to rebound while Lfnu and LF/HF decreased towards baseline day by day. In addition, in Tibet the increase in systolic pressure (SP) and diastolic pressure (DP) during CPT decreased significantly (P<0.01, 0.05), but resting HR increased compared with baseline (P<0.01). Conclusion: ANS modulation is generally blunted, and the relatively predominant sympathetic control is enhanced originally, then it reverts to the sea level states gradually during the initial days of acute high-altitude exposure.

  18. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study.

    Directory of Open Access Journals (Sweden)

    Karin A M Janssens

    Full Text Available Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS. However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous system (ANS levels during a standardized stressful situation, and whether these associations are symptom-specific.We examined 715 adolescents (16.1 years, 51.3% girls from the Dutch cohort study Tracking Adolescents' Individual Lives Sample during the Groningen Social Stress Test (GSST. FSS were assessed by the Youth Self-Report, and clustered into a cluster of overtiredness, dizziness and musculoskeletal pain and a cluster of headache and gastrointestinal symptoms. Perceived stress levels (i.e. unpleasantness and arousal were assessed by the Self-Assessment Manikin, and cardiac ANS activity by assessing heart rate variability (HRV-HF and pre-ejection period (PEP. Perceived stress and cardiac ANS levels before, during, and after the GSST were studied as well as cardiac ANS reactivity. Linear regression analyses were used to examine the associations.Perceived arousal levels during (beta = 0.09, p = 0.04 and after (beta = 0.07, p = 0.047 the GSST, and perceived unpleasantness levels before (beta = 0.07, p = 0.048 and during (beta = 0.12, p = 0.001 the GSST were related to FSS during the past couple of months. The association between perceived stress and FSS was stronger for the FSS cluster of overtiredness, dizziness and musculoskeletal pain than for the cluster of headache and gastrointestinal symptoms. Neither ANS activity levels before, during, and after the GSST, nor maximal HF-HRV and PEP reactivity were related to FSS.This study suggests that perceived stress levels during social stress are related to FSS, whereas cardiac ANS activity and reactivity are not related to FSS.

  19. Response of Autonomic Nervous System to Body Positions: Fourier and Wavelet Analysis

    CERN Document Server

    Xu, A; Federici, A; Stramaglia, S; Simone, F; Zenzola, A; Santostasi, R; Xu, Aiguo

    2003-01-01

    Two mathematical methods, the Fourier and wavelet transforms, were used to study the short term cardiovascular control system. Time series, picked from electrocardiogram and arterial blood pressure lasting 6 minutes, were analyzed in supine position (SUP), during the first (HD1), and the second half (HD2) of $90^{\\circ}$ head down tilt and during recovery (REC). The wavelet transform was performed using the Haar function of period $T=2^j$ ($% j=1$,2,$... $,6) to obtain wavelet coefficients. Power spectra components were analyzed within three bands, VLF (0.003-0.04), LF (0.04-0.15) and HF (0.15-0.4) with the frquency unit cycle/interval. Wavelet transform demonstrated a higher discrimination among all analyzed periods than the Fourier transform. For the Fourier analysis, the LF of R-R intervals and VLF of systolic blood pressure show more evident difference for different body positions. For the wavelet analysis, the systolic blood pressures show much more evident difference than the R-R intervals. This study s...

  20. Nervous system

    Science.gov (United States)

    Histopathology and immunohistochemistry are two analytic methods used in veterinary medicine for diagnosis and control of animal diseases. This book chapter provides specialized information for the veterinary pathologist and poultry veterinarians on the histopathological changes associated with dise...

  1. Herpesvirus-Associated Central Nervous System Diseases after Allogeneic Hematopoietic Stem Cell Transplantation

    OpenAIRE

    2013-01-01

    Herpesvirus infections of the central nervous system (CNS) are associated with encephalitis/myelitis and lymphoproliferative diseases in immunocompromised individuals. As of now, data of herpesvirus-associated CNS diseases in transplant recipients is limited. Hence, in this prospective study, we investigated the incidence of herpesvirus-associated CNS diseases and explored the diagnosis of these diseases in 281 allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Herpesv...

  2. Marcapasso com sensor de contratilidade regulado pelas variações do sistema nervoso autônomo na miocardiopatia chagásica crônica Chagas heart disease and contractility rate responsive pacing controlled by autonomic nervous system variations

    Directory of Open Access Journals (Sweden)

    Oswaldo Tadeu Greco

    1998-12-01

    Full Text Available OBJETIVO: Analisar o desempenho da estimulação cardíaca artificial com marcapasso do tipo VVIR cujo sensor é regulado pelas variações do sistema nervoso autônomo em pacientes chagásicos com distúrbio no sistema de condução. MÉTODOS: Estudados 47 chagásicos, 28 do sexo masculino, com idades entre 24 e 68 anos, 36 tinham bloqueio atrioventricular (AV total; 8, bloqueio AV de 2º grau 2; e 3 doença do nódulo sinusal, e encontravam-se, de acordo com a NYHA, em classe I (4, II (15, III (16 e IV (12. Após o implante de marcapasso do tipo VVIR os pacientes foram acompanhados durante 12 meses. A resposta de freqüência foi registrada em gravações de Holter de 24h e divididos em dois grupos de acordo com a FC em repouso - grupo 1: >65bpm e grupo 2: PURPOSE: To analyse the performance of the artificial cardiac stimulation with the VVIR pacemaker whose sensor is adjusted by the variations of the autonomic nervous system in Chagas disease patients with deficiency of the conduction system. METHODS: Forty-seven Chagas disease patients have been studied, 28 male between 24 and 68 years old, 36 patients had complete AV block, 8 had 2nd degree AV block and the other 3 had sinus node disease. The patients were in class I (4, II (15, III (16 and IV (12 according to the NYHA. A 12-month-follow-up with constant clinical evaluations was carried out after pacemaker implantation. Patients were divided in 2 different groups according to the HR at rest - group 1: >65 beats per minute (bpm and group 2: <=65bpm, for a comparative study considering: 1 HR at stress test after the implantation; 2 arterial blood pressure at rest after the implantation and, 3 evaluation of the identified electrodes such as TIR-60-UP and others. RESULTS: The group 1 had greater HR at rest, and a smaller variation of values at stress than group 2. This shows that with this type of stimulation system it is possible to control each patient separately. The values of blood pressure

  3. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis

    Directory of Open Access Journals (Sweden)

    Taweesak Janyacharoen

    2015-10-01

    Full Text Available Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients.Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks.There were statistically significant increased low frequency normal units (LF n.u., PNIF and showed decreased high frequency normal units (HF n.u. at six weeks after aquatic exercise compared with the control group.Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergicrhinitis patients.

  4. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis.

    Science.gov (United States)

    Janyacharoen, Taweesak; Kunbootsri, Narupon; Arayawichanon, Preeda; Chainansamit, Seksun; Sawanyawisuth, Kittisak

    2015-06-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients. Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks. There were statistically significant increased low frequency normal units (LF n.u.), PNIF and showed decreased high frequency normal units (HF n.u.) at six weeks after aquatic exercise compared with the control group. Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergic rhinitis patients.

  5. Early and late endocrine effects in pediatric central nervous system diseases.

    Science.gov (United States)

    Aslan, Ivy R; Cheung, Clement C

    2014-01-01

    Endocrinopathies are frequently linked to central nervous system disease, both as early effects prior to the disease diagnosis and/or late effects after the disease has been treated. In particular, tumors and infiltrative diseases of the brain and pituitary, such as craniopharyngioma, optic pathway and hypothalamic gliomas, intracranial germ cell tumor, and Langerhans cell histiocytosis, can present with abnormal endocrine manifestations that precede the development of neurological symptoms. Early endocrine effects include diabetes insipidus, growth failure, obesity, and precocious or delayed puberty. With improving prognosis and treatment of childhood brain tumors, many survivors experience late endocrine effects related to medical and surgical interventions. Chemotherapeutic agents and radiation therapy can affect the hypothalamic-pituitary axes governing growth, thyroid, gonadal, and adrenal function. In addition, obesity and metabolic alterations are frequent late manifestations. Diagnosing and treating both early and late endocrine manifestations can dramatically improve the growth, well-being, and quality of life of patients with childhood central nervous system diseases.

  6. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS)

    DEFF Research Database (Denmark)

    Asgari, N; Owens, T; Frøkiaer, J;

    2010-01-01

    Asgari N, Owens T, Frøkiaer J, Stenager E, Lillevang ST, Kyvik KO. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS).
Acta Neurol Scand: DOI: 10.1111/j.1600-0404.2010.01416.x.
© 2010 John Wiley & Sons A/S. In the past 10 years, neuromyelitis optica (NMO) has...

  7. Nanoparticles and blood-brain barrier: the key to central nervous system diseases.

    Science.gov (United States)

    Domínguez, Alazne; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-01-01

    Major central nervous system disorders represent a significant and worldwide public health problem. In fact, the therapeutic success of many pharmaceuticals developed to treat central nervous system diseases is still moderate, since the blood-brain barrier (BBB) limits the access of systemically administered compounds to the brain. Therefore, they require the application of a large total dose of a drug, and cause numerous toxic effects. The development of nanotechnological systems are useful tools to deliver therapeutics and/or diagnostic probes to the brain due to nanocarriers having the potential to improve the therapeutic effect of drugs and to reduce their side effects. This review provides a brief overview of the variety of carriers employed for central nervous system drug and diagnostic probes delivery. Further, this paper focuses on the novel nanocarriers developed to enhance brain delivery across the blood-brain barrier. Special attention is paid to liposomes, micelles, polymeric and lipid-based nanoparticles, dendrimers and carbon nanotubes. The recent developments in nanocarrier implementation through size/charge optimization and surface modifications (PEGylation, targeting delivery, and coating with surfactants) have been discussed. And a detailed description of the nanoscaled pharmaceutical delivery devices employed for the treatment of central nervous system disorders have also been defined. The aim of the review is to evaluate the nanotechnology-based drug delivery strategies to treat different central nervous system disorders.

  8. The application values of cerebrospinal fluid cytological examination by slide centrifugation for diagnosis of central nervous system infectious diseases

    Directory of Open Access Journals (Sweden)

    LIU Ting-ting

    2013-02-01

    Full Text Available According to the analysis of cerebrospnial fluid (CSF cytological examination (by slide centrifugation results of 15 940 central nervous system infectious cases, this cytologic examination method shows definite diagnostic values as follows: 1 better etiological diagnostic value for central nervous system infectious diseases, such as purulent, viral, tuberculous, fungus and parasitic encephalitis meningitis and meningoencephalitis; 2 better differential diagnostic value for acute infectious toxic encephalopathy, meningeal carcinomatosis and central nervous system non-infectious diseases such as tumorous, leukemic and hemorrhagic meningoencephalitis and encephalopathy; 3 better clinical value for severity monitoring and prognostic judgement of central nervous system infectious diseases.

  9. Biological characteristics of brain natriuretic peptide and its association with central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Yubao Huang; Changxiang Yan; Chunjiang Yu

    2007-01-01

    OBJECTIVE: To explain the mechanisms of tuhe synthesis, secretion and regulation of brain natriuretic peptide (BNP), and analyze its role in central nervous system diseases.DATA SOURCES: An online search of Pubmed was undertaken to identify articles related to BNP published in English from January 1990 to February 2007 by using the Key words of "brain natriuretic peptide (BNP), central nervous system, subarachnoid hemorrhage (SAH), brain edema, epilepsy". Other articles were searched in China Hospital Knowledge Database (CHKD) by concrete name of journals and title of articles.STUDY SELECTION: The collected articles were primarily screened, those about BNP and its association with central nervous system diseases were selected, whereas the obviously irrelative ones excluded, and the full-texts of the other literatures were searched manually.DATA EXTRACTION: Totally 96 articles were collected, 40 of them were enrolled, and the other 56 were excluded due to repetitive studies or reviews.DATA SYNTHESIS: At present, there are penetrating studies on BNP in the preclinical medicine and clinical medicine of cerebrovascular and cardiovascular diseases, and the investigative outcomes have been gradually applied in clinical practice, and satisfactory results have been obtained. However, the application of BNP in diagnosing and treating central nervous system diseases is still at the experimental phase without -outstanding outcomes, thus the preclinical and clinical studies should be enhanced.CONCLUSION: As a kind of central medium or modulator, BNP plays a certain role in the occurrence,development and termination of central nervous system diseases, the BNP level in serum has certain changing law in AH,brainedema,epilepsy,etc., but the specific mechanisms are unclear.

  10. Biomarkers of Alzheimer's Disease: From Central Nervous System to Periphery?

    Directory of Open Access Journals (Sweden)

    Enrico Mossello

    2011-01-01

    Full Text Available Alzheimer's Disease (AD is the most frequent form of dementia and represents one of the main causes of disability among older subjects. Up to now, the diagnosis of AD has been made according to clinical criteria. However, the use of such criteria does not allow an early diagnosis, as pathological alterations may be apparent many years before the clear-cut clinical picture. An early diagnosis is even more valuable to develop new treatments, potentially interfering with the pathogenetic process. During the last decade, several neuroimaging and cerebrospinal fluid (CSF parameters have been introduced to allow an early and accurate detection of AD patients, and, recently, they have been included among research criteria for AD diagnosis. However, their use in clinical practice suffers from limitations both in accuracy and availability. The increasing amount of knowledge about peripheral biomarkers will possibly allow the future identification of reliable and easily available diagnostic tests.

  11. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    Science.gov (United States)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  12. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  13. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  14. Management of disease-modifying treatments in neurological autoimmune diseases of the central nervous system

    Science.gov (United States)

    Salmen, A; Gold, R; Chan, A

    2014-01-01

    The therapeutic armamentarium for autoimmune diseases of the central nervous system, specifically multiple sclerosis and neuromyelitis optica, is steadily increasing, with a large spectrum of immunomodulatory and immunosuppressive agents targeting different mechanisms of the immune system. However, increasingly efficacious treatment options also entail higher potential for severe adverse drug reactions. Especially in cases failing first-line treatment, thorough evaluation of the risk–benefit profile of treatment alternatives is necessary. This argues for the need of algorithms to identify patients more likely to benefit from a specific treatment. Moreover, paradigms to stratify the risk for severe adverse drug reactions need to be established. In addition to clinical/paraclinical measures, biomarkers may aid in individualized risk–benefit assessment. A recent example is the routine testing for anti-John Cunningham virus antibodies in natalizumab-treated multiple sclerosis patients to assess the risk for the development of progressive multi-focal leucoencephalopathy. Refined algorithms for individualized risk assessment may also facilitate early initiation of induction treatment schemes in patient groups with high disease activity rather than classical escalation concepts. In this review, we will discuss approaches for individiualized risk–benefit assessment both for newly introduced agents as well as medications with established side-effect profiles. In addition to clinical parameters, we will also focus on biomarkers that may assist in patient selection. Other Articles published in this series Paraneoplastic neurological syndromes. Clinical and Experimental Immunology 2014, 175: 336–48. Disease-modifying therapy in multiple sclerosis and chronic inflammatory demyelinating polyradiculoneuropathy: common and divergent current and future strategies. Clinical and Experimental Immunology 2014, 175: 359–72. Monoclonal antibodies in treatment of multiple

  15. Heart rate variability and the influence of craniosacral therapy on autonomous nervous system regulation in persons with subjective discomforts:a pilot study

    Institute of Scientific and Technical Information of China (English)

    Wanda Girsberger; Ulricke Bnziger; Gerhard Lingg; Harald Lothaller; Peter-Christian Endler

    2014-01-01

    BACKGROUND:Subjective discomforts in a preclinical range are often due to imbalanced autonomic nervous system activity, which is a focus of craniosacral therapy. OBJECTIVE:The aim of this work was to determine any changes in heart rate variability (HRV) in a study on craniosacral therapy. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS: This is a quasi-experimental (controlled) study with cross-over design. In a private practice, measurements were performed on 31 patients with subjective discomforts before and after a control and an intervention period. HRV was determined using a device that requires a measuring time of 140 s and electrode contact only with the ifngertips. Main PRIMARY OUTCOME MEASURES: HRV change under the inlfuence of a deifned one-time intervention (test intervention) with craniosacral therapy versus control (deifned rest period). RESULTS:Standard deviation of all RR-intervals (ms) and total power of RR-interval variability in the frequency range (ms2) were together interpreted as an indicator of test subjects’ autonomic nervous activity and as a measure of their ability to cope with demands on their health. Neither of these parameters increased during the control period (P>0.05), whereas during the test intervention period there was an increase in both (P0.05). No changes were observed in the low frequency/high frequency ratio (sympathetic-vagal balance) in the course of the control or the test intervention period (P>0.05). CONCLUSION: Craniosacral treatment had a favourable effect on autonomic nervous activity. This in itself is an interesting result, but further research will be needed to distinguish speciifc effects of craniosacral therapy technique from less speciifc therapist-client interaction effects.

  16. Cardiovascular autonomic dysfunction in Parkinson's disease.

    Science.gov (United States)

    Ziemssen, Tjalf; Reichmann, Heinz

    2010-02-15

    Symptoms of cardiovascular dysautonomia are a common occurrence in Parkinson's disease (PD). In addition to this dysautonomia as part of PD itself, dysfunction of the autonomic nervous system (ANS) can be triggered as a side-effect of drug treatment interacting with the ANS or - if prominent and early - an indication of a different disease such as multiple system atrophy (MSA). Various diagnostic tests are available to demonstrate autonomic failure. While autonomic function tests can differentiate parasympathetic from sympathetic dysfunction, cardiac imaging can define the pathophysiologically involved site of a lesion. Standard tests such as 24-h ambulatory blood pressure measurements can identify significant autonomic failure which needs treatment. The most frequent and disturbing symptom of cardiovascular autonomic dysfunction is orthostatic hypotension. Symptoms include generalized weakness, light-headiness, mental "clouding" up to syncope. Factors like heat, food, alcohol, exercise, activities which increase intrathoraric pressure (e.g. defecation, coughing) and certain drugs (e.g. vasodilators) can worsen a probably asymptomatic orthostatic hypotension. Non-medical and medical therapies can help the patient to cope with a disabling symptomatic orthostatic hypotension. Supine hypertension is often associated with orthostatic hypotension. The prognostic role of cardiovagal and baroreflex dysfunction is still not yet known.

  17. Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs.

    Science.gov (United States)

    Bai, Yanyang; Xiang, Xiaoliang; Liang, Chunmei; Shi, Lei

    2015-01-01

    Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.

  18. Cerebrolysin as a nerve growth factor for treatment of acquired peripheral nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Sherifa Ahmad Hamed

    2011-01-01

    Cerebrolysin is a drug consisting of low-molecular-weight neurotrophic peptides and free amino acids. Cerebrolysin has been shown to ameliorate the effects of oxidative stress, reduce apoptosis, and promote neuronal growth in several degenerative and acquired central nervous system insults, including dementias, stroke, and traumatic injuries. Little is known about its therapeutic efficacy in peripheral nervous system diseases. In this study, we clinically evaluated the effects of cerebrolysin on peripheral nervous system lesions. We evaluated the clinical efficacy of cerebrolysin in six patients with the following conditions who failed to respond to conventional therapies: (1) atonic bladder due to inflammatory radiculitis; (2) paraplegia due to inflammatory radiculoneuropathy; (3) post-traumatic brachial plexopathy; (4) compressive radial nerve injury; (5) post-traumatic facial nerve paralysis; and (6) diabetic ophthalmoplegia. Our results showed that cerebrolysin was more associated with rapid neurological recovery after various peripheral nerve lesions than other therapies including steroids and supportive therapies such as vitamins and antioxidants. The present results support the therapeutic efficacy of cerebrolysin in the treatment of acquired peripheral nervous system diseases.

  19. [Immunology in medical practice. XIV. Central nervous system complications in systemic autoimmune diseases].

    Science.gov (United States)

    Markusse, H M; van den Bent, M J; Vecht, C J

    1998-03-07

    Complications of the central nervous system (CNS) are common in systemic autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE) and primary Sjögren's syndrome. Specific diagnostic tests are lacking and early intervention with immunosuppressive therapy is frequently necessary. Therefore knowledge of these CNS complications is essential for early diagnosis and treatment. Residual cognitive effects were observed in some but not in all tests after prolonged heavy cannabis use. The effects were mostly mild. The relationship of cannabis use, psychotic effects and schizophrenia was unclear; the cannabis conceivably gave relief, but it also appeared that cannabis caused schizophrenia in young people and (or) enhanced the symptoms, especially in young people poorly able to cope with stress or in whom the antipsychotic therapy was unsuccessful.

  20. Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system--a fMRI study in healthy volunteers.

    Science.gov (United States)

    Rubio, Amandine; Van Oudenhove, Lukas; Pellissier, Sonia; Ly, Huynh Giao; Dupont, Patrick; de Micheaux, Hugo Lafaye; Tack, Jan; Dantzer, Cécile; Delon-Martin, Chantal; Bonaz, Bruno

    2015-02-15

    The human brain responds both before and during the application of aversive stimuli. Anticipation allows the organism to prepare its nociceptive system to respond adequately to the subsequent stimulus. The context in which an uncomfortable stimulus is experienced may also influence neural processing. Uncertainty of occurrence, timing and intensity of an aversive event may lead to increased anticipatory anxiety, fear, physiological arousal and sensory perception. We aimed to identify, in healthy volunteers, the effects of uncertainty in the anticipation of uncomfortable rectal distension, and the impact of the autonomic nervous system (ANS) activity and anxiety-related psychological variables on neural mechanisms of anticipation of rectal distension using fMRI. Barostat-controlled uncomfortable rectal distensions were preceded by cued uncertain or certain anticipation in 15 healthy volunteers in a fMRI protocol at 3T. Electrocardiographic data were concurrently registered by MR scanner. The low frequency (LF)-component of the heart rate variability (HRV) time-series was extracted and inserted as a regressor in the fMRI model ('LF-HRV model'). The impact of ANS activity was analyzed by comparing the fMRI signal in the 'standard model' and in the 'LF-HRV model' across the different anticipation and distension conditions. The scores of the psychological questionnaires and the rating of perceived anticipatory anxiety were included as covariates in the fMRI data analysis. Our experiments led to the following key findings: 1) the subgenual anterior cingulate cortex (sgACC) is the only activation site that relates to uncertainty in healthy volunteers and is directly correlated to individual questionnaire score for pain-related anxiety; 2) uncertain anticipation of rectal distension involved several relevant brain regions, namely activation of sgACC and medial prefrontal cortex and deactivation of amygdala, insula, thalamus, secondary somatosensory cortex, supplementary

  1. Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    CERN Document Server

    Ashkenazy, Yu; Levitan, J; Moelgaard, H; Bloch-Thomsen, P E; Saermark, K

    1998-01-01

    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclusive. We suggest a delimiting diagnostic value of the standard deviation of the filtered, reconstructed RR interval time series in the range of $\\sim 0.035$ (for the above mentioned filter), below which individuals are at risk.

  2. Nicotinic systems in central nervous systems disease: degenerative disorders and beyond.

    Science.gov (United States)

    Newhouse, P A; Kelton, M

    2000-03-01

    Advances in the understanding of the structure, function, and distribution of central nervous system (CNS) nicotinic receptors has provided the impetus for new studies examining the role(s) that these receptors and associated processes may play in CNS functions. Further motivation has come from the realization that such receptors are changed in degenerative neurologic diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Ongoing investigations of the molecular substructure of CNS nicotinic receptors and their pharmacology have begun to open up new possibilities for novel CNS therapeutics with nicotinic agents. Exploiting these possibilities will require understanding of the role(s) that these receptor systems play in human cognitive, behavioral, motor, and sensory functioning. Clues from careful studies of human cognition and behavior are beginning to emerge and will provide direction for studies of potentially therapeutic novel nicotinic agents. Modulation of these receptors with the ultimate goal of producing therapeutic benefits is the goal of these investigations and drug development. This paper will review studies from our laboratory and others that point to the importance of CNS nicotinic mechanisms in normal human cognitive and behavioral functioning as well as their role in disease states. In addition, this paper will examine potential clinical applications of nicotine and/or nicotinic agonists in a variety of CNS disorders with particular emphasis on structural brain disease including: movement disorders such as Parkinson's disease and Tourette's syndrome, cognitive/behavioral disorders such as Alzheimer's disease, attention deficit/hyperactivity disorder, and schizophrenia, and other more speculative applications. Important results from early therapeutic studies of nicotine and/or nicotinic agonists in these disease states are presented. For example, recent studies with nicotine and novel nicotinic agonists such as ABT-418 by our group

  3. Cutaneous autonomic denervation in Parkinson's disease.

    Science.gov (United States)

    Navarro-Otano, Judith; Casanova-Mollà, Jordi; Morales, Merche; Valls-Solé, Josep; Tolosa, Eduard

    2015-08-01

    Numerous studies have detailed involvement of the peripheral autonomic nervous system (PANS) in Parkinson's disease (PD). We assessed autonomic innervation of dermal annexes through quantitative fluorescence measurement from skin obtained via punch biopsies at distal leg region in PD and control subjects. We defined a ratio between the area corresponding to protein gen product (PGP) immunoreactivity and the area corresponding to blood vessel or sweat gland as a quantitative measure of autonomic innervation. Presence of alpha-synuclein (AS) deposits in dermis and hypodermis was also assessed by immunohistochemistry. Skin biopsies form six PD patients and six healthy controls were studied. Autonomic innervation scores were lower in PD than in controls in both blood vessels and sweat glands. No AS or phosphorylated AS (pAS) immunoreactivity was detected in dermis or hypodermis in any of the studied subjects. The results of this investigation suggest that autonomic innervation of dermal annexes in living patients with PD is reduced compared to controls. AS or pAS deposits were not found in dermis or hypodermis suggesting that distal leg skin study is not useful for in vivo detection of AS in PD.

  4. Role of the ubiquitin-proteasome system in nervous system function and disease: using C. elegans as a dissecting tool.

    Science.gov (United States)

    Baptista, Márcio S; Duarte, Carlos B; Maciel, Patrícia

    2012-08-01

    In addition to its central roles in protein quality control, regulation of cell cycle, intracellular signaling, DNA damage response and transcription regulation, the ubiquitin-proteasome system (UPS) plays specific roles in the nervous system, where it contributes to precise connectivity through development, and later assures functionality by regulating a wide spectrum of neuron-specific cellular processes. Aberrations in this system have been implicated in the etiology of neurodevelopmental and neurodegenerative diseases. In this review, we provide an updated view on the UPS and highlight recent findings concerning its role in normal and diseased nervous systems. We discuss the advantages of the model organism Caenorhabditis elegans as a tool to unravel the major unsolved questions concerning this biochemical pathway and its involvement in nervous system function and dysfunction, and expose the new possibilities, using state-of-the-art techniques, to assess UPS function using this model system.

  5. Cerebrospinal fluid analysis in infectious diseases of the nervous system: when to ask, what to ask, what to expect

    Directory of Open Access Journals (Sweden)

    Luis dos Ramos Machado

    2013-09-01

    Full Text Available Cerebrospinal fluid (CSF analysis very frequently makes the difference to the diagnosis, not only in relation to infections but also in other diseases of the nervous system such as inflammatory, demyelinating, neoplastic and degenerative diseases. The authors review some practical and important features of CSF analysis in infectious diseases of the nervous system, with regard to acute bacterial meningitis, herpetic meningoencephalitis, neurotuberculosis, neurocryptococcosis, neurocysticercosis and neurosyphilis.

  6. Neutron activation analysis of the central nervous system tissues in neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1994-07-01

    As the diseases due to excessive metals in living bodies and the metals of their causes, Minamata disease due to Hg, itai-itai disease due to Cd, dialysis brain disease due to Al, hemochromatosis due to Fe, Wilson disease due to Cu and so on have been known. Also as the neural diseases, in which the possibility that metals take part in them is presumed, there are amyotrophic lateral sclerosis, Alzheimer disease, Parkinson disease, Parkinsonism dementia and so on. In order to know the causes of the diseases due to excessive metals in living bodies and neurological diseases, the authors have measured Cu, Ca, Al, Mn, Zn and Fe in central nervous system tissues by activation analysis nondestructive method. The cases investigated were 4 cases of hepatocerebral diseases, 6 cases of ALS, 4 cases of Parkinson disease, 4 cases of Parkinsonism dementia, 4 cases of multiple sclerosis and 5 cases without CNS disease for the control. The method of measurement is described. The results for respective diseases are reported. Cu and Fe are in the relation of mirror images, and Cu formed Cu-superoxide dismutase (SOD) similarly to Zn and Mn as SOD carrier metals, and protects living bodies and CNS from oxidative stress. (K.I.).

  7. Review: the role of vitamin D in nervous system health and disease.

    Science.gov (United States)

    DeLuca, G C; Kimball, S M; Kolasinski, J; Ramagopalan, S V; Ebers, G C

    2013-08-01

    Vitamin D and its metabolites have pleomorphic roles in both nervous system health and disease. Animal models have been paramount in contributing to our knowledge and understanding of the consequences of vitamin D deficiency on brain development and its implications for adult psychiatric and neurological diseases. The conflation of in vitro, ex vivo, and animal model data provide compelling evidence that vitamin D has a crucial role in proliferation, differentiation, neurotrophism, neuroprotection, neurotransmission, and neuroplasticity. Vitamin D exerts its biological function not only by influencing cellular processes directly, but also by influencing gene expression through vitamin D response elements. This review highlights the epidemiological, neuropathological, experimental and molecular genetic evidence implicating vitamin D as a candidate in influencing susceptibility to a number of psychiatric and neurological diseases. The strength of evidence varies for schizophrenia, autism, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, and is especially strong for multiple sclerosis.

  8. The impact of occurrence of exceptional solar events on mortality from diseases of the nervous system

    Science.gov (United States)

    Podolska, Katerina

    2015-04-01

    The aim of this conference paper is to analyse relationships between strong changes of solar, geomagnetic and ionospheric physical parameters, and mortality by medical cause of death from diagnosis group Diseases of the nervous system by ICD-10 WHO. The aggregated daily number of deaths of 6 largest individual causes of death of group VI. Diseases of the nervous system on the occurrence of exceptional solar and geomagnetic events is investigated. Analysis is performed for the period of the solar cycles No. 23 and 24 (years 1994-2013) in the Czech Republic. The correlation between the intensity of mortality from diseases Multiple sclerosis, Epilepsy, Cerebral palsy, Parkinson disease, Secondary parkinsonism and Alzheimer disease and the solar, geomagnetic and ionospheric physical parameters is examined using stochastic method of graphical models of conditional dependences. We study the daily number of deaths separately for both sexes at the age groups under 39 and 40+. Differences are found for maximum solar activity and during the ascending and descending epoch of the solar cycles.

  9. Cardiac autonomic profile in rheumatoid arthritis and systemic lupus erythematosus.

    Science.gov (United States)

    Aydemir, M; Yazisiz, V; Basarici, I; Avci, A B; Erbasan, F; Belgi, A; Terzioglu, E

    2010-03-01

    Neurological involvement is a well-documented issue in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). However, little is known about the involvement of the autonomic nervous system. This study was conducted to investigate autonomic nervous system dysfunction in patients with RA and SLE. Twenty-six RA patients, 38 SLE patients and 40 healthy controls were recruited from our in- and out-patient departments. Heart rate variability (HRV) parameters (the power of the high- [HF] and low-frequency [LF] band of haemodynamic time series, the ratio between low- and high-frequency components [LF/HF ratio], the power spectral density), baroreflex sensitivity (BRS) and beat-to-beat blood pressures were assessed by a novel non-invasive haemodynamic monitoring tool (Task Force Monitor [TFM], CNSystems Medizintechnik GmbH, Graz, Austria). Autonomic nervous system dysfunction was determined according to classical Ewing autonomic test battery. Furthermore, we implemented a secondary autonomic test score by modifying the Ewing test battery with additional criteria. Both the classical and modified Ewing test batteries have revealed that the frequencies of autonomic neuropathy were significantly higher in patient groups compared with controls (p disease duration, disease activity and autoantibody positivity. Consequently, we believe that further large-scale studies investigating cardiovascular autonomic neuropathy in rheumatic diseases should be carried out to verify our findings and manifest clinical consequences beyond these results.

  10. Syringomyelia in demyelinating disease of the central nervous system: Report of two cases

    Directory of Open Access Journals (Sweden)

    Savić Dejan

    2011-01-01

    Full Text Available Introduction. Syringomyelia is a cavitary extension inside the spinal cord which can be either symptomatic or congenitally-idiopathic. Syringomyelia during the course of the disease in patients presenting with clinically definite multiple sclerosis was described earlier. Syringomyelia in patients presenting with a clinically isolated syndrome suggestive of multiple sclerosis is unusual. Case Outline. We present two patients presenting with demy-elinating disease of the central nervous system with syringomyelia in the cervical and thoracic spinal cord. We did not find classical clinical signs of syringomyelia in our patients, but we disclosed syringomyelia incidentally during magnetic resonance exploration. Magnetic resonance exploration using the gadolinium contrast revealed the signs of active demyelinating lesions in the spinal cord in one patient but not in the other. Conclusion. Syringomyelia in demyelinating disease of the central nervous system opens the question whether it is a coincidental finding or a part of clinical features of the disease. Differentiation of the significance of syringomyelia finding in these patients plays a role in the choice of treatment concept in such patients.

  11. Parasitic diseases of the central nervous system: lessons for clinicians and policy makers.

    Science.gov (United States)

    Carpio, Arturo; Romo, Matthew L; Parkhouse, R M E; Short, Brooke; Dua, Tarun

    2016-01-01

    Parasitic diseases of the central nervous system are associated with high mortality and morbidity, especially in resource-limited settings. The burden of these diseases is amplified as survivors are often left with neurologic sequelae affecting mobility, sensory organs, and cognitive functions, as well as seizures/epilepsy. These diseases inflict suffering by causing lifelong disabilities, reducing economic productivity, and causing social stigma. The complexity of parasitic life cycles and geographic specificities, as well as overlapping clinical manifestations in the host reflecting the diverse pathogenesis of parasites, can present diagnostic challenges. We herein provide an overview of these parasitic diseases and summarize clinical aspects, diagnosis, therapeutic strategies and recent milestones, and aspects related to prevention and control.

  12. Moderate Exercise Restores Pancreatic Beta-Cell Function and Autonomic Nervous System Activity in Obese Rats Induced by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Rodrigo Mello Gomes

    2013-08-01

    Full Text Available Background/Aims: Metabolic syndrome has been identified as one of the most significant threats to human health in the 21st century. Exercise training has been shown to counteract obesity and metabolic syndrome. The present study aimed to investigate the effects of moderate exercise training on pancreatic beta-cell function and autonomic nervous system (ANS activity in rats fed a high-fat diet (HFD. Methods: Weaning rats were divided into four groups: rats fed a standard chow or HFD (sedentary, Control-SED and HFD-SED; or exercised, Control-EXE and HFD-EXE, respectively. Exercised rats ran (from 21- to 91-days-old for 60 minutes (3 times/week over a 10-week period. Glucose and insulin tolerance tests were performed. Pancreatic islets were isolated to study glucose-induced insulin secretion (GIIS. Parasympathetic and sympathetic nerve electrical signals were measured, and liver samples were processed and histologically analyzed. Results: Exercise prevented obesity, insulin resistance, and liver steatosis as well as improved total cholesterol, ALT, and AST levels. Islets from HFD rats showed insulin hypersecretion which was ameliorated by exercise. Exercise decreased vagal nerve activity in the HFD-EXE group and increased the activity of the sympathetic nervous system in both exercised groups. Conclusion: Exercise prevents obesity and liver steatosis and restores pancreatic beta-cell function and ANS activity in HFD-obese rats.

  13. Current immune therapies of autoimmune disease of the nervous system with special emphasis to multiple sclerosis.

    Science.gov (United States)

    Vass, Karl

    2012-01-01

    Autoimmune diseases of the nervous system such as myasthenia gravis, inflammatory demyelinating polyneuropathies, multiple sclerosis and others are still not curable. Yet the introduction of modern immune therapies could significantly improve the prospects of many patients affected by these disorders. In addition to steroids and immunosuppression i.v. immunoglobulins are used for treatment of myasthenia gravis and chronic inflammatory demyelinating polyneuropathy. Interferons, glatiramer acetate, natalizumab and fingolimod are applied in multiple sclerosis. The ever-improving efficacy of the drugs has to be balanced against the increasing risk of possible severe adverse effects.

  14. Epilepsy and other central nervous system diseases in atypical autism: a case control study

    DEFF Research Database (Denmark)

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2011-01-01

    There is an increased but variable risk of epilepsy in autism spectrum disorders. The objective of this study is to compare the prevalence and types of epilepsy and other central nervous system (CNS) diseases in a clinical sample of 89 individuals diagnosed as children with atypical autism (AA......) with 258 matched controls from the general population. Diagnoses were based on data from the nationwide Danish National Hospital Register. The average observation time was 32.9 years, and mean age at follow-up was 48.5 years. Of the 89 individuals with AA, 20 (22.5%) were registered with at least one...

  15. 自主神经系统在心房颤动中的作用和联系%Interrelationships between the Autonomic Nervous System and Atrial Fibrillation

    Institute of Scientific and Technical Information of China (English)

    张培德

    2012-01-01

    Atrial fibrillation is common in clinic.Mechanisms responsible for atrial fibrillation are not completely understood ,among various mechanisms, the autonomic nervous system is a potentially potent modulator of the initiation, maintenance, termination and ventricular rate deter- I mination of atrial fibrillation. Complex interactions exist between the parasympathetic and sympathetic nervous systems on the central, ganglionic, peripheral, tissue, cellular and subcellular levels that could be responsible for alterations in conduction and refractoriness properties of the heart ,the more important is that autonomic nervous which distribute in heart may change arythmia and influnte the presence and type of triggeredactivity, all of which could arouse and maintain atrial fibrillation, this artical reviews the roles and interrelationship of automomic nerve system in atrial fibrillation.%心房颤动(房颤)在临床上极为常见,目前心房颤动的机制尚未阐明,其中自主神经系统在房颤的发生、维持、终止和决定室性心律上是一个潜在的强大的调节因素.存在于中枢、神经节、外周组织、细胞和亚细胞水平的交感和副交感系统的复杂相互作用都能够改变心脏的传导性和不应期,较为重要的是分布于心脏的自主神经的调节作用能引起心房节律的改变以及影响触发活动的产生和类型,所有这些变化都能引发和维持房颤.本文就心脏自主神经系统在房颤发生发展过程中的可能的作用机制及相互联系作一综述,为基础研究和临床实践中对房颤的机制研究和治疗提供参考依据和理论基础.

  16. Nervous system involvement in von Hippel-Lindau disease: pathology and mechanisms.

    Science.gov (United States)

    Vortmeyer, Alexander O; Falke, Eric A; Gläsker, Sven; Li, Jie; Oldfield, Edward H

    2013-03-01

    Patients with von Hippel-Lindau disease carry a germline mutation of the Von Hippel-Lindau (VHL) tumor-suppressor gene. We discuss the molecular consequences of loss of VHL gene function and their impact on the nervous system. Dysfunction of the VHL protein causes accumulation and activation of hypoxia inducible factor (HIF) which can be demonstrated in earliest stages of tumorigenesis and is followed by expression of VEGF, erythropoietin, nitric oxide synthase and glucose transporter 1 in VHL-deficient tumor cells. HIF-independent functions of VHL, epigenetic inactivation of VHL, pVHL proteostasis, and links between loss of VHL function and developmental arrest are also described. A most intriguing feature in VHL disease is the occurrence of primary hemangioblastic tumors in the nervous system, the origin of which has not yet been entirely clarified, and current hypotheses are discussed. Endolymphatic sac tumors may extend into the brain, but originally arise from proliferation of endolymphatic duct/sac epithelium; the exact nature of the proliferating epithelial cell, however, also has remained unclear, as well as the question why tumors almost consistently develop in the intraosseous portion of the endolymphatic sac/duct only. The epitheloid clear cell morphology of both advanced hemangioblastoma and renal clear cell carcinoma can make the differential diagnosis challenging, recent developments in immunohistochemical differentiation are discussed. Finally, metastasis to brain may not only be caused by renal carcinoma, but may derive from VHL disease-associated pheochromocytoma/paraganglioma, or pancreatic neuroendocrine tumor.

  17. Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease.

    Science.gov (United States)

    Fuess, Lauren E; Eisenlord, Morgan E; Closek, Collin J; Tracy, Allison M; Mauntz, Ruth; Gignoux-Wolfsohn, Sarah; Moritsch, Monica M; Yoshioka, Reyn; Burge, Colleen A; Harvell, C Drew; Friedman, Carolyn S; Hewson, Ian; Hershberger, Paul K; Roberts, Steven B

    2015-01-01

    Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.

  18. Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease.

    Directory of Open Access Journals (Sweden)

    Lauren E Fuess

    Full Text Available Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.

  19. Up in arms: Immune and nervous system response to sea star wasting disease

    Science.gov (United States)

    Fuess, Lauren E; Eiselord, Morgan E.; Closek, Collin J.; Tracy, Allison M.; Mauntz, Ruth; Gignoux-Wolfsohn, Sarah; Moritsch, Monica M; Yoshioka, Reyn; Burge, Colleen A.; Harvell, Drew; Friedman, Carolyn S.; Hershberger, Paul K.; Roberts, Steven B.

    2015-01-01

    Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013–2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.

  20. Step behaviour and autonomic nervous system activity in multiparous dairy cows during milking in a herringbone milking system.

    Science.gov (United States)

    Kézér, F L; Kovács, L; Tőzsér, J

    2015-08-01

    Behavioural and cardiac responses of multiparous dairy cows (n=24) during milking in a 2×4 stall herringbone milking system were evaluated in this study. Heart rate (HR), parasympathetic tone index (high frequency component, HF) of heart rate variability and sympathovagal balance indicator LF/HF ratio (the ratio of the low frequency (LF) and the HF component) were analysed. Measurement periods were established as follows: (1) standing calm (baseline), (2) udder preparation, (3) milking, (4) waiting after milking in the milking stall and (5) in the night (2 h after milking). Step behaviour was recorded and calculated per minute for the three phases of the milking process (udder preparation, milking and waiting after milking). HR was higher during udder preparation and milking compared with baseline (P=0.03, 0.027, respectively). HF was significantly lower than baseline levels during waiting in the milking stall after milking (P=0.009), however, during udder preparation, milking and 2 h after milking did not differ from baseline (P>0.05, in either case). LF/HF during the three phases of the milking process differed neither from baseline levels nor from each other. Steps occurred more often during waiting after milking than during udder preparation (P=0.042) or during milking (23; P=0.017). Our results suggest that the milking procedure itself was not stressful for these animals. After milking (following the removal of the last teat cup and before leaving the milking stall), both decreased parasympathetic tone (lower HF) and increased stepping rate indicated a sensitive period for animals during this phase.

  1. Quality of life in patients with paroxysmal atrial fibrillation and its predictors : importance of the autonomic nervous system

    NARCIS (Netherlands)

    van den Berg, MP; Hassink, RJ; Tuinenburg, AE; van Sonderen, EFLP; Lefrandt, JD; de Kam, PJ; van Gelder, IC; Smit, AJ; Sanderman, R; Crijns, HJGM

    2001-01-01

    Aims To determine the impact of paroxysmal atrial fibrillation on quality of life and to determine the predictors of quality of life, particularly the role of symptomatology and autonomic function. Methods and Results The study group comprised 73 patients with paroxysmal atrial fibrillation (mean ag

  2. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriette; Van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Objective Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonom

  3. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report.

  4. Role of the autonomic nervous system and neuropeptides in the development of obesity in humans: targets for therapy?

    Science.gov (United States)

    Greenfield, Jerry R; Campbell, Lesley V

    2008-01-01

    Obesity and type 2 diabetes have reached epidemic proportions worldwide. These metabolic disorders, particularly obesity, are characterised by increased basal sympathetic nervous system (SNS) activity but an impaired sympathetic response to certain stimuli, such as insulin. Although targeting the SNS may seem an attractive avenue for the pharmacological prevention and treatment of obesity and related metabolic disorders, it remains unknown whether changes in SNS tone are primary and contribute to the development of these metabolic conditions or whether they develop secondary to the obese state. This question can be answered by the study of insulin-resistant individuals prior to the development of obesity and type 2 diabetes. Using this model, it has been shown that early insulin resistance is associated with increased SNS activity in genetically-predisposed humans. It has been suggested that in insulin-resistant states, hyperinsulinaemia is the initiating factor that increases sympathetic neural activity. Over time, adrenoreceptor down-regulation and/or reduced sensitivity are likely to develop, resulting in reduced sympathetic responsiveness. In the postprandial state, this will lead to impaired diet-induced thermogenesis and post-prandial fat oxidation, promoting the accumulation of body fat. More recent evidence demonstrates that stress-induced SNS overactivity up-regulates Neuropeptide Y, an orexigenic hormone, and its Y2 receptor, in visceral adipose tissue, the fat depot most strongly linked to insulin resistance and type 2 diabetes. There is evidence that SNS overactivity specifically contributes to the development of abdominal obesity via this pathway, which could represent a novel target for the prevention and treatment of abdominal obesity and related metabolic consequences.

  5. Cytokine expression in the rat central nervous system following perinatal Borna disease virus infection.

    Science.gov (United States)

    Sauder, C; de la Torre, J C

    1999-04-01

    Borna disease virus (BDV) causes central nervous system (CNS) disease in several vertebrate species, which is frequently accompanied by behavioral abnormalities. In the adult rat, intracerebral (i.c.) BDV infection leads to immunomediated meningoencephalitis. In contrast, i.c. infection of neonates causes a persistent infection in the absence of overt signs of brain inflammation. These rats (designated PTI-NB) display distinct behavioral and neurodevelopmental abnormalities. However, the molecular mechanisms for these virally induced CNS disturbances are unknown. Cytokines play an important role in CNS function, both under normal physiological and pathological conditions. Astrocytes and microglia are the primary resident cells of the central nervous system with the capacity to produce cytokines. Strong reactive astrocytosis is observed in the PTI-NB rat brain. We have used a ribonuclease protection assay to investigate the mRNA expression levels of proinflammatory cytokines in different brain regions of PTI-NB and control rats. We show here evidence of a chronic upregulation of proinflammatory cytokines interleukin-6, tumor necrosis factor alpha, interleukins-1alpha, and -1beta in the hippocampus and cerebellum of the PTI-NB rat brain. These brain regions exhibited only a very mild and transient immune infiltration. In contrast, in addition to reactive astrocytes, a strong and sustained microgliosis was observed in the PTI-NB rat brains. Our data suggest that CNS resident cells, namely astrocytes and microglia, are the major source of cytokine expression in the PTI-NB rat brain. The possible implications of these findings are discussed.

  6. New roles for ‘old’ microRNAs in nervous system function and disease

    Directory of Open Access Journals (Sweden)

    Marion eHartl

    2013-12-01

    Full Text Available Since their discovery, microRNAs became prominent candidates providing missing links on how to explain the developmental and phenotypical variation within one species or among different species. In addition, microRNAs were implicated in diseases such as neurodegeneration and cancer. More recently, the regulation of animal behavior was shown to be influenced by microRNAs. In spite of their numerous functions, only a few microRNAs were discovered by using classic genetic approaches. Due to the very mild or redundant phenotypes of most microRNAs or their genomic location within introns of other genes many regulatory microRNAs were missed. In this review, we focus on three microRNAs first identified in a forward genetic screen in invertebrates for their essential function in animal development, namely bantam, let-7 and miR-279. All three are essential for survival, are not located in introns of other genes, and are highly conserved among species. We highlight their important functions in the nervous system and discuss their emerging roles, especially during nervous system disease and behavior.

  7. Diseases of the nervous system among miners of the Far North and questions of prophylaxis

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, A.G.

    1982-10-01

    In the Far North and arctic regions of the USSR mine workers experience effects on the organism of extreme meteorologic factors (low temperature, shortened daylight and permafrost) in addition to professional hazards of vibration and noise. Diets may be deficient in water-soluble vitamins necessary for normal functioning of the nervous system. For 4 years 3,575 miners of the Far North and Arctic were observed. At times, noise and vibration are more intense in areas of permafrost. Temperature of mine air in winter is -20 to -40/sup 0/C, in summer -4 to -15/sup 0/C. As miners adapt to work in cold climates, their resistance weakens. Data showed only 1% of miners developed vibrational disease. Major neuropathology was damage to the peripheral nervous system caused by osteochondrosis, particularly of the spine with or without inflammation of spinal nerve roots. Other neurological diseases (vascular pathology of brain, diffuse neuritis, cerebral arachnoiditis) were observed in miners of different professional groups. Preventive treatment is recommended: observation of hygienic norms of work; rational rearrangement of work regimens of sick miners; periodic work on related tasks; hospital rest; twice yearly study units on physical therapy, massage, conditioning; use of preventive measures. (5 refs.)

  8. [Characteristics of the acute phase reaction in humans with various types of autonomic nervous system regulation during simulated hyperthermia].

    Science.gov (United States)

    Bannikov, A V; Dorofeĭkov, V V; Freĭdlin, T S; Freĭdlin, I S; Shustov, E B; Shcherbak, I G; Iastrebov, D Iu

    2000-01-01

    Depending on the type of autonomous regulation, differences in basic levels of interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF alpha) were revealed under conditions of hyperthermia in healthy subjects aged 19-21. A parasympathetic type of autonomous regulation corresponded to higher initial levels of proinflammatory cytokinesis, whereas a dominating sympathetic type corresponded to lower levels of the IL-1 beta and TNF alpha. The subjects with the latter type of regulation revealed an increase in the IL-1 beta TNF alpha combined with a higher heat tolerance. The subjects with the former type of regulation revealed a lower heat tolerance. The increase in the alpha2-macroglobulin appeared to be a most typical acute phase response of the human body to hyperthermia.

  9. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E;

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities ...

  10. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  11. Pathology of the Nervous System in Von Hippel-Lindau Disease

    Directory of Open Access Journals (Sweden)

    Alexander O. Vortmeyer

    2015-06-01

    Full Text Available Von Hippel-Lindau (VHL disease is a tumor syndrome that frequently involves the central nervous system (CNS. It is caused by germline mutation of the VHL gene. Subsequent VHL inactivation in selected cells is followed by numerous well-characterized molecular consequences, in particular, activation and stabilization of hypoxia-inducible factors HIF1 and HIF2. The link between VHL gene inactivation and tumorigenesis remains poorly understood. Hemangioblastomas are the most common manifestation in the CNS; however, CNS invasion by VHL disease-associated endolymphatic sac tumors or metastatic renal cancer also occur, and their differentiation from primary hemangioblastoma may be challenging. Finally, in this review, we present recent morphologic insights on the developmental concept of VHL tumorigenesis which is best explained by pathologic persistence of temporary embryonic progenitor cells. 

  12. The nature of the autonomic dysfunction in multiple system atrophy

    Science.gov (United States)

    Parikh, Samir M.; Diedrich, Andre; Biaggioni, Italo; Robertson, David

    2002-01-01

    The concept that multiple system atrophy (MSA, Shy-Drager syndrome) is a disorder of the autonomic nervous system is several decades old. While there has been renewed interest in the movement disorder associated with MSA, two recent consensus statements confirm the centrality of the autonomic disorder to the diagnosis. Here, we reexamine the autonomic pathophysiology in MSA. Whereas MSA is often thought of as "autonomic failure", new evidence indicates substantial persistence of functioning sympathetic and parasympathetic nerves even in clinically advanced disease. These findings help explain some of the previously poorly understood features of MSA. Recognition that MSA entails persistent, constitutive autonomic tone requires a significant revision of our concepts of its diagnosis and therapy. We will review recent evidence bearing on autonomic tone in MSA and discuss their therapeutic implications, particularly in terms of the possible development of a bionic baroreflex for better control of blood pressure.

  13. Central nervous system involvement in pediatric rheumatic diseases: current concepts in treatment.

    Science.gov (United States)

    Duzova, Ali; Bakkaloglu, Aysin

    2008-01-01

    Central nervous system (CNS) manifestations are not rare in pediatric rheumatic diseases. They may be a relatively common feature of the disease, as in systemic lupus erythematosus (SLE) and Behçet's disease. Direct CNS involvement of a systemic rheumatic disease, primary CNS vasculitis, indirect involvement secondary to hypertension, hypoxia and metabolic changes, and drug associated adverse events may all result in CNS involvement. We have reviewed the CNS manifestations of SLE, Behçet's disease, Henoch-Schönlein purpura, polyarteritis nodosa, juvenile idiopathic arthritis, juvenile ankylosing spondylitis, familial Mediterranean fever, scleroderma, sarcoidosis, Wegener's granulomatosis, Takayasu's arteritis, CINCA syndrome, Kawasaki disease, and primary CNS vasculitis; and adverse CNS effects of anti-rheumatic drugs in pediatric patients. The manifestations are diverse; ranging from headache, seizures, chorea, changes in personality, depression, memory and concentration problems, cognitive impairment, cerebrovascular accidents to coma, and death. The value of cerebrospinal fluid (CSF) examination (pleocytosis, high level of protein), auto-antibodies in serum and CSF, electroencephalography, neuroimaging with computerized tomography, magnetic resonance imaging, SPECT, PET, and angiography depends on the disease. Brain biopsy is gold standard for the diagnosis of CNS vasculitis, however it may be inconclusive in 25% of cases. A thorough knowledge of the rheumatic diseases and therapy-related adverse events is mandatory for the management of a patient with rheumatic disease and CNS involvement. Severe CNS involvement is associated with poor prognosis, and high mortality rate. High dose steroid and cyclophosphamide (oral or intravenous) are first choice drugs in the treatment; plasmapheresis, IVIG, thalidomide, and intratechal treatment may be valuable in treatment-resistant, and serious cases.

  14. Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-10-01

    The human genome encodes tens of thousands of long non-coding RNAs (lncRNAs), a novel and important class of genes. Our knowledge of lncRNAs has grown exponentially since their discovery within the last decade. lncRNAs are expressed in a highly cell- and tissue-specific manner, and are particularly abundant within the nervous system. lncRNAs are subject to post-transcriptional processing and inter- and intra-cellular transport. lncRNAs act via a spectrum of molecular mechanisms leveraging their ability to engage in both sequence-specific and conformational interactions with diverse partners (DNA, RNA, and proteins). Because of their size, lncRNAs act in a modular fashion, bringing different macromolecules together within the three-dimensional context of the cell. lncRNAs thus coordinate the execution of transcriptional, post-transcriptional, and epigenetic processes and critical biological programs (growth and development, establishment of cell identity, and deployment of stress responses). Emerging data reveal that lncRNAs play vital roles in mediating the developmental complexity, cellular diversity, and activity-dependent plasticity that are hallmarks of brain. Corresponding studies implicate these factors in brain aging and the pathophysiology of brain disorders, through evolving paradigms including the following: (i) genetic variation in lncRNA genes causes disease and influences susceptibility; (ii) epigenetic deregulation of lncRNAs genes is associated with disease; (iii) genomic context links lncRNA genes to disease genes and pathways; and (iv) lncRNAs are otherwise interconnected with known pathogenic mechanisms. Hence, lncRNAs represent prime targets that can be exploited for diagnosing and treating nervous system diseases. Such clinical applications are in the early stages of development but are rapidly advancing because of existing expertise and technology platforms that are readily adaptable for these purposes.

  15. The significance of amlodipine on autonomic nervous system adjustment (ANSA method: A new approach in the treatment of hypertension

    Directory of Open Access Journals (Sweden)

    Milovanović Branislav

    2009-01-01

    Full Text Available Introduction. Cardiovascular autonomic modulation is altered in patients with essential hypertension. Objective To evaluate acute and long-term effects of amlodipine on cardiovascular autonomic function and haemodynamic status in patients with mild essential hypertension. Methods. Ninety patients (43 male, mean age 52.12 ±10.7 years with mild hypertension were tested before, 30 minutes after the first 5 mg oral dose of amlodipine and three weeks after monotherapy with amlodipine. A comprehensive study protocol was done including finger blood pressure variability (BPV and heart rate variability (HRV beat-to-beat analysis with impedance cardiography, ECG with software short-term HRV and nonlinear analysis, 24-hour Holter ECG monitoring with QT and HRV analysis, 24-hour blood pressure (BP monitoring with systolic and diastolic BPV analysis, cardiovascular autonomic reflex tests, cold pressure test, mental stress test. The patients were also divided into sympathetic and parasympathetic groups, depending on predominance in short time spectral analysis of sympathovagal balance according to low frequency and high frequency values. Results. We confirmed a significant systolic and diastolic BP reduction, and a reduction of pulse pressure during day, night and early morning hours. The reduction of supraventricular and ventricular ectopic beats during the night was also achieved with therapy, but without statistical significance. The increment of sympathetic activity in early phase of amlodipine therapy was without statistical significance and persistence of sympathetic predominance after a few weeks of therapy detected based on the results of short-term spectral HRV analysis. All time domain parameters of long-term HRV analysis were decreased and low frequency amongst spectral parameters. Amlodipne reduced baroreflex sensitivity after three weeks of therapy, but increased it immediately after the administration of the first dose. Conclusion. The results

  16. Novel central nervous system drug delivery systems.

    Science.gov (United States)

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  17. Herpesvirus-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Meiqing Wu

    Full Text Available Herpesvirus infections of the central nervous system (CNS are associated with encephalitis/myelitis and lymphoproliferative diseases in immunocompromised individuals. As of now, data of herpesvirus-associated CNS diseases in transplant recipients is limited. Hence, in this prospective study, we investigated the incidence of herpesvirus-associated CNS diseases and explored the diagnosis of these diseases in 281 allogeneic hematopoietic stem cell transplantation (allo-HSCT recipients. Herpesvirus-DNA and cerebrospinal fluid (CSF cells were sampled from 58 recipients with herpesvirus-associated diseases or with unexplainable CNS manifestations. Results showed that 23 patients were diagnosed as herpesvirus-associated CNS diseases, including 15 Epstein-Barr virus (EBV-associated diseases (4 encephalitis and 11 lymphoproliferative diseases, 5 herpes simplex virus type 1 encephalitis, 2 cytomegalovirus encephalitis/myelitis and 1 varicella zoster virus encephalitis. The median time of diseases onset was 65 (range 22-542 days post-transplantation. The 3-year cumulative incidence of herpesvirus-associated encephalitis/myelitis and post-transplant lymphoproliferative disorder (PTLD was 6.3% ± 1.9% and 4.1% ± 1.2%, respectively. Of the evaluable cases, CSF cells mainly consisted of CD19(+CD20(+ B cells (7/11 and had clonal rearrangement of immunoglobulin genes (3/11 in patients with CNS-PTLD. On the contrary, in patients with encephalitis/myelitis, CSF cells were comprised of different cell populations and none of the gene rearrangement was detected. Herpesvirus-associated CNS diseases are common in the early stages of allo-HSCT, wherein EBV is the most frequent causative virus. The immunophenotypic and clonal analysis of CSF cells might be helpful in the differential diagnosis between encephalitis and lymphoproliferative diseases.

  18. A case of Erdheim Chester disease with central nervous system involvement

    Directory of Open Access Journals (Sweden)

    Anil Kumar Patil

    2015-01-01

    Full Text Available Erdheim Chester disease (ECD is a rare non-Langerhans cell histiocytosis, commonly involving the musculoskeletal system. Other tissue can also be involved, including the central nervous system with wide spectrum of clinical features, at times being nonspecific. This can cause diagnostic dilemmas with delay in diagnosis and initiation of therapy. Here we describe a 63-year-old man who had presented with ataxia and behavioral changes, bony pains, weight loss, and fatigue. His computed tomography (CT, 99Tc scintigraphy and histopathological features on bone biopsy were consistent with ECD. Thus, ECD should be considered as a differential diagnosis in patients presenting with bony pain and nonspecific features of multiorgan involvement.

  19. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    Science.gov (United States)

    Olivares, Ana Maria; Moreno-Ramos, Oscar Andrés; Haider, Neena B.

    2015-01-01

    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration. PMID:27168725

  20. Features of the autonomic nervous system in elderly patients with paratraumatic eczema with concomitant varicosis and arterial hypertension

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammadamin Ahmad Baninaser

    2016-01-01

    Full Text Available Relevance. In elderly and senile age there are changes in the neuroendocrine regulation in the body. Aim. In order to determine the status of cardiac activity autonomic regulation in elderly and old age patients with paratraumatic eczema 25 patients with paratraumatic eczema on the background of varicose symptom complex and hypertension aged 60-74 years, 25 patients with paratraumatic eczema on the background of varicose symptom. complex and hypertension aged 75-89 years, 15 patients with paratraumatic eczema on the background of varicose veins, but no concomitant hypertension and 15 patients aged 20-35 years were studied. Methods and results. Significant decrease in HRV fluctuations has been established, especially in the high frequency HF, describing parasympathetic influence on the heart. Statistically significant difference (p<0.05 among patients with varicose eczema on the background of hypertension was established as compared with older patients (60-74 years and patients without hypertension: 311.61±95 ms² (р<0.001, 544.7±131 ms² (р<0.01 and 662.9±127 ms² (р<0.01, respectively. Conclusion. These data indicate that the state of cardiac autonomic regulation of patients with paratraumatic eczema directly correlates with the age and the presence of comorbidity (chronic venous failure and hypertension.

  1. Does Virtual Reality-based Kinect Dance Training Paradigm Improve Autonomic Nervous System Modulation in Individuals with Chronic Stroke?

    Science.gov (United States)

    Sampaio, Luciana Maria Malosá; Subramaniam, Savitha; Arena, Ross; Bhatt, Tanvi

    2016-01-01

    Background Physical inactivity and low resting heart rate variability (HRV) are associated with an increased cardiovascular deconditioning, risk of secondary stroke and mortality. Aerobic dance is a multidimensional physical activity and recent research supports its application as a valid alternative cardiovascular training. Furthermore, technological advances have facilitated the emergence of new approaches for exercise training holding promise, especially those methods that integrate rehabilitation with virtual gaming. Objective The purpose of this study was to evaluate cardiac autonomic modulation in individuals with chronic stroke post-training using a virtual reality – based aerobic dance training paradigm. Methods Eleven community-dwelling individuals with hemiparetic stroke [61.7( ± 4.3) years] received a virtual reality-based dance paradigm for 6 weeks using the commercially available Kinect dance video game “Just Dance 3.” The training was delivered in a high-intensity tapering method with the first two weeks consisting of 5 sessions/week, next two weeks of 3 sessions/week and last two weeks of 2 sessions/week, with a total of 20 sessions. Data obtained for HRV analysis pre- and post-intervention consists of HRV for ten minutes in (1) supine resting position; (2) quiet standing. High-frequency (HF) power measures as indicators of cardiac parasympathetic activity, low-frequency (LF) power of parasympathetic-sympathetic balance and LF/HF of sympatho-vagal balance were calculated. YMCA submaximal cycle Ergometer test was used to acquire VO2 max pre- and post-intervention. Changes in physical activity during dance training were assessed using Omran HJ-321 Tri-Axis Pedometer. Results After training, participants demonstrated a significant improvement in autonomic modulation in the supine position, indicating an improvement in LF=48.4 ( ± 20.1) to 40.3 ( ± 8.0), p=0.03; HF=51.5 ( ± 19) to 59.7 ( ± 8), p= 0.02 and LF/HF=1.6 ( ± 1.9) to 0.8 ( ± 0

  2. [Effect of barnidipine hydrochloride on the autonomic nervous system: difference between short- and long-acting components of calcium antagonist].

    Science.gov (United States)

    Soejima, K; Akaishi, M; Oyamada, K; Mitamura, H; Ogawa, S

    1997-07-01

    Short-acting calcium antagonists have a deleterious effect on the prognosis for patients with myocardial ischemia, possibly caused by overactivation of sympathetic nerves due to vasodilatation, negative inotropism, or coronary steal. However, there is considerable debate about whether long-acting calcium antagonists as well as the short-acting calcium antagonists have the same effect. Barnidipine-HCl is a newly-developed calcium antagonist with 1:2 short- and long-acting particles. This study evaluated the changes of autonomic tone due to barnidipine. Both the short- and long-acting effect of the calcium antagonist was evaluated. Eleven patients with primary hypertension underwent 24-hour ambulatory electrocardiogram and blood pressure monitoring before and after the treatment with barnidipine. Heart rate and blood pressure were compared before and after the medication. Heart rate variability was analyzed with a Marquette 8000/T. High frequency power (HF), as a parameter of vagal tone, and the ratio to low frequency power (LF), as a parameter of sympathetic tone, were obtained. Twenty-four-hour average blood pressure decreased significantly during the day, but nocturnal hypotension was not observed. Heart rate did not increase. HF decreased at the peak of the short- and long-acting components. LF/HF increased at the peak of the short-acting component. Short-acting particles of barnidipine had a deleterious effect on the autonomic tone, that is overactivation of sympathetic tone and suppression of vagal tone. Long-acting particles of barnidipine suppressed the vagal tone. These findings suggest that short-acting calcium antagonists may cause arrhythmia or deterioration of coronary ischemia.

  3. IgG-index predicts neurological morbidity in patients with infectious central nervous system diseases

    Directory of Open Access Journals (Sweden)

    Deisenhammer Florian

    2010-07-01

    Full Text Available Abstract Background Prognosis assessment of patients with infectious and neoplastic disorders of the central nervous system (CNS may still pose a challenge. In this retrospective cross-sectional study the prognostic value of basic cerebrospinal fluid (CSF parameters in patients with bacterial meningitis, viral meningoencephalitis and leptomeningeal metastases were evaluated. Methods White blood cell count, CSF/serum glucose ratio, protein, CSF/serum albumin quotient and Immunoglobulin indices for IgG, IgA and IgM were analyzed in 90 patients with bacterial meningitis, 117 patients with viral meningoencephalitis and 36 patients with leptomeningeal metastases in a total of 480 CSF samples. Results In the initial spinal tap, the IgG-index was the only independent predictor for unfavorable outcome (GOS Conclusion The present study suggests that in infectious CNS diseases an elevated IgG-Index might be an additional marker for the early identification of patients at risk for neurological morbidity.

  4. Heat Shock Proteins: Old and Novel Roles in Neurodegenerative Diseases in the Central Nervous System.

    Science.gov (United States)

    van Noort, Johannes M; Bugiani, Marianna; Amor, Sandra

    2016-10-31

    Heat shock proteins (HSPs) are families of molecular chaperones that play important homeostatic functions in the central nervous system (CNS) by preventing protein misfolding, promoting degradation of improperly folded proteins, and protecting against apoptosis and inflammatory damage especially during hyperthermia, hypoxia, or oxidative stress. Under stress conditions, HSPs are upregulated to protect cells from damage that accumulates during ageing as well as pathological conditions. An important, yet frequently overlooked function of some HSPs is their ability to function as extracellular messengers (also termed chaperokines) that modulate immune responses within the CNS. Given the strong association between protein aggregation, innate immune cell activation and neurodegeneration, the expression and roles of HSPs in the CNS is attracting attention in many neurodegenerative disorders including inflammatory diseases such as multiple sclerosis, protein folding diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, and genetic white matter diseases. This is especially so since several studies show that HSPs act therapeutically by modulating innate immune activation and may thus serve as neuroprotective agents. Here we review the evidence linking HSPs with neurodegenerative disorders in humans and the experimental animal models of these disorders. We discuss the mechanisms by which HSP protect cells, and how the knowledge of their endogenous functions can be exploited to treat disorders of the CNS.

  5. Sensitivity of the autonomic nervous system to visual and auditory affect across social and non-social domains in Williams syndrome

    Directory of Open Access Journals (Sweden)

    Anna Maaria Järvinen

    2012-09-01

    Full Text Available Although individuals with Williams syndrome (WS typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of peaks and valleys of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS responsivity, in individuals with WS contrasted with a typically developing (TD group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR reactivity, and a failure for electrodermal activity (EDA to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social-affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested.

  6. Renal denervation in an animal model of diabetes and hypertension: Impact on the autonomic nervous system and nephropathy

    Directory of Open Access Journals (Sweden)

    Machado Ubiratan F

    2011-04-01

    Full Text Available Abstract Background The effects of renal denervation on cardiovascular reflexes and markers of nephropathy in diabetic-hypertensive rats have not yet been explored. Methods Aim: To evaluate the effects of renal denervation on nephropathy development mechanisms (blood pressure, cardiovascular autonomic changes, renal GLUT2 in diabetic-hypertensive rats. Forty-one male spontaneously hypertensive rats (SHR ~250 g were injected with STZ or not; 30 days later, surgical renal denervation (RD or sham procedure was performed; 15 days later, glycemia and albuminuria (ELISA were evaluated. Catheters were implanted into the femoral artery to evaluate arterial pressure (AP and heart rate variability (spectral analysis one day later in conscious animals. Animals were killed, kidneys removed, and cortical renal GLUT2 quantified (Western blotting. Results Higher glycemia (p vs. nondiabetics (p vs. SHR. Conclusions Renal denervation in diabetic-hypertensive rats improved previously reduced heart rate variability. The GLUT2 equally overexpressed by diabetes and renal denervation may represent a maximal derangement effect of each condition.

  7. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    Science.gov (United States)

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372

  8. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Dan-Dan Cao

    2016-05-01

    Full Text Available MicroRNAs (miRNAs are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.

  9. Inflammatory Demyelinating Central Nervous System Diseases in Childhood: Clinical and Paraclinical Profiles in 133 Patients

    Directory of Open Access Journals (Sweden)

    Derya Kaya

    2012-01-01

    Full Text Available In a retrospective review of patients with acquired demyelinating disorders of the central nervous system, 133 patients (5.6% whose diseases started in childhood, were selected from 2369 patients, who had medical records in the Neurology Department of Dokuz Eylul University. Out of 133, 98 had relapsing remitting multiple sclerosis, 21 had secondary progressive multiple sclerosis, 8 had clinically isolated syndrome, 3 had neuromyelitis optica, 2 had Marburg disease, and 1 had radiologically isolated syndrome. In 55 patients (41.3%, disease onset was before age 16. Polysymptomatic presentation (22.6% was the most common initial feature. The EDSS scores ranged from 0 to 9 with a median of 2.0 ( for 126 patients. MRI records of 111 patients were obtained. 97 patients had clinically definite multiple sclerosis. 11 MS patients (11.3% did not initially present the diagnostic MRI features. All of the remaining multiple sclerosis patients fulfilled Barkhof-Tintore criteria (100% and 88.7% fulfilled KIDMUS criteria. Cranial MRI of NMO patients was normal. Our findings demonstrate some important clinical and paraclinical features that can help the literature on acquired demyelinating disorders of childhood by utilizing data from Western Turkey.

  10. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases.

    Science.gov (United States)

    Cao, Dan-Dan; Li, Lu; Chan, Wai-Yee

    2016-05-28

    MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.

  11. Experimental Study of the Effect of Autonomic Nervous System on the Transmural Dispersion of Ventricular Repolarization under Acute Myocardial Ischemia in Vivo

    Institute of Scientific and Technical Information of China (English)

    张存泰; 徐大文; 李泱; 刘念; 钟江华; 王琳; 陆再英

    2002-01-01

    Summary: The effect of the autonomic nerves on the transmural dispersion of ventricular repolariza tion (TDR) under acute myocardial ischemia in intact canine was investigated. Using the monophasic action potential (MAP) recording technique, MAPs of the epicardium (Epi), midmyocardium (Mid) and endocardium (Endo) were recorded simultaneously by specially designed plunge-needle electrodes at the left ventricular free wall under acute myocardial ischemia in 12 open-chest dogs.MAPD90 and TDR among three myocardial layers as well as the incidence of the early afterdepolar ization (EAD) before autonomic nervous stimulation and during autonomic nervous stimulation were compared. It was found that 10 min after acute myocardial I~hemia, TDR was increased from 55±8.ms to 86± 15 ms during sympathetic stimulation (P<0. 01). The TDR (53± 9 ms) during parasympathetic stimulation was not significantly different from that of the control (55±8 ms) (P>0.05). The EAD was elicited in the Mid of 2 dogs (16 %) 10 min after acute myocardial ischemia,but the EAD were elicited in the Mid of 7 dogs (58 %) during sympathetic stimulation (P<0. 01).It was concluded that: (1) Sympathetic stimulation can increase the transmural dispersion of repolari zation and induce early afterdepolarizations in the Mid under acute myocardial ischemia, which pro-vide the opportunity for the ventricular arrhythmia developing; (2) Parasympathetic stimulation has no significant effect on the transmural dispersion of repolarization under myocardial ischemia.

  12. Assessment of autonomic function in untreated adult coeliac disease

    Institute of Scientific and Technical Information of China (English)

    Gian Marco Giorgetti; Antonio Tursi; Cesare Iani; Flavio Arciprete; Giovanni Brandimarte; Ambrogio Capria; Luigi Fontana

    2004-01-01

    AIM: Some recent studies showed that alteration of upper-gut motility in coeliac disease may be related to dysfunction of autonomic nervous system. The aim of our study was to investigate whether autonomic nervous system was altered in untreated and unselected coeliac disease patients.METHODS: We studied 8 untreated and consecutive coeliac disease patients (2 males and 6 females, age range 37±14.5 years). Histological evaluation of duodenal mucosa, anti-gliadin antibodies (AGA), antiendomysial antibodies (EMA) and anti-tTG antibodies and sorbitol H2 breath test were performed in all patients. Extrinsic autonomic neuropathy was assessed by the standardized measurement of cardiovascular reflexes (lying-to-standing, Valsalva manoeuvre, deep breathing, sustained handgrip). The results obtained were compared with a healthy, asymptomatic control group (6 males and 7females, age range 42.3±13.5 years). RESULTS: Coeliac patients exhibited a lower increase of PAS as a response to isometric effort, a reduction of spectral power LF as a response to clinostatic position, but without statistical significance. Also they showed a lower tolerance to orthostatic position, associated with a latent disequilibrium of sympathetic-vagal balance, a relative prevalence of parasympathetic component of the autonomic function. However, these results were not statistically significant when compared with control group (P = n.s.). And they were unchanged after 6 and 12 mo of gluten-free diet.CONCLUSION: This study failed to confirm a significant correlation between autonomic dysfunction and coeliac disease, yet we could not exclude a role of autonomic dysfunction in the genesis of systemic symptoms in some coeliacs.

  13. Autonomic involvement in Parkinson's disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers.

    Science.gov (United States)

    Cersosimo, Maria G; Benarroch, Eduardo E

    2012-02-15

    Autonomic nervous system involvement occurs at early stages in both Parkinson's disease (PD) and incidental Lewy body disease (ILBD), and affects the sympathetic, parasympathetic, and enteric nervous systems (ENS). It has been proposed that alpha-synuclein (α-SYN) pathology in PD has a distal to proximal progression along autonomic pathways. The ENS is affected before the dorsal motor nucleus of the vagus (DMV), and distal axons of cardiac sympathetic nerves degenerate before there is loss of paravertebral sympathetic ganglion neurons. Consistent with neuropathological findings, some autonomic manifestations such as constipation or impaired cardiac uptake of norepinephrine precursors, occur at early stages of the disease even before the onset of motor symptoms. Biopsy of peripheral tissues may constitute a promising approach to detect α-SYN neuropathology in autonomic nerves and a useful early biomarker of PD.

  14. Influence of yearlong training on the state of cardiovascular, autonomic nervous system and physical performance in female 400 meters runners

    Directory of Open Access Journals (Sweden)

    Ye. L. Mikhalyuk

    2016-01-01

    Full Text Available Aim of the research – identification and comparison of heart rate variability, central hemodynamics and physical performance in 400 meters runners from the III category to masters of sports of international class (MSIC in the annual cycle of the training process. Materials and methods. The study included 22 female athletes, 400 meters runners between the ages of 14 and 27 years (mean age – 16.8 ± 0.67 years, running experience – from 2 to 13 years (average – 4.4 ± 0.68 years in the preparatory and competitive periods. Body length and weight of athletes were 167.9 ± 0.91 cm and 52.5 ± 0.98 kg, respectively. For the analysis of the autonomic regulation of cardiac activity mathematical methods of HRV analysis were used. Analysis and evaluation of periodic components of heart rate were carried out by means of the research of spectral parameters of autocorrelation functions. Determination of physical performance was carried out under the practical standard on the cycle ergometer. It was established that in high class sportswomen (n=12 and ones with qualifications of the II–III category (n=10 in the competitive period there were strengthening of parasympathetic effects of ANS, transformation of eukinetic circulation type (CT into hypokinetic CT and absence of sportswomen with hyperkinetic CT. In high class sportswomen there were significant increase of the relative value of physical working capacity (PWC170/kg by 12.33% and tendency to increase of index of functional state (IFS by 9.46%, in sportswomen with qualifications of II–III category PWC170/kg significantly increased by 19.26%, and IFS by 17.87%. Correlation analysis conducted in both periods in the group and separately in high class sportswomen and ones with qualifications of II–III category found the relationship indicating that the increase of PWC170/kg and IFS is associated with the prevalence of hypokinetic CT and parasympathetic ANS influences. In the competitive period

  15. [The prognostic significance of brain-derived neurotrophic factor (BDNF) for phobic anxiety disorders, vegetative and cognitive impairments during conservative treatment including adaptol of some functional and organic diseases of nervous system].

    Science.gov (United States)

    Zhivolupov, S A; Samartsev, I N; Marchenko, A A; Puliatkina, O V

    2012-01-01

    We have studied the efficacy of adaptol in the treatment of 45 patients with somatoform dysfunction of the autonomic nervous system and 30 patients with closed head injury. The condition of patients during the treatment was evaluated with clinical and neuropsychological scales. The serum level of BDNF before and after the treatment has been studied as well. Adaptol has been shown to enhance the production of BDNF, reduce significantly the intensity of anxiety, autonomic disorders and improve intellectual processes. The dose-dependent effect of the drug has been demonstrated. In conclusion, adaptol can be recommended for treatment of diseases that demand stimulation of neuroplasticity in the CNS.

  16. Central Nervous System Tuberculosis

    OpenAIRE

    Bano, Shahina; Chaudhary, Vikas; Yadav, Sachchidanand

    2012-01-01

    Central nervous system tuberculosis is a rare presentation of active tuberculosis and accounts for about 1% of cases (1). The three clinical categories include meningitis, intracranial tuberculomas, and spinal tuberculous arachnoiditis. We report a case of a young man who presented with active pulmonary tuberculosis in addition to tuberculous meningitis and the presence of numerous intracranial tuberculomas.

  17. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  18. Central nervous system tuberculosis.

    Science.gov (United States)

    Torres, Carlos; Riascos, Roy; Figueroa, Ramon; Gupta, Rakesh K

    2014-06-01

    Tuberculosis (TB) has shown a resurgence in nonendemic populations in recent years and accounts for 8 million deaths annually in the world. Central nervous system involvement is one of the most serious forms of this infection, acting as a prominent cause of morbidity and mortality in developing countries. The rising number of cases in developed countries is mostly attributed to factors such as the pandemic of acquired immunodeficiency syndrome and increased migration in a globalized world. Mycobacterium TB is responsible for almost all cases of tubercular infection in the central nervous system. It can manifest in a variety of forms as tuberculous meningitis, tuberculoma, and tubercular abscess. Spinal infection may result in spondylitis, arachnoiditis, and/or focal intramedullary tuberculomas. Timely diagnosis of central nervous system TB is paramount for the early institution of appropriate therapy, because delayed treatment is associated with severe morbidity and mortality. It is therefore important that physicians and radiologists understand the characteristic patterns, distribution, and imaging manifestations of TB in the central nervous system. Magnetic resonance imaging is considered the imaging modality of choice for the study of patients with suspected TB. Advanced imaging techniques including magnetic resonance perfusion and diffusion tensor imaging may be of value in the objective assessment of therapy and to guide the physician in the modulation of therapy in these patients.

  19. IgG4-Related Disease Presenting as Recurrent Mastoiditis With Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    April L. Barnado MD

    2013-09-01

    Full Text Available We report a case of a 43-year-old female who presented with right ear fullness and otorrhea. She was initially diagnosed with mastoiditis that was not responsive to multiple courses of antibiotics and steroids. She was then diagnosed with refractory inflammatory pseudotumor, and subsequent treatments included several mastoidectomies, further steroids, and radiation therapy. The patient went on to develop mastoiditis on the contralateral side as well as central nervous system involvement with headaches and right-sided facial paresthesias. Reexamination of the mastoid tissue revealed a significantly increased number of IgG4-positive cells, suggesting a diagnosis of IgG4-related disease. The patient improved clinically and radiographically with rituximab and was able to taper off azathioprine and prednisone. IgG4-related disease should be considered in patients with otologic symptoms and be on the differential diagnosis in patients with inflammatory pseudotumor. Staining for IgG and IgG4 is essential to ensure a prompt diagnosis and treatment.

  20. The role of natural antisense transcripts in the pathogenesis of nervous system diseases

    Directory of Open Access Journals (Sweden)

    Lei XIANG

    2015-03-01

    Full Text Available Mammalian genomes encode numerous natural antisense transcripts (NATs. These antisense transcripts are now recognized as an important component of molecular mechanisms involved in the regulation of gene expression. NATs are particularly prevalent in the mammalian nervous system. The importance of NATs in the normal functioning of nervous system is becoming increasingly evident. They are not only involved in neuronal differentiation, myelination and ion channel regulation, but also in advanced cognitive processes, such as synapse plasticity and memory formation. This paper focuses on the potential involvement of NATs in various neurodegenerative disorders. DOI: 10.3969/j.issn.1672-6731.2015.03.014

  1. Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2012-01-01

    Full Text Available Abstract Background To explore the relationship between enteroviruses and hospitalized children with hand, foot and mouth disease (HFMD complicated with nervous system disease. 234 hospitalized HFMD patients treated in Shengjing Hospital, Liaoning Province were analyzed retrospectively. Based on the presence and severity of nervous system disease, the patients were grouped as follows: general patients, severely ill patients, critically ill patients and fatal patients. Based on the detected pathogen, the patients were grouped as follows: Enterovirus 71 (EV71 infection, coxsackie A16 (CA16 infection and other enterovirus (OE infection. Results Of the 423 hospitalized patients, most were admitted in July 2010(129/423, 30.5%. Enteroviruses were detected in 177(41.8%. 272/423 patients were male (64.3%, and fatal patients had the greatest proportion of male patients (p p p p p p Conclusion The disease progresses faster in EV71-infected HFMD patients. These patients are more likely to suffer nervous system damage, neurogenic pulmonary edema, severe sequelae or death. CA16 and other enteroviruses can also cause HFMD with severe nervous system complications.

  2. The clinicopathology and pathology of selective toxicoses and storage diseases of the nervous system of ruminants in Southern Africa

    NARCIS (Netherlands)

    Lugt, Jacob Jan van der

    2002-01-01

    In this study the clinical signs and pathology of five plant poisonings and a mycotoxicosis affecting the nervous system of domestic ruminants in southern Africa are described. For comparative purposes, an inherited storage disease (bèta-mannosidosis) and a drug-induced neurotoxicosis (closantel ove

  3. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease.

    Science.gov (United States)

    Wang, Yan; Xiong, Lilin; Tang, Meng

    2017-03-16

    Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Cannabinoid Receptors in the Central Nervous System: Their Signaling and Roles in Disease

    Science.gov (United States)

    Kendall, Debra A.; Yudowski, Guillermo A.

    2017-01-01

    The identification and cloning of the two major cannabinoid (CB1 and CB2) receptors together with the discovery of their endogenous ligands in the late 80s and early 90s, resulted in a major effort aimed at understanding the mechanisms and physiological roles of the endocannabinoid system (ECS). Due to its expression and localization in the central nervous system (CNS), the CB1 receptor together with its endogenous ligands (endocannabinoids (eCB)) and the enzymes involved in their synthesis and degradation, has been implicated in multiple pathophysiological events ranging from memory deficits to neurodegenerative disorders among others. In this review, we will provide a general overview of the ECS with emphasis on the CB1 receptor in health and disease. We will describe our current understanding of the complex aspects of receptor signaling and trafficking, including the non-canonical signaling pathways such as those mediated by β-arrestins within the context of functional selectivity and ligand bias. Finally, we will highlight some of the disorders in which CB1 receptors have been implicated. Significant knowledge has been achieved over the last 30 years. However, much more research is still needed to fully understand the complex roles of the ECS, particularly in vivo and to unlock its true potential as a source of therapeutic targets. PMID:28101004

  5. The zebrafish as a gerontology model in nervous system aging, disease, and repair.

    Science.gov (United States)

    Van Houcke, Jessie; De Groef, Lies; Dekeyster, Eline; Moons, Lieve

    2015-11-01

    Considering the increasing number of elderly in the world's population today, developing effective treatments for age-related pathologies is one of the biggest challenges in modern medical research. Age-related neurodegeneration, in particular, significantly impacts important sensory, motor, and cognitive functions, seriously constraining life quality of many patients. Although our understanding of the causal mechanisms of aging has greatly improved in recent years, animal model systems still have much to tell us about this complex process. Zebrafish (Danio rerio) have gained enormous popularity for this research topic over the past decade, since their life span is relatively short but, like humans, they are still subject to gradual aging. In addition, the extensive characterization of its well-conserved molecular and cellular physiology makes the zebrafish an excellent model to unravel the underlying mechanisms of aging, disease, and repair. This review provides a comprehensive overview of the progress made in zebrafish gerontology, with special emphasis on nervous system aging. We review the evidence that classic hallmarks of aging can also be recognized within this small vertebrate, both at the molecular and cellular level. Moreover, we illustrate the high level of similarity with age-associated human pathologies through a survey of the functional deficits that arise as zebrafish age.

  6. [Recent progress of potential effects and mechanisms of chlorogenic acid and its intestinal metabolites on central nervous system diseases].

    Science.gov (United States)

    Xing, Li-na; Zhou, Ming-mei; Li, Yun; Shi, Xiao-wen; Jia, Wei

    2015-03-01

    Chlorogenic acid displays several important roles in the therapeutic properties of many herbs, such as antioxidant activity, antibacterial, antiviral, scavenging free radicals and exciting central nervous system. Only about one-third of chlorogenic acid was absorbed in its prototype, therefore, its gut metabolites play a more important role in the therapeutic properties of chlorogenic acid. It is necessary to consider not only the bioactivities of chlorogenic acid but also its gut metabolites. This review focuses on the potential activities and mechanisms of chlorogenic acid and its gut metabolites on central nervous system diseases.

  7. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives.

    Science.gov (United States)

    Teixeira, Renata Roland; Díaz, Miguel Mauricio; Santos, Tatiane Vanessa da Silva; Bernardes, Jean Tofoles Martins; Peixoto, Leonardo Gomes; Bocanegra, Olga Lucia; Neto, Morun Bernardino; Espindola, Foued Salmen

    2015-01-01

    The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female) and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS) reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive performance.

  8. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system.

    Science.gov (United States)

    Schneider, U; Schleussner, E; Fiedler, A; Jaekel, S; Liehr, M; Haueisen, J; Hoyer, D

    2009-02-01

    The aim of this study was to investigate the hypothesis that fetal beat-to-beat heart rate variability (fHRV) displays the different time scales of sympatho-vagal development prior to and after 32 weeks of gestation (wks GA). Ninety-two magnetocardiograms of singletons with normal courses of pregnancy between 24 + 1 and 41 + 6 wks GA were studied. Heart rate patterns were either quiet/non-accelerative (fHRP I) or active/accelerative (fHRP II) and recording quality sufficient for fHRV. The sample was divided into the GA groups 32 wks GA. Linear parameters of fHRV were calculated: mean heart rate (mHR), SDNN and RMSSD of normal-to-normal interbeat intervals, power in the low (0.04-0.15 Hz) and high frequency range (0.15-0.4 Hz) and the ratios SDNN/RMSSD and LF/HF as markers for sympatho-vagal balance. fHRP I is characterized by decreasing SDNN/RMSSD, LF/HF and mHR. The decrease is more pronounced 32 wks GA. LF/HF increases in fHRP II during the first half of the third trimester. Non-accelerative fHRP are indicative of parasympathetic dominance >32 wks GA. In contrast, the sympathetic accentuation during accelerative fHRP is displayed in the interrelations between mHR, SDNN and SDNN/RMSSD. Prior to 32 wks GA, fHRV reveals the increasing activity of the respective branches of the autonomic nervous system differentiating the types of fHRP.

  9. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives.

    Directory of Open Access Journals (Sweden)

    Renata Roland Teixeira

    Full Text Available The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive

  10. Circadian rhythm of the autonomic nervous system in insulin resistant subjects with normoglycemia, impaired fasting glycemia, impaired glucose tolerance, type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Serra Pietro

    2006-05-01

    Full Text Available Abstract Background In type 2 diabetes mellitus both insulin resistance and hyperglycemia are considered responsible for autonomic dysfunction. The relation between the autonomic activity, impaired fasting glycemia and impaired glucose tolerance is, however, unclear. The purpose of this study was to evaluate and compare the circadian autonomic activity expressed as heart rate variability (HRV measured by 24-hours ECG recording in insulin resistant subjects (IR with characteristics as follow: IR subjects with normal oral glucose tolerance test results, IR subjects with impaired fasting glucose, IR subjects with impaired glucose tolerance and subjects with type 2 diabetes mellitus. Methods Eighty Caucasian insulin resistant subjects (IR and twenty five control subjects were recruited for the study. IR subjects were divided into four groups according to the outcoming results of oral glucose tests (OGTTs: IR subjects with normal glucose regulation (NGR, IR subjects with impaired fasting glycemia (IFG, IR subjects with impaired glucose tolerance (IGT and subjects with type 2 diabetes mellitus (DM. Autonomic nervous activity was studied by 24-hours ECG recording. Heart rate variability analysis was performed in time and frequency domains: SDNN, RMS-SD, low frequency (LF and high frequency (HF were calculated. Results The total SDNN showed statistically significant reduction in all four groups with insulin resistant subjects (IR when compared to the control group (p Conclusion The results of our study suggest that insulin resistance might cause global autonomic dysfunction which increases along with worsening glucose metabolic impairment. The analysis of sympathetic and parasympathetic components and the sympathovagal balance demonstrated an association between insulin resistance and sympathetic over-activity, especially during night. The results indicated that the sympathetic over-activity is directly correlated to the grade of insulin resistance

  11. Primary angiitis of the central nervous system presenting with subacute and fatal course of disease: a case report

    Directory of Open Access Journals (Sweden)

    Börnke Christian

    2005-09-01

    Full Text Available Abstract Background Primary angiitis of the central nervous system is an idiopathic disorder characterized by vasculitis within the dural confines. The clinical presentation shows a wide variation and the course and the duration of disease are heterogeneous. This rare but treatable disease provides a diagnostic challenge owing to the lack of pathognomonic tests and the necessity of a histological confirmation. Case presentation A 28-year-old patient presenting with headache and fluctuating signs of encephalopathy was treated on the assumption of viral meningoencephalitis. The course of the disease led to his death 10 days after hospital admission. Postmortem examination revealed primary angiitis of the central nervous system. Conclusion Primary angiitis of the central nervous system should always be taken into consideration when suspected infectious inflammation of the central nervous system does not respond to treatment adequately. In order to confirm the diagnosis with the consequence of a modified therapy angiography and combined leptomeningeal and brain biopsy should be considered immediately.

  12. Central nervous system involvement in diabetic neuropathy.

    Science.gov (United States)

    Selvarajah, Dinesh; Wilkinson, Iain D; Davies, Jennifer; Gandhi, Rajiv; Tesfaye, Solomon

    2011-08-01

    Diabetic neuropathy is a chronic and often disabling condition that affects a significant number of individuals with diabetes. Long considered a disease of the peripheral nervous system, there is now increasing evidence of central nervous system involvement. Recent advances in neuroimaging methods detailed in this review have led to a better understanding and refinement of how diabetic neuropathy affects the central nervous system. Recognition that diabetic neuropathy is, in part, a disease that affects the whole nervous system is resulting in a critical rethinking of this disorder, opening a new direction for further research.

  13. Repetitive pertussis toxin promotes development of regulatory T cells and prevents central nervous system autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Martin S Weber

    Full Text Available Bacterial and viral infections have long been implicated in pathogenesis and progression of multiple sclerosis (MS. Incidence and severity of its animal model experimental autoimmune encephalomyelitis (EAE can be enhanced by concomitant administration of pertussis toxin (PTx, the major virulence factor of Bordetella pertussis. Its adjuvant effect at the time of immunization with myelin antigen is attributed to an unspecific activation and facilitated migration of immune cells across the blood brain barrier into the central nervous system (CNS. In order to evaluate whether recurring exposure to bacterial antigen may have a differential effect on development of CNS autoimmunity, we repetitively administered PTx prior to immunization. Mice weekly injected with PTx were largely protected from subsequent EAE induction which was reflected by a decreased proliferation and pro-inflammatory differentiation of myelin-reactive T cells. Splenocytes isolated from EAE-resistant mice predominantly produced IL-10 upon re-stimulation with PTx, while non-specific immune responses were unchanged. Longitudinal analyses revealed that repetitive exposure of mice to PTx gradually elevated serum levels for TGF-β and IL-10 which was associated with an expansion of peripheral CD4(+CD25(+FoxP3(+ regulatory T cells (Treg. Increased frequency of Treg persisted upon immunization and thereafter. Collectively, these data suggest a scenario in which repetitive PTx treatment protects mice from development of CNS autoimmune disease through upregulation of regulatory cytokines and expansion of CD4(+CD25(+FoxP3(+ Treg. Besides its therapeutic implication, this finding suggests that encounter of the immune system with microbial products may not only be part of CNS autoimmune disease pathogenesis but also of its regulation.

  14. Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease

    Directory of Open Access Journals (Sweden)

    Monique E Maubert

    2016-01-01

    Full Text Available In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS. Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART, CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND. A number of HIV-1 proteins (Tat, gp120, Nef, Vpr have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients.

  15. Sensorized Garments and Textrode-Enabled Measurement Instrumentation for Ambulatory Assessment of the Autonomic Nervous System Response in the ATREC Project

    Directory of Open Access Journals (Sweden)

    Cosme Llerena

    2013-07-01

    Full Text Available Advances in textile materials, technology and miniaturization of electronics for measurement instrumentation has boosted the development of wearable measurement systems. In several projects sensorized garments and non-invasive instrumentation have been integrated to assess on emotional, cognitive responses as well as physical arousal and status of mental stress through the study of the autonomous nervous system. Assessing the mental state of workers under stressful conditions is critical to identify which workers are in the proper state of mind and which are not ready to undertake a mission, which might consequently risk their own life and the lives of others. The project Assessment in Real Time of the Stress in Combatants (ATREC aims to enable real time assessment of mental stress of the Spanish Armed Forces during military activities using a wearable measurement system containing sensorized garments and textile-enabled non-invasive instrumentation. This work describes the multiparametric sensorized garments and measurement instrumentation implemented in the first phase of the project required to evaluate physiological indicators and recording candidates that can be useful for detection of mental stress. For such purpose different sensorized garments have been constructed: a textrode chest-strap system with six repositionable textrodes, a sensorized glove and an upper-arm strap. The implemented textile-enabled instrumentation contains one skin galvanometer, two temperature sensors for skin and environmental temperature and an impedance pneumographer containing a 1-channel ECG amplifier to record cardiogenic biopotentials. With such combinations of garments and non-invasive measurement devices, a multiparametric wearable measurement system has been implemented able to record the following physiological parameters: heart and respiration rate, skin galvanic response, environmental and peripheral temperature. To ensure the proper functioning of the

  16. microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases

    DEFF Research Database (Denmark)

    Christensen, Mette; Schratt, Gerhard M

    2009-01-01

    and early differentiation as well as in later stages of neuronal development, such as dendritogenesis and synaptic plasticity. A link between microRNAs and neurological diseases, such as neurodegeneration or synaptic dysfunction, is becoming increasingly clear. This review summarizes the current knowledge...... of the function of microRNAs in the developing and adult nervous system and their potential contribution to the etiology of neurological diseases....

  17. Measures of Autonomic Nervous System

    Science.gov (United States)

    2011-04-01

    Resiliency Model (TRM)* X* X* Trauma and Tension Releasing Exercises (TRE) Yoga (Asana) Postures X X Breathing Practices...MBSR) Yoga Nidra (iRest) X X *Study currently in progress utilizing these measures 7...measuring oxygen saturation of blood. The Doppler radar cardiopulmonary remote sensing unit and the wearable reflectance pulse oximeter have the benefit

  18. Borna disease virus accelerates inflammation and disease associated with transgenic expression of interleukin-12 in the central nervous system.

    Science.gov (United States)

    Freude, Susanna; Hausmann, Jürgen; Hofer, Markus; Pham-Mitchell, Ngan; Campbell, Iain L; Staeheli, Peter; Pagenstecher, Axel

    2002-12-01

    Targeted expression of biologically active interleukin-12 (IL-12) in astrocytes of the central nervous system (CNS) results in spontaneous neuroimmunological disease of aged mice. Borna disease virus (BDV) can readily multiply in the mouse CNS but does not trigger disease in most strains. Here we show that a large percentage of IL-12 transgenic mice developed severe ataxia within 5 to 10 weeks after infection with BDV. By contrast, no disease developed in mock-infected IL-12 transgenic and wild-type mice until 4 months of age. Neurological symptoms were rare in infected wild-type animals, and if they occurred, these were milder and appeared later. Histological analyses showed that the cerebellum of infected IL-12 transgenic mice, which is the brain region with strongest transgene expression, contained large numbers of CD4(+) and CD8(+) T cells as well as lower numbers of B cells, whereas other parts of the CNS showed only mild infiltration by lymphocytes. The cerebellum of diseased mice further showed severe astrogliosis, calcifications and signs of neurodegeneration. BDV antigen and nucleic acids were present in lower amounts in the inflamed cerebellum of infected transgenic mice than in the noninflamed cerebellum of infected wild-type littermates, suggesting that IL-12 or IL-12-induced cytokines exhibited antiviral activity. We propose that BDV infection accelerates the frequency by which immune cells such as lymphocytes and NK cells enter the CNS and then respond to IL-12 present in the local milieu causing disease. Our results illustrate that infection of the CNS with a virus that is benign in certain hosts can be harmful in such normally disease-resistant hosts if the tissue is unfavorably preconditioned by proinflammatory cytokines.

  19. Research progress on sepsis-induced cardiac autonomic nervous system dysfunction%脓毒症心脏自主神经功能障碍研究进展

    Institute of Scientific and Technical Information of China (English)

    余海洋; 俞凤

    2011-01-01

    脓毒症是诱发脓毒性休克,多器官功能障碍综合征的重要原因,病死率高,目前仍是危重病领域关注的问题之一.脓毒症合并心功能不全非常常见,其机制尚未完全阐明.目前认为脓毒症患者自主神经系统功能障碍是脓毒症并发心血管功能障碍的机制之一.该文以心血管自主神经调控为切入点,对脓毒症心脏自主神经系统功能障碍的表现、引起心脏自主神经系统功能障碍的机制及相关干预措施进行综述,以期为脓毒症的研究和防治提供理论依据.%Sepsis with its high mortality,was an important etiology of septic shock and multiple organ dysfunction syndrome. It remainsone of the research focuses in critical care areas. Cardiac dysfunction is common in patients with sepsis, and its pathogenesis remains incompletely clear. Nowadays, autonomic nervous system dysfunction is considered one of the mechanisms of sepsis-induced cardiovascular dysfunction. In this review.we will expatiate on the cardiovascular autonomic control mechanism. the manifestation and pathogenesis of sepsis-induced cardiac autonomic nervous system dysfunction. Furthermore. some intervention measures in sepsis-induced cardiac autonomic nervous system dysfunction was introduced. We hope to provide theory basis in the prevention and treatment of sepsis.

  20. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    , which includes the cardiac centre and controls autonomic functions, and therefore autonomic dysfunction may be experienced early in the disease course. Sleep disturbances are also common non-motor complications of PD, and therefore PD patients undergo polysomnography at the Danish Center for Sleep......Neurodegenerative diseases are highly debilitating and often lead to severe morbidity and even death. Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease. According to the Braak staging study, the progressionof PD starts in the medulla oblongata...... Medicine to assess the sleep disturbances. The aim of this PhD dissertation was to: 1) Develop a method to investigate autonomic changes during sleep in neurodegenerative diseases, and apply this method on PD, iRBD and narcolepsy patients to evaluate the autonomic function in these diseases. 2) Validate...

  1. Your Brain and Nervous System

    Science.gov (United States)

    ... dientes Video: Getting an X-ray Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous System Print A A A What's in this article? ... the spinal cord and nerves — known as the nervous system — that let messages flow back and forth between ...

  2. Clinical and electrodiagnostic findings in a cohort of 61 dogs with peripheral nervous system diseases - a retrospective study

    Directory of Open Access Journals (Sweden)

    EG Giza, JE Nicpon and MA Wrzosek

    2014-04-01

    Full Text Available The electrodiagnostic examination provides the basis for a diagnostic workup in diseases involving nerve roots, peripheral nerves, neuromuscular junctions and muscles in humans and animals. It is a functional test that enables identification, localization and characterization of the disease within the peripheral nervous system. The study was carried out retrospectively on a group of 61 dogs of different breeds referred for an electrodiagnostic examination because of local or generalized peripheral nervous system impairment. The electrodiagnostic examination consisted of electromyography, electroneurography, F-wave and repetitive nerve stimulation testing. The results of electrodiagnostic studies and their impact on the diagnosis of neuromuscular diseases of different etiology is presented in the study. The lesion was localized to peripheral nerves in 38%, nerve roots in 34%, skeletal muscles in 18% and the neuromuscular junction in 10% of cases. Electrodiagnostics enabled an objective assessment of the extent, distribution and nature of the disease in the study group. However, only when it is used in conjunction with a complete physical and neurological examination and appropriate laboratory or imaging studies, it may be helpful in determining the etiological diagnosis in patients with peripheral nervous system disease.

  3. Disease mechanisms in hereditary sensory and autonomic neuropathies.

    Science.gov (United States)

    Verpoorten, Nathalie; De Jonghe, Peter; Timmerman, Vincent

    2006-02-01

    Inherited peripheral neuropathies are common monogenically inherited diseases of the peripheral nervous system. In the most common variant, i.e., the hereditary motor and sensory neuropathies, both motor and sensory nerves are affected. In contrast, sensory abnormalities predominate or are exclusively present in hereditary sensory and autonomic neuropathies (HSAN). HSAN are clinically and genetically heterogeneous and are subdivided according to mode of inheritance, age of onset and clinical evolution. In recent years, 6 disease-causing genes have been identified for autosomal dominant and recessive HSAN. However, vesicular transport and axonal trafficking seem important common pathways leading to degeneration of sensory and autonomic neurons. This review discusses the HSAN-related genes and their biological role in the disease mechanisms leading to HSAN.

  4. ELR chemokine signaling in host defense and disease in a viral model of central nervous system disease

    Directory of Open Access Journals (Sweden)

    Martin P Hosking

    2014-06-01

    Full Text Available Intracranial infection of the neurotropic JHM strain of mouse hepatitis virus (JHMV into the central nervous system (CNS of susceptible strains of mice results in an acute encephalomyelitis, accompanied by viral replication in glial cells and robust infiltration of virus-specific T cells that contribute to host defense through cytokine secretion and cytolytic activity. Mice that survive the acute stage of disease develop an immune-mediated demyelinating diseases characterized by viral persistence in white matter tracts and a chronic neuroinflammatory response dominated by T cells and macrophages. Early following JHMV infection, there is a dynamic expression of chemokines and chemokine receptors that contribute to neuroinflammation by regulating innate and adaptive immune responses as well influencing glial biology. In response to JHMV infection, we have shown that signaling through the chemokine receptor CXCR2 contributes to host defense through recruitment of polymorphonuclear cells (PMNs to the CNS that enhance permeability of the blood-brain-barrier (BBB and facilitating entry of virus-specific T cells into the parenchyma. Further, CXCR2 promotes the protection of oligodendroglia from cytokine-induced apoptosis and restricts the severity of demyelination. This review covers aspects related to the role of CXCR2 in host defense and disease in response to JHMV infection.

  5. Effect of a 1-Year Obesity Intervention (KLAKS Program) on Preexisting Autonomic Nervous Dysfunction in Childhood Obesity.

    Science.gov (United States)

    Blüher, Susann; Petroff, David; Keller, Alexandra; Wagner, Antje; Classen, Joseph; Baum, Petra

    2015-08-01

    Childhood obesity may involve autonomic nervous system dysfunction. Whether it improves following weight loss remains unclear. Thirty-one obese children (body mass index standard deviation scores 2.33 ± 0.47; age 11.2 ± 2.0) completed a 1-year lifestyle intervention (KLAKS: Concept Leipzig: Adiposity Therapy for School-Aged Children). Anthropometric/biochemical parameters and autonomic nervous system function (heart rate variability, quantitative pupillography) were assessed at baseline and follow-up. A multivariate model for changes in body mass index standard deviation scores considered age, gender, and changes in autonomic nervous system function. Weight status (Δ body mass index standard deviation scores: 0.16 [0.05, 0.29], P = .008), glycemic control, and free fatty acids (all P nervous system dysfunction in childhood obesity.

  6. The influence of piroxicam, a non-selective cyclooxygenase inhibitor, on autonomic nervous system activity in experimental cyclophosphamide-induced hemorrhagic cystitis and bladder outlet obstruction in rats.

    Science.gov (United States)

    Dobrek, Łukasz; Baranowska, Agnieszka; Skowron, Beata; Thor, Piotr J

    2014-01-01

    Signs and symptoms of secondary overactive bladder (OAB) are observed both in course of infravesical obstruction of urine outflow in patients with benign prostatic hyperplasia, and as a result of development of hemorrhagic cystitis (HC) following administration of cyclophosphamide (CP). Non-steroidal antiinflammatory drugs (NSAIDs) alleviate symptoms of bladder overactivity reducing local synthesis of prostaglandins (PGs), but precise effects of those agents on functions of the autonomic nervous system (ANS) in course of OAB remain unknown. The purpose of this study was to evaluate the effect of piroxicam-induced prostaglandins (PGs) synthesis block on activity of the ANS in two experimental models of secondary OAB: bladder outlet obstruction (BOO) and cyclophosphamide-induced HC (CP-HC), by heart rate variability analysis (HRV). The experiment was performed on a group of rats with surgically induced 2-week BOO, and on a group of rats that were administered CP five times, with corresponding control groups. Study animals were given piroxicam (PRX) i.p. in two doses: 2 and 10 mg/kg b.w. In the BOO model, PRX in both doses revealed a trend for reduction of value of all non-normalized components of HRV. The lower PRX dose caused an increased nHF value, and PRX administered in the dose of 10 mg/kg b.w. caused an increase of the nLF value. In the CP-HC model, the lower PRX dose caused a trend for an increase of values of all non-normalized components, and the higher dose--for their decrease. Both doses of PRX in that model caused increase of the nLF value. Inhibition of PGs synthesis caused changes of ANS function in both models of OAB. Both in BOO and in CP-HC, PGs seem to be ANS-activating factors, responsible for maintenance of a high parasympathetic activity. In both models, inhibition of PGs synthesis with PRX administered at the dose of 10 mg/kg b.w. lead to functional reconstruction of ANS, with marked sympathetic predominance. That may contribute to reduction of

  7. A rare case of mixed connective tissue disease presenting with central nervous system glioma, vasculitis and polymyositis

    Directory of Open Access Journals (Sweden)

    Rushabh Parikh

    2015-12-01

    Full Text Available Mixed connective tissue disease (MCTD was first recognized by Sharp and Colleagues in 1972 among a group of patients with overlapping clinical features of systemic lupus erythematosis (SLE, scleroderma and myositis, with the presence of distinctive antibodies against, what now is known to be U1-ribonucleoprotein (RNP. We report an unusual case of a 23-year old female with MCTD characterized by the coexistence of signs, symptoms and immunological features of 3 defined autoimmune diseases SLE, systemic sclerosis (SSc, polymyositis (PM and an unusual presence of central nervous system (CNS Glioma. [Int J Res Med Sci 2015; 3(12.000: 3917-3920

  8. An overview of travel-associated central nervous system infectious diseases:risk assessment, general considerations and future directions

    Institute of Scientific and Technical Information of China (English)

    Morteza Izadi; Arman Ishaqi; Mohammad Ali Ishaqi; Nematollah Jonaidi Jafari; Fatemeh Rahamaty; Abdolali Banki

    2014-01-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors.

  9. An overview of travel-associated central nervous system infectious diseases:risk assessment,general considerations and future directions

    Institute of Scientific and Technical Information of China (English)

    Morteza; Izadi; Annan; Is’haqi; Mohammad; Ali; Is’haqi; Nematollah; Jonaidi; Jafari; Fatemeh; Rahamaty; Abdolali; Banki

    2014-01-01

    Nervous system infections are among the most important diseases in travellers.Healthy travellers might be exposed to infectious agents of central nervous system,which may require in-patient care.Progressive course is not uncommon in this family of disorders and requires swift diagnosis.An overview of the available evidence in the field is.therefore,Urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research.In November 2013,data were collected from PubMed,Scopus,and Web of knowledge(1980 to2013) including books,reviews,and peer-reviewed literature,Works pertained to pre-travel care,interventions,vaccinations related neurological infections were retrieved.Here we provide information on pre-travel care,vaccination,chronic nervous system disorders,and post-travel complications.Recommendations with regard to knowledge gaps,and state-of-the-art research are made.Given an increasing number of international travellers,novel dynamic ways are available for physicians to monitor spread of central nervous system infections.Newer research has made great progresses in developing newer medications,detecting the spread of infections and the public awareness.Despite an ongoing scientific discussion in the field of travel medicine,further research is required for vaccine development,state-of-the-art laboratory tests,and genetic engineering of vectors.

  10. The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases.

    Science.gov (United States)

    Repetto, Ivan E; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro

    2016-01-01

    One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole

  11. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Vision The Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  12. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  13. Investigation of Autonomic Nervous System Function and Influencing Factors of Employees in Changchun%长春市企业员工自主神经系统功能状况及影响因素调查

    Institute of Scientific and Technical Information of China (English)

    赵璐; 张秀敏; 刘红箭; 李晶华; 吴方园; 刘妍妤; 刘莹圆; 王云

    2016-01-01

    目的:通过测量长春市企业员工的心率变异性,了解其自主神经系统功能状况,分析相关影响因素,为改善企业员工自主神经系统功能提供参考依据。方法:采用整群抽样的方法,以自填式调查问卷的形式收集企业员工的基本信息,采用SUN-8800健康检测系统对长春市两家企业427名员工进行心率变异性测定。结果:调查人群自主神经系统活性偏低的检出率为75.2%,调节功能异常的检出率为63.0%。多元线性回归分析显示,性别、年龄、企业性质、BMI指数、吸烟、饮酒对该人群的心率变异性频域指标的影响具有统计学意义(P<0.05)。结论:长春市企业员工中普遍存在自主神经系统活性减低和调节功能失衡的现象,男性、大龄、超重与肥胖、吸烟、饮酒是企业员工自主神经系统功能的危险因素,其中,超重与肥胖、吸烟、饮酒是应进行干预的重要危险因素。%Objective: To know the status of autonomic nervous system function, analyze influencing factors, provide scientific basis for making policy of autonomic nervous system function improvement of employees in Changchun by measuring their heart rate variability. Methods:Questionnaire and SUN - 8800 health detecting system were conducted among 427 employees of 2 enterprises to gather essential information and determine heart rate variability through cluster sampling method. Results:There were 75. 2% of the survey population with lower functional ac⁃tiveness of the autonomic nervous system and 63. 0% with unbalanced regulation of autonomic nervous system. The results of multiple linear re⁃gression analysis indicated that there were statistical differences(P<0. 05) in frequency-domain indicators of heart rate variability because of different sex, age, type of enterprise, BMI index, smoking and drinking. Conclusion: The autonomic nervous system function of employees in

  14. Plasticity and Neural Stem Cells in the Enteric Nervous System

    NARCIS (Netherlands)

    Schaefer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-01-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to microenv

  15. Cardiovascular parasympathetic nervous system dysfunction in female rheumatoid arthritis patients.

    Science.gov (United States)

    Saraswathi, P V; Neelambikai, N; Mahesh, Arjun; Govindarajan, K

    2013-01-01

    The autonomic dysfunction has been reported in patients with (rheumatoid arthritis) RA and systemic lupus erythematosus (SLE) like connective tissue disorders and it may be due to the vasculitis of vasa nervorum and secondary amyloidosis. The pathogenesis may also have an immune component that affects autonomic functions. In the present study, three standard cardiovascular parasympathetic function tests were performed in 207 RA patients and in 106 healthy controls. 14.45% patients were presented with symptoms related to cardiovascular autonomic dysfunction. Heart rate variation to deep breathing (DBD), standing (30:15 ratio), Valsalva ratio (VR) were found to be significantly reduced in RA patients and was weakly associated with female RA patients (r = 0.165, p = 0.018) and was not correlated to disease duration, RF positivity & severity of the disease. In conclusion, this study has confirmed the presence of significant subclinical cardiovascular parasympathetic nervous dysfunction in RA patients and its positive association with female gender. Hence, inclusion of cardiovascular autonomic function tests in the routine clinical examination may be helpful in the early detection of autonomic dysfunction in RA.

  16. Regulating autonomic nerve system:a new field of anti-inflammatory therapy for cardiovascular diseases%调节自主神经系统:心血管疾病抗炎治疗的新领域

    Institute of Scientific and Technical Information of China (English)

    马度芳; 姜萍; 杨金龙; 李晓

    2015-01-01

    The role of chronic inflammation and autonomic neuropathy in the crucial underlying process con -tributing to the initiation and the progression of various cardiovascular diseases is well established .It is well known that the immune system is innervated by the autonomic nervous system , and the inflammatory reaction and immune reaction are re-gulated by the autonomic nerve system .Vagus nerve depresses inflammatory reaction via cholinergic anti-inflammatory path-way (CAP), while sympathetic nervous system has bidirectional regulation of pro-inflammation and anti-inflammation, which are affected by several factors such as the concentration of neurotransmitters or types of receptors .In this paper , we reviewed different effects of CAP and sympathetic nervous system on cardiovascular inflammatory reaction .Activation of CAP and regaining normal sympathetic function will improve the chronic inflammation in the process of cardiovascular disea -ses.Low-toxic and selective α7nAchR agonist is expected to be applied in cardiovascular diseases to alleviate chronic in -flammation .

  17. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential

  18. Management Activities on the Reduction of Ecological-related Diseases of the Nervous System of Population in Ust-Kamenogorsk

    Directory of Open Access Journals (Sweden)

    Sharbanu Battakova

    2014-09-01

    Full Text Available The article features the research results of psychological status and the nervous system. The study was conducted on the basis of multivariate analysis of morbidity rates of the nervous system with the aim of developing of administrative actions towards the population of Ust-Kamenogorsk. The correlation analysis has shown that the of coefficients of correlation coincide with the analysis data of morbidity rates of the nervous system showing that that morbidity rates are mostly influenced by high concentration of harmful pollutants. Besides, the correlation analysis has allowed identifying the levels of pollution in the atmosphere of the city above which the interrelation between fluctuations of morbidity rates is shown and below which correlation has been not observed. From the provided data we can see that the main sources of harmful substances entering our bodies are polluted atmospheric air and soils. The study revealed that with the growth of anthropogenesis loading by toxic metals, the morbidity rates of encephalopathies of unspecified genesis and the cerebrovascular diseases increase. Changes in psycho-emotional sphere have been revealed. The novelty of research is the development of administrative procedures aimed at reduction of the disease prevalence for people living in Ust-Kamenogorsk.

  19. Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview.

    Science.gov (United States)

    Ondicova, K; Mravec, B

    2010-04-01

    In order to allow precise regulation of bodily functions, the activity of the autonomic nervous system must be precisely regulated. The traditional model concerning the regulation of norepinephrine and acetylcholine release in target tissues suggests that the activities of the efferent arms of the autonomic nervous system are more or less independent of each other. However, plenty of experimental and clinical studies have demonstrated the presence of multiple interactions between the sympathetic and parasympathetic nervous system that are mediated through several pathways and mechanisms at both central and peripheral levels of the neuraxis. Interactions within the central nervous system are mediated predominantly by neurons within the nucleus of the solitary tract and paraventricular hypothalamic nucleus. Peripheral interactions are based on the morphological-functional organization of the sympathetic and parasympathetic pathways at the levels of the sympathetic prevertebral ganglia or neuroeffector connections. Furthermore, evidence suggests that neuroeffector connections may be realized at the axo-axonal, presynaptic, postsynaptic, and post-receptor levels. Alterations in interactions between the sympathetic and parasympathetic nervous system can lead to unbalanced autonomic activities, which may influence the development of various disorders, including cardiovascular, inflammatory, metabolic, neurological, and psychiatric diseases. The aim of this article is to illustrate the complexity of interaction between the sympathetic and parasympathetic nervous systems and to describe the role of these interactions in the heart, adrenal medulla, and vagal trunk.

  20. Psychoneuroimmunology--cross-talk between the immune and nervous systems.

    Science.gov (United States)

    Ziemssen, Tjalf; Kern, Simone

    2007-05-01

    Psychoneuroimmunology is a relatively new field of study that investigates interactions between behaviour and the immune system, mediated by the endocrine and nervous systems. The immune and central nervous system (CNS) maintain extensive communication. On the one hand, the brain modulates the immune system by hardwiring sympathetic and parasympathetic nerves (autonomic nervous system) to lymphoid organs. On the other hand, neuroendocrine hormones such as corticotrophin-releasing hormone or substance P regulate cytokine balance. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and immune system-mediated disease.

  1. Stem cell therapy in animal models of central nervous system (CNS diseases: therapeutic role, challenges and perspectives

    Directory of Open Access Journals (Sweden)

    Swapan Kumar Maiti

    2014-09-01

    Full Text Available Many human diseases relating to central nervous system (CNS are mimicked in animal models to evaluate the efficacy of stem cell therapy. The therapeutic role of stem cells in animal models of CNS diseases include replacement of diseased or degenerated neuron, oligodendrocytes or astrocytes with healthy ones, secretion of neurotrophic factors and delivery of therapeutics/genes. Scaffolds can be utilized for delivering stem cells in brain. Sustained delivery of stem cells, lineage specific differentiation, and enhanced neuronal network integration are the hallmarks of scaffold mediated stem cell delivery in CNS diseases. This review discusses the therapeutic role, challenges and future perspectives of stem cell therapy in animal models of CNS diseases.

  2. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress.

  3. Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution.

    Science.gov (United States)

    Briggs, James A; Wolvetang, Ernst J; Mattick, John S; Rinn, John L; Barry, Guy

    2015-12-02

    Only relatively recently has it become clear that mammalian genomes encode tens of thousands of long non-coding RNAs (lncRNAs). A striking 40% of these are expressed specifically in the brain, where they show precisely regulated temporal and spatial expression patterns. This begs the question, what is the functional role of these many lncRNA transcripts in the brain? Here we canvass a growing number of mechanistic studies that have elucidated central roles for lncRNAs in the regulation of nervous system development and function. We also survey studies indicating that neurological and psychiatric disorders may ensue when these mechanisms break down. Finally, we synthesize these insights with evidence from comparative genomics to argue that lncRNAs may have played important roles in brain evolution, by virtue of their abundant sequence innovation in mammals and plausible mechanistic connections to the adaptive processes that occurred recently in the primate and human lineages.

  4. Autonomous Evolutionary Information Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Traditional information systems are passive, i.e., data orknowledge is created , retrieved, modified, updated, and deleted only in response to operations issued by users or application programs, and the systems only can execute queries or t ransactions explicitly submitted by users or application programs but have no ab ility to do something actively by themselves. Unlike a traditional information system serving just as a storehouse of data or knowledge and working passively a ccording to queries or transactions explicitly issued by users and application p rograms, an autonomous evolutionary information system serves as an autonomous a nd evolutionary partner of its users that discovers new knowledge from its datab ase or knowledge-base autonomously, cooperates with its users in solving proble m s actively by providing the users with advices, and has a certain mechanism to i mprove its own state of “knowing” and ability of “working”. This paper semi nall y defines what is an autonomous evolutionary information system, explain why aut onomous evolutionary information systems are needed, and presents some new issue s, fundamental considerations, and research directions in design and development of autonomous evolutionary information systems.

  5. 自主神经诱发心房颤动的离子通道基础%Ion Channel Basis of Atrial Fibrillation Induced by Autonomic Nervous System

    Institute of Scientific and Technical Information of China (English)

    张淑娟(综述); 赵庆彦(审校)

    2015-01-01

    Cardiac autonomic nervous system includes the double control of vagus nerve and sympathetic nerve. Recent experimental and clinical studies suggest that autonomic nervous system plays an important role in the development and maintenance of atrial fibrillation( AF) . Electrical and structural remodeling after AF prompts its maintaining and recurrence. The mechanisms may be related to the neurotransmitters released by nerve endings acting on myocardial cell membrane receptors, thereby affecting the activity of potassium, sodium and calcium and other ion channels on the cardiac cell membrane, resulting in ECG physiological function disorder.%心脏受自主神经包括迷走神经和交感神经的双重支配,近年来的实验及临床研究提示,其在心房颤动(房颤)的发生、发展及维持中起重要作用,房颤发生后的电重构和结构重构促使其自身的维持和复发。其作用机制与其末梢释放神经递质作用于心肌细胞膜上的受体,进而影响心房肌细胞膜上钾、钠及钙等多种离子通道的活动,致使心电生理功能紊乱有关。

  6. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study

    Science.gov (United States)

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension–Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes

  7. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study.

    Science.gov (United States)

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-Ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension-Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes

  8. The nervous systems of cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Westfall, J A

    1995-01-01

    Cnidarians have simple nervous systems and it was probably within this group or a closely-related ancestor that nervous systems first evolved. The basic plan of the cnidarian nervous system is that of a nerve net which, at some locations, has condensed to form nerve plexuses, or circular...... specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions...... that the peptides are located in neuronal dense-cored vesicles associated with both synaptic and non-synaptic release sites. All these data indicate that evolutionarily "old" nervous systems use peptides as transmitters. We have also investigated the biosynthesis of the cnidarian neuropeptides. These neuropeptides...

  9. MRI of central nervous system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, M.; Oikawa, A.; Matoba, A.

    1987-05-01

    MRI was very useful in the evaluation of congenital anomalies of central nervous system as well as other nervous system disease with three-dimensional spatial resolution. We had experienced MRI of central nervous system anomalies, demonstrated characterisitic findings in each anomaly. MRI is useful to observe the coronal, horizontal and sagittal images of the brain and spinal cord in order to discuss the etiological mechanisms of spinal dysraphysm and its associated anomalies. In case of spina bifida cystica MRI was available to decide operative indication for radical operation and tetherd cord developed from postoperative scar or accompanied intraspinal lesions.

  10. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Directory of Open Access Journals (Sweden)

    Moulton Alan

    2009-10-01

    Full Text Available Abstract Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS, screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1 the thoracospinal concept for right thoracic AIS in girls; (2 the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3 white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4 central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively, with asymmetry as an adverse response (hormesis; this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept. In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic

  11. Atypical presentation of CLIPPERS syndrome: a new entity in the differential diagnosis of central nervous system rheumatologic diseases.

    Science.gov (United States)

    Gul, Maryam; Chaudhry, Ammar A; Chaudhry, Abbas A; Sheikh, Mubashir A; Carsons, Steven

    2015-04-01

    Numerous autoimmune diseases can affect the central nervous system (CNS), and variable clinical presentations confound the differential diagnosis. The challenging task of properly characterizing various CNS autoimmune diseases enables patients to be rapidly triaged and appropriately treated. In this review article, we aim to explore different CNS manifestations of rheumatologic diseases with emphasis on the utility of imaging and cerebrospinal fluid findings. We review the classic physical examination findings, characteristic imaging features, cerebrospinal fluid results, and serum biomarkers. In addition, we also present a unique case of newly described autoimmune entity CLIPPERS syndrome. Our case is unique in that this is the first case which demonstrates involvement of the supratentorial perivascular spaces in addition to the classic infratentorial involvement as initially described by Pittock et al (Brain. 2010;133:2626-2634).

  12. Interactions between the microbiota, immune and nervous systems in health and disease.

    Science.gov (United States)

    Fung, Thomas C; Olson, Christine A; Hsiao, Elaine Y

    2017-02-01

    The diverse collection of microorganisms that inhabit the gastrointestinal tract, collectively called the gut microbiota, profoundly influences many aspects of host physiology, including nutrient metabolism, resistance to infection and immune system development. Studies investigating the gut-brain axis demonstrate a critical role for the gut microbiota in orchestrating brain development and behavior, and the immune system is emerging as an important regulator of these interactions. Intestinal microbes modulate the maturation and function of tissue-resident immune cells in the CNS. Microbes also influence the activation of peripheral immune cells, which regulate responses to neuroinflammation, brain injury, autoimmunity and neurogenesis. Accordingly, both the gut microbiota and immune system are implicated in the etiopathogenesis or manifestation of neurodevelopmental, psychiatric and neurodegenerative diseases, such as autism spectrum disorder, depression and Alzheimer's disease. In this review, we discuss the role of CNS-resident and peripheral immune pathways in microbiota-gut-brain communication during health and neurological disease.

  13. [Sleep and autonomic function: sleep related breathing disorders in Parkinson's disease and related disorders].

    Science.gov (United States)

    Suzuki, Keisuke; Miyamoto, Masayuki; Miyamoto, Tomoyuki; Hirata, Koichi

    2014-01-01

    In patients with multiple system atrophy (MSA), sleep related breathing disorders (SRBD), including obstructive and central sleep apnea, vocal cord abductor paralysis and dysrhythmic breathing pattern, are frequently observed. SRBD may have a considerable impact on variation of autonomic nervous activity during sleep. The previous studies correlated upper airway muscle dysfunction related parkinsonism with increased prevalence of SRBD in patients with Parkinson's disease (PD). However, recently, the clinical significance of SRBD and its impact on sleepiness and disease severity have been debated. In this review, we discuss sleep and autonomic function, especially, SRBD in PD and related disorders, including the previous studies from our department.

  14. Sonic hedgehog signaling during nervous system development

    Institute of Scientific and Technical Information of China (English)

    Qin Yang; Peng Xie

    2008-01-01

    The Hedgehog signaling pathway plays a key role in embryonic development and organ formation.Sonic hedgehog signaling participates in nervous system development,regulates proliferation and differentiation of neural stem cells,controls growth and targeting of axons,and contributes to specialization of oligodendrocytes.For further studies of the Sonic hedgehog signaling pathway and for the development of new drugs in the treatment of nervous system diseases,it is beneficial to understand these mechanisms.

  15. In vivo imaging in autoimmune diseases in the central nervous system.

    Science.gov (United States)

    Kawakami, Naoto

    2016-07-01

    Intravital imaging is becoming more popular and is being used to visualize cellular motility and functions. In contrast to in vitro analysis, which resembles in vivo analysis, intravital imaging can be used to observe and analyze cells directly in vivo. In this review, I will summarize recent imaging studies of autoreactive T cell infiltration into the central nervous system (CNS) and provide technical background. During their in vivo journey, autoreactive T cells interact with many different cells. At first, autoreactive T cells interact with endothelial cells in the airways of the lung or with splenocytes, where they acquire a migratory phenotype to infiltrate into the CNS. After arriving at the CNS, they interact with endothelial cells of the leptomeningeal vessels or the choroid plexus before passing through the blood-brain barrier. CNS-infiltrating T cells become activated by recognizing endogenous autoantigens presented by local antigen-presenting cells (APCs). This activation was visualized in vivo by using protein-based sensors. One such sensor detects changes in intracellular calcium concentration as an early marker of T cell activation. Another sensor detects translocation of Nuclear factor of activated T-cells (NFAT) from cytosol to nucleus as a definitive sign of T cell activation. Importantly, intravital imaging is not just used to visualize cellular behavior. Together with precise analysis, intravital imaging deepens our knowledge of cellular functions in living organs and also provides a platform for developing therapeutic treatments.

  16. Is reduced myocardial sympathetic innervation associated with clinical symptoms of autonomic impairment in idiopathic Parkinson's disease?

    Science.gov (United States)

    Guidez, Daniel; Behnke, Stefanie; Halmer, Ramona; Dillmann, Ulrich; Faßbender, Klaus; Kirsch, Carl M; Hellwig, Dirk; Spiegel, Jörg

    2014-01-01

    Patients with idiopathic Parkinson's disease (IPD) have a reduced myocardial MIBG uptake in MIBG scintigraphy, indicating myocardial sympathetic denervation. We were interested whether this myocardial sympathetic denervation coincides with clinical symptoms of autonomic impairment in IPD patients. We performed MIBG scintigraphy, the SCOPA-AUT scale, a standardized medical history (developed in our clinic) and autonomic nervous system testing in 47 IPD patients (21 female, 26 male patients). We correlated myocardial MIBG uptake with the results of the SCOPA-AUT scale, the standardized medical history and the autonomic nervous system testing through the use of Spearman's correlation. Myocardial MIBG uptake correlated significantly (p autonomic nervous system testing (all patients: sum score, Ewing orthostasis test). Remarkably, we found more significant correlations in male than in female patients. Reduced myocardial sympathetic innervation-as revealed by MIBG scintigraphy-is associated with clinical symptoms of autonomic impairment. This association is more pronounced in male than in female patients. The cause for this gender-specific phenomenon is unclear.

  17. Chemistry and biology of radiotracers that target changes in sympathetic and parasympathetic nervous systems in heart disease.

    Science.gov (United States)

    Eckelman, William C; Dilsizian, Vasken

    2015-06-01

    Following the discovery of the sympathetic and parasympathetic nervous system, numerous adrenoceptor drugs were radiolabeled and potent radioligands were prepared in order to image the β-adrenergic and the muscarinic systems. But the greatest effort has been in preparing noradrenaline analogs, such as norepinephrine, (11)C-metahydroxyephedrine, and (123)I-metaiodobenzylguanidine that measure cardiac sympathetic nerve varicosities. Given the technical and clinical challenges in designing and validating targeted adrenoceptor-binding radiotracers, namely the heavily weighted flow dependence and relatively low target-to-background ratio, both requiring complicated mathematic analysis, and the inability of targeted adrenoceptor radioligands to have an impact on clinical care of heart disease, the emphasis has been on radioligands monitoring the norepinephrine pathway. The chemistry and biology of such radiotracers, and the clinical and prognostic impact of these innervation imaging studies in patients with heart disease, are examined.

  18. Scintigraphic assessment of regional cardiac sympathetic nervous system in patients with single-vessel coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kazuyuki; Yoshida, Hiroshi; Nawada, Ryuzo; Obayashi, Kazuhiko; Tamekiyo, Hiromichi; Mochizuki, Mamoru [Shizuoka General Hospital (Japan)

    2000-06-01

    In coronary artery disease, the cardiac sympathetic nervous system is closely associated with myocardial ischemia. I-123 metaiodobenzylguanidine (MIBG) imaging allows us to assess the cardiac sympathetic nervous system regionally. One-hundred and eleven patients with single-vessel disease underwent regional quantitative analysis of MIBG imaging before successful percutaneous transluminal coronary angioplasty (PTCA), and repeat angiography 6 months after PTCA. Based on the results of the follow-up left ventriculogram, patients were divided into 3 groups: 39 angina pectoris (AP), 48 prior myocardial infarction without asynergy (MI without asynergy) and 24 prior myocardial infarction with asynergy (Ml with asynergy). AP and MI without asynergy had significant correlations between uptake parameters and regional washout in the territory of diseased vessels, among which the severity score in AP was the most closely correlated with regional washout (r=0.79, p<0.0001). These correlations disappeared in MI with asynergy. To compare regional MIBG parameters in the territory of the diseased vessel as well as in the territories of the other major coronary arteries among the 3 groups, we examined MIBG parameters in 57 patients with left anterior descending artery (LAD) disease selected from among the study patients. Regional washout in the territory of the LAD was significantly higher in the MI without asynergy group than in the other two groups. The left circumflex artery (LCX) region showed significantly reduced MlBG uptake and an increased extent score in the MI with asynergy group compared with the AP group, although only a difference in the extent score existed between the MI with asynergy group and the AP group in the right coronary artery (RCA) region. In addition, the global ejection fraction before PTCA showed a significant negative correlation with each regional washout rate. In this way, regional quantitative analysis of MIBG imaging can detect the regional

  19. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    Science.gov (United States)

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  20. Central Nervous System Disease in Hematological Malignancies: Historical Perspective and Practical Applications

    Science.gov (United States)

    Pui, Ching-Hon; Thiel, Eckhard

    2009-01-01

    Acute lymphoblastic leukemia (ALL) 5-year survival rates are approaching 90% in children and 50% in adults who are receiving contemporary risk-directed treatment protocols. Current efforts focus not only on further improving cure rate but also on patient quality of life. Hence, all protocols decrease or limit the use of cranial irradiation as central nervous system (CNS)-directed therapy, even in patients with high-risk presenting features, such as the presence of leukemia cells in the cerebrospinal fluid (even resulting from traumatic lumbar puncture), adverse genetic features, T-cell immunophenotype, and a large leukemia-cell burden. Current strategies for CNS-directed therapy involve effective systemic chemotherapy (eg, dexamethasone, high-dose methotrexate, intensive asparaginase, ifosfamide) and early intensification and optimization of intrathecal therapy. Options under investigation for the treatment of relapsed or refractory CNS leukemia in ALL patients include thiotepa and intrathecal liposomal cytarabine. CNS involvement in non-Hodgkin’s lymphoma (NHL) is associated with young age, advanced stage, number of extranodal sites, elevated lactate dehydrogenase, and International Prognostic Index score. Refractory CNS lymphoma in patients with NHL carries a poor prognosis, with a median survival of 2 to 6 months; the most promising treatment, autologous stem cell transplant, can extend median survival from 10 to 26 months. CNS prophylaxis is required during the initial treatment of NHL subtypes that carry a high risk of CNS relapse, such as B-cell ALL, Burkitt’s lymphoma, and lymphoblastic lymphoma. The use of CNS prophylaxis in the treatment of diffuse large B-cell lymphoma is controversial because of the low risk of CNS relapse (~5%) in this population. In this article, we review current and past practice of intrathecal therapy in ALL and NHL and the risk-models that aim to identify predictors of CNS relapse in NHL. PMID:19660680

  1. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  2. Autonomic disorders in multiple sclerosis.

    Science.gov (United States)

    Lensch, E; Jost, W H

    2011-01-01

    Multiple sclerosis is an inflammatory disease leading to disseminated lesions of the central nervous system resulting in both somatomotor and autonomic disturbances. These involve the central centers of the autonomic nervous system, as well as the automatic control and pathway systems. All autonomic functions may be disordered individually or in combined form. There is no other disease with a clinical picture so multifaceted. Besides cardiovascular dysfunctions disorders of bladder and rectum have become apparent. Somatomotor and autonomic disturbances occur with similar frequency; however the focused exam often heavily favors somatomotor symptoms. Autonomic disturbances should primarily be taken into account on history taking and clinical examination. Individual diagnosis and treatment is a secondary feature. Impairments of the autonomic nervous systems in multiple sclerosis are frequently overlooked.

  3. Autonomic Disorders in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    E. Lensch

    2011-01-01

    Full Text Available Multiple sclerosis is an inflammatory disease leading to disseminated lesions of the central nervous system resulting in both somatomotor and autonomic disturbances. These involve the central centers of the autonomic nervous system, as well as the automatic control and pathway systems. All autonomic functions may be disordered individually or in combined form. There is no other disease with a clinical picture so multifaceted. Besides cardiovascular dysfunctions disorders of bladder and rectum have become apparent. Somatomotor and autonomic disturbances occur with similar frequency; however the focused exam often heavily favors somatomotor symptoms. Autonomic disturbances should primarily be taken into account on history taking and clinical examination. Individual diagnosis and treatment is a secondary feature. Impairments of the autonomic nervous systems in multiple sclerosis are frequently overlooked.

  4. Autonomic Dysfunction in Early Breast Cancer: Incidence, Clinical Importance, and Underlying Mechanisms

    OpenAIRE

    2015-01-01

    Autonomic dysfunction represents a loss of normal autonomic control of the cardiovascular system associated with both sympathetic nervous system overdrive and reduced efficacy of the parasympathetic nervous system. Autonomic dysfunction is a strong predictor of future coronary heart disease, vascular disease and sudden cardiac death. In the current review, we will discuss the clinical importance of autonomic dysfunction as a cardiovascular risk marker among breast cancer patients. We will rev...

  5. Association of angiitis of central nervous system, cerebral amyloid angiopathy, and Alzheimer’s disease: Report of an autopsy case

    Directory of Open Access Journals (Sweden)

    Cédric Annweiler

    2008-12-01

    Full Text Available Cédric Annweiler1, Marc Paccalin2, Gilles Berrut3, Caroline Hommet4, Christian Lavigne1, Jean-Paul Saint-André5, Olivier Beauchet11Department of Geriatrics and Internal Medicine, Angers University Hospital, France; 2Department of Geriatrics, Poitiers University Hospital, France; 3Department of Geriatrics, Nantes University Hospital, France; 4Department of Geriatrics, Tours University Hospital, France; 5Department of Anatomopatholgy, Angers University Hospital, FranceAbstract: The association of angiitis of central nervous system (ACNS with cerebral amyloid angiopathy (CAA suggests a physiopathological relationship between these two affections. Few cases are reported in patients with Alzheimer’s disease (AD. We describe here a clinicopathological case associating ACNS, CAA, and AD. We discuss the aetiology of ACNS and its relationship with cerebral deposition of beta A4 amyloid protein (βA4.Keywords: cerebral angiopathy, Alzheimer’s disease

  6. Hypersensitivity Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals...

  7. Cardiovascular autonomous dysfunction in diabetics: The influence of disease duration, glycoregulation degree and diabetes type

    Directory of Open Access Journals (Sweden)

    Ninković Vladan

    2008-01-01

    Full Text Available INTRODUCTION Cardiovascular autonomous neuropathy (CAN in diabetes has not been still defined clinically and aetiopathogenetically. OBJECTIVE The aim of this study was to determine the influence of disease duration, glycoregulation degree and diabetes type on damage of the cardiovascular part of the autonomous nervous system in our group of patients. METHOD This study included diabetics, (100 patients the same number of patients with diabetes type I and II as well as 20 healthy individuals in the control group. Classic Ewing's cardiovascular tests were used for CAN diagnosis: 1. the cardiovascular response to Valsalva manoeuvre, 2. the cardiovascular response to deep breathing (the so-called E/I ratio, 3. the cardiovascular response to rising (the so-called 30/15 ratio, 4. the test of orthostatic hypotension and 5. the TA response to handgrip. It has been arbitrarily taken that patients, whose score of 'parasympathetic' tests (Valsalva manoeuvre, E/I ratio, 30/15 is equal or bigger than 1.5 (out of possible 3, have damage of the parasympathetic part of the autonomous nervous system while patients, whose score of 'sympathetic tests' (the test of orthostatic hypotension and TA response to hand-grip is equal or bigger than 1 (out of possible 2, have damage of the sympathetic part of the autonomous nervous system. The patients whose total score is equal or bigger than 2 have cardiovascular autonomous neuropathy. The glycoregulation degree is determined by the level of HbA1c. RESULTS There is a statistically significant, positive correlation between the values of the parasympathetic score and disease duration as well as between the total score, that is, CAN and disease duration. The connection between the sympathetic score, that is, damage of the sympathetic part of the autonomous nervous system and disease duration has not been observed. There is a positive correlation between the values of the parasympathetic score and HbA1c. The same pattern

  8. Differentiation of Internet addiction risk level based on autonomic nervous responses: the Internet-addiction hypothesis of autonomic activity.

    Science.gov (United States)

    Lu, Dong Wei; Wang, Jenn Wu; Huang, Andrew Chih Wei

    2010-08-01

    How high-risk Internet addiction (IA) abusers respond to different autonomic nervous activities compared with low-risk subjects may be a critical research goal with prevention and treatment implications. The aim of the present study was to address this issue by observing differences between high- and low-risk IA abusers in four physiological assessments when surfing the Internet: blood volume pulse (BVP), skin conductance (SC), peripheral temperature (PTEMP), and respiratory response (RESPR). Forty-two male and ten female participants aged 18-24 years were screened with the Chen Internet Addiction Scale (CIAS, 2003), and then separated into high- and low-risk IA groups. Using psychophysiology equipment, participants encountered a 3-minute adaptation period followed by a 6-minute testing period for surfing the Internet on baseline and testing phases. The present results indicate that: (a) the CIAS scores were positively and negatively correlated with the RESPR and the PTEMP; (b) the PTEMP and RESPR of high-risk IA abusers were respectively weaker and stronger than those of low-risk IA abusers; the BVP and SC of high-risk IA abusers were respectively augmented and decreased relative to low-risk IA abusers. Thus we suggest that four autonomic responses may be differentially sensitive to abusers' potency in terms of the IA hypothesis of autonomic activity. The stronger BVP and RESPR responses and the weaker PTEMP reactions of the high-risk IA abusers indicate the sympathetic nervous system was heavily activated in these individuals. However, SC activates parasympathetic responses at the same time in the high-risk IA abusers. The paradoxical responses between the sympathetic and parasympathetic actions are addressed in the discussion.

  9. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  10. [Various aspects of IL-1 biological activity. II. IL-1 beta in diseases and the Central Nervous System].

    Science.gov (United States)

    Wieczorek, Marek

    2009-01-01

    Precise understanding of the mechanisms of reciprocal relations between the nervous and the immune systems, has been the subject of numerous studies for the recent two decades. These mechanisms are significant, particularly at the stage of early response to bacterial, parasite, or viral infections. They are also essential from the medical point of view, as they may help in the development of the new methods of treatment of infectious diseases, and also may provide better methods to neutralize possible side effects of the therapy. As it is commonly understood, both forms of IL-1 (alpha and beta), play an important role as a signaling molecules in these mechanisms. Regardless of the route of administration, they cause to the activation of the brain neurotransmitters, and the hypothalamo-pituitary-adrenal-axis (HPA). The HPA response induced by activity of the immune system is a normal, physiological phenomenon with essential meaning. It gives the negative feedback where glucocorticoids, released from the adrenal cortex, inhibit activity of the immune system, and by this reduce the probability of the over-stimulation of this system and its self-aggression. Therefore, precise recognition of the mechanism which is the indicator of influence of cytokines on the brain and also leads to initiate that response has a significant scientific and practical meaning. Also, the two mechanisms are probably the most important, and under appropriate conditions could complement each other. These are enzymatic and neural ways by which immune system influences the brain. The former predicts, that Il-1 influences the tissue, stimulating them to the synthesis, via the cyclooxygenases (COX) activation, and release molecules such as prostaglandines (especially PGE2), which have the ability to penetrate the brain barrier. The latter assumes that IL-1, directly or indirectly, can influence the peripheral nerves (the most important is probably the vagus nerve), which afferent sensory endings

  11. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases

    Directory of Open Access Journals (Sweden)

    Carmen I. Nussbaum-Krammer

    2014-01-01

    Full Text Available Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.

  12. Haemangiopericytoma of central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Borg, M.F.; Benjamin, C.S. [Auckland Hospital, Auckland (New Zealand). Dept. of Clinical Oncology

    1995-02-01

    The records of four patients presenting with a histological diagnosis of haemangiopericytoma of the central nervous system, in Auckland, New Zealand, between 1970 and 1990 were reviewed retrospectively, with the aim of determining the natural history of the disease and response to various treatment modalities. Three out of the four patients reviewed presented with primary cerebral disease and the fourth with a primary spinal cord tumour. All three cerebral primary patients were initially treated with local surgical excision. All three patients received radical radiotherapy following local recurrence. The first two patients remained disease-free locally although one patient developed a solitary liver metastasis 5 years after radiotherapy. The third patient was referred with multiple cerebral metastases and failed to respond to radiotherapy. The patient with the primary lesion in the spinal cord was treated with local excision followed by postoperative radiotherapy and remains disease-free 17 years after treatment. One patient failed to respond to chemotherapy, prescribed to treat a local recurrence adjacent to the previous radiotherapy field. This was successfully excised subsequently. The patient presenting with multiple cerebral metastases was the only patient to die of this disease. Results suggest that local recurrence is avoidable with adequate wide excision of the primary tumour followed by local radical radiotherapy. The role of chemotherapy remains controversial and no conclusion could be drawn regarding the role of palliative radiotherapy from this study. Active treatment and long-term follow-up are necessary because of the relative aggressiveness of this disease and the propensity for late relapses. 22 refs., 2 tabs., 6 figs.

  13. Tissue-nonspecific Alkaline Phosphatase Regulates Purinergic Transmission in the Central Nervous System During Development and Disease

    Directory of Open Access Journals (Sweden)

    Álvaro Sebastián-Serrano

    2015-01-01

    Full Text Available Tissue-nonspecific alkaline phosphatase (TNAP is one of the four isozymes in humans and mice that have the capacity to hydrolyze phosphate groups from a wide spectrum of physiological substrates. Among these, TNAP degrades substrates implicated in neurotransmission. Transgenic mice lacking TNAP activity display the characteristic skeletal and dental phenotype of infantile hypophosphatasia, as well as spontaneous epileptic seizures and die around 10 days after birth. This physiopathology, linked to the expression pattern of TNAP in the central nervous system (CNS during embryonic stages, suggests an important role for TNAP in neuronal development and synaptic function, situating it as a good target to be explored for the treatment of neurological diseases. In this review, we will focus mainly on the role that TNAP plays as an ectonucleotidase in CNS regulating the levels of extracellular ATP and consequently purinergic signaling.

  14. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise

    OpenAIRE

    Tiantian Jia; Yoshiko Ogawa; Misa Miura; Osamu Ito; Masahiro Kohzuki

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on fou...

  15. Hjertefrekvensvariationer til vurdering af det autonome nervesystem. En oversigt

    DEFF Research Database (Denmark)

    Johansen, T L; Kambskar, G; Mehlsen, J

    1997-01-01

    activity in the different branches of the autonomic nervous system. In the diagnosis of autonomic neuropathy, short-term forced variations in heart rate are employed in order to describe the dynamic capacity of the parasympathetic nervous system. In the subsequent data-analysis several different principles......Analysis of heart rate variability is increasingly used for testing the function of the autonomic nervous system in cardiovascular disease and for the diagnosis of autonomic neuropathy. In cardiovascular disease, long-term data collection (several hours) is primarily used to describe the static...

  16. THE SPECTRUM OF INFLAMMATORY DEMYELINATING DISEASES OF THE CENTRAL NERVOUS SYSTEM

    OpenAIRE

    Rama Krishna; Naveen; Vengamma; Mohan; Sridhar

    2016-01-01

    INTRODUCTION Idiopathic inflammatory demyelinating diseases (IIDDs) are rare neurological diseases. Their features differ from region to region. We characterize features of these diseases in Chittor. METHODS We describe 100 patients of IDD from Sri Venkateswara Institute of Medical Sciences, Tirupathi from May 2012 – December 2013. RESULTS 10 patients with multiple sclerosis, 14 with ADEM, 6 NMO, 9 with ATM and 9 ON presented with the mean of 32 years wit...

  17. Vitamin D and the central nervous system.

    Science.gov (United States)

    Wrzosek, Małgorzata; Łukaszkiewicz, Jacek; Wrzosek, Michał; Jakubczyk, Andrzej; Matsumoto, Halina; Piątkiewicz, Paweł; Radziwoń-Zaleska, Maria; Wojnar, Marcin; Nowicka, Grażyna

    2013-01-01

    Vitamin D is formed in human epithelial cells via photochemical synthesis and is also acquired from dietary sources. The so-called classical effect of this vitamin involves the regulation of calcium homeostasis and bone metabolism. Apart from this, non-classical effects of vitamin D have recently gained renewed attention. One important yet little known of the numerous functions of vitamin D is the regulation of nervous system development and function. The neuroprotective effect of vitamin D is associated with its influence on neurotrophin production and release, neuromediator synthesis, intracellular calcium homeostasis, and prevention of oxidative damage to nervous tissue. Clinical studies suggest that vitamin D deficiency may lead to an increased risk of disease of the central nervous system (CNS), particularly schizophrenia and multiple sclerosis. Adequate intake of vitamin D during pregnancy and the neonatal period seems to be crucial in terms of prevention of these diseases.

  18. Patterns of Sensitivity to Emotion in Children with Williams Syndrome and Autism: Relations between Autonomic Nervous System Reactivity and Social Functioning

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Grichanik, Mark; Arnold, Andrew J.; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2015-01-01

    Williams syndrome (WS) and autism spectrum disorder (ASD) are associated with atypical social-emotional functioning. Affective visual stimuli were used to assess autonomic reactivity and emotion identification, and the social responsiveness scale was used to determine the level social functioning in children with WS and ASD contrasted with typical…

  19. Central nervous system infectious diseases mimicking multiple sclerosis: recognizing distinguishable features using MRI

    Directory of Open Access Journals (Sweden)

    Antonio Jose da Rocha

    2013-09-01

    Full Text Available The current diagnostic criteria for multiple sclerosis (MS confirm the relevant role of magnetic resonance imaging (MRI, supporting the possibility of characterizing the dissemination in space (DIS and the dissemination in time (DIT in a single scan. To maintain the specificity of these criteria, it is necessary to determine whether T2/FLAIR visible lesions and the gadolinium enhancement can be attributed to diseases that mimic MS. Several diseases are included in the MS differential diagnosis list, including diseases with exacerbation, remitting periods and numerous treatable infectious diseases, which can mimic the MRI features of MS. We discuss the most relevant imaging features in several infectious diseases that resemble MS and examine the primary spatial distributions of lesions and the gadolinium enhancement patterns related to MS. Recognizing imaging "red flags" can be useful for the proper diagnostic evaluation of suspected cases of MS, facilitating the correct differential diagnosis by assessing the combined clinical, laboratory and MR imaging information.

  20. Autonomic skin responses in females with Fabry disease

    DEFF Research Database (Denmark)

    Møller, Anette Torvin; Bach, Flemming W.; Feldt-Rasmussen, Ulla;

    2009-01-01

    Fabry disease is a genetic lysosomal disorder with dysfunction of the lysosomal enzyme alpha-galactosidase A causing accumulation of glycolipids in multiple organs including the nervous system and with neuropathy as a prominent manifestation. Neurological symptoms include pain and autonomic dysfu...... response to iontophoresis of acetylcholine (p = 0.04) and a smaller capsaicin-induced flare compared to controls. These findings suggest that female patients both have an impaired C-fiber function and local abnormalities in blood vessels and sweat glands......., and the cold pressor test; and (3) cutaneous blood flow following capsaicin. The vasoconstrictor response to inspiratory gasp was increased in Fabry patients compared to controls (p = 0.03), while the response to cold and mental stress did not change. Female patients with Fabry disease had a reduced sweat...... dysfunction. This study examined peripheral autonomic nerve function in 19 female patients with Fabry disease and 19 sex and age-matched controls by measuring (1) sweat production following acetylcholine challenge; (2) the sympathetically mediated vasoconstrictor responses to inspiratory gasp, stress...

  1. Gaucher disease in children: radiology of non-central nervous system manifestations

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K. E-mail: kmchugh@gosh.nhs.uk; Olsen, Oe.E.; Vellodi, A

    2004-02-01

    The radiological findings in paediatric Gaucher disease (GD) are reviewed and future challenges for radiology are discussed. This overview is based on a literature review and our experience of children with GD in one of two national institutions for paediatric GD in the UK. GD is known to progress more rapidly in childhood. Current imaging is mainly suitable for ascertaining the complications of GD. The UK recommendations for routine radiological surveillance are discussed. With enzyme replacement therapy (ERT), which dramatically modifies the course of the disorder, the challenge for radiology in the future is likely to be assessing treatment efficacy rather than the detection of disease complications. Disease manifestations are likely to change in those on ERT and the most notable recent alteration in the disease profile in childhood is the virtual disappearance of the acute bone crisis in this population.

  2. The impact of rotigotine on cardiovascular autonomic function in early Parkinson's disease.

    Science.gov (United States)

    Rocchi, Camilla; Pierantozzi, Mariangela; Pisani, Valerio; Marfia, Girolama Alessandra; Di Giorgio, Alessandra; Stanzione, Paolo; Bernardi, Giorgio; Stefani, Alessandro

    2012-01-01

    Dysautonomia can occur in early stages of Parkinson's disease (PD) influencing tolerance to dopaminergic therapies. Rotigotine, a non-ergot dopamine agonist, has recently been developed as an effective alternative antiparkinsonian drug, but its influence on the autonomic nervous system was not investigated. Twenty subjects out of 34 consecutive de novo PD patients were submitted to full assessment of cardiovascular autonomic function before and after reaching a stable rotigotine regimen [6 mg/24 h (n = 3) or 8 mg/24 h (n = 17)]. Patients reached significant clinical improvement (-27% on the Unified Parkinson's Disease Rating Scale part III) and did not show significant differences in cardiovascular tests compared to baseline data. However, an unexpected trend towards increasing systolic blood pressure after head-up tilt test was detected. Our study demonstrates that rotigotine does not influence cardiovascular autonomic responses in early de novo PD patients. Consequently, it may represent a well-tolerated and efficacious therapeutic option in newly diagnosed PD subjects.

  3. Mobile Intelligent Autonomous Systems

    Directory of Open Access Journals (Sweden)

    Jitendra R. Raol

    2010-01-01

    Full Text Available Mobile intelligent autonomous systems (MIAS is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i perception and reasoning, (ii mobility and navigation,(iii haptics and teleoperation, (iv image fusion/computervision, (v modelling of manipulators, (vi hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii vehicle-robot path and motionplanning/control, (viii human-machine interfaces for interaction between humans and robots, and (ix application of artificial neural networks (ANNs, fuzzy logic/systems (FLS,probabilistic/approximate reasoning (PAR, Bayesian networks(BN and genetic algorithms (GA to the above-mentioned problems. Also, multi-sensor data fusion (MSDF playsvery crucial role at many levels of the data fusion process:(i kinematic fusion (position/bearing tracking, (ii imagefusion (for scene recognition, (iii information fusion (forbuilding world models, and (iv decision fusion (for tracking,control actions. The MIAS as a technology is useful for automation of complex tasks, surveillance in a hazardousand hostile environment, human-assistance in very difficultmanual works, medical robotics, hospital systems, autodiagnosticsystems, and many other related civil and military systems. Also, other important research areas for MIAScomprise sensor/actuator modelling, failure management/reconfiguration, scene understanding, knowledge representation, learning and decision-making. Examples ofdynamic systems considered within the MIAS would be:autonomous systems (unmanned ground vehicles, unmannedaerial vehicles, micro/mini air vehicles, and autonomousunder water vehicles, mobile/fixed robotic systems, dexterousmanipulator robots, mining robots, surveillance systems,and networked/multi-robot systems, to name a few.Defence Science Journal, 2010, 60(1, pp.3-4,

  4. Autonomic Nervous System Mediates the Hypotensive Effects of Aqueous and Residual Methanolic Extracts of Syzygium polyanthum (Wight) Walp. var. polyanthum Leaves in Anaesthetized Rats

    OpenAIRE

    A.Ismail; Mohamed, M.; Sulaiman, S. A.; Wan Ahmad, W. A. N.

    2013-01-01

    Syzygium polyanthum (Wight) Walp. var. polyanthum leaves are consumed as a traditional Malay treatment of hypertension. This study investigates hypotensive potential of aqueous (AESP) and residual methanolic (met-AESP) extracts of S. polyanthum leaves and possible involvement of autonomic receptors. AESP and met-AESP (20 to 100 mg/kg) were intravenously administered into anaesthetized Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Blood pressure and heart were monitored for 20 ...

  5. Nuclear Lipids in the Nervous System: What they do in Health and Disease.

    Science.gov (United States)

    Garcia-Gil, Mercedes; Albi, Elisabetta

    2017-02-01

    In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.

  6. AAV-Mediated Gene Delivery in a Feline Model of Sandhoff Disease Corrects Lysosomal Storage in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Hannah E. Rockwell

    2015-04-01

    Full Text Available Sandhoff disease (SD is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex, resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients.

  7. [Vesalius and the nervous system].

    Science.gov (United States)

    Van Laere, J

    1993-01-01

    Before we comment the subject of this lecture, we attract the reader's attention towards two remarks. We first want to point out that, although Vesalius is rightly considered as "the father of anatomy", in physiological matters--such as e.g. the physiology of the nervous system--he remained a faithful follower of Galen. A second preliminary remark explains why the books Vesalius devoted to the nervous system, namely the fourth and seventh books, as well as a part of the third book, don't belong to the best parts of the Fabrica, when we compare them with his Osteology and his Myology. We should not forget that some technical discoveries such as keeping brain-tissue in alcohol in order to harden it and colouring methods of Weigert, Marchi and Nissl, that made a refined macro- and microscopic examination of the nervous system possible, were only invented in the 19th century. The fourth book considers the peripheral nervous system. According to Vesalius, there are seven pairs of brain-nerves. His first pair corresponds to our Nervous opticus; his second pair concerns our Nervi oculomotorius, trochlearis and abducens; this third pair embraces a great part of our Nervus trigeminus; his fourth pair corresponds to our Nervus maxillaris; his fifth pair includes our Nervi facialis and acusticus; his sixth pair includes our Nervi vagus and accessorius; his seventh pair our Nervi hypoglossus and pharyngeus. Vesalius counts thirty pairs of spinal nerves. His description of the Plexus brachialis and the Plexus ischiadicus is closely related to the modern views in these matters. However, his teleologic views about them are remarkable, e.g. about the course of the Nervi recurrentes. The seventh book covers the brain. He successively and truly describes the cerebral membranes, the Ventriculi, the Cerebrum; his description relies on a series of horizontal slices. He also describes the brain-stem and the Cerebellum. Vesalius, who had doubts about the existence of the Plexus

  8. Sexual features of the old rats’ autonomic nervous system response to the development of necrotic process in heart on the background of melatonin

    Directory of Open Access Journals (Sweden)

    M. R. Khara

    2016-01-01

    Full Text Available Aim. An effect of melatonin on the autonomic regulation of the heart in terms of damage was studied in adult and old male and female rats. Methods and results. Necrotic process in the myocardium was caused by the injection of epinephrine (1 mg / kg, single dose, intramuscular 1 h after injection of melatonin (5 mg / kg intravenous. In 1 and 24 hours after administration of epinephrine heart rate was determined and features of autonomic regulation of the heart on indicators Mo (mode, AMo (mode amplitude, ΔH (variation range of cardio intervals, and SI (stress index of regulatory mechanisms were evaluated. It was found that the effects of melatonin aimed at increasing the role of cholinergic ANS link in the formation of heart rate and reducing the adrenergic participation in the body of older individuals significantly decreased. To a greater extent this applies to older males. In the dynamics of adrenalin necrosis the character of vegetative regulation of heart rate of old rats reflects greater, than in adults, role of adrenergic link in animals of both sexes and reduce of the impact of cholinergic one – only in older males, which resulted in a significant tension of regulatory mechanisms. Conclusion. The obtained results show that with increasing age in rats effectiveness of melatonin as a drug which can affect the autonomic regulation of the heart by activating cardio-protective effects decreases, especially in male rats.

  9. Autonomic Nervous System Mediates the Hypotensive Effects of Aqueous and Residual Methanolic Extracts of Syzygium polyanthum (Wight Walp. var. polyanthum Leaves in Anaesthetized Rats

    Directory of Open Access Journals (Sweden)

    A. Ismail

    2013-01-01

    Full Text Available Syzygium polyanthum (Wight Walp. var. polyanthum leaves are consumed as a traditional Malay treatment of hypertension. This study investigates hypotensive potential of aqueous (AESP and residual methanolic (met-AESP extracts of S. polyanthum leaves and possible involvement of autonomic receptors. AESP and met-AESP (20 to 100 mg/kg were intravenously administered into anaesthetized Wistar-Kyoto (WKY and spontaneously hypertensive (SHR rats. Blood pressure and heart were monitored for 20 min. AESP and met-AESP induced significant dose-dependent hypotension, but only 100 mg/kg AESP caused mild bradycardia (n=5. AESP-induced hypotension was more potent than that of met-AESP in WKY. AESP has a faster onset time than that of met-AESP in both WKY and SHR. However, met-AESP-induced hypotension was more sustained than that of AESP in SHR. Blockages of autonomic ganglion and α-adrenergic receptors using hexamethonium and phentolamine (n=5 for each group partially attenuated AESP-induced hypotension, suggesting involvement of α-adrenergic receptors. Blockages of autonomic ganglion, β-adrenergic, cholinergic receptors, and nitric oxide production using hexamethonium, propranolol, atropine, and N-ω-nitro-l arginine methyl ester (L-NAME (n=5 for each group partially attenuated met-AESP-induced hypotension, suggesting involvement of β-adrenergic and cholinergic receptors via nitric oxide production.

  10. Autonomic Nervous System Mediates the Hypotensive Effects of Aqueous and Residual Methanolic Extracts of Syzygium polyanthum (Wight) Walp. var. polyanthum Leaves in Anaesthetized Rats.

    Science.gov (United States)

    Ismail, A; Mohamed, M; Sulaiman, S A; Wan Ahmad, W A N

    2013-01-01

    Syzygium polyanthum (Wight) Walp. var. polyanthum leaves are consumed as a traditional Malay treatment of hypertension. This study investigates hypotensive potential of aqueous (AESP) and residual methanolic (met-AESP) extracts of S. polyanthum leaves and possible involvement of autonomic receptors. AESP and met-AESP (20 to 100 mg/kg) were intravenously administered into anaesthetized Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Blood pressure and heart were monitored for 20 min. AESP and met-AESP induced significant dose-dependent hypotension, but only 100 mg/kg AESP caused mild bradycardia (n = 5). AESP-induced hypotension was more potent than that of met-AESP in WKY. AESP has a faster onset time than that of met-AESP in both WKY and SHR. However, met-AESP-induced hypotension was more sustained than that of AESP in SHR. Blockages of autonomic ganglion and α -adrenergic receptors using hexamethonium and phentolamine (n = 5 for each group) partially attenuated AESP-induced hypotension, suggesting involvement of α -adrenergic receptors. Blockages of autonomic ganglion, β -adrenergic, cholinergic receptors, and nitric oxide production using hexamethonium, propranolol, atropine, and N- ω -nitro-l arginine methyl ester (L-NAME) (n = 5 for each group) partially attenuated met-AESP-induced hypotension, suggesting involvement of β -adrenergic and cholinergic receptors via nitric oxide production.

  11. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  12. Central nervous system complications after liver transplantation.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology.

  13. A longitudinal study of epilepsy and other central nervous system diseases in individuals with and without a history of infantile autism

    DEFF Research Database (Denmark)

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2011-01-01

    Objective: To compare the prevalence and types of epilepsy and other central nervous system (CNS) diseases in a clinical sample of 118 individuals diagnosed as children with infantile autism (IA) with 336 matched controls from the general population. Methods: All participants were screened through...

  14. An Atlas of Infectious and Parasitic Diseases of the Central Nervous System. A Cooperative Study of SILAN (Sociedad Iberolatinoamericana de Neurorradiologia).

    Science.gov (United States)

    Gonzalez-Toledo, E; Santos Andrade, C; Da Costa Leite, C; Del Carpio-O'Donovan, R; Fayed, N; Morales, H; Peterson, R; Palacios, E; Previgliano, C H; Rocha, A J; Romero, J M; Rugilo, C; Staut, C C V; Tamer, I; Tavares Lucato, L; Nader, M

    2010-10-01

    Infectious diseases of the central nervous system vary in frequency in different locations in America and Europe. What is common in Brazil can be a sporadic presentation in Europe. Cooperative work gathering experiences from neuroradiologists working in various places can be achieved and will help to identify uncommon cases that can present in our daily practice.

  15. Autonomic nervous system response patterns in freshmen with different resilience in a military university%某军校不同心理弹性水平的大一新生自主神经反应特点

    Institute of Scientific and Technical Information of China (English)

    张佳佳; 彭李; 李敏

    2011-01-01

    目的 研究不同心理弹性水平军校大学生自主神经反应特点.方法 采用成人心理弹性量表(resilience scale for adults,RSA)对重庆某军校大一新生进行心理测评,筛选出心理弹性高分组和低分组被试共144名,再从中选取愿意参加本实验的心理弹性高分组和低分组被试各27名,其进行自主神经反应(心率、皮电、皮温、指端血容振幅)特点的实验研究.结果 ①静息状态下,心理弹性高分组和低分组被试的自主神经反应没有统计学差异(P>0.05).②悲伤情绪诱导下,心理弹性高分组在皮电上低于心理弹性低分组(t=-2.077,P=0.043).③悲伤情绪诱导后,心理弹性高分组和心理弹性低分组的各个指标的恢复时间上均无统计学差异(P>0.05).结论 心理弹性水平不同的大学生的自主神经活动模式可能存在一定程度的差异.%Objective To investigate the autonomic nervous system response pattern in military college students with different levels of resilience. Methods Resilience Scale for Adults (R.SA) was applied to test 144 college students, and based on the RSA score 54 freshmen who accepted to join the test were selected and were divided into a high resilience group and a low resilience group. Each 27 freshmen of the two groups were tested for autonomic nervous system response pattern. Results ① At resting state, students of the high resilience group and low resilience group did not show significant differences in heart rate ( HR) , skin conductance (SC), skin temperature (ST) and blood volume pulse (BVP) (P>0. 05). ② Compared with those indices obtained at resting state, students of the high resilience group scored lower in HR, SC and ST under sad mood induction, but higher in BVP; students of the low resilience group scored higher in HR and SC under sad mood induction, but lower in ST and BVP. Sad mood induction showed that SC of the high resilience group was significantly lower than that of the

  16. Depressed cardiac autonomic modulation in patients with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Carlos Alberto de Oliveira

    2014-04-01

    Full Text Available Introduction: A dysfunctional autonomic nervous system (ANS has also been recognized as an important mechanism contributing to the poor outcome in CKD patients, with several studies reporting a reduction in heart rate variability (HRV. Objective: Evaluate the sympathovagal balance in patients with chronic kidney disease on conservative treatment. Methods: In a cross-sectional study, patients with CKD stages 3, 4 and 5 not yet on dialysis (CKD group and age-matched healthy subjects (CON group underwent continuous heart rate recording during two twenty-minute periods in the supine position (pre-inclined, followed by passive postural inclination at 70° (inclined period. Power spectral analysis of the heart rate variability was used to assess the normalized low frequency (LFnu, indicative of sympathetic activity, and the normalized high frequency (HFnu, indicative of parasympathetic activity. The LFnu/HFnu ratio represented sympathovagal balance. Results: After tilting, CKD patients had lower sympathetic activity, higher parasympathetic activity, and lower sympathovagal balance than patients in the CON group. Compared to patients in stage 3, patients in stage 5 had a lower LFnu/HFnu ratio, suggesting a more pronounced impairment of sympathovagal balance as the disease progresses. Conclusion: CKD patients not yet on dialysis have reduced HRV, indicating cardiac autonomic dysfunction early in the course of CKD.

  17. [Medicinal cannabis for diseases of the nervous system: no convincing evidence of effectiveness].

    Science.gov (United States)

    Killestein, J; Bet, P M; van Loenen, A C; Polman, C H

    2004-11-27

    --In 1996, the Netherlands Health Council issued a negative recommendation regarding the use of medication on the basis of cannabis (marihuana). However, interest in medicinal cannabis has certainly not waned since. --The neurological diseases for which cannabis could presently be used therapeutically are: multiple sclerosis, chronic (neuropathic) pain and the syndrome of Gilles de la Tourette. --Since September 2003, the Dutch Ministry of Health, Welfare and Sport delivers medicinal cannabis to Dutch pharmacies, so that now for the first time, medicinal cannabis can be given to patients on a prescription basis within the framework of the Opium Law. The result of this is that doctors and patients now assume that this is a medication for which the efficacy and safety have been established. --The question arises whether new scientific data have become available since 1996 that provide scientific support for the current Governmental policy. --In a recent clinical trial that has aroused much discussion, patients with multiple sclerosis and problematic spasticity were treated with oral cannabis or a placebo. There was no significant effect of treatment on the primary outcome measure, i.e. objectively determined spasticity. Nevertheless, it was concluded that the mobility was improved and that the pain was subjectively decreased. --Until now, convincing scientific evidence that cannabinoids are effective in neurological conditions is still lacking. --However, it is also not possible to conclude definitely that cannabinoids are ineffective; still, this is no basis for official stimulation of their use.

  18. The Role of Deubiquitinating Enzymes in Synaptic Function and Nervous System Diseases

    Directory of Open Access Journals (Sweden)

    Jennifer R. Kowalski

    2012-01-01

    Full Text Available Posttranslational modification of proteins by ubiquitin has emerged as a critical regulator of synapse development and function. Ubiquitination is a reversible modification mediated by the concerted action of a large number of specific ubiquitin ligases and ubiquitin proteases, called deubiquitinating enzymes (DUBs. The balance of activity of these enzymes determines the localization, function, and stability of target proteins. While some DUBs counter the action of specific ubiquitin ligases by removing ubiquitin and editing ubiquitin chains, other DUBs function more generally to maintain the cellular pool of free ubiquitin monomers. The importance of DUB function at the synapse is underscored by the association of specific mutations in DUB genes with several neurological disorders. Over the last decade, although much research has led to the identification and characterization of many ubiquitin ligases at the synapse, our knowledge of the relevant DUBs that act at the synapse has lagged. This review is focused on highlighting our current understanding of DUBs that regulate synaptic function and the diseases that result from dysfunction of these DUBs.

  19. Masked assessment of MRI findings: is it possible to differentiate neuro-Behcet`s disease from other central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Coban, O.; Bahar, S.; Akman-Demir, G.; Tasci, B.; Serdaroglu, P. [Univ. of Istanbul (Turkey). Dept. of Neurology; Yurdakul, S.; Yazici, H. [Univ. of Istanbul (Turkey). Dept. of Internal Medicine

    1999-04-01

    Two neuroradiologists reviewed MRI studies of 34 patients with neuro-Behcet`s disease (NBD), 22 with multiple sclerosis (MS) and 7 with systemic lupus erythematosus (SLE) with central nervous system involvement, masked to the clinical diagnosis, age and sex of the patients. Of the patients with NBD 12 were in an acute attack; the others had chronic disease. MRI was assessed using a set of criteria, looking at atrophy, the site of discrete parenchymal lesions, regions of predominant involvement and the extent of the lesion(s). The observers also made a guess at the clinical diagnosis. The brain stem and/or basal ganglia were the most predominantly involved sites in all patients with acute NBD; 75 % of these lesions were large and confluent, mainly extending from the brain stem to the diencephalon and basal ganglia. However, in chronic cases, the predominant involvement was in the brain stem and/or basal ganglia in only 36 %, and in cerebral hemisphere white matter in another 36 %; 27 % of these patients showed no parenchymal lesion. Hemisphere white-matter lesions were equally distributed between periventricular and other areas in NBD, while in MS more were periventricular, and in SLE more were nonperiventricular. Brain-stem atrophy was seen in 21 % of patients with NBD, with a specificity of 96.5 %. In the absence of cortical atrophy, its specificity was 100 %. The attempt at making a radiological diagnosis was successful in all cases of acute NBD and 95.5 % of patients with MS, but in only 40 % of patients with chronic NBD. Most of this latter groups MRI studies were interpreted as MS. An extensive lesion involving the brain stem and basal ganglia seemed to be diagnostic of acute NBD. However, hemisphere white-matter lesions could not be differentiated from those in MS. (orig.) With 3 figs., 6 tabs., 18 refs.

  20. Expression of neurexin and neuroligin in the enteric nervous system and their down-regulated expression levels in Hirschsprung disease.

    Science.gov (United States)

    Zhang, Qiangye; Wang, Jian; Li, Aiwu; Liu, Hongzhen; Zhang, Wentong; Cui, Xinhai; Wang, Kelai

    2013-04-01

    To investigate the expression levels of neurexins and neuroligins in the enteric nervous system (ENS) in Hirschsprung Disease (HSCR). Longitudinal muscles with adherent mesenteric plexus were obtained by dissection of the fresh gut wall of mice, guinea pigs, and humans. Double labeling of neurexin I and Hu (a neuron marker), neuroligin 1 and Hu, neurexin I and synaptophysin (a presynaptic marker), and neuroligin 1 and PSD95 (a postsynaptic marker) was performed by immunofluorescence staining. Images were merged to determine the relative localizations of the proteins. Expression levels of neurexin and neuroligin in different segments of the ENS in HSCR were investigated by immunohistochemistry. Neurexin and neuroligin were detected in the mesenteric plexus of mice, guinea pigs, and humans with HSCR. Neurexin was located in the presynapse, whereas neuroligin was located in the postsynapse. Expression levels of neurexin and neuroligin were significant in the ganglionic colonic segment of HSCR, moderate in the transitional segment, and negative in the aganglionic colonic segment. The expressions of neurexin and neuroligin in the transitional segments were significantly down-regulated compared with the levels in the normal segments (P < 0.05). Expression levels of neurexin and neuroligin in ENS are significantly down-regulated in HSCR, which may be involved in the pathogenesis of HSCR.

  1. Pathological and Clinical Features and Management of Central Nervous System Hemangioblastomas in von Hippel-Lindau Disease

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanno

    2014-08-01

    Full Text Available Central nervous system (CNS hemangioblastoma is the most common manifestation of von Hippel-Lindau (VHL disease. It is found in 70-80% of VHL patients. Hemangioblastoma is a rare form of benign vascular tumor of the CNS, accounting for 2.0% of CNS tumors. It can occur sporadically or as a familial syndrome. CNS hemangioblastomas are typically located in the posterior fossa and the spinal cord. VHL patients usually develop a CNS hemangioblastoma at an early age. Therefore, they require a special routine for diagnosis, treatment and follow-up. The surgical management of symptomatic tumors depends on many factors such as symptom, location, multiplicity, and progression of the tumor. The management of asymptomatic tumors in VHL patients is controversial since CNS hemangioblastomas grow with intermittent quiescent and rapid-growth phases. Preoperative embolization of large solid hemangioblastomas prevents perioperative hemorrhage but is not necessary in every case. Radiotherapy should be reserved for inoperable tumors. Because of complexities of VHL, a better understanding of the pathological and clinical features of hemangioblastoma in VHL is essential for its proper management.

  2. Assistive technology in occupational therapy practice with a child with degenerative disease of the central nervous system

    Directory of Open Access Journals (Sweden)

    Tácia Caroline de Lima Rodrigues

    2015-07-01

    Full Text Available This paper aims to report the effects of the interventions, using the resource of assistive technology, carried out with a child with degenerative disease of the central nervous system at his home. This is a study case, which was conducted in seven meetings, addressing the child and his caregivers during a process of evaluation, preparation of assistive devices, family orientation, and evaluation of the family environment repercussion. The results showed that the child presents significant motor, cognitive, and psychosocial impairments, resulting in difficulties in performing activities of daily living, communication, and play. Adjustments were proposed to facilitate the child’s involvement and alleviate family difficulties on equipment and environments, such as wheelchair, bedroom, bathroom, orthosis, toys and communication. Finally, it was possible to note that the assistive technology resources were used according to the child’s needs and his own reality, and that the domiciliary visits contributed positively to the family’s life because they facilitated the child’s care, despite the limitations faced.

  3. Cultured cells of the nervous system, including human neurones, in the study of the neuro-degenerative disorder, Alzheimer's disease: an overview.

    Science.gov (United States)

    De Boni, U

    1985-01-01

    Human nervous-system cells in culture are a suitable model for the study of the degenerative changes associated with Alzheimer's disease. Alzheimer-diseased brain contains a factor which induces the formation of paired helical filaments (PHF) in cultured cells, similar to that seen in Alzheimer's disease. The excitotoxic amino acids, glutamate and aspartate, induce similar PHE formation in cultured cells. The neurotoxic element aluminium is present in high concentrations in the brain in several human neurological disorders, including Alzheimer's disease. In cultured-cell systems, aluminium interacts with acidic nuclear proteins, decreases steroid binding, produces a form of neurofibrillary degeneration and alters nucleoside metabolism.

  4. Central nervous system manifestations of neonatal lupus: a systematic review.

    Science.gov (United States)

    Chen, C C; Lin, K-L; Chen, C-L; Wong, A May-Kuen; Huang, J-L

    2013-12-01

    Neonatal lupus is a rare and acquired autoimmune disease. Central nervous system abnormalities are potential manifestations in neonatal lupus. Through a systematic literature review, we analyzed the clinical features of previously reported neonatal lupus cases where central nervous system abnormalities had been identified. Most reported neonatal lupus patients with central nervous system involvement were neuroimaging-determined and asymptomatic. Only seven neonatal lupus cases were identified as having a symptomatic central nervous system abnormality which caused physical disability or required neurosurgery. A high percentage of these neurosymptomatic neonatal lupus patients had experienced a transient cutaneous skin rash and had no maternal history of autoimmune disease before pregnancy.

  5. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal.

    Science.gov (United States)

    McConnell, Patrick A; Froeliger, Brett; Garland, Eric L; Ives, Jeffrey C; Sforzo, Gary A

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18-29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats ('wide-band' theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.

  6. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  7. The role of autonomic cardiovascular neuropathy in pathogenesis of ischemic heart disease in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Popović-Pejičić Snježana

    2006-01-01

    Full Text Available Introduction. Diabetes is strongly associated with macrovascular complications, among which ischemic heart disease is the major cause of mortality. Autonomic neuropathy increases the risk of complications, which calls for an early diagnosis. The aim of this study was to determine both presence and extent of cardiac autonomic neuropathy, in regard to the type of diabetes mellitus, as well as its correlation with coronary disease and major cardiovascular risk factors. Material and methods. We have examined 90 subjects, classified into three groups, with 30 patients each: those with type 1 diabetes, type 2 diabetes and control group of healthy subjects. All patients underwent cardiovascular tests (Valsalva maneuver, deep breathing test, response to standing, blood pressure response to standing sustained, handgrip test, electrocardiogram, treadmill exercise test and filled out a questionnaire referring to major cardiovascular risk factors: smoking, obesity, hypertension, and dyslipidemia. Results. Our results showed that cardiovascular autonomic neuropathy was more frequent in type 2 diabetes, manifesting as autonomic neuropathy. In patients with autonomic neuropathy, regardless of the type of diabetes, the treadmill test was positive, i.e. strongly correlating with coronary disease. In regard to coronary disease risk factors, the most frequent correlation was found for obesity and hypertension. Discussion Cardiovascular autonomic neuropathy is considered to be the principal cause of arteriosclerosis and coronary disease. Our results showed that the occurrence of cardiovascular autonomic neuropathy increases the risk of coronary disease due to dysfunction of autonomic nervous system. Conclusions. Cardiovascular autonomic neuropathy is a common complication of diabetes that significantly correlates with coronary disease. Early diagnosis of cardiovascular autonomic neuropathy points to increased cardiovascular risk, providing a basis for preventive

  8. Treatment effect of uvulopalatopharyngoplasty on autonomic nervous activity during sleep in patients with obstructive sleep apnea syndrome

    Institute of Scientific and Technical Information of China (English)

    蒋光峰; 孙炜; 李娜; 孙彦; 张念凯

    2004-01-01

    @@ Obstructive sleep apnea syndrome (OSAS) is characterized by repetitive episodes of upper airway obstruction during sleep. The prevalence of OSAS in middle-aged population is about 2%-4%.1 Many OSAS patients can be accompanied by serious cardiovascular complications, such as hypertension.2 The aim of this study was to find the changes of autonomic nervous system (ANS) during sleep, and the impact of surgical treatment on heart rate variability (HRV) in OSAS patients.

  9. The sympathetic nervous system in obesity hypertension.

    Science.gov (United States)

    Lohmeier, Thomas E; Iliescu, Radu

    2013-08-01

    Abundant evidence supports a role of the sympathetic nervous system in the pathogenesis of obesity-related hypertension. However, the nature and temporal progression of mechanisms underlying this sympathetically mediated hypertension are incompletely understood. Recent technological advances allowing direct recordings of renal sympathetic nerve activity (RSNA) in conscious animals, together with direct suppression of RSNA by renal denervation and reflex-mediated global sympathetic inhibition in experimental animals and human subjects have been especially valuable in elucidating these mechanisms. These studies strongly support the concept that increased RSNA is the critical mechanism by which increased central sympathetic outflow initiates and maintains reductions in renal excretory function, causing obesity hypertension. Potential determinants of renal sympathoexcitation and the differential mechanisms mediating the effects of renal-specific versus reflex-mediated, global sympathetic inhibition on renal hemodynamics and cardiac autonomic function are discussed. These differential mechanisms may impact the efficacy of current device-based approaches for hypertension therapy.

  10. Aging changes in the nervous system

    Science.gov (United States)

    ... ency/article/004023.htm Aging changes in the nervous system To use the sharing features on this page, please enable JavaScript. The brain and nervous system are your body's central control center. They control ...

  11. Proportionality and Autonomous Weapons Systems

    NARCIS (Netherlands)

    van den Boogaard, J.

    2015-01-01

    Given the swift technologic development, it may be expected that the availability of the first truly autonomous weapons systems is fast approaching. Once they are deployed, these weapons will use artificial intelligence to select and attack targets without further human intervention. Autonomous weap

  12. Occupational therapy for patients with chronic diseases: CVA, rheumatoid arthritis and progressive diseases of the central nervous system.

    NARCIS (Netherlands)

    Driessen, M.J.; Dekker, J.; Lankhorst, G.; Zee, J. van der

    1997-01-01

    A substantial proportion of the patients treated by occupational therapists have a chronic disease. The aim of this study was to describe the outlines of occupational therapy treatment for three specific groups of chronic diseases: progressive neurological diseases, cerebrovascular accident and rh

  13. The Nervous System and Gastrointestinal Function

    Science.gov (United States)

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  14. Parasympathetic nervous system activity and children's sleep.

    Science.gov (United States)

    El-Sheikh, Mona; Erath, Stephen A; Bagley, Erika J

    2013-06-01

    We examined indices of children's parasympathetic nervous system activity (PNS), including respiratory sinus arrhythmia during baseline (RSAB) and RSA reactivity (RSAR), to a laboratory challenge, and importantly the interaction between RSAB and RSAR as predictors of multiple parameters of children's sleep. Lower RSAR denotes increased vagal withdrawal (reductions in RSA between baseline and task) and higher RSAR represents decreased vagal withdrawal or augmentation (increases in RSA between baseline and task). A community sample of school-attending children (121 boys and 103 girls) participated [mean age = 10.41 years; standard deviation (SD) = 0.67]. Children's sleep parameters were examined through actigraphy for 7 consecutive nights. Findings demonstrate that RSAB and RSAR interact to predict multiple sleep quality parameters (activity, minutes awake after sleep onset and long wake episodes). The overall pattern of effects illustrates that children who exhibit more disrupted sleep (increased activity, more minutes awake after sleep onset and more frequent long wake episodes) are those with lower RSAB in conjunction with lower RSAR. This combination of low RSAB and low RSAR probably reflects increased autonomic nervous system arousal, which interferes with sleep. Results illustrate the importance of individual differences in physiological regulation indexed by interactions between PNS baseline activity and PNS reactivity for a better understanding of children's sleep quality.

  15. Evolutionary Autonomous Health Monitoring System (EAHMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's Robotics, Tele-Robotics and Autonomous Systems Roadmap, we are proposing the "Evolutionary Autonomous Health Monitoring System" (EAHMS) for...

  16. “Denervation” of autonomous nervous system in idiopathic pulmonary arterial hypertension by low-dose radiation: a case report with an unexpected outcome

    Directory of Open Access Journals (Sweden)

    Hohenforst-Schmidt W

    2014-03-01

    Full Text Available Wolfgang Hohenforst-Schmidt,1 Paul Zarogoulidis,2 Filiz Oezkan,3 Christian Mahnkopf,4 Gerhard Grabenbauer,5 Alfons Kreczy,6 Rolf Bartunek,7 Kaid Darwiche,3 Lutz Freitag,3 Qiang Li,8 Haidong Huang,8 Thomas Vogl,9 Patrick LePilvert,10 Theodora Tsiouda,11 Kosmas Tsakiridis,12 Konstantinos Zarogoulidis,2 Johannes Brachmann11II Medical Clinic, Coburg Clinic, University of Würzburg, Coburg, Germany; 2Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece; 3Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University of Duisburg-Essen, Essen, Germany; 4II Medizinische Klinik, Klinik für Kardiologie, Angiologie, Pneumologie, Klinikum Coburg, 5Department of Radiotherapy, 6Department of Pathology, Cytology and Molecular Diagnostics, 7Institute of Diagnostic and Interventional Radiology, Coburg Clinic, University of Wüerzburg, Coburg, Germany; 8Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People’s Republic of China; 9Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Frankfurt, Germany; 10Interventional Drug Delivery Systems and Strategies (ID2S2, Medical Cryogenics, Lakeland Court Jupiter, FL, USA; 11Internal Medicine Unit, Theagenio Cancer Hospital, Thessaloniki, 12Cardiothoracic Surgery Department, Saint Luke Private Hospital, Thessaloniki, GreeceAbstract: Vasointestinal peptide metabolism plays a key physiological role in multimodular levels of vasodilatory, smooth muscle cell proliferative, parenchymal, and inflammatory lung reactions. In animal studies, vasointestinal peptide relaxes isolated pulmonary arterial segments from several mammalian species in vitro and neutralizes the pulmonary vasoconstrictor effect of endothelin. In some animal models, it reduces pulmonary vascular resistance in vivo and

  17. Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development

    Directory of Open Access Journals (Sweden)

    Anna M. D. Végh

    2016-09-01

    Full Text Available The autonomic nervous system (cANS is essential for proper heart function, and complications such as heart failure, arrhythmias and even sudden cardiac death are associated with an altered cANS function. A changed innervation state may underlie (part of the atrial and ventricular arrhythmias observed after myocardial infarction. In other cardiac diseases, such as congenital heart disease, autonomic dysfunction may be related to disease outcome. This is also the case after heart transplantation, when the heart is denervated. Interest in the origin of the autonomic nerve system has renewed since the role of autonomic function in disease progression was recognized, and some plasticity in autonomic regeneration is evident. As with many pathological processes, autonomic dysfunction based on pathological innervation may be a partial recapitulation of the early development of innervation. As such, insight into the development of cardiac innervation and an understanding of the cellular background contributing to cardiac innervation during different phases of development is required. This review describes the development of the cANS and focuses on the cellular contributions, either directly by delivering cells or indirectly by secretion of necessary factors or cell-derivatives.

  18. Glucocorticoids and nervous system plasticity

    Institute of Scientific and Technical Information of China (English)

    Kathryn M Madalena; Jessica K Lerch

    2016-01-01

    Glucocorticoid and glucocorticoid receptor (GC/GR) interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inlfammatoryvs. pro-inlfammatory) can vary depending on the duration of GC exposure or central nervous system (CNS) injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new ifndings on gender speciifc immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing.

  19. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  20. Central nervous system disease and genital disease in harbor porpoises (Phocoena phocoena) are associated with different herpesviruses

    OpenAIRE

    2016-01-01

    International audience; AbstractHerpesvirus infection causes disease of variable severity in many species, including cetaceans. However, little is known about herpesvirus infection in harbor porpoises (Phocoena phocoena), despite being widespread in temperate coastal waters of the Northern Hemisphere. Therefore, we examined harbor porpoises that stranded alive in the Netherlands, Belgium, and Germany between 2000 and 2014 for herpesvirus infection and associated disease. Porpoises that died o...

  1. Power spectral analysis of heart rate variability for assessment of diurnal variation of autonomic nervous activity in guinea pigs.

    Science.gov (United States)

    Akita, Megumi; Ishii, Keiji; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2002-01-01

    We established characteristics of power spectral analysis of heart rate variability, and assessed the diurnal variations of autonomic nervous function in guinea pigs. For this purpose, an electrocardiogram (ECG) was recorded for 24 hr from conscious and unrestrained guinea pigs using a telemetry system. There were two major spectral components, at low frequency (LF) and high frequency (HF) bands, in the power spectrum of HR variability. On the basis of these data, we defined two frequency bands of interest: LF (0.07-0.7 Hz) and HF (0.7-3.0 Hz). The power of LF was higher than that of HF in the normal guinea pigs. Atropine significantly reduced power at HF. Propranolol also significantly reduced power at LF. Furthermore, the decrease in the parasympathetic mechanism produced by atropine was reflected in a slight increase in the LF/HF ratio. The LF/HF ratio appeared to follow the reductions of sympathetic activity produced by propranolol. Autonomic blockade studies indicated that the HF component reflected parasympathetic activity and the LF/HF ratio seemed to be a convenient index of autonomic balance. Nocturnal patterns, in which the values of heart rate in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed. However, the HF, LF and the LF/HF ratio showed no daily pattern. These results suggest that the autonomic nervous function in guinea pigs has no clear circadian rhythmicity. Therefore, this information may be useful for future studies concerning the autonomic nervous function in this species.

  2. Autonomic nervous activities assessed by heart rate variability in pre- and post-adolescent Japanese.

    Science.gov (United States)

    Fukuba, Yoshiyuki; Sato, Hironori; Sakiyama, Tomomi; Yamaoka Endo, Masako; Yamada, Masako; Ueoka, Hatsumi; Miura, Akira; Koga, Shunsaku

    2009-11-01

    There are many studies with respect to the age-related change of the characteristics of beat-to-beat heart rate variability (HRV), reflected by cardiac autonomic control, especially focusing on adulthood (i.e., aging related to the incidence of metabolic syndrome) in Japanese individuals. However, it is not still clear how basic control matures during childhood. This study was, therefore, designed to explore the HRV characteristics of pre- and post-adolescent Japanese, in a cross-sectional manner. Resting HRV data was recorded in a relaxing supine position from 136 healthy individuals between 8 and 20 years (48 boys between 8 and 14 years; 88 girls between 8 and 20 years) who were instructed to breathe periodically (0.25 Hz). Frequency-domain analysis (i.e., the spectral analysis based on an autoregressive model) of short-term, stationary R-R intervals was performed to evaluate the low- (LF; below 0.15 Hz) and high- (HF; 0.15-0.40 Hz) frequency powers. The HF to total power represents the vagal control of heart rate (PNS indicator), and the ratio of LF to HF (LF/HF) is considered to relate to the sympathetic modulations (SNS indicator). Both PNS and SNS indices had substantially no effect from age and/or gender in the range between 8 and 20 years. In conclusion, the control of the cardiac autonomic nervous system in Japanese seems already to be compatible with that in adulthood before approximately 10 years. In other word, the cardiac autonomic modulation would presumably be maturated before the age of approximately 7-8 years, though further research is awaited.

  3. Cocaine and the nervous system.

    Science.gov (United States)

    Prakash, A; Das, G

    1993-12-01

    Cocaine abuse today has reached greater heights than it did during the first cocaine epidemic in the late nineteenth century. It is estimated that one out of every four Americans has used cocaine and some six million people in the US use it regularly. Although cocaine affects all systems in the body, the central nervous system (CNS) is the primary target. Cocaine blocks the reuptake of neurotransmitters in the neuronal synapses. Almost all CNS effects of cocaine can be attributed to this mechanism. Euphoria, pharmacological pleasure and intense cocaine craving share basis in this system. The effects of cocaine on other organ systems, in addition to its effects on the CNS, account for the majority of the complications associated with cocaine abuse. In this paper, the CNS effects following cocaine administration and their treatment are discussed.

  4. The Human Sympathetic Nervous System Response to Spaceflight

    Science.gov (United States)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  5. Tuberculoma of the central nervous system.

    Science.gov (United States)

    DeLance, Arthur R; Safaee, Michael; Oh, Michael C; Clark, Aaron J; Kaur, Gurvinder; Sun, Matthew Z; Bollen, Andrew W; Phillips, Joanna J; Parsa, Andrew T

    2013-10-01

    Tuberculosis is among the oldest and most devastating infectious diseases worldwide. Nearly one third of the world's population has active or latent disease, resulting in 1.5 million deaths annually. Central nervous system involvement, while rare, is the most severe form of tuberculosis. Manifestations include tuberculoma and tuberculous meningitis, with the majority of cases occurring in children and immunocompromised patients. Despite advancements in imaging and laboratory diagnostics, tuberculomas of the central nervous system remain a diagnostic challenge due to their insidious nature and nonspecific findings. On imaging studies tuberculous meningitis is characterized by diffuse basal enhancement, but tuberculomas may be indistinguishable from neoplasms. Early diagnosis is imperative, since clinical outcomes are largely dependent on timely treatment. Stereotactic biopsy with histopathological analysis can provide a definitive diagnosis, but is only recommended when non-invasive methods are inconclusive. Standard medical treatment includes rifampicin, isoniazid, pyrazinamide, and streptomycin or ethambutol. In cases of drug resistance, revision of the treatment regimen with second-line agents is recommended over the addition of a single drug to the first-line regimen. Advances in genomics have identified virulent strains of tuberculosis and are improving our understanding of host susceptibility. Neurosurgical referral is advised for patients with elevated intracranial pressure, seizures, or brain or spinal cord compression. This review synthesizes pertinent findings in the literature surrounding central nervous system tuberculoma in an effort to highlight recent advances in pathophysiology, diagnosis, and treatment.

  6. Item condition of the autonomic nervous system in patients with hypertension stage II low additional cardiovascular risk depending on the status of smokers

    Directory of Open Access Journals (Sweden)

    E. A. Poznanskaya

    2013-12-01

    Full Text Available Beckground. This century is characterized by steady growth in the number of patients who have cardiac pathology combined with other factors, aggravating the disease and prognosis. High prevalence of smoking among young patients with hypertension. Research devoted to the study of influence of risk factors , including smoking, on the structural and geometric and functional changes of the heart is not enough. Aim. Explore the contribution of modifiable risk factors for smoking in a pathological process of structural and geometrical and functional restructuring infarction in hypertensive patients. Material and methods. Examined by transthoracic echocardiography 100 patients (30 smokers and 70 non-smokers with essential hypertension stage II, 53 men and 47 women. Group of patients matched for age, sex, body mass index, level of fasting glucose, value "office" SBP, DBP, PAP, mean arterial pressure, heart rate. For data analysis methods of parametric (t-test for dependent and independent variables, ANOVA ANOVA and nonparametric (Wald-Wolfowitz runs test, Kolmogorov-Smirnov two-sample test, Mann-Whitney U test statistics. Differences considered statistically significant at a value of p<0,05. Results. Hypertensive patients who had smoking status, revealed significantly larger left atrial diastolic by 8.1 % (p = 0.014, systolic 10.8% (p = 0.026, the prevalence of thickness PWLVs 6.1% ( p = 0.028, the thickness IVSd 11.6 % (p = 0.004 , the thickness PWLVs 10.7 % (p = 0.034 LVMI 12.2% (p = 0.034 and diastolic intramyocardial stresses 13.9 % (p = 0.025 , lengthening of the period of isometric relaxation by 33.3 % (p = 0.026 compared with those in non-smoking hypertensive patients. Conclusion. Modulatory effect of smoking on the pathological processes of cardiac remodeling in hypertensive patients manifested by an increase in systolic and diastolic dimensions of the left atrium, wall thickness and left ventricular mass, without an extension of the heart

  7. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases

    Directory of Open Access Journals (Sweden)

    Maulilio John Kipanyula

    2016-01-01

    Full Text Available The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA and regulator of calcineurin 1 (RCAN1 also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.

  8. 血红素氧合酶-1与中枢神经系统疾病%Heme oxygenase-1 and central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    李丹

    2012-01-01

    血红素氧合酶-1(heme oxygenase-1,HO-1)是血红素降解的起始酶和限速酶,可被氧化应激、化学物质和药物等诱导激活,通过抗氧化、抗炎和抗凋亡机制发挥细胞保护作用.多种中枢神经系统(central nervous system,CNS)疾病均可引起HO-1表达变化,该酶的异常涉及到多种CNS疾病.文中就HO-1的生物学特性和在不同神经系统疾病中的表达、作用作简要综述.%Heme oxygenase-1 ( HO-1 ), as a rate-limiting enzyme of heme, can be activated by oxidative stress, chemical materials and drugs, and protects cells by its anti-oxidation, anti-inflammation and anti-apoptosis roles. Its abnormal expression is always related to many central nervous system diseases. This article summarizes the biological specificities and its expressions and effects in different central nervous system diseases.

  9. Research progress of bacterial melanin and nervous system diseases%细菌黑色素与神经系统疾病的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨倩; 韩彦青; 姜晓萌; 裴宇恒; 李东芳; 李光来

    2016-01-01

    黑色素是广泛存在于自然界中的一类天然色素家族,苏云金芽孢杆菌突变株可获得高水平细菌黑色素,细菌黑色素能透过血脑屏障,具有抗氧化、螯合有毒金属、促进神经再生等生物学特性,可用来治疗某些与黑色素缺乏相关的神经性疾病,也能促进中枢神经系统及周围神经损伤后的结构和功能的恢复,文章就细菌黑色素在神经系统疾病的相关研究做了综述。%Melanin is a class of natural pigments family in nature. Bacterial melanin with high level of pigment synthesis-Bacillus thuringiensis was obtained. Bacterial melanin can cross the blood-brain barrier, accomplish antioxidant protection, chelate toxic metals, promote nerve regeneration. It can treat nervous system diseases with melanin deficiency, promote the structural and functional recovery of the central nervous system and peripheral nerve injury. This article summarized the research of the function of the bacterial melanin in the nervous system diseases.

  10. 星状神经节阻滞治疗围绝经期自主神经系统功能不稳定症状的疗效%Curative Effect of Stellate Ganglion Block on Function Disorders of Autonomic Nervous System in Perimenopause Women

    Institute of Scientific and Technical Information of China (English)

    王玲玲; 马杰; 张海泉; 张宝琴; 赵树华; 房丽

    2011-01-01

    目的 探讨星状神经节阻滞治疗围绝经期自主神经系统功能不稳定症状的疗效.方法 对30例主要表现自主神经系统功能不稳定症状如失眠、眩晕、心悸,皮肤感觉异常等的围绝经期患者.采用前入路星状神经节阻滞(Stellate Canglion Block,SGB)每日1次,左右交替进行,每10次为1个疗程,均治疗2个疗程.观察血中E2,FSH的水平及自主神经系统功能不稳定症状改善情况.结果 运用星状神经阻滞法治疗后,围绝经期患者自主神经系统功能不稳定症状明显改善,血中E2水平显著升高,FSH下降(P<0.05).结论 星状神经节阻滞可以治疗围绝经期自主神经系统功能不稳定,其症状明显缓解或消失.%[ Objective] To observe the curative effect of stellate ganglion block on function disorders of autonomic nervous system in perimenopause women. [ Methods ] 30 perimenopause women with function disorders of autonomic nervous system were collected, which the symptoms included insomnia, vertigo, palpitation and paresthesia. The patients were given anterior approach stellate ganglion block (SGB) once a day, alternating left and right, 10 times was one course, and all patients were treated for two courses. The levels of E2 and FSH in blood, and improvement of disorders symptoms of autonomic nervous system were observed. [ Results] After SGB treatment, symptoms of function disorders of autonomic nervous system in perimenopause women improved significantly, level of blood E2 increased significantly, whereas FSH level decreased (P < 0.05). [ Conclusion ] SGB has good effect on the function disorders of autonomic nervous system in perimenopause women, the symptoms are significantly alleviated or disappeared.

  11. HIV-Associated Central Nervous System Disease in Patients Admitted at the Douala General Hospital between 2004 and 2009: A Retrospective Study

    Directory of Open Access Journals (Sweden)

    Henry Namme Luma

    2013-01-01

    Full Text Available Background. Studies on HIV-associated central nervous system (CNS diseases in Cameroon are rare. The aim of this study was to describe the clinical presentation, identify aetiological factors, and determine predictors of mortality in HIV patients with CNS disease. Methods. From January 1, 2004 and December 31, 2009, we did at the Douala General Hospital a clinical case note review of 672 admitted adult (age ≥ 18 years HIV-1 patients, and 44.6% (300/672 of whom were diagnosed and treated for HIV-associated CNS disease. Results. The mean age of the study population was years, and median CD4 count was 49 cells/mm3 (interquartile range (QR: 17–90. The most common clinical presentations were headache (83%, focal signs (40.6%, and fever (37.7%. Toxoplasma encephalitis and cryptococcal meningitis were the leading aetiologies of HIV-associated CNS disease in 32.3% and 25% of patients, respectively. Overall mortality was 49%. Primary central nervous system lymphoma (PCNSL and bacterial meningitis had the highest case fatality rates of 100% followed by tuberculous meningitis (79.8%. Low CD4 count was an independent predictor of fatality (AOR: 3.2, 95%CI: 2.0–5.2. Conclusions. HIV-associated CNS disease is common in Douala. CNS symptoms in HIV patients need urgent investigation because of their association with diseases of high case fatality.

  12. Autonomic function assessment in Parkinson's disease patients using the kernel method and entrainment techniques.

    Science.gov (United States)

    Kamal, Ahmed K

    2007-01-01

    The experimental procedure of lowering and raising a leg while the subject is in the supine position is considered to stimulate and entrain the autonomic nervous system of fifteen untreated patients with Parkinson's disease and fifteen age and sex matched control subjects. The assessment of autonomic function for each group is achieved using an algorithm based on Volterra kernel estimation. By applying this algorithm and considering the process of lowering and raising a leg as stimulus input and the Heart Rate Variability signal (HRV) as output for system identification, a mathematical model is expressed as integral equations. The integral equations are considered and fixed for control subjects and Parkinson's disease patients so that the identification method reduced to the determination of the values within the integral called kernels, resulting in an integral equations whose input-output behavior is nearly identical to that of the system in both healthy subjects and Parkinson's disease patients. The model for each group contains the linear part (first order kernel) and quadratic part (second order kernel). A difference equation model was employed to represent the system for both control subjects and patients with Parkinson's disease. The results show significant difference in first order kernel(impulse response) and second order kernel (mesh diagram) for each group. Using first order kernel and second order kernel, it is possible to assess autonomic function qualitatively and quantitatively in both groups.

  13. Moderate pressure massage elicits a parasympathetic nervous system response.

    Science.gov (United States)

    Diego, Miguel A; Field, Tiffany

    2009-01-01

    Twenty healthy adults were randomly assigned to a moderate pressure or a light pressure massage therapy group, and EKGs were recorded during a 3-min baseline, during the 15-min massage period and during a 3-min postmassage period. EKG data were then used to derive the high frequency (HF), low frequency (LF) components of heart rate variability and the low to high frequency ratio (LF/HF) as noninvasive markers of autonomic nervous system activity. The participants who received the moderate pressure massage exhibited a parasympathetic nervous system response characterized by an increase in HF, suggesting increased vagal efferent activity and a decrease in the LF/HF ratio, suggesting a shift from sympathetic to parasympathetic activity that peaked during the first half of the massage period. On the other hand, those who received the light pressure massage exhibited a sympathetic nervous system response characterized by decreased HF and increased LF/HF.

  14. Rhabdoid tumors of the central nervous system.

    Science.gov (United States)

    Reinhardt, D; Behnke-Mursch, J; Weiss, E; Christen, H J; Kühl, J; Lakomek, M; Pekrun, A

    2000-04-01

    Rhabdoid tumors of the central nervous system are rare malignancies with a still almost uniformly fatal outcome. There is still no proven curative therapy available. We report our experience with nine patients with central nervous system rhabdoid tumors. Gross complete surgical removal of the tumor was achieved in six patients. Seven patients received intensive chemotherapy. Four of these were treated in addition with both neuroaxis radiotherapy and a local boost directed to the tumor region, while two patients received local radiotherapy only. The therapy was reasonably well tolerated in most cases. Despite the aggressive therapy, eight of the nine patients died from progressive tumor disease, and one patient died from hemorrhagic brain stem lesions of unknown etiology. The mean survival time was 10 months after diagnosis. Conventional treatment, although aggressive, cannot change the fatal prognosis of central nervous system rhabdoid tumors. As these neoplasms are so rare, a coordinated register would probably be a good idea, offering a means of learning more about the tumor's biology and possible strategies of treatment.

  15. Measures of Autonomic Nervous System Regulation

    Science.gov (United States)

    2011-04-01

    Tension-Release Practices Trauma Resiliency Model (TRM)* X* X* Trauma and Tension Releasing Exercises (TRE) Yoga (Asana...Mindfulness Based Stress Reduction (MBSR) Yoga Nidra (iRest) X X *Study currently in progress utilizing these measures 7...pulse oximeter have the benefit of being more portable; they do not require a trained technician and are more durable than the traditional EKG. The

  16. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  17. Overstimulation of the inhibitory nervous system plays a role in the pathogenesis of neuromuscular and neurological diseases: a novel hypothesis.

    Science.gov (United States)

    Tuk, Bert

    2016-01-01

    Based upon a thorough review of published clinical observations regarding the inhibitory system, I hypothesize that this system may play a key role in the pathogenesis of a variety of neuromuscular and neurological diseases. Specifically, excitatory overstimulation, which is commonly reported in neuromuscular and neurological diseases, may be a homeostatic response to inhibitory overstimulation. Involvement of the inhibitory system in disease pathogenesis is highly relevant, given that most approaches currently being developed for treating neuromuscular and neurological diseases focus on reducing excitatory activity rather than reducing inhibitory activity.

  18. Necrotizing Liver Granuloma/Abscess and Constrictive Aspergillosis Pericarditis with Central Nervous System Involvement: Different Remarkable Phenotypes in Different Chronic Granulomatous Disease Genotypes

    Directory of Open Access Journals (Sweden)

    Sanem Eren Akarcan

    2017-01-01

    Full Text Available Chronic granulomatous disease (CGD is a primary immune deficiency causing predisposition to infections with specific microorganisms, Aspergillus species and Staphylococcus aureus being the most common ones. A 16-year-old boy with a mutation in CYBB gene coding gp91phox protein (X-linked disease developed a liver abscess due to Staphylococcus aureus. In addition to medical therapy, surgical treatment was necessary for the management of the disease. A 30-month-old girl with an autosomal recessive form of chronic granulomatous disease (CYBA gene mutation affecting p22phox protein had invasive aspergillosis causing pericarditis, pulmonary abscess, and central nervous system involvement. The devastating course of disease regardless of the mutation emphasizes the importance of early diagnosis and intervention of hematopoietic stem cell transplantation as soon as possible in children with CGD.

  19. Nosocomial infections in patients with acute central nervous system infections

    OpenAIRE

    2007-01-01

    Due to current increase in the rate of nosocomial infections, our objective was to examine the frequency, risk factors, clinical presentation and etiology of nosocomial infections in patients with central nervous system infections. 2246 patients with central nervous system infections, treated in the intensive care units of the Institute of Infectious and Tropical Diseases, Clinical Center of Serbia in Belgrade and at the Department of Infectious Diseases of the Clinical Hospital Center Kraguj...

  20. N-Acetylmannosamine improves sleep-wake quality in middle-aged mice: relevance to autonomic nervous function.

    Science.gov (United States)

    Kuwahara, Masayoshi; Ito, Koichi; Hayakawa, Koji; Yagi, Shintaro; Shiota, Kunio

    2015-01-01

    Aging is associated with a variety of physiological changes originating peripherally and centrally, including within the autonomic nervous system. Sleep-wake disturbances constitute reliable hallmarks of aging in several animal species and humans. Recent studies have been interested in N-acetylmannosamine (ManNAc) a potential therapeutic agent for improving quality of life, as well as preventing age-related cognitive decline. In this study, ManNAc (5.0 mg/ml) was administered in the drinking water of middle-aged male C57BL/6J mice (55 weeks old) for 7 days. Mice were housed under a 12:12 h light:dark cycle at 23-24 °C. We evaluated bio-behavioral activity using electrocardiogram, body temperature and locomotor activity recorded by an implanted telemetry transmitter. To estimate sleep-wake profile, surface electroencephalogram and electromyogram leads connected to a telemetry transmitter were also implanted in mice. Autonomic nervous activity was evaluated using power spectral analysis of heart rate variability. ManNAc-treated mice spent more time in a wakeful state and less time in slow wave sleep during the dark phase. Parasympathetic nervous activity was increased following ManNAc treatment, then the sympatho-vagal balance was shifted predominance of parasympathetic nervous system. Furthermore, improvement in sleep-wake pattern was associated with increased parasympathetic nervous activity. These results suggest that ManNAc treatment can improve bio-behavioral activity and sleep-wake quality in middle-aged mice. This may have implications for improving sleep patterns in elderly humans.

  1. 低氘白酒对人体心率变异性和自主神经的调控作用%Effects of deuterium-depleted Chinese liquor on heart rate variability and autonomic nervous system

    Institute of Scientific and Technical Information of China (English)

    夏红蕾; 石路; 沈才洪; 刘洪涛; 周军; 曾娜; 刘世龙; 李云辉; 丛峰松

    2014-01-01

    Objective To study the effect of deuterium-depleted Chinese liquor on heart rate variability(HRV),and evaluate the regulation of autonomic nervous system activity for cardiac function.Methods A total of 11 healthy adult male were enrolled,aged 21-25 years old with mean age of 23.7,and body weight (64.7 ± 4.5) kg.The study was divided into 7 groups:①control group(CK),without any alcoholic beverages; ②low-dose alcohol group(A-L),every day drinking 50 mL 52 degrees self-made alcohol + 200 mL water,③high-dose alcohol group (A-H),every day drinking 100 mL 52 degrees self-made alcohol + 200 mL water; ④low-dose ordinary Chinese liquor group (L-L),every day drinking 50 mL 52 degrees Luzhoulaojiao + 200mL water; ⑤high dose ordinary Chinese liquor group(L-H),every day drinking 100 mL 52 degrees Luzhoulaojiao + 200 mL water; ⑤low-dose deuterium-depleted Chinese liquor group(DDL-L),every day drinking 50 mL 52 degrees Luzhoulaojiao + 200 mL deuterium-depleted water;,⑦high-dose deuterium depleted Chinese liquor group (DDL-H),every day drinking 100 mL 52 degrees Luzhoulaojiao + 200 mL deuteriumdepleted water.The test was performed serial 8-day,the Biopac MP30 system was adopted to collect data of HRV 30-45 minutes after drinking and sympathetic and parasympathetic nervous systems were evaluated.Results The self-made alcoholic and traditional liquor made sympathetic atomic nerve activity and changed parasympathetic,the most was sympathetic nerve,but there was no significant changed in deuterium-depleted Chinese liquor.Conclusion It is demonstrated that the deuterium-depleted Chinese liquor is useful to maintain the balance of cardiac sympathetic and parasympathetic autonomic nervous to the certain degree.%目的 研究连续8d急性摄入不同剂量自制酒精饮料、传统白酒和低氘白酒对人体心率变异性(HRV)和自主神经调控作用.方法 11例健康成年男性志愿者,体质量(64.7±4.5) kg,年龄21~25岁,平均年龄23.7岁.分为7个

  2. Autonomic nervous control of the heart rate during isometric exercise in normal man.

    Science.gov (United States)

    Maciel, B C; Gallo Júnior, L; Marin Neto, J A; Martins, L E

    1987-02-01

    The relative contribution of the efferent components of the autonomic nervous system to the regulation of tachycardia induced by isometric exercise was assessed in 23 normal males. The isometric exercise (handgrip) was performed at the maximum intensity tolerated by the individual over a period of 10 s (maximal voluntary contraction-MVC) and at levels equivalent to 75, 50 and 25% of MVC for 20, 40 and 10 s, respectively. The study was performed both under control conditions and after pharmacological blockade with atropine (12 individuals) or propranolol (11 individuals). Under control conditions, the heart rate (HR) responses to isometric effort were dependent on the intensity and duration of the exercise, showing a tendency towards progressive elevation with the maintenance of muscular contraction at the levels studied. The tachycardia evoked by this effort was of considerable magnitude and of rapid onset, especially at the more intense levels of activity. Parasympathetic blockade markedly decreased tachycardia, which manifested itself during the first 10 s of exercise at all levels of intensity, whereas sympathetic blockade markedly modified the HR response after 10 s of effort at the 75 and 50% MVC levels. A slight depression of the tachycardiac response could be observed already after 10 s of maximum effort after propranolol. The present results suggest that the autonomic regulation of these responses is based on a biphasic mechanism, with the initial phase depending on the rapid withdrawal of the parasympathetic influence, followed by a marked sympathetic contribution to the induction of tachycardia after 10 s of isometric contraction or even a little before at maximum exertion.

  3. Types of neurons in the enteric nervous system.

    Science.gov (United States)

    Furness, J B

    2000-07-01

    This paper, written for the symposium in honour of more than 40 years' contribution to autonomic research by Professor Geoffrey Burnstock, highlights the progress made in understanding the organisation of the enteric nervous system over this time. Forty years ago, the prevailing view was that the neurons within the gut wall were post-ganglionic neurons of parasympathetic pathways. This view was replaced as evidence accrued that the neurons are part of the enteric nervous system and are involved in reflex and integrative activities that can occur even in the absence of neuronal influence from extrinsic sources. Work in Burnstock's laboratory led to the discovery of intrinsic inhibitory neurons with then novel pharmacology of transmission, and precipitated investigation of neuron types in the enteric nervous system. All the types of neurons in the enteric nervous system of the small intestine of the guinea-pig have now been identified in terms of their morphologies, projections, primary neurotransmitters and physiological identification. In this region there are 14 functionally defined neuron types, each with a characteristic combination of morphological, neurochemical and biophysical properties. The nerve circuits underlying effects on motility, blood flow and secretion that are mediated through the enteric nervous system are constructed from these neurons. The circuits for simple motility reflexes are now known, and progress has been made in analysing those involved in local control of blood flow and transmucosal fluid movement in the small intestine.

  4. Central nervous system tuberculosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kioumehr, F.; Dadsetan, M.R.; Rooholamini, S.A.; Au, A.

    1994-02-01

    The MRI findings of 18 proven cases of central nervous system (CNS) tuberculosis were reviewed; 10 patients were seropositive for HIV. All had medical, laboratory, or surgical proof of CNS tuberculosis. Eleven patients had meningitis, of whom two also had arachnoiditis. Five patients had focal intra-axial tuberculomas: four brain masses and one an intramedullary spinal lesion. Two patients had focal extra-axial tuberculomas: one in the pontine cistern, and one in the spine. In all 11 patients with meningitis MRI showed diffuse, thick, meningeal enhancement. All intraparenchymal tuberculomas showed low signal intensity on T2-weighted images and ring or nodular enhancement. The extra-axial tuberculomas had areas isointense or hypointense relative to normal brain and spinal cord on T2-weighted images. Although tuberculous meningitis cannot be differentiated from other meningitides on the basis of MR findings, intraparenchymal tuberculomas show characteristic T2 shortening, not found in most other space-occupying lesions. In the appropriate clinical setting, tuberculoma should be considered. (orig.)

  5. Neurogenesis in the adult peripheral nervous system

    Institute of Scientific and Technical Information of China (English)

    Krzysztof Czaja; Michele Fornaro; Stefano Geuna

    2012-01-01

    Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence of insult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system.

  6. Application progress of botulinum toxin type A in the nervous system diseases%A型肉毒毒素在神经系统疾病中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    江伟; 何传斌

    2011-01-01

    In recent years, with the deepening study on the mechanism of botulinum toxin type A, the range of its applica -tions in the nervous system diseases continues to expand. Because botulinum toxin type A produces partial chemical dener-vation of the muscle resulting in a localized reduction in muscle activity, it can be used to treat hemifacial spasm, idio -pathic blepharospasm, oromandibular dystonia, spasmodic torticollis, tic disorder, limb spasticity after stroke and spastic cerebral palsy. In addition, it has recently begun to show some benefit in the control of hyperhidrosis ang excessive saliva -tion disease on account of its effects of the autonomic nervous system. It may also prove useful in treatment of a variety of headache and neuralgia owing to its analgesic effects. Therefore, botulinum toxin type A has become an important treatment option in the field of neurology.%近年来随着A型肉毒毒素作用机制研究的不断深入,其在神经系统疾病中的应用范围日渐扩大.因其肌肉化学性去神经支配效应可用于治疗面肌痉挛、特发性眼睑痉挛、口下颌肌张力障碍、痉挛性斜颈、抽动障碍、脑卒中后肢体痉挛和痉挛性脑瘫;因其植物神经系统效应可用于治疗多涎病症和多汗证;因其镇痛效应可用于治疗各种头痛和神经痛,故A型肉毒毒素已逐渐成为神经科领域一种重要的治疗手段.

  7. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  8. MicroRNAs与神经系统疾病研究进展%Advance research of microRNAs and nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    李娜; 张帅; 王丽华

    2014-01-01

    More and more attentions are paid to the critical role of gene expression regulators in disease states,except for the classic mutations in coding regions of genes.Disregulation in gene expression is one of the main underlying mechanisms that contribute to disease development.As the main member of the modulators of gene expression,microRNAs control protein production by targeting mRNAs for translational repression or degradation.MicroRNAs play a significant role in many biological processes such as cellular proliferation and maturation,apoptosis,regulation of chronic inflammation and development of cancer.Since one microRNA can target many functional-related genes,they open a new field for diagnosis and therapy assessment in various diseases.In this review,we focus on the emerging microRNAs that are differentially regulated in the more common nervous system diseases,their targets,and potential function.We discuss the potential of microRNAs as a disease marker and a novel therapeutic target in nervous system diseases.Better understanding of the role of microRNAs in nervous system diseases will improve our knowledge of the pathogenesis of these diseases.%目前除基因编码区突变外,基因表达调节因子的重要作用越来越受到关注.基因表达的失调是疾病发生发展的重要机制.MicroRNAs作为基因调节网络中的主要成员,是通过靶向作用于mRNAs,降解和(或)抑制其翻译,从而在转录后水平发挥调节作用.MicroRNAs在细胞分化、增殖、凋亡,炎症反应以及肿瘤形成等诸多生物学过程中发挥着重要作用.由于microRNAs能同时作用于多个功能相关的基因,其可能成为疾病有效的治疗靶点.本文主要探讨近年来研究发现的作用于神经系统主要疾病中的不同microRNAs及其作用.这些研究将为阐明神经系统主要疾病的病因,提供有效诊断和更具体化的个体化治疗开拓新的领域.

  9. The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function.

    Science.gov (United States)

    Tyszka-Czochara, Małgorzata; Grzywacz, Agata; Gdula-Argasińska, Joanna; Librowski, Tadeusz; Wiliński, Bogdan; Opoka, Włodzimierz

    2014-01-01

    Zinc, the essential trace element, is known to play multiple biological functions in human organism. This metal is a component of many structural as well as regulatory and catalytic proteins. The precise regulation of zinc homeostasis is essential for central nervous system and for the whole organism. Zinc plays a significant role in the brain development and in the proper brain function at every stage of life. This article is a review of knowledge about the role of zinc in central nervous system (CNS) function. The influence of this biometal on etiopathogenesis, prevention and treatment of selected brain diseases and disorders was discussed. Zinc imbalance can result not only from insufficient dietary intake, but also from impaired activity of zinc transport proteins and zinc dependent regulation of metabolic pathways. It is known that some neurodegenerative processes are connected with zinc dyshomeostasis and it may influence the state of Alzheimer's disease, depression and ageing-connected loss of cognitive function. The exact role of zinc and zinc-binding proteins in CNS pathogenesis processes is being under intensive investigation. The appropriate zinc supplementation in brain diseases may help in the prevention as well as in the proper treatment of several brain dysfunctions.

  10. Systematic approaches to central nervous system myelin.

    Science.gov (United States)

    de Monasterio-Schrader, Patricia; Jahn, Olaf; Tenzer, Stefan; Wichert, Sven P; Patzig, Julia; Werner, Hauke B

    2012-09-01

    Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.

  11. [Chemokine CC receptors in the nervous system].

    Science.gov (United States)

    Radzik, Tomasz Łukasz; Głabiński, Andrzej; Żylińska, Ludmiła

    2015-01-01

    Chemoattractant cytokines (chemokines) are traditionally known as the important mediators of inflammatory processes, however, recently, is also given to their other functions in the body. Acting through specific receptors belonging to the G proteins they regulate immune processes in the body. About 20 chemokine receptors have been identified so far, and 10 of them bind chemokines CC, i.e. having in amino-terminal domain 2 adjacent molecules of cysteins. An increasing number of data indicates that chemokines and their receptors play an important role in the nervous system by acting as trophic factors, increasing the neurons survival, neural migration and synaptic transmission. Special role chemokine receptors play primarily in the diseases of the nervous system, because due to damage of the blood-brain barrier and the blood cerebrospinal fluid barrier, infiltration of leukocytes results in development of inflammation. Chemokine CC receptors has been shown to participate in Alzheimer's disease, multiple sclerosis, dementia associated with HIV infection, stroke or some type of cancers.

  12. The Enteric Nervous System in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Keith A Sharkey

    1996-01-01

    Full Text Available Since about the 1950s nerves in the wall of the intestine have been postulated to play a role in the pathogenesis of inflammatory bowel disease (IBD. Human and animal studies examining the role of nerves in intestinal inflammation are the focus of this review. Consideration is given to two possible ways that nerves are involved in IBD. First, nerves may play a role in the development or maintenance of inflammation through local release of transmitters. Second, once initiated (by whatever means, the processes of inflammation may disrupt the normal pattern of innervation and the interactions of nerves and their target tissues. Many of the functional disturbances observed in IBD are likely due to an alteration in the enteric nervous system either structurally through disruptions of nerve-target relationships or by modifications of neurotransmitters or their receptors. Finally, it appears that the enteric nervous system may be a potential therapeutic target in IBD and that neuroactive drugs acting locally can represent useful agents in the management of this disease.

  13. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    NARCIS (Netherlands)

    Weekamp, H.; Huygen, P.L.M.; Merx, J.L.; Kremer, H.P.H.; Cremers, C.W.R.J.; Longridge, N.S.

    2003-01-01

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs. Chr

  14. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  15. Autonomous photovoltaic lighting system

    OpenAIRE

    Ahmed A. A. Hafez; Montesinos Miracle, Daniel; Sudrià Andreu, Antoni

    2012-01-01

    This paper introduces a comparison between the conventional and Photovoltaic (PV) lighting systems. A simple sizing procedure for a PV stand-alone system was advised. The paper also proposes a novel PV lighting system. The proposed system is simple, compact and reliable. The system operation was investigated by thoroughly mathematical and simulation work.

  16. Aquaporin-4 Immuneglobulin G testing in 36 consecutive Jamaican patients with inflammatory central nervous system demyelinating disease

    Directory of Open Access Journals (Sweden)

    Sherri Sandy

    2014-08-01

    Full Text Available Epidemiological studies of neuromyelitis optica (NMO in Jamaica are lacking. Here we reviewed the clinical records of 700 patients undergoing neurological evaluation at the Kingston Public Hospital, the largest tertiary institution in Jamaica over a 4 month period. We investigated the diagnostic utility of Aquaporin-4 ImmuneglobulinG (AQP4-IgG testing in 36 consecutive patients with a diagnosis of an inflammatory demyelinating disorder (IDD of the central nervous system (CNS. Patients were classified into 3 categories: i NMO, n=10; ii multiple sclerosis (MS, n=14 and iii unclassified IDD (n=12. All sera were tested for AQP-IgG status by cell binding assay (Euroimmun. No MS cases were positive. Ninety per cent of NMO cases were positive. Four of 12 patients with unclassified IDD tested positive for AQP4-IgG. AQP4-IgG seropositivity was associated with a lower socioeconomic status, higher EDSS (P=0.04 and lower pulmonary function than the seronegative cases (P=0.007. Aquaporin-4 autoimmunity may account for a significant proportion of Jamaican CNS IDDs.

  17. Central nervous system involvement by multiple myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, Artur; Grzasko, Norbert; Gozzetti, Alessandro

    2016-01-01

    The multicenter retrospective study conducted in 38 centers from 20 countries including 172 adult patients with CNS MM aimed to describe the clinical and pathological characteristics and outcomes of patients with multiple myeloma (MM) involving the central nervous system (CNS). Univariate......, 97% patients received initial therapy for CNS disease, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. After a median follow-up of 3.5 years, the median overall survival (OS) from the onset of CNS involvement for the entire group was 7 months. Untreated...... untreated patients and patients with favorable cytogenetic profile might be prolonged due to systemic treatment and/or radiotherapy. This article is protected by copyright. All rights reserved....

  18. Central Nervous System Involvement by Multiple Myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, A.; Gozzetti, A.; Cerase, A.

    2015-01-01

    Introduction: Central nervous system (CNS) involvement by multiple myeloma (MM) is a rare occurrence and is found in approximately 1% of MM patients at some time during the course of their disease. At the time of diagnosis, extramedullary MM is found in 7% of patients, and another 6% may develop....... Results: The median time from MM diagnosis to CNS MM diagnosis was 3 years. Upon diagnosis, 97% patients with CNS MM received frontline therapy, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. The most common symptoms at presentation were visual changes (36...... history of chemotherapy and unfavorable cytogenetic profile, survival of individuals free from these negative prognostic factors can be prolonged due to administration of systemic treatment and/or radiotherapy. Prospective multi-institutional studies are warranted to improve the outcome of patients...

  19. Sympathetic Nervous System, Hypertension, Obesity and Metabolic Syndrome.

    Science.gov (United States)

    Seravalle, Gino; Grassi, Guido

    2016-09-01

    Experimental and clinical studies have clearly shown the role of the sympathetic nervous system in the pathophysiology of several cardiovascular and non-cardiovascular diseases. This short review will be aimed at focusing and discussing the new information collected on two specific clinical conditions such as obesity and metabolic syndrome. The paper will briefly describe the four main mechanisms that represent the common link between these two pathophysiological conditions and that through the sympathetic nervous system contribute to increase the cardiovascular risk.

  20. [Functional anatomy of the central nervous system].

    Science.gov (United States)

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  1. Nervous system examination on YouTube

    OpenAIRE

    2012-01-01

    Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “...

  2. Semi autonomous mine detection system

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.

  3. Semi autonomous mine detection system

    Science.gov (United States)

    Few, Doug; Versteeg, Roelof; Herman, Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude - from an autonomous robotic perspective - the rapid development and deployment of fieldable systems.

  4. Central nervous system lupus erythematosus in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Shumpei; Kimura, Kazue; Yoshida, Naotaka; Mitsuda, Toshihiro; Ibe, Masa-aki; Shimizu, Hiroko (Yokohama City Univ. (Japan). Faculty of Medicine)

    1989-12-01

    Clinical features of central nervous system (CNS) invlvement in childhood systemic lupus erythematosus (SLE) was investigated. Neuropsychiatric manifestations including seizures, chorea, headache, overt psychosis, tremor, increase of muscle spastisity, and disturbed memory were found in 47% of 15 patients with SLE. There was a well correlatin between CNS abnormalities and SLE disease activity judged by serum complement levels and anti-nuclear antibody and anti-DNA antibody titers. The administration of Prednisolon was effective for the treatment of these CNS abnormalities and steroid psychosis was rare in the present study. EEG abnormalities involving diffuse slowing and slowing bursts were found in 73% of the patients. Cranial CT scan revealed basel ganglia calcifications in 2 patients, and marked brain atrophy in 3 patients. This study indicated that in the long term following of SLE children CNS abnormalities need to be serially checked by EEG and cranial CT scans as well as serological investigations. (author).

  5. Abnormal hyperintensity within the subarachnoid space evaluated by fluid-attenuated inversion-recovery MR imaging: a spectrum of central nervous system diseases

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, M.; Sakuma, H.; Takeda, K. [Dept. of Radiology, Mie Univ. School of Medicine, Mie (Japan); Yagishita, A. [Dept. of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo (Japan); Yamamoto, T. [Dept. of Radiology, Obama Municipal Hospital, Fukui (Japan)

    2003-12-01

    A variety of central nervous system (CNS) diseases are associated with abnormal hyperintensity within the subarachnoid space (SAS) by fluid-attenuated inversion-recovery (FLAIR) MR imaging. Careful attention to the SAS can provide additional useful information that may not be available with conventional MR sequences. The purpose of this article is to provide a pictorial essay about CNS diseases and FLAIR images with abnormal hyperintensity within the SAS. We present several CNS diseases including subarachnoid hemorrhage, meningitis, leptomeningeal metastases, acute infarction, and severe arterial occlusive diseases such as moya-moya disease. We also review miscellaneous diseases or normal conditions that may exhibit cerebrospinal fluid hyperintensity on FLAIR images. Although the detection of abnormal hyperintensity suggests the underlying CNS diseases and narrows differential diagnoses, FLAIR imaging sometimes presents artifactual hyperintensity within the SAS that can cause the misinterpretation of normal SAS as pathologic conditions; therefore, radiologists should be familiar with such artifactual conditions as well as pathologic conditions shown as hyperintensity by FLAIR images. This knowledge is helpful in establishing the correct diagnosis. (orig.)

  6. Autonomous cascaded PV system

    OpenAIRE

    2011-01-01

    This paper proposes multi-level PV system; three PV generators each coupled to a buck cell. Each PV-generator-buckconverter channel is controlled such that maximum power is captured independently under different irradiation and temperature levels. The system operation under normal/abnormal conditions is investigated by thoroughly mathematical and simulation work. Peer Reviewed

  7. Assessment of the autonomic nervous injury by adriamycin using the analysis of heart rate variability

    Energy Technology Data Exchange (ETDEWEB)

    Matsukawa, Seishirou [Toho Univ., Tokyo (Japan). Omori Hospital

    1998-06-01

    Analysis of the heart rate variability were carried out for the cases with malignant tumors of the erythropoietic organ who received adriamycin (ADR), and the effects of ADR on the autonomic nervous of these patients were studied. Seven of 35 cases were examined for the consecutive heart rate variability and {sup 123}I-metaiodobenzylguanidine (MIBG) myocardial SPECT, after the administration of ADR. TP value, LF value, LF/HF and SDANN value were 1,448 msec{sup 2}, 354 msec{sup 2}, 2.0 and 97 msec, respectively, indicating that these values were significantly lower than the healthy controls (the C group) (P<0.01). Consecutive observation for 7 cases of ADR group revealed that TP value decreased from 1,489 msec{sup 2} to 1,058 msec{sup 2}, and HF value decreased from 191 msec{sup 2} to 123 msec{sup 2}, significantly (P<0.05). On the other hand, the washout rate of left ventricle which was estimated from MIBG myocardial SPECT increased from 22{+-}14% to 32{+-}14%, significantly (P<0.05). Though cumulative mean dosage of ADR was 286{+-}148 mg/m{sup 2}, sympathetic nervous injury and parasympathetic nervous was caused by such dose ADR, when examinated by the analysis of the heart rate variability and MIBG myocardial SPECT. It is possible to estimate the myocardial injury of heart autonomic nervous that precedes the injury of heart muscle by ADR, by analyzing the heart rate variability, when the cases with malignant tumors are subject to the chemotherapy. Thus it was suggested that the death by arrhythmia and the irreversible myocardial injury might be predictable. (author)

  8. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease.

    Science.gov (United States)

    Spencer, Brian; Potkar, Rewati; Metcalf, Jeff; Thrin, Ivy; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2016-01-22

    Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic.

  9. Childhood Central Nervous System Embryonal Tumors Treatment

    Science.gov (United States)

    ... Cord Tumors Treatment Childhood Astrocytomas Treatment Childhood Brain Stem Glioma ... Central nervous system (CNS) embryonal tumors may begin in embryonic (fetal) cells that remain in the brain after birth. ...

  10. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer's Disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Waldemar, Gunhild; Staehelin Jensen, Troels

    2015-01-01

    BACKGROUND: Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function. OBJECTIVE: To investigate autonomic...

  11. Exploring the potential benefits of vaccinia virus complement control protein in controlling complement activation in pathogenesis of the central nervous system diseases.

    Science.gov (United States)

    Kotwal, Girish J; Fernando, Nilisha; Zhou, Jianhua; Valter, Krisztina

    2014-10-01

    Aging is a major risk factor for the development of diseases related to the central nervous system (CNS), such as Alzheimer's disease (AD) and age-related macular degeneration (AMD). In both cases, linkage studies and genome-wide association studies found strong links with complement regulatory genes and disease risk. In AD, both CLU and CR1 genes were implicated in the late-onset form of the disease. In AMD, polymorphisms in CFH, CFB and C2 were similarly implicated. The cost of caring for patients with AD or AMD is approaching billions of dollars, and with the baby boomers reaching their 60's, this amount is likely to increase further. Intervention using complement inhibitors for individuals in their early 50s who are at a higher risk of disease development, (testing positive for genetic risk factors), could slow the progression of AD or AMD and possibly prevent the severity of late stage symptoms. Although we have used the vaccinia virus complement control protein (VCP) to elucidate the role of complement in CNS diseases, it has merely been an investigational tool but not the only possible potential therapeutic agent.

  12. The sympathetic nervous system alterations in human hypertension.

    Science.gov (United States)

    Grassi, Guido; Mark, Allyn; Esler, Murray

    2015-03-13

    Several articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as promoters and amplifiers of human hypertension. We expand on the role of the sympathetic nervous system in 2 increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves.

  13. Global research priorities for infections that affect the nervous system.

    Science.gov (United States)

    John, Chandy C; Carabin, Hélène; Montano, Silvia M; Bangirana, Paul; Zunt, Joseph R; Peterson, Phillip K

    2015-11-19

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries.

  14. Global research priorities for infections that affect the nervous system

    Science.gov (United States)

    John, Chandy C.; Carabin, Hélène; Montano, Silvia M.; Bangirana, Paul; Zunt, Joseph R.; Peterson, Phillip K.

    2015-01-01

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries. PMID:26580325

  15. Mechanosensitivity in the enteric nervous system

    Directory of Open Access Journals (Sweden)

    Gemma eMazzuoli-Weber

    2015-10-01

    Full Text Available The enteric nervous system (ENS autonomously controls gut muscle activity. Mechanosensitive enteric neurons (MEN initiate reflex activity by responding to mechanical deformation of the gastrointestinal wall. MEN throughout the gut primarily respond to compression or stretch rather than to shear force. Some MEN are multimodal as they respond to compression and stretch. Depending on the region up to 60% of the entire ENS population responds to mechanical stress. MEN fire action potentials after mechanical stimulation of processes or soma although they are more sensitive to process deformation. There are at least two populations of MEN based on their sensitivity to different modalities of mechanical stress and on their firing pattern. 1 Rapidly, slowly and ultra-slowly adapting neurons which encode compressive forces. 2 Ultra-slowly adapting stretch-sensitive neurons encoding tensile forces. Rapid adaptation of firing is typically observed after compressive force while slow adaptation or ongoing spike discharge occurs often during tensile stress (stretch. All MEN have some common properties: they receive synaptic input, are low fidelity mechanoreceptors and are multifunctional in that some serve interneuronal others even motor functions. Consequently, MEN possess processes with mechanosensitive as well as efferent functions. This raises the intriguing hypothesis that MEN sense and control muscle activity at the same time as servo-feedback loop. The mechanosensitive channel(s or receptor(s expressed by the different MEN populations are unknown. Future concepts have to incorporate compressive and tensile-sensitive MEN into neural circuits that controls muscle activity. They may interact to control various forms of a particular motor pattern or regulate different motor patterns independently from each other.

  16. Sympathetic nervous system and chronic renal failure.

    Science.gov (United States)

    Boero, R; Pignataro, A; Ferro, M; Quarello, F

    2001-01-01

    The aim of this work was to review evidence on the role of the sympathetic nervous system (SNS) in chronic renal failure (CRF). Three main points are discussed: 1) SNS and pathogenesis of arterial hypertension; 2) SNS and cardiovascular risk; 3) implication of SNS in arterial hypotension during hemodialysis. Several lines of evidence indicate the presence of a sympathetic hyperactivity in CRF, and its relationship with arterial hypertension. It is suggested that diseased kidneys send afferent nervous signals to central integrative sympathetic nuclei, thus contributing to the development and maintenance of arterial hypertension. The elimination of these impulses with nephrectomy could explain the concomitant reduction of blood pressure. Several experiments confirmed this hypothesis. Regarding SNS and cardiovascular risk, some data suggest that reduced heart rate variability identifies an increased risk for both all causes and sudden death, independently from other recognized risk factors. Symptomatic hypotension is a common problem during hemodialysis treatment, occurring in approximately 20-30% of all hemodialysis sessions and is accompanied by acute withdrawal of sympathetic activity, vasodilation and relative bradicardia. This reflex is thought to be evoked by vigorous contraction of a progressively empty left ventricle, activating cardiac mechanoceptors. This inhibits cardiovascular centers through vagal afferents, and overrides the stimulation by baroreceptor deactivation. Alternative explanations include cerebral ischemia and increased production of nitric oxide, which inhibit central sympathetic activity. It is hoped that therapies aimed at modulating sympathetic nerve activity in patients with CRF will ameliorate their prognosis and quality of life.

  17. Glucocorticoids and central nervous system inflammation.

    Science.gov (United States)

    Dinkel, Klaus; Ogle, William O; Sapolsky, Robert M

    2002-12-01

    Glucocorticoids (GCs) are well known for their anti-inflammatory and immunosuppressive properties in the periphery and are therefore widely and successfully used in the treatment of autoimmune diseases, chronic inflammation, or transplant rejection. This led to the assumption that GCs are uniformly anti-inflammatory in the periphery and the central nervous system (CNS). As a consequence, GCs are also used in the treatment of CNS inflammation. There is abundant evidence that an inflammatory reaction is mounted within the CNS following trauma, stroke, infection, and seizure, which can augment the brain damage. However an increasing number of studies indicate that the concept of GCs being universally immunosuppressive might be oversimplified. This article provides a review of the current literature, showing that under certain circumstances GCs might fail to have anti-inflammatory effects and sometimes even enhance inflammation.

  18. Advances in Primary Central Nervous System Lymphoma.

    Science.gov (United States)

    Patrick, Lauren B; Mohile, Nimish A

    2015-12-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that is limited to the CNS. Although novel imaging techniques aid in discriminating lymphoma from other brain tumors, definitive diagnosis requires brain biopsy, vitreoretinal biopsy, or cerebrospinal fluid analysis. Survival rates in clinical studies have improved over the past 20 years due to the addition of high-dose methotrexate-based chemotherapy regimens to whole-brain radiotherapy. Long-term survival, however, is complicated by clinically devastating delayed neurotoxicity. Newer regimens are attempting to reduce or eliminate radiotherapy from first-line treatment with chemotherapy dose intensification. Significant advances have also been made in the fields of pathobiology and treatment, with more targeted treatments on the horizon. The rarity of the disease makes conducting of prospective clinical trials challenging, requiring collaborative efforts between institutions. This review highlights recent advances in the biology, detection, and treatment of PCNSL in immunocompetent patients.

  19. Autonomous Systems: Autonomous Cryogenic Loading Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objectives are to develop and integrate Integrated Systems Health Management (ISHM) tools and component technologies into a seamless health management...

  20. Cardiac autonomic testing and treating heart disease. 'A clinical perspective'

    Directory of Open Access Journals (Sweden)

    Nicholas L. DePace

    2014-12-01

    Full Text Available Background Coronary heart disease (CHD is a major health concern, affecting nearly half the middle-age population and responsible for nearly one-third of all deaths. Clinicians have several major responsibilities beyond diagnosing CHD, such as risk stratification of patients for major adverse cardiac events (MACE and treating risks, as well as the patient. This second of a two-part review series discusses treating risk factors, including autonomic dysfunction, and expected outcomes. Methods Therapies for treating cardiac mortality risks including cardiovascular autonomic neuropathy (CAN, are discussed. Results While risk factors effectively target high-risk patients, a large number of individuals who will develop complications from heart disease are not identified by current scoring systems. Many patients with heart conditions, who appear to be well-managed by traditional therapies, experience MACE. Parasympathetic and Sympathetic (P&S function testing provides more information and has the potential to further aid doctors in individualizing and titrating therapy to minimize risk. Advanced autonomic dysfunction (AAD and its more severe form cardiovascular autonomic neuropathy have been strongly associated with an elevated risk of cardiac mortality and are diagnosable through autonomic testing. This additional information includes patient-specific physiologic measures, such as sympathovagal balance (SB. Studies have shown that establishing and maintaining proper SB minimizes morbidity and mortality risk. Conclusions P&S testing promotes primary prevention, treating subclinical disease states, as well as secondary prevention, thereby improving patient outcomes through (1 maintaining wellness, (2 preventing symptoms and disorder and (3 treating subclinical manifestations (autonomic dysfunction, as well as (4 disease and symptoms (autonomic neuropathy.

  1. Assessment and study of changes psychosomatic state of the vegetative nervous system of patients with rosacea

    Directory of Open Access Journals (Sweden)

    Davydova A.V.

    2012-06-01

    Full Text Available

    Aims. The study aimed an identifying of signs of the vegetative nervous system and detailed study of the psychological characteristics of patients with rosacea. Materials and methods. The study included 60 patients with different clinical forms of rosacea at the age from 26 to 56 years and a control group of 60 relatively healthy persons. The assessment of emotional status is carried out with the survey, Test of accentuations of temperament, Diagnostic Questionnaire Quality of Life Index (DILQ, The Zung Self-Rating Depression Scale, reduced multifactorial questionnaire for the study of personality. Vegetative nervous system was investigated using vegetative Kerdo index, Wayne and Solovyova tables and a special questionnaire for signs of vegetative disorders. Conclusions. Syndrome revealed the presence of vegetative-vascular dysfunction in patients with rosacea with a predominance of parasympathetic tone of the autonomic nervous system. Severity of psychoemotional disorders had no direct relationship to the severity of rosacea. But patients with advanced disease had a tighter self-control on the background of increased excitability and stronger internal emotional stress. Those patients were compared with a group of patients with earlier stage disease, which may provoke functional impairments and in case of long existence-the formation of psychosomatic disorders. This comprehensive assessment of vegetative and emotional status is included in the algorithm for evaluation of patients with rosacea and will successfully complement traditional therapy.

  2. Measuring quality of sleep and autonomic nervous function in healthy Japanese women

    Directory of Open Access Journals (Sweden)

    Sato M

    2014-01-01

    correlation coefficients of activity count and high frequency (r=−0.460, P<0.01. These results support the finding that sleep-wake rhythms can be monitored efficiently with actigraphy, providing accurate data that can support the diagnosis of sleeping disorders. Furthermore, actigraphy data were associated with heart rate variability and PSQI findings, but only in subjects who were poor sleepers. Actigraphy is an accurate, efficient, rapid, and inexpensive test for determining objective and subjective sleeping problems, and can also be used in clinical tests for sleep assessment.Keywords: Pittsburgh Sleep Quality Index, actigraph, heart rate variability, autonomic nervous system activity, women, screening method

  3. Multi-agent autonomous system

    Science.gov (United States)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  4. Experiences in Benchmarking of Autonomic Systems

    Science.gov (United States)

    Etchevers, Xavier; Coupaye, Thierry; Vachet, Guy

    Autonomic computing promises improvements of systems quality of service in terms of availability, reliability, performance, security, etc. However, little research and experimental results have so far demonstrated this assertion, nor provided proof of the return on investment stemming from the efforts that introducing autonomic features requires. Existing works in the area of benchmarking of autonomic systems can be characterized by their qualitative and fragmented approaches. Still a crucial need is to provide generic (i.e. independent from business, technology, architecture and implementation choices) autonomic computing benchmarking tools for evaluating and/or comparing autonomic systems from a technical and, ultimately, an economical point of view. This article introduces a methodology and a process for defining and evaluating factors, criteria and metrics in order to qualitatively and quantitatively assess autonomic features in computing systems. It also discusses associated experimental results on three different autonomic systems.

  5. The Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  6. Autonomous systems for plant protection

    DEFF Research Database (Denmark)

    Griepentrog, Hans W.; Ruckelshausen, Arno; Jørgensen, Rasmus Nyholm;

    2010-01-01

    Advances in automation are demanded by the market mainly as a response to high labor costs. Robotic outdoor systems are ready to allow not only economically viable operations but also increased efficiency in agriculture, horticulture and forestry. The aim of this chapter is to give examples...... of autonomous operations related to crop protection probably commercially available in the near future. Scouting and monitoring together with the efficient application of chemicals or mechanical treatments are operations which can be successful automated. Drawbacks are that current systems are lacking robust...

  7. Central nervous system toxicity of metallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Feng XL

    2015-07-01

    Full Text Available Xiaoli Feng,1 Aijie Chen,1 Yanli Zhang,1 Jianfeng Wang,2 Longquan Shao,1 Limin Wei2 1Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China Abstract: Nanomaterials (NMs are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano­neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. Keywords: nanomaterials, neurotoxicity, blood–brain barrier, autophagy, ROS

  8. Encapsulated living choroid plexus cells: potential long-term treatments for central nervous system disease and trauma

    Science.gov (United States)

    Skinner, S. J. M.; Geaney, M. S.; Lin, H.; Muzina, M.; Anal, A. K.; Elliott, R. B.; Tan, P. L. J.

    2009-12-01

    In neurodegenerative disease and in acute brain injury, there is often local up-regulation of neurotrophin production close to the site of the lesion. Treatment by direct injection of neurotrophins and growth factors close to these lesion sites has repeatedly been demonstrated to improve recovery. It has therefore been proposed that transplanting viable neurotrophin-producing cells close to the trauma lesion, or site of degenerative disease, might provide a novel means for continuous delivery of these molecules directly to the site of injury or to a degenerative region. The aim of this paper is to summarize recent published information and present new experimental data that indicate that long-lasting therapeutic implants of choroid plexus (CP) neuroepithelium may be used to treat brain disease. CP produces and secretes numerous biologically active neurotrophic factors (NT). New gene microarray and proteomics data presented here indicate that many other anti-oxidant, anti-toxin and neuronal support proteins are also produced and secreted by CP cells. In the healthy brain, these circulate in the cerebrospinal fluid through the brain and spinal cord, maintaining neuronal networks and associated cells. Recent publications describe how transplanted CP cells and tissue, either free or in an immunoprotected encapsulated form, can effectively deliver therapeutic molecules when placed near the lesion or site of degenerative disease in animal models. Using simple techniques, CP neuroepithelial cell clusters in suspension culture were very durable, remaining viable for 6 months or more in vitro. The cell culture conditions had little effect on the wide range and activity of genes expressed and proteins secreted. Recently, completed experiments show that implanting CP within alginate-poly-ornithine capsules effectively protected these xenogeneic cells from the host immune system and allowed their survival for 6 months or more in the brains of rats, causing no adverse effects

  9. Detection of borna disease virus p24 RNA from human brain tissue in patients with central nervous system tumors in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao; XIE Peng; XU Ping; PENG Dan; ZHU Dan; ZENG Zhi-lei

    2008-01-01

    Objective:It intended to examine whether there is BDV infection in the human tumor tissues of central nervous system in China and investigate the correlation between BDV infection and tumom of central nervous system.Methods:Nested reverse transcriptase polymerase chain reaction(nRT-PCR)and fluorescence quantitative polymerase chain reaction(FQ-PCR)was used to detect the BDV p24 fragments in 60 samples of human tumor tissues of central nervous system and 14 normal brain tissues.Results:The study indicated the positive rate of the BDV p24 fragment in human tumor tissues of the central nervous system (6.67%)was higher than that in normal brain tissues(0),but no statistical significance(P>0.05).Concluswn:It suggests that the BDV infection is present in the human tumor tissues of central nervous system in China.while the sample size wa.sn't large enough and we could not certify the possible correlation between BDV infection and cenfral nervous system tumors.

  10. Time perception mechanisms at central nervous system

    Directory of Open Access Journals (Sweden)

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  11. Time Perception Mechanisms at Central Nervous System

    Science.gov (United States)

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S.; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks. PMID:27127597

  12. MRT of the central nervous system. 2. rev. and enl. ed.; MRT des Zentralnervensystems

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, Michael [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie; Jansen, Olav (ed.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Radiologie und Neuroradiologie

    2014-11-01

    The book on MRT of the central nervous system includes the following chapters: anatomy, vascular diseases, brain tumors, craniocerebral injuries, infectious diseases, multiple sclerosis and related diseases, metabolic diseases, degenerative diseases, malformations and developmental disorders, hydrocephalus and intracranial hypertension, spinal marrow, degenerative caused spinal and foraminal stenosis, traumata, tumors and tumor-like neoplasm, vascular diseases, inflammations, infections and related diseases, diseases of the peripheral nervous system.

  13. The bowel and beyond: the enteric nervous system in neurological disorders.

    Science.gov (United States)

    Rao, Meenakshi; Gershon, Michael D

    2016-09-01

    The enteric nervous system (ENS) is large, complex and uniquely able to orchestrate gastrointestinal behaviour independently of the central nervous system (CNS). An intact ENS is essential for life and ENS dysfunction is often linked to digestive disorders. The part the ENS plays in neurological disorders, as a portal or participant, has also become increasingly evident. ENS structure and neurochemistry resemble that of the CNS, therefore pathogenic mechanisms that give rise to CNS disorders might also lead to ENS dysfunction, and nerves that interconnect the ENS and CNS can be conduits for disease spread. We review evidence for ENS dysfunction in the aetiopathogenesis of autism spectrum disorder, amyotrophic lateral sclerosis, transmissible spongiform encephalopathies, Parkinson disease and Alzheimer disease. Animal models suggest that common pathophysiological mechanisms account for the frequency of gastrointestinal comorbidity in these conditions. Moreover, the neurotropic pathogen, varicella zoster virus (VZV), unexpectedly establishes latency in enteric and other autonomic neurons that do not innervate skin. VZV reactivation in these neurons produces no rash and is therefore a clandestine cause of gastrointestinal disease, meningitis and strokes. The gut-brain alliance has raised consciousness as a contributor to health, but a gut-brain axis that contributes to disease merits equal attention.

  14. The daily pattern of heart rate, body temperature, locomotor activity, and autonomic nervous activity in congenitally bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR) guinea pigs.

    Science.gov (United States)

    Akita, Megumi; Kuwahara, Masayoshi; Nishibata, Ryoji; Mikami, Hiroki; Tsubone, Hirokazu

    2004-04-01

    We studied the characteristics of the rhythmicity of heart rate (HR), body temperature (BT), locomotor activity (LA) and autonomic nervous activity in bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR) guinea pigs. For this purpose, HR, BT, LA, and electrocardiogram (ECG) were recorded from conscious and unrestrained guinea pigs using a telemetry system. Autonomic nervous activity was analyzed by power spectral analysis of heart rate variability. Nocturnal patterns, in which the values in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed in HR, BT and LA in both strains of guinea pigs. The autonomic nervous activity in BHS guinea pigs showed a daily pattern, although BHR guinea pigs did not show such a rhythmicity. The high frequency (HF) power in BHS guinea pigs was higher than that in BHR guinea pigs throughout the day. Moreover, the low frequency/high frequency (LF/HF) ratio in BHS guinea pigs was lower than that in BHR guinea pigs throughout the day. These results suggest that parasympathetic nervous activity may be predominant in BHS guinea pigs.

  15. APDS: Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

    2002-02-14

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

  16. Effects of work stress and home stress on autonomic nervous function in Japanese male workers.

    Science.gov (United States)

    Maeda, Eri; Iwata, Toyoto; Murata, Katsuyuki

    2015-01-01

    Autonomic imbalance is one of the important pathways through which psychological stress contributes to cardiovascular diseases/sudden death. Although previous studies have focused mainly on stress at work (work stress), the association between autonomic function and stress at home (home stress) is still poorly understood. The purpose was to clarify the effect of work/home stress on autonomic function in 1,809 Japanese male workers. We measured corrected QT (QTc) interval and QT index on the electrocardiogram along with blood pressure and heart rate. Participants provided self-reported information about the presence/absence of work/home stress and the possible confounders affecting QT indicators. Home stress was related positively to QT index (p=0.040) after adjusting for the possible confounders, though work stress did not show a significant relation to QTc interval or QT index. The odds ratio of home stress to elevated QT index (≥105) was 2.677 (95% CI, 1.050 to 6.822). Work/home stress showed no significant relation to blood pressure or heart rate. These findings suggest that autonomic imbalance, readily assessed by QT indicators, can be induced by home stress in Japanese workers. Additional research is needed to identify different types of home stress that are strongly associated with autonomic imbalance.

  17. Sjogrens Syndrome Presenting with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Tülay Terzi

    2012-01-01

    Full Text Available Sjogren’s syndrome is a slowly progressive autoimmune disease. Neurological involvement occurs in approximately 20-25% cases in Sjogren’s syndrome. 87% of the neurological involvement is peripheral nervous system, almost 13% in the form of central nervous system involvement. Affected central nervous system may show similar clinical and radiological findings as in multiple sclerosis (MS. In this paper, a 43-year-old patient is discussed who was referred with the complaint of dizziness, there was MS- like lesions in brain imaging studies and was diagnosed with Sjogren’s syndrome. MS- like clinical and radiologic tables can be seen, albeit rarely in Sjogren’s syndrome. In these cases, early diagnosis and early treatment for the sjögren has a great importance for the prognosis of the disease.

  18. Neutron activation analysis in the central nervous system tissues of neurological diseases and rats maintained on minerally unbalanced diets

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1995-02-01

    Epidemiological surveys on Guam have suggested that low calcium (Ca), magnesium (Mg) and high Al and Mn in river, soil and drinking water may be implicated in the pathogenesis of PD. Experimentally, low Ca-Mg diets with or without added Al have been found to accelerate Al deposition in the CNS of rats and monkeys. Although excessive deposition of Mn produces neurotoxic action similar to Al in CNS tissues, the mechanism of Mn deposition coupled with Al loading in the presence of low Ca-Mg intake is not yet known. In this animal study, the deposition and metal-metal interaction of both Al and Mn in the CNS, visceral organs and bones of rats fed unbalanced mineral diets were analyzed. Male Wistar rats, weighing 200 g, were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn content were determined in the frontal cortex, spinal cord, kidney, muscle, abdominal aorta, femur and lumbar spine using neutron activation analysis (NAA). Intake of low Ca and Mg with added Al in rats led to the high concentrations of Mn and Al in bones and in the frontal cortex. It is likely that unbalanced mineral diets and metal-metal interactions may lead to the unequal distribution of Al and Mn in bones and ultimately in the CNS inducing CNS degeneration. On the other hand, concentrations of copper (Cu), calcium (Ca) and aluminum (Al) for 26 subanatomical regions of the CNS were measured by neutron activation analysis (NAA) in two cases of Wilson`s disease, two of portal systemic encephalopathy, six pathologically verified cases of ALS, four of Parkinson`s disease and five neurologically normal controls. Also zinc (Zn) and iron (Fe) concentrations were measured by NAA for frontal and occipital lobes of parkinsonism-dementia. (author).

  19. Novel markers identify nervous system components of the holothurian nervous system.

    Science.gov (United States)

    Díaz-Balzac, Carlos A; Vázquez-Figueroa, Lionel D; García-Arrarás, José E

    2014-09-01

    Echinoderms occupy a key position in the evolution of deuterostomes. As such, the study of their nervous system can shed important information on the evolution of the vertebrate nervous system. However, the study of the echinoderm nervous system has lagged behind when compared to that of other invertebrates due to the lack of tools available. In this study, we tested three commercially available antibodies as markers of neural components in holothurians. Immunohistological experiments with antibodies made against the mammalian transcription factors Pax6 and Nurr1, and against phosphorylated histone H3 showed that these markers identified cells and fibers within the nervous system of Holothuria glaberrima. Most of the fibers recognized by these antibodies were co-labeled with the well-known neural marker, RN1. Additional experiments showed that similar immunoreactivity was found in the nervous tissue of three other holothurian species (Holothuria mexicana, Leptosynapta clarki and Sclerodactyla briareus), thus extending our findings to the three orders of Holothuroidea. Furthermore, these markers identified different subdivisions of the holothurian nervous system. Our study presents three additional markers of the holothurian nervous system, expanding the available toolkit to study the anatomy, physiology, development and evolution of the echinoderm nervous system.

  20. Laser puncture therapy of nervous system disorders

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  1. Therapeutic Application of Electric Fields in the Injured Nervous System

    OpenAIRE

    2014-01-01

    Significance: Nervous system injuries, both in the peripheral nervous system (PNS) and central nervous system are a major cause for pain, loss-of-function, and impairment of daily life. As nervous system injuries commonly heal slowly or incompletely, new therapeutic approaches may be required.

  2. Brain Iron Dysregulation and Central Nervous System Diseases%铁代谢异常与中枢神经系统疾病

    Institute of Scientific and Technical Information of China (English)

    林冬; 丁晶; 汪昕

    2011-01-01

    The presence of the blood-brain barrier explains the relative independence of the brain iron metabolism from circulatory iron homeostasis. Disturbances of brain iron metabolism can result in iron accumulation or deficiency in brain , which can impair cellular biological function and promote cell to die. Recent advances on brain iron metabolism have revealed the possible role of brain iron dysregulation in the development or pathogenesis of some central nervous system diseases, such as Alzheimer ' s disease, Parkinson ' s disease, epilepsy, and restless leg syndrome.%由于血脑屏障的存在,脑铁代谢与外周器官不同.铁在脑内代谢的异常可致脑铁沉积或脑内铁缺乏,导致细胞生理功能障碍,引起神经细胞的死亡.目前已经发现阿尔茨海默病、帕金森病、癫、不宁腿综合征的发病机制及疾病的发展与脑铁代谢异常有关.

  3. Autonomic dysfunction in early breast cancer: Incidence, clinical importance, and underlying mechanisms.

    Science.gov (United States)

    Lakoski, Susan G; Jones, Lee W; Krone, Ronald J; Stein, Phyllis K; Scott, Jessica M

    2015-08-01

    Autonomic dysfunction represents a loss of normal autonomic control of the cardiovascular system associated with both sympathetic nervous system overdrive and reduced efficacy of the parasympathetic nervous system. Autonomic dysfunction is a strong predictor of future coronary heart disease, vascular disease, and sudden cardiac death. In the current review, we will discuss the clinical importance of autonomic dysfunction as a cardiovascular risk marker among breast cancer patients. We will review the effects of antineoplastic therapy on autonomic function, as well as discuss secondary exposures, such as psychological stress, sleep disturbances, weight gain/metabolic derangements, and loss of cardiorespiratory fitness, which may negatively impact autonomic function in breast cancer patients. Lastly, we review potential strategies to improve autonomic function in this population. The perspective can help guide new therapeutic interventions to promote longevity and cardiovascular health among breast cancer survivors.

  4. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  5. Ephrin signalling in the developing nervous system.

    Science.gov (United States)

    Klein, Rüdiger; Kania, Artur

    2014-08-01

    Ephrin ligands and their Eph receptors hold our attention since their link to axon guidance almost twenty years ago. Since then, they have been shown to be critical for short distance cell-cell interactions in the nervous system. The interest in their function has not abated, leading to ever-more sophisticated studies generating as many surprising answers about their function as new questions. We discuss recent insights into their functions in the developing nervous system, including neuronal progenitor sorting, stochastic cell migration, guidance of neuronal growth cones, topographic map formation, as well as synaptic plasticity.

  6. The administration of the Rorschach inkblot method and changes in autonomic nervous system activity [Aplikace Rorschachovy metody a změny v aktivitě autonomního nervového systému

    Directory of Open Access Journals (Sweden)

    Emil Šiška

    2009-09-01

    Full Text Available BACKGROUND: The administration of some psychological methods can be a temporary source of stress and evoke in some patients a pathophysiological reaction with a negative health outcome. OBJECTIVE: The aim of the study was to find out whether the administration of the Rorschach Inkblot Method (RIM can change the autonomic nervous system (ANS activity in terms of shifting the sympathovagal balance towards sympathetic activity. METHODS: The RIM test was applied to 39 healthy females (22.8 ± 2.4 years. ANS activity was measured by the spectral analysis of heart rate variability (SA HRV before, during, and after the RIM test. The same algorithm as in the previous procedure was employed in 30 healthy females (21.41 ± 1.7 years, however the Stroop color word test (SCWD, a very powerful stressor with a marked impact on ANS activity, instead of the RIM, was administered. Five relative parameters of SA HRV were used: percentages of VLF (very low frequency, LF (low frequency and HF (high frequency components (from the spectral power total and VLF/HF and LF/HF ratios. Changes in VLF/HF and LF/HF during the RIM and SCWT tests were used to compare the tests. RESULTS: During the RIM administration, a significant decrease in spectral power in HF (%, a significant increase in VLF (% and LF (%, and a significant increase in LF/HF and VLF/HF ratios have been shown. No significant differences in VLF/HF (markers of stressful situations among the RIM and the SCWT were found. CONCLUSIONS: The administration of the RIM can act as a powerful stressor and causes a significant decrease in parasympathetic activity and the shift of sympathovagal balance towards sympathetic activity. Administration of RIM and SCWT tests can produce stress of comparable intensity, with a similar impact on ANS activity. [VÝCHODISKA: Použití některých psychologických metod může přechodně působit jako zdroj stresu a u některých pacientů vyvolat patofyziologické reakce s negativn

  7. Structural and functional features of central nervous system lymphatic vessels.

    Science.gov (United States)

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  8. Analysis of autonomic modulation after an acute session of resistance exercise at different intensities in chronic obstructive pulmonary disease patients

    Directory of Open Access Journals (Sweden)

    Nicolino J

    2015-01-01

    differences in the recovery period compared to baseline, regardless of the intensity of the exercise performed. Keywords: heart rate variability, autonomic nervous system, sympathetic nervous system, parasympathetic nervous system, physical exercise 

  9. Effects of sildenafil on autonomic nervous function during sleep in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Christiane Neves

    2010-01-01

    Full Text Available OBJECTIVE: To evaluate the effects of sildenafil on the autonomic nervous system in patients with severe obstructive sleep apnea. METHODS: Thirteen male patients with severe obstructive sleep apnea (mean age 43±10 years with a mean body mass index of 26.7±1.9 kg/m² received a single 50-mg dose of sildenafil or a placebo at bedtime. All-night polysomnography and heart rate variability were recorded. Frequency domain analysis of heart rate variability was performed for the central five-minute sample of the longest uninterrupted interval of slow wave and rapid eye movement sleep, as well as for one-minute samples during apnea and during slow wave and rapid eye movement sleep after resumption of respiration. RESULTS: Compared to the placebo, sildenafil was associated with an increase in the normalized high-frequency (HFnu components and a decrease in the low/high-frequency components of the heart rate variability ratio (LF/HF in slow wave sleep (p<0.01 for both. Differences in heart rate variability parameters between one-minute post-apnea and apnea samples (Δ= difference between resumption of respiration and apnea were assessed. A trend toward a decreasing magnitude of ΔLF activity was observed during rapid eye movement sleep with sildenafil in comparison to placebo (p=0.046. Additionally, Δ LF/HF in SWS and rapid eye movement sleep was correlated with mean desaturation (sR= -0.72 and -0.51, respectively, p= 0.01 for both, and Δ HFnu in rapid eye movement sleep was correlated with mean desaturation (sR= 0.66, p= 0.02 and the desaturation index (sR= 0.58, p = 0.047. CONCLUSIONS: The decrease in arousal response to apnea/hypopnea events along with the increase in HFnu components and decrease in LH/HF components of the heart rate variability ratio during slow wave sleep suggest that, in addition to worsening sleep apnea, sildenafil has potentially immediate cardiac effects in patients with severe obstructive sleep apnea.

  10. The Adverse Effects of Air Pollution on the Nervous System

    OpenAIRE

    Sermin Genc; Zeynep Zadeoglulari; Fuss, Stefan H.; Kursad Genc

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer’s disease, Parkinson’s dise...

  11. Gross anatomy and development of the peripheral nervous system.

    Science.gov (United States)

    Catala, Martin; Kubis, Nathalie

    2013-01-01

    The nervous system is divided into the central nervous system (CNS) composed of the brain, the brainstem, the cerebellum, and the spinal cord and the peripheral nervous system (PNS) made up of the different nerves arising from the CNS. The PNS is divided into the cranial nerves III to XII supplying the head and the spinal nerves that supply the upper and lower limbs. The general anatomy of the PNS is organized according to the arrangement of the fibers along the rostro-caudal axis. The control of the development of the PNS has been unravelled during the last 30 years. Motor nerves arise from the ventral neural tube. This ventralization is induced by morphogenetic molecules such as sonic hedgehog. In contrast, the sensory elements of the PNS arise from a specific population of cells originating from the roof of the neural tube, namely the neural crest. These cells give rise to the neurons of the dorsal root ganglia, the autonomic ganglia and the paraganglia including the adrenergic neurons of the adrenals. Furthermore, the supportive glial Schwann cells of the PNS originate from the neural crest cells. Growth factors as well as myelinating proteins are involved in the development of the PNS.

  12. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  13. Impact of autonomic dysfunctions on the quality of life in Parkinson's disease patients.

    Science.gov (United States)

    Tomic, Svetlana; Rajkovaca, Ines; Pekic, Vlasta; Salha, Tamer; Misevic, Sanja

    2017-03-01

    Autonomic dysfunctions are part of a spectrum of non-motor symptoms in Parkinson's disease (PD) patients. The aim of the study was to assess the prevalence of autonomic dysfunctions and their influence on the quality of life (QoL) in PD patients, adjusted for age, sex, disease duration and motor symptoms. Patients were evaluated for motor function (Unified Parkinson's Disease Rating Scale, UPDRS part III), disease stage (Hoehn and Yahr scale, H&Y scale), autonomic dysfunction (Scales for Outcomes in Parkinson's disease, Autonomic, SCOPA-AUT) and QoL (Parkinson's Disease Questionnaire-39, PDQ-39). Urinary, gastrointestinal and sexual autonomic dysfunctions were most frequently reported, while the most severe symptoms were reported for sexual and urinary systems. Age and motor symptoms did not correlate with autonomic dysfunction, while disease duration correlated with cardiovascular dysfunction. There were sex differences on the thermoregulation subscale. All types of autonomic dysfunction influenced QoL, mostly gastrointestinal and thermoregulatory dysfunctions, except for sexual one. Many aspects of QoL (activity of daily living, emotion, cognitive functions, communication and social support) except for stigma and mobility were affected by autonomic dysfunctions. Age, disease duration, sex and motor symptoms were not found to affect global QoL scores, but had detrimental effects on different PDQ-39 dimensions. Autonomic dysfunctions influence QoL in more aspects than motor symptoms, age, disease duration and sex. Patients tend to be more stigmatized with motor than non-motor symptoms.

  14. 内皮微粒与中枢神经系统疾病%Endothelial microparticles and the diseases of central nervous system

    Institute of Scientific and Technical Information of China (English)

    杨凤华

    2012-01-01

    Endothelial microparticles(EMPs) are microvesicles released from the membrane of activated,injured or apoptotic endothelial cells.It is important to discriminate EMPs from apoptotic bodies and exosomes.Endothelial microparticles contain protein,lipid,mRNA,microRNA and adhesion molecule.By now,the mechanisms that lead to the formation of EMPs are not completely elucidated,probably including loss of membrane phospholipid asymmetry and cytoskeleton reorganization.The connection between EMPs and central nervous system disease are getting more attracted.At different stages of diseases,such as ischemic stroke,hemorrhage stroke,macrovascular complications in type 2 diabetes mellitus,cerebral malaria,multiple sclerosis and traumatic brain injury,the level of EMPs in circulation or cerebral spinal fluid would change differently.It might be a biomarker to understand the mechanism,determine the severity and prognosis,and also the focus to diagnose and treat the central nervous system diseases.%内皮细胞在受到活化、损伤或凋亡时脱落的微粒即为内皮微粒.微粒与外染色体及凋亡小体在亚细胞起源、大小、内容及产生机制方面是不同的.内皮微粒具有蛋白质、脂质、核酸、黏附分子等成分,可通过细胞骨架破坏、膜磷脂不对称分布消失等机制形成.在缺血性脑卒中、出血性脑卒中、糖尿病脑血管病变、脑型疟疾、多发性硬化、脑外伤等,不同疾病时期的循环血和(或)脑脊液中内皮微粒的水平有不同程度的变化.内皮微粒成为理解中枢神经系统疾病发病机制、判断病情及预后指标,并可能成为中枢神经系统疾病诊治的靶点.

  15. Central nervous system and computation.

    Science.gov (United States)

    Guidolin, Diego; Albertin, Giovanna; Guescini, Michele; Fuxe, Kjell; Agnati, Luigi F

    2011-12-01

    Computational systems are useful in neuroscience in many ways. For instance, they may be used to construct maps of brain structure and activation, or to describe brain processes mathematically. Furthermore, they inspired a powerful theory of brain function, in which the brain is viewed as a system characterized by intrinsic computational activities or as a "computational information processor. "Although many neuroscientists believe that neural systems really perform computations, some are more cautious about computationalism or reject it. Thus, does the brain really compute? Answering this question requires getting clear on a definition of computation that is able to draw a line between physical systems that compute and systems that do not, so that we can discern on which side of the line the brain (or parts of it) could fall. In order to shed some light on the role of computational processes in brain function, available neurobiological data will be summarized from the standpoint of a recently proposed taxonomy of notions of computation, with the aim of identifying which brain processes can be considered computational. The emerging picture shows the brain as a very peculiar system, in which genuine computational features act in concert with noncomputational dynamical processes, leading to continuous self-organization and remodeling under the action of external stimuli from the environment and from the rest of the organism.

  16. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders.

  17. Autonomic Management for Multi-agent Systems

    CERN Document Server

    Salih, Nadir K; Viju, PG K; Mohamed, Abdelmotalib A

    2011-01-01

    Autonomic computing is a computing system that can manage itself by self-configuration, self-healing, self-optimizing and self-protection. Researchers have been emphasizing the strong role that multi agent systems can play progressively towards the design and implementation of complex autonomic systems. The important of autonomic computing is to create computing systems capable of managing themselves to a far greater extent than they do today. With the nature of autonomy, reactivity, sociality and pro-activity, software agents are promising to make autonomic computing system a reality. This paper mixed multi-agent system with autonomic feature that completely hides its complexity from users/services. Mentioned Java Application Development Framework as platform example of this environment, could applied to web services as front end to users. With multi agent support it also provides adaptability, intelligence, collaboration, goal oriented interactions, flexibility, mobility and persistence in software systems

  18. Autonomous power system intelligent diagnosis and control

    Science.gov (United States)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  19. INSULIN AND INSULIN RESISTANCE: NEW MOLECULE MARKERS AND TARGET MOLECULE FOR THE DIAGNOSIS AND THERAPY OF DISEASES OF THE CENTRAL NERVOUS SYSTEM