WorldWideScience

Sample records for autonomic nervous system diseases

  1. Autonomic Nervous System Dysfunction in Parkinson's Disease.

    Science.gov (United States)

    Zesiewicz, Theresa A.; Baker, Matthew J.; Wahba, Mervat; Hauser, Robert A.

    2003-03-01

    Autonomic nervous system (ANS) dysfunction is common in Parkinson's disease (PD), affects 70% to 80% of patients, and causes significant morbidity and discomfort. Autonomic nervous system dysfunction symptoms in PD include sexual dysfunction, swallowing and gastrointestinal disorders, bowel and bladder abnormalities, sleep disturbances, and derangements of cardiovascular regulation, particularly, orthostatic hypotension. Autonomic nervous system dysfunction in PD may be caused by an underlying degenerative process that affects the autonomic ganglia, brainstem nuclei, and hypothalamic nuclei. Anti-parkinsonian medications can cause or worsen symptoms of ANS dysfunction. The care of a PD patient with ANS dysfunction relies on its recognition and directed treatment, including coordinated care between the neurologist and appropriate subspecialist. Pharmacotherapy may be useful to treat orthostasis, gastrointestinal, urinary, and sexual dysfunction.

  2. Autonomic Nervous System Disorders

    Science.gov (United States)

    ... with breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result of another disease, such as Parkinson's disease, alcoholism and diabetes. Problems can affect either part ...

  3. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  4. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  5. The role of the autonomic nervous system in diabetes and cardiovascular disease : an epidemiological approach

    NARCIS (Netherlands)

    Hillebrand, Stefanie

    2015-01-01

    The main objective of this thesis was to study the role of autonomic nervous system (ANS) function in the development of diabetes and cardiovascular disease using an epidemiological approach. Based on earlier studies it has remained unclear whether impaired ANS function is a risk factor for the deve

  6. Autonomic nervous system and risk factors for vascular disease. Effects of autonomic unbalance in schizophrenia and Parkinson's disease.

    Science.gov (United States)

    Scigliano, Giulio; Ronchetti, Gabriele; Girotti, Floriano

    2008-02-01

    Alterations of the cardiovascular system and of the glucose and lipid metabolism can represent important factors of vascular risk. The autonomic nervous system, through its two efferent branches, the parasympatheticcholinergic and the sympathetic-adrenergic, plays an important role in the control of the cardiovascular activity and of the glucose and lipid metabolism, and its impaired working can interfere with these functions. An increased sympathetic activity and an increased frequency of diabetes, dyslipidemia, hypertension and obesity have been reported in untreated schizophrenic patients, and a further worsening of these vascular risk factors has been signalled as a side effect of treatment with neuroleptic drugs. The opposite is observed in Parkinson's disease, where the reduced autonomic activity induced by the illness is associated with a decreased frequency of vascular risk factors, and their occurrence is further reduced by the treatment with dopaminergic drugs.

  7. Autonomic nervous system response to L-dopa in patients with advanced Parkinson's disease.

    Science.gov (United States)

    Ruonala, Verneri; Tarvainen, Mika P; Karjalainen, Pasi A; Pekkonen, Eero; Rissanen, Saara M

    2015-01-01

    Levodopa is the main treatment method for reducing the symptoms of Parkinson's disease. Whereas it reduces the motor symptoms efficiently, its effect on autonomous nervous system is not clear. The information about effect of levodopa on heart rate variability is not coherent between the studies. In this study, ECG of 11 patients with Parkinson's disease was measured during levodopa challenge with pronounced dose of fast release levodopa to ensure the positive drug effect for deep brain stimulation treatment. Heart rate variability analysis was done at three time points, before administration of levodopa, 30 and 60 minutes after administration. After 30 minutes of administration, the HRV parameters show that parasympathetic nervous system activity is decreased and the sympatho-vagal balance is shifted towards sympathetic control. At 60 minutes after administration the parasympathetic nervous system activates slightly and causes a decrease in heart rate.

  8. [Autonomic nervous system as a source of biomarkers in Parkinson's disease].

    Science.gov (United States)

    Pouclet, Hélène; Lebouvier, Thibaud; Flamant, Mathurin; Coron, Emmanuel; Neunlist, Michel; Derkinderen, Pascal; Rouaud, Tiphaine

    2012-07-01

    No validated biomarker is yet available for Parkinson's disease (PD). Clinical PD symptoms include dopa-responsive motor symptoms and dopa-resistant non motor symptoms. Some of the non motor symptoms begin during the premotor stage, like constipation, hyposmia or REM-sleep disorders. Dementia, gait disorders and dysarthria occur in later stages of the disease. PD pathology extends well beyond the substantia nigra. It affects autonomic and non autonomic nuclei in the brainstem and in the medulla, the olfactory bulb and the peripheral autonomic nervous system. Alpha-synuclein aggregates, called Lewy bodies and Lewy neurites, are detectable in these structures at early stages. The study of the enteric nervous system (ENS) displays the Lewy pathology in living patients through the digestive biopsies. Minor salivary glands analysis could be a good marker as well, but this needs confirmation. An anatomopathologic PD biomarker would be interesting at different stages of PD: for the positive diagnosis, to follow the progression and to develop neuroprotective treatments.

  9. Effects of subthalamic nucleus stimulation and levodopa on the autonomic nervous system in Parkinson's disease.

    Science.gov (United States)

    Ludwig, Janne; Remien, Piet; Guballa, Christoph; Binder, Andreas; Binder, Sabine; Schattschneider, Jörn; Herzog, Jan; Volkmann, Jens; Deuschl, Günther; Wasner, Gunnar; Baron, Ralf

    2007-07-01

    Dysfunctions of the autonomic nervous system (ANS) are common in Parkinson's disease (PD). Regarding motor disability, deep brain stimulation of the subthalamic nucleus (STN) is an effective treatment option in long lasting PD. The aims of this study were to examine whether STN stimulation has an influence on functions of the ANS and to compare these effects to those induced by levodopa. Blood pressure (BP) and heart rate (HR) during rest and orthostatic conditions, HR variability (HRV) and breathing-induced cutaneous sympathetic vasoconstriction (CVC) were tested in 14 PD patients treated with STN stimulation during "ON" and "OFF" condition of the stimulator. The effects of a single dose of levodopa on ANS were tested in 15 PD patients without DBS. STN stimulation had no influence on cardiovascular ANS functions, whereas CVC was significantly increased. In contrast, levodopa significantly lowered BP and HR at rest and enhanced orthostatic hypotension. Further, HRV, skin perfusion and temperature increased after administration of levodopa. Our results suggest that in contrast to levodopa, STN stimulation has only minor effects on autonomic functions. Since less pharmacotherapy is needed after STN stimulation, reduced levodopa intake results in relative improvement of autonomic function in deep brain stimulated PD patients.

  10. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Ineke Nederend

    2016-04-01

    Full Text Available Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that measure both branches of the nervous system for prolonged periods of time in well-defined patient cohorts in various phases of childhood and adolescence are currently lacking. Pending such studies, there is not yet a good grasp on the extent and direction of sympathetic and parasympathetic autonomic function in pediatric congenital heart disease. Longitudinal studies in homogenous patient groups linking autonomic nervous system function and clinical outcome are warranted.

  11. Complex Nonlinear Autonomic Nervous System Modulation Link Cardiac Autonomic Neuropathy and Peripheral Vascular Disease

    OpenAIRE

    Kinda eKhalaf; Jelinek, Herbert F.; Caroline eRobinson; Cornforth, David J.; Tarvainen, Mika P.; Hayder eAl-Aubaidy

    2015-01-01

    Background: Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI) and cardiovascular disease (CVD) as been reported. Whether an association between vascular calcification - characterized by high ABPI and a different pathophysiology - is similarly associated ...

  12. Circadian rhythm of rest activity and autonomic nervous system activity at different stages in Parkinson's disease.

    Science.gov (United States)

    Niwa, Fumitoshi; Kuriyama, Nagato; Nakagawa, Masanori; Imanishi, Jiro

    2011-12-01

    Patients with Parkinson's disease (PD) often suffer from non-motor symptoms, including sleep and autonomic dysfunctions, controlled by circadian regulation. To evaluate the alteration of circadian rhythm in PD patients, we investigated both rest activities and autonomic functions. Twenty-seven patients with idiopathic PD and 30 age-matched control subjects were recruited. Group comparisons of controls (mean age: 68.93 years), early-PD patients classified as Hoehn-Yahr (HY) stage 1&2 (mean age: 70.78 years), and advanced-PD as HY 3&4 (mean age: 68.61 years) were conducted. Measurement of rest activities was performed using Actigraph for 7 continuous days, and included measuring rhythm patterns (activity patterns recorded in or out of bed) and circadian rhythm amplitudes (power of the cycle being closest to 24h). A power spectral analysis of heart rate variability (HRV) using 24-hour ambulatory ECG was also performed. The actigraphic measurements indicated that statistically PD patients have lower activity levels when out of bed and higher activity levels when in bed, and that, the circadian rest-activity rhythm in PD decreases with disease severity. The HRV analysis showed that the total frequency component and low frequency/high frequency ratio were low in PD patients, suggesting that autonomic activities and the circadian rhythm of the sympathetic nervous system are attenuated in PD. This study elucidated the disorganization in the rest activities and HRV of PD patients as well as the gradual alterations in the circadian rhythm. The circadian rhythm disturbances are important to consider the mechanism of non-motor symptoms that occur from early stage of PD.

  13. Comparative anatomy of the autonomic nervous system.

    Science.gov (United States)

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves.

  14. [Autonomic nervous system in diabetes].

    Science.gov (United States)

    Emdin, M

    2001-08-01

    Hyperglycemia and hyperinsulinemia have a primary role in determining the early functional and later anatomic changes at the level of the autonomic pathways controlling the circulation, and besides in directly influencing cardiac and vascular cellular targets and feed-back baroreceptor system sensitivity to neurohumoral modulation in patients with diabetes mellitus. The basic mechanisms of dysfunction and damage, and the clinical and prognostic value of diabetic cardiovascular dysautonomia are discussed together with the diagnostic apparatus and the possible therapeutic approaches.

  15. Complex Nonlinear Autonomic Nervous System Modulation Link Cardiac Autonomic Neuropathy and Peripheral Vascular Disease

    Directory of Open Access Journals (Sweden)

    Kinda eKhalaf

    2015-03-01

    Full Text Available Background: Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI and cardiovascular disease (CVD as been reported. Whether an association between vascular calcification - characterized by high ABPI and a different pathophysiology - is similarly associated with CVD, has not been established. The current study aims to investigate the association between ABPI, and cardiac rhythm, as an indicator of cardiovascular health and functionality, utilising heart rate variability (HRV.Methods and Results: Two hundred and thirty six patients underwent ABPI assessment. Standard time and frequency domain, and non-linear HRV measures were determined from 5-minute electrocardiogram. ABPI data were divided into normal (n=101, low (n=67 and high (n=66 and compared to HRV measures.(DFAα1 and SampEn were significantly different between the low ABPI, high ABPI and control groups (p<0.05.Conclusion: A possible coupling between arterial stenosis and vascular calcification with decreased and increased HRV respectively was observed. Our results suggest a model for interpreting the relationship between vascular pathophysiology and cardiac rhythm. The cardiovascular system may be viewed as a complex system comprising a number of interacting subsystems. These cardiac and vascular subsystems/networks may be coupled and undergo transitions in response to internal or external perturbations. From a clinical perspective, the significantly increased sample entropy compared to the normal ABPI group and the decreased and increased complex correlation properties measured by DFA for the low and high ABPI groups respectively, may be useful indicators that a more holistic treatment approach in line with this more complex clinical picture is required.

  16. Nutritional stimulation of the autonomic nervous system

    Institute of Scientific and Technical Information of China (English)

    Misha DP Luyer; Quirine Habes; Richard van Hak; Wim Buurman

    2011-01-01

    Disturbance of the inflammatory response in the gut is important in several clinical diseases ranging from inflammatory bowel disease to postoperative ileus. Several feedback mechanisms exist that control the inflammatory cascade and avoid collateral damage. In the gastrointestinal tract, it is of particular importance to control the immune response to maintain the balance that allows dietary uptake and utilization of nutrients on one hand, while preventing invasion of bacteria and toxins on the other hand. The process of digestion and absorption of nutrients requires a relative hyporesponsiveness of the immune cells in the gut to luminal contents which is not yet fully understood. Recently, the autonomic nervous system has been identified as an important pathway to control local and systemic inflammation and gut barrier integrity. Activation of the pathway is possible via electrical or via pharmacological interventions, but is also achieved in a physiological manner by ingestion of dietary lipids. Administration of dietary lipids has been shown to be very effective in reducing the inflammatory cascade and maintaining intestinal barrier integrity in several experimental studies. This beneficial effect of nutrition on the inflammatory inflammatory response and intestinal barrier integrity opens new therapeutic opportunities for treatment of certain gastrointestinal disorders. Furthermore, this neural feedback mechanism provides more insight in the relative hyporesponsiveness of the immune cells in the gut. Here, we will discuss the regulatory function of the autonomic nervous system on the inflammatory response and gut barrier function and the potential benefit in a clinical setting.

  17. [Emotion, amygdala, and autonomic nervous system].

    Science.gov (United States)

    Ueyama, Takashi

    2012-10-01

    Emotion refers to the dynamic changes of feeling accompanied by the alteration of physical and visceral activities. Autonomic nervous system (sympathetic and parasympathetic) regulates the visceral activities. Therefore, monitoring and analyzing autonomic nervous activity help understand the emotional changes. To this end, the survey of the expression of immediate early genes (IEGs), such as c-Fos in the brain and target organs, and the viral transneuronal labeling method using the pseudorabies virus (PRV) have enabled the visualization of the neurocircuitry of emotion. By comparing c-Fos expression and data from PRV or other neuroanatomical labeling techniques, the central sites that regulate emotional stress-induced autonomic activation can be deduced. Such regions have been identified in the limbic system (e. g., the extended amygdaloid complex; lateral septum; and infralimbic, insular, and ventromedial temporal cortical regions), as well as in several hypothalamic and brainstem nuclei. The amygdala is structurally diverse and comprises several subnuclei, which play a role in emotional process via projections from the cortex and a variety of subcortical structures. All amygdaloid subnuclei receive psychological information from other limbic systems, while the lateral and central subnuclei receive peripheral and sensory information. Output to the hypothalamus and peripheral sympathetic system mainly originates from the medial amygdala. As estrogen receptor α, estrogen receptor β, and androgen receptor are expressed in the medial amygdala, sex steroids may modulate the autonomic nervous activities.

  18. When do the symptoms of autonomic nervous system malfunction appear in patients with Parkinson’s disease?

    Directory of Open Access Journals (Sweden)

    De Luka Silvio R.

    2014-01-01

    Full Text Available Background/Aim. Dysautonomia appears in almost all patients with Parkinson’s disease (PD in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. Methods. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Results. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson’s disease rating score (UPDRS (p < 0.01, activities of daily living scores (p < 0.05, Schwab-England scale (p < 0.001 and Hoehn-Yahr scale. There was no difference between the patients in other clinical-demographic characteristics (sex, age at the time of diagnosis, actual age, duration of

  19. Central nervous system diseases

    International Nuclear Information System (INIS)

    It is shown that roentgenological examination plays an important role in diagnosis of central nervous system diseases in children. The methods of roentgenological examinations are divided into 3 groups: roentgenography without contrast media (conventional roentgenography), roentgenography with artificial contrasting of liquor space (ventriculopneumoencelography, myelography) and contrasting of brain and spinal blood vessels (angiography). Conventional contrastless roentgenography of skull and vertebral column occupies leadership in diagnosis of brain neoplasms and some vascular diseases

  20. Exercise and the autonomic nervous system.

    Science.gov (United States)

    Fu, Qi; Levine, Benjamin D

    2013-01-01

    The autonomic nervous system plays a crucial role in the cardiovascular response to acute (dynamic) exercise in animals and humans. During exercise, oxygen uptake is a function of the triple-product of heart rate and stroke volume (i.e., cardiac output) and arterial-mixed venous oxygen difference (the Fick principle). The degree to which each of the variables can increase determines maximal oxygen uptake (V˙O2max). Both "central command" and "the exercise pressor reflex" are important in determining the cardiovascular response and the resetting of the arterial baroreflex during exercise to precisely match systemic oxygen delivery with metabolic demand. In general, patients with autonomic disorders have low levels of V˙O2max, indicating reduced physical fitness and exercise capacity. Moreover, the vast majority of the patients have blunted or abnormal cardiovascular response to exercise, especially during maximal exercise. There is now convincing evidence that some of the protective and therapeutic effects of chronic exercise training are related to the impact on the autonomic nervous system. Additionally, training induced improvement in vascular function, blood volume expansion, cardiac remodeling, insulin resistance and renal-adrenal function may also contribute to the protection and treatment of cardiovascular, metabolic and autonomic disorders. Exercise training also improves mental health, helps to prevent depression, and promotes or maintains positive self-esteem. Moderate-intensity exercise at least 30 minutes per day and at least 5 days per week is recommended for the vast majority of people. Supervised exercise training is preferable to maximize function capacity, and may be particularly important for patients with autonomic disorders. PMID:24095123

  1. The Relationship between Vascular Function and the Autonomic Nervous System.

    Science.gov (United States)

    Amiya, Eisuke; Watanabe, Masafumi; Komuro, Issei

    2014-01-01

    Endothelial dysfunction and autonomic nervous system dysfunction are both risk factors for atherosclerosis. There is evidence demonstrating that there is a close interrelationship between these two systems. In hypertension, endothelial dysfunction affects the pathologic process through autonomic nervous pathways, and the pathophysiological process of autonomic neuropathy in diabetes mellitus is closely related with vascular function. However, detailed mechanisms of this interrelationship have not been clearly explained. In this review, we summarize findings concerning the interrelationship between vascular function and the autonomic nervous system from both experimental and clinical studies. The clarification of this interrelationship may provide more comprehensive risk stratification and a new effective therapeutic strategy against atherosclerosis.

  2. Is There Anything "Autonomous" in the Nervous System?

    Science.gov (United States)

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  3. Perturbed autonomic nervous system function in metabolic syndrome.

    Science.gov (United States)

    Tentolouris, Nicholas; Argyrakopoulou, Georgia; Katsilambros, Nicholas

    2008-01-01

    The metabolic syndrome is characterized by the clustering of various common metabolic abnormalities in an individual and it is associated with increased risk for the development of type 2 diabetes and cardiovascular diseases. Its prevalence in the general population is approximately 25%. Central fat accumulation and insulin resistance are considered as the common denominators of the abnormalities of the metabolic syndrome. Subjects with metabolic syndrome have autonomic nervous system dysfunction characterized by predominance of the sympathetic nervous system in many organs, i.e. heart, kidneys, vasculature, adipose tissue, and muscles. Sympathetic nervous system activation in metabolic syndrome is detected as increased heart rate and blood pressure, diminished heart rate variability, baroreceptor dysfunction, enhanced lipolysis in visceral fat, increased muscle sympathetic nerve activity, and high urine or plasma catecholamine concentrations as well as turnover rates. The augmented sympathetic activity in individuals with metabolic syndrome worsens prognosis of this high-risk population. The mechanisms linking metabolic syndrome with sympathetic activation are complex and not clearly understood. Whether sympathetic overactivity is involved in the development of the metabolic syndrome or is a consequence of it remains to be elucidated since data from prospective studies are missing. Intervention studies have demonstrated that the autonomic disturbances of the metabolic syndrome may be reversible.

  4. Altered balance in the autonomic nervous system in schizophrenic patients

    DEFF Research Database (Denmark)

    Nielsen, B M; Mehlsen, J; Behnke, K

    1988-01-01

    .05). Heart-rate response to inspiration was greater in non-medicated schizophrenics compared to normal subjects (P less than 0.05), whereas no difference was found between medicated and non-medicated schizophrenics. The results show that the balance in the autonomic nervous system is altered in schizophrenic...... patients with a hyperexcitability in both the sympathetic and the parasympathetic division. Our study has thus indicated a dysfunction in the autonomic nervous system per se and the previous interpretations of attentional orienting responses in schizophrenia is questioned. Medication with neuroleptics......The aim of the present study was to evaluate the autonomic nervous function in schizophrenic patients. Twenty-eight patients (29 +/- 6 years) diagnosed as schizophrenics and in stable medication were included, together with ten schizophrenic patients (25 +/- 5 years) who were unmedicated. Eleven...

  5. Gyrosonics a Novel Stimulant for Autonomic Nervous System

    CERN Document Server

    Ghatak, S K; Choudhuri, R; Banerjee, S

    2009-01-01

    Gyrosonics refers to novel audio binaural stimulus that produces rotational perceptions of sound movement in head at a particular predetermined frequency. Therapeutic effect observed with this is considered to be associated with modification of arousal of autonomic nervous system. The heart rate variability (HRV), non-invasive measure of autonomic nervous system, has been measured for group of 30 subjects for pre- and post- gyrosonic installation. The time- and frequency- domain analysis of HRV results show overall decrease in sympathetic response and increase in para- sympathetic response due to listening of gyro sonics.

  6. An Electerophisioligic Study Of Autonomic Nervous System In Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Noorolahi Moghaddam H

    2003-11-01

    Full Text Available Autonomic nervous system dysfunction in diabetics can occur apart from peripheral sensorimotor polyneuropathy and sometimes leads to complaints which may be diagnosed by electrodiagnostic methods. Moreover glycemic control of these patients may prevent such a complications."nMaterials and Methods: 30 diabetic patients were compared to the same number of age and sex-matched controls regarding to electrophysiologic findings of autonomic nervous system. Symptoms referable to autonomic disorder including nightly diarrhea, dizziness, urinary incontinence, constipation, nausea, and mouth dryness were recorded in all diabetic patients. Palmar and plantar SSR and expiration to inspiration ratio (E: I and Valsalva ratio were recorded in all diabetics and control individuals by electromyography device. In addition NCS was performed on two sensory and two motor nerves in diabetic patients."nResults: There was no relation between age of diabetics and abnormal D: I ratio, Valsalva ratio and degree of electrophysiologic autonomic impairment. Also no relation between peripheral sensorimotor polyneuropathy and electrophysiologic autonomic impairment was found. Plantar SSR was absent in 80% of diabetics with orthostatic hypotension (p~ 0.019. Palmar and plantar SSR were absent in many diabetics in comparison to control group (for palmar SSR p~ 0.00 and for plantar SSR p< 0.015. There was no relation between diabetes duration since diagnosis and electrophysiologic autonomic impairment."nConclusion: According to the above mentioned findings diabetic autonomic neuropathy develops apart from peripheral sensorimotor polyneuropathy and probably with different mechanisms. Remarkable absence of palmar SSR in diabetics with orthostatic hypotension can be due to its sympathetic origin. Absence of any relation between diabetes duration and electrophysiologic autonomic impairment can be due to late diagnosis of type 2 diabetes or no pathophysiologic relation between chronic

  7. Impact of Six-Month Caloric Restriction on Autonomic Nervous System Activity in Healthy, Overweight, Individuals

    OpenAIRE

    de Jonge, Lillian; Moreira, Emilia AM; Martin, Corby K.; Ravussin, Eric

    2009-01-01

    Caloric restriction (CR) increases maximum lifespan but the mechanisms are unclear. Dominance of the sympathetic nervous System (SNS) over the Parasympathetic Nervous System (PNS) has been shown to be a strong risk factor for cardiovascular disease. Obesity and aging are associated with increased SNS activity and weight loss and/or exercise seem to have positive effects on this balance. We therefore evaluated the effect of different approaches of CR on autonomic function in 48 overweight indi...

  8. Obesity and the Activity of the Autonomic Nervous System

    OpenAIRE

    ÇOLAK, Ramis

    2000-01-01

    This study was conducted to examine the autonomic nervous system functions of obese people. The study group consisted of 30 healthy obese people (20 female, 10 male, age range 18-58, median 37.6±9.7 years of age) and the control group consisted of 30 healthy nonobese people (18 female, 12 male, age range 17- 56, median 34.4±7.5 years). Each function was tested by non-invasive applications (orthostatic test, isometric exercise test, Valsalva ratio test, 30/15 ratio test, heart rate...

  9. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training

    Directory of Open Access Journals (Sweden)

    M.C. Martins-Pinge

    2011-09-01

    Full Text Available The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  10. [State of the autonomic nervous system after induced abortion in the lst trimester].

    Science.gov (United States)

    Bakuleva, L P; Gatina, G A; Kuz'mina, T I; Solov'eva, A D

    1990-04-01

    The autonomic nervous system has been examined in 271 patients with a history of first-trimester induced abortion. It was ascertained that induced abortion affected the autonomic nervous system, thus impairing adaptive potentials and entailing the onset or aggravation of preexisting autonomic vascular dystonia. PMID:2378404

  11. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  12. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    OpenAIRE

    Dierckx, Bram

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate, respiratory rate, digestion, and perspiration. It is divided into two partially antagonistic systems: the sympathetic nervous system and the parasympathetic or vagal nervous system. In general, the vagal syste...

  13. Motor execution detection based on autonomic nervous system responses

    International Nuclear Information System (INIS)

    Triggered assistance has been shown to be a successful robotic strategy for provoking motor plasticity, probably because it requires neurologic patients’ active participation to initiate a movement involving their impaired limb. Triggered assistance, however, requires sufficient residual motor control to activate the trigger and, thus, is not applicable to individuals with severe neurologic injuries. In these situations, brain and body–computer interfaces have emerged as promising solutions to control robotic devices. In this paper, we investigate the feasibility of a body–machine interface to detect motion execution only monitoring the autonomic nervous system (ANS) response. Four physiological signals were measured (blood pressure, breathing rate, skin conductance response and heart rate) during an isometric pinching task and used to train a classifier based on hidden Markov models. We performed an experiment with six healthy subjects to test the effectiveness of the classifier to detect rest and active pinching periods. The results showed that the movement execution can be accurately classified based only on peripheral autonomic signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity of 85.2%. These results are encouraging to perform further research on the use of the ANS response in body–machine interfaces. (paper)

  14. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    NARCIS (Netherlands)

    B. Dierckx (Bram)

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate, respiratory

  15. Lost among the trees? The autonomic nervous system and paediatrics.

    Science.gov (United States)

    Rees, Corinne A

    2014-06-01

    The autonomic nervous system (ANS) has been strikingly neglected in Western medicine. Despite its profound importance for regulation, adjustment and coordination of body systems, it lacks priority in training and practice and receives scant attention in numerous major textbooks. The ANS is integral to manifestations of illness, underlying familiar physical and psychological symptoms. When ANS activity is itself dysfunctional, usual indicators of acute illness may prove deceptive. Recognising the relevance of the ANS can involve seeing the familiar through fresh eyes, challenging assumptions in clinical assessment and in approaches to practice. Its importance extends from physical and psychological well-being to parenting and safeguarding, public services and the functioning of society. Exploration of its role in conditions ranging from neurological, gastrointestinal and connective tissue disorders, diabetes and chronic fatigue syndrome, to autism, behavioural and mental health difficulties may open therapeutic avenues. The ANS offers a mechanism for so-called functional illnesses and illustrates the importance of recognising that 'stress' takes many forms, physical, psychological and environmental, desirable and otherwise. Evidence of intrauterine and post-natal programming of ANS reactivity suggests that neonatal care and safeguarding practice may offer preventive opportunity, as may greater understanding of epigenetic change of ANS activity through, for example, accidental or psychological trauma or infection. The aim of this article is to accelerate recognition of the importance of the ANS throughout paediatrics, and of the potential physical and psychological cost of neglecting it. PMID:24573884

  16. Lost among the trees? The autonomic nervous system and paediatrics.

    Science.gov (United States)

    Rees, Corinne A

    2014-06-01

    The autonomic nervous system (ANS) has been strikingly neglected in Western medicine. Despite its profound importance for regulation, adjustment and coordination of body systems, it lacks priority in training and practice and receives scant attention in numerous major textbooks. The ANS is integral to manifestations of illness, underlying familiar physical and psychological symptoms. When ANS activity is itself dysfunctional, usual indicators of acute illness may prove deceptive. Recognising the relevance of the ANS can involve seeing the familiar through fresh eyes, challenging assumptions in clinical assessment and in approaches to practice. Its importance extends from physical and psychological well-being to parenting and safeguarding, public services and the functioning of society. Exploration of its role in conditions ranging from neurological, gastrointestinal and connective tissue disorders, diabetes and chronic fatigue syndrome, to autism, behavioural and mental health difficulties may open therapeutic avenues. The ANS offers a mechanism for so-called functional illnesses and illustrates the importance of recognising that 'stress' takes many forms, physical, psychological and environmental, desirable and otherwise. Evidence of intrauterine and post-natal programming of ANS reactivity suggests that neonatal care and safeguarding practice may offer preventive opportunity, as may greater understanding of epigenetic change of ANS activity through, for example, accidental or psychological trauma or infection. The aim of this article is to accelerate recognition of the importance of the ANS throughout paediatrics, and of the potential physical and psychological cost of neglecting it.

  17. Imaging of the autonomic nervous system: focus on cardiac sympathetic innervation.

    Science.gov (United States)

    Goldstein, David S

    2003-12-01

    Symptoms or signs of abnormal autonomic nervous system function occur commonly in several neurological disorders. Clinical evaluations have depended on physiological, pharmacological, and neurochemical approaches. Recently, imaging of sympathetic noradrenergic innervation has been introduced and applied especially in the heart. Most studies have used the radiolabeled sympathomimetic amine, (123)I-metaiodobenzylguanidine. Decreased uptake or increased "washout" of (123)I-metaiodobenzylguanidine-derived radioactivity is associated with worse prognosis or more severe disease in hypertension, congestive heart failure, arrhythmias, and diabetes mellitus. This pattern may reflect a high rate of postganglionic sympathetic nerve traffic to the heart. Many recent studies have agreed on the remarkable finding that all patients with Parkinson's disease and orthostatic hypotension have a loss of cardiac sympathetic innervation, whereas all patients with multiple system atrophy, often difficult to distinguish clinically from Parkinson's disease, have intact cardiac sympathetic innervation. Because Parkinson's disease entails a postganglionic sympathetic noradrenergic lesion, the disease appears to be not only a movement disorder, with dopamine loss in the nigrostriatal system of the brain, but also a dysautonomia, with noradrenaline loss in the sympathetic nervous system of the heart. As new ligands are developed, one may predict further discoveries of involvement of components of the autonomic nervous system in neurological diseases.

  18. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.). PMID:20111855

  19. Non-linear HRV indices under autonomic nervous system blockade.

    Science.gov (United States)

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  20. Modulation of Autonomous Nervous System activity by gyrosonic stimulation

    CERN Document Server

    Ghatak, S K; Choudhuri, R; Bandopadhaya, S

    2010-01-01

    A novel audio binaural stimulus that generates rotational perceptions of sound movement in brain at a particular predetermined frequency is referred as gyrosonics. The influence of gyrosonics on autonomic nervous system of healthy subjects has been examined by analyzing heart rate variability (HRV) in time- and frequency- domain. The M-lagged Poincare plot shows that the parameters SD1, SD2 and ratio SD12 (SD1/SD2) increases with lagged number M, and M-dependence is well described by Pade' approximant $\\chi \\frac{1+\\beta M}{1+\\gamma M}$ where values of $\\chi$, $\\beta$ and $ \\gamma$ depend on parameters SD1,SD2 and SD12. The values of these parameters for different M are augmented after gyrosonic stimulation. The slope and magnitude of curvature of SD1 and SD12 vs M plot increase considerably due to stimulation. The DFA analysis exhibits decrease in value of exponent $\\alpha$ due to stimulation. This stimulation results slower Heart rate, higher values of the standard deviation SD and the root-mean squared suc...

  1. Relationship between Vitamin D Status and Autonomic Nervous System Activity

    Directory of Open Access Journals (Sweden)

    Morton G. Burt

    2016-09-01

    Full Text Available Vitamin D deficiency is associated with increased arterial stiffness. However, the mechanisms underlying this association have not been clarified. The aim was to investigate whether changes in autonomic nervous system activity could underlie an association between 25 hydroxy vitamin D and arterial stiffness. A total of 49 subjects (age = 60 ± 8 years, body mass index = 26.7 ± 4.6 kg/m2, 25 hydroxy vitamin D = 69 ± 22 nmol/L underwent measurements of pulse wave velocity (PWV and augmentation index (AIx, spontaneous baroreflex sensitivity, plasma metanephrines and 25 hydroxy vitamin D. Subjects with 25 hydroxy vitamin D ≤ 50 nmol/L were restudied after 200,000 International Units 25 hydroxy vitamin D. Plasma metanephrine was positively associated with AIx (p = 0.02 independent of age, sex, smoking and cholesterol and negatively associated with 25 hydroxy vitamin D (p = 0.002 independent of age, sex and season. In contrast, there was no association between baroreflex sensitivity and 25 hydroxy vitamin D (p = 0.54. Treatment with vitamin D increased 25 hydroxy vitamin D from 43 ± 5 to 96 ± 24 nmol/L (p < 0.0001 but there was no significant change in plasma metanephrine (115 ± 25 vs. 99 ± 39 pmol/L, p = 0.12. We conclude that as plasma metanephrine was negatively associated with 25 hydroxy vitamin D and positively with AIx, it could mediate an association between these two variables. This hypothesis should be tested in larger interventional studies.

  2. Relationship between Vitamin D Status and Autonomic Nervous System Activity

    Science.gov (United States)

    Burt, Morton G.; Mangelsdorf, Brenda L.; Stranks, Stephen N.; Mangoni, Arduino A.

    2016-01-01

    Vitamin D deficiency is associated with increased arterial stiffness. However, the mechanisms underlying this association have not been clarified. The aim was to investigate whether changes in autonomic nervous system activity could underlie an association between 25 hydroxy vitamin D and arterial stiffness. A total of 49 subjects (age = 60 ± 8 years, body mass index = 26.7 ± 4.6 kg/m2, 25 hydroxy vitamin D = 69 ± 22 nmol/L) underwent measurements of pulse wave velocity (PWV) and augmentation index (AIx), spontaneous baroreflex sensitivity, plasma metanephrines and 25 hydroxy vitamin D. Subjects with 25 hydroxy vitamin D ≤ 50 nmol/L were restudied after 200,000 International Units 25 hydroxy vitamin D. Plasma metanephrine was positively associated with AIx (p = 0.02) independent of age, sex, smoking and cholesterol and negatively associated with 25 hydroxy vitamin D (p = 0.002) independent of age, sex and season. In contrast, there was no association between baroreflex sensitivity and 25 hydroxy vitamin D (p = 0.54). Treatment with vitamin D increased 25 hydroxy vitamin D from 43 ± 5 to 96 ± 24 nmol/L (p < 0.0001) but there was no significant change in plasma metanephrine (115 ± 25 vs. 99 ± 39 pmol/L, p = 0.12). We conclude that as plasma metanephrine was negatively associated with 25 hydroxy vitamin D and positively with AIx, it could mediate an association between these two variables. This hypothesis should be tested in larger interventional studies. PMID:27649235

  3. Autonomic nervous system mediated effects of food intake. Interaction between gastrointestinal and cardiovascular systems.

    NARCIS (Netherlands)

    van Orshoven, N.P.

    2008-01-01

    The studies presented in this thesis focused on the autonomic nervous system mediated interactions between the gastrointestinal and cardiovascular systems in response to food intake and on potential consequences of failure of these interactions. The effects of food intake on cardiovascular parameter

  4. Peripheral Nervous System Manifestations in Systemic Autoimmune Diseases

    OpenAIRE

    Cojocaru, Inimioara Mihaela; COJOCARU, Manole; SILOSI, Isabela; VRABIE, Camelia Doina

    2014-01-01

    The peripheral nervous system refers to parts of the nervous system outside the brain and spinal cord. Systemic autoimmune diseases can affect both the central and peripheral nervous systems in a myriad of ways and through a heterogeneous number of mechanisms leading to many different clinical manifestations. As a result, neurological complications of these disorders can result in significant morbidity and mortality. The most common complication of peripheral nervous system (PNS) involvement ...

  5. Analysis of Autonomic Nervous System Functional Age and Heart Rate Variability in Mine Workers

    Directory of Open Access Journals (Sweden)

    Vasicko T

    2016-04-01

    Full Text Available Introduction: Heavy working conditions and many unpropitious factors influencing workers health participate in development of various health disorders, among other autonomic cardiovascular regulation malfunction. The aim of this study is to draw a comparison of autonomic nervous system functional age and heart rate variability changes between workers with and without mining occupational exposure.

  6. Peripheral Nervous System Manifestations of Infectious Diseases

    OpenAIRE

    Brizzi, Kate T.; Lyons, Jennifer L.

    2014-01-01

    Infectious causes of peripheral nervous system (PNS) disease are underrecognized but potentially treatable. Heightened awareness educed by advanced understanding of the presentations and management of these infections can aid diagnosis and facilitate treatment. In this review, we discuss the clinical manifestations, diagnosis, and treatment of common bacterial, viral, and parasitic infections that affect the PNS. We additionally detail PNS side effects of some frequently used antimicrobial ag...

  7. (Non-invasive evaluation of the cardiac autonomic nervous system by PET)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  8. Causal interactions between the cerebral cortex and the autonomic nervous system.

    Science.gov (United States)

    Yu, XiaoLin; Zhang, Chong; Zhang, JianBao

    2014-05-01

    Mental states such as stress and anxiety can cause heart disease. On the other hand, meditation can improve cardiac performance. In this study, the heart rate variability, directed transfer function and corrected conditional entropy were used to investigate the effects of mental tasks on cardiac performance, and the functional coupling between the cerebral cortex and the heart. When subjects tried to decrease their heart rate by volition, the sympathetic nervous system was inhibited and the heart rate decreased. When subjects tried to increase their heart rate by volition, the parasympathetic nervous system was inhibited and the sympathetic nervous system was stimulated, and the heart rate increased. When autonomic nervous system activity was regulated by mental tasks, the information flow from the post-central areas to the pre-central areas of the cerebral cortex increased, and there was greater coupling between the brain and the heart. Use of directed transfer function and corrected conditional entropy techniques enabled analysis of electroencephalographic recordings, and of the information flow causing functional coupling between the brain and the heart.

  9. Autonomic nervous system function in type 2 diabetes using conventional clinical autonomic tests, heart rate and blood pressure variability measures

    Directory of Open Access Journals (Sweden)

    S Sucharita

    2011-01-01

    Full Text Available Background: There are currently approximately 40.9 million patients with diabetes mellitus in India and this number is expected to rise to about 69.9 million by the year 2025. This high burden of diabetes is likely to be associated with an increase in associated complications. Materials and Methods: A total of 23 (15 male and 8 female patients with type 2 diabetes of 10-15 years duration and their age and gender matched controls (n=23 were recruited. All subjects underwent detailed clinical proforma, questionnaire related to autonomic symptoms, anthropometry, peripheral neural examination and tests of autonomic nervous system including both conventional and newer methods (heart rate and blood pressure variability. Results: Conventional tests of cardiac parasympathetic and sympathetic activity were significantly lower in patients with diabetes compared to the controls (P<0.05. The diabetic patients group had significantly lower high frequency and low-frequency HRV when expressed in absolute units (P<0.05 and total power (P<0.01 compared to the controls. Conclusion: Data from the current study demonstrated that diabetics had both cardiac sympathetic and cardiac parasympathetic nervous system involvement. The presence of symptoms and involvement of both components of the autonomic nervous system suggest that dysfunction has been present for a while in these diabetics. There is a strong need for earlier and regular evaluation of autonomic nervous system in type 2 diabetics to prevent further complications.

  10. [Orthostatic hypotension due to autonomous nervous system dysfunction. Review of different syndromes and their treatment].

    Science.gov (United States)

    Grubb, B P; Blanc, J J

    1999-01-01

    Dysfunction of the autonomous nervous system was poorly known to cardiologists until recently. Advances in the diagnosis of vasovagal syncope have initiated intense cardiological research into this subject. This type of syncope does not cover by far all dysfunctions of this system, all or nearly all of which have vasoplegic or bradycardic components. The aim of this article is to review the disorders of the autonomous nervous system which may interest every day practice of the cardiologist. The diagnostic advances and new treatments will require a further update of this review in the months or years to come. PMID:10065281

  11. Hormones and the autonomic nervous system are involved in suprachiasmatic nucleus modulation of glucose homeostasis.

    Science.gov (United States)

    Ruiter, Marieke; Buijs, Ruud M; Kalsbeek, Andries

    2006-05-01

    Glucose is one of the most important energy sources for the body in general, and the brain in particular. It is essential for survival to keep glucose levels within strict boundaries. Acute disturbances of glucose homeostasis are rapidly corrected by hormonal and neuronal mechanisms. Furthermore, changes in energy expenditure associated with the light-dark cycle induce variations in the plasma glucose concentration that are more gradual. Organisms take advantage of adapting their internal physiology to the predictable daily changes in energy expenditure, because it enables them to anticipate these changes and to prevent unnecessary disturbance of homeostasis. The hypothalamic biological clock, located in the suprachiasmatic nucleus (SCN), receives light information from the eyes and transmits this information to the rest of the body to synchronize physiology to the environment. Here we review several studies providing evidence for biological clock control of the daily variation in several aspects of glucose metabolism. Although both hormones and the autonomic nervous system can stimulate glucose uptake or production by organs in the periphery, we have shown that the biological clock control of glucose metabolism mostly occurs through the autonomic nervous system. The critical involvement of the biological clock is also indicated by several studies, indicating that disturbance of the biological clock is often associated with metabolic diseases, such as obesity, diabetes mellitus and hypertension.

  12. The Olig family affects central nervous system development and disease

    Institute of Scientific and Technical Information of China (English)

    Botao Tan; Jing Yu; Ying Yin; Gongwei Jia; Wei Jiang; Lehua Yu

    2014-01-01

    Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop-ment and related diseases.

  13. Child Abuse and Autonomic Nervous System Hyporesponsivity among Psychiatrically Impaired Children

    Science.gov (United States)

    Ford, Julian D.; Fraleigh, Lisa A.; Albert, David B.; Connor, Daniel F.

    2010-01-01

    Objective: Sexually or physically abused children are at risk for neurobiological dysregulation as well as for internalizing and disruptive behavior disorders. Stress-related autonomic nervous system (ANS) down-regulation has been proposed as a sequela of abuse and was investigated in the present study. Methods: Child Protective Services…

  14. Dysregulation of the Autonomic Nervous System Predicts the Development of the Metabolic Syndrome

    NARCIS (Netherlands)

    Licht, Carmilla M. M.; de Geus, Eco J. C.; Penninx, Brenda W. J. H.

    2013-01-01

    Context: Stress is suggested to lead to metabolic dysregulations as clustered in the metabolic syndrome. Although dysregulation of the autonomic nervous system is found to associate with the metabolic syndrome and its dysregulations, no longitudinal study has been performed to date to examine the pr

  15. Multifractal and nonlinear assessment of autonomous nervous system response during transient myocardial ischaemia

    International Nuclear Information System (INIS)

    We assess autonomic nervous system response during prolonged percutaneous transluminal coronary angioplasty (PTCA) using heart rate variability analysis with multifractal indices. These indices are used to evaluate the effects of the PTCA procedures at different arteries and locations. A total of 55 patients from the Staff3 database, with no prior history of myocardial infarction, were included in the study. The indices increased significantly during the transient ischaemia and reperfusion periods, indicating an increase in nonlinear multifractal characteristics and a change in temporal correlations in heartbeat fluctuations. This indicates that significant multifractal and nonlinear complex reactions in the autonomic control of the heart rate occurred during coronary artery occlusions and suggests that the multifractal indices may be a promising nonlinear technique for evaluating autonomic nervous system response in the presence of transient myocardial ischaemia

  16. DISORDERS OF THE AUTONOMIC NERVOUS SYSTEM IN THE CARDIOLOGY PRACTICE: FOCUS ON THE ANALYSIS OF HEART RATE VARIABILITY

    Directory of Open Access Journals (Sweden)

    E. B. Akhmedova

    2015-01-01

    Full Text Available Heart rate variability (HRV in patients with ischemic heart disease, a life-threatening heart rhythm disorders, as well as diabetes mellitus (DM is considered. A significant association between the autonomic regulation of the cardiovascular system and death from cardiovascular causes is identified. The reactions of the autonomic nervous system (ANS can serve as a precipitating factor of arrhythmias in patients with heart disorders. Analysis of HRV at rest is the main and informative method for determination of the ANS disorders. HRV decreases greatly in patients with acute myocardial infarction, cardiac arrhythmia, and DM, predicting a high risk of death. The leading cause of death in diabetic patients is cardiac autonomic neuropathy, with the development of "silent" ischemia and painless myocardial infarction. Autonomic regulation of the heart rate should be assessed for early diagnosis and prevention of complications in the form of sudden death.

  17. DISORDERS OF THE AUTONOMIC NERVOUS SYSTEM IN THE CARDIOLOGY PRACTICE: FOCUS ON THE ANALYSIS OF HEART RATE VARIABILITY

    Directory of Open Access Journals (Sweden)

    E. B. Akhmedova

    2015-09-01

    Full Text Available Heart rate variability (HRV in patients with ischemic heart disease, a life-threatening heart rhythm disorders, as well as diabetes mellitus (DM is considered. A significant association between the autonomic regulation of the cardiovascular system and death from cardiovascular causes is identified. The reactions of the autonomic nervous system (ANS can serve as a precipitating factor of arrhythmias in patients with heart disorders. Analysis of HRV at rest is the main and informative method for determination of the ANS disorders. HRV decreases greatly in patients with acute myocardial infarction, cardiac arrhythmia, and DM, predicting a high risk of death. The leading cause of death in diabetic patients is cardiac autonomic neuropathy, with the development of "silent" ischemia and painless myocardial infarction. Autonomic regulation of the heart rate should be assessed for early diagnosis and prevention of complications in the form of sudden death.

  18. [The influence of aging on autonomic nervous system activity and gastric myoelectric activity in humans].

    Science.gov (United States)

    Thor, P J; Kolasińska-Kloch, W; Pitala, A; Janik, A; Kopp, B; Sibiga, W

    1999-01-01

    The study was performed on 84 healthy volunteers (33 women, 52 men) of age 20-71 years with no history of the circulatory or gastrointestinal system disease. The gastric myoelectrical activity (EGG) was recorded with the cutaneous electrodes--electrogastrography Synectics (Sweden). The activity of the cardiac autonomic nervous system was measured by HRV (heart rate variability) recorded with EGG and computer assisted programme Proster (Poland). Subject were divided into 5 groups according to the decade of age (20-70). Percentage of basal electrical rhythm (BER) dysrhythmias increased (1.9 +/- 0.5% vs 21.1 +/- 3.2% in fasting and 2.4 +/- 1.2% vs 24.6 +/- 5% postprandially but decrease of the EGG amplitude after the meal was observed (270 +/- 20% vs 90 +/- 7%) in youngest and oldest group respectively. With the ageing the cardiac sympathetic and parasympathetic activity (LF and HF) decreased in first and last group respectively. In the forth decade in man and women the sympathetic activity system prevalence expressed by the LF/HF rate increased (1.09 +/- 0.2 vs. 2.14 +/- 0.5) (p < 0.05). The results of our study suggest the deleterious influence of the ageing on the of autonomic system activity as shown by changes in HRV and dysrhythmia of the gastric slow waves in EGG. PMID:10909474

  19. Assessment of autonomic nervous system activity by heart rate recovery response

    Institute of Scientific and Technical Information of China (English)

    MENG Zhaohui; BAI Jing

    2004-01-01

    The assessment of autonomic nervous system (ANS) activity is a tool for diagnosing or predicting cardiovascular diseases,while heart rate recovery response (HRRR) after exercise has been promoted as a process under the regulation of ANS (sympathetic and parasympathetic nervous systems).Therefore,assessment of ANS activity was performed by HRRR in this study.Firstly,HRRR signal was extracted based on wavelet decomposition and difference curve of coarse component from heart rate signal.Then,HRRR was divided into quickly descending interval (QDI) and slowly descending interval (SDI).Finally,3 groups of indexes (Difference,Exponential and Quadratic Groups) from QDI and SDI were compared between 50 normotensive and 61 hypertensive subjects.The results showed that the indexes of Difference Group were better choices than others in analyzing the features of HRRR.Furthermore,parasympathetic activity is dominant in QDI,while sympathetic and parasympathetic activities affect SDI together.In conclusion,the proposed method was effective to assess ANS activity.

  20. Erythromelalgia as a manifestation of autonomic nervous system involvement in multiple sclerosis.

    Science.gov (United States)

    Adamec, Ivan; Lakoš Jukić, Ines; Habek, Mario

    2016-07-01

    Erythromelalgia is a rare condition characterized by burning pain, erythema and increased temperature of the hands or the feet. Its etiology is not completely understood but it is believed that the underlying cause is a peripheral vascular dysfunction that leads to simultaneous tissue hypoxia and hyperemia. We present a rare co-occurrence of erythromelalgia and multiple sclerosis in a patient with autonomic nervous system dysfunction and propose a causative interconnection. PMID:27456866

  1. Effect Of Haemodialysis On Intra Dialytic Calcium, Phosphorus,Magnesium, Levels In Relation To AutonomicNervous System Activity

    OpenAIRE

    Mona Hosny, Sahar Shawky, Ahmed Ramadan , Hany Refaat

    2004-01-01

    Autonomic nervous system dysfunction is common in uremia and in patients under hemodialysis. Changes in serum calcium, serum phosphorus and serum magnesuim always occur during hemodialysis. The relation between these changes and autonomic nervous system activity during hemodialysis has not been fully studied. This study was carried out on 30 patients with chronic renal failure on regular hemo-dialysis with nearly similar age group. We measured serum calcium, serum phosphorus and serum magnesi...

  2. Diseases of the nervous system associated with calcium channelopathies

    NARCIS (Netherlands)

    Todorov, Boyan Bogdanov

    2010-01-01

    The aim of the studies described in this thesis was to investigate how abnormal CaV2.1 channel function can cause disease, in particular motor coordination dysfunction. The chapters illustrate how various neuronal cell types in the periphery (peripheral nervous system) and the central nervous system

  3. Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Azadeh Kushki

    Full Text Available Assessment of anxiety symptoms in autism spectrum disorders (ASD is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS activity for this purpose. Specially, the objectives of the study were to 1 examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2 characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature during a baseline (movie watching and anxiety condition (Stroop task in a sample of typically developing children (n = 17 and children with ASD (n = 12. The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1 signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2 ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal.

  4. Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders.

    Science.gov (United States)

    Kushki, Azadeh; Drumm, Ellen; Pla Mobarak, Michele; Tanel, Nadia; Dupuis, Annie; Chau, Tom; Anagnostou, Evdokia

    2013-01-01

    Assessment of anxiety symptoms in autism spectrum disorders (ASD) is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS) activity for this purpose. Specially, the objectives of the study were to 1) examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2) characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature) during a baseline (movie watching) and anxiety condition (Stroop task) in a sample of typically developing children (n = 17) and children with ASD (n = 12). The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1) signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2) ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal.

  5. Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system.

    Science.gov (United States)

    Ziemssen, Tjalf; Reimann, Manja; Gasch, Julia; Rüdiger, Heinz

    2013-09-01

    Biological rhythms, describing the temporal variation of biological processes, are a characteristic feature of complex systems. The analysis of biological rhythms can provide important insights into the pathophysiology of different diseases, especially, in cardiovascular medicine. In the field of the autonomic nervous system, heart rate variability (HRV) and baroreflex sensitivity (BRS) describe important fluctuations of blood pressure and heart rate which are often analyzed by Fourier transformation. However, these parameters are stochastic with overlaying rhythmical structures. R-R intervals as independent variables of time are not equidistant. That is why the trigonometric regressive spectral (TRS) analysis--reviewed in this paper--was introduced, considering both the statistical and rhythmical features of such time series. The data segments required for TRS analysis can be as short as 20 s allowing for dynamic evaluation of heart rate and blood pressure interaction over longer periods. Beyond HRV, TRS also estimates BRS based on linear regression analyses of coherent heart rate and blood pressure oscillations. An additional advantage is that all oscillations are analyzed by the same (maximal) number of R-R intervals thereby providing a high number of individual BRS values. This ensures a high confidence level of BRS determination which, along with short recording periods, may be of profound clinical relevance. The dynamic assessment of heart rate and blood pressure spectra by TRS allows a more precise evaluation of cardiovascular modulation under different settings as has already been demonstrated in different clinical studies. PMID:23812502

  6. Autonomic Nervous System Dysfunction and Inflammation Contribute to the Increased Cardiovascular Mortality Risk Associated With Depression

    Science.gov (United States)

    Kop, Willem J.; Stein, Phyllis K.; Tracy, Russell P.; Barzilay, Joshua I.; Schulz, Richard; Gottdiener, John S.

    2011-01-01

    Objective To investigate prospectively whether autonomic nervous system (ANS) dysfunction and inflammation play a role in the increased cardiovascular disease (CVD)-related mortality risk associated with depression. Methods Participants in the Cardiovascular Health Study (n = 907; mean age, 71.3 ± 4.6 years; 59.1% women) were evaluated for ANS indices derived from heart rate variability (HRV) analysis (frequency and time domain HRV, and nonlinear indices, including detrended fluctuation analysis (DFA1) and heart rate turbulence). Inflammation markers included C-reactive protein, interleukin-6, fibrinogen, and white blood cell count). Depressive symptoms were assessed, using the 10-item Centers for Epidemiological Studies Depression scale. Cox proportional hazards models were used to investigate the mortality risk associated with depression, ANS, and inflammation markers, adjusting for demographic and clinical covariates. Results Depression was associated with ANS dysfunction (DFA1, p = .018), and increased inflammation markers (white blood cell count, p = .012, fibrinogen p = .043) adjusting for covariates. CVD-related mortality occurred in 121 participants during a median follow-up of 13.3 years. Depression was associated with an increased CVD mortality risk (hazard ratio, 1.88; 95% confidence interval, 1.23–2.86). Multivariable analyses showed that depression was an independent predictor of CVD mortality (hazard ratio, 1.72; 95% confidence interval, 1.05–2.83) when adjusting for independent HRV and inflammation predictors (DFA1, heart rate turbulence, interleukin-6), attenuating the depression-CVD mortality association by 12.7% (p < .001). Conclusion Autonomic dysfunction and inflammation contribute to the increased cardiovascular mortality risk associated with depression, but a large portion of the predictive value of depression remains unexplained by these neuroimmunological measures. PMID:20639389

  7. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    Science.gov (United States)

    van den Berg, Magdalena M.H.E.; Maas, Jolanda; Muller, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille N.M.; van Mechelen, Willem; van den Berg, Agnes E.

    2015-01-01

    This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA) and pre-ejection period (PEP), indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space. PMID:26694426

  8. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    Directory of Open Access Journals (Sweden)

    Magdalena M.H.E. van den Berg

    2015-12-01

    Full Text Available This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram and impedance cardiogram signal was used to derive respiratory sinus arrhythmia (RSA and pre-ejection period (PEP, indicators of respectively parasympathetic and sympathetic activity. The findings provide support for greater recovery after viewing green scenes, as marked by a stronger increase in RSA as a marker of parasympathetic activity. There were no indications for greater recovery after viewing green scenes in PEP as a marker of sympathetic activity, and there were also no indications of greater buffering effects of green space in neither RSA nor PEP. Overall, our findings are consistent with a predominant role of the parasympathetic nervous system in restorative effects of viewing green space.

  9. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report, September 1991--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The proposed research addresses the development, validation and application of cardiac PET imaging techniques to characterize the autonomic nervous system of the heart. PET technology has significantly matured over the last two decades. Instrument design, image processing and production of radiochemical compounds have formed an integrative approach to provide a powerful and novel imaging modality for the quantitative in vivo evaluation of the autonomic nervous system of the heart. Animal studies using novel tracers for the sympathetic and parasympathetic nerve terminals will be employed to characterize the functional integrity of nerve terminals. This work will be complemented by the development of agents which bind to postsynaptic receptor sites. The combined evaluation of presynaptic and postsynaptic neuronal function will allow a unique characterization of neuronal function. Initial development in animal studies will be followed by feasibility studies in humans. These studies are designed to test sophisticated imaging protocols in the human heart and validate the scintigraphic findings with independent markers of autonomic innervation. Subsequent clinical application in various cardiac diseases is expected to provide new insights into the neuropathophysiology of the heart.

  10. [AUTONOMIC NERVOUS SYSTEM AND ITS IMBALANCE IN NEURO INTENSIVE CARE UNIT].

    Science.gov (United States)

    Popugaev, K A; Lubnin, A Yu; Zabelin, M V; Samoylov, A S

    2016-01-01

    The autonomic nervous system (ANS) provides homeostasis due to the innervation of the secretory glands, smooth muscle and cardiac muscle. Higher centers of the ANS (primarily the hypothalamus, some centers of the brain stem and limbic system) form a integrative network, which plays a key role in coordinating the functioning of the endocrine, immune system and other parts of the central nervous system. Intracranial centers of the ANS are responsible for the consciousness, behavioral, emotional, and other components of the higher nervous activity. Thus, the significance of the ANS can't be overestimated. At the same time today in neurointensive care there are no clear criteria for ANS dysfunction, we don't have universally recognized monitoring facilities for ANS and approaches to targeted therapy of its disorders. This paradox is even more important as in the pathogenesis of some critical conditions such as neurogenic pulmonary edema, stunned myocardium, cardiomyopathy Takotsubo lies precisely ANS imbalance. This review devoted to the ANS and some problems associated with its imbalance. PMID:27468506

  11. Chinese-chi and Kundalini yoga Meditations Effects on the Autonomic Nervous System: Comparative Study

    Directory of Open Access Journals (Sweden)

    Anilesh Dey

    2016-06-01

    Full Text Available Cardiac disease is one of the major causes for death all over the world. Heart rate variability (HRV is a significant parameter that used in assessing Autonomous Nervous System (ANS activity. Generally, the 2D Poincare′ plot and 3D Poincaré plot of the HRV signals reflect the effect of different external stimuli on the ANS. Meditation is one of such external stimulus, which has different techniques with different types of effects on the ANS. Chinese Chi-meditation and Kundalini yoga are two different effective meditation techniques. The current work is interested with the analysis of the HRV signals under the effect of these two based on meditation techniques. The 2D and 3D Poincare′ plots are generally plotted by fitting respectively an ellipse/ellipsoid to the dense region of the constructed Poincare′ plot of HRV signals. However, the 2D and 3D Poincaré plots sometimes fail to describe the proper behaviour of the system. Thus in this study, a three-dimensional frequency-delay plot is proposed to properly distinguish these two famous meditation techniques by analyzing their effects on ANS. This proposed 3D frequency-delay plot is applied on HRV signals of eight persons practicing same Chi-meditation and four other persons practising same Kundalini yoga. To substantiate the result for larger sample of data, statistical Student t-test is applied, which shows a satisfactory result in this context. The experimental results established that the Chi-meditation has large impact on the HRVcompared to the Kundalini yoga.

  12. Clinical assessment of the autonomic nervous system in diabetes mellitus and its correlation with glycemic control

    Directory of Open Access Journals (Sweden)

    Uday B Nayak

    2013-01-01

    Full Text Available Aim: Clinical assessment of the autonomic nervous system in Diabetes mellitus (DM and its correlation with glycemic control. STUDY DESIGN: Cross sectional study of 50 adult diabetes patients. Materials and Methods: Fifty patients with DM who were on regular treatment with either insulin and/or oral hypoglycemic agents were studied. Cardiovascular autonomic neuropathy (CAN score was calculated using the clinical test variables. Results: Of the 50 patients 30 had no CAN, 10 had early CAN and 10 had severe CAN. The mean of CAN score increased with duration of diabetes. The mean HbA 1C was 7.73. The mean CAN score was higher in patients who had complication of diabetes as compared to patients without complications. The heart rate variability with respiration was found to be 15.84 ± 7.02/min. The mean valsalva ratio was 1.31 ± 0.23. The mean drop in BP on standing was 7.30 ± 7.24 mmHg. The mean 30:15 ratio was 1.06 ± 0.04. The mean rise in diastolic BP on sustained hand grip was 16.04 ± 4.11 mmHg. Conclusions: The prevalence of autonomic neuropathy in DM as assessed by CAN score was 40%. The CAN score did not correlate with the duration of DM. The HbA 1C had a significant correlation with the severity of autonomic neuropathy. Occurrence of CAN correlated with the presence of peripheral neuropathy but not with the presence of retinopathy or nephropathy. All individual tests in the battery of CAN score were significantly associated with the presence of autonomic neuropathy, except 30:15 ratio.

  13. Drug-Free Correction of the Tone of the Autonomic Nervous System in the Management of Cardiac Arrhythmia in Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Sergey V. Popov, PhD, ScD

    2013-06-01

    Full Text Available Background: The aim of our study was to examine the possibility of ventricular extrasystole (VES management in CAD (coronary artery disease patients by attenuating the sympathetic activity with a course of electrical stimulation of the vagus nerve. Methods: A decrease in sympathetic tone was achieved via vagus nerve electrical stimulation (VNES. VNES was performed in 48 male CAD patients, mean age 53.5±4.1 years. Antiarrhythmic drug therapy was canceled prior to VNES therapy. The effect of VNES on heart rate variability (HRV and VES were carefully studied. All the patients received a 24-hour ECG monitoring. HRV was calculated for high frequency (HF and low frequency (LF bands and the LF/HF index was determined. Results: Immediately following VNES therapy, 30 patients (group 1 reported alleviation of angina signs and the LF/HF index was significantly decreased (p=0.001. Eighteen patients (group 2 showed no change either in health or the LF/HF index. According to ECG and echocardiography, the VES number did not significantly change immediately after VNES therapy. One month after the VNES course, group 1 reported further improvement in health; the LF/HF index approached normal values. In group 2, the LF/HF significantly decreased (p=0.043. However, in the entire study sample, the VES number significantly decreased overall (p=0.025. Conclusion: VNES attenuated the cardiac effects of hypersympathicotonia decreased the ischemic impact on the myocardium, alleviated the cardiac angina signs, and beneficially influenced the VES number in CAD patients.

  14. Gait Rehabilitation Device in Central Nervous System Disease: A Review

    Directory of Open Access Journals (Sweden)

    Kazuya Kubo

    2011-01-01

    Full Text Available Central nervous system diseases cause the gait disorder. Early rehabilitation of a patient with central nervous system disease is shown to be benefit. However, early gait training is difficult because of muscular weakness and those elderly patients who lose of leg muscular power. In the patient's walking training, therapists assist the movement of patient's lower limbs and control the movement of patient's lower limbs. However the assistance for the movement of the lower limbs is a serious hard labor for therapists. Therefore, research into and development of various gait rehabilitation devices is currently underway to identify methods to alleviate the physical burden on therapists. In this paper, we introduced the about gait rehabilitation devices in central nervous system disease.

  15. Objective evaluation of stress with the blind by the monitoring of autonomic nervous system activity.

    Science.gov (United States)

    Massot, Bertrand; Baltenneck, Nicolas; Gehin, Claudine; Dittmar, Andre; McAdams, Eric

    2010-01-01

    Accessibility for the blind in an urban space must be studied under real conditions in their daily environment. A new approach for evaluating the impact of environmental conditions on blind pedestrians is the objective measure of stress by the monitoring of the autonomic nervous system (ANS) activity. Original techniques of data analysis and spatial representation are proposed for the detection of the ANS activity through the assessment of the electrodermal activity. Skin resistance was recorded with an EmoSense system on 10 blind subjects who followed a charted course independently. The course was 1065 meters long and consisted of various environmental conditions in an urban space. The spatial frequency of the non-specific skin resistance responses was used to provide a more relevant representation of geographic hotspots. Results of statistical analysis based on this new parameter are discussed to conclude on phenomena causing mental stress with the blind moving in an urban space.

  16. The role of the autonomic nervous system in hypertension: a bond graph model study

    International Nuclear Information System (INIS)

    A bond graph model of the cardiovascular system with embedded autonomic nervous regulation was developed for a better understanding of the role of the autonomic nervous system (ANS) in hypertension. The model is described by a pump model of the heart and a detailed representation of the head and neck, pulmonary, coronary, abdomen and extremity circulation. It responds to sympathetic and parasympathetic activities by modifying systemic peripheral vascular resistance, heart rate, ventricular end-systolic elastance and venous unstressed volumes. The impairment of ANS is represented by an elevation of the baroreflex set point. The simulation results show that, compared with normotensive, in hypertension the systolic and diastolic blood pressure (SBP/DBP) rose from 112/77 mmHg to 144/94 mmHg and the left ventricular wall thickness (LVWT) increased from 10 mm to 12.74 mm. In the case that ANS regulation was absent, both the SBP and DBP further increased by 8 mmHg and the LVWT increased to 13.22 mm. The results also demonstrate that when ANS regulation is not severely damaged, e.g. the baroreflex set point is 97 mmHg, it still has an effect in preventing the rapid rise of blood pressure in hypertension; however, with the worsening of ANS regulation, its protective role weakens. The results agree with human physiological and pathological features in hemodynamic parameters and carotid baroreflex function curves, and indicate the role of ANS in blood pressure regulation and heart protection. In conclusion, the present model may provide a valid approach to study the pathophysiological conditions of the cardiovascular system and the mechanism of ANS regulation

  17. Relations between blood supply of brain of students and condition of autonomic nervous system and risk factors

    OpenAIRE

    L. D. Korovina; T. M. Zaporozhets

    2015-01-01

    The purpose of our research was to estimate the brain blood supply level by rheoencephalography method in junior students of the Medical academy and to determine the blood supply links with the autonomic regulation state, behavioural and alimentary factors. Rheo-encephalographic study, research of the autonomic nervous system state, heart rate regulation and questioning of 17–29 year-old students have been conducted. Basic hemodynamic indices were normal in all surveyed students. Increase in ...

  18. An Educational Board Game to Assist PharmD Students in Learning Autonomic Nervous System Pharmacology.

    Science.gov (United States)

    Jones, J Shawn; Tincher, Lindsay; Odeng-Otu, Emmanuel; Herdman, Michelle

    2015-10-25

    Objective. To examine whether playing a board game can assist PharmD students in learning autonomic nervous system (ANS) pharmacology. Design. Of 72 students enrolled in a required second-year pharmacology course, 22 students volunteered to play the board game, which was followed by an in-class examination consisting of 42 ANS questions (ANSQs) and 8 control questions (CTLQs). Participants were given a pretest and a posttest to assess immediate educational improvement. Participants' scores for pretest, posttest, in-class examination, and ANSQs were compared. Also, scores for examination, ANSQs, and CTLQs were compared between board game participants (PART) and nonparticipating classmates (NPART). Assessment. Board game participants scored progressively higher between the pretest, posttest, examination, and ANSQs. Additionally, PART scores were higher than NPART scores for examination and ANSQs. Difference between PART and NPART CTLQ scores was not significant. Conclusion. A board game can assist PharmD students in learning ANS pharmacology.

  19. Cardiovascular autonomic nervous system function and aerobic capacity in type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Harriet eHägglund

    2012-09-01

    Full Text Available Impaired cardiovascular autonomic nervous system (ANS function has been reported in type 1 diabetes patients. ANS function, evaluated by heart rate variability (HRV, systolic blood pressure variability (SBPV and baroreflex sensitivity (BRS, has been linked to aerobic capacity (VO2peak in healthy subjects, but relationship is unknown in type 1 diabetes. We examined cardiovascular ANS function at rest and during function tests, and its relations to VO2peak in type 1 diabetes individuals. Ten type 1 diabetes patients (T1D (34 ± 7 years and 11 healthy control (CON (31 ± 6 years age and leisure-time physical activity-matched men were studied. Autonomic nervous system function was recorded at rest and during active standing and handgrip. Determination of VO2peak was obtained with graded cycle ergometer test. During ANS recordings SBPV, BRS, and resting HRV did not differ between groups, but alpha1 responses to manoeuvres in detrended fluctuation analyses were smaller in T1D (active standing; 32%, handgrip; 20%, medians than in CON (active standing; 71%, handgrip; 54%, p < 0.05. VO2peak was lower in T1D (36 ± 4 ml ∙ kg-1 ∙ min-1 than in CON (45 ± 9 ml ∙ kg-1 ∙ min-1, p < 0.05. Resting HRV measures, RMSSD, HF and SD1 correlated with VO2peak in CON (p < 0.05 and when analysing groups together. These results suggest that T1D had lower VO2peak, weaker HRV response to manoeuvres, but not impaired cardiovascular ANS function at rest compared with CON. Resting parasympathetic cardiac activity correlated with VO2peak in CON but not in T1D. Detrended fluctuation analysis could be a sensitive detector of changes in cardiac ANS function in type 1 diabetes.

  20. Aromatherapy benefits autonomic nervous system regulation for elementary school faculty in taiwan.

    Science.gov (United States)

    Chang, Kang-Ming; Shen, Chuh-Wei

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy. PMID:21584196

  1. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    Directory of Open Access Journals (Sweden)

    Kang-Ming Chang

    2011-01-01

    Full Text Available Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P<.001∗∗∗ after application of the aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.

  2. Effects of Betel chewing on the central and autonomic nervous systems.

    Science.gov (United States)

    Chu, N S

    2001-01-01

    Betel chewing has been claimed to produce a sense of well-being, euphoria, heightened alertness, sweating, salivation, a hot sensation in the body and increased capacity to work. Betel chewing also leads to habituation, addiction and withdrawal. However, the mechanisms underlying these effects remain poorly understood. Arecoline, the major alkaloid of Areca nut, has been extensively studied, and several effects of betel chewing are thought to be related to the actions of this parasympathomimetic constituent. However, betel chewing may produce complex reactions and interactions. In the presence of lime, arecoline and guvacoline in Areca nut are hydrolyzed into arecaidine and guvacine, respectively, which are strong inhibitors of GABA uptake. Piper betle flower or leaf contains aromatic phenolic compounds which have been found to stimulate the release of catecholamines in vitro. Thus, betel chewing may affect parasympathetic, GABAnergic and sympathetic functions. Betel chewing produces an increase in heart rate, blood pressure, sweating and body temperature. In addition, EEG shows widespread cortical desynchronization indicating a state of arousal. In autonomic function tests, both the sympathetic skin response and RR interval variation are affected. Betel chewing also increases plasma concentrations of norepinephrine and epinephrine. These results suggest that betel chewing mainly affects the central and autonomic nervous systems. Future studies should investigate both the acute and chronic effects of betel chewing. Such studies may further elucidate the psychoactive mechanisms responsible for the undiminished popularity of betel chewing since antiquity. PMID:11385294

  3. Early deprivation and autonomic nervous system functioning in post-institutionalized children.

    Science.gov (United States)

    Esposito, Elisa A; Koss, Kalsea J; Donzella, Bonny; Gunnar, Megan R

    2016-04-01

    The relations between early deprivation and the development of the neuroendocrine and central components of the mammalian stress response have been examined frequently. However, little is known about the impact of early deprivation on the developmental trajectories of autonomic function. Children adopted between 15-36 months from institutional care were examined during their first 16 months post-adoption (N = 60). Comparison groups included same-aged peers reared in their birth families (N = 50) and children adopted internationally from overseas foster care (N = 46). The present study examined trajectories of baseline autonomic nervous system function longitudinally following entry into adopted families. Post-institutionalized children had higher sympathetic tone, measured by pre-ejection period (PEP). Individual differences in PEP soon after adoption served as a mediator between early deprivation and parent-reported behavioral problems 2 years post-adoption. There were no group differences in parasympathetic function, indexed by respiratory sinus arrhythmia. All three groups showed similar trajectories of ANS function across the 16 month period. PMID:26497289

  4. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    Science.gov (United States)

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart. PMID:23366661

  5. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    Science.gov (United States)

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart.

  6. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    Directory of Open Access Journals (Sweden)

    Luba Sominsky

    Full Text Available Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p. exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA axis functioning. Altered autonomic nervous system (ANS activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH in the adrenal glands on postnatal days (PNDs 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli. Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of

  7. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    Science.gov (United States)

    Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.

  8. The impact of emotion-related autonomic nervous system responsiveness on pain sensitivity in female patients with fibromyalgia

    NARCIS (Netherlands)

    Middendorp, H. van; Lumley, M.A.; Houtveen, J.H.; Jacobs, J.W.G.; Bijlsma, J.W.J.; Geenen, R.

    2013-01-01

    OBJECTIVE: Patients with fibromyalgia have shown hyporeactive autonomic nervous system (ANS) responses to physical stressors, augmented pain to ANS changes, and heightened negative emotions, which can increase pain. This study examined ANS reactivity to negative emotions and its association with pai

  9. Autonomic nervous system dysfunction and serum levels of neurotoxic and neurotrophic cytokines in patients with cobalamin deficiency

    Directory of Open Access Journals (Sweden)

    Özcan Çeneli

    2010-12-01

    Full Text Available neurotrophiccytokines epidermal growth factor (EGF and interleukin-6 (IL-6 plays a role in the pathogenesisof cobalamin (Cbl deficiency-induced neuropathy. The aim of this study was to evaluate autonomicnervous system dysfunction and to look for any relationship between autonomic nervous systemdisturbances and serum cytokine levels (TNF-

  10. Nervous system disease associated with dominant cellular radiosensitivity

    International Nuclear Information System (INIS)

    Ionizing radiation sensitivity has been demonstrated in the following neurological diseases: sporadic and familial Alzheimer's disease, familial non-specific dementia, amyotrophic lateral sclerosis and Parkinsonism dementia of Guam, Huntington's disease, multiple sclerosis. Family studies in many cases give data consistent with dominant genetics, as does cell fusion analysis in the one disease so studied. In no case was there an absolute association between radiosensitivity and a given neurological disease. It is proposed that the underlying mutations are in genes controlling facets of nervous or immune system differentiation and development. 15 references, 2 tables

  11. Error awareness revisited: accumulation of multimodal evidence from central and autonomic nervous systems.

    Science.gov (United States)

    Wessel, Jan R; Danielmeier, Claudia; Ullsperger, Markus

    2011-10-01

    The differences between erroneous actions that are consciously perceived as errors and those that go unnoticed have recently become an issue in the field of performance monitoring. In EEG studies, error awareness has been suggested to influence the error positivity (Pe) of the response-locked event-related brain potential, a positive voltage deflection prominent approximately 300 msec after error commission, whereas the preceding error-related negativity (ERN) seemed to be unaffected by error awareness. Erroneous actions, in general, have been shown to promote several changes in ongoing autonomic nervous system (ANS) activity, yet such investigations have only rarely taken into account the question of subjective error awareness. In the first part of this study, heart rate, pupillometry, and EEG were recorded during an antisaccade task to measure autonomic arousal and activity of the CNS separately for perceived and unperceived errors. Contrary to our expectations, we observed differences in both Pe and ERN with respect to subjective error awareness. This was replicated in a second experiment, using a modified version of the same task. In line with our predictions, only perceived errors provoke the previously established post-error heart rate deceleration. Also, pupil size yields a more prominent dilatory effect after an erroneous saccade, which is also significantly larger for perceived than unperceived errors. On the basis of the ERP and ANS results as well as brain-behavior correlations, we suggest a novel interpretation of the implementation and emergence of error awareness in the brain. In our framework, several systems generate input signals (e.g., ERN, sensory input, proprioception) that influence the emergence of error awareness, which is then accumulated and presumably reflected in later potentials, such as the Pe. PMID:21268673

  12. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    Science.gov (United States)

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy. PMID:26259280

  13. New insights into the pathology of Parkinson's disease: does the peripheral autonomic system become central?

    Science.gov (United States)

    Probst, A; Bloch, A; Tolnay, M

    2008-04-01

    Recent studies in aged, neurologically unimpaired subjects have pointed to a specific induction site of the pathological process of Parkinson's disease (PD) in the region of the dorsal glossopharyngeus-vagus complex as well as in the anterior olfactory nucleus. From the lower brainstem, the disease process would then pursue an ascending course and involve more rostral brainstem areas, limbic structures, and eventually the cerebral cortex. One barrier to the acceptance of the caudal medullary structures as the induction site of PD pathology is that not all parts of the nervous system have been investigated for the presence of PD-associated lesions in cases of early asymptomatic PD. Using alpha-synuclein immunostaining, we investigated the brain, the sacral, and thoracic autonomic nuclei of the spinal cord as well as several components of the peripheral autonomic nervous system in a autopsy cohort of 98 neurologically unimpaired subjects aged 64 or more. Our data indicate that the autonomic nuclei of the spinal cord and the peripheral autonomic nervous system belong to the most constantly and earliest affected regions next to medullary structures and the olfactory nerves in neurologically unimpaired older individuals, thus providing a pathological basis for early premotor autonomic dysfunctions at a prodromal stage of PD.

  14. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis

    OpenAIRE

    Taweesak Janyacharoen; Narupon Kunbootsri; Preeda Arayawichanon; Seksun Chainansamit; Kittisak Sawanyawisuth

    2015-01-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients.Twenty-six allergic rhinitis patients, 12 males and 14 females wer...

  15. The central nervous system in childhood chronic kidney disease.

    Science.gov (United States)

    Gipson, Debbie S; Duquette, Peter J; Icard, Phil F; Hooper, Stephen R

    2007-10-01

    Neurodevelopmental deficits in pediatric and adult survivors of childhood onset chronic kidney disease (CKD) have been documented for many years. This paper reviews the available literature on central nervous system involvement incurred in childhood CKD. The studies reviewed include recent work in neuroimaging, electrophysiology, and neuropsychology, along with commentary on school functioning and long-term outcomes. The paper concludes with suggestions for monitoring the neurodevelopmental status and pursuing appropriate early interventions for children with CKD. PMID:17072652

  16. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  17. Heart Rate Variability as a Method for Assessment of the Autonomic Nervous System and the Adaptations to Different Physiological and Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Taralov Zdravko Z.

    2016-04-01

    Full Text Available The autonomic nervous system controls the smooth muscles of the internal organs, the cardiovascular system and the secretory function of the glands and plays a major role in the processes of adaptation. Heart rate variability is a non-invasive and easily applicable method for the assessment of its activity. The following review describes the origin, parameters and characteristics of this method and its potential for evaluation of the changes of the autonomic nervous system activity in different physiological and pathological conditions such as exogenous hypoxia, physical exercise and sleep. The application of heart rate variability in daily clinical practice would be beneficial for the diagnostics, the outcome prognosis and the assessment of the effect of treatment in various diseases.

  18. Heart Rate Variability as a Method for Assessment of the Autonomic Nervous System and the Adaptations to Different Physiological and Pathological Conditions.

    Science.gov (United States)

    Taralov, Zdravko Z; Terziyski, Kiril V; Kostianev, Stefan S

    2015-01-01

    The autonomic nervous system controls the smooth muscles of the internal organs, the cardiovascular system and the secretory function of the glands and plays a major role in the processes of adaptation. Heart rate variability is a non-invasive and easily applicable method for the assessment of its activity. The following review describes the origin, parameters and characteristics of this method and its potential for evaluation of the changes of the autonomic nervous system activity in different physiological and pathological conditions such as exogenous hypoxia, physical exercise and sleep. The application of heart rate variability in daily clinical practice would be beneficial for the diagnostics, the outcome prognosis and the assessment of the effect of treatment in various diseases. PMID:27180343

  19. Novel heart rate parameters for the assessment of autonomic nervous system function in premature infants.

    Science.gov (United States)

    Lucchini, M; Fifer, W P; Sahni, R; Signorini, M G

    2016-09-01

    Autonomic nervous system (ANS) balance is a key factor in homeostatic control of cardiac activity, breathing and certain reflex reactions such as coughing, sneezing and swallowing and thus plays a crucial role for survival. ANS impairment has been related to many neonatal pathologies, including sudden infant death syndrome (SIDS). Moreover, some conditions have been identified as risk factors for SIDS, such as prone sleep position. There is an urgent need for timely and non-invasive assessment of ANS function in at-risk infants. Systematic measurement of heart rate variability (HRV) offers an optimal approach to access indirectly both sympathetic and parasympathetic influences on ANS functioning. In this paper, data from premature infants collected in a sleep physiology laboratory in the NICU are presented: traditional and novel approaches to HRV analyses are applied and compared in order to evaluate their relative merits in the assessment of ANS activity and the influence of sleep position. Indices from time domain and nonlinear approaches contributed as markers of physiological development in premature infants. Moreover, significant differences were observed as a function of sleep position. PMID:27480495

  20. Effects of diving and oxygen on autonomic nervous system and cerebral blood flow.

    Science.gov (United States)

    Winklewski, Pawel J; Kot, Jacek; Frydrychowski, Andrzej F; Nuckowska, Magdalena K; Tkachenko, Yurii

    2013-09-01

    Recreational scuba diving is a popular leisure activity with the number of divers reaching several millions worldwide. Scuba diving represents a huge challenge for integrative physiology. In mammalian evolution, physiological reflexes developed to deal with lack of oxygen, rather than with an excess, which makes adaptations to scuba diving more difficult to describe and understand than those associated with breath-hold diving. The underwater environment significantly limits the use of equipment to register the organism's functions, so, in most instances, scientific theories are built on experiments that model real diving to some extent, like hyperbaric exposures, dive reflexes or water immersion. The aim of this review is to summarise the current knowledge related to the influence exerted by physiological conditions specific to diving on the autonomic nervous system and cerebral blood flow. The main factors regulating cerebral blood flow during scuba diving are discussed as follows: 1) increased oxygen partial pressure; 2) immersion-related trigemino-cardiac reflexes and 3) exposure to cold, exercise and stress. Also discussed are the potential mechanisms associated with immersion pulmonary oedema. PMID:24122190

  1. Exercise training improves cardiac autonomic nervous system activity in type 1 diabetic children.

    Science.gov (United States)

    Shin, Ki Ok; Moritani, Toshio; Woo, Jinhee; Jang, Ki Soeng; Bae, Ju Yong; Yoo, Jaeho; Kang, Sunghwun

    2014-01-01

    [Purpose] We investigated the effect exercise training has on cardiac autonomic nervous system (ANS) and cardiovascular risk profiles in children with type 1 diabetes mellitus (DM). [Subjects] Fifteen type 1 DM children (all boys; 13.0±1.0 years of age) were enrolled in the study. [Methods] The subjects received exercise training three times a week in a 12-week program. Each child was asked to walk on a treadmill to achieve an exercise intensity of VO2max 60%. ANS activity was measured by power spectral analysis of the electrocardiogram (ECG). Blood samples were obtained for serum lipid profiles. To evaluate Doppler-shifted Fourier pulsatility index (PI) analysis, a 5-MHz continuous wave Doppler (VASCULAB D10) set was used to measure forward blood flow velocity (FLOW) in the radial artery. [Results] Total and low-frequency (LF) power of heart rate variability increased significantly after exercise intervention. Total cholesterol (TC) levels were significant lower after exercise intervention. Total and high-frequency (HF) power were significantly correlated with higher TC levels, but diastolic blood pressure and HF was significantly correlated with lower TC levels. [Conclusion] Regular exercise intervention should be prescribed for children with type 1 DM.

  2. Early postnatal low-protein nutrition, metabolic programming and the autonomic nervous system in adult life

    Directory of Open Access Journals (Sweden)

    de Oliveira Júlio

    2012-09-01

    Full Text Available Abstract Protein restriction during lactation has been used as a rat model of metabolic programming to study the impact of perinatal malnutrition on adult metabolism. In contrast to protein restriction during fetal life, protein restriction during lactation did not appear to cause either obesity or the hallmarks of metabolic syndrome, such as hyperinsulinemia, when individuals reached adulthood. However, protein restriction provokes body underweight and hypoinsulinemia. This review is focused on the regulation of insulin secretion and the influence of the autonomic nervous system (ANS in adult rats that were protein-malnourished during lactation. The data available on the topic suggest that the perinatal phase of lactation, when insulted by protein deficit, imprints the adult metabolism and thereby alters the glycemic control. Although hypoinsulinemia programs adult rats to maintain normoglycemia, pancreatic β-cells are less sensitive to secretion stimuli, such as glucose and cholinergic agents. These pancreatic dysfunctions may be attributed to an imbalance of ANS activity recorded in adult rats that experienced maternal protein restriction.

  3. Early postnatal low-protein nutrition, metabolic programming and the autonomic nervous system in adult life.

    Science.gov (United States)

    de Oliveira, Júlio Cezar; Grassiolli, Sabrina; Gravena, Clarice; de Mathias, Paulo Cezar Freitas

    2012-09-11

    Protein restriction during lactation has been used as a rat model of metabolic programming to study the impact of perinatal malnutrition on adult metabolism. In contrast to protein restriction during fetal life, protein restriction during lactation did not appear to cause either obesity or the hallmarks of metabolic syndrome, such as hyperinsulinemia, when individuals reached adulthood. However, protein restriction provokes body underweight and hypoinsulinemia. This review is focused on the regulation of insulin secretion and the influence of the autonomic nervous system (ANS) in adult rats that were protein-malnourished during lactation. The data available on the topic suggest that the perinatal phase of lactation, when insulted by protein deficit, imprints the adult metabolism and thereby alters the glycemic control. Although hypoinsulinemia programs adult rats to maintain normoglycemia, pancreatic β-cells are less sensitive to secretion stimuli, such as glucose and cholinergic agents. These pancreatic dysfunctions may be attributed to an imbalance of ANS activity recorded in adult rats that experienced maternal protein restriction.

  4. Characterizing Psychological Dimensions in Non-Pathological Subjects through Autonomic Nervous System Dynamics

    Directory of Open Access Journals (Sweden)

    Mimma eNardelli

    2015-03-01

    Full Text Available The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS dynamics and specific dimensions such as anxiety, social phobia, stress and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and nonlinear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and nonlinear analysis was performed on Heart Rate Variability, InterBreath Interval series, and Inter-Beat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, nonlinear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions.

  5. Effect of Autonomic Nervous System on the Transmurai Dispersion of Ventricular Repolarization in Intact Canine

    Institute of Scientific and Technical Information of China (English)

    张存泰; 徐大文; 李泱; 刘念; 王琳; 陆再英

    2004-01-01

    Summary: The effect of the autonomic nerves on the transmural dispersion of ventricular repolarization in intact canine was investigated. By using the monophasic action potential (MAP) recording technique, monophasic action potentials (MAPs) of the epicardium (Epi), midmyocardium (Mid)and endocardium (Endo) were recorded simultaneously by specially designed plunge-needle electrodes at the left ventricular free wall in 12 open-chest dogs. MAPD90 and transmural dispersion of repolarization among three myocardial layers as well as the incidence of the EAD before autonomic nervous stimulation and during autonomic nervous stimulation were compared. The results showed that the MAPD90 of Epi, Mid and Endo before autonomic nervous stimulation were 278±11 ms,316± 16 ms and 270± 12 ms respectively, the MAPD90of Mid was significantly longer than that of Epi or Endo (P<0.01). MAPD90 of Epi, Mid and Endo were shortened by 19±4 ms, 45±6 ms,18± 3 ms respectively during sympathetic stimulation. Compared with that of the control, the transmural dispersion of repolarization during sympathetic stimulation was shortened from 44 ± 4 ms to 15±3 ms (P<0. 01), but early afterdepolarizations were elicited in the Mid of 5 dogs (41 0%)during sympathetic stimulation. Parasympathetic stimulation did not significantly affect the MAPD90 in the three layers. It is concluded that there is the transmural dispersion of ventricular repolarization in intact canine. Sympathetic stimulation can reduce transmural dispersion of repolarization, but it can produce early afterdepolarizations in the Mid. Parasympathetic stimulation does not significantly affect the transmural dispersion of ventricular repolarization.

  6. Autonomic nervous system dynamics for mood and emotional-state recognition significant advances in data acquisition, signal processing and classification

    CERN Document Server

    Valenza, Gaetano

    2014-01-01

    This monograph reports on advances in the measurement and study of autonomic nervous system (ANS) dynamics as a source of reliable and effective markers for mood state recognition and assessment of emotional responses. Its primary impact will be in affective computing and the application of emotion-recognition systems. Applicative studies of biosignals such as: electrocardiograms; electrodermal responses; respiration activity; gaze points; and pupil-size variation are covered in detail, and experimental results explain how to characterize the elicited affective levels and mood states pragmatically and accurately using the information thus extracted from the ANS. Nonlinear signal processing techniques play a crucial role in understanding the ANS physiology underlying superficially noticeable changes and provide important quantifiers of cardiovascular control dynamics. These have prognostic value in both healthy subjects and patients with mood disorders. Moreover, Autonomic Nervous System Dynamics for Mood and ...

  7. Fulminant Demyelinating Diseases of the Central Nervous System.

    Science.gov (United States)

    Bevan, Carolyn J; Cree, Bruce A

    2015-12-01

    Fulminant demyelinating diseases of the central nervous system include acute disseminated encephalomyelitis, the related acute hemorrhagic leukoencephalitis, multiple sclerosis variants, neuromyelitis optica spectrum disorders, and idiopathic transverse myelitis. These syndromes are often managed with similar acute treatments including high-dose corticosteroids and plasmapheresis; however, long-term management varies. Although the prognosis of fulminant demyelinating disease was historically poor, outcomes today may be improved due to earlier diagnosis, rapid implementation of anti-inflammatory therapies such as high-dose corticosteroids and plasmapheresis, and improved supportive care. PMID:26595866

  8. Optimizing the level of the physical health of the students with a glance of the type of autonomic nervous system

    Directory of Open Access Journals (Sweden)

    Grygus I.M.

    2013-06-01

    Full Text Available It is analyzed the changes in the level of physical health of students of the Faculty of Physical Education under the influence of physical training with a glance of the type of autonomic nervous system. The study involved 87 students of first and second courses. Is used methods for determining the level of physical health of students: Apanasenko G.L., teacher observations, statistics. Hold a special physical training with the prevalence of the type of the autonomic nervous system. The basis of influence was the principle of individualization of physical activity, the systematic and gradual. A significant high level of physical fitness at the end of the study, the main group of students. In this group, overall assessment of the level of physical health is above the average level by improving the life, power and index Robinson.

  9. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Petra Baum

    Full Text Available OBJECTIVE: To assess the distribution of autonomic nervous system (ANS dysfunction in overweight and obese children. METHODS: Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF, high frequency power, ln(HF; ln(LF/HF ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio, root mean square of successive differences (RMSSD; sympathetic skin response (SSR; and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity. The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. RESULTS: Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys. E/I ratio (p = 0.003, ln(HF (p = 0.03, pupil diameter in darkness (p = 0.01 were negatively correlated with BMI-SDS, whereas ln(LF/HF was positively correlated (p = 0.05. Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08. None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. CONCLUSION: These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction

  10. Functional state of the autonomic nervous system in bronchial asthma in children

    OpenAIRE

    HONKELDIEVA HURMATHON KAMCHIEVNA; ALIMDZHANOV IBRAHIM INAMOVICH; ABDULLAEVA МAVJUDA ERGASHEVNA; TOJIBOEV TEMUR TOPVOLDI YGLI; MAMATKHYJAEV MIRHOJIDDIN SADRIDDINKHOJI YGLI

    2016-01-01

    These shifts vegetative status have undoubted positive effect on the microcirculation and the rhythm of the circulatory system, facilitating a more rapid liquidation of clinical manifestations of autonomic dysfunction and create psihoemotsinalnogo patient comfort mode.

  11. Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats.

    OpenAIRE

    N'Guyen, J M; C. Magnan; Laury, M C; Thibault, C.; Leveteau, J; Gilbert, M.; Pénicaud, L.; Ktorza, A

    1994-01-01

    The fact that the potentiating effect of prolonged hyperglycemia on the subsequent insulin secretion is observed in vivo but not in vitro suggests the involvement of extrapancreatic factors in the in vivo memory of pancreatic beta cells to glucose. We have investigated the possible role of the autonomic nervous system. Rats were made hyperglycemic by a 48-h infusion with glucose (HG rats). At the end of glucose infusion as well as 6 h postinfusion, both parasympathetic and sympathetic nerve a...

  12. Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder

    OpenAIRE

    Hayashi Tatsuya; Kimura Tetsuya; Ushiroyama Takahisa; Matsumoto Tamaki; Moritani Toshio

    2007-01-01

    Abstract Background Premenstrual syndrome (PMS) encompasses a wide variety of cyclic and recurrent physical, emotional, and behavioral symptoms occurring during the late luteal phase of the menstrual cycle and abating shortly following the beginning of menses. Although PMS is widely recognized, its etiopathogenesis is not yet understood. The present study investigates whether the activity of the autonomic nervous system, which plays a vital role in orchestrating physiological homeostasis with...

  13. Dysregulation of the autonomous nervous system in patients with temporomandibular disorder: a pupillometric study.

    Directory of Open Access Journals (Sweden)

    Annalisa Monaco

    Full Text Available The role of the autonomic nervous system (ANS was recently investigated in Temporomandibular disorders (TMD. Several authors argue that in subjects with TMD there is a dysregulation of ANS. Recent literature support that Pupillometry is a simple non-invasive tool to study ANS. The aim of this study was to investigate the relationship between TMD and ANS activity using pupillometry recording in Infrared light at rest Mandible Position (RP; Infrared light at Forced Habitual Occlusion (FHO; Yellow-green light at RP; Yellow-green light at FHO. Forty female subjects were enrolled: 20 case patients showed TMD based on the Research Diagnostic Criteria for TMD, and 20 control patients, aged matched, had no signs or symptoms of TMD. Statistical analysis was performed on average pupil size. Ratio between pupil size in FHO and RP (FHO/RP ratio and yellow-green and infrared (light/darkness ratio lighting were carried out. Within group differences of pupil size and of "ratio" were analyzed using a paired t test, while differences of pupil size between groups were tested using an unpaired t test. Statistical comparisons between groups showed no significant differences of absolute values of pupil dimension in RP and FHO, both in yellow-green and in infrared lighting. In addition, there were no significant differences within groups comparing RP and FHO in yellow-green light. In within group comparison of pupil size, differences between RP and FHO were significant in infrared conditions. Control subjects increased, whereas TMD patients decreased pupil size at FHO in infrared lightening. FHO/RP ratio in darkness and light/darkness ratio in RP were significantly different between groups. Taken together, these data suggest that TMD subjects have an impairment of the sympathetic-adrenergic component of the ANS to be activated under stress. The present study provides preliminary pupillometric data confirming that adrenergic function is dysregulated in patients with

  14. Effect Of Haemodialysis On Intra Dialytic Calcium, Phosphorus,Magnesium, Levels In Relation To AutonomicNervous System Activity

    Directory of Open Access Journals (Sweden)

    Mona Hosny, Sahar Shawky, Ahmed Ramadan , Hany Refaat

    2004-03-01

    Full Text Available Autonomic nervous system dysfunction is common in uremia and in patients under hemodialysis. Changes in serum calcium, serum phosphorus and serum magnesuim always occur during hemodialysis. The relation between these changes and autonomic nervous system activity during hemodialysis has not been fully studied. This study was carried out on 30 patients with chronic renal failure on regular hemo-dialysis with nearly similar age group. We measured serum calcium, serum phosphorus and serum magnesium throughout the session (at predialysis state, middialysis state: after 2 hours of the session and postdialysis: at the end of the hemodialysis Session. We have also assessed autonomic function (sympathetic by cold pressor test and parasympathetic by Valsalva maneuver test. Autonomic function tests were assessed at predialysis state, middialysis state and postdialysis state. Calcuim level uncreased throughout the session (P<0.05, phosphorus leuel and Magnesium levels decreased , (P<0.001 and (P<0.05, throghout session . As reguards parasympathetie dysfunetion, there was a significamt relation (P<0.05 with calcuim changes at predialytic and post dialytic states, a highly significant relation (P<0.001 with phosphorus and (P<0.05 with magnesiun, both at predialysis states. Concerging sympathetie dysfunction, there was a significant relation (P<0.05 with calcium levels at end of session. There was a signifcant relation (P<0.05 with predialytic and postdialytic phosphorus levels .There was also significant relation (P<0.05 with predialytic magnesium level.

  15. Interdependence of neurohumoral regulation indicators and state of the autonomic nervous system in patients with psoriasis according to gender

    Directory of Open Access Journals (Sweden)

    Abboud Aymen

    2016-01-01

    Full Text Available Data on the importance of neurohumoral regulation violations in the etiology and pathogenesis of psoriasis necessitate the study of the nervous and endocrine systems depending on the gender of the patient. In order to study neurohumoral regulation in 65 psoriasis patients, 37 women and 28 men, the state of the autonomic nervous system and hormone levels – ACTH, cortisol and TTH were studied. The study found that levels of ACTH and cortisol in all the women with psoriasis – vagotonics, normotonics, sympathotonics were significantly higher than the corresponding figures in men patients with psoriasis. In vagotonics group reliability of prevailing indices on the levels of ACTH, cortisol and TTH was observed. In sympathotonics the data is valid only concerning cortisol, in normotonics group – only ACTH level. In vagotonics men and women with psoriasis and normo- and sympathotonics women indicators of cortisol were higher than physiological parameters. In normotonics female patients with psoriasis cortisol indicators were significantly lower than relative level of cortisol in vagotonics women. In sympathotonics women cortisol level was lower relative to vagotonics and higher than in normotonics, significant data. ACTH and TTH level was higher than physiological parameters only in groups of women vagotonics patients. Thus, compensatory effects of cortisol are leveled with the dominance of parasympathetic tone and female dominant. This indicates that the tension of regulatory mechanisms is associated with parasympathetic tone of the autonomic nervous system. Parasympathetic tone of the autonomic nervous system is to a greater extent vulnerable than compensatory. It should be noted that in vagotonics women steroid homeostasis is shifted towards corticoid activity that is an unfavorable factor of the female organism functioning.

  16. Lack of circadian variation in the activity of the autonomic nervous system after major abdominal operations

    DEFF Research Database (Denmark)

    Gögenur, Ismail; Rosenberg-Adamsen, Susan; Lie, Claus;

    2002-01-01

    OBJECTIVE: Most sudden postoperative deaths occur during the night and we conjectured that this was associated with circadian variations in the autonomic nervous tone, reflected in heart rate variability. DESIGN: Prospective clinical study. SETTINGS: University hospital, Denmark. SUBJECTS: 44...... interval for the period of measurement (SDNN), the root mean square of the standard deviation of the differences between NN intervals (RMSSD), the percentage of NN intervals differing by more than 50 msec from adjacent NN intervals (pNN50) and the coefficient of component variance (meanNN/SDNN). MAIN...... OUTCOME MEASURES: Heart rate and heart rate variability. RESULTS: Circadian variation calculated from the SDNN (p = 0.43) the pNN50 (p = 0.11), the RMSSD (p = 0.47), and mean NN:SDNN ratio (p = 0.13) was absent postoperatively. Circadian variation in the heart rate was present but was set on a higher...

  17. The circadian system and the balance of the autonomic nervous system.

    Science.gov (United States)

    Buijs, Ruud M; Escobar, Carolina; Swaab, Dick F

    2013-01-01

    Our biological clock, the suprachiasmatic nucleus (SCN), sets the pace of our life: it provides a rhythmic function to our sleep-wake cycle. In order to do so properly the SCN synchronizes our physiology to behavioral patterns by directing the autonomic and hormonal output of the hypothalamus to the different organs of the body that require a different setting - activity or inactivity - during particular phases of the day or night. In this chapter we show that this delicate balance requires that the SCN should not only provide an output to these organs but also be informed about the physiological state of the organs in order to adapt its output. This occurs via a hypothalamic neuronal network that provides the necessary input to the SCN. We argue that the feedback that the SCN receives from its hypothalamic target structures is essential to maintain a balance in our physiological functions, which fluctuate during the sleep-wake cycle. We propose that this crucial role of the hypothalamus in the homeostatic response is the reason why, e.g., in aging or depression, changes in the functioning of the biological clock, the SCN, lead to the development of pathology. In addition, if this balance is not adequately organized, for example, if the signals of the biological clock are violated by being active and eating during the night, as in shift work, one will be more susceptible to diseases such as hypertension, obesity, diabetes, and metabolic syndrome.

  18. [Application of linear and nonlinear characteristics of heart rate variability in assessment of autonomic nervous system activity].

    Science.gov (United States)

    Shi, Ping; Yu, Hongliu

    2014-04-01

    Calculation of linear parameters, such as time-domain and frequency-domain analysis of heart rate variability (HRV), is a conventional method for assessment of autonomic nervous system activity. Nonlinear phenomena are certainly involved in the genesis of HRV. In a seemingly random signal the Poincaré plot can easily demonstrate whether there is an underlying determinism in the signal. Linear and nonlinear analysis methods were applied in the computer words inputting experiments in this study for physiological measurement. This study therefore demonstrated that Poincaré plot was a simple but powerful graphical tool to describe the dynamics of a system.

  19. Emotion Regulation via the Autonomic Nervous System in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    Musser, Erica D.; Backs, Richard W.; Schmitt, Colleen F.; Ablow, Jennifer C.; Measelle, Jeffery R.; Nigg, Joel T.

    2011-01-01

    Despite growing interest in conceptualizing ADHD as involving disrupted emotion regulation, few studies have examined the physiological mechanisms related to emotion regulation in children with this disorder. This study examined parasympathetic and sympathetic nervous system reactivity via measures of respiratory sinus arrhythmia (RSA) and cardiac…

  20. Systematic morphology and evolutionary anatomy of the autonomic cardiac nervous system in the lesser apes, gibbons (hylobatidae).

    Science.gov (United States)

    Kawashima, Tomokazu; Thorington, Richard W; Kunimatsu, Yutaka; Whatton, James F

    2008-08-01

    We examined the morphology of the autonomic cardiac nervous system (ACNS) on 20 sides of 10 gibbons (Hylobatidae) of three genera, and we have inferred the evolution of the anatomy of the primate ACNS. We report the following. (1) Several trivial intraspecific and interspecific variations are present in gibbons, but the general arrangement of the ACNS in gibbons is consistent. (2) Although the parasympathetic vagal cardiac nervous system is extremely consistent, the sympathetic cardiac nervous system, such as the composition of the sympathetic ganglia and the range of origin of the sympathetic cardiac nerves, exhibit topographical differences among primates. (3) The vertebral ganglion, seldom observed in the Old World monkeys (Cercopithecidae), was consistently present in gibbons as well as in humans. (4) There are fewer thoracic ganglia contributing to the cervicothoracic ganglion in humans than in gibbons and in gibbons than in Old World monkeys. (5) The superior cardiac nerve originating from the superior cervical ganglion, rarely observed in Old World monkeys but commonly observed in humans, was present in 13 of 20 sides (65%), mostly on the left. Accordingly, the ACNS morphology exhibits evolutionary changes within the primate lineage. These evolutionary differences between Old World monkeys, gibbons, and humans are most parsimoniously interpreted as resulting from regular changes in the lineages leading from their common ancestor to the extant species that we dissected. They include the reduction in the number of thoracic ganglia contributing to the cervicothoracic ganglion and the expansion of the range of the cardiac nervous origin.

  1. ACE2-Mediated Reduction of Oxidative Stress in the Central Nervous System Is Associated with Improvement of Autonomic Function

    OpenAIRE

    Huijing Xia; Sonia Suda; Sharell Bindom; Yumei Feng; Gurley, Susan B.; Dale Seth; L Gabriel Navar; Eric Lazartigues

    2011-01-01

    Oxidative stress in the central nervous system mediates the increase in sympathetic tone that precedes the development of hypertension. We hypothesized that by transforming Angiotensin-II (AngII) into Ang-(1-7), ACE2 might reduce AngII-mediated oxidative stress in the brain and prevent autonomic dysfunction. To test this hypothesis, a relationship between ACE2 and oxidative stress was first confirmed in a mouse neuroblastoma cell line (Neuro2A cells) treated with AngII and infected with Ad-hA...

  2. POSTMENOPAUSAL METABOLIC SYNDROME: CORRECTION OF AUTONOMIC NERVOUS SYSTEM DISBALANCE WITH COMBINATION OF ACE-INHIBITOR AND STATIN

    Directory of Open Access Journals (Sweden)

    I. V. Logacheva

    2006-01-01

    Full Text Available Aim. To study dynamics of the indices of heart rate variability (HRV and heart remodeling in response on combined therapy with fosinopril and simvastatin in postmenopausal metabolic syndrome (MS. Material and methods. 95 women were dynamically examined (before and after 12 months of therapy with fosinopril and simvastatin to assess heart rhythm variability (time and spectral domains and remodeling with Holter ECG monitoring and echocardiography. Results. Fosinopril has resulted in blood pressure decrease, reduction in heart remodeling andmyocardial heterogeneity , which accompanied HRV rise with increase in parasympathetic activity. Simvastatin potentiated fosinopril positive effects on left ventricular hypertrophy , myocardial electric heterogeneity and autonomic modulation due to its prominent hypolipidemic and pleiotropic effect. Conclusion. In patients with postmenopausal MS medicines, which modified different elements of MS (ACE inhibitor and statin, not only have antihypertensive and hypolipidemic action, but also reduce the heart remodeling and improve the autonomic nervous system balance.

  3. Glial biomarkers in human central nervous system disease.

    Science.gov (United States)

    Garden, Gwenn A; Campbell, Brian M

    2016-10-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771. PMID:27228454

  4. [Effect of the low-frequency impulse magnetic field on the autonomic nervous system in animals].

    Science.gov (United States)

    Kraiukhina, K Iu; Lobkaeva, E P; Deviatkova, N S

    2010-01-01

    The effect of weak (up to 3.5 mT) low-frequency (up to 100 Hz) impulse magnetic field on the state of the vegetative nervous system of animals has been studied by analyzing the variability of the heart rate. The effect of the magnetic field was estimated by a specially designed complex for recording cardiac signals of animals. Several specially selected regimes of impulse magnetic fields were studied. It was shown that the impulse magnetic field possesses a high biological activity at all regimes used, and the indices of the vegetative nervous system after the exposure to the impulse magnetic field approach the values typical for normotonic animals. This makes it possible to use magnetic fields at these regimes in magnetotherapy. PMID:20968088

  5. Functional autonomic nervous system profile in children with autism spectrum disorder

    OpenAIRE

    Kushki, Azadeh; Brian, Jessica; Dupuis, Annie; Anagnostou, Evdokia

    2014-01-01

    Background Autonomic dysregulation has been recently reported as a feature of autism spectrum disorder (ASD). However, the nature of autonomic atypicalities in ASD remain largely unknown. The goal of this study was to characterize the cardiac autonomic profile of children with ASD across four domains affected in ASD (anxiety, attention, response inhibition, and social cognition), and suggested to be affected by autonomic dysregulation. Methods We compared measures of autonomic cardiac regulat...

  6. Cerebrospinal fluid interleukin-6 in central nervous system inflammatory diseases.

    Directory of Open Access Journals (Sweden)

    Alexandre Wullschleger

    Full Text Available BACKGROUND: Interleukin (IL-6 is recognised as an important cytokine involved in inflammatory diseases of the central nervous system (CNS. OBJECTIVE: To perform a large retrospective study designed to test cerebrospinal fluid (CSF IL-6 levels in the context of neurological diseases, and evaluate its usefulness as a biomarker to help discriminate multiple sclerosis (MS from other inflammatory neurological diseases (OIND. PATIENTS AND METHODS: We analyzed 374 CSF samples for IL-6 using a quantitative enzyme-linked immunosorbent assay. Groups tested were composed of demyelinating diseases of the CNS (DD, n = 117, including relapsing-remitting MS (RRMS, n = 65, primary progressive MS (PPMS, n = 11, clinically isolated syndrome (CIS, n = 11, optic neuritis (ON, n = 30; idiopathic transverse myelitis (ITM, n = 10; other inflammatory neurological diseases (OIND, n = 35; and non-inflammatory neurological diseases (NIND, n = 212. Differences between groups were analysed using Kruskal-Wallis test and Mann-Whitney U-test. RESULTS: CSF IL-6 levels exceeded the positivity cut-off of 10 pg/ml in 18 (51.4% of the 35 OIND samples, but in only three (3.9% of the 76 MS samples collected. CSF IL-6 was negative for all NIND samples tested (0/212. IL-6 cut-off of 10 pg/ml offers 96% sensitivity to exclude MS. CONCLUSION: CSF IL-6 may help to differentiate MS from its major differential diagnosis group, OIND.

  7. Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder

    Directory of Open Access Journals (Sweden)

    Hayashi Tatsuya

    2007-12-01

    Full Text Available Abstract Background Premenstrual syndrome (PMS encompasses a wide variety of cyclic and recurrent physical, emotional, and behavioral symptoms occurring during the late luteal phase of the menstrual cycle and abating shortly following the beginning of menses. Although PMS is widely recognized, its etiopathogenesis is not yet understood. The present study investigates whether the activity of the autonomic nervous system, which plays a vital role in orchestrating physiological homeostasis within the human body, is altered during the menstrual cycle of women with different degrees of premenstrual symptomatology. Methods Sixty-two women in their 20s to 40s with regular menstrual cycles participated in this study. All subjects were examined during the follicular and late luteal phases. Cycle phase was determined by the onset of menstruation and oral temperature and was verified by concentrations of ovarian hormones, estrone, and pregnanediol in a urine sample taken early in the morning. Autonomic nervous system activity was assessed by means of heart-rate variability (HRV power spectral analysis during supine rest. The Menstrual Distress Questionnaire was used to evaluate physical, emotional, and behavioral symptoms accompanying the menstrual cycle of the subjects. The subjects were categorized in three groups, Control, PMS, and premenstrual dysphoric disorder (PMDD groups, depending on the severity of premenstrual symptomatology. Results No intramenstrual cycle difference in any of the parameters of HRV was found in the Control group, which had no or a small increase in premenstrual symptoms. In contrast, Total power and high frequency power, which reflect overall autonomic and parasympathetic nerve activity, respectively, significantly decreased in the late luteal phase from the follicular phase in the PMS group. As for the PMDD group, which had more severe symptoms premenstrually, heart-rate fluctuation as well as all components of the power

  8. Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system.

    Science.gov (United States)

    Havas, Magda

    2013-01-01

    Exposure to electrosmog generated by electric, electronic, and wireless technology is accelerating to the point that a portion of the population is experiencing adverse reactions when they are exposed. The symptoms of electrohypersensitivity (EHS), best described as rapid aging syndrome, experienced by adults and children resemble symptoms experienced by radar operators in the 1940s to the 1960s and are well described in the literature. An increasingly common response includes clumping (rouleau formation) of the red blood cells, heart palpitations, pain or pressure in the chest accompanied by anxiety, and an upregulation of the sympathetic nervous system coincident with a downregulation of the parasympathetic nervous system typical of the "fight-or-flight" response. Provocation studies presented in this article demonstrate that the response to electrosmog is physiologic and not psychosomatic. Those who experience prolonged and severe EHS may develop psychologic problems as a consequence of their inability to work, their limited ability to travel in our highly technologic environment, and the social stigma that their symptoms are imagined rather than real.

  9. Imaging in the infectious diseases of the central nervous system

    International Nuclear Information System (INIS)

    The basic signs of the major bacterial, viral, parasitic or mycotic infections of the central nervous system with CT and MRI are described. The problems arising from the presence of the HIV virus are emphasized and the attitude required according to the findings of imaging, is defined

  10. Cell replacement therapy for central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Danju Tso; Randall D. McKinnon

    2015-01-01

    The brain and spinal cord can not replace neurons or supporting glia that are lost through trau-matic injury or disease. In pre-clinical studies, however, neural stem and progenitor cell transplants can promote functional recovery. Thus the central nervous system is repair competent but lacks endogenous stem cell resources. To make transplants clinically feasible, this ifeld needs a source of histocompatible, ethically acceptable and non-tumorgenic cells. One strategy to generate pa-tient-speciifc replacement cells is to reprogram autologous cells such as ifbroblasts into pluripotent stem cells which can then be differentiated into the required cell grafts. However, the utility of pluripotent cell derived grafts is limited since they can retain founder cells with intrinsic neoplastic potential. A recent extension of this technology directly reprograms ifbroblasts into the ifnal graft-able cells without an induced pluripotent stem cell intermediate, avoiding the pluripotent caveat. For both types of reprogramming the conversion efficiency is very low resulting in the need to amplify the cells in culture which can lead to chromosomal instability and neoplasia. Thus to make reprogramming biology clinically feasible, we must improve the efifciency. The ultimate source of replacement cells may reside in directly reprogramming accessible cells within the brain.

  11. Autonomic nervous dysfunction in hamsters infected with West Nile virus.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Clinical studies and case reports clearly document that West Nile virus (WNV can cause respiratory and gastrointestinal (GI complications. Other functions controlled by the autonomic nervous system may also be directly affected by WNV, such as bladder and cardiac functions. To investigate how WNV can cause autonomic dysfunctions, we focused on the cardiac and GI dysfunctions of rodents infected with WNV. Infected hamsters had distension of the stomach and intestines at day 9 after viral challenge. GI motility was detected by a dye retention assay; phenol red dye was retained more in the stomachs of infected hamsters as compared to sham-infected hamsters. The amplitudes of electromygraphs (EMGs of intestinal muscles were significantly reduced. Myenteric neurons that innervate the intestines, in addition to neurons in the brain stem, were identified to be infected with WNV. These data suggest that infected neurons controlling autonomic function were the cause of GI dysfunction in WNV-infected hamsters. Using radiotelemetry to record electrocardiograms and to measure heart rate variability (HRV, a well-accepted readout for autonomic function, we determined that HRV and autonomic function were suppressed in WNV-infected hamsters. Cardiac histopathology was observed at day 9 only in the right atrium, which was coincident with WNV staining. A subset of WNV infected cells was identified among cells with hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4 as a marker for cells in the sinoatrial (SA and atrioventricular (AV nodes. The unique contribution of this study is the discovery that WNV infection of hamsters can lead to autonomic dysfunction as determined by reduced HRV and reduced EMG amplitudes of the GI tract. These data may model autonomic dysfunction of the human West Nile neurological disease.

  12. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Rovira Canellas, A. [Vall d' Hebron University Hospital, Magnetic Resonance Unit (I.D.I.), Department of Radiology, Barcelona (Spain); Rovira Gols, A. [Parc Tauli University Institute - UAB, UDIAT, Diagnostic Centre, Sabadell (Spain); Rio Izquierdo, J.; Tintore Subirana, M.; Montalban Gairin, X. [Vall d' Hebron University Hospital, Neuroimmunology Unit, Department of Neurology, Barcelona (Spain)

    2007-05-15

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  13. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    International Nuclear Information System (INIS)

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  14. Discrimination between Healthy and Sick Cardiac Autonomic Nervous System by Detrended Heart Rate Variability Analysis

    CERN Document Server

    Ashkenazy, Yu; Levitan, J; Havlin, S; Saermark, K; Moelgaard, H; Bloch-Thomsen, P E

    1998-01-01

    Multiresolution Wavelet Transform and Detrended Fluctuation Analysis have been recently proven as excellent methods in the analysis of Heart Rate Variability, and in distinguishing between healthy subjects and patients with various dysfunctions of the cardiac nervous system. We argue that it is possible to obtain a distinction between healthy subjects/patients of at least similar quality by, first, detrending the time-series of RR-intervals by subtracting a running average based on a local window with a length of around 32 data points, and then, calculating the standard deviation of the detrended time-series. The results presented here indicate that the analysis can be based on very short time-series of RR-data (7-8 minutes), which is a considerable improvement relative to 24-hours Holter recordings.

  15. On the Persistance of Dualism in our so-called Unified Neurosciences: The case of the autonomic nervous system

    Directory of Open Access Journals (Sweden)

    Nathalie Pattyn

    2009-06-01

    Full Text Available In the present paper, the historical overview of descriptions of the autonomic nervous system (ANS is applied as a case study to serve the demonstration of the persistence of dualisms in our current framework of neurosciences. First, the four main views on the ANS are briefly summarised, with an emphasis on the latest one, being the neurovisceral integration perspectives, striving for an integrative view on cognition, emotion regulation and physiological adaptation. Second, an explanation is offered on why we are so reluctant to give up the explanatory framework of dualisms, based on both developmental psychology accounts and postmodernism philosophy. To conclude, an attitude based on positivism and epistemological anarchism is suggested for scientists.

  16. Measurement of the effect of Isha Yoga on cardiac autonomic nervous system using short-term heart rate variability

    Directory of Open Access Journals (Sweden)

    Krishnan Muralikrishnan

    2012-01-01

    Full Text Available Background: Beneficial effects of Yoga have been postulated to be due to modulation of the autonomic nervous system. Objective: To assess the effect of Isha Yoga practices on cardiovascular autonomic nervous system through short-term heart rate variability (HRV. Design of the Study: Short-term HRV of long-term regular healthy 14 (12 males and 2 females Isha Yoga practitioners was compared with that of age- and gender-matched 14 (12 males and 2 females non-Yoga practitioners. Methods and Materials: ECG Lead II and respiratory movements were recorded in both groups using Polyrite during supine rest for 5 min and controlled deep breathing for 1 minute. Frequency domain analysis [RR interval is the mean of distance between subsequent R wave peaks in ECG], low frequency (LF power, high frequency (HF power, LF normalized units (nu, HF nu, LF/HF ratio] and time domain analysis [Standard Deviation of normal to normal interval (SDNN, square of mean squared difference of successive normal to normal intervals (RMSSD, normal to normal intervals which are differing by 50 ms (NN50, and percentage of NN50 (pNN50] of HRV variables were analyzed for supine rest. Time domain analysis was recorded for deep breathing. Results: Results showed statistically significant differences between Isha Yoga practitioners and controls in both frequency and time domain analyses of HRV indices, with no difference in resting heart rate between the groups. Conclusions: Practitioners of Isha Yoga showed well-balanced beneficial activity of vagal efferents, an overall increased HRV, and sympathovagal balance, compared to non-Yoga practitioners during supine rest and deep breathing.

  17. Pure Autonomic Failure

    Science.gov (United States)

    ... Drugs GARD Information Navigator FAQs About Rare Diseases Pure autonomic failure Title Other Names: Bradbury Eggleston syndrome; ... Categories: Nervous System Diseases ; RDCRN Summary Summary Listen Pure autonomic failure is characterized by generalized autonomic failure ...

  18. Responses of the autonomic nervous system in altitude adapted and high altitude pulmonary oedema subjects

    Science.gov (United States)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Radhakrishnan, U.; Sen Gupta, J.; Nayar, H. S.

    1985-06-01

    Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500 4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.

  19. Nervous system Lyme disease, chronic Lyme disease, and none of the above.

    Science.gov (United States)

    Halperin, John J

    2016-03-01

    Lyme borreliosis, infection with the tick-borne spirochete Borrelia burgdorferi sensu lato, causes nervous system involvement in 10-15 % of identified infected individuals. Not unlike the other well-known spirochetosis, syphilis, infection can be protracted, but is microbiologically curable in virtually all patients, regardless of disease duration. Diagnosis relies on 2-tier serologic testing, which after the first 4-6 weeks of infection is both highly sensitive and specific. After this early, acute phase, serologic testing should rely only on IgG reactivity. Nervous system involvement most commonly presents with meningitis, cranial neuritis and radiculoneuritis, but can also present with a broader array of peripheral nervous system manifestations. Central nervous system infection typically elicits a cerebrospinal fluid pleocytosis and, often, intrathecal production of specific antibody, findings that should not be expected in disease not affecting the CNS. Treatment with recommended courses of oral or, when necessary, parenteral antibiotics is highly effective. The attribution of chronic, non-specific symptoms to "chronic Lyme disease", in the absence of specific evidence of ongoing B. burgdorferi infection, is inappropriate and unfortunate, leading not only to unneeded treatment and its associated complications, but also to missed opportunities for more appropriate management of patients' often disabling symptoms.

  20. Social functioning and autonomic nervous system sensitivity across vocal and musical emotion in Williams syndrome and autism spectrum disorder.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2016-01-01

    Both Williams syndrome (WS) and autism spectrum disorders (ASD) are associated with unusual auditory phenotypes with respect to processing vocal and musical stimuli, which may be shaped by the atypical social profiles that characterize the syndromes. Autonomic nervous system (ANS) reactivity to vocal and musical emotional stimuli was examined in 12 children with WS, 17 children with ASD, and 20 typically developing (TD) children, and related to their level of social functioning. The results of this small-scale study showed that after controlling for between-group differences in cognitive ability, all groups showed similar emotion identification performance across conditions. Additionally, in ASD, lower autonomic reactivity to human voice, and in TD, to musical emotion, was related to more normal social functioning. Compared to TD, both clinical groups showed increased arousal to vocalizations. A further result highlighted uniquely increased arousal to music in WS, contrasted with a decrease in arousal in ASD and TD. The ASD and WS groups exhibited arousal patterns suggestive of diminished habituation to the auditory stimuli. The results are discussed in the context of the clinical presentation of WS and ASD. PMID:26248474

  1. Reproducibility of tilt table testing in patients with vasovagal syncope and its relation to variations in autonomic nervous system activity.

    Science.gov (United States)

    Kochiadakis, G E; Kanoupakis, E M; Rombola, A T; Igoumenidis, N E; Chlouverakis, G I; Vardas, P E

    1998-05-01

    To assess the variability of head-up tilt table testing, 35 patients with vasovagal syncope, shown by a positive tilt table test, underwent a second test 1 week later. Also, on the day before each test, spectral and time-domain indexes of heart rate variability were derived from Holter recordings to examine the stability of autonomous nervous system activity in these patients. Fifteen healthy volunteers served as a control group and also underwent two tilt table tests with prior Holter monitoring. Twenty-one (60%) of the 35 patients had a second positive test. None of the patients in the control group experienced syncope during either of the tests. The heart rate variability measures in the control group varied slightly from 1 day to the other, in contrast to the syncopal patients, where only low frequency spectral power and the mean of all 5-minute standard deviations of RR intervals showed comparable behavior. The indexes which reflect parasympathetic activity exhibited significant fluctuations in the syncopal patients. These fluctuations were due entirely to the patients who did not reproduce the outcome of the tilt table test, where high parasympathetic tone was associated with the positive test and normal parasympathetic tone with the negative test. In contrast, the patients with two positive tests had high parasympathetic tone during both test periods, with low individual variability. In conclusion, patients with vasovagal syncope show variations in vagal autonomic tone and appear to be more prone to syncope when their parasympathetic tone is elevated. PMID:9604238

  2. Social functioning and autonomic nervous system sensitivity across vocal and musical emotion in Williams syndrome and autism spectrum disorder.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2016-01-01

    Both Williams syndrome (WS) and autism spectrum disorders (ASD) are associated with unusual auditory phenotypes with respect to processing vocal and musical stimuli, which may be shaped by the atypical social profiles that characterize the syndromes. Autonomic nervous system (ANS) reactivity to vocal and musical emotional stimuli was examined in 12 children with WS, 17 children with ASD, and 20 typically developing (TD) children, and related to their level of social functioning. The results of this small-scale study showed that after controlling for between-group differences in cognitive ability, all groups showed similar emotion identification performance across conditions. Additionally, in ASD, lower autonomic reactivity to human voice, and in TD, to musical emotion, was related to more normal social functioning. Compared to TD, both clinical groups showed increased arousal to vocalizations. A further result highlighted uniquely increased arousal to music in WS, contrasted with a decrease in arousal in ASD and TD. The ASD and WS groups exhibited arousal patterns suggestive of diminished habituation to the auditory stimuli. The results are discussed in the context of the clinical presentation of WS and ASD.

  3. [Non-invasive evaluation of the cardiac autonomic nervous system by PET]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  4. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.

  5. Comparing the accuracy of ES-BC, EIS-GS, and ES Oxi on body composition, autonomic nervous system activity, and cardiac output to standardized assessments

    Directory of Open Access Journals (Sweden)

    Lewis JE

    2011-09-01

    < 0.001. Absolute agreement was found at baseline and after both bouts of exercise; ES Oxi overestimated baseline and stage 1 exercise cardiac output by 0.3 L/minute and 0.1 L/minute, respectively, but exactly estimated stage 2 exercise cardiac output. Conclusion: ES-BC and ES Oxi accurately assessed body composition and cardiac output compared to standardized instruments, whereas EIS-GS showed marginal predictive ability for autonomic nervous system activity. The ESC software managing the three devices would be useful to help detect complications related to metabolic syndrome, diabetes, and cardiovascular disease and to noninvasively and rapidly manage treatment follow-up. Keywords: fat mass, autonomic nervous system activity, Electro Sensor Complex, dual-energy X-ray absorptiometry, heart rate variability, and bioimpedance cardiography

  6. Changing trends in nervous system diseases among hospitalized children in the Chongqing region

    Institute of Scientific and Technical Information of China (English)

    Xin Zou; Nong Xiao; Bei Xu

    2008-01-01

    OBJECTIVE: To investigate the changing trends of nervous system diseases among hospitalized children and the risk factors of death. METHOD: The disease was statistically classified according to the International Statistical Classification of Disease and Health Problem (ICD10). The retrospective investigation includes demographic characteristics, as well as categories and fatality rates for nervous system diseases. All data was statistically analyzed. RESULTS: The percentage of nervous system diseases among inpatients in all wards was 2.4% (2 537/ 107 250) between January 1993 and December 1999, and 3.6% (6 082/170 619) between January 2000 and December 2006. The first ten patterns of various etiologic forms of nervous system diseases were identical-epilepsies and seizures, infections of the central nervous system, autoimmune and demyelination disorders, cerebral palsy, motor unit disorders, hypoxic-ischemic encephalopathy, hydrocephalus, extra-pyramidal disorders, congenital abnormalities of nervous system, and headache. Epilepsies and seizures took first place in both year groups, with 29.4% and 35%, respectively. Bacterial infections were responsible for the majority of cranial infections in both year groups, with 78.9% and 63.6% respectively. The death rate in the year group January 2000 to December 2006 was significantly less than in the year group January 1993 to December 1999 (X2= 27.832, P<0.01). CONCLUSION: Among all nervous system diseases, epilepsies and seizures were among the most common, with the lowest fatality rate.

  7. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function.

    Directory of Open Access Journals (Sweden)

    Huijing Xia

    Full Text Available Oxidative stress in the central nervous system mediates the increase in sympathetic tone that precedes the development of hypertension. We hypothesized that by transforming Angiotensin-II (AngII into Ang-(1-7, ACE2 might reduce AngII-mediated oxidative stress in the brain and prevent autonomic dysfunction. To test this hypothesis, a relationship between ACE2 and oxidative stress was first confirmed in a mouse neuroblastoma cell line (Neuro2A cells treated with AngII and infected with Ad-hACE2. ACE2 overexpression resulted in a reduction of reactive oxygen species (ROS formation. In vivo, ACE2 knockout (ACE2(-/y mice and non-transgenic (NT littermates were infused with AngII (10 days and infected with Ad-hACE2 in the paraventricular nucleus (PVN. Baseline blood pressure (BP, AngII and brain ROS levels were not different between young mice (12 weeks. However, cardiac sympathetic tone, brain NADPH oxidase and SOD activities were significantly increased in ACE2(-/y. Post infusion, plasma and brain AngII levels were also significantly higher in ACE2(-/y, although BP was similarly increased in both genotypes. ROS formation in the PVN and RVLM was significantly higher in ACE2(-/y mice following AngII infusion. Similar phenotypes, i.e. increased oxidative stress, exacerbated dysautonomia and hypertension, were also observed on baseline in mature ACE2(-/y mice (48 weeks. ACE2 gene therapy to the PVN reduced AngII-mediated increase in NADPH oxidase activity and normalized cardiac dysautonomia in ACE2(-/y mice. Altogether, these data indicate that ACE2 gene deletion promotes age-dependent oxidative stress, autonomic dysfunction and hypertension, while PVN-targeted ACE2 gene therapy decreases ROS formation via NADPH oxidase inhibition and improves autonomic function. Accordingly, ACE2 could represent a new target for the treatment of hypertension-associated dysautonomia and oxidative stress.

  8. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders

    Directory of Open Access Journals (Sweden)

    Messina Vincenzo

    2011-10-01

    Full Text Available Abstract Objective To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI as a new possible biomarker. Methods 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs. The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV and lipid metabolism has been investigated. Results Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Conclusions Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  9. Autoimmune disease and the nervous system. Biochemical, molecular, and clinical update.

    OpenAIRE

    Merrill, J E; Graves, M C; Mulder, D. G.

    1992-01-01

    Autoimmunity in the central and peripheral nervous system can manifest as the result of cellular or humoral immune responses to autoantigens. There is evidence that multiple sclerosis is a cell-mediated autoimmune disease of the central nervous system in which both myelin and the cell that produces the myelin are destroyed. Diseases such as acute inflammatory demyelinating polyneuropathy (also called Guillain-Barré syndrome) and myasthenia gravis are considered antibody-mediated diseases of t...

  10. Effects of different "relaxing" music styles on the autonomic nervous system.

    Science.gov (United States)

    Perez-Lloret, Santiago; Diez, Joaquín; Domé, María Natalia; Delvenne, Andrea Alvarez; Braidot, Nestor; Cardinali, Daniel P; Vigo, Daniel Eduardo

    2014-01-01

    The objective of this study was to assess the effects on heart rate variability (HRV) of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melody that they would use to relax. The low-to-high-frequency ratio was significantly higher when subjects were exposed to "new age" music when compared with silence (3.4 ± 0.3 vs. 2.6 ± 0.3, respectively, P preferences did not correlate with autonomic responses to melodies. The results suggest that "new age" music induced a shift in HRV from higher to lower frequencies, independently on the music preference of the listener. PMID:25209037

  11. Baroreflex Sensitivity And Autonomic Nervous System Function In Carotid Sinus Hypersensitivity

    DEFF Research Database (Denmark)

    Brinth, Louise Schouborg; Pors, Kirsten; Theibel, Ann Cathrine;

    2015-01-01

    Syncope in the elderly may be caused by an apparent hypersensitivity in the high pressure baroreflex control of heart rate and blood pressure - carotid sinus hypersensitivity. Previous studies have found ambiguous results regarding the baroreceptor sensitivity in patients with carotid sinus...... hypersensitivity ranging from reduced to increased sensitivity compared to controls. We wanted to establish whether measures of baroreflex sensitivity and autonomic function differed between patients diagnosed with carotid sinus hypersensitivity and age matched controls. We included 36 patients (12 women; 74 +/-10...... differences in autonomic baroreceptor control could be found between patients with carotid sinus hypersensitivity and their controls. Our findings seem to reflect the ambiguous results obtained by others and have led us to suggest that the signals behind the established parameters of cardiovagal baroreflex...

  12. [Heart rate variability as a method of assessing the autonomic nervous system in polycystic ovary syndrome].

    Science.gov (United States)

    de Sá, Joceline Cássia Ferezini; Costa, Eduardo Caldas; da Silva, Ester; Azevedo, George Dantas

    2013-09-01

    Polycystic ovary syndrome (PCOS) is an endocrine disorder associated with several cardiometabolic risk factors, such as central obesity, insulin resistance, type 2 diabetes, metabolic syndrome, and hypertension. These factors are associated with adrenergic overactivity, which is an important prognostic factor for the development of cardiovascular disorders. Given the common cardiometabolic disturbances occurring in PCOS women, over the last years studies have investigated the cardiac autonomic control of these patients, mainly based on heart rate variability (HRV). Thus, in this review, we will discuss the recent findings of the studies that investigated the HRV of women with PCOS, as well as noninvasive methods of analysis of autonomic control starting from basic indexes related to this methodology.

  13. How Can Music Influence the Autonomic Nervous System Response in Patients with Severe Disorder of Consciousness?

    Science.gov (United States)

    Riganello, Francesco; Cortese, Maria D; Arcuri, Francesco; Quintieri, Maria; Dolce, Giuliano

    2015-01-01

    Activations to pleasant and unpleasant musical stimuli were observed within an extensive neuronal network and different brain structures, as well as in the processing of the syntactic and semantic aspects of the music. Previous studies evidenced a correlation between autonomic activity and emotion evoked by music listening in patients with Disorders of Consciousness (DoC). In this study, we analyzed retrospectively the autonomic response to musical stimuli by mean of normalized units of Low Frequency (nuLF) and Sample Entropy (SampEn) of Heart Rate Variability (HRV) parameters, and their possible correlation to the different complexity of four musical samples (i.e., Mussorgsky, Tchaikovsky, Grieg, and Boccherini) in Healthy subjects and Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS) patients. The complexity of musical sample was based on Formal Complexity and General Dynamics parameters defined by Imberty's semiology studies. The results showed a significant difference between the two groups for SampEn during the listening of Mussorgsky's music and for nuLF during the listening of Boccherini and Mussorgsky's music. Moreover, the VS/UWS group showed a reduction of nuLF as well as SampEn comparing music of increasing Formal Complexity and General Dynamics. These results put in evidence how the internal structure of the music can change the autonomic response in patients with DoC. Further investigations are required to better comprehend how musical stimulation can modify the autonomic response in DoC patients, in order to administer the stimuli in a more effective way.

  14. How can music influence the Autonomic Nervous System response in patients with severe Disorder of Consciousness?

    Directory of Open Access Journals (Sweden)

    Francesco eRiganello

    2015-12-01

    Full Text Available Activations to pleasant and unpleasant musical stimuli were observed within an extensive neuronal network and different brain structures, as well as in the processing of the syntactic and semantic aspects of the music. Previous studies evidenced a correlation between autonomic activity and emotion evoked by music listening in patients with Disorders of Consciousness (DoC. In this study, we analyzed retrospectively the autonomic response to musical stimuli by mean of normalized units of Low Frequency (nuLF and Sample Entropy (SampEn of Heart Rate Variability (HRV parameters, and their possible correlation to the different complexity of four musical samples (i.e. Mussorgsky, Tchaikovsky, Grieg and Boccherini in Healthy subjects and Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS patients.The complexity of musical sample was based on Formal Complexity and General Dynamics parameters defined by Imberty’s semiology studies.The results showed a significant difference between the two groups for SampEn during the listening of Mussorgsky’s music and for nuLF during the listening of Boccherini and Mussorgsky’s music.Moreover, the VS/UWS group showed a reduction of nuLF as well as SampEn comparing music of increasing Formal Complexity and General Dynamics.These results put in evidence how the internal structure of the music can change the autonomic response in patients with DoC. Further investigations are required to better comprehend how musical stimulation can modify the autonomic response in DoC patients, in order to administer the stimuli in a more effective way.

  15. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    OpenAIRE

    Kang-Ming Chang; Chuh-Wei Shen

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic ...

  16. How Can Music Influence the Autonomic Nervous System Response in Patients with Severe Disorder of Consciousness?

    Science.gov (United States)

    Riganello, Francesco; Cortese, Maria D; Arcuri, Francesco; Quintieri, Maria; Dolce, Giuliano

    2015-01-01

    Activations to pleasant and unpleasant musical stimuli were observed within an extensive neuronal network and different brain structures, as well as in the processing of the syntactic and semantic aspects of the music. Previous studies evidenced a correlation between autonomic activity and emotion evoked by music listening in patients with Disorders of Consciousness (DoC). In this study, we analyzed retrospectively the autonomic response to musical stimuli by mean of normalized units of Low Frequency (nuLF) and Sample Entropy (SampEn) of Heart Rate Variability (HRV) parameters, and their possible correlation to the different complexity of four musical samples (i.e., Mussorgsky, Tchaikovsky, Grieg, and Boccherini) in Healthy subjects and Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS) patients. The complexity of musical sample was based on Formal Complexity and General Dynamics parameters defined by Imberty's semiology studies. The results showed a significant difference between the two groups for SampEn during the listening of Mussorgsky's music and for nuLF during the listening of Boccherini and Mussorgsky's music. Moreover, the VS/UWS group showed a reduction of nuLF as well as SampEn comparing music of increasing Formal Complexity and General Dynamics. These results put in evidence how the internal structure of the music can change the autonomic response in patients with DoC. Further investigations are required to better comprehend how musical stimulation can modify the autonomic response in DoC patients, in order to administer the stimuli in a more effective way. PMID:26696818

  17. Effects of different "relaxing" music styles on the autonomic nervous system

    OpenAIRE

    Santiago Pérez-Lloret; Joaquín Diez; María Natalia Domé; Andrea Alvarez Delvenne; Nestor Braidot; Daniel P. Cardinali; Daniel Eduardo Vigo

    2014-01-01

    The objective of this study was to assess the effects on heart rate variability (HRV) of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melo...

  18. Effects of different "relaxing" music styles on the autonomic nervous system

    Directory of Open Access Journals (Sweden)

    Santiago Pérez-Lloret

    2014-01-01

    Full Text Available The objective of this study was to assess the effects on heart rate variability (HRV of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melody that they would use to relax. The low-to-high-frequency ratio was significantly higher when subjects were exposed to "new age" music when compared with silence (3.4 ± 0.3 vs. 2.6 ± 0.3, respectively, P < 0.02, while no differences were found with "classical" or "romantic" melodies (2.1 ± 0.4 and 2.2 ± 0.3. These results were related to a reduction in the high frequency component with "new age" compared to silence (17.4 ± 1.9 vs. 23.1 ± 1.1, respectively P < 0.004. Significant differences across melodies were also found for nonlinear HRV indexes. Subjects′ preferences did not correlate with autonomic responses to melodies. The results suggest that "new age" music induced a shift in HRV from higher to lower frequencies, independently on the music preference of the listener.

  19. Dysfunction of pre- and post-operative cardiac autonomic nervous system in elderly patients with diabetes mellitus.

    Science.gov (United States)

    Zhang, Junlong; Tu, Weifeng; Dai, Jianqiang; Lv, Qing; Yang, Xiaoqi

    2011-01-01

    The pre- and post-operative cardiac autonomic nervous functions were compared in elderly, non-cardiac surgery patients with diabetes mellitus (DM) and without diabetes mellitus (NDM). A group of 30 unpremedicated elderly patients scheduled to undergo elective non-cardiac surgery were studied, including 15 DM patients and 15 NDM patients. Each component of heart rate variability (HRV) analysis in the frequency domain was monitored with Holter during the nights of the day before and on 1st and 2nd day after operation. After surgery, total power (TP), high frequency (HF), low frequency (LF) and very low frequency (VLF) significantly decreased as compared to the baseline values before operation in both groups (p<0.05). The LF/HF ratio was significantly changed in DM group but did not change in NDM group. On the 2nd postoperative day, TP, HF, LF and VLF in DM group were further decreased as compared to those on the 1st postoperative day and were significantly lower than those in NDM group (p<0.01 or 0.05), but these indices in NDM group did not show significant decreases. Surgery induced the cardiac autonomic nervous dysfunction in elderly patients not only with DM but also without diabetes. On the 2nd postoperative day, the disturbances of cardiac autonomic nervous activity were more sever in DM patients, compared to the 1st postoperative day, but was not significantly more sever than in the NDM patients.

  20. Neuron-glia crosstalk in the autonomic nervous system and its possible role in the progression of metabolic syndrome: A new hypothesis

    Directory of Open Access Journals (Sweden)

    RODRIGO eDEL RIO

    2015-12-01

    Full Text Available Metabolic syndrome (MS is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.

  1. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis.

    Science.gov (United States)

    Del Rio, Rodrigo; Quintanilla, Rodrigo A; Orellana, Juan A; Retamal, Mauricio A

    2015-01-01

    Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.

  2. Sex-specific effects of intranasal oxytocin on autonomic nervous system and emotional responses to couple conflict

    Science.gov (United States)

    Nater, Urs M.; Schaer, Marcel; La Marca, Roberto; Bodenmann, Guy; Ehlert, Ulrike; Heinrichs, Markus

    2013-01-01

    Unhappy couple relationships are associated with impaired individual health, an effect thought to be mediated through ongoing couple conflicts. Little is known, however, about the underlying mechanisms regulating psychobiological stress, and particularly autonomic nervous system (ANS) reactivity, during negative couple interaction. In this study, we tested the effects of the neuropeptide oxytocin on ANS reactivity during couple conflict in a standardized laboratory paradigm. In a double-blind, placebo-controlled design, 47 heterosexual couples (total n = 94) received oxytocin or placebo intranasally prior to instructed couple conflict. Participants’ behavior was videotaped and salivary alpha-amylase (sAA), a measure of sympathetic activity, and emotional arousal were repeatedly measured during the experiment. Oxytocin significantly reduced sAA during couple conflict in women, whereas men showed increases in sAA levels (sex × group interaction: B = −49.36, t = −2.68, P = 0.009). In men, these increases were related to augmented emotional arousal (r = 0.286, P = 0.028) and more positive behavior (r = 0.291, P = 0.026), whereas there was no such association in women. Our results imply sex-specific effects of oxytocin on sympathetic activity, to negative couple interaction, with the neuropeptide reducing sAA responses and emotional arousal in women while increasing them in men. PMID:22842905

  3. Assessment of autonomic nervous system by using empirical mode decomposition-based reflection wave analysis during non-stationary conditions

    International Nuclear Information System (INIS)

    Arterial blood pressure (ABP) is an important indicator of cardiovascular circulation and presents various intrinsic regulations. It has been found that the intrinsic characteristics of blood vessels can be assessed quantitatively by ABP analysis (called reflection wave analysis (RWA)), but conventional RWA is insufficient for assessment during non-stationary conditions, such as the Valsalva maneuver. Recently, a novel adaptive method called empirical mode decomposition (EMD) was proposed for non-stationary data analysis. This study proposed a RWA algorithm based on EMD (EMD-RWA). A total of 51 subjects participated in this study, including 39 healthy subjects and 12 patients with autonomic nervous system (ANS) dysfunction. The results showed that EMD-RWA provided a reliable estimation of reflection time in baseline and head-up tilt (HUT). Moreover, the estimated reflection time is able to assess the ANS function non-invasively, both in normal, healthy subjects and in the patients with ANS dysfunction. EMD-RWA provides a new approach for reflection time estimation in non-stationary conditions, and also helps with non-invasive ANS assessment. (paper)

  4. Assessment of Fetal Autonomic Nervous System Activity by Fetal Magnetocardiography: Comparison of Normal Pregnancy and Intrauterine Growth Restriction

    Directory of Open Access Journals (Sweden)

    Akimune Fukushima

    2011-01-01

    Full Text Available Objective. To clarify the developmental activity of the autonomic nervous system (ANS of the normal fetus and intrauterine growth restriction (IUGR cases using fetal magnetocardiography (FMCG. Subjects and Methods. Normal pregnancy (n=35 and IUGR (n=12 cases at 28–39 and 32–37 weeks of gestation, respectively, were included in this study. The R-R interval variability was used to calculate the coefficient of variance (CVRR and low frequency/high frequency (LF/HF ratio. Results. The value of CVRR in the normal pregnancy group displayed a slight increasing trend with gestational age. However, no such trend was observed in the IUGR group. In contrast, the LF/HF ratio in both the normal pregnancy group and the IUGR group clearly increased over the gestational period; the normal group showing statistical significance. Conclusion. The development of fetal ANS activity in IUGR cases might differ from that observed in the normal pregnancy group, and this may facilitate early detection of IUGR.

  5. Effect of Forest Walking on Autonomic Nervous System Activity in Middle-Aged Hypertensive Individuals: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chorong Song

    2015-03-01

    Full Text Available There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0 ± 10.6 years were instructed to walk predetermined courses in forest and urban environments (as control. Course length (17-min walk, walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased “comfortable”, “relaxed”, “natural” and “vigorous” feelings and decreased “tension-anxiety,” “depression,” “anxiety-hostility,” “fatigue” and “confusion”. A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.

  6. Assessment of the autonomic nervous system is an appropriate biological marker for the well-being in erectile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Tolga Dogru; Orhan Murat Kocak; Nurper Erberk-Ozen; Murat Basar

    2008-01-01

    Aim: To investigate whether the autonomic nervous system (ANS) components are suitable biological markers for representing well-being in patients with erectile dysfunction (ED). Methods: The present study included 74 male patients who had applied for check-ups in the cardiology outpatient clinic at Kirikkale University (Kirikkale, Turkey) and who had been diagnosed as having hyperlipidemia. Of these patients, 26 had an additional diagnosis of ED and made up the patient group. The remaining 48 patients formed the control group. Well-being was assessed with short- form 36 (SF-36). The International Index of Erectile Function (IIEF) was used as a measure of libido and erectile function. Quantitative assessment of the ANS was made based on the analysis of heart rate variability by means of 24-h holter monitorization. Results: Comparisons between the ED and control groups showed significant differences only in energy scale of SF-36. The ED group also had significantly higher values of sympathetic activity. Except for the general health score of SF-36, which was found to be correlated with parasympathetic activity only in ED group, there were similar correlation patterns within the groups. Although well-being and sympathetic activity were corre- lated negatively, parasympathetic activity and well-being were correlated positively. Conclusion: Quantitative as- sessment of the ANS by heart rate variability analysis might be a suitable marker for well-being of patients with ED. (Asian J Androl 2008 Jul; 10: 643-650)

  7. Investigation of the Effects of Continuous Low-Dose Epidural Analgesia on the Autonomic Nervous System Using Hilbert Huang Transform

    Directory of Open Access Journals (Sweden)

    Wei-Ren Chuang

    2010-01-01

    Full Text Available Effects of continuous low-dose epidural bupivacaine (0.05-0.1% infusion on the Doppler velocimetry for labor analgesia have been well documented. The aim of this study was to monitor the activity of the autonomic nervous system (ANS for women in labor based on Hilbert Huang transform (HHT, which performs signal processing for nonlinear systems, such as human cardiac systems. Thirteen pregnant women were included in the experimental group for labor analgesia. They received continuous epidural bupivacaine 0.075% infusion. The normal-to-normal intervals (NN-interval were downloaded from an ECG holter. Another 20 pregnant women in non-anesthesia labor (average gestation age was 38.6 weeks were included in the comparison group. In this study, HHT was used to decompose components of ECG signals, which reflect three different frequency bands of a person's heart rate spectrum (viz. high frequency (HF, low frequency (LF and very low frequency (VLF. It was found that the change of energy in subjects without anesthesia was more active than that with continuous epidural bupivacaine 0.075% infusion. The energy values of the experimental group (i.e., labor analgesia of HF and LF of ANS activities were significantly lower (P < 0.05 than the values of the comparison group (viz. labor without analgesia, but the trend of energy ratio of LF/HF was opposite. In conclusion, the sympathetic and parasympathetic components of ANS are all suppressed by continuous low-dose epidural bupivacaine 0.075% infusion, but parasympathetic power is suppressed more than sympathetic power.

  8. Brain and Nervous System

    Science.gov (United States)

    ... to Know About Zika & Pregnancy Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  9. Magnetic resonance imaging study of lumbosacral spinal cord nerves before artificial somatic-central nervous system-autonomic reflex pathway establish ment

    International Nuclear Information System (INIS)

    Objective: To investigate the value of MRI as imaging technique for lumbosacral spinal nerves before artificial somatic-central nervous system-autonomic reflex pathway establish ment. Methods: Conventional MRI and T2W CISS 3D were performed in 10 patients with neurogenic bladder planned for the operation of artificial somatic-central nervous system-autonomic reflex pathway. The Three-dimensional data were then constructed into composite images using a standard multiple planar reformation (MPR). Results: Five patients showed tethered spinal cord syndrome, whose spinal cord nerves were circuitous distributed and had abnormity number when penetrated the dura. Of these 5 patients, one patient was accompanied by spinal cord vas malformation. Four patients had vertebral fracture and spinal injury, and the other one patients demonstrated tumor in vertebral canal on MRI examinations. The spinal cord nerves in these 5 patients floated down river and had normal number of spinal cord nerves. Conclusion: Conventional MRI and T2W CISS 3D MRI were essential for the pre-operative planning of artificial somatic-central nervous system-autonomic reflex pathway, especially in patients with tethered spinal cord syndrome. Spinal cord nerves distribute and anterior and posterior roots array can be clearly showed by MPR. (authors)

  10. The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia

    Science.gov (United States)

    de Castro, Fernando

    2016-01-01

    The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920’s, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield’s famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today. PMID:27147984

  11. Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis

    OpenAIRE

    Strichartz Gary R; Seyfried Thomas N; Avila Robin L; Baek Rena C; McNally Melanie A; Kirschner Daniel A

    2007-01-01

    Abstract Background Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (Hexb gene) of β-hexosaminidase A (αβ) and B (ββ). The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (Hexb-/-), we examined t...

  12. Changes of autonomic nervous system function in healthy young men during initial phase at acute high-altitude exposure

    Institute of Scientific and Technical Information of China (English)

    Qin Jun; Huang Lan; Tian Kaixin; Yu Shiyong; Yu Yang; Long Min

    2008-01-01

    Objective: To investigate the changes of autonomic nervous system (ANS) function during the initial phase at acute high-altitude exposure. Methods: Ninety-nine healthy sea-level male residents were studied in Chengdu plain and then Tibet plateau. Heart rate variability (HRV), cold pressor test (CPT), resting heart rate (HR) and blood pressure (BP) were measured at baseline (560 m altitude) and in 2 to 4 d after arriving at Tibet plateau (3 675 m altitude) to assess the ANS function. Results: Compared with baseline, on day 2 in Tibet the standard deviation of normal to normal intervals (SDNN), high-frequency (HF) power, total power (TP), root mean square of delta RR (rMSSD), percentage of delta RR>50 ms (PNN50), normalized high-frequency (Hfnu) and fractal dimension (FD) decreased significantly (SDNN, HF,TP P<0.01, rMSSD, PNNs0, Hfnu, FD P<0.05), while the normalized low-frequency (Lfnu) and LF/HF increased significantly (P<0.01). During day 3-4 in Tibet, SDNN, rMSSD, HF, TP and Hfnu tended to rebound while Lfnu and LF/HF decreased towards baseline day by day. In addition, in Tibet the increase in systolic pressure (SP) and diastolic pressure (DP) during CPT decreased significantly (P<0.01, 0.05), but resting HR increased compared with baseline (P<0.01). Conclusion: ANS modulation is generally blunted, and the relatively predominant sympathetic control is enhanced originally, then it reverts to the sea level states gradually during the initial days of acute high-altitude exposure.

  13. Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Brisebois, Marcel; Tran, Elise;

    2003-01-01

    that transgenic mice constitutively expressing the costimulatory ligand B7.2/CD86 on microglia in the central nervous system (CNS) and on related cells in the proximal peripheral nervous tissue spontaneously develop autoimmune demyelinating disease. Disease-affected nervous tissue in transgenic mice showed...

  14. Response of Autonomic Nervous System to Body Positions: Fourier and Wavelet Analysis

    CERN Document Server

    Xu, A; Federici, A; Stramaglia, S; Simone, F; Zenzola, A; Santostasi, R; Xu, Aiguo

    2003-01-01

    Two mathematical methods, the Fourier and wavelet transforms, were used to study the short term cardiovascular control system. Time series, picked from electrocardiogram and arterial blood pressure lasting 6 minutes, were analyzed in supine position (SUP), during the first (HD1), and the second half (HD2) of $90^{\\circ}$ head down tilt and during recovery (REC). The wavelet transform was performed using the Haar function of period $T=2^j$ ($% j=1$,2,$... $,6) to obtain wavelet coefficients. Power spectra components were analyzed within three bands, VLF (0.003-0.04), LF (0.04-0.15) and HF (0.15-0.4) with the frquency unit cycle/interval. Wavelet transform demonstrated a higher discrimination among all analyzed periods than the Fourier transform. For the Fourier analysis, the LF of R-R intervals and VLF of systolic blood pressure show more evident difference for different body positions. For the wavelet analysis, the systolic blood pressures show much more evident difference than the R-R intervals. This study s...

  15. Herpesvirus-Associated Central Nervous System Diseases after Allogeneic Hematopoietic Stem Cell Transplantation

    OpenAIRE

    Meiqing Wu; Fen Huang; Xinmiao Jiang; Zhiping Fan; Hongsheng Zhou; Can Liu; Qianli Jiang; Yu Zhang; Ke Zhao; Li Xuan; Xiao Zhai; Fuhua Zhang; Changxin Yin; Jing Sun; Ru Feng

    2013-01-01

    Herpesvirus infections of the central nervous system (CNS) are associated with encephalitis/myelitis and lymphoproliferative diseases in immunocompromised individuals. As of now, data of herpesvirus-associated CNS diseases in transplant recipients is limited. Hence, in this prospective study, we investigated the incidence of herpesvirus-associated CNS diseases and explored the diagnosis of these diseases in 281 allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Herpesv...

  16. Nervous system

    Science.gov (United States)

    Histopathology and immunohistochemistry are two analytic methods used in veterinary medicine for diagnosis and control of animal diseases. This book chapter provides specialized information for the veterinary pathologist and poultry veterinarians on the histopathological changes associated with dise...

  17. [The present state of knowledge concerning the effect of electromagnetic fields of 50/60 Hz on the circulatory system and the autonomic nervous system].

    Science.gov (United States)

    Indulski, J A; Bortkiewicz, A; Zmyślony, M

    1997-01-01

    Diseases of the circulatory system together with neoplastic diseases are recognised as the major health problem in the contemporary world. Their origin and aggravation may be related to the exposure to electromagnetic fields (EMFs) since theoretically, disorders in the functioning of the circulatory system are most likely due to electric impulses generated in it by external magnetic fields. The nervous system, including its autonomic part which regulates, among others, the functioning of the circulatory system, because of its electric nature is another system which may be disturbed by EMFs. From the 1960s, biological studies on the effects of power-line frequency EMFs have been carried out in many countries. In view of the applied study model, four main directions of these studies can be identified: in vitro and in vivo animal experiments, experimental studies on humans, clinical and epidemiological studies. Experimental studies on animals and humans have yielded ambiguous and very often contradictory results. Some of them indicate that EMF contributes to slowing down the cardiac rhythm and the stroke volume of the left ventricle, other results suggest their acceleration, and still other show no differences. The results of clinical studies performed in many countries in different groups of workers exposed to power-line frequency EMFs have not produced the evidence for drawing unequivocal conclusions. Again some studies reveal that those exposed show disorders in neurovegetative and blood pressure regulations (hypotension or hypertension) as well as in cardiac rhythm (bradycardia or tachycardia). Other studies do not confirm harmful effect of EMF on the circulatory system. Therefore, it is not feasible to find out, on the basis of these studies, whether and how chronic exposure to power-line frequency EMFs influences the functioning of the circulatory system, the more so as ECG standard recording has been to date the only diagnostic method, and according to the

  18. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS)

    DEFF Research Database (Denmark)

    Asgari, N; Owens, T; Frøkiaer, J;

    2010-01-01

    Asgari N, Owens T, Frøkiaer J, Stenager E, Lillevang ST, Kyvik KO. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS).
Acta Neurol Scand: DOI: 10.1111/j.1600-0404.2010.01416.x.
© 2010 John Wiley & Sons A/S. In the past 10 years, neuromyelitis optica (NMO) has...

  19. Long non-coding RNAs in nervous system function and disease

    OpenAIRE

    Qureshi, Irfan A.; Mattick, John S.; Mehler, Mark F.

    2010-01-01

    Central nervous system (CNS) development, homeostasis, stress responses, and plasticity are all mediated by epigenetic mechanisms that modulate gene expression and promote selective deployment of functional gene networks in response to complex profiles of interoceptive and environmental signals. Thus, not surprisingly, disruptions of these epigenetic processes are implicated in the pathogenesis of a spectrum of neurological and psychiatric diseases. Epigenetic mechanisms involve chromatin rem...

  20. Epilepsy and other central nervous system diseases in atypical autism: a case control study

    DEFF Research Database (Denmark)

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2011-01-01

    There is an increased but variable risk of epilepsy in autism spectrum disorders. The objective of this study is to compare the prevalence and types of epilepsy and other central nervous system (CNS) diseases in a clinical sample of 89 individuals diagnosed as children with atypical autism (AA...

  1. Nanoparticles and blood-brain barrier: the key to central nervous system diseases.

    Science.gov (United States)

    Domínguez, Alazne; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-01-01

    Major central nervous system disorders represent a significant and worldwide public health problem. In fact, the therapeutic success of many pharmaceuticals developed to treat central nervous system diseases is still moderate, since the blood-brain barrier (BBB) limits the access of systemically administered compounds to the brain. Therefore, they require the application of a large total dose of a drug, and cause numerous toxic effects. The development of nanotechnological systems are useful tools to deliver therapeutics and/or diagnostic probes to the brain due to nanocarriers having the potential to improve the therapeutic effect of drugs and to reduce their side effects. This review provides a brief overview of the variety of carriers employed for central nervous system drug and diagnostic probes delivery. Further, this paper focuses on the novel nanocarriers developed to enhance brain delivery across the blood-brain barrier. Special attention is paid to liposomes, micelles, polymeric and lipid-based nanoparticles, dendrimers and carbon nanotubes. The recent developments in nanocarrier implementation through size/charge optimization and surface modifications (PEGylation, targeting delivery, and coating with surfactants) have been discussed. And a detailed description of the nanoscaled pharmaceutical delivery devices employed for the treatment of central nervous system disorders have also been defined. The aim of the review is to evaluate the nanotechnology-based drug delivery strategies to treat different central nervous system disorders.

  2. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis

    Directory of Open Access Journals (Sweden)

    Taweesak Janyacharoen

    2015-10-01

    Full Text Available Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients.Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks.There were statistically significant increased low frequency normal units (LF n.u., PNIF and showed decreased high frequency normal units (HF n.u. at six weeks after aquatic exercise compared with the control group.Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergicrhinitis patients.

  3. Biomarkers of Alzheimer's Disease: From Central Nervous System to Periphery?

    Directory of Open Access Journals (Sweden)

    Enrico Mossello

    2011-01-01

    Full Text Available Alzheimer's Disease (AD is the most frequent form of dementia and represents one of the main causes of disability among older subjects. Up to now, the diagnosis of AD has been made according to clinical criteria. However, the use of such criteria does not allow an early diagnosis, as pathological alterations may be apparent many years before the clear-cut clinical picture. An early diagnosis is even more valuable to develop new treatments, potentially interfering with the pathogenetic process. During the last decade, several neuroimaging and cerebrospinal fluid (CSF parameters have been introduced to allow an early and accurate detection of AD patients, and, recently, they have been included among research criteria for AD diagnosis. However, their use in clinical practice suffers from limitations both in accuracy and availability. The increasing amount of knowledge about peripheral biomarkers will possibly allow the future identification of reliable and easily available diagnostic tests.

  4. Biological characteristics of brain natriuretic peptide and its association with central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Yubao Huang; Changxiang Yan; Chunjiang Yu

    2007-01-01

    OBJECTIVE: To explain the mechanisms of tuhe synthesis, secretion and regulation of brain natriuretic peptide (BNP), and analyze its role in central nervous system diseases.DATA SOURCES: An online search of Pubmed was undertaken to identify articles related to BNP published in English from January 1990 to February 2007 by using the Key words of "brain natriuretic peptide (BNP), central nervous system, subarachnoid hemorrhage (SAH), brain edema, epilepsy". Other articles were searched in China Hospital Knowledge Database (CHKD) by concrete name of journals and title of articles.STUDY SELECTION: The collected articles were primarily screened, those about BNP and its association with central nervous system diseases were selected, whereas the obviously irrelative ones excluded, and the full-texts of the other literatures were searched manually.DATA EXTRACTION: Totally 96 articles were collected, 40 of them were enrolled, and the other 56 were excluded due to repetitive studies or reviews.DATA SYNTHESIS: At present, there are penetrating studies on BNP in the preclinical medicine and clinical medicine of cerebrovascular and cardiovascular diseases, and the investigative outcomes have been gradually applied in clinical practice, and satisfactory results have been obtained. However, the application of BNP in diagnosing and treating central nervous system diseases is still at the experimental phase without -outstanding outcomes, thus the preclinical and clinical studies should be enhanced.CONCLUSION: As a kind of central medium or modulator, BNP plays a certain role in the occurrence,development and termination of central nervous system diseases, the BNP level in serum has certain changing law in AH,brainedema,epilepsy,etc., but the specific mechanisms are unclear.

  5. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    Science.gov (United States)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  6. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  7. Hirschsprung disease: a developmental disorder of the enteric nervous system.

    Science.gov (United States)

    McKeown, Sonja J; Stamp, Lincon; Hao, Marlene M; Young, Heather M

    2013-01-01

    Hirschsprung disease (HSCR), which is also called congenital megacolon or intestinal aganglionosis, is characterized by an absence of enteric (intrinsic) neurons from variable lengths of the most distal bowel. Because enteric neurons are essential for propulsive intestinal motility, infants with HSCR suffer from severe constipation and have a distended abdomen. Currently the only treatment is surgical removal of the affected bowel. HSCR has an incidence of around 1:5,000 live births, with a 4:1 male:female gender bias. Most enteric neurons arise from neural crest cells that emigrate from the caudal hindbrain and then migrate caudally along the entire gut. The absence of enteric neurons from variable lengths of the bowel in HSCR results from a failure of neural crest-derived cells to colonize the affected gut regions. HSCR is therefore regarded as a neurocristopathy. HSCR is a multigenic disorder and has become a paradigm for understanding complex factorial disorders. The major HSCR susceptibility gene is RET. The penetrance of several mutations in HSCR susceptibility genes is sex-dependent. HSCR can occur as an isolated disorder or as part of syndromes; for example, Type IV Waardenburg syndrome is characterized by deafness and pigmentation defects as well as intestinal aganglionosis. Studies using animal models have shown that HSCR genes regulate multiple processes including survival, proliferation, differentiation, and migration. Research into HSCR and the development of enteric neurons is an excellent example of the cross fertilization of ideas that can occur between human molecular geneticists and researchers using animal models. WIREs Dev Biol 2013, 2:113-129. doi: 10.1002/wdev.57 For further resources related to this article, please visit the WIREs website. PMID:23799632

  8. Disseminated Hemangioblastoma of the Central Nervous System without Von Hippel-Lindau Disease

    OpenAIRE

    Chung, Sun-Yoon; Jeun, Sin-Soo; Park, Jae-Hyun

    2014-01-01

    Hemangioblastoma (HB) of the central nervous system may occur sporadically or in association with von Hippel-Lindau (VHL) disease. Disseminated HB means malignant spread of the original primary HB without local recurrence at surgically resected site. It has been rarely reported previously, and rarer especially without VHL gene mutation. We report a case of disseminated HB without VHL disease. A 59-year-old man underwent a surgery for total removal of a cerebellar HB. From five years after the...

  9. Autonomic dysfunction in chronic liver disease

    Directory of Open Access Journals (Sweden)

    Frith J

    2011-08-01

    Full Text Available James Frith, Julia L NewtonNIHR Biomedical Research Centre in Ageing, Institute for Ageing and Health, Newcastle University, Newcastle, UKAbstract: It is becoming increasingly clear that quality of life (QOL is impaired in those with chronic liver disease (CLD. One of the most important contributors to impaired QOL is the symptomatic burden which can range from slight to debilitating. Autonomic dysfunction accounts for a significant proportion of these symptoms, which can be common, non-specific and challenging to treat. Investigating the autonomic nervous system can be straight forward and can assist the clinician to diagnose and treat specific symptoms. Evidence-based treatment options for autonomic symptoms, specifically in CLD, can be lacking and must be extrapolated from other studies and expert opinion. For those with severely impaired quality of life, liver transplantation may offer an improvement; however, more research is needed to confirm this.Keywords: quality of life, treatment, fatigue, angiotensin II

  10. Dynamic analysis of mental sweating and the peripheral vessels for the activity of the autonomic nervous system by optical coherence tomography

    Science.gov (United States)

    Ohmi, Masato; Takada, Daisuke; Wada, Yuki; Haruna, Masamitsu

    2012-01-01

    OCT is highly potential for dynamic analysis of physiological functions of mental sweating and peripheral vessels as demonstrated by the authors. Both mental sweating and the peripheral vessels reflect the activity of the sympathetic nerve of the autonomic nervous system (ANS). The sympathetic nerve also exhibits the LF/HF ratio of the heart rate variability (HRV). In this paper, we demonstrate dynamic analysis of mental sweating and the peripheral vessels for the external stimulus by SS-OCT. In the experiment, the Kraepelin test as a continuous stimulus was applied to the volunteer to discuss in detail dynamics of the physiological function of such small organs in response to the HRV.

  11. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  12. Regulating Rac in the Nervous System: Molecular Function and Disease Implication of Rac GEFs and GAPs

    Directory of Open Access Journals (Sweden)

    Yanyang Bai

    2015-01-01

    Full Text Available Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs as the activators and GTPase-activating proteins (GAPs as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.

  13. Cerebrolysin as a nerve growth factor for treatment of acquired peripheral nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Sherifa Ahmad Hamed

    2011-01-01

    Cerebrolysin is a drug consisting of low-molecular-weight neurotrophic peptides and free amino acids. Cerebrolysin has been shown to ameliorate the effects of oxidative stress, reduce apoptosis, and promote neuronal growth in several degenerative and acquired central nervous system insults, including dementias, stroke, and traumatic injuries. Little is known about its therapeutic efficacy in peripheral nervous system diseases. In this study, we clinically evaluated the effects of cerebrolysin on peripheral nervous system lesions. We evaluated the clinical efficacy of cerebrolysin in six patients with the following conditions who failed to respond to conventional therapies: (1) atonic bladder due to inflammatory radiculitis; (2) paraplegia due to inflammatory radiculoneuropathy; (3) post-traumatic brachial plexopathy; (4) compressive radial nerve injury; (5) post-traumatic facial nerve paralysis; and (6) diabetic ophthalmoplegia. Our results showed that cerebrolysin was more associated with rapid neurological recovery after various peripheral nerve lesions than other therapies including steroids and supportive therapies such as vitamins and antioxidants. The present results support the therapeutic efficacy of cerebrolysin in the treatment of acquired peripheral nervous system diseases.

  14. Neonatal herpes simplex virus type-1 central nervous system disease with acute retinal necrosis.

    Science.gov (United States)

    Fong, Choong Yi; Aye, Aye Mya Min; Peyman, Mohammadreza; Nor, Norazlin Kamal; Visvaraja, Subrayan; Tajunisah, Iqbal; Ong, Lai Choo

    2014-04-01

    We report a case of neonatal herpes simplex virus (HSV)-1 central nervous system disease with bilateral acute retinal necrosis (ARN). An infant was presented at 17 days of age with focal seizures. Cerebrospinal fluid polymerase chain reaction was positive for HSV-1 and brain magnetic resonance imaging showed cerebritis. While receiving intravenous acyclovir therapy, the infant developed ARN with vitreous fluid polymerase chain reaction positive for HSV-1 necessitating intravitreal foscarnet therapy. This is the first reported neonatal ARN secondary to HSV-1 and the first ARN case presenting without external ocular or cutaneous signs. Our report highlights that infants with neonatal HSV central nervous system disease should undergo a thorough ophthalmological evaluation to facilitate prompt diagnosis and immediate treatment of this rapidly progressive sight-threatening disease. PMID:24378951

  15. Heart rate variability and the influence of craniosacral therapy on autonomous nervous system regulation in persons with subjective discomforts:a pilot study

    Institute of Scientific and Technical Information of China (English)

    Wanda Girsberger; Ulricke Bnziger; Gerhard Lingg; Harald Lothaller; Peter-Christian Endler

    2014-01-01

    BACKGROUND:Subjective discomforts in a preclinical range are often due to imbalanced autonomic nervous system activity, which is a focus of craniosacral therapy. OBJECTIVE:The aim of this work was to determine any changes in heart rate variability (HRV) in a study on craniosacral therapy. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS: This is a quasi-experimental (controlled) study with cross-over design. In a private practice, measurements were performed on 31 patients with subjective discomforts before and after a control and an intervention period. HRV was determined using a device that requires a measuring time of 140 s and electrode contact only with the ifngertips. Main PRIMARY OUTCOME MEASURES: HRV change under the inlfuence of a deifned one-time intervention (test intervention) with craniosacral therapy versus control (deifned rest period). RESULTS:Standard deviation of all RR-intervals (ms) and total power of RR-interval variability in the frequency range (ms2) were together interpreted as an indicator of test subjects’ autonomic nervous activity and as a measure of their ability to cope with demands on their health. Neither of these parameters increased during the control period (P>0.05), whereas during the test intervention period there was an increase in both (P0.05). No changes were observed in the low frequency/high frequency ratio (sympathetic-vagal balance) in the course of the control or the test intervention period (P>0.05). CONCLUSION: Craniosacral treatment had a favourable effect on autonomic nervous activity. This in itself is an interesting result, but further research will be needed to distinguish speciifc effects of craniosacral therapy technique from less speciifc therapist-client interaction effects.

  16. Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    OpenAIRE

    Ashkenazy, Y.; Lewkowicz, M.; Levitan, J.; Moelgaard, H.; Thomsen, P. E. Bloch; Saermark, K.

    1998-01-01

    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclu...

  17. Cardiovascular autonomic dysfunction in Parkinson's disease.

    Science.gov (United States)

    Ziemssen, Tjalf; Reichmann, Heinz

    2010-02-15

    Symptoms of cardiovascular dysautonomia are a common occurrence in Parkinson's disease (PD). In addition to this dysautonomia as part of PD itself, dysfunction of the autonomic nervous system (ANS) can be triggered as a side-effect of drug treatment interacting with the ANS or - if prominent and early - an indication of a different disease such as multiple system atrophy (MSA). Various diagnostic tests are available to demonstrate autonomic failure. While autonomic function tests can differentiate parasympathetic from sympathetic dysfunction, cardiac imaging can define the pathophysiologically involved site of a lesion. Standard tests such as 24-h ambulatory blood pressure measurements can identify significant autonomic failure which needs treatment. The most frequent and disturbing symptom of cardiovascular autonomic dysfunction is orthostatic hypotension. Symptoms include generalized weakness, light-headiness, mental "clouding" up to syncope. Factors like heat, food, alcohol, exercise, activities which increase intrathoraric pressure (e.g. defecation, coughing) and certain drugs (e.g. vasodilators) can worsen a probably asymptomatic orthostatic hypotension. Non-medical and medical therapies can help the patient to cope with a disabling symptomatic orthostatic hypotension. Supine hypertension is often associated with orthostatic hypotension. The prognostic role of cardiovagal and baroreflex dysfunction is still not yet known.

  18. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot b

  19. Adhesion G protein-coupled receptors in nervous system development and disease.

    Science.gov (United States)

    Langenhan, Tobias; Piao, Xianhua; Monk, Kelly R

    2016-09-01

    Members of the adhesion G protein-coupled receptor (aGPCR) class have emerged as crucial regulators of nervous system development, with important implications for human health and disease. In this Review, we discuss the current understanding of aGPCR functions during key steps in neural development, including cortical patterning, dendrite and synapse formation, and myelination. We focus on aGPCR modulation of cell-cell and cell-matrix interactions and signalling to control these varied aspects of neural development, and we discuss how impaired aGPCR function leads to neurological disease. We further highlight the emerging hypothesis that aGPCRs can be mechanically activated and the implications of this property in the nervous system. PMID:27466150

  20. Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system--a fMRI study in healthy volunteers.

    Science.gov (United States)

    Rubio, Amandine; Van Oudenhove, Lukas; Pellissier, Sonia; Ly, Huynh Giao; Dupont, Patrick; de Micheaux, Hugo Lafaye; Tack, Jan; Dantzer, Cécile; Delon-Martin, Chantal; Bonaz, Bruno

    2015-02-15

    The human brain responds both before and during the application of aversive stimuli. Anticipation allows the organism to prepare its nociceptive system to respond adequately to the subsequent stimulus. The context in which an uncomfortable stimulus is experienced may also influence neural processing. Uncertainty of occurrence, timing and intensity of an aversive event may lead to increased anticipatory anxiety, fear, physiological arousal and sensory perception. We aimed to identify, in healthy volunteers, the effects of uncertainty in the anticipation of uncomfortable rectal distension, and the impact of the autonomic nervous system (ANS) activity and anxiety-related psychological variables on neural mechanisms of anticipation of rectal distension using fMRI. Barostat-controlled uncomfortable rectal distensions were preceded by cued uncertain or certain anticipation in 15 healthy volunteers in a fMRI protocol at 3T. Electrocardiographic data were concurrently registered by MR scanner. The low frequency (LF)-component of the heart rate variability (HRV) time-series was extracted and inserted as a regressor in the fMRI model ('LF-HRV model'). The impact of ANS activity was analyzed by comparing the fMRI signal in the 'standard model' and in the 'LF-HRV model' across the different anticipation and distension conditions. The scores of the psychological questionnaires and the rating of perceived anticipatory anxiety were included as covariates in the fMRI data analysis. Our experiments led to the following key findings: 1) the subgenual anterior cingulate cortex (sgACC) is the only activation site that relates to uncertainty in healthy volunteers and is directly correlated to individual questionnaire score for pain-related anxiety; 2) uncertain anticipation of rectal distension involved several relevant brain regions, namely activation of sgACC and medial prefrontal cortex and deactivation of amygdala, insula, thalamus, secondary somatosensory cortex, supplementary

  1. Central Nervous System Tuberculosis: An Imaging-Focused Review of a Reemerging Disease

    OpenAIRE

    Morteza Sanei Taheri; Mohammad Ali Karimi; Hamidreza Haghighatkhah; Ramin Pourghorban; Mohammad Samadian; Hosein Delavar Kasmaei

    2015-01-01

    Central nervous system (CNS) tuberculosis is a potentially life threatening condition which is curable if the correct diagnosis is made in the early stages. Its clinical and radiologic manifestations may mimic other infectious and noninfectious neurological conditions. Hence, familiarity with the imaging presentations of various forms of CNS tuberculosis is essential in timely diagnosis, and thereby reducing the morbidity and mortality of this disease. In this review, we describe the imaging ...

  2. Pulmonary, Gonadal, and Central Nervous System Status after Bone Marrow Transplantation for Sickle Cell Disease

    OpenAIRE

    Walters, Mark C.; Hardy, Karen; Edwards, Sandie; Adamkiewicz, Thomas; Barkovich, James; Bernaudin, Francoise; Buchanan, George R.; Bunin, Nancy; Dickerhoff, Roswitha; Giller, Roger; Haut, Paul R.; Horan, John; Hsu, Lewis L.; Kamani, Naynesh; Levine, John E.

    2009-01-01

    We conducted a prospective, multicenter investigation of human-leukocyte antigen (HLA) identical sibling bone marrow transplantation (BMT) in children with severe sickle cell disease (SCD) between 1991 and 2000. To determine if children were protected from complications of SCD after successful BMT, we extended our initial study of BMT for SCD to conduct assessments of the central nervous system (CNS) and of pulmonary function 2 or more years after transplantation. In addition, the impact on g...

  3. Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    CERN Document Server

    Ashkenazy, Yu; Levitan, J; Moelgaard, H; Bloch-Thomsen, P E; Saermark, K

    1998-01-01

    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclusive. We suggest a delimiting diagnostic value of the standard deviation of the filtered, reconstructed RR interval time series in the range of $\\sim 0.035$ (for the above mentioned filter), below which individuals are at risk.

  4. Cerebrospinal fluid analysis in infectious diseases of the nervous system: when to ask, what to ask, what to expect

    Directory of Open Access Journals (Sweden)

    Luis dos Ramos Machado

    2013-09-01

    Full Text Available Cerebrospinal fluid (CSF analysis very frequently makes the difference to the diagnosis, not only in relation to infections but also in other diseases of the nervous system such as inflammatory, demyelinating, neoplastic and degenerative diseases. The authors review some practical and important features of CSF analysis in infectious diseases of the nervous system, with regard to acute bacterial meningitis, herpetic meningoencephalitis, neurotuberculosis, neurocryptococcosis, neurocysticercosis and neurosyphilis.

  5. Cutaneous autonomic denervation in Parkinson's disease.

    Science.gov (United States)

    Navarro-Otano, Judith; Casanova-Mollà, Jordi; Morales, Merche; Valls-Solé, Josep; Tolosa, Eduard

    2015-08-01

    Numerous studies have detailed involvement of the peripheral autonomic nervous system (PANS) in Parkinson's disease (PD). We assessed autonomic innervation of dermal annexes through quantitative fluorescence measurement from skin obtained via punch biopsies at distal leg region in PD and control subjects. We defined a ratio between the area corresponding to protein gen product (PGP) immunoreactivity and the area corresponding to blood vessel or sweat gland as a quantitative measure of autonomic innervation. Presence of alpha-synuclein (AS) deposits in dermis and hypodermis was also assessed by immunohistochemistry. Skin biopsies form six PD patients and six healthy controls were studied. Autonomic innervation scores were lower in PD than in controls in both blood vessels and sweat glands. No AS or phosphorylated AS (pAS) immunoreactivity was detected in dermis or hypodermis in any of the studied subjects. The results of this investigation suggest that autonomic innervation of dermal annexes in living patients with PD is reduced compared to controls. AS or pAS deposits were not found in dermis or hypodermis suggesting that distal leg skin study is not useful for in vivo detection of AS in PD.

  6. Neutron activation analysis of the central nervous system tissues in neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1994-07-01

    As the diseases due to excessive metals in living bodies and the metals of their causes, Minamata disease due to Hg, itai-itai disease due to Cd, dialysis brain disease due to Al, hemochromatosis due to Fe, Wilson disease due to Cu and so on have been known. Also as the neural diseases, in which the possibility that metals take part in them is presumed, there are amyotrophic lateral sclerosis, Alzheimer disease, Parkinson disease, Parkinsonism dementia and so on. In order to know the causes of the diseases due to excessive metals in living bodies and neurological diseases, the authors have measured Cu, Ca, Al, Mn, Zn and Fe in central nervous system tissues by activation analysis nondestructive method. The cases investigated were 4 cases of hepatocerebral diseases, 6 cases of ALS, 4 cases of Parkinson disease, 4 cases of Parkinsonism dementia, 4 cases of multiple sclerosis and 5 cases without CNS disease for the control. The method of measurement is described. The results for respective diseases are reported. Cu and Fe are in the relation of mirror images, and Cu formed Cu-superoxide dismutase (SOD) similarly to Zn and Mn as SOD carrier metals, and protects living bodies and CNS from oxidative stress. (K.I.).

  7. The impact of occurrence of exceptional solar events on mortality from diseases of the nervous system

    Science.gov (United States)

    Podolska, Katerina

    2015-04-01

    The aim of this conference paper is to analyse relationships between strong changes of solar, geomagnetic and ionospheric physical parameters, and mortality by medical cause of death from diagnosis group Diseases of the nervous system by ICD-10 WHO. The aggregated daily number of deaths of 6 largest individual causes of death of group VI. Diseases of the nervous system on the occurrence of exceptional solar and geomagnetic events is investigated. Analysis is performed for the period of the solar cycles No. 23 and 24 (years 1994-2013) in the Czech Republic. The correlation between the intensity of mortality from diseases Multiple sclerosis, Epilepsy, Cerebral palsy, Parkinson disease, Secondary parkinsonism and Alzheimer disease and the solar, geomagnetic and ionospheric physical parameters is examined using stochastic method of graphical models of conditional dependences. We study the daily number of deaths separately for both sexes at the age groups under 39 and 40+. Differences are found for maximum solar activity and during the ascending and descending epoch of the solar cycles.

  8. Moderate Exercise Restores Pancreatic Beta-Cell Function and Autonomic Nervous System Activity in Obese Rats Induced by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Rodrigo Mello Gomes

    2013-08-01

    Full Text Available Background/Aims: Metabolic syndrome has been identified as one of the most significant threats to human health in the 21st century. Exercise training has been shown to counteract obesity and metabolic syndrome. The present study aimed to investigate the effects of moderate exercise training on pancreatic beta-cell function and autonomic nervous system (ANS activity in rats fed a high-fat diet (HFD. Methods: Weaning rats were divided into four groups: rats fed a standard chow or HFD (sedentary, Control-SED and HFD-SED; or exercised, Control-EXE and HFD-EXE, respectively. Exercised rats ran (from 21- to 91-days-old for 60 minutes (3 times/week over a 10-week period. Glucose and insulin tolerance tests were performed. Pancreatic islets were isolated to study glucose-induced insulin secretion (GIIS. Parasympathetic and sympathetic nerve electrical signals were measured, and liver samples were processed and histologically analyzed. Results: Exercise prevented obesity, insulin resistance, and liver steatosis as well as improved total cholesterol, ALT, and AST levels. Islets from HFD rats showed insulin hypersecretion which was ameliorated by exercise. Exercise decreased vagal nerve activity in the HFD-EXE group and increased the activity of the sympathetic nervous system in both exercised groups. Conclusion: Exercise prevents obesity and liver steatosis and restores pancreatic beta-cell function and ANS activity in HFD-obese rats.

  9. The impact of posttraumatic stress disorder versus resilience on nocturnal autonomic nervous system activity as functions of sleep stage and time of sleep.

    Science.gov (United States)

    Kobayashi, Ihori; Lavela, Joseph; Bell, Kimberly; Mellman, Thomas A

    2016-10-01

    Posttraumatic stress disorder (PTSD) has been associated with sleep disturbances including alterations in sleep stages and recently, elevated nocturnal autonomic nervous system (ANS) arousal (i.e., dominance of the sympathetic nervous system over the parasympathetic nervous system). Data suggest that sleep contributes to the regulation of ANS activity. In our previous ambulatory heart rate variability (HRV) monitoring study, strong relationships between sleep and nocturnal ANS activity in resilient participants (i.e., individuals who had never had PTSD despite exposure to high-impact trauma) were not seen with PTSD. In this study, we examined the impact of PTSD vs. resilience on ANS activity as a function of sleep stage and time of sleep. Participants (age 18-35) with current PTSD (n=38) and resilience (n=33) completed two overnight polysomnography recordings in a lab setting. The second night electrocardiogram was analyzed for frequency domain HRV parameters and heart rate within rapid-eye-movement (REM) and non-REM (NREM) sleep periods. Results indicated that ANS arousal indexed by HRV was greater during REM compared with NREM sleep and that the REM-NREM difference was greater in the PTSD than in the resilient participants. This effect of PTSD was reduced to non-significance when analyses controlled for REM sleep percentage, which was lower with PTSD. Exploratory analyses revealed that the REM-NREM difference in HRV was correlated with REM sleep percentage in resilient participants, but not with PTSD. In contrast with our data from home settings, the present study did not find increased overall nocturnal ANS arousal with PTSD. Analyses did reveal higher heart rate during initial NREM sleep with more rapid decline over the course of NREM sleep with PTSD compared with resilience. Findings suggest that elevated ANS arousal indexed by heart rate with PTSD is specific to the early part of sleep and possible impairment in regulating ANS activity with PTSD related to

  10. Central Nervous System Tuberculosis: An Imaging-Focused Review of a Reemerging Disease

    Directory of Open Access Journals (Sweden)

    Morteza Sanei Taheri

    2015-01-01

    Full Text Available Central nervous system (CNS tuberculosis is a potentially life threatening condition which is curable if the correct diagnosis is made in the early stages. Its clinical and radiologic manifestations may mimic other infectious and noninfectious neurological conditions. Hence, familiarity with the imaging presentations of various forms of CNS tuberculosis is essential in timely diagnosis, and thereby reducing the morbidity and mortality of this disease. In this review, we describe the imaging characteristics of the different forms of CNS tuberculosis, including meningitis, tuberculoma, miliary tuberculosis, abscess, cerebritis, and encephalopathy.

  11. Central nervous system tuberculosis: an imaging-focused review of a reemerging disease.

    Science.gov (United States)

    Sanei Taheri, Morteza; Karimi, Mohammad Ali; Haghighatkhah, Hamidreza; Pourghorban, Ramin; Samadian, Mohammad; Delavar Kasmaei, Hosein

    2015-01-01

    Central nervous system (CNS) tuberculosis is a potentially life threatening condition which is curable if the correct diagnosis is made in the early stages. Its clinical and radiologic manifestations may mimic other infectious and noninfectious neurological conditions. Hence, familiarity with the imaging presentations of various forms of CNS tuberculosis is essential in timely diagnosis, and thereby reducing the morbidity and mortality of this disease. In this review, we describe the imaging characteristics of the different forms of CNS tuberculosis, including meningitis, tuberculoma, miliary tuberculosis, abscess, cerebritis, and encephalopathy. PMID:25653877

  12. Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease.

    Science.gov (United States)

    Fuess, Lauren E; Eisenlord, Morgan E; Closek, Collin J; Tracy, Allison M; Mauntz, Ruth; Gignoux-Wolfsohn, Sarah; Moritsch, Monica M; Yoshioka, Reyn; Burge, Colleen A; Harvell, C Drew; Friedman, Carolyn S; Hewson, Ian; Hershberger, Paul K; Roberts, Steven B

    2015-01-01

    Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms. PMID:26176852

  13. Up in arms: Immune and nervous system response to sea star wasting disease

    Science.gov (United States)

    Fuess, Lauren E; Eiselord, Morgan E.; Closek, Collin J.; Tracy, Allison M.; Mauntz, Ruth; Gignoux-Wolfsohn, Sarah; Moritsch, Monica M; Yoshioka, Reyn; Burge, Colleen A.; Harvell, Drew; Friedman, Carolyn S.; Hershberger, Paul K.; Roberts, Steven B.

    2015-01-01

    Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013–2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.

  14. Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease.

    Directory of Open Access Journals (Sweden)

    Lauren E Fuess

    Full Text Available Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.

  15. Phototherapeutic treatment of patients with peripheral nervous system diseases by means of LED arrays

    Science.gov (United States)

    Zharov, Vladimir P.; Kalinin, Konstantin L.; Menyaev, Yulian A.; Zmievskoy, Gregory N.; Savin, Alexei A.; Stulin, Igor D.; Shihkerimov, Raphiz K.; Shapkina, Alla V.; Velsher, Leonid Z.; Stakhanov, Mikhail L.

    2001-05-01

    The further development of new method of phototherapy based on use of light-emitting diodes (LED) arrays has been presented. LEDs array distribution is side of cylindrical surface, covering pathology region, was used for treatment group of patients with an affected peripheral nervous system. The main group consisted of patients with humeral plexopathy - one of possible neurological manifestation of postmastectomic syndrome as result of breast cancer radical treatment. This disease was accompanied also by some other peripheral nervous system diseases: diabetic polyneuropathy, compression ischemic mononeuropathy, festering wounds and others. The phototherapeutic method is just directed on improvement of patient's conditions in combination with other traditional methods of treatment. The main parameters of photomatrix therapeutic system: wavelength - 660 nm, line width - no more than 20 nm, intensity of radiation on the surface of edema - 0.5-3 mW/cm2 (in dependence of apparatuses type). To control and study efficiency of phototreatment ultrasonic dopplerography, thermography, electromyography and viscosimetry have been used.

  16. The effects of stimulation of the autonomic nervous system via perioperative nutrition on postoperative ileus and anastomotic leakage following colorectal surgery (SANICS II trial): a study protocol for a double-blind randomized controlled trial

    OpenAIRE

    Peters, Emmeline G; Smeets, Boudewijn JJ; Dekkers, Marloes; Buise, Marc D; de Jonge, Wouter J.; Slooter, Gerrit D; Reilingh, Tammo S de Vries; Wegdam, Johannes A; Nieuwenhuijzen, Grard AP; Rutten, Harm JT; de Hingh, Ignace HJT; Hiligsmann, Mickael; Buurman, Wim A.; Luyer, Misha DP

    2015-01-01

    Background Postoperative ileus and anastomotic leakage are important complications following colorectal surgery associated with short-term morbidity and mortality. Previous experimental and preclinical studies have shown that a short intervention with enriched enteral nutrition dampens inflammation via stimulation of the autonomic nervous system and thereby reduces postoperative ileus. Furthermore, early administration of enteral nutrition reduced anastomotic leakage. This study will investig...

  17. [Preoperative preparation of pregnant with hypertension according to state of the autonomic nervous system and circulatory system].

    Science.gov (United States)

    Gur'ianov, V A; Tolmachev, G N; Volodin, A V; Marichik, N V; Nemirovskiĭ, V B; Pivovarova, G M; Shepetovskaia, N L

    2010-01-01

    Pregnancy in patients with hypertension is considered in the spotlight of creation of general adaptation syndrome. According to evidence, when a stable hypertension in pregnant patients with hyper- and eukinetic types of haemodynamics is observed, the response of circulatory system and body fluid compartments has a moderate difference with normal. In pregnant patients with hypertension and a hypokinetic type of haemodynamics and pregnant patients with gestosis developed against the background of eukinetic type of hypertension, a physiological decrease of total peripheral resistance (TPR) is absent, which contributes into interstitial hyperhydration. In pregnant patients with gestosis developed against the background of hypokinetic type of haemodynamics, a pathological rise of TPR occurs, which is followed with a more significant interstitial hyperhydration. A differentiated preoperative preparation of pregnant with hypertension with the calcium antagonists and hydroxyethyl starch solution (130/0,4) favours the conversion of hyper- and hypokinetic types of haemodynamics to eukinetic, forms a physiological type of sympathicotonia and improves the water-salt metabolism. PMID:21400790

  18. New roles for ‘old’ microRNAs in nervous system function and disease

    Directory of Open Access Journals (Sweden)

    Marion eHartl

    2013-12-01

    Full Text Available Since their discovery, microRNAs became prominent candidates providing missing links on how to explain the developmental and phenotypical variation within one species or among different species. In addition, microRNAs were implicated in diseases such as neurodegeneration and cancer. More recently, the regulation of animal behavior was shown to be influenced by microRNAs. In spite of their numerous functions, only a few microRNAs were discovered by using classic genetic approaches. Due to the very mild or redundant phenotypes of most microRNAs or their genomic location within introns of other genes many regulatory microRNAs were missed. In this review, we focus on three microRNAs first identified in a forward genetic screen in invertebrates for their essential function in animal development, namely bantam, let-7 and miR-279. All three are essential for survival, are not located in introns of other genes, and are highly conserved among species. We highlight their important functions in the nervous system and discuss their emerging roles, especially during nervous system disease and behavior.

  19. Upper extremity subclinical autonomic and peripheral neuropathy in systemic lupus erythematosus

    OpenAIRE

    Mahmoud M Fathalla; Mohja A El-Badawy

    2015-01-01

    Background Systemic lupus erythematosus (SLE) is an autoimmune, multiorgan disease that affects connective tissues of many organs or systems, including the nervous system, where it affects the autonomic, the peripheral, and the central nervous system. Objective The aim of this study was to investigate the association of subclinical autonomic and peripheral neuropathy with SLE and to correlate neurophysiological parameters with clinical and laboratory data. Patients and methods ...

  20. Quality of life in patients with paroxysmal atrial fibrillation and its predictors : importance of the autonomic nervous system

    NARCIS (Netherlands)

    van den Berg, MP; Hassink, RJ; Tuinenburg, AE; van Sonderen, EFLP; Lefrandt, JD; de Kam, PJ; van Gelder, IC; Smit, AJ; Sanderman, R; Crijns, HJGM

    2001-01-01

    Aims To determine the impact of paroxysmal atrial fibrillation on quality of life and to determine the predictors of quality of life, particularly the role of symptomatology and autonomic function. Methods and Results The study group comprised 73 patients with paroxysmal atrial fibrillation (mean ag

  1. The influence of montelukast on the autonomic nervous system activity in rats with cyclophosphamide-induced hemorrhagic cystitis

    Directory of Open Access Journals (Sweden)

    Dobrek Lukasz

    2015-09-01

    Full Text Available The complex pathogenesis of cyclophosphamide-induced hemorrhagic cystitis involves arachidonic acid-derived inflammatory mediators, among them leukotrienes. Montelukast, a leukotriene receptor antagonist, is reported to exert an alleviatory effect in the course of cystitis associated with overactive bladder symptoms. The aim of this study was to verify whether the effect of montelukast is also associated with its influence on autonomic activity. The experiment included 20 rats with cyclophosphamide-induced hemorrhagic cystitis (75 mg/kg, four doses every second day, among them, 10 treated with oral montelukast (10 mg/kg for 8 days and 10 controls. Time and frequency domain analyses of heart rate variability (HRV were conducted in all the rats as an indirect measure of their autonomic activity. The montelukast-treated animals showed an increase in root mean square of successive differences (rMSSD, as well as an increase in HRV spectrum total power (TP and power of very low (VLF spectral component. This suggests that due to its anti-inflammatory and its anti-leukotriene effect, montelukast improves overall autonomic activity, with no preferential influence on either the sympathetic or parasympathetic part. Furthermore, the increase in VLF corresponds to attenuation of inflammatory response. In conclusion, this study showed that aside from its antagonistic effect on leukotriene receptors, montelukast can also modulate autonomic activity.

  2. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report.

  3. Cardiac sympathetic dysfunction in Parkinson's disease. Relationship between results of 123I-MIBG scintigraphy and autonomic nervous function evaluated by the Valsalva maneuver

    International Nuclear Information System (INIS)

    We examined whether the results of 123I-MIBG scintigraphy reflect cardiac sympathetic nerve function in patients with Parkinson's disease (PD). The subjects were 62 patients with PD (age, 65.4±6.3 years) and 53 controls (65.2±7.1 years). All subjects underwent 123I-MIBG scintigraphy and QTc interval measurement on electrocardiogram (ECG). Hemodynamic autonomic function was estimated by the Valsalva maneuver in 37 subjects (63.9±5.2 years) randomly selected from the patients with PD. As control, the Valsalva maneuver was also done in 20 randomly selected controls (64.1±5.0 years), and 123I-MIBG scintigraphy was performed in 21 controls (67.7±5.3 years old). The subjects rested in a supine position for 20 min and were given an intravenous injection of 111 MBq 123I-MIBG. Relative organ uptake was determined by the region of interest (ROI) in the anterior view and the ratio of average pixel count in the heart (H) to that in the mediastinum (M) was calculated (H/M ratio) for early (after 15 min) and delayed (after 3 hrs) periods. The Valsalva maneuver was done by having the subjects exhale into a mouthpiece at an expiratory pressure of 40 mmHg for 15 seconds. Blood pressure and RR intervals were measured during the Valsalva maneuver by tonometry, using a noninvasive blood pressure monitoring system (ANS 508, Nihon Colin Co., Ltd.). Baroreceptor reflex sensitivities (BRS) of the second phase (BRS II) and fourth phase (BRS IV) of the Valsalva maneuver were calculated, and blood pressure elevations during the late second phase (IIp) and fourth phase (IVp) were measured. QTc was greater in the patients with PD (417 ms) than in the control subjects (409 ms). The H/M ratios of the early and delayed images in the patients with PD (1.76, 1.61) were significantly lower than those in the control subjects (2.56, 2.45). The early and delayed H/M ratios significantly correlated with the severity of disease according to Hoehn-Yahr stage. QTc interval and IVp significantly

  4. Pathology of the Nervous System in Von Hippel-Lindau Disease

    Directory of Open Access Journals (Sweden)

    Alexander O. Vortmeyer

    2015-06-01

    Full Text Available Von Hippel-Lindau (VHL disease is a tumor syndrome that frequently involves the central nervous system (CNS. It is caused by germline mutation of the VHL gene. Subsequent VHL inactivation in selected cells is followed by numerous well-characterized molecular consequences, in particular, activation and stabilization of hypoxia-inducible factors HIF1 and HIF2. The link between VHL gene inactivation and tumorigenesis remains poorly understood. Hemangioblastomas are the most common manifestation in the CNS; however, CNS invasion by VHL disease-associated endolymphatic sac tumors or metastatic renal cancer also occur, and their differentiation from primary hemangioblastoma may be challenging. Finally, in this review, we present recent morphologic insights on the developmental concept of VHL tumorigenesis which is best explained by pathologic persistence of temporary embryonic progenitor cells. 

  5. Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-10-01

    The human genome encodes tens of thousands of long non-coding RNAs (lncRNAs), a novel and important class of genes. Our knowledge of lncRNAs has grown exponentially since their discovery within the last decade. lncRNAs are expressed in a highly cell- and tissue-specific manner, and are particularly abundant within the nervous system. lncRNAs are subject to post-transcriptional processing and inter- and intra-cellular transport. lncRNAs act via a spectrum of molecular mechanisms leveraging their ability to engage in both sequence-specific and conformational interactions with diverse partners (DNA, RNA, and proteins). Because of their size, lncRNAs act in a modular fashion, bringing different macromolecules together within the three-dimensional context of the cell. lncRNAs thus coordinate the execution of transcriptional, post-transcriptional, and epigenetic processes and critical biological programs (growth and development, establishment of cell identity, and deployment of stress responses). Emerging data reveal that lncRNAs play vital roles in mediating the developmental complexity, cellular diversity, and activity-dependent plasticity that are hallmarks of brain. Corresponding studies implicate these factors in brain aging and the pathophysiology of brain disorders, through evolving paradigms including the following: (i) genetic variation in lncRNA genes causes disease and influences susceptibility; (ii) epigenetic deregulation of lncRNAs genes is associated with disease; (iii) genomic context links lncRNA genes to disease genes and pathways; and (iv) lncRNAs are otherwise interconnected with known pathogenic mechanisms. Hence, lncRNAs represent prime targets that can be exploited for diagnosing and treating nervous system diseases. Such clinical applications are in the early stages of development but are rapidly advancing because of existing expertise and technology platforms that are readily adaptable for these purposes.

  6. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E;

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  7. Herpesvirus-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Meiqing Wu

    Full Text Available Herpesvirus infections of the central nervous system (CNS are associated with encephalitis/myelitis and lymphoproliferative diseases in immunocompromised individuals. As of now, data of herpesvirus-associated CNS diseases in transplant recipients is limited. Hence, in this prospective study, we investigated the incidence of herpesvirus-associated CNS diseases and explored the diagnosis of these diseases in 281 allogeneic hematopoietic stem cell transplantation (allo-HSCT recipients. Herpesvirus-DNA and cerebrospinal fluid (CSF cells were sampled from 58 recipients with herpesvirus-associated diseases or with unexplainable CNS manifestations. Results showed that 23 patients were diagnosed as herpesvirus-associated CNS diseases, including 15 Epstein-Barr virus (EBV-associated diseases (4 encephalitis and 11 lymphoproliferative diseases, 5 herpes simplex virus type 1 encephalitis, 2 cytomegalovirus encephalitis/myelitis and 1 varicella zoster virus encephalitis. The median time of diseases onset was 65 (range 22-542 days post-transplantation. The 3-year cumulative incidence of herpesvirus-associated encephalitis/myelitis and post-transplant lymphoproliferative disorder (PTLD was 6.3% ± 1.9% and 4.1% ± 1.2%, respectively. Of the evaluable cases, CSF cells mainly consisted of CD19(+CD20(+ B cells (7/11 and had clonal rearrangement of immunoglobulin genes (3/11 in patients with CNS-PTLD. On the contrary, in patients with encephalitis/myelitis, CSF cells were comprised of different cell populations and none of the gene rearrangement was detected. Herpesvirus-associated CNS diseases are common in the early stages of allo-HSCT, wherein EBV is the most frequent causative virus. The immunophenotypic and clonal analysis of CSF cells might be helpful in the differential diagnosis between encephalitis and lymphoproliferative diseases.

  8. The significance of amlodipine on autonomic nervous system adjustment (ANSA method: A new approach in the treatment of hypertension

    Directory of Open Access Journals (Sweden)

    Milovanović Branislav

    2009-01-01

    Full Text Available Introduction. Cardiovascular autonomic modulation is altered in patients with essential hypertension. Objective To evaluate acute and long-term effects of amlodipine on cardiovascular autonomic function and haemodynamic status in patients with mild essential hypertension. Methods. Ninety patients (43 male, mean age 52.12 ±10.7 years with mild hypertension were tested before, 30 minutes after the first 5 mg oral dose of amlodipine and three weeks after monotherapy with amlodipine. A comprehensive study protocol was done including finger blood pressure variability (BPV and heart rate variability (HRV beat-to-beat analysis with impedance cardiography, ECG with software short-term HRV and nonlinear analysis, 24-hour Holter ECG monitoring with QT and HRV analysis, 24-hour blood pressure (BP monitoring with systolic and diastolic BPV analysis, cardiovascular autonomic reflex tests, cold pressure test, mental stress test. The patients were also divided into sympathetic and parasympathetic groups, depending on predominance in short time spectral analysis of sympathovagal balance according to low frequency and high frequency values. Results. We confirmed a significant systolic and diastolic BP reduction, and a reduction of pulse pressure during day, night and early morning hours. The reduction of supraventricular and ventricular ectopic beats during the night was also achieved with therapy, but without statistical significance. The increment of sympathetic activity in early phase of amlodipine therapy was without statistical significance and persistence of sympathetic predominance after a few weeks of therapy detected based on the results of short-term spectral HRV analysis. All time domain parameters of long-term HRV analysis were decreased and low frequency amongst spectral parameters. Amlodipne reduced baroreflex sensitivity after three weeks of therapy, but increased it immediately after the administration of the first dose. Conclusion. The results

  9. Novel central nervous system drug delivery systems.

    Science.gov (United States)

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  10. A case of Erdheim Chester disease with central nervous system involvement

    Directory of Open Access Journals (Sweden)

    Anil Kumar Patil

    2015-01-01

    Full Text Available Erdheim Chester disease (ECD is a rare non-Langerhans cell histiocytosis, commonly involving the musculoskeletal system. Other tissue can also be involved, including the central nervous system with wide spectrum of clinical features, at times being nonspecific. This can cause diagnostic dilemmas with delay in diagnosis and initiation of therapy. Here we describe a 63-year-old man who had presented with ataxia and behavioral changes, bony pains, weight loss, and fatigue. His computed tomography (CT, 99Tc scintigraphy and histopathological features on bone biopsy were consistent with ECD. Thus, ECD should be considered as a differential diagnosis in patients presenting with bony pain and nonspecific features of multiorgan involvement.

  11. IgG-index predicts neurological morbidity in patients with infectious central nervous system diseases

    Directory of Open Access Journals (Sweden)

    Deisenhammer Florian

    2010-07-01

    Full Text Available Abstract Background Prognosis assessment of patients with infectious and neoplastic disorders of the central nervous system (CNS may still pose a challenge. In this retrospective cross-sectional study the prognostic value of basic cerebrospinal fluid (CSF parameters in patients with bacterial meningitis, viral meningoencephalitis and leptomeningeal metastases were evaluated. Methods White blood cell count, CSF/serum glucose ratio, protein, CSF/serum albumin quotient and Immunoglobulin indices for IgG, IgA and IgM were analyzed in 90 patients with bacterial meningitis, 117 patients with viral meningoencephalitis and 36 patients with leptomeningeal metastases in a total of 480 CSF samples. Results In the initial spinal tap, the IgG-index was the only independent predictor for unfavorable outcome (GOS Conclusion The present study suggests that in infectious CNS diseases an elevated IgG-Index might be an additional marker for the early identification of patients at risk for neurological morbidity.

  12. Sensitivity of the autonomic nervous system to visual and auditory affect across social and non-social domains in Williams syndrome

    Directory of Open Access Journals (Sweden)

    Anna Maaria Järvinen

    2012-09-01

    Full Text Available Although individuals with Williams syndrome (WS typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of peaks and valleys of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS responsivity, in individuals with WS contrasted with a typically developing (TD group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR reactivity, and a failure for electrodermal activity (EDA to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social-affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested.

  13. Renal denervation in an animal model of diabetes and hypertension: Impact on the autonomic nervous system and nephropathy

    Directory of Open Access Journals (Sweden)

    Machado Ubiratan F

    2011-04-01

    Full Text Available Abstract Background The effects of renal denervation on cardiovascular reflexes and markers of nephropathy in diabetic-hypertensive rats have not yet been explored. Methods Aim: To evaluate the effects of renal denervation on nephropathy development mechanisms (blood pressure, cardiovascular autonomic changes, renal GLUT2 in diabetic-hypertensive rats. Forty-one male spontaneously hypertensive rats (SHR ~250 g were injected with STZ or not; 30 days later, surgical renal denervation (RD or sham procedure was performed; 15 days later, glycemia and albuminuria (ELISA were evaluated. Catheters were implanted into the femoral artery to evaluate arterial pressure (AP and heart rate variability (spectral analysis one day later in conscious animals. Animals were killed, kidneys removed, and cortical renal GLUT2 quantified (Western blotting. Results Higher glycemia (p vs. nondiabetics (p vs. SHR. Conclusions Renal denervation in diabetic-hypertensive rats improved previously reduced heart rate variability. The GLUT2 equally overexpressed by diabetes and renal denervation may represent a maximal derangement effect of each condition.

  14. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    Science.gov (United States)

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372

  15. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease.

    Science.gov (United States)

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372

  16. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Dan-Dan Cao

    2016-05-01

    Full Text Available MicroRNAs (miRNAs are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.

  17. Disseminated Hemangioblastoma of the Central Nervous System without Von Hippel-Lindau Disease.

    Science.gov (United States)

    Chung, Sun-Yoon; Jeun, Sin-Soo; Park, Jae-Hyun

    2014-10-01

    Hemangioblastoma (HB) of the central nervous system may occur sporadically or in association with von Hippel-Lindau (VHL) disease. Disseminated HB means malignant spread of the original primary HB without local recurrence at surgically resected site. It has been rarely reported previously, and rarer especially without VHL gene mutation. We report a case of disseminated HB without VHL disease. A 59-year-old man underwent a surgery for total removal of a cerebellar HB. From five years after the surgery, multiple dissemination of HB was identified intracranially and he subsequently underwent cyberknife radiosurgery. The lesions got smaller temporarily, but they soon grew larger. Nine years after the initial surgery for cerebellar HB, he showed severe back pain. His magnetic resonance image of spine revealed intradural extramedullary mass at T6-7 level. Complete surgical removal of the mass was performed and the pathological diagnosis was identical to the previous one. He had no evidence of VHL disease. And there was no recurrence of the tumor at the site of the original operation. The exact mechanism of dissemination is unknown, but the surgeon should be cautious of tumor cell spillage during surgery and prudently consider the decision to perform ventriculo-peritoneal shunt. In addition, continuous follow-up for recurrence or dissemination is necessary for patients even who underwent complete removal of cerebellar HB. PMID:25408933

  18. Hydatid Disease of the Central Nervous System: Imaging Characteristics and General Features

    Directory of Open Access Journals (Sweden)

    "K. Abbassioun. A. Amirjamshidi. M. Sabouri Deylamie "

    2003-06-01

    Full Text Available Background; Hydatid disease primarily affects the liver and typically demonstrates characteristic imaging findings. Secondary involvement due to hematogenous dissemination may be seen in almost any locations, e.g., lung, kidney, spleen, bone and central nervous system (CNS. Objectives: To review the different aspects of hydatidosis of the CNS briefly and discuss the pathognomonic features and rare varieties of radiological findings useful in preoperative diagnosis of the disease in the human CNS. Material & Method; In a retrospective study, the records of almost 100 cases of CNS hydatidosis were analyzed. The available images were reviewed by independent observers, either a radiologist or a neurosurgeon, and reported separately. Results; In skull X-ray films, nonspecific changes denoted increased intracranial pressure, skull asymmetry and curvilinear calcification in rare instances. Computed tomography (CT and magnetic resonance imaging (MRI demonstrated the round or oval, well-defined cystic mass with an attenuation or signal intensity similar to that of cerebrospinal fluid, with no associated perifocal edema, and no contrast enhancement as the pathognomonic findings of brain hydatidosis. Similar findings were detected in hydatid cysts involving the orbit, spinal column and spinal cord with some variations. Such findings as mild perifocal edema, nonhomogenous contrast enhancement, non-uniform shapes, calcification and multiplicity or septations have been the atypical radiological findings. Conclusion; In endemic areas, familiarity with typical and atypical radiological manifestations of hydatid disease of the CNS, will be helpful in making prompt and correct preoperative diagnosis leading to a better surgical outcome.

  19. Larval nervous systems

    DEFF Research Database (Denmark)

    Nielsen, Claus

    2015-01-01

    as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords......, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence...

  20. Experimental Study of the Effect of Autonomic Nervous System on the Transmural Dispersion of Ventricular Repolarization under Acute Myocardial Ischemia in Vivo

    Institute of Scientific and Technical Information of China (English)

    张存泰; 徐大文; 李泱; 刘念; 钟江华; 王琳; 陆再英

    2002-01-01

    Summary: The effect of the autonomic nerves on the transmural dispersion of ventricular repolariza tion (TDR) under acute myocardial ischemia in intact canine was investigated. Using the monophasic action potential (MAP) recording technique, MAPs of the epicardium (Epi), midmyocardium (Mid) and endocardium (Endo) were recorded simultaneously by specially designed plunge-needle electrodes at the left ventricular free wall under acute myocardial ischemia in 12 open-chest dogs.MAPD90 and TDR among three myocardial layers as well as the incidence of the early afterdepolar ization (EAD) before autonomic nervous stimulation and during autonomic nervous stimulation were compared. It was found that 10 min after acute myocardial I~hemia, TDR was increased from 55±8.ms to 86± 15 ms during sympathetic stimulation (P<0. 01). The TDR (53± 9 ms) during parasympathetic stimulation was not significantly different from that of the control (55±8 ms) (P>0.05). The EAD was elicited in the Mid of 2 dogs (16 %) 10 min after acute myocardial ischemia,but the EAD were elicited in the Mid of 7 dogs (58 %) during sympathetic stimulation (P<0. 01).It was concluded that: (1) Sympathetic stimulation can increase the transmural dispersion of repolari zation and induce early afterdepolarizations in the Mid under acute myocardial ischemia, which pro-vide the opportunity for the ventricular arrhythmia developing; (2) Parasympathetic stimulation has no significant effect on the transmural dispersion of repolarization under myocardial ischemia.

  1. Assessment of autonomic function in untreated adult coeliac disease

    Institute of Scientific and Technical Information of China (English)

    Gian Marco Giorgetti; Antonio Tursi; Cesare Iani; Flavio Arciprete; Giovanni Brandimarte; Ambrogio Capria; Luigi Fontana

    2004-01-01

    AIM: Some recent studies showed that alteration of upper-gut motility in coeliac disease may be related to dysfunction of autonomic nervous system. The aim of our study was to investigate whether autonomic nervous system was altered in untreated and unselected coeliac disease patients.METHODS: We studied 8 untreated and consecutive coeliac disease patients (2 males and 6 females, age range 37±14.5 years). Histological evaluation of duodenal mucosa, anti-gliadin antibodies (AGA), antiendomysial antibodies (EMA) and anti-tTG antibodies and sorbitol H2 breath test were performed in all patients. Extrinsic autonomic neuropathy was assessed by the standardized measurement of cardiovascular reflexes (lying-to-standing, Valsalva manoeuvre, deep breathing, sustained handgrip). The results obtained were compared with a healthy, asymptomatic control group (6 males and 7females, age range 42.3±13.5 years). RESULTS: Coeliac patients exhibited a lower increase of PAS as a response to isometric effort, a reduction of spectral power LF as a response to clinostatic position, but without statistical significance. Also they showed a lower tolerance to orthostatic position, associated with a latent disequilibrium of sympathetic-vagal balance, a relative prevalence of parasympathetic component of the autonomic function. However, these results were not statistically significant when compared with control group (P = n.s.). And they were unchanged after 6 and 12 mo of gluten-free diet.CONCLUSION: This study failed to confirm a significant correlation between autonomic dysfunction and coeliac disease, yet we could not exclude a role of autonomic dysfunction in the genesis of systemic symptoms in some coeliacs.

  2. Influence of yearlong training on the state of cardiovascular, autonomic nervous system and physical performance in female 400 meters runners

    Directory of Open Access Journals (Sweden)

    Ye. L. Mikhalyuk

    2016-01-01

    Full Text Available Aim of the research – identification and comparison of heart rate variability, central hemodynamics and physical performance in 400 meters runners from the III category to masters of sports of international class (MSIC in the annual cycle of the training process. Materials and methods. The study included 22 female athletes, 400 meters runners between the ages of 14 and 27 years (mean age – 16.8 ± 0.67 years, running experience – from 2 to 13 years (average – 4.4 ± 0.68 years in the preparatory and competitive periods. Body length and weight of athletes were 167.9 ± 0.91 cm and 52.5 ± 0.98 kg, respectively. For the analysis of the autonomic regulation of cardiac activity mathematical methods of HRV analysis were used. Analysis and evaluation of periodic components of heart rate were carried out by means of the research of spectral parameters of autocorrelation functions. Determination of physical performance was carried out under the practical standard on the cycle ergometer. It was established that in high class sportswomen (n=12 and ones with qualifications of the II–III category (n=10 in the competitive period there were strengthening of parasympathetic effects of ANS, transformation of eukinetic circulation type (CT into hypokinetic CT and absence of sportswomen with hyperkinetic CT. In high class sportswomen there were significant increase of the relative value of physical working capacity (PWC170/kg by 12.33% and tendency to increase of index of functional state (IFS by 9.46%, in sportswomen with qualifications of II–III category PWC170/kg significantly increased by 19.26%, and IFS by 17.87%. Correlation analysis conducted in both periods in the group and separately in high class sportswomen and ones with qualifications of II–III category found the relationship indicating that the increase of PWC170/kg and IFS is associated with the prevalence of hypokinetic CT and parasympathetic ANS influences. In the competitive period

  3. Autonomic involvement in Parkinson's disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers.

    Science.gov (United States)

    Cersosimo, Maria G; Benarroch, Eduardo E

    2012-02-15

    Autonomic nervous system involvement occurs at early stages in both Parkinson's disease (PD) and incidental Lewy body disease (ILBD), and affects the sympathetic, parasympathetic, and enteric nervous systems (ENS). It has been proposed that alpha-synuclein (α-SYN) pathology in PD has a distal to proximal progression along autonomic pathways. The ENS is affected before the dorsal motor nucleus of the vagus (DMV), and distal axons of cardiac sympathetic nerves degenerate before there is loss of paravertebral sympathetic ganglion neurons. Consistent with neuropathological findings, some autonomic manifestations such as constipation or impaired cardiac uptake of norepinephrine precursors, occur at early stages of the disease even before the onset of motor symptoms. Biopsy of peripheral tissues may constitute a promising approach to detect α-SYN neuropathology in autonomic nerves and a useful early biomarker of PD.

  4. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  5. IgG4-Related Disease Presenting as Recurrent Mastoiditis With Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    April L. Barnado MD

    2013-09-01

    Full Text Available We report a case of a 43-year-old female who presented with right ear fullness and otorrhea. She was initially diagnosed with mastoiditis that was not responsive to multiple courses of antibiotics and steroids. She was then diagnosed with refractory inflammatory pseudotumor, and subsequent treatments included several mastoidectomies, further steroids, and radiation therapy. The patient went on to develop mastoiditis on the contralateral side as well as central nervous system involvement with headaches and right-sided facial paresthesias. Reexamination of the mastoid tissue revealed a significantly increased number of IgG4-positive cells, suggesting a diagnosis of IgG4-related disease. The patient improved clinically and radiographically with rituximab and was able to taper off azathioprine and prednisone. IgG4-related disease should be considered in patients with otologic symptoms and be on the differential diagnosis in patients with inflammatory pseudotumor. Staining for IgG and IgG4 is essential to ensure a prompt diagnosis and treatment.

  6. Clinical and Laboratory Findings That Differentiate Herpes Simplex Virus Central Nervous System Disease from Enteroviral Meningitis.

    Science.gov (United States)

    Sanaee, Layli; Taljaard, Monica; Karnauchow, Tim; Perry, Jeffrey J

    2016-01-01

    Background. It can be difficult for clinicians to distinguish between the relatively benign enteroviral (EnV) meningitis and potentially lethal herpes simplex virus (HSV) central nervous system (CNS) disease. Very limited evidence currently exists to guide them. Objective. This study sought to identify clinical features and cerebrospinal fluid (CSF) findings associated with HSV CNS disease. Methods. Given that PCR testing often is not immediately available, this chart review study sought to identify clinical and cerebrospinal fluid (CSF) findings associated with HSV meningitis over a 6-year period. In cases where PCR was not performed, HSV and EnV were assigned based on clinical criteria. Results. We enrolled 166 consecutive patients: 40 HSV and 126 EnV patients. HSV patients had a mean 40.4 versus 31.3 years for EnV, p = 0.005, seizures 21.1% versus 1.6% for EnV, p meningitis. HSV cases had lower CSF neutrophils, higher lymphocytes, and higher protein levels. PMID:27563314

  7. Aromatic effects of a Japanese citrus fruit—yuzu (Citrus junos Sieb. ex Tanaka)—on psychoemotional states and autonomic nervous system activity during the menstrual cycle: a single-blind randomized controlled crossover study

    OpenAIRE

    Matsumoto, Tamaki; Kimura, Tetsuya; Hayashi, Tatsuya

    2016-01-01

    Background Yuzu (Citrus junos Sieb. ex Tanaka), a yellow-golden colored citrus fruit, has traditionally been used to promote psychosomatic health in Japan. While the yuzu produces a distinctive, pleasing aroma of citrus and floral, the efficacy of its fragrance remains unknown. The present study investigated the soothing effects of the fragrance of yuzu essential oil from the perspective of autonomic nervous system activity, which plays a crucial role in the integrity of the mind-body connect...

  8. Aromatic effects of a Japanese citrus fruit-yuzu (Citrus junos Sieb. ex Tanaka)-on psychoemotional states and autonomic nervous system activity during the menstrual cycle: A single-blind randomized controlled crossover study

    OpenAIRE

    Matsumoto, Tamaki; Kimura, Tetsuya; Hayashi, Tatsuya

    2016-01-01

    Background: Yuzu (Citrus junos Sieb. ex Tanaka), a yellow-golden colored citrus fruit, has traditionally been used to promote psychosomatic health in Japan. While the yuzu produces a distinctive, pleasing aroma of citrus and floral, the efficacy of its fragrance remains unknown. The present study investigated the soothing effects of the fragrance of yuzu essential oil from the perspective of autonomic nervous system activity, which plays a crucial role in the integrity of the mind-body connec...

  9. Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2012-01-01

    Full Text Available Abstract Background To explore the relationship between enteroviruses and hospitalized children with hand, foot and mouth disease (HFMD complicated with nervous system disease. 234 hospitalized HFMD patients treated in Shengjing Hospital, Liaoning Province were analyzed retrospectively. Based on the presence and severity of nervous system disease, the patients were grouped as follows: general patients, severely ill patients, critically ill patients and fatal patients. Based on the detected pathogen, the patients were grouped as follows: Enterovirus 71 (EV71 infection, coxsackie A16 (CA16 infection and other enterovirus (OE infection. Results Of the 423 hospitalized patients, most were admitted in July 2010(129/423, 30.5%. Enteroviruses were detected in 177(41.8%. 272/423 patients were male (64.3%, and fatal patients had the greatest proportion of male patients (p p p p p p Conclusion The disease progresses faster in EV71-infected HFMD patients. These patients are more likely to suffer nervous system damage, neurogenic pulmonary edema, severe sequelae or death. CA16 and other enteroviruses can also cause HFMD with severe nervous system complications.

  10. [The role of the autonomic nervous system on malfunction of gastric motor and myoelectric activity in patients with hyperthyroidism].

    Science.gov (United States)

    Barczyński, M; Thor, P J; Słowiaczek, M; Pitala, A

    2000-01-01

    The aim of this study was to determine both the type of gastric mioelectric and emptying disorders in correlation to degree of severity of hyperthyroidism (clinical and thyroid hormones' blood levels) and ANS function estimated in HRV analysis. The study was performed on a group of 50 patients (35 with multinodular toxic goitre and 15 with Graves' disease, 45 females and 5 males, mean age 39.6 years, mean BMI 23.72) with newly diagnosed and so far untreated hyperthyroidism. The control group were 50 healthy volunteers age-, sex-, and BMI-matched to the studied group. Patients were studied twice, within newly diagnosed thyreotoxicosis and after treatment (Metizol) and reaching stable euthyroid state. The study consisted of: a) percutaneous EGG analysis (Synectics): 30 minutes before and after a test meal (ENRICH Liquid 250 ml), b) HRV analysis (ECG POSTER 2002): 10 minutes at rest and during deep breathing test, c) ultrasound measurement of gastric emptying by Bolondi method. Statistical analysis of collected data was performed. In hyperthyroid patients significant both preprandial and postprandial dysrhythmia (33.01% of bradygastria and 16.49% of tachygastria) was found. In some patients decrease of amplitude of EGG signal was marked as a result of antral hypomotility with coexisting significantly prolonged gastric emptying (110 min). Among severe hyperthyroid patients both the antral food distribution (antrum 35% bigger than in a control group) and impaired proximal stomach relaxation were evident. The degree of gastric mioelectric activity and emptying disorders was proportional to the degree of both severity of clinical manifestation of hyperthyroidism in Zgliczynski scale (from I degree to III degrees) and free thyroid hormones' blood levels (positive correlation). In HRV analysis at rest in hyperthyroid patients comparing to a control group the decrease of both the heart rate variability and a total power was found particularly in HF component resulting in

  11. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives.

    Science.gov (United States)

    Teixeira, Renata Roland; Díaz, Miguel Mauricio; Santos, Tatiane Vanessa da Silva; Bernardes, Jean Tofoles Martins; Peixoto, Leonardo Gomes; Bocanegra, Olga Lucia; Neto, Morun Bernardino; Espindola, Foued Salmen

    2015-01-01

    The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female) and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS) reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive performance. PMID:25807003

  12. THE INFLUENCE OF MONTELUKAST ON THE ACTIVITY OF THE AUTONOMIC NERVOUS SYSTEM ESTIMATED BY HEART RATE VARIABILITY IN EXPERIMENTAL PARTIAL BLADDER OUTLET OBSTRUCTION IN RATS.

    Science.gov (United States)

    Dobrek, Łukasz; Skowron, Beata; Baranowska, Agnieszka; Zurowski, Daniel; Thor, Piotr Jan

    2016-01-01

    Due to their paracrine action, leukotrienes released from the urothelium are involved in control of the bladder function. Anti-leukotriene agents appear to exert an ameliorating effect in bladder overactivity. It is unknown, whether their possible, modulatory impact on the autonomic nervous system (ANS) activity may also contribute to the potentially beneficial effect of those compounds. Therefore, our aim was to indirectly estimate the ANS function using the heart rate variability (HRV) study in rats with experimental partial bladder outlet obstruction (PBOO), reflecting human benign prostatic hyperplasia (BPH), treated with leukotriene receptor antagonist - montelukast (MLKT). Twenty rats with surgically induced PBOO lasting for 14 days, divided into two groups: group 1 (10 control subjects) and group 2 (10 MLKT-treated rats; 2 mg/rat/day) were subjected to HRV recordings, preceded by daily urine collection and a subsequent cystectomy with histopathological evaluation of collected bladders. Standard HRV time and spectral parameters were calculated. MLKT-treated animals demonstrated an increase in power of non-normalized LF (low frequency) and HF (high frequency) components with no change of the total HRV power. Moreover, an increase and decrease in normalized nLF and nHF, respectively, were assessed in those animals compared to the control. Additionally, a decrease in daily diuresis measurement was demonstrated in MLKT-treated animals. Montelukast treatment resulted in the functional ANS status re-arrangement, with sympathetic overdrive and parasympathetic withdrawal. Those changes may contribute to alleviation of bladder overactivity symptoms, independently on leukotriene receptors blockade. PMID:27476297

  13. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives.

    Directory of Open Access Journals (Sweden)

    Renata Roland Teixeira

    Full Text Available The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive

  14. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives.

    Science.gov (United States)

    Teixeira, Renata Roland; Díaz, Miguel Mauricio; Santos, Tatiane Vanessa da Silva; Bernardes, Jean Tofoles Martins; Peixoto, Leonardo Gomes; Bocanegra, Olga Lucia; Neto, Morun Bernardino; Espindola, Foued Salmen

    2015-01-01

    The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female) and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS) reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive performance.

  15. Exercise and autonomic function in health and cardiovascular disease.

    Science.gov (United States)

    Rosenwinkel, E T; Bloomfield, D M; Arwady, M A; Goldsmith, R L

    2001-08-01

    Autonomic nervous system activity contributes to the regulation of cardiac output during rest, exercise, and cardiovascular disease. Measurement of HRV has been particularly useful in assessing parasympathetic activity, while its utility for assessing sympathetic function and overall sympathovagal balance remains controversial. Studies have revealed that parasympathetic tone dominates the resting state, while exercise is associated with prompt withdrawal of vagal tone and subsequent sympathetic activation. Conversely, recovery is characterized by parasympathetic activation followed by sympathetic withdrawal, although clarification of the normal trajectory and autonomic basis of heart rate decay following exercise is needed. Abnormalities in autonomic physiology--especially increased sympathetic activity, attenuated vagal tone, and delayed heart rate recovery--have been associated with increased mortality. Exercise training is associated with a relative enhancement of vagal tone, improved heart rate recovery after exercise, and reduced morbidity in patients with cardiovascular disease. However, whether exercise training leads to reduced mortality in this population because of its ability to specifically modulate autonomic function is unknown at the present time. Although the results of a recent randomized study in patients with CHF and a meta-analysis in the setting of a recent myocardial infarction determined that exercise training leads to improved outcomes in these populations, neither study measured autonomic function. Improved autonomic function due to exercise training is a promising rationale for explaining improvements in outcome, although more research is needed to confirm this hypothesis. PMID:11570111

  16. Circadian rhythm of the autonomic nervous system in insulin resistant subjects with normoglycemia, impaired fasting glycemia, impaired glucose tolerance, type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Serra Pietro

    2006-05-01

    Full Text Available Abstract Background In type 2 diabetes mellitus both insulin resistance and hyperglycemia are considered responsible for autonomic dysfunction. The relation between the autonomic activity, impaired fasting glycemia and impaired glucose tolerance is, however, unclear. The purpose of this study was to evaluate and compare the circadian autonomic activity expressed as heart rate variability (HRV measured by 24-hours ECG recording in insulin resistant subjects (IR with characteristics as follow: IR subjects with normal oral glucose tolerance test results, IR subjects with impaired fasting glucose, IR subjects with impaired glucose tolerance and subjects with type 2 diabetes mellitus. Methods Eighty Caucasian insulin resistant subjects (IR and twenty five control subjects were recruited for the study. IR subjects were divided into four groups according to the outcoming results of oral glucose tests (OGTTs: IR subjects with normal glucose regulation (NGR, IR subjects with impaired fasting glycemia (IFG, IR subjects with impaired glucose tolerance (IGT and subjects with type 2 diabetes mellitus (DM. Autonomic nervous activity was studied by 24-hours ECG recording. Heart rate variability analysis was performed in time and frequency domains: SDNN, RMS-SD, low frequency (LF and high frequency (HF were calculated. Results The total SDNN showed statistically significant reduction in all four groups with insulin resistant subjects (IR when compared to the control group (p Conclusion The results of our study suggest that insulin resistance might cause global autonomic dysfunction which increases along with worsening glucose metabolic impairment. The analysis of sympathetic and parasympathetic components and the sympathovagal balance demonstrated an association between insulin resistance and sympathetic over-activity, especially during night. The results indicated that the sympathetic over-activity is directly correlated to the grade of insulin resistance

  17. Repetitive pertussis toxin promotes development of regulatory T cells and prevents central nervous system autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Martin S Weber

    Full Text Available Bacterial and viral infections have long been implicated in pathogenesis and progression of multiple sclerosis (MS. Incidence and severity of its animal model experimental autoimmune encephalomyelitis (EAE can be enhanced by concomitant administration of pertussis toxin (PTx, the major virulence factor of Bordetella pertussis. Its adjuvant effect at the time of immunization with myelin antigen is attributed to an unspecific activation and facilitated migration of immune cells across the blood brain barrier into the central nervous system (CNS. In order to evaluate whether recurring exposure to bacterial antigen may have a differential effect on development of CNS autoimmunity, we repetitively administered PTx prior to immunization. Mice weekly injected with PTx were largely protected from subsequent EAE induction which was reflected by a decreased proliferation and pro-inflammatory differentiation of myelin-reactive T cells. Splenocytes isolated from EAE-resistant mice predominantly produced IL-10 upon re-stimulation with PTx, while non-specific immune responses were unchanged. Longitudinal analyses revealed that repetitive exposure of mice to PTx gradually elevated serum levels for TGF-β and IL-10 which was associated with an expansion of peripheral CD4(+CD25(+FoxP3(+ regulatory T cells (Treg. Increased frequency of Treg persisted upon immunization and thereafter. Collectively, these data suggest a scenario in which repetitive PTx treatment protects mice from development of CNS autoimmune disease through upregulation of regulatory cytokines and expansion of CD4(+CD25(+FoxP3(+ Treg. Besides its therapeutic implication, this finding suggests that encounter of the immune system with microbial products may not only be part of CNS autoimmune disease pathogenesis but also of its regulation.

  18. Quantitative analysis of CT scan in degenerative diseases of the nervous system

    International Nuclear Information System (INIS)

    Quantitative analysis was made on cranial CT scans of 142 patients with spinocerebellar degeneration (SCD), 16 with dentato-rubro-pallido-luysian atrophy (DRPLA), 12 with Huntington's chorea (HC), and four with chorea-acanthocytosis (CA). One hundred sex- and age-matched persons without any neurologic signs served as controls. Regarding parameters for atrophy in the infratentorial brain tissue, there was statistically significant difference between the SCD group and the control group. This indicated remarkable atrophy in the cerebellum and brain stem in SCD. According to subgroups of SCD, both bilateral atrophy of the pons and dilation of the prepontine cistern were significantly greater in the group of sporadic olivo-ponto-cerebellar atrophy than the group of Menzel type of olivo-ponto-cerebellar atrophy. The subgroup of hereditary spastic paraplegia had the mildest atrophy of the brain on CT, although there was still a significant atrophy compared with controls. In the DRPLA group, finding in the infratentorial brain tissue were similar to those in the SCD group. The HC group was characterized by having the greatest atrophy in the lateral ventricle, especially the caudate nuclei. Similar findings were seen in the CA group, although atrophy was generally mild. The results indicate the usefulness of quantitative analysis on CT in the diagnosis of degenerative diseases of the nervous system. (Namekawa, K.)

  19. Sensorized Garments and Textrode-Enabled Measurement Instrumentation for Ambulatory Assessment of the Autonomic Nervous System Response in the ATREC Project

    Directory of Open Access Journals (Sweden)

    Cosme Llerena

    2013-07-01

    Full Text Available Advances in textile materials, technology and miniaturization of electronics for measurement instrumentation has boosted the development of wearable measurement systems. In several projects sensorized garments and non-invasive instrumentation have been integrated to assess on emotional, cognitive responses as well as physical arousal and status of mental stress through the study of the autonomous nervous system. Assessing the mental state of workers under stressful conditions is critical to identify which workers are in the proper state of mind and which are not ready to undertake a mission, which might consequently risk their own life and the lives of others. The project Assessment in Real Time of the Stress in Combatants (ATREC aims to enable real time assessment of mental stress of the Spanish Armed Forces during military activities using a wearable measurement system containing sensorized garments and textile-enabled non-invasive instrumentation. This work describes the multiparametric sensorized garments and measurement instrumentation implemented in the first phase of the project required to evaluate physiological indicators and recording candidates that can be useful for detection of mental stress. For such purpose different sensorized garments have been constructed: a textrode chest-strap system with six repositionable textrodes, a sensorized glove and an upper-arm strap. The implemented textile-enabled instrumentation contains one skin galvanometer, two temperature sensors for skin and environmental temperature and an impedance pneumographer containing a 1-channel ECG amplifier to record cardiogenic biopotentials. With such combinations of garments and non-invasive measurement devices, a multiparametric wearable measurement system has been implemented able to record the following physiological parameters: heart and respiration rate, skin galvanic response, environmental and peripheral temperature. To ensure the proper functioning of the

  20. Nervous System Problems and Dementia

    Science.gov (United States)

    ... Language: Fact Sheet 505 Nervous System Problems and Dementia WHAT ARE NERVOUS SYSTEM PROBLEMS? WHAT ARE THE ... of AIDS these were all called “HIV-Associated Dementia.” However, a broader range of problems is showing ...

  1. Clinical and electrodiagnostic findings in a cohort of 61 dogs with peripheral nervous system diseases - a retrospective study

    Directory of Open Access Journals (Sweden)

    EG Giza, JE Nicpon and MA Wrzosek

    2014-04-01

    Full Text Available The electrodiagnostic examination provides the basis for a diagnostic workup in diseases involving nerve roots, peripheral nerves, neuromuscular junctions and muscles in humans and animals. It is a functional test that enables identification, localization and characterization of the disease within the peripheral nervous system. The study was carried out retrospectively on a group of 61 dogs of different breeds referred for an electrodiagnostic examination because of local or generalized peripheral nervous system impairment. The electrodiagnostic examination consisted of electromyography, electroneurography, F-wave and repetitive nerve stimulation testing. The results of electrodiagnostic studies and their impact on the diagnosis of neuromuscular diseases of different etiology is presented in the study. The lesion was localized to peripheral nerves in 38%, nerve roots in 34%, skeletal muscles in 18% and the neuromuscular junction in 10% of cases. Electrodiagnostics enabled an objective assessment of the extent, distribution and nature of the disease in the study group. However, only when it is used in conjunction with a complete physical and neurological examination and appropriate laboratory or imaging studies, it may be helpful in determining the etiological diagnosis in patients with peripheral nervous system disease.

  2. Effect of Cervical Manipulation on Autonomic Nervous Function in Healthy Volunteers

    Institute of Scientific and Technical Information of China (English)

    崔可密; 李为民; 刘霞; Brian Budgell; 李娜; 吴根诚; 肖元春

    2006-01-01

    Objective: According to the theory of traditional Chinese medicine, the effect of cervical stimulation on autonomic nervous system activity in humans was investigated.Methods: Healthy young male volunteers were selected as subjects of the trial. The upper cervical spine (C2-5) was stimulated bilaterally with spinal manipulation, and changes in heart rate and heart rate variability were calculated as measures of effects on autonomic nervous system tone. Results: Thirty healthy young male volunteers were tested. It was found that heart rate decreased (R-R interval prolonged) significantly. SDNN and total power spectrum increased significantly, indicating an increase in sympathetic tone. Conclusion: Cervical manipulation can regulate the autonomic nervous system tone in healthy young men, and it suggests a possibility of treating cardiovascular diseases such as arrhythmia with cervical manipulation.%目的:脊柱推拿是传统医学的治疗方法之一.根据中医学脏腑经络相关理论,观察颈部脊柱推拿对自主神经系统功能的调节作用.方法:选择成年健康男性志愿者,通过对受试者进行颈部进行推拿操作,包括触压双侧颈椎横突(C2-5)、左右旋转和扳法,以心率和心率变异性的改变为指标,观察推拿前后自主神经系统紧张性的改变.结果:对30名正常成年男性志愿者的观察结果表明,推拿后心率显著降低(RR间期延长);时域分析中SDNN显著性增加,频域分析中总功率谱显著性增加.以上结果皆提示迷走性张力增高.结论:颈部脊柱推拿可调节自主神经系统张力,提示了针灸推拿方法治疗临床心血管疾病如心律失常的可能性.

  3. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    Neurodegenerative diseases are highly debilitating and often lead to severe morbidity and even death. Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease. According to the Braak staging study, the progressionof PD starts in the medulla oblongata......, which includes the cardiac centre and controls autonomic functions, and therefore autonomic dysfunction may be experienced early in the disease course. Sleep disturbances are also common non-motor complications of PD, and therefore PD patients undergo polysomnography at the Danish Center for Sleep...... Medicine to assess the sleep disturbances. The aim of this PhD dissertation was to: 1) Develop a method to investigate autonomic changes during sleep in neurodegenerative diseases, and apply this method on PD, iRBD and narcolepsy patients to evaluate the autonomic function in these diseases. 2) Validate...

  4. Your Brain and Nervous System

    Science.gov (United States)

    ... Help White House Lunch Recipes Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous System Print A A A Text Size What's in ... spinal cord and nerves — known as the nervous system — that let messages flow back and forth between ...

  5. Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development

    OpenAIRE

    Végh, Anna M D; Duim, Sjoerd N; Smits, Anke M; Robert E Poelmann; Arend D. J. ten Harkel; DeRuiter, Marco C; Marie José Goumans; Monique R M Jongbloed

    2016-01-01

    The autonomic nervous system (cANS) is essential for proper heart function, and complications such as heart failure, arrhythmias and even sudden cardiac death are associated with an altered cANS function. A changed innervation state may underlie (part of) the atrial and ventricular arrhythmias observed after myocardial infarction. In other cardiac diseases, such as congenital heart disease, autonomic dysfunction may be related to disease outcome. This is also the case after heart transplantat...

  6. ELR chemokine signaling in host defense and disease in a viral model of central nervous system disease

    Directory of Open Access Journals (Sweden)

    Martin P Hosking

    2014-06-01

    Full Text Available Intracranial infection of the neurotropic JHM strain of mouse hepatitis virus (JHMV into the central nervous system (CNS of susceptible strains of mice results in an acute encephalomyelitis, accompanied by viral replication in glial cells and robust infiltration of virus-specific T cells that contribute to host defense through cytokine secretion and cytolytic activity. Mice that survive the acute stage of disease develop an immune-mediated demyelinating diseases characterized by viral persistence in white matter tracts and a chronic neuroinflammatory response dominated by T cells and macrophages. Early following JHMV infection, there is a dynamic expression of chemokines and chemokine receptors that contribute to neuroinflammation by regulating innate and adaptive immune responses as well influencing glial biology. In response to JHMV infection, we have shown that signaling through the chemokine receptor CXCR2 contributes to host defense through recruitment of polymorphonuclear cells (PMNs to the CNS that enhance permeability of the blood-brain-barrier (BBB and facilitating entry of virus-specific T cells into the parenchyma. Further, CXCR2 promotes the protection of oligodendroglia from cytokine-induced apoptosis and restricts the severity of demyelination. This review covers aspects related to the role of CXCR2 in host defense and disease in response to JHMV infection.

  7. Genetic heterogeneity of hereditary diseases of nervous system: problems and solutions

    Directory of Open Access Journals (Sweden)

    E. L. Dadali

    2012-01-01

    Full Text Available A hereditary disorders of the nervous system is one of the largest group of human monogenic disorders with high-grade genetic heterogeneity and clinical polymorphism. The main types of genetic heterogeneity and their possible causes are explained by giving typical examples of different nosological forms. The basic problems and feasible solution of medico-genetic counseling and education of high-risk families in case of genetic heterogeneity are discussed.

  8. Genetic heterogeneity of hereditary diseases of nervous system: problems and solutions

    OpenAIRE

    E. L. Dadali; Ginter, E. K.; A. B. Polyakov

    2012-01-01

    A hereditary disorders of the nervous system is one of the largest group of human monogenic disorders with high-grade genetic heterogeneity and clinical polymorphism. The main types of genetic heterogeneity and their possible causes are explained by giving typical examples of different nosological forms. The basic problems and feasible solution of medico-genetic counseling and education of high-risk families in case of genetic heterogeneity are discussed.

  9. Central Nervous System Disease in Hematological Malignancies: Historical Perspective and Practical Applications

    OpenAIRE

    Pui, Ching-Hon; Thiel, Eckhard

    2009-01-01

    Acute lymphoblastic leukemia (ALL) 5-year survival rates are approaching 90% in children and 50% in adults who are receiving contemporary risk-directed treatment protocols. Current efforts focus not only on further improving cure rate but also on patient quality of life. Hence, all protocols decrease or limit the use of cranial irradiation as central nervous system (CNS)-directed therapy, even in patients with high-risk presenting features, such as the presence of leukemia cells in the cerebr...

  10. Disease mechanisms in hereditary sensory and autonomic neuropathies.

    Science.gov (United States)

    Verpoorten, Nathalie; De Jonghe, Peter; Timmerman, Vincent

    2006-02-01

    Inherited peripheral neuropathies are common monogenically inherited diseases of the peripheral nervous system. In the most common variant, i.e., the hereditary motor and sensory neuropathies, both motor and sensory nerves are affected. In contrast, sensory abnormalities predominate or are exclusively present in hereditary sensory and autonomic neuropathies (HSAN). HSAN are clinically and genetically heterogeneous and are subdivided according to mode of inheritance, age of onset and clinical evolution. In recent years, 6 disease-causing genes have been identified for autosomal dominant and recessive HSAN. However, vesicular transport and axonal trafficking seem important common pathways leading to degeneration of sensory and autonomic neurons. This review discusses the HSAN-related genes and their biological role in the disease mechanisms leading to HSAN.

  11. Aspectos neurológicos da doença de chagas: sistema nervoso central Neurological aspects of Chagas' disease: central nervous system

    Directory of Open Access Journals (Sweden)

    Sylvio de Vergueiro Forjaz

    1967-09-01

    Full Text Available The lesions of the nervous system in the Trypanosomiasis Cruzi are quite frequent and are not only limited to the encephalo-spinal-axis. Actually, they are much more common in the peripheral representations of the autonomic nervous system, resulting in the so-called enteromegalies (mega-esophagus, megacolon, etc. so frequent in Brazil. However, only the clinical manifestations due to the encephalic and spinal lesions have been included in the neurological aspects of Chagas' disease (as formerly contended for by Carlos Chagas. In the acute phase of the central nervous system infestation, the Trypanosoma cruzi,as leishmanias, is found in cellular elements of the neuroglia (microglia, astroglia and may be isolated from the peripheral blood and cerebrospinal fluid (inoculation in sensitive animals. The corresponding clinical manifestations are the severe difuse meningo-encephalo-myelitis with a high degree of lethality and also signs of infection, hepatomegaly and splenomegaly. The infants from endemic areas are much more compromised. The clinical-pathologic as well as experimental confirmations on that acute phase of the disease are numerous and irrefutable. In the chronic phase of the disease, the neurological manifestations are not very clear. Early in 1909, Chagas, impressed with the great number of cases of infantile encephalopathy found in infested regions, imputed to the T. cruzithe etiology of such cases of encephalopathy and considered them as pertaining to a chronic phase of the disease. This has not been confirmed by other investigations, and even if the etiologic agent were the T. cruzithe clinical manifestations have no evolutive character and seem more sequelae than symptoms of a real chronic nervous phase. Even experimentally it has not been possible to demonstrate the presence of parasites in the nervous system of infested animals after clearing of the signs of the acute phase. In patients with chronic Chagas' disease with lesions in

  12. A rare case of mixed connective tissue disease presenting with central nervous system glioma, vasculitis and polymyositis

    Directory of Open Access Journals (Sweden)

    Rushabh Parikh

    2015-12-01

    Full Text Available Mixed connective tissue disease (MCTD was first recognized by Sharp and Colleagues in 1972 among a group of patients with overlapping clinical features of systemic lupus erythematosis (SLE, scleroderma and myositis, with the presence of distinctive antibodies against, what now is known to be U1-ribonucleoprotein (RNP. We report an unusual case of a 23-year old female with MCTD characterized by the coexistence of signs, symptoms and immunological features of 3 defined autoimmune diseases SLE, systemic sclerosis (SSc, polymyositis (PM and an unusual presence of central nervous system (CNS Glioma. [Int J Res Med Sci 2015; 3(12.000: 3917-3920

  13. An overview of travel-associated central nervous system infectious diseases:risk assessment, general considerations and future directions

    Institute of Scientific and Technical Information of China (English)

    Morteza Izadi; Arman Ishaqi; Mohammad Ali Ishaqi; Nematollah Jonaidi Jafari; Fatemeh Rahamaty; Abdolali Banki

    2014-01-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors.

  14. An overview of travel-associated central nervous system infectious diseases:risk assessment,general considerations and future directions

    Institute of Scientific and Technical Information of China (English)

    Morteza; Izadi; Annan; Is’haqi; Mohammad; Ali; Is’haqi; Nematollah; Jonaidi; Jafari; Fatemeh; Rahamaty; Abdolali; Banki

    2014-01-01

    Nervous system infections are among the most important diseases in travellers.Healthy travellers might be exposed to infectious agents of central nervous system,which may require in-patient care.Progressive course is not uncommon in this family of disorders and requires swift diagnosis.An overview of the available evidence in the field is.therefore,Urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research.In November 2013,data were collected from PubMed,Scopus,and Web of knowledge(1980 to2013) including books,reviews,and peer-reviewed literature,Works pertained to pre-travel care,interventions,vaccinations related neurological infections were retrieved.Here we provide information on pre-travel care,vaccination,chronic nervous system disorders,and post-travel complications.Recommendations with regard to knowledge gaps,and state-of-the-art research are made.Given an increasing number of international travellers,novel dynamic ways are available for physicians to monitor spread of central nervous system infections.Newer research has made great progresses in developing newer medications,detecting the spread of infections and the public awareness.Despite an ongoing scientific discussion in the field of travel medicine,further research is required for vaccine development,state-of-the-art laboratory tests,and genetic engineering of vectors.

  15. Investigation of Autonomic Nervous System Function and Influencing Factors of Employees in Changchun%长春市企业员工自主神经系统功能状况及影响因素调查

    Institute of Scientific and Technical Information of China (English)

    赵璐; 张秀敏; 刘红箭; 李晶华; 吴方园; 刘妍妤; 刘莹圆; 王云

    2016-01-01

    目的:通过测量长春市企业员工的心率变异性,了解其自主神经系统功能状况,分析相关影响因素,为改善企业员工自主神经系统功能提供参考依据。方法:采用整群抽样的方法,以自填式调查问卷的形式收集企业员工的基本信息,采用SUN-8800健康检测系统对长春市两家企业427名员工进行心率变异性测定。结果:调查人群自主神经系统活性偏低的检出率为75.2%,调节功能异常的检出率为63.0%。多元线性回归分析显示,性别、年龄、企业性质、BMI指数、吸烟、饮酒对该人群的心率变异性频域指标的影响具有统计学意义(P<0.05)。结论:长春市企业员工中普遍存在自主神经系统活性减低和调节功能失衡的现象,男性、大龄、超重与肥胖、吸烟、饮酒是企业员工自主神经系统功能的危险因素,其中,超重与肥胖、吸烟、饮酒是应进行干预的重要危险因素。%Objective: To know the status of autonomic nervous system function, analyze influencing factors, provide scientific basis for making policy of autonomic nervous system function improvement of employees in Changchun by measuring their heart rate variability. Methods:Questionnaire and SUN - 8800 health detecting system were conducted among 427 employees of 2 enterprises to gather essential information and determine heart rate variability through cluster sampling method. Results:There were 75. 2% of the survey population with lower functional ac⁃tiveness of the autonomic nervous system and 63. 0% with unbalanced regulation of autonomic nervous system. The results of multiple linear re⁃gression analysis indicated that there were statistical differences(P<0. 05) in frequency-domain indicators of heart rate variability because of different sex, age, type of enterprise, BMI index, smoking and drinking. Conclusion: The autonomic nervous system function of employees in

  16. Autonomous linear lossless systems

    OpenAIRE

    Rao, Shodhan; Rapisarda, Paolo

    2008-01-01

    We define a lossless autonomous system as one having a quadratic differential form associated with it called an energy function, which is positive and which is conserved. We define an oscillatory system as one which has all its trajectories bounded on the entire time axis. In this paper, we show that an autonomous system is lossless if and only if it is oscillatory. Next we discuss a few properties of energy functions of autonomous lossless systems and a suitable way of splitting a given ener...

  17. Highly Autonomous Systems Workshop

    Science.gov (United States)

    Doyle, R.; Rasmussen, R.; Man, G.; Patel, K.

    1998-01-01

    It is our aim by launching a series of workshops on the topic of highly autonomous systems to reach out to the larger community interested in technology development for remotely deployed systems, particularly those for exploration.

  18. Plasticity and Neural Stem Cells in the Enteric Nervous System

    NARCIS (Netherlands)

    Schaefer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-01-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to microenv

  19. The therapeutic potential of sigma (σ) receptors for the treatment of central nervous system diseases: evaluation of the evidence.

    Science.gov (United States)

    Banister, Samuel D; Kassiou, Michael

    2012-01-01

    Since their proposal in 1976, sigma (σ) receptors have been increasingly implicated in the pathophysiology of virtually all major central nervous system (CNS) disorders, including anxiety, depression, schizophrenia, and drug addiction. Due to their involvement in motor function and higher cognitive function,σ receptors have also been implicated in movement disorders (such as Parkinson's disease) and memory deficits (including Alzheimer's disease). In most cases the precise mechanism(s) linking σ receptors to CNS disease are unknown or yet to be fully elucidated. However, many σ ligands have shown promise in pharmacological studies and animal models of the aforementioned diseases, and some have entered clinical trials. This review will assess the validity of receptors as a target for various CNS diseases based on evidence from animal models of human diseases, preclinical studies in humans, and full clinical trials. PMID:22288410

  20. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential

  1. Management Activities on the Reduction of Ecological-related Diseases of the Nervous System of Population in Ust-Kamenogorsk

    Directory of Open Access Journals (Sweden)

    Sharbanu Battakova

    2014-09-01

    Full Text Available The article features the research results of psychological status and the nervous system. The study was conducted on the basis of multivariate analysis of morbidity rates of the nervous system with the aim of developing of administrative actions towards the population of Ust-Kamenogorsk. The correlation analysis has shown that the of coefficients of correlation coincide with the analysis data of morbidity rates of the nervous system showing that that morbidity rates are mostly influenced by high concentration of harmful pollutants. Besides, the correlation analysis has allowed identifying the levels of pollution in the atmosphere of the city above which the interrelation between fluctuations of morbidity rates is shown and below which correlation has been not observed. From the provided data we can see that the main sources of harmful substances entering our bodies are polluted atmospheric air and soils. The study revealed that with the growth of anthropogenesis loading by toxic metals, the morbidity rates of encephalopathies of unspecified genesis and the cerebrovascular diseases increase. Changes in psycho-emotional sphere have been revealed. The novelty of research is the development of administrative procedures aimed at reduction of the disease prevalence for people living in Ust-Kamenogorsk.

  2. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun’ichi; Teramukai, Satoshi

    2015-01-01

    Background The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illnes...

  3. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun'ichi; Teramukai, Satoshi

    2015-01-01

    Background: The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illne...

  4. Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease

    OpenAIRE

    Fuess, Lauren E.; Eisenlord, Morgan E.; Collin J. Closek; Tracy, Allison M.; Ruth Mauntz; Sarah Gignoux-Wolfsohn; Moritsch, Monica M.; Reyn Yoshioka; Burge, Colleen A.; Drew Harvell, C; Friedman, Carolyn S.; Ian Hewson; Hershberger, Paul K.; Roberts, Steven B.

    2015-01-01

    Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisti...

  5. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress. PMID:26318888

  6. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease.

    Science.gov (United States)

    Hering, Dagmara; Lachowska, Kamila; Schlaich, Markus

    2015-10-01

    A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress.

  7. Psychoneuroimmunology--cross-talk between the immune and nervous systems.

    Science.gov (United States)

    Ziemssen, Tjalf; Kern, Simone

    2007-05-01

    Psychoneuroimmunology is a relatively new field of study that investigates interactions between behaviour and the immune system, mediated by the endocrine and nervous systems. The immune and central nervous system (CNS) maintain extensive communication. On the one hand, the brain modulates the immune system by hardwiring sympathetic and parasympathetic nerves (autonomic nervous system) to lymphoid organs. On the other hand, neuroendocrine hormones such as corticotrophin-releasing hormone or substance P regulate cytokine balance. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and immune system-mediated disease.

  8. Antibodies in Cerebrospinal Fluid of Some Alzheimer Disease Patients Recognize Cholinergic Neurons in the Rat Central Nervous System

    Science.gov (United States)

    McRae-Degueurce, Amanda; Booj, Serney; Haglid, Kenneth; Rosengren, Lars; Karlsson, Jan Erik; Karlsson, Ingvar; Wallin, Anders; Svennerholm, Lars; Gottfries, Carl-Gerhard; Dahlstrom, Annica

    1987-12-01

    The etiology of Alzheimer disease is unclear. However, immunological aberrations have been suggested to be critical factors in the pathogenesis of this neurodegenerative disease. This study was carried out to investigate if cerebrospinal fluid (CSF) from Alzheimer disease patients contains antibodies that recognize specific neuronal populations in the rat central nervous system. The results indicate that in a subgroup of patients this is indeed the case. The antibodies reported in this study have the following properties: (i) they recognize neuronal populations and components in the medial septum and spinal motor neurons in rats perfused with a mixture that fixes small neurotransmitter molecules; (ii) adsorption of the patient CSF with staphylococcal protein A-Sepharose and using a polyclonal antiserum against human IgG3 indicates that the immunocytochemical reaction in these brain regions is mainly due to the subclass IgG3; and (iii) the CSF immunocytochemical reaction is blocked by preincubation of the sections with a rabbit anti-acetylcholine antiserum. These results provide evidence that antibodies in the CSF of some, but not all, Alzheimer disease patients recognize acetylcholine-like epitopes in cholinergic neurons in the rat central nervous system.

  9. The oral cavity as a guide for the application of low level laser energy and its direct effect on the autonomic nervous system providing true energy healing for all health practitioners

    Science.gov (United States)

    Yolin, Herbert S.

    2008-03-01

    This manuscript is intended to demonstrate the important role that dentistry plays in regulating the balance of the Autonomic Nervous System (ANS) through the proprioceptive feedback of the posterior teeth to the brain. An old paradigm called Dental Distress Syndrome, relatively unknown in dentistry today, has at its core, the importance of the height of the posterior (back) teeth and its impact on total body health which is greatly aided by low level laser energy. The rationale behind the belief that the alteration of the posterior teeth affects the ANS begins with basic concepts in embryology. The functioning of the ANS will support the fact of Dental Distress Syndrome. Health practitioners of all disciplines can learn to recognize Dental Distress Syndrome and initiate non-invasive treatment and team with a trained dentist to enhance the wellness and health of the patient if they so desire. A synopsis of my oral paper presented to the Academy of Laser Dentistry demonstrating temporary balancing of the Autonomic Nervous System with three minutes of cold laser energy, as well as my rationale as to why results vary with different cold lasers will be discussed. Clinical case studies will be presented.

  10. The nervous systems of cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Westfall, J A

    1995-01-01

    Cnidarians have simple nervous systems and it was probably within this group or a closely-related ancestor that nervous systems first evolved. The basic plan of the cnidarian nervous system is that of a nerve net which, at some locations, has condensed to form nerve plexuses, or circular...... specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions...... that the peptides are located in neuronal dense-cored vesicles associated with both synaptic and non-synaptic release sites. All these data indicate that evolutionarily "old" nervous systems use peptides as transmitters. We have also investigated the biosynthesis of the cnidarian neuropeptides. These neuropeptides...

  11. MRI of central nervous system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, M.; Oikawa, A.; Matoba, A.

    1987-05-01

    MRI was very useful in the evaluation of congenital anomalies of central nervous system as well as other nervous system disease with three-dimensional spatial resolution. We had experienced MRI of central nervous system anomalies, demonstrated characterisitic findings in each anomaly. MRI is useful to observe the coronal, horizontal and sagittal images of the brain and spinal cord in order to discuss the etiological mechanisms of spinal dysraphysm and its associated anomalies. In case of spina bifida cystica MRI was available to decide operative indication for radical operation and tetherd cord developed from postoperative scar or accompanied intraspinal lesions.

  12. MRI of central nervous system anomalies

    International Nuclear Information System (INIS)

    MRI was very useful in the evaluation of congenital anomalies of central nervous system as well as other nervous system disease with three-dimensional spatial resolution. We had experienced MRI of central nervous system anomalies, demonstrated characterisitic findings in each anomaly. MRI is useful to observe the coronal, horizontal and sagittal images of the brain and spinal cord in order to discuss the etiological mechanisms of spinal dysraphysm and its associated anomalies. In case of spina bifida cystica MRI was available to decide operative indication for radical operation and tetherd cord developed from postoperative scar or accompanied intraspinal lesions. (author)

  13. Architecture of autonomous systems

    Science.gov (United States)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  14. Central nervous system tumors

    International Nuclear Information System (INIS)

    Central nervous system (CNS) tumors are relatively common in veterinary medicine, with most diagnoses occurring in the canine and feline species. Numerous tumor types from various cells or origins have been identified with the most common tumors being meningiomas and glial cell tumors. Radiation therapy is often used as an aid to control the clinical signs associated with these neoplasms. In general, these tumors have a very low metastatic potential, such that local control offers substantial benefit. Experience in veterinary radiation oncology would indicate that many patients benefit from radiation treatment. Current practice indicates the need for computed tomography or magnetic resonance imaging studies. These highly beneficial studies are used for diagnosis, treatment planning, and to monitor treatment response. Improvements in treatment planning and radiation delivered to the tumor, while sparing the normal tissues, should improve local control and decrease potential radiation related problems to the CNS. When possible, multiple fractions of 3 Gy or less should be used. The tolerance dose to the normal tissue with this fractionation schedule is 50 to 55 Gy. The most common and serious complications of radiation for CNS tumors is delayed radiation myelopathy and necrosis. Medical management of the patient during radiation therapy requires careful attention to anesthetic protocols, and medications to reduce intracranial pressure that is often elevated in these patients. Canine brain tumors have served as an experimental model to test numerous new treatments. Increased availability of advanced imaging modalities has spawned increased detection of these neoplasms. Early detection of these tumors with appropriate aggressive therapy should prove beneficial to many patients

  15. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Directory of Open Access Journals (Sweden)

    Moulton Alan

    2009-10-01

    Full Text Available Abstract Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS, screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1 the thoracospinal concept for right thoracic AIS in girls; (2 the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3 white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4 central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively, with asymmetry as an adverse response (hormesis; this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept. In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic

  16. Circadian profile of cardiac autonomic nervous modulation in healthy subjects

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Richardt, Gert; Potratz, Jürgen;

    2003-01-01

    UNLABELLED: Circadian Profile of Heart Rate Variability. INTRODUCTION: Although heart rate variability (HRV) has been established as a tool to study cardiac autonomic activity, almost no data are available on the circadian patterns of HRV in healthy subjects aged 20 to 70 years. METHODS AND RESULTS......: We investigated 166 healthy volunteers (81 women and 85 men; age 42 +/- 15 years, range 20-70) without evidence of cardiac disease. Time-domain HRV parameters were determined from 24-hour Holter monitoring and calculated as hourly mean values and mean 24-hour values. All volunteers were fully mobile...

  17. Sonic hedgehog signaling during nervous system development

    Institute of Scientific and Technical Information of China (English)

    Qin Yang; Peng Xie

    2008-01-01

    The Hedgehog signaling pathway plays a key role in embryonic development and organ formation.Sonic hedgehog signaling participates in nervous system development,regulates proliferation and differentiation of neural stem cells,controls growth and targeting of axons,and contributes to specialization of oligodendrocytes.For further studies of the Sonic hedgehog signaling pathway and for the development of new drugs in the treatment of nervous system diseases,it is beneficial to understand these mechanisms.

  18. 高血压前期与自主神经功能改变关系分析%The Relationship between prehypertension and the Changes of Autonomic Nervous System Function

    Institute of Scientific and Technical Information of China (English)

    郭琳; 聂连涛; 李中健

    2014-01-01

    目的:探讨高血压前期( prehypertension,PHT)与自主神经功能改变的关系,为预防高血压发生提供依据。方法根据纳入、排除标准,选取2013年1月—2014年3月来河南大学淮河医院就诊的患者520例。根据《中国高血压指南》(2010)中PHT的诊断标准,将520例患者分为对照组(非PHT组)和研究组( PHT组)。其中,对照组200例,研究组320例,根据收缩压和舒张压升高情况,将研究组分为3个亚组。应用美国DMS公司12.0TOP版动态心电图分析软件,监测心率减速力( deceleration capacity of rate,DC)和心率变异性( heart rate variability,HRV)两个自主神经功能指标,定性、定量分析两组自主神经功能改变情况。结果研究组DC低于对照组,差异有统计学意义(P0.05)。结论 PHT的发生可能与自主神经功能失调有关。DC和HRV可以定性、定量了解PHT人群自主神经功能改变情况,及时调整自主神经功能有助于预防高血压的发生。%Objective To explore the relationship between prehypertension and the changes of autonomic nervous sys-tem function,and to provide evidence for the prevention of hypertension. Methods By random sampling method,520 patients visiting in Huaihe Hospital of Henan University from January 2013 to March 2014 were selected and divided into control group (non PHT group,n=200)and research group(PHT group,n=320)according to the diagnostic criteria for PHT mentioned in the" Chinese Hypertension Guide",the latter being subdivided into three groups according to the rise of systolic and diastolic blood pressure. Two autonomic nervous function indexes,the deceleration capacity of rate( deceleration capacity of rate,DC) and heart rate variability( heart rate variability,HRV)were detected to compare the two groups' autonomic function change qualitatively and quantitatively,by DMS 12. 0 TOP version,a kind of dynamic ECG analysis software

  19. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    Science.gov (United States)

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  20. Central Nervous System Disease in Hematological Malignancies: Historical Perspective and Practical Applications

    Science.gov (United States)

    Pui, Ching-Hon; Thiel, Eckhard

    2009-01-01

    Acute lymphoblastic leukemia (ALL) 5-year survival rates are approaching 90% in children and 50% in adults who are receiving contemporary risk-directed treatment protocols. Current efforts focus not only on further improving cure rate but also on patient quality of life. Hence, all protocols decrease or limit the use of cranial irradiation as central nervous system (CNS)-directed therapy, even in patients with high-risk presenting features, such as the presence of leukemia cells in the cerebrospinal fluid (even resulting from traumatic lumbar puncture), adverse genetic features, T-cell immunophenotype, and a large leukemia-cell burden. Current strategies for CNS-directed therapy involve effective systemic chemotherapy (eg, dexamethasone, high-dose methotrexate, intensive asparaginase, ifosfamide) and early intensification and optimization of intrathecal therapy. Options under investigation for the treatment of relapsed or refractory CNS leukemia in ALL patients include thiotepa and intrathecal liposomal cytarabine. CNS involvement in non-Hodgkin’s lymphoma (NHL) is associated with young age, advanced stage, number of extranodal sites, elevated lactate dehydrogenase, and International Prognostic Index score. Refractory CNS lymphoma in patients with NHL carries a poor prognosis, with a median survival of 2 to 6 months; the most promising treatment, autologous stem cell transplant, can extend median survival from 10 to 26 months. CNS prophylaxis is required during the initial treatment of NHL subtypes that carry a high risk of CNS relapse, such as B-cell ALL, Burkitt’s lymphoma, and lymphoblastic lymphoma. The use of CNS prophylaxis in the treatment of diffuse large B-cell lymphoma is controversial because of the low risk of CNS relapse (~5%) in this population. In this article, we review current and past practice of intrathecal therapy in ALL and NHL and the risk-models that aim to identify predictors of CNS relapse in NHL. PMID:19660680

  1. Is reduced myocardial sympathetic innervation associated with clinical symptoms of autonomic impairment in idiopathic Parkinson's disease?

    Science.gov (United States)

    Guidez, Daniel; Behnke, Stefanie; Halmer, Ramona; Dillmann, Ulrich; Faßbender, Klaus; Kirsch, Carl M; Hellwig, Dirk; Spiegel, Jörg

    2014-01-01

    Patients with idiopathic Parkinson's disease (IPD) have a reduced myocardial MIBG uptake in MIBG scintigraphy, indicating myocardial sympathetic denervation. We were interested whether this myocardial sympathetic denervation coincides with clinical symptoms of autonomic impairment in IPD patients. We performed MIBG scintigraphy, the SCOPA-AUT scale, a standardized medical history (developed in our clinic) and autonomic nervous system testing in 47 IPD patients (21 female, 26 male patients). We correlated myocardial MIBG uptake with the results of the SCOPA-AUT scale, the standardized medical history and the autonomic nervous system testing through the use of Spearman's correlation. Myocardial MIBG uptake correlated significantly (p autonomic nervous system testing (all patients: sum score, Ewing orthostasis test). Remarkably, we found more significant correlations in male than in female patients. Reduced myocardial sympathetic innervation-as revealed by MIBG scintigraphy-is associated with clinical symptoms of autonomic impairment. This association is more pronounced in male than in female patients. The cause for this gender-specific phenomenon is unclear.

  2. Hemodynamic and autonomic nervous system responses to mixed meal ingestion in healthy young and old subjects and dysautonomic patients with postprandial hypotension

    Science.gov (United States)

    Lipsitz, L. A.; Ryan, S. M.; Parker, J. A.; Freeman, R.; Wei, J. Y.; Goldberger, A. L.

    1993-01-01

    BACKGROUND. Although postprandial hypotension is a common cause of falls and syncope in elderly persons and in patients with autonomic insufficiency, the pathophysiology of this disorder remains unknown. METHODS AND RESULTS. We examined the hemodynamic, splanchnic blood pool, plasma norepinephrine (NE), and heart rate (HR) power spectra responses to a standardized 400-kcal mixed meal in 11 healthy young (age, 26 +/- 5 years) and nine healthy elderly (age, 80 +/- 5 years) subjects and 10 dysautonomic patients with symptomatic postprandial hypotension (age, 65 +/- 16 years). Cardiac and splanchnic blood pools were determined noninvasively by radionuclide scans, and forearm vascular resistance was determined using venous occlusion plethysmography. In healthy young and old subjects, splanchnic blood volume increased, but supine blood pressure remained unchanged after the meal. In both groups, HR increased and systemic vascular resistance remained stable. Forearm vascular resistance and cardiac index increased after the meal in elderly subjects, whereas these responses were highly variable and of smaller magnitude in the young. Young subjects demonstrated postprandial increases in low-frequency HR spectral power, representing cardiac sympatho-excitation, but plasma NE remained unchanged. In elderly subjects, plasma NE increased after the meal but without changes in the HR power spectrum. Patients with dysautonomia had a large postprandial decline in blood pressure associated with no change in forearm vascular resistance, a fall in systemic vascular resistance, and reduction in left ventricular end diastolic volume index. HR increased in these patients but without changes in plasma NE or the HR power spectrum. CONCLUSIONS. 1) In healthy elderly subjects, the maintenance of blood pressure homeostasis after food ingestion is associated with an increase in HR, forearm vascular resistance, cardiac index, and plasma NE. In both young and old, systemic vascular resistance is

  3. Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases.

    Science.gov (United States)

    Jin, Xue-Feng; Wu, Ning; Wang, Lv; Li, Jin

    2013-07-01

    As a class of important endogenous small noncoding RNAs that regulate gene expression at the posttranscriptional level, microRNAs (miRNAs) play a critical role in many physiological and pathological processes. It is believed that miRNAs contribute to the development, differentiation, and synaptic plasticity of the neurons, and their dysregulation has been linked to a series of diseases. MiRNAs exist in the tissues and as circulating miRNAs in several body fluids, including plasma or serum, cerebrospinal fluid, urine, and saliva. There are significant differences between the circulating miRNA expression profiles of healthy individuals and those of patients. Consequently, circulating miRNAs are likely to become a novel class of noninvasive and sensitive biomarkers. Although little is known about the origin and functions of circulating miRNAs at present, their roles in the clinical diagnosis and prognosis of diseases make them attractive markers, particularly for tumors and cardiovascular diseases. Until now, however, there have been limited data regarding the roles of circulating miRNAs in central nervous system (CNS) diseases. This review focuses on the characteristics of circulating miRNAs and their values as potential biomarkers in CNS diseases, particularly in Alzheimer's disease, Huntington's disease, multiple sclerosis, schizophrenia, and bipolar disorder. PMID:23633081

  4. Hypersensitivity Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen;

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals...

  5. Primary central nervous system lymphomas and related diseases: Pathological characteristics and discussion of the differential diagnosis.

    Science.gov (United States)

    Sugita, Yasuo; Muta, Hiroko; Ohshima, Koichi; Morioka, Motohiro; Tsukamoto, Yoshihiro; Takahashi, Hitoshi; Kakita, Akiyoshi

    2016-08-01

    Although primary diffuse large B-cell lymphomas of the CNS are designated as primary CNS lymphomas according to the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue in 2008, a variety of other lymphomas (Burkitt lymphomas, EBV-positive diffuse large B-cell lymphoma of the elderly) and related diseases (lymphomatoid granulomatosis) that are also found in the CNS have been spotlighted in recent years. The histopathology of primary CNS Burkitt lymphomas mimics that of primary diffuse large B-cell lymphomas of the CNS after steroid administration. Therefore, for correct diagnosis of the involved lymphoma, comprehensive fluorescent in situ hybridization analysis for c-MYC and BCL2 is recommended in all primary CNS lymphoma cases with aggressive clinical course, multifocal involvement of the CNS, and a high proliferation index. The pathological characteristics of primary CNS EBV-positive diffuse large B-cell lymphoma of the elderly have similarities with those of the latency phenotype III, EBV lymphoproliferative disorders that arise in the setting of immunodeficiency. These age-related lymphomas usually occur in elderly immunocompetent patients, and the incidence of this disease was estimated to range from 4.0% to 13.6% of all primary CNS lymphomas. Shorter overall survival has been reported for patients with this disease. Lymphomatoid granulomatosis (LYG) is a systemic, EBV-driven, angiocentric and angiodestructive lymphoproliferative disorder. Primary LYG that shows distinct clinicopathological features compared with systemic LYG was recently reported. Finally, this review focuses on the relationship between primary CNS lymphomas and demyelinating diseases, and the concomitant use of intraoperative cytology and frozen sections that are helpful in rapid intraoperative diagnosis. PMID:26607855

  6. Differentiation of Internet addiction risk level based on autonomic nervous responses: the Internet-addiction hypothesis of autonomic activity.

    Science.gov (United States)

    Lu, Dong Wei; Wang, Jenn Wu; Huang, Andrew Chih Wei

    2010-08-01

    How high-risk Internet addiction (IA) abusers respond to different autonomic nervous activities compared with low-risk subjects may be a critical research goal with prevention and treatment implications. The aim of the present study was to address this issue by observing differences between high- and low-risk IA abusers in four physiological assessments when surfing the Internet: blood volume pulse (BVP), skin conductance (SC), peripheral temperature (PTEMP), and respiratory response (RESPR). Forty-two male and ten female participants aged 18-24 years were screened with the Chen Internet Addiction Scale (CIAS, 2003), and then separated into high- and low-risk IA groups. Using psychophysiology equipment, participants encountered a 3-minute adaptation period followed by a 6-minute testing period for surfing the Internet on baseline and testing phases. The present results indicate that: (a) the CIAS scores were positively and negatively correlated with the RESPR and the PTEMP; (b) the PTEMP and RESPR of high-risk IA abusers were respectively weaker and stronger than those of low-risk IA abusers; the BVP and SC of high-risk IA abusers were respectively augmented and decreased relative to low-risk IA abusers. Thus we suggest that four autonomic responses may be differentially sensitive to abusers' potency in terms of the IA hypothesis of autonomic activity. The stronger BVP and RESPR responses and the weaker PTEMP reactions of the high-risk IA abusers indicate the sympathetic nervous system was heavily activated in these individuals. However, SC activates parasympathetic responses at the same time in the high-risk IA abusers. The paradoxical responses between the sympathetic and parasympathetic actions are addressed in the discussion.

  7. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  8. [Various aspects of IL-1 biological activity. II. IL-1 beta in diseases and the Central Nervous System].

    Science.gov (United States)

    Wieczorek, Marek

    2009-01-01

    Precise understanding of the mechanisms of reciprocal relations between the nervous and the immune systems, has been the subject of numerous studies for the recent two decades. These mechanisms are significant, particularly at the stage of early response to bacterial, parasite, or viral infections. They are also essential from the medical point of view, as they may help in the development of the new methods of treatment of infectious diseases, and also may provide better methods to neutralize possible side effects of the therapy. As it is commonly understood, both forms of IL-1 (alpha and beta), play an important role as a signaling molecules in these mechanisms. Regardless of the route of administration, they cause to the activation of the brain neurotransmitters, and the hypothalamo-pituitary-adrenal-axis (HPA). The HPA response induced by activity of the immune system is a normal, physiological phenomenon with essential meaning. It gives the negative feedback where glucocorticoids, released from the adrenal cortex, inhibit activity of the immune system, and by this reduce the probability of the over-stimulation of this system and its self-aggression. Therefore, precise recognition of the mechanism which is the indicator of influence of cytokines on the brain and also leads to initiate that response has a significant scientific and practical meaning. Also, the two mechanisms are probably the most important, and under appropriate conditions could complement each other. These are enzymatic and neural ways by which immune system influences the brain. The former predicts, that Il-1 influences the tissue, stimulating them to the synthesis, via the cyclooxygenases (COX) activation, and release molecules such as prostaglandines (especially PGE2), which have the ability to penetrate the brain barrier. The latter assumes that IL-1, directly or indirectly, can influence the peripheral nerves (the most important is probably the vagus nerve), which afferent sensory endings

  9. Tissue-nonspecific Alkaline Phosphatase Regulates Purinergic Transmission in the Central Nervous System During Development and Disease

    Directory of Open Access Journals (Sweden)

    Álvaro Sebastián-Serrano

    2015-01-01

    Full Text Available Tissue-nonspecific alkaline phosphatase (TNAP is one of the four isozymes in humans and mice that have the capacity to hydrolyze phosphate groups from a wide spectrum of physiological substrates. Among these, TNAP degrades substrates implicated in neurotransmission. Transgenic mice lacking TNAP activity display the characteristic skeletal and dental phenotype of infantile hypophosphatasia, as well as spontaneous epileptic seizures and die around 10 days after birth. This physiopathology, linked to the expression pattern of TNAP in the central nervous system (CNS during embryonic stages, suggests an important role for TNAP in neuronal development and synaptic function, situating it as a good target to be explored for the treatment of neurological diseases. In this review, we will focus mainly on the role that TNAP plays as an ectonucleotidase in CNS regulating the levels of extracellular ATP and consequently purinergic signaling.

  10. Autonomic dysfunction in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Dümcke, Christine Winkler; Møller, Søren

    2008-01-01

    Liver cirrhosis and portal hypertension are frequently associated with signs of circulatory dysfunction and peripheral polyneuropathy, which includes defects of the autonomic nervous system. Autonomic dysfunction, which is seen in both alcoholic and non-alcoholic liver cirrhosis and increases wit...... liver disease. A description is given of its aetiology and the typical circulatory dysfunction with characteristic hyperdynamic and hyporeactive circulation and heart failure, and the most important tests of the autonomic nervous system....

  11. Relationships between sensory stimuli and autonomic nervous regulation during real and virtual exercises

    Directory of Open Access Journals (Sweden)

    Iijima Atsuhiko

    2007-10-01

    Full Text Available Abstract Background Application of virtual environment (VE technology to motor rehabilitation increases the number of possible rehabilitation tasks and/or exercises. However, enhancing a specific sensory stimulus sometimes causes unpleasant sensations or fatigue, which would in turn decrease motivation for continuous rehabilitation. To select appropriate tasks and/or exercises for individuals, evaluation of physical activity during recovery is necessary, particularly the changes in the relationship between autonomic nervous activity (ANA and sensory stimuli. Methods We estimated the ANA from the R-R interval time series of electrocardiogram and incoming sensory stimuli that would activate the ANA. For experiments in real exercise, we measured vehicle data and electromyogram signals during cycling exercise. For experiments in virtual exercise, we measured eye movement in relation to image motion vectors while the subject was viewing a mountain-bike video image from a first-person viewpoint. Results For the real cycling exercise, the results were categorized into four groups by evaluating muscle fatigue in relation to the ANA. They suggested that fatigue should be evaluated on the basis of not only muscle activity but also autonomic nervous regulation after exercise. For the virtual exercise, the ANA-related conditions revealed a remarkable time distribution of trigger points that would change eye movement and evoke unpleasant sensations. Conclusion For expanding the options of motor rehabilitation using VE technology, approaches need to be developed for simultaneously monitoring and separately evaluating the activation of autonomic nervous regulation in relation to neuromuscular and sensory systems with different time scales.

  12. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases

    Directory of Open Access Journals (Sweden)

    Carmen I. Nussbaum-Krammer

    2014-01-01

    Full Text Available Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.

  13. Mobile Intelligent Autonomous Systems

    OpenAIRE

    Jitendra R. Raol; Ajith Gopal

    2010-01-01

    Mobile intelligent autonomous systems (MIAS) is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i) perception and reasoning, (ii) mobility and navigation,(iii) haptics and teleoperation, (iv) image fusion/computervision, (v) modelling of manipulators, (vi) hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii) ve...

  14. Nemesis Autonomous Test System

    Science.gov (United States)

    Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.

    2012-01-01

    A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.

  15. Insights into the clinical and functional significance of cardiac autonomic dysfunction in Chagas disease

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Junqueira Junior

    2012-04-01

    Full Text Available INTRODUCTION: Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS: Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS: We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS: Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.

  16. Patterns of Sensitivity to Emotion in Children with Williams Syndrome and Autism: Relations Between Autonomic Nervous System Reactivity and Social Functioning.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Grichanik, Mark; Arnold, Andrew J; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2015-08-01

    Williams syndrome (WS) and autism spectrum disorder (ASD) are associated with atypical social-emotional functioning. Affective visual stimuli were used to assess autonomic reactivity and emotion identification, and the social responsiveness scale was used to determine the level social functioning in children with WS and ASD contrasted with typical development (TD), to examine syndrome-specific and syndrome-general features. Children with ASD exhibited the highest arousal in response to faces, with a lack of difference in autonomic sensitivity across different emotional expressions, unlike in WS and TD. The WS group demonstrated unique deficits in identifying neutral stimuli. While autonomic responsivity to neutral faces was associated with social functioning in all children, converging profiles characterized children with WS contrasted with TD and ASD. PMID:25800866

  17. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple....... The central element of the architecture is the ‘global database’ that serves several purposes, such as storing system parameters, making signals available for data logging and inter-process communication. Standard software components are used to a large extent, OS-9 as real-time operating system, a custom...

  18. Mathematical Biomarkers for the Autonomic Regulation of Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Luciana A. Campos

    2013-10-01

    Full Text Available Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns and sensitivity to imposed stimuli, i.e. drugs blocking the autonomic system. The causal effects, gains and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance.

  19. Central nervous system infectious diseases mimicking multiple sclerosis: recognizing distinguishable features using MRI

    Directory of Open Access Journals (Sweden)

    Antonio Jose da Rocha

    2013-09-01

    Full Text Available The current diagnostic criteria for multiple sclerosis (MS confirm the relevant role of magnetic resonance imaging (MRI, supporting the possibility of characterizing the dissemination in space (DIS and the dissemination in time (DIT in a single scan. To maintain the specificity of these criteria, it is necessary to determine whether T2/FLAIR visible lesions and the gadolinium enhancement can be attributed to diseases that mimic MS. Several diseases are included in the MS differential diagnosis list, including diseases with exacerbation, remitting periods and numerous treatable infectious diseases, which can mimic the MRI features of MS. We discuss the most relevant imaging features in several infectious diseases that resemble MS and examine the primary spatial distributions of lesions and the gadolinium enhancement patterns related to MS. Recognizing imaging "red flags" can be useful for the proper diagnostic evaluation of suspected cases of MS, facilitating the correct differential diagnosis by assessing the combined clinical, laboratory and MR imaging information.

  20. Patterns of Sensitivity to Emotion in Children with Williams Syndrome and Autism: Relations between Autonomic Nervous System Reactivity and Social Functioning

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Grichanik, Mark; Arnold, Andrew J.; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2015-01-01

    Williams syndrome (WS) and autism spectrum disorder (ASD) are associated with atypical social-emotional functioning. Affective visual stimuli were used to assess autonomic reactivity and emotion identification, and the social responsiveness scale was used to determine the level social functioning in children with WS and ASD contrasted with typical…

  1. Autonomic skin responses in females with Fabry disease

    DEFF Research Database (Denmark)

    Møller, Anette Torvin; Bach, Flemming W.; Feldt-Rasmussen, Ulla;

    2009-01-01

    Fabry disease is a genetic lysosomal disorder with dysfunction of the lysosomal enzyme alpha-galactosidase A causing accumulation of glycolipids in multiple organs including the nervous system and with neuropathy as a prominent manifestation. Neurological symptoms include pain and autonomic dysfu...... response to iontophoresis of acetylcholine (p = 0.04) and a smaller capsaicin-induced flare compared to controls. These findings suggest that female patients both have an impaired C-fiber function and local abnormalities in blood vessels and sweat glands......., and the cold pressor test; and (3) cutaneous blood flow following capsaicin. The vasoconstrictor response to inspiratory gasp was increased in Fabry patients compared to controls (p = 0.03), while the response to cold and mental stress did not change. Female patients with Fabry disease had a reduced sweat...... dysfunction. This study examined peripheral autonomic nerve function in 19 female patients with Fabry disease and 19 sex and age-matched controls by measuring (1) sweat production following acetylcholine challenge; (2) the sympathetically mediated vasoconstrictor responses to inspiratory gasp, stress...

  2. AAV-Mediated Gene Delivery in a Feline Model of Sandhoff Disease Corrects Lysosomal Storage in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Hannah E. Rockwell

    2015-04-01

    Full Text Available Sandhoff disease (SD is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex, resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients.

  3. Central nervous system demyelinating diseases and recombinant hepatitis B vaccination: a critical systematic review of scientific production.

    Science.gov (United States)

    Martínez-Sernández, V; Figueiras, A

    2013-08-01

    The etiology of multiple sclerosis has not yet been fully described. A potential link between the recombinant hepatitis B vaccine and an increased risk of onset or exacerbation of multiple sclerosis emerged in the mid-1990s, leading to several spontaneous reports and studies investigating this association. We conducted a critical systematic review aimed at assessing whether hepatitis B vaccination increases the risk of onset or relapse of multiple sclerosis and other central nervous system demyelinating diseases. MEDLINE and EMBASE were used as data sources, and the search covered the period between 1981 and 2011. Twelve references met the inclusion criteria. No significant increased risk of onset or relapse of the diseases considered was associated with hepatitis B vaccination, except in one study. Most studies included in this review displayed methodological limitations and heterogeneity among them, which rendered it impossible to draw robust conclusions about the safety of hepatitis B vaccination in healthy subjects and patients with multiple sclerosis. Therefore, on the basis of current data there is no need to modify the vaccination recommendations; however, there is a need to improve the quality of observational studies with emphasis on certain considerations that are discussed in this review. PMID:23086181

  4. The impact of rotigotine on cardiovascular autonomic function in early Parkinson's disease.

    Science.gov (United States)

    Rocchi, Camilla; Pierantozzi, Mariangela; Pisani, Valerio; Marfia, Girolama Alessandra; Di Giorgio, Alessandra; Stanzione, Paolo; Bernardi, Giorgio; Stefani, Alessandro

    2012-01-01

    Dysautonomia can occur in early stages of Parkinson's disease (PD) influencing tolerance to dopaminergic therapies. Rotigotine, a non-ergot dopamine agonist, has recently been developed as an effective alternative antiparkinsonian drug, but its influence on the autonomic nervous system was not investigated. Twenty subjects out of 34 consecutive de novo PD patients were submitted to full assessment of cardiovascular autonomic function before and after reaching a stable rotigotine regimen [6 mg/24 h (n = 3) or 8 mg/24 h (n = 17)]. Patients reached significant clinical improvement (-27% on the Unified Parkinson's Disease Rating Scale part III) and did not show significant differences in cardiovascular tests compared to baseline data. However, an unexpected trend towards increasing systolic blood pressure after head-up tilt test was detected. Our study demonstrates that rotigotine does not influence cardiovascular autonomic responses in early de novo PD patients. Consequently, it may represent a well-tolerated and efficacious therapeutic option in newly diagnosed PD subjects.

  5. Antibody response against gastrointestinal antigens in demyelinating diseases of the central nervous system

    DEFF Research Database (Denmark)

    Banati, M; Csecsei, P; Koszegi, E;

    2013-01-01

    TG), intrinsic factor (IF), parietal cells (PC) and Saccharomyces cerevisiae (ASCA) were screened in the sera of 45 patients with AQP4-seropositive neuromyelitis optica (NMO) and NMO spectrum diseases (NMO/NMO-SD), 17 patients with AQP4-seronegative NMO, 85 patients with clinically definite multiple sclerosis...

  6. Serum Anticholinergic Activity: A Possible Peripheral Marker of the Anticholinergic Burden in the Central Nervous System in Alzheimer’s Disease

    OpenAIRE

    Koji Hori; Kimiko Konishi; Masayuki Tani; Hiroi Tomioka; Ryo Akita; Yuka Kitajima; Mari Aoki; Sachiko Yokoyama; Kazunari Azuma; Daisuke Ikuse; Norihisa Akashi; Misa Hosoi; Koichi Jinbo; Mitsugu Hachisu

    2014-01-01

    We review the utility of serum anticholinergic activity (SAA) as a peripheral marker of anticholinergic activity (AA) in the central nervous system (CAA). We hypothesize that the compensatory mechanisms of the cholinergic system do not contribute to SAA if their system is intact and that if central cholinergic system deteriorates alone in conditions such as Alzheimer’s disease or Lewy body dementia, CAA and SAA are caused by way of hyperactivity of inflammatory system and SAA is a marker of t...

  7. Autonomic Nervous System Mediates the Hypotensive Effects of Aqueous and Residual Methanolic Extracts of Syzygium polyanthum (Wight) Walp. var. polyanthum Leaves in Anaesthetized Rats

    OpenAIRE

    Ismail, A.; Mohamed, M.; Sulaiman, S. A.; Wan Ahmad, W. A. N.

    2013-01-01

    Syzygium polyanthum (Wight) Walp. var. polyanthum leaves are consumed as a traditional Malay treatment of hypertension. This study investigates hypotensive potential of aqueous (AESP) and residual methanolic (met-AESP) extracts of S. polyanthum leaves and possible involvement of autonomic receptors. AESP and met-AESP (20 to 100 mg/kg) were intravenously administered into anaesthetized Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Blood pressure and heart were monitored for 20 ...

  8. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  9. Sexual features of the old rats’ autonomic nervous system response to the development of necrotic process in heart on the background of melatonin

    Directory of Open Access Journals (Sweden)

    M. R. Khara

    2016-01-01

    Full Text Available Aim. An effect of melatonin on the autonomic regulation of the heart in terms of damage was studied in adult and old male and female rats. Methods and results. Necrotic process in the myocardium was caused by the injection of epinephrine (1 mg / kg, single dose, intramuscular 1 h after injection of melatonin (5 mg / kg intravenous. In 1 and 24 hours after administration of epinephrine heart rate was determined and features of autonomic regulation of the heart on indicators Mo (mode, AMo (mode amplitude, ΔH (variation range of cardio intervals, and SI (stress index of regulatory mechanisms were evaluated. It was found that the effects of melatonin aimed at increasing the role of cholinergic ANS link in the formation of heart rate and reducing the adrenergic participation in the body of older individuals significantly decreased. To a greater extent this applies to older males. In the dynamics of adrenalin necrosis the character of vegetative regulation of heart rate of old rats reflects greater, than in adults, role of adrenergic link in animals of both sexes and reduce of the impact of cholinergic one – only in older males, which resulted in a significant tension of regulatory mechanisms. Conclusion. The obtained results show that with increasing age in rats effectiveness of melatonin as a drug which can affect the autonomic regulation of the heart by activating cardio-protective effects decreases, especially in male rats.

  10. Autonomic Nervous System Mediates the Hypotensive Effects of Aqueous and Residual Methanolic Extracts of Syzygium polyanthum (Wight) Walp. var. polyanthum Leaves in Anaesthetized Rats.

    Science.gov (United States)

    Ismail, A; Mohamed, M; Sulaiman, S A; Wan Ahmad, W A N

    2013-01-01

    Syzygium polyanthum (Wight) Walp. var. polyanthum leaves are consumed as a traditional Malay treatment of hypertension. This study investigates hypotensive potential of aqueous (AESP) and residual methanolic (met-AESP) extracts of S. polyanthum leaves and possible involvement of autonomic receptors. AESP and met-AESP (20 to 100 mg/kg) were intravenously administered into anaesthetized Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Blood pressure and heart were monitored for 20 min. AESP and met-AESP induced significant dose-dependent hypotension, but only 100 mg/kg AESP caused mild bradycardia (n = 5). AESP-induced hypotension was more potent than that of met-AESP in WKY. AESP has a faster onset time than that of met-AESP in both WKY and SHR. However, met-AESP-induced hypotension was more sustained than that of AESP in SHR. Blockages of autonomic ganglion and α -adrenergic receptors using hexamethonium and phentolamine (n = 5 for each group) partially attenuated AESP-induced hypotension, suggesting involvement of α -adrenergic receptors. Blockages of autonomic ganglion, β -adrenergic, cholinergic receptors, and nitric oxide production using hexamethonium, propranolol, atropine, and N- ω -nitro-l arginine methyl ester (L-NAME) (n = 5 for each group) partially attenuated met-AESP-induced hypotension, suggesting involvement of β -adrenergic and cholinergic receptors via nitric oxide production. PMID:24454508

  11. Autonomic Nervous System Mediates the Hypotensive Effects of Aqueous and Residual Methanolic Extracts of Syzygium polyanthum (Wight Walp. var. polyanthum Leaves in Anaesthetized Rats

    Directory of Open Access Journals (Sweden)

    A. Ismail

    2013-01-01

    Full Text Available Syzygium polyanthum (Wight Walp. var. polyanthum leaves are consumed as a traditional Malay treatment of hypertension. This study investigates hypotensive potential of aqueous (AESP and residual methanolic (met-AESP extracts of S. polyanthum leaves and possible involvement of autonomic receptors. AESP and met-AESP (20 to 100 mg/kg were intravenously administered into anaesthetized Wistar-Kyoto (WKY and spontaneously hypertensive (SHR rats. Blood pressure and heart were monitored for 20 min. AESP and met-AESP induced significant dose-dependent hypotension, but only 100 mg/kg AESP caused mild bradycardia (n=5. AESP-induced hypotension was more potent than that of met-AESP in WKY. AESP has a faster onset time than that of met-AESP in both WKY and SHR. However, met-AESP-induced hypotension was more sustained than that of AESP in SHR. Blockages of autonomic ganglion and α-adrenergic receptors using hexamethonium and phentolamine (n=5 for each group partially attenuated AESP-induced hypotension, suggesting involvement of α-adrenergic receptors. Blockages of autonomic ganglion, β-adrenergic, cholinergic receptors, and nitric oxide production using hexamethonium, propranolol, atropine, and N-ω-nitro-l arginine methyl ester (L-NAME (n=5 for each group partially attenuated met-AESP-induced hypotension, suggesting involvement of β-adrenergic and cholinergic receptors via nitric oxide production.

  12. Central nervous system complications after liver transplantation.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology.

  13. A longitudinal study of epilepsy and other central nervous system diseases in individuals with and without a history of infantile autism

    DEFF Research Database (Denmark)

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2011-01-01

    Objective: To compare the prevalence and types of epilepsy and other central nervous system (CNS) diseases in a clinical sample of 118 individuals diagnosed as children with infantile autism (IA) with 336 matched controls from the general population. Methods: All participants were screened through...

  14. An Atlas of Infectious and Parasitic Diseases of the Central Nervous System. A Cooperative Study of SILAN (Sociedad Iberolatinoamericana de Neurorradiologia).

    Science.gov (United States)

    Gonzalez-Toledo, E; Santos Andrade, C; Da Costa Leite, C; Del Carpio-O'Donovan, R; Fayed, N; Morales, H; Peterson, R; Palacios, E; Previgliano, C H; Rocha, A J; Romero, J M; Rugilo, C; Staut, C C V; Tamer, I; Tavares Lucato, L; Nader, M

    2010-10-01

    Infectious diseases of the central nervous system vary in frequency in different locations in America and Europe. What is common in Brazil can be a sporadic presentation in Europe. Cooperative work gathering experiences from neuroradiologists working in various places can be achieved and will help to identify uncommon cases that can present in our daily practice.

  15. Cachexia in chronic kidney disease: a link to defective central nervous system control of appetite

    OpenAIRE

    Mitch, William E.

    2005-01-01

    Anorexia is one of several abnormalities characterizing chronic kidney disease (CKD) that cause cachexia, the loss of muscle and adipose stores. It has been attributed to mechanisms ranging from accumulation of toxic “middle molecules” to psychological problems. In this issue of the JCI, Cheung and coworkers used elegant techniques to demonstrate that CKD-associated anorexia is caused by defective hypothalamic regulation of appetite. They attributed the defect to an alteration in the hypothal...

  16. Mobile Intelligent Autonomous Systems

    Directory of Open Access Journals (Sweden)

    Jitendra R. Raol

    2010-01-01

    Full Text Available Mobile intelligent autonomous systems (MIAS is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i perception and reasoning, (ii mobility and navigation,(iii haptics and teleoperation, (iv image fusion/computervision, (v modelling of manipulators, (vi hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii vehicle-robot path and motionplanning/control, (viii human-machine interfaces for interaction between humans and robots, and (ix application of artificial neural networks (ANNs, fuzzy logic/systems (FLS,probabilistic/approximate reasoning (PAR, Bayesian networks(BN and genetic algorithms (GA to the above-mentioned problems. Also, multi-sensor data fusion (MSDF playsvery crucial role at many levels of the data fusion process:(i kinematic fusion (position/bearing tracking, (ii imagefusion (for scene recognition, (iii information fusion (forbuilding world models, and (iv decision fusion (for tracking,control actions. The MIAS as a technology is useful for automation of complex tasks, surveillance in a hazardousand hostile environment, human-assistance in very difficultmanual works, medical robotics, hospital systems, autodiagnosticsystems, and many other related civil and military systems. Also, other important research areas for MIAScomprise sensor/actuator modelling, failure management/reconfiguration, scene understanding, knowledge representation, learning and decision-making. Examples ofdynamic systems considered within the MIAS would be:autonomous systems (unmanned ground vehicles, unmannedaerial vehicles, micro/mini air vehicles, and autonomousunder water vehicles, mobile/fixed robotic systems, dexterousmanipulator robots, mining robots, surveillance systems,and networked/multi-robot systems, to name a few.Defence Science Journal, 2010, 60(1, pp.3-4,

  17. Autonomic nervous system response patterns in freshmen with different resilience in a military university%某军校不同心理弹性水平的大一新生自主神经反应特点

    Institute of Scientific and Technical Information of China (English)

    张佳佳; 彭李; 李敏

    2011-01-01

    目的 研究不同心理弹性水平军校大学生自主神经反应特点.方法 采用成人心理弹性量表(resilience scale for adults,RSA)对重庆某军校大一新生进行心理测评,筛选出心理弹性高分组和低分组被试共144名,再从中选取愿意参加本实验的心理弹性高分组和低分组被试各27名,其进行自主神经反应(心率、皮电、皮温、指端血容振幅)特点的实验研究.结果 ①静息状态下,心理弹性高分组和低分组被试的自主神经反应没有统计学差异(P>0.05).②悲伤情绪诱导下,心理弹性高分组在皮电上低于心理弹性低分组(t=-2.077,P=0.043).③悲伤情绪诱导后,心理弹性高分组和心理弹性低分组的各个指标的恢复时间上均无统计学差异(P>0.05).结论 心理弹性水平不同的大学生的自主神经活动模式可能存在一定程度的差异.%Objective To investigate the autonomic nervous system response pattern in military college students with different levels of resilience. Methods Resilience Scale for Adults (R.SA) was applied to test 144 college students, and based on the RSA score 54 freshmen who accepted to join the test were selected and were divided into a high resilience group and a low resilience group. Each 27 freshmen of the two groups were tested for autonomic nervous system response pattern. Results ① At resting state, students of the high resilience group and low resilience group did not show significant differences in heart rate ( HR) , skin conductance (SC), skin temperature (ST) and blood volume pulse (BVP) (P>0. 05). ② Compared with those indices obtained at resting state, students of the high resilience group scored lower in HR, SC and ST under sad mood induction, but higher in BVP; students of the low resilience group scored higher in HR and SC under sad mood induction, but lower in ST and BVP. Sad mood induction showed that SC of the high resilience group was significantly lower than that of the

  18. Chemical Specification of Autonomic Systems

    OpenAIRE

    Banâtre, Jean-Pierre; Fradet, Pascal; Radenac, Yann

    2004-01-01

    Autonomic computing provides a vision of information systems allowing self-management of many predefined properties. Such systems take care of their own behavior and of their interactions with other components without any external intervention. One of the major challenges concerns the expression of properties and constraints of autonomic systems. We believe that the {\\em chemical programming paradigm} (represented here by the Gamma formalism) is well-suited to the specification of autonomic s...

  19. Evaluation of AAV-mediated Gene Therapy for Central Nervous System Disease in Canine Mucopolysaccharidosis VII.

    Science.gov (United States)

    Gurda, Brittney L; De Guilhem De Lataillade, Adrien; Bell, Peter; Zhu, Yanqing; Yu, Hongwei; Wang, Ping; Bagel, Jessica; Vite, Charles H; Sikora, Tracey; Hinderer, Christian; Calcedo, Roberto; Yox, Alexander D; Steet, Richard A; Ruane, Therese; O'Donnell, Patricia; Gao, Guangping; Wilson, James M; Casal, Margret; Ponder, Katherine P; Haskins, Mark E

    2016-02-01

    Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease arising from mutations in β-d-glucuronidase (GUSB), which results in glycosaminoglycan (GAG) accumulation and a variety of clinical manifestations including neurological disease. Herein, MPS VII dogs were injected intravenously (i.v.) and/or intrathecally (i.t.) via the cisterna magna with AAV9 or AAVrh10 vectors carrying the canine GUSB cDNA. Although i.v. injection alone at 3 days of age resulted in normal cerebrospinal fluid (CSF) GUSB activity, brain tissue homogenates had only ~1 to 6% normal GUSB activity and continued to have elevated GAG storage. In contrast, i.t. injection at 3 weeks of age resulted in CSF GUSB activity 44-fold normal while brain tissue homogenates had >100% normal GUSB activity and reduced GAGs compared with untreated dogs. Markers for secondary storage and inflammation were eliminated in i.t.-treated dogs and reduced in i.v.-treated dogs compared with untreated dogs. Given that i.t.-treated dogs expressed higher levels of GUSB in the CNS tissues compared to those treated i.v., we conclude that i.t. injection of AAV9 or AAVrh10 vectors is more effective than i.v. injection alone in the large animal model of MPS VII. PMID:26447927

  20. Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson's disease.

    Science.gov (United States)

    Greene, James G; Noorian, Ali Reza; Srinivasan, Shanthi

    2009-07-01

    Gastrointestinal (GI) dysfunction is the most common non-motor symptom of Parkinson's disease (PD). Symptoms of GI dysmotility in PD include early satiety and weight loss from delayed gastric emptying and constipation from impaired colonic transit. Understanding the pathophysiology and treatment of these symptoms in PD patients has been hampered by the lack of investigation into GI symptoms and pathology in PD animal models. We report that the parkinsonian neurotoxin and mitochondrial complex I inhibitor rotenone causes delayed gastric emptying and enteric neuronal dysfunction when administered chronically to rats in the absence of major motor dysfunction or CNS pathology. When examined 22-28 days after initiation of rotenone infusion by osmotic minipump (3 mg/kg/day), 45% of rotenone-treated rats had a profound delay in gastric emptying. Electrophysiological recording of neurally-mediated muscle contraction in isolated colon from rotenone-treated animals confirmed an enteric inhibitory defect associated with rotenone treatment. Rotenone also induced a transient decrease in stool frequency that was associated with weight loss and decreased food and water intake. Pathologically, no alterations in enteric neuron numbers or morphology were apparent in rotenone-treated animals. These results suggest that enteric inhibitory neurons may be particularly vulnerable to the effects of mitochondrial inhibition by parkinsonian neurotoxins and provide evidence that parkinsonian gastrointestinal abnormalities can be modeled in rodents. PMID:19409896

  1. Masked assessment of MRI findings: is it possible to differentiate neuro-Behcet`s disease from other central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Coban, O.; Bahar, S.; Akman-Demir, G.; Tasci, B.; Serdaroglu, P. [Univ. of Istanbul (Turkey). Dept. of Neurology; Yurdakul, S.; Yazici, H. [Univ. of Istanbul (Turkey). Dept. of Internal Medicine

    1999-04-01

    Two neuroradiologists reviewed MRI studies of 34 patients with neuro-Behcet`s disease (NBD), 22 with multiple sclerosis (MS) and 7 with systemic lupus erythematosus (SLE) with central nervous system involvement, masked to the clinical diagnosis, age and sex of the patients. Of the patients with NBD 12 were in an acute attack; the others had chronic disease. MRI was assessed using a set of criteria, looking at atrophy, the site of discrete parenchymal lesions, regions of predominant involvement and the extent of the lesion(s). The observers also made a guess at the clinical diagnosis. The brain stem and/or basal ganglia were the most predominantly involved sites in all patients with acute NBD; 75 % of these lesions were large and confluent, mainly extending from the brain stem to the diencephalon and basal ganglia. However, in chronic cases, the predominant involvement was in the brain stem and/or basal ganglia in only 36 %, and in cerebral hemisphere white matter in another 36 %; 27 % of these patients showed no parenchymal lesion. Hemisphere white-matter lesions were equally distributed between periventricular and other areas in NBD, while in MS more were periventricular, and in SLE more were nonperiventricular. Brain-stem atrophy was seen in 21 % of patients with NBD, with a specificity of 96.5 %. In the absence of cortical atrophy, its specificity was 100 %. The attempt at making a radiological diagnosis was successful in all cases of acute NBD and 95.5 % of patients with MS, but in only 40 % of patients with chronic NBD. Most of this latter groups MRI studies were interpreted as MS. An extensive lesion involving the brain stem and basal ganglia seemed to be diagnostic of acute NBD. However, hemisphere white-matter lesions could not be differentiated from those in MS. (orig.) With 3 figs., 6 tabs., 18 refs.

  2. PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA

    Directory of Open Access Journals (Sweden)

    S.S. Anvari

    2009-08-01

    Full Text Available ObjectivePrimary central nervous system lymphoma (PCNSL is an extremely rare condition in childhood. We report the first case of PCNSL in a child in Iran.Clinical presentationA nine-year-old boy was referred to Mofid Hospital with the history of headache of four months and seizure of 2 months duration. Magnetic resonance imaging of the brain revealed a hyper-intense lesion in left fronto-parietal area with secondary satellite lesions. Biopsy of the brain mass was performed. Pathologic findings showed brain lymphoma and immunohistochemistry confirmed this diagnosis. The treatment started with intrathecal and systemic chemotherapy in combination with radiotherapy.Keywords:Lymphoma, Primary central nervous system lymphoma (PCNSL, Children

  3. Pathological and Clinical Features and Management of Central Nervous System Hemangioblastomas in von Hippel-Lindau Disease

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanno

    2014-08-01

    Full Text Available Central nervous system (CNS hemangioblastoma is the most common manifestation of von Hippel-Lindau (VHL disease. It is found in 70-80% of VHL patients. Hemangioblastoma is a rare form of benign vascular tumor of the CNS, accounting for 2.0% of CNS tumors. It can occur sporadically or as a familial syndrome. CNS hemangioblastomas are typically located in the posterior fossa and the spinal cord. VHL patients usually develop a CNS hemangioblastoma at an early age. Therefore, they require a special routine for diagnosis, treatment and follow-up. The surgical management of symptomatic tumors depends on many factors such as symptom, location, multiplicity, and progression of the tumor. The management of asymptomatic tumors in VHL patients is controversial since CNS hemangioblastomas grow with intermittent quiescent and rapid-growth phases. Preoperative embolization of large solid hemangioblastomas prevents perioperative hemorrhage but is not necessary in every case. Radiotherapy should be reserved for inoperable tumors. Because of complexities of VHL, a better understanding of the pathological and clinical features of hemangioblastoma in VHL is essential for its proper management.

  4. Assistive technology in occupational therapy practice with a child with degenerative disease of the central nervous system

    Directory of Open Access Journals (Sweden)

    Tácia Caroline de Lima Rodrigues

    2015-07-01

    Full Text Available This paper aims to report the effects of the interventions, using the resource of assistive technology, carried out with a child with degenerative disease of the central nervous system at his home. This is a study case, which was conducted in seven meetings, addressing the child and his caregivers during a process of evaluation, preparation of assistive devices, family orientation, and evaluation of the family environment repercussion. The results showed that the child presents significant motor, cognitive, and psychosocial impairments, resulting in difficulties in performing activities of daily living, communication, and play. Adjustments were proposed to facilitate the child’s involvement and alleviate family difficulties on equipment and environments, such as wheelchair, bedroom, bathroom, orthosis, toys and communication. Finally, it was possible to note that the assistive technology resources were used according to the child’s needs and his own reality, and that the domiciliary visits contributed positively to the family’s life because they facilitated the child’s care, despite the limitations faced.

  5. Central nervous system manifestations of neonatal lupus: a systematic review.

    Science.gov (United States)

    Chen, C C; Lin, K-L; Chen, C-L; Wong, A May-Kuen; Huang, J-L

    2013-12-01

    Neonatal lupus is a rare and acquired autoimmune disease. Central nervous system abnormalities are potential manifestations in neonatal lupus. Through a systematic literature review, we analyzed the clinical features of previously reported neonatal lupus cases where central nervous system abnormalities had been identified. Most reported neonatal lupus patients with central nervous system involvement were neuroimaging-determined and asymptomatic. Only seven neonatal lupus cases were identified as having a symptomatic central nervous system abnormality which caused physical disability or required neurosurgery. A high percentage of these neurosymptomatic neonatal lupus patients had experienced a transient cutaneous skin rash and had no maternal history of autoimmune disease before pregnancy.

  6. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  7. The role of autonomic cardiovascular neuropathy in pathogenesis of ischemic heart disease in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Popović-Pejičić Snježana

    2006-01-01

    Full Text Available Introduction. Diabetes is strongly associated with macrovascular complications, among which ischemic heart disease is the major cause of mortality. Autonomic neuropathy increases the risk of complications, which calls for an early diagnosis. The aim of this study was to determine both presence and extent of cardiac autonomic neuropathy, in regard to the type of diabetes mellitus, as well as its correlation with coronary disease and major cardiovascular risk factors. Material and methods. We have examined 90 subjects, classified into three groups, with 30 patients each: those with type 1 diabetes, type 2 diabetes and control group of healthy subjects. All patients underwent cardiovascular tests (Valsalva maneuver, deep breathing test, response to standing, blood pressure response to standing sustained, handgrip test, electrocardiogram, treadmill exercise test and filled out a questionnaire referring to major cardiovascular risk factors: smoking, obesity, hypertension, and dyslipidemia. Results. Our results showed that cardiovascular autonomic neuropathy was more frequent in type 2 diabetes, manifesting as autonomic neuropathy. In patients with autonomic neuropathy, regardless of the type of diabetes, the treadmill test was positive, i.e. strongly correlating with coronary disease. In regard to coronary disease risk factors, the most frequent correlation was found for obesity and hypertension. Discussion Cardiovascular autonomic neuropathy is considered to be the principal cause of arteriosclerosis and coronary disease. Our results showed that the occurrence of cardiovascular autonomic neuropathy increases the risk of coronary disease due to dysfunction of autonomic nervous system. Conclusions. Cardiovascular autonomic neuropathy is a common complication of diabetes that significantly correlates with coronary disease. Early diagnosis of cardiovascular autonomic neuropathy points to increased cardiovascular risk, providing a basis for preventive

  8. Treatment effect of uvulopalatopharyngoplasty on autonomic nervous activity during sleep in patients with obstructive sleep apnea syndrome

    Institute of Scientific and Technical Information of China (English)

    蒋光峰; 孙炜; 李娜; 孙彦; 张念凯

    2004-01-01

    @@ Obstructive sleep apnea syndrome (OSAS) is characterized by repetitive episodes of upper airway obstruction during sleep. The prevalence of OSAS in middle-aged population is about 2%-4%.1 Many OSAS patients can be accompanied by serious cardiovascular complications, such as hypertension.2 The aim of this study was to find the changes of autonomic nervous system (ANS) during sleep, and the impact of surgical treatment on heart rate variability (HRV) in OSAS patients.

  9. Aging changes in the nervous system

    Science.gov (United States)

    ... article/004023.htm Aging changes in the nervous system To use the sharing features on this page, please enable JavaScript. The brain and nervous system are your body's central control center. They control ...

  10. HIV Infection Seems to Affect Nervous System

    Science.gov (United States)

    ... fullstory_159344.html HIV Infection Seems to Affect Nervous System But symptoms tend to subside once antiretroviral drugs ... mild, it is clear that HIV affects the nervous system within days of infection," she said in a ...

  11. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  12. Occupational therapy for patients with chronic diseases: CVA, rheumatoid arthritis and progressive diseases of the central nervous system.

    NARCIS (Netherlands)

    Driessen, M.J.; Dekker, J.; Lankhorst, G.; Zee, J. van der

    1997-01-01

    A substantial proportion of the patients treated by occupational therapists have a chronic disease. The aim of this study was to describe the outlines of occupational therapy treatment for three specific groups of chronic diseases: progressive neurological diseases, cerebrovascular accident and rh

  13. Study of risc factors affecting the number of mental disorders and nervous system diseases for people who participated in liquidation of consequences of ChNPP accident

    International Nuclear Information System (INIS)

    Interrelation of disease incidence for liquidators and factors affecting it has been studied. The diseases (mental disorders and nervous system diseases) have been taken into account provided more than 10% of people have suffered of the above diseases. Date of getting into the accident zone; duration of work within the zone; the radiation dose accumulated were considered to be risc factors. Getting into the accident zone and duration of work within the zone of accident have been though to be the main risc factors. 3 figs.; 2 tabs

  14. The Nervous System and Gastrointestinal Function

    Science.gov (United States)

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  15. “Denervation” of autonomous nervous system in idiopathic pulmonary arterial hypertension by low-dose radiation: a case report with an unexpected outcome

    Directory of Open Access Journals (Sweden)

    Hohenforst-Schmidt W

    2014-03-01

    Full Text Available Wolfgang Hohenforst-Schmidt,1 Paul Zarogoulidis,2 Filiz Oezkan,3 Christian Mahnkopf,4 Gerhard Grabenbauer,5 Alfons Kreczy,6 Rolf Bartunek,7 Kaid Darwiche,3 Lutz Freitag,3 Qiang Li,8 Haidong Huang,8 Thomas Vogl,9 Patrick LePilvert,10 Theodora Tsiouda,11 Kosmas Tsakiridis,12 Konstantinos Zarogoulidis,2 Johannes Brachmann11II Medical Clinic, Coburg Clinic, University of Würzburg, Coburg, Germany; 2Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece; 3Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University of Duisburg-Essen, Essen, Germany; 4II Medizinische Klinik, Klinik für Kardiologie, Angiologie, Pneumologie, Klinikum Coburg, 5Department of Radiotherapy, 6Department of Pathology, Cytology and Molecular Diagnostics, 7Institute of Diagnostic and Interventional Radiology, Coburg Clinic, University of Wüerzburg, Coburg, Germany; 8Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People’s Republic of China; 9Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Frankfurt, Germany; 10Interventional Drug Delivery Systems and Strategies (ID2S2, Medical Cryogenics, Lakeland Court Jupiter, FL, USA; 11Internal Medicine Unit, Theagenio Cancer Hospital, Thessaloniki, 12Cardiothoracic Surgery Department, Saint Luke Private Hospital, Thessaloniki, GreeceAbstract: Vasointestinal peptide metabolism plays a key physiological role in multimodular levels of vasodilatory, smooth muscle cell proliferative, parenchymal, and inflammatory lung reactions. In animal studies, vasointestinal peptide relaxes isolated pulmonary arterial segments from several mammalian species in vitro and neutralizes the pulmonary vasoconstrictor effect of endothelin. In some animal models, it reduces pulmonary vascular resistance in vivo and

  16. Time perception mechanisms at central nervous system

    OpenAIRE

    Rhailana Fontes; Jéssica Ribeiro; Gupta, Daya S.; Dionis Machado; Fernando Lopes-Júnior; Francisco Magalhães; Victor Hugo Bastos; Kaline Rocha; Victor Marinho; Gildário Lima; Bruna Velasques; Pedro Ribeiro; Marco Orsini; Bruno Pessoa; Marco Antonio Araujo Leite

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms...

  17. Disease-associated PrP in the enteric nervous system of scrapie-affected Suffolk sheep.

    Science.gov (United States)

    Heggebø, Ragna; González, Lorenzo; Press, Charles McL; Gunnes, Gjermund; Espenes, Arild; Jeffrey, Martin

    2003-05-01

    Disease-associated prion protein (PrP(d)) in the enteric nervous system (ENS) of 20- to 24-month-old Suffolk sheep in the late subclinical and early clinical phase of scrapie was studied. Sites in the alimentary tract extending from the forestomachs and abomasum to the colon from scrapie-affected sheep (PrP(ARQ/ARQ)) and scrapie-resistant sheep (PrP(ARR/ARQ) and PrP(ARR/ARR)) were examined. PrP(d) was found only in scrapie-affected sheep and was most prominent in the ENS when abundant deposits of PrP(d) were also present in adjacent lymphoid nodules. Immunolabelling with the nerve fibre markers PgP 9.5 and neuron-specific enolase and the satellite cell marker glial fibrillary acidic protein revealed the extensive ganglionated networks of the myenteric and submucosal plexi. Fewer nerve fibres were present in the lamina propria, T-cell dominated interfollicular areas and dome regions of Peyer's patches. A substantial network of nerve fibres was detected in many lymphoid nodules of both the scrapie-affected and scrapie-resistant sheep. Nerve fibres were also detected within the capsule of lymphoid nodules. Electron microscopy revealed the presence of nerves in the lymphoid nodules, showing a close association with follicular dendritic cells, lymphocytes and tingible body macrophages. In demonstrating that lymphoid nodules in the Peyer's patches of scrapie-affected sheep possess a substantial network of nerve fibres, the present study shows that nodules provide close contact between nerve fibres and cell populations known to contain abundant PrP(d), including follicular dendritic cells and tingible body macrophages, and that gut-associated lymphoid nodules in sheep may represent an important site for neuroinvasion. PMID:12692300

  18. Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System

    Science.gov (United States)

    Martinez, Alejandra N.; Philipp, Mario T.

    2016-01-01

    This review addresses the role that substance P (SP) and its preferred receptor neurokinin-1 (NK1R) play in neuroinflammation associated with select bacterial, viral, parasitic, and neurodegenerative diseases of the central nervous system. The SP/NK1R complex is a key player in the interaction between the immune and nervous systems. A common effect of this interaction is inflammation. For this reason and because of the predominance in the human brain of the NK1R, its antagonists are attractive potential therapeutic agents. Preventing the deleterious effects of SP through the use of NK1R antagonists has been shown to be a promising therapeutic strategy, as these antagonists are selective, potent, and safe. Here we evaluate their utility in the treatment of different neuroinfectious and neuroinflammatory diseases, as a novel approach to clinical management of CNS inflammation.

  19. Glucocorticoids and nervous system plasticity

    Institute of Scientific and Technical Information of China (English)

    Kathryn M Madalena; Jessica K Lerch

    2016-01-01

    Glucocorticoid and glucocorticoid receptor (GC/GR) interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inlfammatoryvs. pro-inlfammatory) can vary depending on the duration of GC exposure or central nervous system (CNS) injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new ifndings on gender speciifc immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing.

  20. Glucocorticoids and nervous system plasticity

    Directory of Open Access Journals (Sweden)

    Kathryn M Madalena

    2016-01-01

    Full Text Available Glucocorticoid and glucocorticoid receptor (GC/GR interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inflammatory vs. pro-inflammatory can vary depending on the duration of GC exposure or central nervous system (CNS injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new findings on gender specific immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing.

  1. Evolutionary Autonomous Health Monitoring System (EAHMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's Robotics, Tele-Robotics and Autonomous Systems Roadmap, we are proposing the "Evolutionary Autonomous Health Monitoring System" (EAHMS) for...

  2. Exercise and autonomic function.

    Science.gov (United States)

    Goldsmith, R L; Bloomfield, D M; Rosenwinkel, E T

    2000-03-01

    The complex interplay between the dichotomous subdivisions of the autonomic nervous system establishes and maintains a delicately tuned homeostasis in spite of an ever-changing environment. Aerobic exercise training can increase activity of the parasympathetic nervous system and decrease sympathetic activity. Conversely, it is well-documented that cardiac disease is often characterized by attenuated parasympathetic activity and heightened sympathetic tone. A correlation between autonomic disequilibrium and disease has led to the hypothesis that exercise training, as a therapy that restores the autonomic nervous system towards normal function, may be associated with, and possibly responsible for, outcome improvements in various populations. This is merely one of the many benefits that is conferred by chronic exercise training and reviewed in this issue. PMID:10758814

  3. Autonomic nervous activities assessed by heart rate variability in pre- and post-adolescent Japanese.

    Science.gov (United States)

    Fukuba, Yoshiyuki; Sato, Hironori; Sakiyama, Tomomi; Yamaoka Endo, Masako; Yamada, Masako; Ueoka, Hatsumi; Miura, Akira; Koga, Shunsaku

    2009-11-01

    There are many studies with respect to the age-related change of the characteristics of beat-to-beat heart rate variability (HRV), reflected by cardiac autonomic control, especially focusing on adulthood (i.e., aging related to the incidence of metabolic syndrome) in Japanese individuals. However, it is not still clear how basic control matures during childhood. This study was, therefore, designed to explore the HRV characteristics of pre- and post-adolescent Japanese, in a cross-sectional manner. Resting HRV data was recorded in a relaxing supine position from 136 healthy individuals between 8 and 20 years (48 boys between 8 and 14 years; 88 girls between 8 and 20 years) who were instructed to breathe periodically (0.25 Hz). Frequency-domain analysis (i.e., the spectral analysis based on an autoregressive model) of short-term, stationary R-R intervals was performed to evaluate the low- (LF; below 0.15 Hz) and high- (HF; 0.15-0.40 Hz) frequency powers. The HF to total power represents the vagal control of heart rate (PNS indicator), and the ratio of LF to HF (LF/HF) is considered to relate to the sympathetic modulations (SNS indicator). Both PNS and SNS indices had substantially no effect from age and/or gender in the range between 8 and 20 years. In conclusion, the control of the cardiac autonomic nervous system in Japanese seems already to be compatible with that in adulthood before approximately 10 years. In other word, the cardiac autonomic modulation would presumably be maturated before the age of approximately 7-8 years, though further research is awaited.

  4. Clinical, electrophysiological, and biochemical markers of peripheral and central nervous system disease in canine globoid cell leukodystrophy (Krabbe's disease).

    Science.gov (United States)

    Bradbury, Allison M; Bagel, Jessica H; Jiang, Xuntian; Swain, Gary P; Prociuk, Maria L; Fitzgerald, Caitlin A; O'Donnell, Patricia A; Braund, Kyle G; Ory, Daniel S; Vite, Charles H

    2016-11-01

    Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a debilitating and always fatal pediatric neurodegenerative disease caused by a mutation in the gene encoding the hydrolytic enzyme galactosylceramidase (GALC). In the absence of GALC, progressive loss of myelin and accumulation of a neurotoxic substrate lead to incapacitating loss of motor and cognitive function and death, typically by 2 years of age. Currently, there is no cure. Recent convincing evidence of the therapeutic potential of combining gene and cell therapies in the murine model of GLD has accelerated the requirement for validated markers of disease to evaluate therapeutic efficacy. Here we demonstrate clinically relevant and quantifiable measures of central (CNS) and peripheral (PNS) nervous system disease progression in the naturally occurring canine model of GLD. As measured by brainstem auditory-evoked response testing, GLD dogs demonstrated a significant increase in I-V interpeak latency and hearing threshold at all time points. Motor nerve conduction velocities (NCVs) in GLD dogs were significantly lower than normal by 12-16 weeks of age, and sensory NCV was significantly lower than normal by 8-12 weeks of age, serving as a sensitive indicator of peripheral nerve dysfunction. Post-mortem histological evaluations confirmed neuroimaging and electrodiagnostic assessments and detailed loss of myelin and accumulation of storage product in the CNS and the PNS. Additionally, cerebrospinal fluid psychosine concentrations were significantly elevated in GLD dogs, demonstrating potential as a biochemical marker of disease. These data demonstrate that CNS and PNS disease progression can be quantified over time in the canine model of GLD with tools identical to those used to assess human patients. © 2016 Wiley Periodicals, Inc. PMID:27638585

  5. Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development

    Directory of Open Access Journals (Sweden)

    Anna M. D. Végh

    2016-09-01

    Full Text Available The autonomic nervous system (cANS is essential for proper heart function, and complications such as heart failure, arrhythmias and even sudden cardiac death are associated with an altered cANS function. A changed innervation state may underlie (part of the atrial and ventricular arrhythmias observed after myocardial infarction. In other cardiac diseases, such as congenital heart disease, autonomic dysfunction may be related to disease outcome. This is also the case after heart transplantation, when the heart is denervated. Interest in the origin of the autonomic nerve system has renewed since the role of autonomic function in disease progression was recognized, and some plasticity in autonomic regeneration is evident. As with many pathological processes, autonomic dysfunction based on pathological innervation may be a partial recapitulation of the early development of innervation. As such, insight into the development of cardiac innervation and an understanding of the cellular background contributing to cardiac innervation during different phases of development is required. This review describes the development of the cANS and focuses on the cellular contributions, either directly by delivering cells or indirectly by secretion of necessary factors or cell-derivatives.

  6. Tuberculoma of the central nervous system.

    Science.gov (United States)

    DeLance, Arthur R; Safaee, Michael; Oh, Michael C; Clark, Aaron J; Kaur, Gurvinder; Sun, Matthew Z; Bollen, Andrew W; Phillips, Joanna J; Parsa, Andrew T

    2013-10-01

    Tuberculosis is among the oldest and most devastating infectious diseases worldwide. Nearly one third of the world's population has active or latent disease, resulting in 1.5 million deaths annually. Central nervous system involvement, while rare, is the most severe form of tuberculosis. Manifestations include tuberculoma and tuberculous meningitis, with the majority of cases occurring in children and immunocompromised patients. Despite advancements in imaging and laboratory diagnostics, tuberculomas of the central nervous system remain a diagnostic challenge due to their insidious nature and nonspecific findings. On imaging studies tuberculous meningitis is characterized by diffuse basal enhancement, but tuberculomas may be indistinguishable from neoplasms. Early diagnosis is imperative, since clinical outcomes are largely dependent on timely treatment. Stereotactic biopsy with histopathological analysis can provide a definitive diagnosis, but is only recommended when non-invasive methods are inconclusive. Standard medical treatment includes rifampicin, isoniazid, pyrazinamide, and streptomycin or ethambutol. In cases of drug resistance, revision of the treatment regimen with second-line agents is recommended over the addition of a single drug to the first-line regimen. Advances in genomics have identified virulent strains of tuberculosis and are improving our understanding of host susceptibility. Neurosurgical referral is advised for patients with elevated intracranial pressure, seizures, or brain or spinal cord compression. This review synthesizes pertinent findings in the literature surrounding central nervous system tuberculoma in an effort to highlight recent advances in pathophysiology, diagnosis, and treatment.

  7. The Human Sympathetic Nervous System Response to Spaceflight

    Science.gov (United States)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  8. Administration of an amino Acid-based regimen for the management of autonomic nervous system dysfunction related to combat-induced illness.

    Science.gov (United States)

    Shell, William E; Charuvastra, Marcus; Breitstein, Mira; Pavlik, Stephanie L; Charuvastra, Anthony; May, Lawrence; Silver, David S

    2014-01-01

    The etiology and pathophysiology of posttraumatic stress disorder (PTSD) remains poorly understood. The nutritional deficiencies associated with the altered metabolic processes of PTSD have not previously been studied in detail. This pilot study measured the reduction in symptoms in 21 military veterans reporting moderate to severe symptoms associated with PTSD. Two amino acid-based medical foods specifically formulated with biogenic amines and other nutrients were administered to study subjects targeting specific neurotransmitter deficiencies resulting from altered metabolic activity associated with PTSD. This study included the Physician Checklist - Military (PCL-M), Short Form General Health Survey (SF-36), and Epworth Sleepiness Scale to measure the change in each subject's score after 30 days of administration. An average decrease of 17 points was seen in the PCL-M, indicating a reduction in PTSD symptoms (P < 0.001). The mental health component of the SF-36 showed an average 57% increase in the subjects' mental health rating (P < 0.001). The results of this initial study demonstrate that addressing the increased dietary requirements of PTSD can improve symptoms of the disease while eliminating significant side effects. A larger, double-blind, randomized, placebo-controlled trial is warranted. PMID:25336998

  9. Administration of an Amino Acid–Based Regimen for the Management of Autonomic Nervous System Dysfunction Related to Combat-Induced Illness

    Science.gov (United States)

    Shell, William E; Charuvastra, Marcus; Breitstein, Mira; Pavlik, Stephanie L; Charuvastra, Anthony; May, Lawrence; Silver, David S

    2014-01-01

    The etiology and pathophysiology of posttraumatic stress disorder (PTSD) remains poorly understood. The nutritional deficiencies associated with the altered metabolic processes of PTSD have not previously been studied in detail. This pilot study measured the reduction in symptoms in 21 military veterans reporting moderate to severe symptoms associated with PTSD. Two amino acid–based medical foods specifically formulated with biogenic amines and other nutrients were administered to study subjects targeting specific neurotransmitter deficiencies resulting from altered metabolic activity associated with PTSD. This study included the Physician Checklist – Military (PCL-M), Short Form General Health Survey (SF-36), and Epworth Sleepiness Scale to measure the change in each subject’s score after 30 days of administration. An average decrease of 17 points was seen in the PCL-M, indicating a reduction in PTSD symptoms (P < 0.001). The mental health component of the SF-36 showed an average 57% increase in the subjects’ mental health rating (P < 0.001). The results of this initial study demonstrate that addressing the increased dietary requirements of PTSD can improve symptoms of the disease while eliminating significant side effects. A larger, double-blind, randomized, placebo-controlled trial is warranted. PMID:25336998

  10. Effects of work stress and home stress on autonomic nervous function in Japanese male workers

    OpenAIRE

    Maeda, Eri; IWATA, Toyoto; Murata, Katsuyuki

    2014-01-01

    Autonomic imbalance is one of the important pathways through which psychological stress contributes to cardiovascular diseases/sudden death. Although previous studies have focused mainly on stress at work (work stress), the association between autonomic function and stress at home (home stress) is still poorly understood. The purpose was to clarify the effect of work/home stress on autonomic function in 1,809 Japanese male workers. We measured corrected QT (QTc) interval and QT index on the e...

  11. Relationship between the mismatch of 123I-BMIPP and 201Tl myocardial single-photon emission computed tomography and autonomic nervous system activity in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    The purpose of this study was to elucidate the relationship between the mismatch of thallium-201 (Tl) and iodine-123-beta-methyl-iodophenyl-pentadecanoic acid (BMIPP) myocardial single-photon emission computed tomography (SPECT) and autonomic nervous system activity in myocardial infarction (MI) patients. The subjects were 40 patients (34 males, 6 females) who underwent examinations by 123I-BMIPP and 201Tl myocardial SPECT imaging and 24-hour Holter monitoring within a 3-day period 3 weeks after the onset of their first MI. R-R intervals were analyzed every hour over a period of 24 hours by fast Fourier transformation (FFT). High frequency (HF) and low frequency (LF) were defined as markers of cardiac vagal activity in the former and the LF/HF ratio as sympathetic activity. Greater or more extensive decreases in the BMIPP image than that in the Tl image were defined as a positive mismatch. Patients were divided into positive and negative mismatch groups of 20 patients each. There were no significant differences between the 2 groups in age, sex, site of infarction, max CK (creatine kinase), max CK-MB, or left ventricular ejection fraction. The incidences of clinical signs suggesting residual myocardial ischemia were significantly greater in the positive than in the negative mismatch group (P123I-BMIPP and 201Tl myocardial SPECT 3 weeks after a first acute myocardial infarction with uncomplicated moderate or severe heart failure and decreased heart rate variability are related to residual myocardial ischemia. A combined assessment of heart rate variability in 24 hour Holter electrocardiogram (ECG) monitoring and perfusion-metabolism mismatch in 123I-BMIPP and 201Tl myocardial SPECT is useful for determining residual myocardial ischemia in the follow-up of those with acute myocardial infarction. (author)

  12. Effects of Inhaled Rosemary Oil on Subjective Feelings and Activities of the Nervous System

    OpenAIRE

    Sayorwan, Winai; Ruangrungsi, Nijsiri; Piriyapunyporn, Teerut; Hongratanaworakit, Tapanee; Kotchabhakdi, Naiphinich; Siripornpanich, Vorasith

    2012-01-01

    Rosemary oil is one of the more famous essential oils widely used in aroma-therapy. However, the effects of rosemary oil on the human body, in particular the nervous system, have not been sufficiently studied. This study investigates the effects of the inhalation of rosemary oil on test subjects’ feelings, as well as its effects on various physiological parameters of the nervous system. Twenty healthy volunteers participated in the experiment. All subjects underwent autonomic nervous system (...

  13. What Are the Parts of the Nervous System?

    Science.gov (United States)

    ... main parts: the central nervous system and the peripheral nervous system: The central nervous system is made up of the brain and spinal cord. The peripheral nervous system is made up of the nerve fibers that ...

  14. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases.

    Science.gov (United States)

    Kipanyula, Maulilio John; Kimaro, Wahabu Hamisi; Seke Etet, Paul F

    2016-01-01

    The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca(2+)/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca(2+)-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects. PMID:27597899

  15. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases

    Directory of Open Access Journals (Sweden)

    Maulilio John Kipanyula

    2016-01-01

    Full Text Available The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA and regulator of calcineurin 1 (RCAN1 also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.

  16. HIV-Associated Central Nervous System Disease in Patients Admitted at the Douala General Hospital between 2004 and 2009: A Retrospective Study

    Directory of Open Access Journals (Sweden)

    Henry Namme Luma

    2013-01-01

    Full Text Available Background. Studies on HIV-associated central nervous system (CNS diseases in Cameroon are rare. The aim of this study was to describe the clinical presentation, identify aetiological factors, and determine predictors of mortality in HIV patients with CNS disease. Methods. From January 1, 2004 and December 31, 2009, we did at the Douala General Hospital a clinical case note review of 672 admitted adult (age ≥ 18 years HIV-1 patients, and 44.6% (300/672 of whom were diagnosed and treated for HIV-associated CNS disease. Results. The mean age of the study population was years, and median CD4 count was 49 cells/mm3 (interquartile range (QR: 17–90. The most common clinical presentations were headache (83%, focal signs (40.6%, and fever (37.7%. Toxoplasma encephalitis and cryptococcal meningitis were the leading aetiologies of HIV-associated CNS disease in 32.3% and 25% of patients, respectively. Overall mortality was 49%. Primary central nervous system lymphoma (PCNSL and bacterial meningitis had the highest case fatality rates of 100% followed by tuberculous meningitis (79.8%. Low CD4 count was an independent predictor of fatality (AOR: 3.2, 95%CI: 2.0–5.2. Conclusions. HIV-associated CNS disease is common in Douala. CNS symptoms in HIV patients need urgent investigation because of their association with diseases of high case fatality.

  17. Research progress of bacterial melanin and nervous system diseases%细菌黑色素与神经系统疾病的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨倩; 韩彦青; 姜晓萌; 裴宇恒; 李东芳; 李光来

    2016-01-01

    黑色素是广泛存在于自然界中的一类天然色素家族,苏云金芽孢杆菌突变株可获得高水平细菌黑色素,细菌黑色素能透过血脑屏障,具有抗氧化、螯合有毒金属、促进神经再生等生物学特性,可用来治疗某些与黑色素缺乏相关的神经性疾病,也能促进中枢神经系统及周围神经损伤后的结构和功能的恢复,文章就细菌黑色素在神经系统疾病的相关研究做了综述。%Melanin is a class of natural pigments family in nature. Bacterial melanin with high level of pigment synthesis-Bacillus thuringiensis was obtained. Bacterial melanin can cross the blood-brain barrier, accomplish antioxidant protection, chelate toxic metals, promote nerve regeneration. It can treat nervous system diseases with melanin deficiency, promote the structural and functional recovery of the central nervous system and peripheral nerve injury. This article summarized the research of the function of the bacterial melanin in the nervous system diseases.

  18. 血红素氧合酶-1与中枢神经系统疾病%Heme oxygenase-1 and central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    李丹

    2012-01-01

    血红素氧合酶-1(heme oxygenase-1,HO-1)是血红素降解的起始酶和限速酶,可被氧化应激、化学物质和药物等诱导激活,通过抗氧化、抗炎和抗凋亡机制发挥细胞保护作用.多种中枢神经系统(central nervous system,CNS)疾病均可引起HO-1表达变化,该酶的异常涉及到多种CNS疾病.文中就HO-1的生物学特性和在不同神经系统疾病中的表达、作用作简要综述.%Heme oxygenase-1 ( HO-1 ), as a rate-limiting enzyme of heme, can be activated by oxidative stress, chemical materials and drugs, and protects cells by its anti-oxidation, anti-inflammation and anti-apoptosis roles. Its abnormal expression is always related to many central nervous system diseases. This article summarizes the biological specificities and its expressions and effects in different central nervous system diseases.

  19. 星状神经节阻滞治疗围绝经期自主神经系统功能不稳定症状的疗效%Curative Effect of Stellate Ganglion Block on Function Disorders of Autonomic Nervous System in Perimenopause Women

    Institute of Scientific and Technical Information of China (English)

    王玲玲; 马杰; 张海泉; 张宝琴; 赵树华; 房丽

    2011-01-01

    目的 探讨星状神经节阻滞治疗围绝经期自主神经系统功能不稳定症状的疗效.方法 对30例主要表现自主神经系统功能不稳定症状如失眠、眩晕、心悸,皮肤感觉异常等的围绝经期患者.采用前入路星状神经节阻滞(Stellate Canglion Block,SGB)每日1次,左右交替进行,每10次为1个疗程,均治疗2个疗程.观察血中E2,FSH的水平及自主神经系统功能不稳定症状改善情况.结果 运用星状神经阻滞法治疗后,围绝经期患者自主神经系统功能不稳定症状明显改善,血中E2水平显著升高,FSH下降(P<0.05).结论 星状神经节阻滞可以治疗围绝经期自主神经系统功能不稳定,其症状明显缓解或消失.%[ Objective] To observe the curative effect of stellate ganglion block on function disorders of autonomic nervous system in perimenopause women. [ Methods ] 30 perimenopause women with function disorders of autonomic nervous system were collected, which the symptoms included insomnia, vertigo, palpitation and paresthesia. The patients were given anterior approach stellate ganglion block (SGB) once a day, alternating left and right, 10 times was one course, and all patients were treated for two courses. The levels of E2 and FSH in blood, and improvement of disorders symptoms of autonomic nervous system were observed. [ Results] After SGB treatment, symptoms of function disorders of autonomic nervous system in perimenopause women improved significantly, level of blood E2 increased significantly, whereas FSH level decreased (P < 0.05). [ Conclusion ] SGB has good effect on the function disorders of autonomic nervous system in perimenopause women, the symptoms are significantly alleviated or disappeared.

  20. Autonomic function assessment in Parkinson's disease patients using the kernel method and entrainment techniques.

    Science.gov (United States)

    Kamal, Ahmed K

    2007-01-01

    The experimental procedure of lowering and raising a leg while the subject is in the supine position is considered to stimulate and entrain the autonomic nervous system of fifteen untreated patients with Parkinson's disease and fifteen age and sex matched control subjects. The assessment of autonomic function for each group is achieved using an algorithm based on Volterra kernel estimation. By applying this algorithm and considering the process of lowering and raising a leg as stimulus input and the Heart Rate Variability signal (HRV) as output for system identification, a mathematical model is expressed as integral equations. The integral equations are considered and fixed for control subjects and Parkinson's disease patients so that the identification method reduced to the determination of the values within the integral called kernels, resulting in an integral equations whose input-output behavior is nearly identical to that of the system in both healthy subjects and Parkinson's disease patients. The model for each group contains the linear part (first order kernel) and quadratic part (second order kernel). A difference equation model was employed to represent the system for both control subjects and patients with Parkinson's disease. The results show significant difference in first order kernel(impulse response) and second order kernel (mesh diagram) for each group. Using first order kernel and second order kernel, it is possible to assess autonomic function qualitatively and quantitatively in both groups.

  1. Neurogenesis in the adult peripheral nervous system.

    OpenAIRE

    Czaja, Krzysztof; Fornaro, Michele; Geuna, Stefano

    2012-01-01

    Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate...

  2. N-Acetylmannosamine improves sleep-wake quality in middle-aged mice: relevance to autonomic nervous function.

    Science.gov (United States)

    Kuwahara, Masayoshi; Ito, Koichi; Hayakawa, Koji; Yagi, Shintaro; Shiota, Kunio

    2015-01-01

    Aging is associated with a variety of physiological changes originating peripherally and centrally, including within the autonomic nervous system. Sleep-wake disturbances constitute reliable hallmarks of aging in several animal species and humans. Recent studies have been interested in N-acetylmannosamine (ManNAc) a potential therapeutic agent for improving quality of life, as well as preventing age-related cognitive decline. In this study, ManNAc (5.0 mg/ml) was administered in the drinking water of middle-aged male C57BL/6J mice (55 weeks old) for 7 days. Mice were housed under a 12:12 h light:dark cycle at 23-24 °C. We evaluated bio-behavioral activity using electrocardiogram, body temperature and locomotor activity recorded by an implanted telemetry transmitter. To estimate sleep-wake profile, surface electroencephalogram and electromyogram leads connected to a telemetry transmitter were also implanted in mice. Autonomic nervous activity was evaluated using power spectral analysis of heart rate variability. ManNAc-treated mice spent more time in a wakeful state and less time in slow wave sleep during the dark phase. Parasympathetic nervous activity was increased following ManNAc treatment, then the sympatho-vagal balance was shifted predominance of parasympathetic nervous system. Furthermore, improvement in sleep-wake pattern was associated with increased parasympathetic nervous activity. These results suggest that ManNAc treatment can improve bio-behavioral activity and sleep-wake quality in middle-aged mice. This may have implications for improving sleep patterns in elderly humans. PMID:25443216

  3. Progress towards autonomous, intelligent systems

    Science.gov (United States)

    Lum, Henry; Heer, Ewald

    1987-01-01

    An aggressive program has been initiated to develop, integrate, and implement autonomous systems technologies starting with today's expert systems and evolving to autonomous, intelligent systems by the end of the 1990s. This program includes core technology developments and demonstration projects for technology evaluation and validation. This paper discusses key operational frameworks in the content of systems autonomy applications and then identifies major technological challenges, primarily in artificial intelligence areas. Program content and progress made towards critical technologies and demonstrations that have been initiated to achieve the required future capabilities in the year 2000 era are discussed.

  4. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  5. Central Nervous System Complications of Oncologic Therapy.

    Science.gov (United States)

    Hoeffner, Ellen G

    2016-08-01

    Traditional and newer agents used to treat cancer can cause significant toxicity to the central nervous system. MRI of the brain and spine is the imaging modality of choice for patients with cancer who develop neurologic symptoms. It is important to be aware of the agents that can cause neurotoxicity and their associated imaging findings so that patients are properly diagnosed and treated. In some instances conventional MRI may not be able to differentiate posttreatment effects from disease progression. In these instances advanced imaging techniques may be helpful, although further research is still needed. PMID:27444003

  6. Brain and nervous system (image)

    Science.gov (United States)

    ... complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve cells deteriorated ...

  7. Association Between the Single Nucleotide Polymorphism and the Level of Aquaporin-4 Protein Expression in Han and Minority Chinese with Inflammatory Demyelinating Diseases of the Central Nervous System.

    Science.gov (United States)

    Chu, Lan; Dai, Qingqing; Xu, Zhu; He, Dian; Wang, Hao; Wang, Qingsong; Zhang, Yifan; Zhu, Yingwu; Li, Yuan; Cai, Gang; Slavica, Krantic; Allan, Kermode

    2016-07-01

    The purpose of this study was to determine whether or not aquaporin-4 (AQP4) gene mutations are related to the pathogenesis of inflammatory demyelinating diseases in the central nervous system. Polymorphisms of AQP4 exons 1-5 were determined by sequencing DNA from 67 patients with central nervous system inflammatory demyelinating diseases, including neuromyelitis optica (NMO), multiple sclerosis, recurrent or simultaneous bilateral optic neuritis, and longitudinally extensive transverse myelitis. A plasmid with the identified new missense mutation was constructed, and human embryonic kidney cells (HEK293A) were transfected with either the pEGFP-N1-AQP4-M23 vector (bearing the identified mutated cDNA sequence) or with the plasmid bearing the wild-type AQP4 gene sequence. AQP4 protein expression was analyzed in both experimental groups using Western Blot analysis following protein extraction from transfected cells. A synonymous mutation (rs1839318) was detected on exon 3, and an additional synonymous mutation was detected on the exon 2-2 (rs72557968). Most importantly, a new missense mutation was detected on exon 2-1. According to Western blot analysis, the mutated cDNA sequence yielded increased AQP4 protein expression in comparison with the wild-type cDNA sequence (P < 0.05). AQP4 gene mutations are uncommon, occurring in only 3 out of 67 patients. Although it is possible that the mutations contributed to an increased risk of inflammatory central nervous system disease in these individuals, it is unlikely that mutations are a significant contributor to most patients with NMO spectrum disorders in China. PMID:25895050

  8. Morbidity rate of nervous system among medical personnel occupationally exposed to chronic low dose irradiation

    International Nuclear Information System (INIS)

    The morbidity rate of the nervous system among 1190 subjects, medical personnel, working with sources and environment of ionizing radiation was studied by the personal analysis of the diseases, written down in the personal out-patient department cards as well as of a control group of 870 medical workers of various other specialities. The morbidity rate of the nervous system among the medical personnel, exposed to chronic occupational radiation effect, was established not to be higher than that of the other medical workers - 38.0 and 40.3% respectively. Neuroses and peripheral nervous diseases have the greatest relative share in the structure of morbidity rate of the nervous system in both groups examined, with no statistical significance in the differences of the indices. The significantly higher incidence of autonome dystonias, established among the personnel from the X-ray departments and consulting rooms could be discussed in connection with the great relative share of the subjects from that group with a length of service over 15 years and had received the possible maximum cumulative equivalent doses. 3 tabs., 21 refs

  9. Central nervous system tuberculosis: MRI

    International Nuclear Information System (INIS)

    The MRI findings of 18 proven cases of central nervous system (CNS) tuberculosis were reviewed; 10 patients were seropositive for HIV. All had medical, laboratory, or surgical proof of CNS tuberculosis. Eleven patients had meningitis, of whom two also had arachnoiditis. Five patients had focal intra-axial tuberculomas: four brain masses and one an intramedullary spinal lesion. Two patients had focal extra-axial tuberculomas: one in the pontine cistern, and one in the spine. In all 11 patients with meningitis MRI showed diffuse, thick, meningeal enhancement. All intraparenchymal tuberculomas showed low signal intensity on T2-weighted images and ring or nodular enhancement. The extra-axial tuberculomas had areas isointense or hypointense relative to normal brain and spinal cord on T2-weighted images. Although tuberculous meningitis cannot be differentiated from other meningitides on the basis of MR findings, intraparenchymal tuberculomas show characteristic T2 shortening, not found in most other space-occupying lesions. In the appropriate clinical setting, tuberculoma should be considered. (orig.)

  10. The Effect of Clothing on the Responses of Autonomic Nervous System Activity while Walking and Running

    OpenAIRE

    小柴, 朋子; 斎藤, 嘉代

    2011-01-01

    To determine what kind of walking wear is suitable for one's health, we examined the changes in autonomic nervous system activity by analyzing heart rate variability and the changes of salivary a -amylase activity during exercise.First, ten female subjects were kept sedentary for 30 minutes in the experimental room at 25°C before the experiments. The subjects were asked to walk at 3km/h and run at 5krn/h on the treadmill for 5 minutes each after lying, sitting, and standing.Additionally, hear...

  11. Neurogenesis in the adult peripheral nervous system

    Institute of Scientific and Technical Information of China (English)

    Krzysztof Czaja; Michele Fornaro; Stefano Geuna

    2012-01-01

    Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence of insult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system.

  12. Application progress of botulinum toxin type A in the nervous system diseases%A型肉毒毒素在神经系统疾病中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    江伟; 何传斌

    2011-01-01

    In recent years, with the deepening study on the mechanism of botulinum toxin type A, the range of its applica -tions in the nervous system diseases continues to expand. Because botulinum toxin type A produces partial chemical dener-vation of the muscle resulting in a localized reduction in muscle activity, it can be used to treat hemifacial spasm, idio -pathic blepharospasm, oromandibular dystonia, spasmodic torticollis, tic disorder, limb spasticity after stroke and spastic cerebral palsy. In addition, it has recently begun to show some benefit in the control of hyperhidrosis ang excessive saliva -tion disease on account of its effects of the autonomic nervous system. It may also prove useful in treatment of a variety of headache and neuralgia owing to its analgesic effects. Therefore, botulinum toxin type A has become an important treatment option in the field of neurology.%近年来随着A型肉毒毒素作用机制研究的不断深入,其在神经系统疾病中的应用范围日渐扩大.因其肌肉化学性去神经支配效应可用于治疗面肌痉挛、特发性眼睑痉挛、口下颌肌张力障碍、痉挛性斜颈、抽动障碍、脑卒中后肢体痉挛和痉挛性脑瘫;因其植物神经系统效应可用于治疗多涎病症和多汗证;因其镇痛效应可用于治疗各种头痛和神经痛,故A型肉毒毒素已逐渐成为神经科领域一种重要的治疗手段.

  13. Types of neurons in the enteric nervous system.

    Science.gov (United States)

    Furness, J B

    2000-07-01

    This paper, written for the symposium in honour of more than 40 years' contribution to autonomic research by Professor Geoffrey Burnstock, highlights the progress made in understanding the organisation of the enteric nervous system over this time. Forty years ago, the prevailing view was that the neurons within the gut wall were post-ganglionic neurons of parasympathetic pathways. This view was replaced as evidence accrued that the neurons are part of the enteric nervous system and are involved in reflex and integrative activities that can occur even in the absence of neuronal influence from extrinsic sources. Work in Burnstock's laboratory led to the discovery of intrinsic inhibitory neurons with then novel pharmacology of transmission, and precipitated investigation of neuron types in the enteric nervous system. All the types of neurons in the enteric nervous system of the small intestine of the guinea-pig have now been identified in terms of their morphologies, projections, primary neurotransmitters and physiological identification. In this region there are 14 functionally defined neuron types, each with a characteristic combination of morphological, neurochemical and biophysical properties. The nerve circuits underlying effects on motility, blood flow and secretion that are mediated through the enteric nervous system are constructed from these neurons. The circuits for simple motility reflexes are now known, and progress has been made in analysing those involved in local control of blood flow and transmucosal fluid movement in the small intestine.

  14. The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function.

    Science.gov (United States)

    Tyszka-Czochara, Małgorzata; Grzywacz, Agata; Gdula-Argasińska, Joanna; Librowski, Tadeusz; Wiliński, Bogdan; Opoka, Włodzimierz

    2014-01-01

    Zinc, the essential trace element, is known to play multiple biological functions in human organism. This metal is a component of many structural as well as regulatory and catalytic proteins. The precise regulation of zinc homeostasis is essential for central nervous system and for the whole organism. Zinc plays a significant role in the brain development and in the proper brain function at every stage of life. This article is a review of knowledge about the role of zinc in central nervous system (CNS) function. The influence of this biometal on etiopathogenesis, prevention and treatment of selected brain diseases and disorders was discussed. Zinc imbalance can result not only from insufficient dietary intake, but also from impaired activity of zinc transport proteins and zinc dependent regulation of metabolic pathways. It is known that some neurodegenerative processes are connected with zinc dyshomeostasis and it may influence the state of Alzheimer's disease, depression and ageing-connected loss of cognitive function. The exact role of zinc and zinc-binding proteins in CNS pathogenesis processes is being under intensive investigation. The appropriate zinc supplementation in brain diseases may help in the prevention as well as in the proper treatment of several brain dysfunctions.

  15. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  16. The Enteric Nervous System in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Keith A Sharkey

    1996-01-01

    Full Text Available Since about the 1950s nerves in the wall of the intestine have been postulated to play a role in the pathogenesis of inflammatory bowel disease (IBD. Human and animal studies examining the role of nerves in intestinal inflammation are the focus of this review. Consideration is given to two possible ways that nerves are involved in IBD. First, nerves may play a role in the development or maintenance of inflammation through local release of transmitters. Second, once initiated (by whatever means, the processes of inflammation may disrupt the normal pattern of innervation and the interactions of nerves and their target tissues. Many of the functional disturbances observed in IBD are likely due to an alteration in the enteric nervous system either structurally through disruptions of nerve-target relationships or by modifications of neurotransmitters or their receptors. Finally, it appears that the enteric nervous system may be a potential therapeutic target in IBD and that neuroactive drugs acting locally can represent useful agents in the management of this disease.

  17. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    NARCIS (Netherlands)

    Weekamp, H.; Huygen, P.L.M.; Merx, J.L.; Kremer, H.P.H.; Cremers, C.W.R.J.; Longridge, N.S.

    2003-01-01

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs. Chr

  18. A rare case of mixed connective tissue disease presenting with central nervous system glioma, vasculitis and polymyositis

    OpenAIRE

    Rushabh Parikh; Pushkar Ingale; Dhaval Dave; Manish Pendse; Smita Patil; Archana Bhate

    2015-01-01

    Mixed connective tissue disease (MCTD) was first recognized by Sharp and Colleagues in 1972 among a group of patients with overlapping clinical features of systemic lupus erythematosis (SLE), scleroderma and myositis, with the presence of distinctive antibodies against, what now is known to be U1-ribonucleoprotein (RNP). We report an unusual case of a 23-year old female with MCTD characterized by the coexistence of signs, symptoms and immunological features of 3 defined autoimmune diseases SL...

  19. Intelligent, autonomous systems in space

    Science.gov (United States)

    Lum, H.; Heer, E.

    1988-01-01

    The Space Station is expected to be equipped with intelligent, autonomous capabilities; to achieve and incorporate these capabilities, the required technologies need to be identitifed, developed and validated within realistic application scenarios. The critical technologies for the development of intelligent, autonomous systems are discussed in the context of a generalized functional architecture. The present state of this technology implies that it be introduced and applied in an evolutionary process which must start during the Space Station design phase. An approach is proposed to accomplish design information acquisition and management for knowledge-base development.

  20. Contingency Software in Autonomous Systems

    Science.gov (United States)

    Lutz, Robyn; Patterson-Hine, Ann

    2006-01-01

    This viewgraph presentation reviews the development of contingency software for autonomous systems. Autonomous vehicles currently have a limited capacity to diagnose and mitigate failures. There is a need to be able to handle a broader range of contingencies. The goals of the project are: 1. Speed up diagnosis and mitigation of anomalous situations.2.Automatically handle contingencies, not just failures.3.Enable projects to select a degree of autonomy consistent with their needs and to incrementally introduce more autonomy.4.Augment on-board fault protection with verified contingency scripts

  1. Aquaporin-4 Immuneglobulin G testing in 36 consecutive Jamaican patients with inflammatory central nervous system demyelinating disease

    Directory of Open Access Journals (Sweden)

    Sherri Sandy

    2014-08-01

    Full Text Available Epidemiological studies of neuromyelitis optica (NMO in Jamaica are lacking. Here we reviewed the clinical records of 700 patients undergoing neurological evaluation at the Kingston Public Hospital, the largest tertiary institution in Jamaica over a 4 month period. We investigated the diagnostic utility of Aquaporin-4 ImmuneglobulinG (AQP4-IgG testing in 36 consecutive patients with a diagnosis of an inflammatory demyelinating disorder (IDD of the central nervous system (CNS. Patients were classified into 3 categories: i NMO, n=10; ii multiple sclerosis (MS, n=14 and iii unclassified IDD (n=12. All sera were tested for AQP-IgG status by cell binding assay (Euroimmun. No MS cases were positive. Ninety per cent of NMO cases were positive. Four of 12 patients with unclassified IDD tested positive for AQP4-IgG. AQP4-IgG seropositivity was associated with a lower socioeconomic status, higher EDSS (P=0.04 and lower pulmonary function than the seronegative cases (P=0.007. Aquaporin-4 autoimmunity may account for a significant proportion of Jamaican CNS IDDs.

  2. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[18F]fluorodopamine, (-)-6-[18F]fluoronorepinephrine and (-)-[11C]epinephrine, and radiolabelled catecholamine analogues, such as [123I]meta-iodobenzylguanidine, [11C]meta-hydroxyephedrine, [18F]fluorometaraminol, [11C]phenylephrine and meta-[76Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[18F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  3. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  4. Involvement of the peripheral nervous system in primary Sjogren's syndrome

    OpenAIRE

    Barendregt, Pieternella; Bent, Martin; Raaij-van den Aarssen, V.J.; Meiracker, Anton; Vecht, C. J.; Heijde, G.L.; Markusse, H M

    2001-01-01

    textabstractBACKGROUND: Involvement of the peripheral nervous system in patients with primary Sjogren's syndrome (SS) has been reported, but its prevalence in neurologically asymptomatic patients is not well known. OBJECTIVE: To assess clinical and neurophysiological features of the peripheral nervous system in patients with primary SS. PATIENTS AND METHODS: 39 (38 female) consecutive patients with primary SS, aged 20-81 years (mean 50), with a disease duration of 1-30 years (mean 8) were stu...

  5. Central Nervous System Involvement by Multiple Myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, A.; Gozzetti, A.; Cerase, A.;

    2015-01-01

    Introduction: Central nervous system (CNS) involvement by multiple myeloma (MM) is a rare occurrence and is found in approximately 1% of MM patients at some time during the course of their disease. At the time of diagnosis, extramedullary MM is found in 7% of patients, and another 6% may develop....... Results: The median time from MM diagnosis to CNS MM diagnosis was 3 years. Upon diagnosis, 97% patients with CNS MM received frontline therapy, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. The most common symptoms at presentation were visual changes (36...... history of chemotherapy and unfavorable cytogenetic profile, survival of individuals free from these negative prognostic factors can be prolonged due to administration of systemic treatment and/or radiotherapy. Prospective multi-institutional studies are warranted to improve the outcome of patients...

  6. Central nervous system involvement by multiple myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, Artur; Grzasko, Norbert; Gozzetti, Alessandro;

    2016-01-01

    The multicenter retrospective study conducted in 38 centers from 20 countries including 172 adult patients with CNS MM aimed to describe the clinical and pathological characteristics and outcomes of patients with multiple myeloma (MM) involving the central nervous system (CNS). Univariate......, 97% patients received initial therapy for CNS disease, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. After a median follow-up of 3.5 years, the median overall survival (OS) from the onset of CNS involvement for the entire group was 7 months. Untreated...... untreated patients and patients with favorable cytogenetic profile might be prolonged due to systemic treatment and/or radiotherapy. This article is protected by copyright. All rights reserved....

  7. Nervous system examination on YouTube

    OpenAIRE

    Azer Samy A; AlEshaiwi Sarah M; AlGrain Hala A; AlKhelaif Rana A

    2012-01-01

    Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “...

  8. [Functional anatomy of the central nervous system].

    Science.gov (United States)

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  9. Central nervous system lupus erythematosus in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Shumpei; Kimura, Kazue; Yoshida, Naotaka; Mitsuda, Toshihiro; Ibe, Masa-aki; Shimizu, Hiroko (Yokohama City Univ. (Japan). Faculty of Medicine)

    1989-12-01

    Clinical features of central nervous system (CNS) invlvement in childhood systemic lupus erythematosus (SLE) was investigated. Neuropsychiatric manifestations including seizures, chorea, headache, overt psychosis, tremor, increase of muscle spastisity, and disturbed memory were found in 47% of 15 patients with SLE. There was a well correlatin between CNS abnormalities and SLE disease activity judged by serum complement levels and anti-nuclear antibody and anti-DNA antibody titers. The administration of Prednisolon was effective for the treatment of these CNS abnormalities and steroid psychosis was rare in the present study. EEG abnormalities involving diffuse slowing and slowing bursts were found in 73% of the patients. Cranial CT scan revealed basel ganglia calcifications in 2 patients, and marked brain atrophy in 3 patients. This study indicated that in the long term following of SLE children CNS abnormalities need to be serially checked by EEG and cranial CT scans as well as serological investigations. (author).

  10. Computational approaches to the prediction of blood-brain barrier permeability: A comparative analysis of central nervous system drugs versus secretase inhibitors for Alzheimer's disease.

    Science.gov (United States)

    Rishton, Gilbert M; LaBonte, Kristen; Williams, Antony J; Kassam, Karim; Kolovanov, Eduard

    2006-05-01

    This review summarizes progress made in the development of fully computational approaches to the prediction of blood-brain barrier (BBB) permeability of small molecules, with a focus on rapid computational methods suitable for the analysis of large compound sets and virtual screening. A comparative analysis using the recently developed Advanced Chemistry Development (ACD/Labs) Inc BBB permeability algorithm for the calculation of logBB values for known Alzheimer's disease medicines, selected central nervous system drugs and new secretase inhibitors for Alzheimer's disease, is presented. The trends in logBB values and the associated physiochemical properties of these agents as they relate to the potential for BBB permeability are also discussed. PMID:16729726

  11. A Robust Compositional Architecture for Autonomous Systems

    Science.gov (United States)

    Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara

    2006-01-01

    Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.

  12. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease.

    Science.gov (United States)

    Spencer, Brian; Potkar, Rewati; Metcalf, Jeff; Thrin, Ivy; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2016-01-22

    Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic.

  13. Indoor Autonomous Airship Control and Navigation System

    OpenAIRE

    Fedorenko Roman; Krukhmalev Victor

    2016-01-01

    The paper presents an automatic control system for autonomous airship. The system is designed to organize autonomous flight of the mini-airship performing flight mission defined from ground control station. Structure, hardware and software implementation of indoor autonomous airship and its navigation and control system as well as experiment results are described.

  14. Indoor Autonomous Airship Control and Navigation System

    Directory of Open Access Journals (Sweden)

    Fedorenko Roman

    2016-01-01

    Full Text Available The paper presents an automatic control system for autonomous airship. The system is designed to organize autonomous flight of the mini-airship performing flight mission defined from ground control station. Structure, hardware and software implementation of indoor autonomous airship and its navigation and control system as well as experiment results are described.

  15. Semi autonomous mine detection system

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.

  16. Exploring the potential benefits of vaccinia virus complement control protein in controlling complement activation in pathogenesis of the central nervous system diseases.

    Science.gov (United States)

    Kotwal, Girish J; Fernando, Nilisha; Zhou, Jianhua; Valter, Krisztina

    2014-10-01

    Aging is a major risk factor for the development of diseases related to the central nervous system (CNS), such as Alzheimer's disease (AD) and age-related macular degeneration (AMD). In both cases, linkage studies and genome-wide association studies found strong links with complement regulatory genes and disease risk. In AD, both CLU and CR1 genes were implicated in the late-onset form of the disease. In AMD, polymorphisms in CFH, CFB and C2 were similarly implicated. The cost of caring for patients with AD or AMD is approaching billions of dollars, and with the baby boomers reaching their 60's, this amount is likely to increase further. Intervention using complement inhibitors for individuals in their early 50s who are at a higher risk of disease development, (testing positive for genetic risk factors), could slow the progression of AD or AMD and possibly prevent the severity of late stage symptoms. Although we have used the vaccinia virus complement control protein (VCP) to elucidate the role of complement in CNS diseases, it has merely been an investigational tool but not the only possible potential therapeutic agent.

  17. Staging Childhood Central Nervous System Embryonal Tumors

    Science.gov (United States)

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  18. Prevent Diabetes Problems: Keep Your Nervous System Healthy

    Science.gov (United States)

    ... Language URL Español Prevent diabetes problems: Keep your nervous system healthy Page Content On this page: What is ... healthy? Eating, Diet, and Nutrition What is my nervous system and what does it do? Your nervous system ...

  19. Global research priorities for infections that affect the nervous system

    Science.gov (United States)

    John, Chandy C.; Carabin, Hélène; Montano, Silvia M.; Bangirana, Paul; Zunt, Joseph R.; Peterson, Phillip K.

    2015-01-01

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries. PMID:26580325

  20. Global research priorities for infections that affect the nervous system.

    Science.gov (United States)

    John, Chandy C; Carabin, Hélène; Montano, Silvia M; Bangirana, Paul; Zunt, Joseph R; Peterson, Phillip K

    2015-11-19

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries. PMID:26580325

  1. Focal lesions in the central nervous system

    International Nuclear Information System (INIS)

    This report reviews the animal and human studies currently in progress at LBL with heavy-ion beams to induce focal lesions in the central nervous system, and discusses the potential future prospects of fundamental and applied brain research with heavy-ion beams. Methods are being developed for producing discrete focal lesions in the central nervous system using the Bragg ionization peak to investigate nerve pathways and neuroendocrine responses, and for treating pathological disorders of the brain

  2. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer's Disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Waldemar, Gunhild; Staehelin Jensen, Troels;

    2015-01-01

    BACKGROUND: Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function. OBJECTIVE: To investigate autonomic...

  3. Mechanosensitivity in the enteric nervous system

    Directory of Open Access Journals (Sweden)

    Gemma eMazzuoli-Weber

    2015-10-01

    Full Text Available The enteric nervous system (ENS autonomously controls gut muscle activity. Mechanosensitive enteric neurons (MEN initiate reflex activity by responding to mechanical deformation of the gastrointestinal wall. MEN throughout the gut primarily respond to compression or stretch rather than to shear force. Some MEN are multimodal as they respond to compression and stretch. Depending on the region up to 60% of the entire ENS population responds to mechanical stress. MEN fire action potentials after mechanical stimulation of processes or soma although they are more sensitive to process deformation. There are at least two populations of MEN based on their sensitivity to different modalities of mechanical stress and on their firing pattern. 1 Rapidly, slowly and ultra-slowly adapting neurons which encode compressive forces. 2 Ultra-slowly adapting stretch-sensitive neurons encoding tensile forces. Rapid adaptation of firing is typically observed after compressive force while slow adaptation or ongoing spike discharge occurs often during tensile stress (stretch. All MEN have some common properties: they receive synaptic input, are low fidelity mechanoreceptors and are multifunctional in that some serve interneuronal others even motor functions. Consequently, MEN possess processes with mechanosensitive as well as efferent functions. This raises the intriguing hypothesis that MEN sense and control muscle activity at the same time as servo-feedback loop. The mechanosensitive channel(s or receptor(s expressed by the different MEN populations are unknown. Future concepts have to incorporate compressive and tensile-sensitive MEN into neural circuits that controls muscle activity. They may interact to control various forms of a particular motor pattern or regulate different motor patterns independently from each other.

  4. Knowledge acquisition for autonomous systems

    Science.gov (United States)

    Lum, Henry; Heer, Ewald

    1988-01-01

    Knowledge-based capabilities for autonomous aerospace systems, such as the NASA Space Station, must encompass conflict-resolution functions comparable to those of human operators, with all elements of the system working toward system goals in a concurrent, asynchronous-but-coordinated fashion. Knowledge extracted from a design database will support robotic systems by furnishing geometric, structural, and causal descriptions required for repair, disassembly, and assembly. The factual knowledge for these databases will be obtained from a master database through a technical management information system, and it will in many cases have to be augmented by domain-specific heuristic knowledge acquired from domain experts.

  5. Emerging infections of the central nervous system.

    Science.gov (United States)

    Lyons, Jennifer; McArthur, Justin

    2013-12-01

    Emerging infections affecting the central nervous system often present as encephalitis and can cause substantial morbidity and mortality. Diagnosis requires not only careful history taking, but also the application of newly developed diagnostic tests. These diseases frequently occur in outbreaks stemming from viruses that have mutated from an animal host and gained the ability to infect humans. With globalization, this can translate to the rapid emergence of infectious clusters or the establishment of endemicity in previously naïve locations. Since these infections are often vector borne and effective treatments are almost uniformly lacking, prevention is at least as important as prompt diagnosis and institution of supportive care. In this review, we focus on some of the recent literature addressing emerging and resurging viral encephalitides in the United States and around the world-specifically, West Nile virus, dengue, polio, and cycloviruses. We also discuss new, or "emerging," techniques for the precise and rapid diagnosis of encephalitides. PMID:24136412

  6. Advances in Primary Central Nervous System Lymphoma.

    Science.gov (United States)

    Patrick, Lauren B; Mohile, Nimish A

    2015-12-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that is limited to the CNS. Although novel imaging techniques aid in discriminating lymphoma from other brain tumors, definitive diagnosis requires brain biopsy, vitreoretinal biopsy, or cerebrospinal fluid analysis. Survival rates in clinical studies have improved over the past 20 years due to the addition of high-dose methotrexate-based chemotherapy regimens to whole-brain radiotherapy. Long-term survival, however, is complicated by clinically devastating delayed neurotoxicity. Newer regimens are attempting to reduce or eliminate radiotherapy from first-line treatment with chemotherapy dose intensification. Significant advances have also been made in the fields of pathobiology and treatment, with more targeted treatments on the horizon. The rarity of the disease makes conducting of prospective clinical trials challenging, requiring collaborative efforts between institutions. This review highlights recent advances in the biology, detection, and treatment of PCNSL in immunocompetent patients.

  7. Measuring quality of sleep and autonomic nervous function in healthy Japanese women

    Directory of Open Access Journals (Sweden)

    Sato M

    2014-01-01

    correlation coefficients of activity count and high frequency (r=−0.460, P<0.01. These results support the finding that sleep-wake rhythms can be monitored efficiently with actigraphy, providing accurate data that can support the diagnosis of sleeping disorders. Furthermore, actigraphy data were associated with heart rate variability and PSQI findings, but only in subjects who were poor sleepers. Actigraphy is an accurate, efficient, rapid, and inexpensive test for determining objective and subjective sleeping problems, and can also be used in clinical tests for sleep assessment.Keywords: Pittsburgh Sleep Quality Index, actigraph, heart rate variability, autonomic nervous system activity, women, screening method

  8. Autonomous Systems: Autonomous Cryogenic Loading Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objectives are to develop and integrate Integrated Systems Health Management (ISHM) tools and component technologies into a seamless health management...

  9. Novel markers identify nervous system components of the holothurian nervous system

    OpenAIRE

    Díaz-Balzac, Carlos A.; Vázquez-Figueroa, Lionel D.; García-Arrarás, José E.

    2014-01-01

    Echinoderms occupy a key position in the evolution of deuterostomes. As such, the study of their nervous system can shed important information on the evolution of the vertebrate nervous system. However, the study of the echinoderm nervous system has lagged behind when compared to that of other invertebrates due to the lack of tools available. In this study, we tested three commercially available antibodies as markers of neural components in holothurians. Immunohistological experiments with an...

  10. Assessment and study of changes psychosomatic state of the vegetative nervous system of patients with rosacea

    Directory of Open Access Journals (Sweden)

    Davydova A.V.

    2012-06-01

    Full Text Available

    Aims. The study aimed an identifying of signs of the vegetative nervous system and detailed study of the psychological characteristics of patients with rosacea. Materials and methods. The study included 60 patients with different clinical forms of rosacea at the age from 26 to 56 years and a control group of 60 relatively healthy persons. The assessment of emotional status is carried out with the survey, Test of accentuations of temperament, Diagnostic Questionnaire Quality of Life Index (DILQ, The Zung Self-Rating Depression Scale, reduced multifactorial questionnaire for the study of personality. Vegetative nervous system was investigated using vegetative Kerdo index, Wayne and Solovyova tables and a special questionnaire for signs of vegetative disorders. Conclusions. Syndrome revealed the presence of vegetative-vascular dysfunction in patients with rosacea with a predominance of parasympathetic tone of the autonomic nervous system. Severity of psychoemotional disorders had no direct relationship to the severity of rosacea. But patients with advanced disease had a tighter self-control on the background of increased excitability and stronger internal emotional stress. Those patients were compared with a group of patients with earlier stage disease, which may provoke functional impairments and in case of long existence-the formation of psychosomatic disorders. This comprehensive assessment of vegetative and emotional status is included in the algorithm for evaluation of patients with rosacea and will successfully complement traditional therapy.

  11. Detection of borna disease virus p24 RNA from human brain tissue in patients with central nervous system tumors in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao; XIE Peng; XU Ping; PENG Dan; ZHU Dan; ZENG Zhi-lei

    2008-01-01

    Objective:It intended to examine whether there is BDV infection in the human tumor tissues of central nervous system in China and investigate the correlation between BDV infection and tumom of central nervous system.Methods:Nested reverse transcriptase polymerase chain reaction(nRT-PCR)and fluorescence quantitative polymerase chain reaction(FQ-PCR)was used to detect the BDV p24 fragments in 60 samples of human tumor tissues of central nervous system and 14 normal brain tissues.Results:The study indicated the positive rate of the BDV p24 fragment in human tumor tissues of the central nervous system (6.67%)was higher than that in normal brain tissues(0),but no statistical significance(P>0.05).Concluswn:It suggests that the BDV infection is present in the human tumor tissues of central nervous system in China.while the sample size wa.sn't large enough and we could not certify the possible correlation between BDV infection and cenfral nervous system tumors.

  12. Multi-agent autonomous system

    Science.gov (United States)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  13. Central nervous system toxicity of metallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Feng XL

    2015-07-01

    Full Text Available Xiaoli Feng,1 Aijie Chen,1 Yanli Zhang,1 Jianfeng Wang,2 Longquan Shao,1 Limin Wei2 1Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China Abstract: Nanomaterials (NMs are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano­neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. Keywords: nanomaterials, neurotoxicity, blood–brain barrier, autophagy, ROS

  14. MRT of the central nervous system. 2. rev. and enl. ed.; MRT des Zentralnervensystems

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, Michael [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie; Jansen, Olav (ed.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Radiologie und Neuroradiologie

    2014-11-01

    The book on MRT of the central nervous system includes the following chapters: anatomy, vascular diseases, brain tumors, craniocerebral injuries, infectious diseases, multiple sclerosis and related diseases, metabolic diseases, degenerative diseases, malformations and developmental disorders, hydrocephalus and intracranial hypertension, spinal marrow, degenerative caused spinal and foraminal stenosis, traumata, tumors and tumor-like neoplasm, vascular diseases, inflammations, infections and related diseases, diseases of the peripheral nervous system.

  15. Role of T cell – glial cell interactions in creating and amplifying Central Nervous System inflammation and Multiple Sclerosis disease symptoms

    Directory of Open Access Journals (Sweden)

    Eric S. Huseby

    2015-08-01

    Full Text Available Multiple Sclerosis (MS is an inflammatory disease of the Central Nervous System (CNS that causes the demyelination of nerve cells and destroys oligodendrocytes, neurons and axons. Historically, MS has been thought of as a T cell-mediated autoimmune disease of CNS white matter. However, recent studies have identified gray matter lesions in MS patients, suggesting that CNS antigens other than myelin proteins may be involved during the MS disease process. We have recently found that T cells targeting astrocyte-specific antigens can drive unique aspects of inflammatory CNS autoimmunity, including the targeting of gray matter and white matter of the brain and inducing heterogeneous clinical disease courses. In addition to being a target of T cells, astrocytes play a critical role in propagating the inflammatory response within the CNS through cytokine induced NF-ΚB signaling. Here, we will discuss the pathophysiology of CNS inflammation mediated by T cell – glial cell interactions and its contributions to CNS autoimmunity.

  16. Time perception mechanisms at central nervous system

    Directory of Open Access Journals (Sweden)

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  17. The Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  18. Cysticercosis of the nervous system

    International Nuclear Information System (INIS)

    In most Western countries cysticercosis is a rare disease and may at times cause serious diagnostic difficulties, but in South Africa, parts of India, Eastern Europe and South America it is fairly common and frequently features in differential diagnosis in its varying clinical forms. With the advent of computed tomography, diagnosis of the disease, particularly the asymptomatic forms, has become more frequent. As in other parts of the world, the true incidence of this disease in South Africa is unknown, as many more cases are encountered than are recorded and asymptomatic infestation is common. There is great regional variation, depending on pig-breeding, local customs and public health measures

  19. Cysticercosis of the nervous system

    Energy Technology Data Exchange (ETDEWEB)

    De Villiers, J.C. (Cape Town Univ. (South Africa). Dept. of Neurosurgery)

    1983-05-14

    In most Western countries cysticercosis is a rare disease and may at times cause serious diagnostic difficulties, but in South Africa, parts of India, Eastern Europe and South America it is fairly common and frequently features in differential diagnosis in its varying clinical forms. With the advent of computed tomography, diagnosis of the disease, particularly the asymptomatic forms, has become more frequent. As in other parts of the world, the true incidence of this disease in South Africa is unknown, as many more cases are encountered than are recorded and asymptomatic infestation is common. There is great regional variation, depending on pig-breeding, local customs and public health measures.

  20. Neutron activation analysis in the central nervous system tissues of neurological diseases and rats maintained on minerally unbalanced diets

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1995-02-01

    Epidemiological surveys on Guam have suggested that low calcium (Ca), magnesium (Mg) and high Al and Mn in river, soil and drinking water may be implicated in the pathogenesis of PD. Experimentally, low Ca-Mg diets with or without added Al have been found to accelerate Al deposition in the CNS of rats and monkeys. Although excessive deposition of Mn produces neurotoxic action similar to Al in CNS tissues, the mechanism of Mn deposition coupled with Al loading in the presence of low Ca-Mg intake is not yet known. In this animal study, the deposition and metal-metal interaction of both Al and Mn in the CNS, visceral organs and bones of rats fed unbalanced mineral diets were analyzed. Male Wistar rats, weighing 200 g, were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn content were determined in the frontal cortex, spinal cord, kidney, muscle, abdominal aorta, femur and lumbar spine using neutron activation analysis (NAA). Intake of low Ca and Mg with added Al in rats led to the high concentrations of Mn and Al in bones and in the frontal cortex. It is likely that unbalanced mineral diets and metal-metal interactions may lead to the unequal distribution of Al and Mn in bones and ultimately in the CNS inducing CNS degeneration. On the other hand, concentrations of copper (Cu), calcium (Ca) and aluminum (Al) for 26 subanatomical regions of the CNS were measured by neutron activation analysis (NAA) in two cases of Wilson`s disease, two of portal systemic encephalopathy, six pathologically verified cases of ALS, four of Parkinson`s disease and five neurologically normal controls. Also zinc (Zn) and iron (Fe) concentrations were measured by NAA for frontal and occipital lobes of parkinsonism-dementia. (author).

  1. Sjogrens Syndrome Presenting with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Tülay Terzi

    2012-01-01

    Full Text Available Sjogren’s syndrome is a slowly progressive autoimmune disease. Neurological involvement occurs in approximately 20-25% cases in Sjogren’s syndrome. 87% of the neurological involvement is peripheral nervous system, almost 13% in the form of central nervous system involvement. Affected central nervous system may show similar clinical and radiological findings as in multiple sclerosis (MS. In this paper, a 43-year-old patient is discussed who was referred with the complaint of dizziness, there was MS- like lesions in brain imaging studies and was diagnosed with Sjogren’s syndrome. MS- like clinical and radiologic tables can be seen, albeit rarely in Sjogren’s syndrome. In these cases, early diagnosis and early treatment for the sjögren has a great importance for the prognosis of the disease.

  2. APDS: Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

    2002-02-14

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

  3. Laser puncture therapy of nervous system disorders

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  4. Autonomic Management for Multi-agent Systems

    OpenAIRE

    Nadir kamal Salih; G. K. Viju; Mohamed, Abdelmotalib A.

    2011-01-01

    Autonomic computing is a computing system that can manage itself by self-configuration, self-healing, self-optimizing and self-protection. Researchers have been emphasizing the strong role that multi agent systems can play progressively towards the design and implementation of complex autonomic systems. The important of autonomic computing is to create computing systems capable of managing themselves to a far greater extent than they do today. With the nature of autonomy, reactivity, socialit...

  5. Therapeutic Application of Electric Fields in the Injured Nervous System

    OpenAIRE

    Haan, Niels; Song, Bing

    2014-01-01

    Significance: Nervous system injuries, both in the peripheral nervous system (PNS) and central nervous system are a major cause for pain, loss-of-function, and impairment of daily life. As nervous system injuries commonly heal slowly or incompletely, new therapeutic approaches may be required.

  6. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka;

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  7. The administration of the Rorschach inkblot method and changes in autonomic nervous system activity [Aplikace Rorschachovy metody a změny v aktivitě autonomního nervového systému

    Directory of Open Access Journals (Sweden)

    Emil Šiška

    2009-09-01

    Full Text Available BACKGROUND: The administration of some psychological methods can be a temporary source of stress and evoke in some patients a pathophysiological reaction with a negative health outcome. OBJECTIVE: The aim of the study was to find out whether the administration of the Rorschach Inkblot Method (RIM can change the autonomic nervous system (ANS activity in terms of shifting the sympathovagal balance towards sympathetic activity. METHODS: The RIM test was applied to 39 healthy females (22.8 ± 2.4 years. ANS activity was measured by the spectral analysis of heart rate variability (SA HRV before, during, and after the RIM test. The same algorithm as in the previous procedure was employed in 30 healthy females (21.41 ± 1.7 years, however the Stroop color word test (SCWD, a very powerful stressor with a marked impact on ANS activity, instead of the RIM, was administered. Five relative parameters of SA HRV were used: percentages of VLF (very low frequency, LF (low frequency and HF (high frequency components (from the spectral power total and VLF/HF and LF/HF ratios. Changes in VLF/HF and LF/HF during the RIM and SCWT tests were used to compare the tests. RESULTS: During the RIM administration, a significant decrease in spectral power in HF (%, a significant increase in VLF (% and LF (%, and a significant increase in LF/HF and VLF/HF ratios have been shown. No significant differences in VLF/HF (markers of stressful situations among the RIM and the SCWT were found. CONCLUSIONS: The administration of the RIM can act as a powerful stressor and causes a significant decrease in parasympathetic activity and the shift of sympathovagal balance towards sympathetic activity. Administration of RIM and SCWT tests can produce stress of comparable intensity, with a similar impact on ANS activity. [VÝCHODISKA: Použití některých psychologických metod může přechodně působit jako zdroj stresu a u některých pacientů vyvolat patofyziologické reakce s negativn

  8. Structural and functional features of central nervous system lymphatic vessels.

    Science.gov (United States)

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  9. Successful treatment with cladribine of Erdheim-Chester disease with orbital and central nervous system involvement developing after treatment of langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Perić Predrag

    2016-01-01

    Full Text Available Introduction. Erdheim-Chester disease (ECD is a rare, systemic form of non-Langerhans cell histiocytosis of the juvenile xantho-granuloma family with characteristic bilateral symmetrical long bone osteosclerosis, associated with xanthogranulomatous extras-keletal organ involvement. In ECD, central nervous system (CNS and orbital lesions are frequent, and more than half of ECD patients carry the V600E mutation of the proto-oncogene BRAF. The synchronous or metachronous development of ECD and Langerhans cell histiocytosis (LCH in the same patients is rare, and the possible connection between them is still obscure. Cladribine is a purine substrate analogue that is toxic to lymphocytes and monocytes with good hematoencephalic penetration. Case report. We presented a 23-year-old man successfully treated with cladribine due to BRAF V600E-mutation-negative ECD with bilateral orbital and CNS involvement. ECD developed metachronously, 6 years after chemotherapy for multisystem LCH with complete disease remission and remaining central diabetes insipidus. During ECD treatment, the patient received 5 single-agent chemotherapy courses of cladribine (5 mg/m2 for 5 consecutive days every 4 weeks, with a reduction in dose to 4 mg/m2 in a fifth course, delayed due to severe neutropenia and thoracic dermatomal herpes zoster infection following the fourth course. Radiologic signs of systemic and CNS disease started to resolve 3 months after the end of chemotherapy, and CNS lesions completely resolved within 2 years after the treatment. After 12-year follow-up, there was no recurrence or appearance of new systemic or CNS xanthogranu-lomatous lesions or second malignancies. Conclusion. In accordance with our findings and recommendations provided by other authors, cladribine can be considered an effective alternative treatment for ECD, especially with CNS involvement and BRAF V600E-mutation-negative status, when interferon-α as the first-line therapy fails.

  10. Brain Facts: A Primer on the Brain and Nervous System.

    Science.gov (United States)

    Carey, Joseph, Ed.

    This booklet describes only a glimpse of what is known about the nervous system, brain disorders, and the exciting avenues of research that promise new therapies for many of the most devastating neurological and psychiatric diseases. The neuron, brain development, sensation and perception, learning and memory, movement, advances and challenges in…

  11. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  12. Gross anatomy and development of the peripheral nervous system.

    Science.gov (United States)

    Catala, Martin; Kubis, Nathalie

    2013-01-01

    The nervous system is divided into the central nervous system (CNS) composed of the brain, the brainstem, the cerebellum, and the spinal cord and the peripheral nervous system (PNS) made up of the different nerves arising from the CNS. The PNS is divided into the cranial nerves III to XII supplying the head and the spinal nerves that supply the upper and lower limbs. The general anatomy of the PNS is organized according to the arrangement of the fibers along the rostro-caudal axis. The control of the development of the PNS has been unravelled during the last 30 years. Motor nerves arise from the ventral neural tube. This ventralization is induced by morphogenetic molecules such as sonic hedgehog. In contrast, the sensory elements of the PNS arise from a specific population of cells originating from the roof of the neural tube, namely the neural crest. These cells give rise to the neurons of the dorsal root ganglia, the autonomic ganglia and the paraganglia including the adrenergic neurons of the adrenals. Furthermore, the supportive glial Schwann cells of the PNS originate from the neural crest cells. Growth factors as well as myelinating proteins are involved in the development of the PNS.

  13. Analysis of autonomic modulation after an acute session of resistance exercise at different intensities in chronic obstructive pulmonary disease patients

    Directory of Open Access Journals (Sweden)

    Nicolino J

    2015-01-01

    differences in the recovery period compared to baseline, regardless of the intensity of the exercise performed. Keywords: heart rate variability, autonomic nervous system, sympathetic nervous system, parasympathetic nervous system, physical exercise 

  14. An Autonomous Flight Safety System

    Science.gov (United States)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  15. Testbed for an autonomous system

    Science.gov (United States)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok K.; Larsen, Ronald L.

    1989-01-01

    In previous works we have defined a general architectural model for autonomous systems, which can easily be mapped to describe the functions of any automated system (SDAG-86-01), and we illustrated that model by applying it to the thermal management system of a space station (SDAG-87-01). In this note, we will further develop that application and design the detail of the implementation of such a model. First we present the environment of our application by describing the thermal management problem and an abstraction, which was called TESTBED, that includes a specific function for each module in the architecture, and the nature of the interfaces between each pair of blocks.

  16. INSULIN AND INSULIN RESISTANCE: NEW MOLECULE MARKERS AND TARGET MOLECULE FOR THE DIAGNOSIS AND THERAPY OF DISEASES OF THE CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    A. B. Salmina

    2013-01-01

    Full Text Available The review summarizes current data on the role of insulin in the regulation of t glucose metabolism in the central nervous system at physiologic and pathologic conditions. For many years, the brain has been considered as an insulin-independent organ which utilizes glucose without insulin activity. However, it is become clear now that insulin not only regulates glucose transport and metabolism, but also has modulatory efftects in impact on excitability, proliferation and differentiation of brain progenitor cells, synaptic plasticity and memory formation, secretion of neurotransmitters, apoptosis. We have critically reviewed literature information and our own data on the role of insulin and insulin resistance in neuron-glia metabolic coupling, regulation of NAD+ metabolism and action of NAdependent enzymes, neurogenesis, brain development in (pathophysiological conditions. The paper clarifies interrelations between alterations in glucose homeostasis, development of insulin resistance and development of neurodegeneration (Alzheimer's disease and Parkinson's disease, autism, stroke, and depression. We discuss the application of novel molecular markers of insulin resistance (adipokines, α-hydroxybutyrate, BDNF, insulin-regulated aminopeptidase, provasopressin and molecular targets for diagnostics and treatment of brain disorders associated with insulin resistance.

  17. Epidemiology and phospholipase activity of oral Candida spp. among patients with central nervous system diseases before and after dental cleaning procedure

    Directory of Open Access Journals (Sweden)

    Aurélia Silva Ribeiro

    2010-03-01

    Full Text Available Patients suffering of diseases that affect central nervous system may be considered more susceptible to the infectious diseases of mouth. Sixty-nine patients suffering of cerebral palsy, Down's syndrome and metal retardation were submitted to saliva examination for the presence of Candida spp. before and after a procedure of dental cleaning. The isolates were submitted to assay for verifying phospholipase production. 55.10% of the patients provided isolation of Candida spp. The frequency of isolation obtained before dental procedure was: C. albicans (83.33%, C. krusei (8.33% and C. kefyr, C. parapsilosis and C. glabrata (2.78% each. The frequency after the procedure was: C. albicans (68.57%, C. parapsilosis (11.43%, C. krusei and C. kefyr (8.57% each and Candida glabrata (2.86%. We verified significantly difference (p < 0.01 between populations obtained at the two examinations. Phospholipase production was verified only among C. albicans strains and the proportion of producers was higher when testing isolates obtained after dental cleaning procedure. Studies focused on Candida spp. isolation are useful for better comprehension of the role of these yeasts on the oral flora from patients with cerebral palsy, Down's syndrome and metal retardation.

  18. Nervous system examination on YouTube

    Directory of Open Access Journals (Sweden)

    Azer Samy A

    2012-12-01

    Full Text Available Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47% of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2 and mainly covered examination of the whole nervous system (8 videos, 13%, cranial nerves (42 videos, 69%, upper limbs (6 videos, 10%, lower limbs (3 videos, 5%, balance and co-ordination (2 videos, 3%. The other 68 (53% videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0. The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers. The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD. Conclusions Currently, YouTube provides an adequate resource

  19. Imaging of the fetal central nervous system

    NARCIS (Netherlands)

    Pistorius, L.R.

    2008-01-01

    Introduction : Ultrasound and MR imaging of the fetal central nervous system (CNS) develop at an ever-increasing rate. Theoretically, the two modalities should be synergistic, but a literature review revealed the difficulties of determining the merit of either technique and revealed gaps in our know

  20. The evolution of the serotonergic nervous system.

    OpenAIRE

    Hay-Schmidt, A

    2000-01-01

    The pattern of development of the serotonergic nervous system is described from the larvae of ctenophores, platyhelminths, nemerteans, entoprocts, ectoprocts (bryozoans), molluscs, polychaetes, brachiopods, phoronids, echinoderms, enteropneusts and lampreys. The larval brain (apical ganglion) of spiralian protostomes (except nermerteans) generally has three serotonergic neurons and the lateral pair always innervates the ciliary band of the prototroch. In contrast, brachiopods, phoronids, echi...

  1. LGI proteins in the nervous system

    NARCIS (Netherlands)

    L. Kegel (Linde); E. Aunin (Eerik); D.N. Meijer (Dies); J.R. Bermingham Jr (John)

    2013-01-01

    textabstractThe development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins) play important roles in these process

  2. Azole-Resistant Central Nervous System Aspergillosis

    NARCIS (Netherlands)

    J.W.M. van der Linden; R.R. Jansen; D. Bresters; C.E. Visser; S.E. Geerlings; E.J. Kuijper; W.J.G. Melchers; P.E. Verweij

    2009-01-01

    Three patients with central nervous system aspergillosis due to azole-resistant Aspergillus fumigatus (associated with a leucine substitution for histidine at codon 98 [L98H] and a 34-base pair repeat in tandem in the promoter region) are described. The patients were treated with combination therapy

  3. Azole-resistant central nervous system aspergillosis.

    NARCIS (Netherlands)

    Linden, J.W.M. van der; Jansen, R.R.; Bresters, D.; Visser, C.E.; Geerlings, S.E.; Kuijper, E.J.; Melchers, W.J.G.; Verweij, P.E.

    2009-01-01

    Three patients with central nervous system aspergillosis due to azole-resistant Aspergillus fumigatus (associated with a leucine substitution for histidine at codon 98 [L98H] and a 34-base pair repeat in tandem in the promoter region) are described. The patients were treated with combination therapy

  4. Information for Successful Interaction with Autonomous Systems

    Science.gov (United States)

    Malin, Jane T.; Johnson, Kathy A.

    2003-01-01

    Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.

  5. Guidance Receptors in the Nervous and Cardiovascular Systems.

    Science.gov (United States)

    Rubina, K A; Tkachuk, V A

    2015-10-01

    Blood vessels and nervous fibers grow in parallel, for they express similar receptors for chemokine substances. Recently, much attention is being given to studying guidance receptors and their ligands besides the growth factors, cytokines, and chemokines necessary to form structures in the nervous and vascular systems. Such guidance molecules determine trajectory for growing axons and vessels. Guidance molecules include Ephrins and their receptors, Neuropilins and Plexins as receptors for Semaphorins, Robos as receptors for Slit-proteins, and UNC5B receptors binding Netrins. Apart from these receptors and their ligands, urokinase and its receptor (uPAR) and T-cadherin are also classified as guidance molecules. The urokinase system mediates local proteolysis at the leading edge of cells, thereby providing directed migration. T-cadherin is a repellent molecule that regulates the direction of growing axons and blood vessels. Guidance receptors also play an important role in the diseases of the nervous and cardiovascular systems.

  6. Directional Spread of Alphaherpesviruses in the Nervous System

    Directory of Open Access Journals (Sweden)

    Lynn W. Enquist

    2013-02-01

    Full Text Available Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS, where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores commonly associated with herpes simplex virus (HSV and herpes zoster (shingles associated with varicella zoster virus (VZV. Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS. Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.

  7. Jam avoidance with autonomous systems

    OpenAIRE

    Tordeux, Antoine; Lassarre, Sylvain

    2015-01-01

    Many car-following models are developed for jam avoidance in highways. Two mechanisms are used to improve the stability: feedback control with autonomous models and increasing of the interaction within cooperative ones. In this paper, we compare the linear autonomous and collective optimal velocity (OV) models. We observe that the stability is significantly increased by adding predecessors in interaction with collective models. Yet autonomous and collective approaches are close when the speed...

  8. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    Science.gov (United States)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  9. Jam avoidance with autonomous systems

    CERN Document Server

    Tordeux, Antoine

    2016-01-01

    Many car-following models are developed for jam avoidance in highways. Two mechanisms are used to improve the stability: feedback control with autonomous models and increasing of the interaction within cooperative ones. In this paper, we compare the linear autonomous and collective optimal velocity (OV) models. We observe that the stability is significantly increased by adding predecessors in interaction with collective models. Yet autonomous and collective approaches are close when the speed difference term is taking into account. Within the linear OV models tested, the autonomous models including speed difference are sufficient to maximise the stability.

  10. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  11. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    Science.gov (United States)

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  12. A necessary and sufficient condition for transforming autonomous systems into linear autonomous Birkhoffian systems

    International Nuclear Information System (INIS)

    The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Autonomic Management for Multi-agent Systems

    Directory of Open Access Journals (Sweden)

    Nadir kamal Salih

    2011-09-01

    Full Text Available Autonomic computing is a computing system that can manage itself by self-configuration, self-healing, self-optimizing and self-protection. Researchers have been emphasizing the strong role that multi agent systems can play progressively towards the design and implementation of complex autonomic systems. The important of autonomic computing is to create computing systems capable of managing themselves to a far greater extent than they do today. With the nature of autonomy, reactivity, sociality and pro-activity, software agents are promising to make autonomic computing system a reality. This paper mixed multi-agent system with autonomic feature that completely hides its complexity from users/services. Mentioned Java Application Development Framework (JADE as platform example of this environment, could applied to web services as front end to users. With multi agent support it also provides adaptability, intelligence, collaboration, goal oriented interactions, flexibility, mobility and persistence in software systems.

  14. Towards a 'systems'-level understanding of the nervous system and its disorders.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-11-01

    It is becoming clear that nervous system development and adult functioning are highly coupled with other physiological systems. Accordingly, neurological and psychiatric disorders are increasingly being associated with a range of systemic comorbidities including, most prominently, impairments in immunological and bioenergetic parameters as well as in the gut microbiome. Here, we discuss various aspects of the dynamic crosstalk between these systems that underlies nervous system development, homeostasis, and plasticity. We believe a better definition of this underappreciated systems physiology will yield important insights into how nervous system diseases with systemic comorbidities arise and potentially identify novel diagnostic and therapeutic strategies.

  15. Autonomous navigation system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  16. Autonomous navigation system and method

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  17. Doenças do sistema nervoso de bovinos no semiárido nordestino Diseases of the nervous system of cattle in the semiarid of Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Glauco J.N. Galiza

    2010-03-01

    Full Text Available Para determinar as doenças que ocorrem no sistema nervoso de bovinos no semiárido nordestino, foi realizado um estudo retrospectivo em 411 necropsias de bovinos realizadas no Hospital Veterinário da Universidade Federal de Campina Grande, Patos, Paraíba, entre janeiro de 2000 a dezembro de 2008. Dos 411 casos analisados 139 (33,81% apresentaram alterações clínicas do sistema nervoso e as fichas foram revisadas para determinar os principais achados referentes à epidemiologia, aos sinais clínicos e às alterações macroscópicas e microscópicas. Em 28 (20,14% casos o diagnóstico foi inconclusivo. As principais enfermidades foram raiva (48,7% dos casos com sinais nervosos, abscessos cerebrais (7,2% incluindo três casos de abscesso da pituitária, febre catarral maligna (6,3%, botulismo (6,3%, alterações congênitas (4,5%, traumatismo (4,5%, tuberculose (2,7%, tétano (2,7%, infecção por herpesvírus bovino-5 (2,7%, encefalomielite não supurativa (2,7%, intoxicação por Prosopis juliflora (2,7%, status spongiosus congênito de causa desconhecida (1,8% e polioencefalomalacia (1,8%. Outras doenças diagnosticadas numa única oportunidade (0,9% foram criptococose, listeriose, encefalite tromboembólica, linfossarcoma, tripanossomíase e babesiose por Babesia bovis.Diseases of the nervous system of cattle in the semiarid region of northeastern Brazil were evaluated by a retrospective study of 411 cattle necropsies performed in the Veterinary Hospital of the Federal University of Campina Grande, Patos, Paraíba, from January 2000 to December 2008. Of the 411 cases analyzed, 139 (33.81% were from cattle that presented nervous signs and the records were reviewed to determine the epidemiological, clinical, and macroscopic and histologic main features. Diagnosis was inconclusive in 28 cases (20.14%. In cases with diagnosis the main diseases were rabies (48.7% of the cases with nervous signs, brain abscesses (7.2% including three cases of

  18. Wnt Signaling Pathway in Central Nervous System Diseases%Wnt信号通路和中枢神经系统疾病的研究进展

    Institute of Scientific and Technical Information of China (English)

    马义辉(综述); 周杰; 荔志云(审校)

    2014-01-01

    Wnt信号通路作为多细胞真核生物中的重要信号通路,不仅参与神经干细胞的增殖、分化、轴突形成等过程,还调控突触发生、突触囊泡循环等生理过程。最近的研究还证实,Wnt信号通路在血管再生、血管重塑和血脑屏障的形成等生理过程中也发挥着重要作用。近年来的研究证实, Wnt信号通路在脑卒中、阿尔兹海默症和帕金森病等中枢神经系统疾病中发挥着重要的作用。因此,探讨Wnt信号通路与神经系统疾病的病理生理机制和治疗的关系有重要意义。%As an important pathway in multicellular eukaryotes,Wnt signaling pathway not only involves in the proliferation,differentiation and neurite formation process of neural stem cells,but also regulates synap-togenesis,synaptic vesicle recycling,and other physiological processes. Recent studies also confirm that,Wnt signaling pathway plays an important role in angiogenesis,vascular remodeling and formation of blood-brain barrier and other important physiological processes. Recent studies have demonstrated that Wnt signaling pathway plays an important role in stroke,Alzheimer's disease and Parkinson's disease and other central nerv-ous system diseases. So discussing the relationship of the Wnt signaling pathway with the neurological disor-ders’ pathogenesis and treatment has an important significance.

  19. Adenosine A(1) Receptors in the Central Nervous System : Their Functions in Health and Disease, and Possible Elucidation by PET Imaging

    NARCIS (Netherlands)

    Paul, S.; Elsinga, P. H.; Ishiwata, K.; Dierckx, R. A. J. O.; van Waarde, A.

    2011-01-01

    Adenosine is a neuromodulator with several functions in the central nervous system (CNS), such as inhibition of neuronal activity in many signaling pathways. Most of the sedating, anxiolytic, seizure-inhibiting and protective actions of adenosine are mediated by adenosine A(1) receptors (A(1)R) on t

  20. Comparing the Accuracy of ES-BC, EIS-GS, and ES Oxi on Body Composition, Autonomic Nervous System Activity, and Cardiac Outputto Standardized Assessments%ES-BC,EIS-GS与ES Oxi测量方法准确率研究

    Institute of Scientific and Technical Information of China (English)

    宋军

    2014-01-01

    人体生物刺激反馈仪通常包括三种测量原理,即ES-BC(生物电阻抗)、EIS-GS(皮电反应)和ES Oxi(光度法),本文通过文献检索研究,分析三种测量方式的准确性,探讨其在临床应用中的价值。%The Electro Sensor Complex (ESC) is software that combines three devices using bioelectrical impedance, galvanic skin response, and spectrophotometry: (1) ES-BC (Electro Sensor-Body Composition; to assess body composition, (2) EIS-GS to predict autonomic nervous system activity, and (3) ES Oxi to assess cardiac output. analysis of clinical application of human biological stimulation feedback Instrument.

  1. HCV-Related Nervous System Disorders

    OpenAIRE

    Salvatore Monaco; Sergio Ferrari; Alberto Gajofatto; Gianluigi Zanusso; Sara Mariotto

    2012-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a wide spectrum of extrahepatic manifestations, affecting different organ systems. Neurological complications occur in a large number of patients and range from peripheral neuropathy to cognitive impairment. Pathogenetic mechanisms responsible for nervous system dysfunction are mainly related to the upregulation of the host immune response with production of autoantibodies, immune complexes, and cryoglobulins. Alternative mecha...

  2. Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Aβ42-induced Alzheimer's disease-like symptoms.

    Science.gov (United States)

    Lang, Minglin; Fan, Qiangwang; Wang, Lei; Zheng, Yajun; Xiao, Guiran; Wang, Xiaoxi; Wang, Wei; Zhong, Yi; Zhou, Bing

    2013-11-01

    Disruption of copper homeostasis has been implicated in Alzheimer's disease (AD) during the last 2 decades; however, whether copper is a friend or a foe is controversial. Within a genetically tractable Drosophila AD model, we manipulated the expression of human high-affinity copper importer orthologous in Drosophila to explore the in vivo roles of copper ions in the development of AD. We found that inhibition of Ctr1C expression by RNAi in Aβ-expressing flies significantly reduced copper accumulation in the brains of the flies as well as ameliorating neurodegeneration, enhancing climbing ability, and prolonging lifespan. Interestingly, Ctr1C inhibition led to a significant increase in higher-molecular-weight Aβ42 forms in brain lysates, whereas it was accompanied by a trend of decreased expression of amyloid-β degradation proteases (including NEP1-3 and IDE) with age and reduced Cu-Aβ interaction-induced oxidative stress in Ctr1C RNAi flies. Similar results were obtained from inhibiting another copper importer Ctr1B and overexpressing a copper exporter DmATP7 in the nervous system of AD flies. These results imply that copper may play a causative role in developing AD, as either Aβ oligomers or aggregates were less toxic in a reduced copper environment or one with less copper binding. Early manipulation of brain copper uptake can have a great effect on Aβ pathology.

  3. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    Science.gov (United States)

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it. PMID:26578509

  4. Intelligent autonomous systems 12. Vol. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukhan [Sungkyunkwan Univ., Gyeonggi-Do (Korea, Republic of). College of Information and Communication Engineering; Yoon, Kwang-Joon [Konkuk Univ., Seoul (Korea, Republic of); Cho, Hyungsuck [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Lee, Jangmyung (eds.) [Pusan National Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2013-02-01

    Recent research in Intelligent and Autonomous Systems. Volume 2 of the proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, jeju Island, Korea. Written by leading experts in the field. Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of ''Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 2 includes contributions devoted to Service Robotics and Human-Robot Interaction and Autonomous Multi-Agent Systems and Life Engineering.

  5. Compact Autonomous Hemispheric Vision System

    Science.gov (United States)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  6. Diverse roles of neurotensin agonists in the central nervous system

    Directory of Open Access Journals (Sweden)

    Mona eBoules

    2013-03-01

    Full Text Available NT is a tridecapeptide that is found in the central nervous system and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several central nervous system (CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and Parkinson’s disease.

  7. [Central nervous system tumors in pregnancy].

    Science.gov (United States)

    Podciechowski, Lech; Nowakowska, Dorota; Bielak, Adam; Nowosławska, Emilia; Szymański, Wojciech; Polis, Lech; Krasomski, Grzechorz; Fiks, Tomasz; Wilczyński, Jan

    2003-12-01

    Central nervous system tumour in pregnancy constitutes a serious complication. Considering frequent difficulties in diagnostics and therapy, the aim of the study was to present our experience in management with pregnant women with brain and spinal cord tumours. Between 1988-2000, in The Research Institute Polish Mother's Memorial Hospital in Lodzi, 4 pregnant women had been diagnosed with brain and spinal cord tumours. The incidence of tumours complicating pregnancy was 1/11460. Two patients diagnosed at 29 weeks' gestation, underwent craniotomy and tumour resection during pregnancy. Two other women with central nervous system tumours diagnosed at 39 weeks' gestation, were operated in the postpartum period. The analysis of the postoperative period, gestation and/or postpartum period in all women and well-being of their new-borns confirm undertaken medical decisions. PMID:15029742

  8. [Central nervous system malformations: neurosurgery correlates].

    Science.gov (United States)

    Jiménez-León, Juan C; Betancourt-Fursow, Yaline M; Jiménez-Betancourt, Cristina S

    2013-09-01

    Congenital malformations of the central nervous system are related to alterations in neural tube formation, including most of the neurosurgical management entities, dysraphism and craniosynostosis; alterations of neuronal proliferation; megalencefaly and microcephaly; abnormal neuronal migration, lissencephaly, pachygyria, schizencephaly, agenesis of the corpus callosum, heterotopia and cortical dysplasia, spinal malformations and spinal dysraphism. We expose the classification of different central nervous system malformations that can be corrected by surgery in the shortest possible time and involving genesis mechanisms of these injuries getting better studied from neurogenic and neuroembryological fields, this involves connecting innovative knowledge areas where alteration mechanisms in dorsal induction (neural tube) and ventral induction (telencephalization) with the current way of correction, as well as the anomalies of cell proliferation and differentiation of neuronal migration and finally the complex malformations affecting the posterior fossa and current possibilities of correcting them.

  9. NG2细胞与中枢神经系统疾病%Roles of NG2 glial cells in diseases of the central nervous system

    Institute of Scientific and Technical Information of China (English)

    许建平; 赵杰; 李韶

    2011-01-01

    NG2 cells are a novel distinct class of central nervous system(CNS)glial cells,characterized by the expression of the chondroitin sulfate proteoglycan NG2.They have been detected in a variety of human CNS diseases.As morphological,physiological and biomolecular studies of NG2 cells have been conducted,their roles have been gradually revealed.Research on cellular and molecular mechanisms in the pathophysiological state was built on the preliminary findings of their physiological functions; and in turn,this helps to clarify their physiological roles and leads to the identification of novel therapeutic targets.This review summarizes recent findings regarding the potential roles of NG2 cells in traumatic brain injury,multiple sclerosis,glioma,epilepsy,Alzheimer's disease and electroconvulsive therapy for depression.%NG2细胞是新发现的一类广泛存在于成熟和发育期中枢神经系统的胶质细胞群体.这些细胞表面表达NG2硫酸软骨素蛋白多糖,因而常被称作NG2细胞.随着NG2细胞形态学研究的深入,NG2胶质细胞的功能也越来越受到关注.NG2细胞在人类多种中枢神经系统疾病中扮演重要角色.本文结合最新的研究报道,就其在一些常见的中枢神经系统疾病中的作用进行概括综述.

  10. Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system.

    Science.gov (United States)

    Rash, J E

    2010-07-28

    The panglial syncytium maintains ionic conditions required for normal neuronal electrical activity in the central nervous system (CNS). Vital among these homeostatic functions is "potassium siphoning," a process originally proposed to explain astrocytic sequestration and long-distance disposal of K(+) released from unmyelinated axons during each action potential. Fundamentally different, more efficient processes are required in myelinated axons, where axonal K(+) efflux occurs exclusively beneath and enclosed within the myelin sheath, precluding direct sequestration of K(+) by nearby astrocytes. Molecular mechanisms for entry of excess K(+) and obligatorily-associated osmotic water from axons into innermost myelin are not well characterized, whereas at the output end, axonally-derived K(+) and associated osmotic water are known to be expelled by Kir4.1 and aquaporin-4 channels concentrated in astrocyte endfeet that surround capillaries and that form the glia limitans. Between myelin (input end) and astrocyte endfeet (output end) is a vast network of astrocyte "intermediaries" that are strongly inter-linked, including with myelin, by abundant gap junctions that disperse excess K(+) and water throughout the panglial syncytium, thereby greatly reducing K(+)-induced osmotic swelling of myelin. Here, I review original reports that established the concept of potassium siphoning in unmyelinated CNS axons, summarize recent revolutions in our understanding of K(+) efflux during axonal saltatory conduction, then describe additional components required by myelinated axons for a newly-described process of voltage-augmented "dynamic" potassium siphoning. If any of several molecular components of the panglial syncytium are compromised, K(+) siphoning is blocked, myelin is destroyed, and axonal saltatory conduction ceases. Thus, a common thread linking several CNS demyelinating diseases is the disruption of potassium siphoning/water transport within the panglial syncytium

  11. Stereotactic Radiation Therapy can Safely and Durably Control Sites of Extra-Central Nervous System Oligoprogressive Disease in Anaplastic Lymphoma Kinase-Positive Lung Cancer Patients Receiving Crizotinib

    International Nuclear Information System (INIS)

    Purpose: To analyze the durability and toxicity of radiotherapeutic local ablative therapy (LAT) applied to extra-central nervous system (eCNS) disease progression in anaplastic lymphoma kinase-positive non-small cell lung cancer (NSCLC) patients. Methods and Materials: Anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib and manifesting ≤4 discrete sites of eCNS progression were classified as having oligoprogressive disease (OPD). If subsequent progression met OPD criteria, additional courses of LAT were considered. Crizotinib was continued until eCNS progression was beyond OPD criteria or otherwise not suitable for further LAT. Results: Of 38 patients, 33 progressed while taking crizotinib. Of these, 14 had eCNS progression meeting OPD criteria suitable for radiotherapeutic LAT. Patients with eCNS OPD received 1-3 courses of LAT with radiation therapy. The 6- and 12-month actuarial local lesion control rates with radiation therapy were 100% and 86%, respectively. The 12-month local lesion control rate with single-fraction equivalent dose >25 Gy versus ≤25 Gy was 100% versus 60% (P=.01). No acute or late grade >2 radiation therapy-related toxicities were observed. Median overall time taking crizotinib among those treated with LAT versus those who progressed but were not suitable for LAT was 28 versus 10.1 months, respectively. Patients continuing to take crizotinib for >12 months versus ≤12 months had a 2-year overall survival rate of 72% versus 12%, respectively (P<.0001). Conclusions: Local ablative therapy safely and durably eradicated sites of individual lesion progression in anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib. A dose–response relationship for local lesion control was observed. The suppression of OPD by LAT in patients taking crizotinib allowed an extended duration of exposure to crizotinib, which was associated with longer overall survival

  12. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com [National Research Tomsk State University, 634050, Tomsk, Lenin Avenue, 36 (Russian Federation)

    2015-11-17

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  13. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    Science.gov (United States)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-11-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  14. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    International Nuclear Information System (INIS)

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  15. The Glutamatergic Neurotransmission in the Central Nervous System

    OpenAIRE

    Marmiroli, PL; Cavaletti, GA

    2012-01-01

    Glutamate is one of the major neurotrasmitters in mammalian brain and changes in its concentration have been associated with a number of neurological disorders, including neurodegenerative, cerebrovascular diseases and epilepsy. Moreover, recently a possible role for glutamatergic system dysfunction has been suggested also in the peripheral nervous system. This chapter will revise the current knowledge in the distribution of glutamate and of its receptors and transporters in the central nervo...

  16. Regeneration in the aging peripheral nervous system

    OpenAIRE

    Painter, Michio Wendell

    2014-01-01

    In the peripheral nervous system (PNS), aging is associated with a number of disorders, including a decline in regenerative capacity after injury. Although this decline has been observed in both rodents and humans for decades, the cellular and molecular underpinnings of this defect have remained elusive. As such, the goal of this thesis was to elucidate, at least in part, how aging impinges on axonal regeneration.

  17. LGI proteins in the nervous system

    Directory of Open Access Journals (Sweden)

    John R. Bermingham

    2013-06-01

    Full Text Available The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat domain and a so-called epilepsy-associated or EPTP (epitempin domain. Both domains are thought to function in protein–protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe epilepsy also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features. LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions.

  18. LGI proteins in the nervous system.

    Science.gov (United States)

    Kegel, Linde; Aunin, Eerik; Meijer, Dies; Bermingham, John R

    2013-01-01

    The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins) play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat) domain and a so-called epilepsy-associated or EPTP (epitempin) domain. Both domains are thought to function in protein-protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe) epilepsy) also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features). LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions. PMID:23713523

  19. Congenital tumors of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Severino, Mariasavina [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); Schwartz, Erin S. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Thurnher, Majda M. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Rydland, Jana [MR Center, St. Olav' s Hospital HF, Trondheim (Norway); Nikas, Ioannis [Agia Sophia Children' s Hospital, Imaging Department, Athens (Greece); Rossi, Andrea [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); G. Gaslini Children' s Hospital, Department of Pediatric Neuroradiology, Genoa (Italy)

    2010-06-15

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into ''definitely congenital'' (present or producing symptoms at birth), ''probably congenital'' (present or producing symptoms within the first week of life), and ''possibly congenital'' (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors

  20. Autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.