WorldWideScience

Sample records for autonomic nervous system agents

  1. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  2. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  3. Effects of the Autonomic Nervous System, Central Nervous System ...

    African Journals Online (AJOL)

    The gastrointestinal tract is chiefly involved in the digestion of ingested food, facilitation of absorption process and expulsion of the undigested food material through motility process. Motility is influenced by neurohormonal system which is associated with the enteric nervous system , autonomic nervous system and the ...

  4. PET imaging of the autonomic nervous system

    International Nuclear Information System (INIS)

    THACKERAY, James T.; BENGEL, Frank M.

    2016-01-01

    The autonomic nervous system is the primary extrinsic control of heart rate and contractility, and is subject to adaptive and maladaptive changes in cardiovascular disease. Consequently, noninvasive assessment of neuronal activity and function is an attractive target for molecular imaging. A myriad of targeted radiotracers have been developed over the last 25 years for imaging various components of the sympathetic and parasympathetic signal cascades. While routine clinical use remains somewhat limited, a number of larger scale studies in recent years have supplied momentum to molecular imaging of autonomic signaling. Specifically, the findings of the ADMIRE HF trial directly led to United States Food and Drug Administration approval of 123I-metaiodobenzylguanidine (MIBG) for Single Photon Emission Computed Tomography (SPECT) assessment of sympathetic neuronal innervation, and comparable results have been reported using the analogous PET agent 11C-meta-hydroxyephedrine (HED). Due to the inherent capacity for dynamic quantification and higher spatial resolution, regional analysis may be better served by PET. In addition, preliminary clinical and extensive preclinical experience has provided a broad foundation of cardiovascular applications for PET imaging of the autonomic nervous system. Recent years have witnessed the growth of novel quantification techniques, expansion of multiple tracer studies, and improved understanding of the uptake of different radiotracers, such that the transitional biology of dysfunctional subcellular catecholamine handling can be distinguished from complete denervation. As a result, sympathetic neuronal molecular imaging is poised to play a role in individualized patient care, by stratifying cardiovascular risk, visualizing underlying biology, and guiding and monitoring therapy.

  5. 50-57 Effects of the Autonomic Nervous System, Centra

    African Journals Online (AJOL)

    admin

    facilitation of absorption process and expulsion of the undigested food material through ... which is associated with the enteric nervous system , autonomic nervous system and the higher ..... short-chain neutralized fatty acids and 5-HT or radial ...

  6. Altered balance in the autonomic nervous system in schizophrenic patients

    DEFF Research Database (Denmark)

    Nielsen, B M; Mehlsen, J; Behnke, K

    1988-01-01

    .05). Heart-rate response to inspiration was greater in non-medicated schizophrenics compared to normal subjects (P less than 0.05), whereas no difference was found between medicated and non-medicated schizophrenics. The results show that the balance in the autonomic nervous system is altered in schizophrenic...... patients with a hyperexcitability in both the sympathetic and the parasympathetic division. Our study has thus indicated a dysfunction in the autonomic nervous system per se and the previous interpretations of attentional orienting responses in schizophrenia is questioned. Medication with neuroleptics......The aim of the present study was to evaluate the autonomic nervous function in schizophrenic patients. Twenty-eight patients (29 +/- 6 years) diagnosed as schizophrenics and in stable medication were included, together with ten schizophrenic patients (25 +/- 5 years) who were unmedicated. Eleven...

  7. Autonomic Nervous System in Paralympic Athletes with Spinal Cord Injury.

    Science.gov (United States)

    Walter, Matthias; Krassioukov, Andrei V

    2018-05-01

    Individuals sustaining a spinal cord injury (SCI) frequently suffer from sensorimotor and autonomic impairment. Damage to the autonomic nervous system results in cardiovascular, respiratory, bladder, bowel, and sexual dysfunctions, as well as temperature dysregulation. These complications not only impede quality of life, but also affect athletic performance of individuals with SCI. This article summarizes existing evidence on how damage to the spinal cord affects the autonomic nervous system and impacts the performance in athletes with SCI. Also discussed are frequently used performance-enhancing strategies, with a special focus on their legal aspect and implication on the athletes' health. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Central- and autonomic nervous system coupling in schizophrenia

    Science.gov (United States)

    Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen

    2016-01-01

    The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback–feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central–autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age–gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS–ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986

  9. Acute irradiation injury and autonomic nervous system. 2

    International Nuclear Information System (INIS)

    Matsuu, Mutsumi; Sekine, Ichiro; Shichijo, Kazuko; Ito, Masahiro; Ikeda, Yuzi; Matsuzaki, Sumihiro; Zea-Iriate, W.-L.; Kondo, Takahito

    1996-01-01

    In order to elucidate the mechanism of occurrence of radiation sickness, whole body irradiation of various doses of X-ray was done on male spontaneously hypertensive rats (SHR) whose sympathetic nervous system is functionally activated and on their original male Wistar Kyoto rats (WKY) and the change of their body weights was examined. Further, changes of blood pressure in rats irradiated at 7.5 Gy, of norepinephrine contents in their gut as a parameter of sympathetic nervous function and of acetylcholine contents as that of parasympathetic nervous function were measured. Histopathological examinations were also performed. SHR died at smaller dose than WKY. The blood pressure as a parameter of systemic sympathetic nervous system varied greatly in SHR. Norepinephrine contents elevated rapidly and greatly in SHR after irradiation and acetylcholine contents rapidly elevated in WKY. Apoptosis was more frequently observed in the intestinal crypt of SHR. Participation of autonomic nervous system was thus shown in the appearance of acute radiation injury and sickness in SHR, which was thought to be a useful model for the investigation. (K.H.)

  10. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis

    NARCIS (Netherlands)

    Koopman, F. A.; van Maanen, M. A.; Vervoordeldonk, M. J.; Tak, P. P.

    2017-01-01

    Imbalance in the autonomic nervous system (ANS) has been observed in many established chronic autoimmune diseases, including rheumatoid arthritis (RA), which is a prototypic immune-mediated inflammatory disease (IMID). We recently discovered that autonomic dysfunction precedes and predicts arthritis

  11. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    NARCIS (Netherlands)

    B. Dierckx (Bram)

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate,

  12. Evaluating the autonomic nervous system in patients with laryngopharyngeal reflux.

    Science.gov (United States)

    Huang, Wan-Ju; Shu, Chih-Hung; Chou, Kun-Ta; Wang, Yi-Fen; Hsu, Yen-Bin; Ho, Ching-Yin; Lan, Ming-Ying

    2013-06-01

    The pathogenesis of laryngopharyngeal reflux (LPR) remains unclear. It is linked to but distinct from gastroesophageal reflux disease (GERD), which has been shown to be related to disturbed autonomic regulation. The aim of this study is to investigate whether autonomic dysfunction also plays a role in the pathogenesis of LPR. Case-control study. Tertiary care center. Seventeen patients with LPR and 19 healthy controls, aged between 19 and 50 years, were enrolled in the study. The patients were diagnosed with LPR if they had a reflux symptom index (RSI) ≥ 13 and a reflux finding score (RFS) ≥ 7. Spectral analysis of heart rate variability (HRV) analysis was used to assess autonomic function. Anxiety and depression levels measured by the Beck Anxiety Inventory (BAI) and Beck Depression Inventory II (BDI-II) were also conducted. In HRV analysis, high frequency (HF) represents the parasympathetic activity of the autonomic nervous system, whereas low frequency (LF) represents the total autonomic activity. There were no significant differences in the LF power and HF power between the 2 groups. However, significantly lower HF% (P = .003) and a higher LF/HF ratio (P = .012) were found in patients with LPR, who demonstrated poor autonomic modulation and higher sympathetic activity. Anxiety was also frequently observed in the patient group. The study suggests that autonomic dysfunction seems to be involved in the pathogenesis of LPR. The potential beneficial effect of autonomic nervous system modulation as a therapeutic modality for LPR merits further investigation.

  13. Altered autonomic nervous system activity in women with unexplained recurrent pregnancy loss.

    Science.gov (United States)

    Kataoka, Kumie; Tomiya, Yumi; Sakamoto, Ai; Kamada, Yasuhiko; Hiramatsu, Yuji; Nakatsuka, Mikiya

    2015-06-01

    Autonomic nervous system activity was studied to evaluate the physical and mental state of women with unexplained recurrent pregnancy loss (RPL). Heart rate variability (HRV) is a measure of beat-to-beat temporal changes in heart rate and provides indirect insight into autonomic nervous system tone and can be used to assess sympathetic and parasympathetic tone. We studied autonomic nervous system activity by measuring HRV in 100 women with unexplained RPL and 61 healthy female volunteers as controls. The degree of mental distress was assessed using the Kessler 6 (K6) scale. The K6 score in women with unexplained RPL was significantly higher than in control women. HRV evaluated on standard deviation of the normal-to-normal interval (SDNN) and total power was significantly lower in women with unexplained RPL compared with control women. These indices were further lower in women with unexplained RPL ≥4. On spectral analysis, high-frequency (HF) power, an index of parasympathetic nervous system activity, was significantly lower in women with unexplained RPL compared with control women, but there was no significant difference in the ratio of low-frequency (LF) power to HF power (LF/HF), an index of sympathetic nervous system activity, between the groups. The physical and mental state of women with unexplained RPL should be evaluated using HRV to offer mental support. Furthermore, study of HRV may elucidate the risk of cardiovascular diseases and the mechanisms underlying unexplained RPL. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  14. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.

    Science.gov (United States)

    Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M

    2016-06-13

    Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  15. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  16. The characteristics of autonomic nervous system disorders in burning mouth syndrome and Parkinson disease.

    Science.gov (United States)

    Koszewicz, Magdalena; Mendak, Magdalena; Konopka, Tomasz; Koziorowska-Gawron, Ewa; Budrewicz, Sławomir

    2012-01-01

    To conduct a clinical electrophysiologic evaluation of autonomic nervous system functions in patients with burning mouth syndrome and Parkinson disease and estimate the type and intensity of the autonomic dysfunction. The study involved 83 subjects-33 with burning mouth syndrome, 20 with Parkinson disease, and 30 controls. The BMS group included 27 women and 6 men (median age, 60.0 years), and the Parkinson disease group included 15 women and 5 men (median age, 66.5 years). In the control group, there were 20 women and 10 men (median age, 59.0 years). All patients were subjected to autonomic nervous system testing. In addition to the Low autonomic disorder questionnaire, heart rate variability (HRV), deep breathing (exhalation/inspiration [E/I] ratio), and sympathetic skin response (SSR) tests were performed in all cases. Parametric and nonparametric tests (ANOVA, Kruskal-Wallis, and Scheffe tests) were used in the statistical analysis. The mean values for HRV and E/I ratios were significantly lower in the burning mouth syndrome and Parkinson disease groups. Significant prolongation of SSR latency in the foot was revealed in both burning mouth syndrome and Parkinson disease patients, and lowering of the SSR amplitude occurred in only the Parkinson disease group. The autonomic questionnaire score was significantly higher in burning mouth syndrome and Parkinson disease patients than in the control subjects, with the Parkinson disease group having the highest scores. In patients with burning mouth syndrome, a significant impairment of both the sympathetic and parasympathetic nervous systems was found but sympathetic/parasympathetic balance was preserved. The incidence and intensity of autonomic nervous system dysfunction was similar in patients with burning mouth syndrome and Parkinson disease, which may suggest some similarity in their pathogeneses.

  17. Central nervous system involvement in the autonomic responses to psychological distress

    NARCIS (Netherlands)

    de Morree, H.M.; Szabó, B.M.; Rutten, G.J.; Kop, W.J.

    2013-01-01

    Psychological distress can trigger acute coronary syndromes and sudden cardiac death in vulnerable patients. The primary pathophysiological mechanism that plays a role in stress-induced cardiac events involves the autonomic nervous system, particularly disproportional sympathetic activation and

  18. Effects of alpha-glucosylhesperidin on the peripheral body temperature and autonomic nervous system.

    Science.gov (United States)

    Takumi, Hiroko; Fujishima, Noboru; Shiraishi, Koso; Mori, Yuka; Ariyama, Ai; Kometani, Takashi; Hashimoto, Shinichi; Nadamoto, Tomonori

    2010-01-01

    We studied the effects of alpha-glucosylhesperidin (G-Hsp) on the peripheral body temperature and autonomic nervous system in humans. We first conducted a survey of 97 female university students about excessive sensitivity to the cold; 74% of them replied that they were susceptible or somewhat susceptible to the cold. We subsequently conducted a three-step experiment. In the first experiment, G-Hsp (500 mg) was proven to prevent a decrease in the peripheral body temperature under an ambient temperature of 24 degrees C. In the second experiment, a warm beverage containing G-Hsp promoted blood circulation and kept the finger temperature higher for a longer time. We finally used a heart-rate variability analysis to study whether G-Hsp changed the autonomic nervous activity. The high-frequency (HF) component tended to be higher, while the ratio of the low-frequency (LF)/HF components tended to be lower after the G-Hsp administration. These results suggest that the mechanism for temperature control by G-Hsp might involve an effect on the autonomic nervous system.

  19. Autonomic nervous system mediated effects of food intake. Interaction between gastrointestinal and cardiovascular systems.

    NARCIS (Netherlands)

    van Orshoven, N.P.

    2008-01-01

    The studies presented in this thesis focused on the autonomic nervous system mediated interactions between the gastrointestinal and cardiovascular systems in response to food intake and on potential consequences of failure of these interactions. The effects of food intake on cardiovascular

  20. Prions spread via the autonomic nervous system from the gut to the central nervous system in cattle incubating bovine spongiform encephalopathy.

    Science.gov (United States)

    Hoffmann, Christine; Ziegler, Ute; Buschmann, Anne; Weber, Artur; Kupfer, Leila; Oelschlegel, Anja; Hammerschmidt, Baerbel; Groschup, Martin H

    2007-03-01

    To elucidate the still-unknown pathogenesis of bovine spongiform encephalopathy (BSE), an oral BSE challenge and sequential kill study was carried out on 56 calves. Relevant tissues belonging to the peripheral and central nervous system, as well as to the lymphoreticular tract, from necropsied animals were analysed by highly sensitive immunohistochemistry and immunoblotting techniques to reveal the presence of BSE-associated pathological prion protein (PrPSc) depositions. Our results demonstrate two routes involving the autonomic nervous system through which BSE prions spread by anterograde pathways from the gastrointestinal tract (GIT) to the central nervous system (CNS): (i) via the coeliac and mesenteric ganglion complex, splanchnic nerves and the lumbal/caudal thoracic spinal cord (representing the sympathetic GIT innervation); and (ii) via the Nervus vagus (parasympathetic GIT innervation). The dorsal root ganglia seem to be subsequently affected, so it is likely that BSE prion invasion of the non-autonomic peripheral nervous system (e.g. sciatic nerve) is a secondary retrograde event following prion replication in the CNS. Moreover, BSE-associated PrPSc was already detected in the brainstem of an animal 24 months post-infection, which is 8 months earlier than reported previously. These findings are important for the understanding of BSE pathogenesis and for the development of new diagnostic strategies for this infectious disease.

  1. Order of exposure to pleasant and unpleasant odors affects autonomic nervous system response.

    Science.gov (United States)

    Horii, Yuko; Nagai, Katsuya; Nakashima, Toshihiro

    2013-04-15

    When mammals are exposed to an odor, that odor is expected to elicit a physiological response in the autonomic nervous system. An unpleasant aversive odor causes non-invasive stress, while a pleasant odor promotes healing and relaxation in mammals. We hypothesized that pleasant odors might reduce a stress response previously induced by an aversive predator odor. Rats were thus exposed to pleasant and unpleasant odors in different orders to determine whether the order of odor exposure had an effect on the physiological response in the autonomic nervous system. The first trial examined autonomic nerve activity via sympathetic and parasympathetic nerve response while the second trial examined body temperature response. Initial exposure to a pleasant odor elicited a positive response and secondary exposure to an unpleasant odor elicited a negative response, as expected. However, we found that while initial exposure to an unpleasant odor elicited a negative stress response, subsequent secondary exposure to a pleasant odor not only did not alleviate that negative response, but actually amplified it. These findings were consistent for both the autonomic nerve activity response trial and the body temperature response trial. The trial results suggest that exposure to specific odors does not necessarily result in the expected physiological response and that the specific order of exposure plays an important role. Our study should provide new insights into our understanding of the physiological response in the autonomic nervous system related to odor memory and discrimination and point to areas that require further research. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Biologically-Inspired Concepts for Autonomic Self-Protection in Multiagent Systems

    Science.gov (United States)

    Sterritt, Roy; Hinchey, Mike

    2006-01-01

    Biologically-inspired autonomous and autonomic systems (AAS) are essentially concerned with creating self-directed and self-managing systems based on metaphors &om nature and the human body, such as the autonomic nervous system. Agent technologies have been identified as a key enabler for engineering autonomy and autonomicity in systems, both in terms of retrofitting into legacy systems and in designing new systems. Handing over responsibility to systems themselves raises concerns for humans with regard to safety and security. This paper reports on the continued investigation into a strand of research on how to engineer self-protection mechanisms into systems to assist in encouraging confidence regarding security when utilizing autonomy and autonomicity. This includes utilizing the apoptosis and quiescence metaphors to potentially provide a self-destruct or self-sleep signal between autonomic agents when needed, and an ALice signal to facilitate self-identification and self-certification between anonymous autonomous agents and systems.

  3. Autonomic nervous system response patterns specificity to basic emotions.

    Science.gov (United States)

    Collet, C; Vernet-Maury, E; Delhomme, G; Dittmar, A

    1997-01-12

    The aim of this study was to test the assumption that the autonomic nervous system responses to emotional stimuli are specific. A series of six slides was randomly presented to the subjects while six autonomic nervous system (ANS) parameters were recorded: skin conductance, skin potential, skin resistance, skin blood flow, skin temperature and instantaneous respiratory frequency. Each slide induced a basic emotion: happiness, surprise, anger, fear, sadness and disgust. Results have been first considered with reference to electrodermal responses (EDR) and secondly through thermo-vascular and respiratory variations. Classical as well as original indices were used to quantify autonomic responses. The six basic emotions were distinguished by Friedman variance analysis. Thus, ANS values corresponding to each emotion were compared two-by-two. EDR distinguished 13 emotion-pairs out of 15. 10 emotion-pairs were separated by skin resistance as well as skin conductance ohmic perturbation duration indices whereas conductance amplitude was only capable of distinguishing 7 emotion-pairs. Skin potential responses distinguished surprise and fear from sadness, and fear from disgust, according to their elementary pattern analysis in form and sign. Two-by-two comparisons of skin temperature, skin blood flow (estimated by the new non-oscillary duration index) and instantaneous respiratory frequency, enabled the distinction of 14 emotion-pairs out of 15. 9 emotion-pairs were distinguished by the non-oscillatory duration index values. Skin temperature was demonstrated to be different i.e. positive versus negative in response to anger and fear. The instantaneous respiratory frequency perturbation duration index was the only one capable of separating sadness from disgust. From the six ANS parameters study, different autonomic patterns were identified, each characterizing one of the six basic emotion used as inducing signals. No index alone, nor group of parameters (EDR and thermovascular

  4. When do the symptoms of autonomic nervous system malfunction appear in patients with Parkinson's disease?

    Science.gov (United States)

    De Luka, Silvio R; Svetel, Marina; Pekmezović, Tatjana; Milovanović, Branislav; Kostić, Vladimir S

    2014-04-01

    Dysautonomia appears in almost all patients with Parkinson's disease (PD) in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson's disease rating score (UPDRS) (p nervous system disturbances among PD patients from the near onset of disease, with a predominant sympathetic nervous system involvement. The patients who developed complete autonomic neuropathy (both sympathetic and parasympathetic) were individuals with considerable level of functional failure, more severe clinical

  5. Child Abuse and Autonomic Nervous System Hyporesponsivity among Psychiatrically Impaired Children

    Science.gov (United States)

    Ford, Julian D.; Fraleigh, Lisa A.; Albert, David B.; Connor, Daniel F.

    2010-01-01

    Objective: Sexually or physically abused children are at risk for neurobiological dysregulation as well as for internalizing and disruptive behavior disorders. Stress-related autonomic nervous system (ANS) down-regulation has been proposed as a sequela of abuse and was investigated in the present study. Methods: Child Protective Services…

  6. Influences of lifestyle factors on cardiac autonomic nervous system activity over time

    NARCIS (Netherlands)

    Hu, Mandy Xian; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    Physical activity, alcohol use and smoking might affect cardiovascular disease through modifying autonomic nervous system (ANS) activity. We investigated: 1) whether there are consistent relationships between lifestyle factors and cardiac ANS activity over time, and 2) whether 2-year changes in

  7. A brief review of chronic exercise intervention to prevent autonomic nervous system changes during the aging process

    Directory of Open Access Journals (Sweden)

    Rogério Brandão Wichi

    2009-03-01

    Full Text Available The aging process is associated with alterations in the cardiovascular and autonomic nervous systems. Autonomic changes related to aging involve parasympathetic and sympathetic alterations leading to a higher incidence of cardiovascular disease morbidity and mortality. Several studies have suggested that physical exercise is effective in preventing deleterious changes. Chronic exercise in geriatrics seems to be associated with improvement in the cardiovascular system and seems to promote a healthy lifestyle. In this review, we address the major effects of aging on the autonomic nervous system in the context of cardiovascular control. We examine the use of chronic exercise to prevent cardiovascular changes during the aging process.

  8. A Brief Review of Chronic Exercise Intervention to Prevent Autonomic Nervous System Changes During the Aging Process

    Science.gov (United States)

    Wichi, Rogério Brandão; De Angelis, Kátia; Jones, Lia; Irigoyen, Maria Claudia

    2009-01-01

    The aging process is associated with alterations in the cardiovascular and autonomic nervous systems. Autonomic changes related to aging involve parasympathetic and sympathetic alterations leading to a higher incidence of cardiovascular disease morbidity and mortality. Several studies have suggested that physical exercise is effective in preventing deleterious changes. Chronic exercise in geriatrics seems to be associated with improvement in the cardiovascular system and seems to promote a healthy lifestyle. In this review, we address the major effects of aging on the autonomic nervous system in the context of cardiovascular control. We examine the use of chronic exercise to prevent cardiovascular changes during the aging process. PMID:19330253

  9. Analysis of Autonomic Nervous System Functional Age and Heart Rate Variability in Mine Workers

    Directory of Open Access Journals (Sweden)

    Vasicko T

    2016-04-01

    Full Text Available Introduction: Heavy working conditions and many unpropitious factors influencing workers health participate in development of various health disorders, among other autonomic cardiovascular regulation malfunction. The aim of this study is to draw a comparison of autonomic nervous system functional age and heart rate variability changes between workers with and without mining occupational exposure.

  10. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury.

    Science.gov (United States)

    La Fountaine, Michael F

    2017-11-29

    Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework

  11. Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice.

    Science.gov (United States)

    Shusterman, Vladimir; Usiene, Irmute; Harrigal, Chivonne; Lee, Joon Sup; Kubota, Toru; Feldman, Arthur M; London, Barry

    2002-06-01

    Transgenic mice are widely used to study cardiac function, but strain-dependent differences in autonomic nervous system activity (ANSA) have not been explored. We compared 1) short-term pharmacological responses of cardiac rhythm in FVB vs. C57Black6/SV129 wild-type mice and 2) long-term physiological dynamics of cardiac rhythm and survival in tumor necrosis factor (TNF)-alpha transgenic mice with heart failure (TNF-alpha mice) on defined backgrounds. Ambulatory telemetry electrocardiographic recordings and response to saline, adrenergic, and cholinergic agents were examined in FVB and C57Black6/SV129 mice. In FVB mice, baseline heart rate (HR) was higher and did not change after injection of isoproterenol or atropine but decreased with propranolol. In C57Black6/SV129 mice, HR did not change with propranolol but increased with isoproterenol or atropine. Mean HR, but not indexes of HR variability, was an excellent predictor of response to autonomic agents. The proportion of surviving animals was higher in TNF-alpha mice on an FVB background than on a mixed FVB/C57Black6 background. The homeostatic states of ANSA are strain specific, which can explain the interstrain differences in mean HR, pharmacological responses, and survival of animals with congestive heart failure. Strain-specific differences should be considered in selecting the strains of mice used for transgenic and gene targeting experiments.

  12. R1 autonomic nervous system in acute kidney injury.

    Science.gov (United States)

    Hering, Dagmara; Winklewski, Pawel J

    2017-02-01

    Acute kidney injury (AKI) is a rapid loss of kidney function resulting in accumulation of end metabolic products and associated abnormalities in fluid, electrolyte and acid-base homeostasis. The pathophysiology of AKI is complex and multifactorial involving numerous vascular, tubular and inflammatory pathways. Neurohumoral activation with heightened activity of the sympathetic nervous system and renin-angiotensin-aldosterone system play a critical role in this scenario. Inflammation and/or local renal ischaemia are underlying mechanisms triggering renal tissue hypoxia and resultant renal microcirculation dysfunction; a common feature of AKI occurring in numerous clinical conditions leading to a high morbidity and mortality rate. The contribution of renal nerves to the pathogenesis of AKI has been extensively demonstrated in a series of experimental models over the past decades. While this has led to better knowledge of the pathogenesis of human AKI, therapeutic approaches to improve patient outcomes are scarce. Restoration of autonomic regulatory function with vagal nerve stimulation resulting in anti-inflammatory effects and modulation of centrally-mediated mechanisms could be of clinical relevance. Evidence from experimental studies suggests that a therapeutic splenic ultrasound approach may prevent AKI via activation of the cholinergic anti-inflammatory pathway. This review briefly summarizes renal nerve anatomy, basic insights into neural control of renal function in the physiological state and the involvement of the autonomic nervous system in the pathophysiology of AKI chiefly due to sepsis, cardiopulmonary bypass and ischaemia/reperfusion experimental model. Finally, potentially preventive experimental pre-clinical approaches for the treatment of AKI aimed at sympathetic inhibition and/or parasympathetic stimulation are presented. © 2016 John Wiley & Sons Australia, Ltd.

  13. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    Science.gov (United States)

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  14. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  15. Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders.

    Science.gov (United States)

    Kushki, Azadeh; Drumm, Ellen; Pla Mobarak, Michele; Tanel, Nadia; Dupuis, Annie; Chau, Tom; Anagnostou, Evdokia

    2013-01-01

    Assessment of anxiety symptoms in autism spectrum disorders (ASD) is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS) activity for this purpose. Specially, the objectives of the study were to 1) examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2) characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature) during a baseline (movie watching) and anxiety condition (Stroop task) in a sample of typically developing children (n = 17) and children with ASD (n = 12). The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1) signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2) ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal.

  16. Role of the functional status of the autonomic nervous system in the clinical course of purulent meningitis

    Directory of Open Access Journals (Sweden)

    D. A. Zadiraka

    2014-04-01

    Full Text Available Purulent meningitis is defined by high indices of sickness and lethality rates, a great risk of cerebral and extracerebral complications development, steady residual consequences formation. During neuroinfections, the state of adaptation mechanisms, which is characterized by exhaustion of regulatory systems with the development of decompensation, plays a crucial part. Heart rate variability clearly reflects the degree of regulatory system tension caused by the influence of both physiological and pathological factors. Research aim: to increase the autonomic dysfunction diagnostics efficiency for patients suffering from purulent meningitis in the disease dynamics based on the complex of clinical evidence and functional status of autonomic nervous system. Materials and methods. There were 60 patients with purulent meningitis under medical observation. Wein’s questionnaire was used for the detection of clinical presentations of autonomic dysfunction. Functional status of autonomic nervous system was diagnosed using the method of computer-based cardiointervalometry. The screening group was formed of 20 healthy individuals. Research findings and theirs discussion. Cerebral meningeal symptom was dominant among the patients suffering from purulent meningitis at the peak of the disease. At hospitalization every fifth person (23,3% had the objective evidence of autonomic dysfunction in the form of a postural tremor of upper limbs and eyelids. The analysis of autonomic nervous system parameters functional status among the patients suffering from purulent meningitis at the peak of disease showed heart rate variability decrease in the main branches of autonomic regulation and the presence of autonomic imbalance towards vagotonia. Since the second week, clinical signs of autonomic dysfunction prevailed in the dynamics of patients suffering from purulent meningitis in the course of standard treatment, which was proved by Wein’s survey of the patients. The

  17. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice

    Directory of Open Access Journals (Sweden)

    Laurie L. Baggio

    2017-11-01

    Conclusions: GLP-1R agonists increase HR through multiple mechanisms, including regulation of autonomic nervous system function, and activation of the atrial GLP-1R. Surprisingly, the isolated atrial GLP-1R does not transduce a direct chronotropic effect following exposure to GLP-1R agonists in the intact heart, or isolated atrium, ex vivo. Hence, cardiac GLP-1R circuits controlling HR require neural inputs and do not function in a heart-autonomous manner.

  18. The influence of oxazaphosphorines alkylating agents on autonomic nervous system activity in rat experimental cystitis model.

    Science.gov (United States)

    Dobrek, Łukasz; Baranowska, Agnieszka; Thor, Piotr J

    2013-01-01

    The oxazaphosphorines alkylating agents (cyclophosphamide; CP and ifosfamide; IF) are often used in common clinical practice. However, treatment with CP/IF is burdened with the risk of many adverse drug reactions, especially including hemorrhagic cystitis (HC) that is associated with bladder overactivity symptoms (OAB). The HC pathophysiology is still not fully displayed; it seems that autonomic nervous system (ANS) functional abnormalities play important role in this disturbance. The aim of our study was to reveal the potential ANS differences in rat experimental HC model, evoked by CP and IF by an indirect ANS assessment--heart rate variability (HRV) study. We carried out our experimental research in three essential groups: control group (group 1), cyclophosphamide-induced HC (CP-HC; group 2) one and ifosfamide-induced HC (IF-HC; group 3) one. CP was i.p. administrated four times in dose of 75 mg/kg body weight while IF-treated rats received i.p. five drug doses; 50 mg/kg body weight. Control rats were administrated i.p. vehicle in appropriate volumes as CP/IF treated animals. HRV studies were performed the next day after the last oxazaphosphorines dose. Standard time- and spectral (frequency) domain parameters were estimated. We confirmed the HC development after both CP/IF in macroscopic assessment and bladder wet weight measurement; however, it was more aggravated in CP-HC group. Moreover, we demonstrated HRV disturbances, suggesting ANS impairment after both studied oxazaphosphorines, however, consistent with the findings mentioned above, the autonomic dysfunction was more emphasized after CP. CP treatment was also associated with changes of non-normalized HRV spectral components percentage distribution--a marked very low frequency--VLF [%] increase together with low frequency--LF [%] and high frequency--HF [%] decrease were observed. Taking into consideration the next findings, demonstrating the lack of both normalized power spectral components (nLF and n

  19. Autonomous Formations of Multi-Agent Systems

    Science.gov (United States)

    Dhali, Sanjana; Joshi, Suresh M.

    2013-01-01

    Autonomous formation control of multi-agent dynamic systems has a number of applications that include ground-based and aerial robots and satellite formations. For air vehicles, formation flight ("flocking") has the potential to significantly increase airspace utilization as well as fuel efficiency. This presentation addresses two main problems in multi-agent formations: optimal role assignment to minimize the total cost (e.g., combined distance traveled by all agents); and maintaining formation geometry during flock motion. The Kuhn-Munkres ("Hungarian") algorithm is used for optimal assignment, and consensus-based leader-follower type control architecture is used to maintain formation shape despite the leader s independent movements. The methods are demonstrated by animated simulations.

  20. Nervous system and receptors. Chapter 3.5

    International Nuclear Information System (INIS)

    Beaumariage, M.L.

    1975-01-01

    The literature is reviewed for the effects of sulphur-containing radioprotective agents on the nervous system and receptors. Studies of the neurological changes observed in alert animals and their modification by anaesthetics have indicated that a direct effect is exerted on the cortical and subcortical structures. Some local anaesthetic effects may result from nerve endings being squeezed by the edematous papule formed on the site of the injection. MEA and, to a lesser extent, cystamine, competitively block the neuromuscular junction by inhibiting the action of acetylcholine on the motor end-plate. The effects of radioprotective substances on the autonomic nervous system in different species have also been considered. The sensitivity of the chemo- and pressor-sensitive endings of the aortic branch, the carotids and the lungs is not affected by the administration of radioprotective agents. (U.K.)

  1. Systems, methods and apparatus for modeling, specifying and deploying policies in autonomous and autonomic systems using agent-oriented software engineering

    Science.gov (United States)

    Hinchey, Michael G. (Inventor); Penn, Joaquin (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments, an agent-oriented specification modeled with MaCMAS, is analyzed, flaws in the agent-oriented specification modeled with MaCMAS are corrected, and an implementation is derived from the corrected agent-oriented specification. Described herein are systems, method and apparatus that produce fully (mathematically) tractable development of agent-oriented specification(s) modeled with methodology fragment for analyzing complex multiagent systems (MaCMAS) and policies for autonomic systems from requirements through to code generation. The systems, method and apparatus described herein are illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming systems, method and apparatus described herein may provide faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.

  2. Autonomic nervous system function in chronic exogenous subclinical thyrotoxicosis and the effect of restoring euthyroidism

    NARCIS (Netherlands)

    Eustatia-Rutten, Carmen F. A.; Corssmit, Eleonora P. M.; Heemstra, Karen A.; Smit, Johannes W. A.; Schoemaker, Rik C.; Romijn, Johannes A.; Burggraaf, Jacobus

    2008-01-01

    Knowledge on the relationship between the autonomic nervous system and subclinical hyperthyroidism is mainly based upon cross-sectional studies in heterogeneous patient populations, and the effect of restoration to euthyroidism in subclinical hyperthyroidism has not been studied. We investigated the

  3. The role of the autonomic nervous system in Tourette Syndrome

    Science.gov (United States)

    Hawksley, Jack; Cavanna, Andrea E.; Nagai, Yoko

    2015-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics) and one or more vocal (phonic) tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist) is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus, the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS). Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an implanted device

  4. Autonomic nervous system function in chronic exogenous subclinical thyrotoxicosis and the effect of restoring euthyroidism.

    Science.gov (United States)

    Eustatia-Rutten, Carmen F A; Corssmit, Eleonora P M; Heemstra, Karen A; Smit, Johannes W A; Schoemaker, Rik C; Romijn, Johannes A; Burggraaf, Jacobus

    2008-07-01

    Knowledge on the relationship between the autonomic nervous system and subclinical hyperthyroidism is mainly based upon cross-sectional studies in heterogeneous patient populations, and the effect of restoration to euthyroidism in subclinical hyperthyroidism has not been studied. We investigated the long-term effects of exogenous subclinical hyperthyroidism on the autonomic nervous system and the potential effects of restoration of euthyroidism. This was a prospective single-blinded, placebo-controlled, randomized trial. The study was performed at a university hospital. A total of 25 patients who were on more than 10-yr TSH suppressive therapy after thyroidectomy was examined. Patients were studied at baseline and subsequently randomized to a 6-month thyroid hormone substitution regimen to obtain either euthyroidism or maintenance of the subclinical hyperthyroid state. Urinary excretion of catecholamines and heart rate variability were measured. Baseline data of the subclinical hyperthyroidism patients were compared with data obtained in patients with hyperthyroidism and controls. Urinary excretion of norepinephrine and vanillylmandelic acid was higher in the subclinical hyperthyroidism patients compared with controls and lower compared with patients with overt hyperthyroidism. Heart rate variability was lower in patients with hyperthyroidism, intermediate in subclinical hyperthyroidism patients, and highest in the healthy controls. No differences were observed after restoration of euthyroidism. Long-term exogenous subclinical hyperthyroidism has effects on the autonomic nervous system measured by heart rate variability and urinary catecholamine excretion. No differences were observed after restoration to euthyroidism. This may indicate the occurrence of irreversible changes or adaptation during long-term exposure to excess thyroid hormone that is not remedied by 6-month euthyroidism.

  5. Agent-based autonomous systems and abstraction engines: Theory meets practice

    OpenAIRE

    Dennis, L.A.; Aitken, J.M.; Collenette, J.; Cucco, E.; Kamali, M.; McAree, O.; Shaukat, A.; Atkinson, K.; Gao, Y.; Veres, S.M.; Fisher, M.

    2016-01-01

    We report on experiences in the development of hybrid autonomous systems where high-level decisions are made by a rational agent. This rational agent interacts with other sub-systems via an abstraction engine. We describe three systems we have developed using the EASS BDI agent programming language and framework which supports this architecture. As a result of these experiences we recommend changes to the theoretical operational semantics that underpins the EASS framework and present a fourth...

  6. Nocturnal airflow obstruction, histamine, and the autonomic central nervous system in children with allergic asthma

    NARCIS (Netherlands)

    van Aalderen, W. M.; Postma, D. S.; Koëter, G. H.; Knol, K.

    1991-01-01

    A study was carried out to investigate whether an imbalance in the autonomic nervous system or release of histamine, or both, is responsible for the nocturnal increase in airflow obstruction in asthmatic children. The study comprised 18 children with allergic asthma, nine with (group 1) and nine

  7. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome

    Science.gov (United States)

    Adults with irritable bowel syndrome (IBS) have been reported to have alterations in autonomic nervous system function as measured by vagal activity via heart rate variability. Whether the same is true for children is unknown. We compared young children 7 to 10 years of age with functional abdominal...

  8. Case Studies in a Physiology Course on the Autonomic Nervous System: Design, Implementation, and Evaluation

    Science.gov (United States)

    Zimmermann, Martina

    2010-01-01

    The introduction of case studies on the autonomic nervous system in a fourth-semester physiology course unit for Pharmacy students is described in this article. This article considers how these case studies were developed and presents their content. Moreover, it reflects on their implementation and, finally, the reception of such a transformation…

  9. An Intelligent Control for the Distributed Flexible Network Photovoltaic System using Autonomous Control and Agent

    Science.gov (United States)

    Park, Sangsoo; Miura, Yushi; Ise, Toshifumi

    This paper proposes an intelligent control for the distributed flexible network photovoltaic system using autonomous control and agent. The distributed flexible network photovoltaic system is composed of a secondary battery bank and a number of subsystems which have a solar array, a dc/dc converter and a load. The control mode of dc/dc converter can be selected based on local information by autonomous control. However, if only autonomous control using local information is applied, there are some problems associated with several cases such as voltage drop on long power lines. To overcome these problems, the authors propose introducing agents to improve control characteristics. The autonomous control with agents is called as intelligent control in this paper. The intelligent control scheme that employs the communication between agents is applied for the model system and proved with simulation using PSCAD/EMTDC.

  10. Autonomic nervous system profile in fibromyalgia patients and its modulation by exercise: a mini review.

    Science.gov (United States)

    Kulshreshtha, Poorvi; Deepak, Kishore K

    2013-03-01

    This review imparts an impressionistic tone to our current understanding of autonomic nervous system abnormalities in fibromyalgia. In the wake of symptoms present in patients with fibromyalgia (FM), autonomic dysfunction seems plausible in fibromyalgia. A popular notion is that of a relentless sympathetic hyperactivity and hyporeactivity based on heart rate variability (HRV) analyses and responses to various physiological stimuli. However, some exactly opposite findings suggesting normal/hypersympathetic reactivity in patients with fibromyalgia do exist. This heterogeneous picture along with multiple comorbidities accounts for the quantitative and qualitative differences in the degree of dysautonomia present in patients with FM. We contend that HRV changes in fibromyalgia may not actually represent increased cardiac sympathetic tone. Normal muscle sympathetic nerve activity (MSNA) and normal autonomic reactivity tests in patients with fibromyalgia suggest defective vascular end organ in fibromyalgia. Previously, we proposed a model linking deconditioning with physical inactivity resulting from widespread pain in patients with fibromyalgia. Deconditioning also modulates the autonomic nervous system (high sympathetic tone and a low parasympathetic tone). A high peripheral sympathetic tone causes regional ischaemia, which in turn results in widespread pain. Thus, vascular dysregulation and hypoperfusion in patients with FM give rise to ischaemic pain leading to physical inactivity. Microvascular abnormalities are also found in patients with FM. Therapeutic interventions (e.g. exercise) that result in vasodilatation and favourable autonomic alterations have proven to be effective. In this review, we focus on the vascular end organ in patients with fibromyalgia in particular and its modulation by exercise in general. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  11. Aromatherapy benefits autonomic nervous system regulation for elementary school faculty in taiwan.

    Science.gov (United States)

    Chang, Kang-Ming; Shen, Chuh-Wei

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.

  12. A Role for the Autonomic Nervous System in Modulating the Immune Response during Mild Emotional Stimuli

    NARCIS (Netherlands)

    Croiset, Gerda; Heijnen, Cobi J.; Wal, Wim E. van der; Boer, Sietse F. de; Wied, David de

    1990-01-01

    The role of the autonomic nervous system in the modulation of the immune response to emotional stimuli, was established in rats subjected to the passive avoidance test. An increase in splenic primary antibody response directed against SRBC was found after exposure of rats to the passive avoidance

  13. NOCTURNAL AIR-FLOW OBSTRUCTION, HISTAMINE, AND THE AUTONOMIC CENTRAL-NERVOUS-SYSTEM IN CHILDREN WITH ALLERGIC-ASTHMA

    NARCIS (Netherlands)

    VANAALDEREN, WMC; POSTMA, DS; KOETER, GH; KNOL, K

    A study was carried out to investigate whether an imbalance in the autonomic nervous system or release of histamine, or both, is responsible for the nocturnal increase in airflow obstruction in asthmatic children. The study comprised 18 children with allergic asthma,nine with (group 1) and nine

  14. Swarm autonomic agents with self-destruct capability

    Science.gov (United States)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  15. Effects of the Fourth Ventricle Compression in the Regulation of the Autonomic Nervous System: A Randomized Control Trial

    Directory of Open Access Journals (Sweden)

    Ana Paula Cardoso-de-Mello-e-Mello-Ribeiro

    2015-01-01

    Full Text Available Introduction. Dysfunction of the autonomic nervous system is an important factor in the development of chronic pain. Fourth ventricle compression (CV-4 has been shown to influence autonomic activity. Nevertheless, the physiological mechanisms behind these effects remain unclear. Objectives. This study is aimed at evaluating the effects of fourth ventricle compression on the autonomic nervous system. Methods. Forty healthy adults were randomly assigned to an intervention group, on whom CV-4 was performed, or to a control group, who received a placebo intervention (nontherapeutic touch on the occipital bone. In both groups, plasmatic catecholamine levels, blood pressure, and heart rate were measured before and immediately after the intervention. Results. No effects related to the intervention were found. Although a reduction of norepinephrine, systolic blood pressure, and heart rate was found after the intervention, it was not exclusive to the intervention group. In fact, only the control group showed an increment of dopamine levels after intervention. Conclusion. Fourth ventricle compression seems not to have any effect in plasmatic catecholamine levels, blood pressure, or heart rate. Further studies are needed to clarify the CV-4 physiologic mechanisms and clinical efficacy in autonomic regulation and pain treatment.

  16. Anxiety, depression and autonomic nervous system dysfunction in hypertension.

    Science.gov (United States)

    Bajkó, Zoltán; Szekeres, Csilla-Cecília; Kovács, Katalin Réka; Csapó, Krisztina; Molnár, Sándor; Soltész, Pál; Nyitrai, Erika; Magyar, Mária Tünde; Oláh, László; Bereczki, Dániel; Csiba, László

    2012-06-15

    This study examined the relationship between autonomic nervous system dysfunction, anxiety and depression in untreated hypertension. 86 newly diagnosed hypertensive patients and 98 healthy volunteers were included in the study. The psychological parameters were assessed with Spielberger State-Trait Anxiety Inventory and Beck Depression Inventory by a skilled psychologist. Autonomic parameters were examined during tilt table examination (10min lying position, 10min passive tilt). Heart rate variability (HRV) was calculated by autoregressive methods. Baroreflex sensitivity (BRS) was calculated by non-invasive sequence method from the recorded beat to beat blood pressure values and RR intervals. Significantly higher state (42.6±9.3 vs. 39.6±10.7 p=0.05) and trait (40.1±8.9 vs. 35.1±8.6, p<0.0001) anxiety scores were found in the hypertension group. There was no statistically significant difference in the depression level. LF-RRI (Low Frequency-RR interval) of HRV in passive tilt (377.3±430.6 vs. 494.1±547, p=0.049) and mean BRS slope (11.4±5.5 vs. 13.2±6.4, p=0.07) in lying position were lower in hypertensives. Trait anxiety score correlates significantly with sympatho/vagal balance (LF/HF-RRI) in passive tilt position (Spearman R=-0.286, p=0.01). Anxiety could play a more important role than depression in the development of hypertension. Altered autonomic control of the heart could be one of the pathophysiological links between hypertension and psychological factors. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Motor execution detection based on autonomic nervous system responses

    International Nuclear Information System (INIS)

    Marchal-Crespo, Laura; Riener, Robert; Zimmermann, Raphael; Lambercy, Olivier; Edelmann, Janis; Fluet, Marie-Christine; Gassert, Roger; Wolf, Martin

    2013-01-01

    Triggered assistance has been shown to be a successful robotic strategy for provoking motor plasticity, probably because it requires neurologic patients’ active participation to initiate a movement involving their impaired limb. Triggered assistance, however, requires sufficient residual motor control to activate the trigger and, thus, is not applicable to individuals with severe neurologic injuries. In these situations, brain and body–computer interfaces have emerged as promising solutions to control robotic devices. In this paper, we investigate the feasibility of a body–machine interface to detect motion execution only monitoring the autonomic nervous system (ANS) response. Four physiological signals were measured (blood pressure, breathing rate, skin conductance response and heart rate) during an isometric pinching task and used to train a classifier based on hidden Markov models. We performed an experiment with six healthy subjects to test the effectiveness of the classifier to detect rest and active pinching periods. The results showed that the movement execution can be accurately classified based only on peripheral autonomic signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity of 85.2%. These results are encouraging to perform further research on the use of the ANS response in body–machine interfaces. (paper)

  18. Behavioural domain knowledge transfer for autonomous agents

    CSIR Research Space (South Africa)

    Rosman, Benjamin S

    2014-11-01

    Full Text Available , and Behavior Transfer in Autonomous Robots, AAAI 2014 Fall Symposium Series, 13-15 November 2014 Behavioural Domain Knowledge Transfer for Autonomous Agents Benjamin Rosman Mobile Intelligent Autonomous Systems Modelling and Digital Science Council...

  19. Thiophene Scaffold as Prospective Central Nervous System Agent: A Review.

    Science.gov (United States)

    Deep, Aakash; Narasimhan, Balasubramanian; Aggarwal, Swati; Kaushik, Dhirender; Sharma, Arun K

    2016-01-01

    Heterocyclic compounds are extensively dispersed in nature and are vital for life. Various investigational approaches towards Structural Activity Relationship that focus upon the exploration of optimized candidates have become vastly important. Literature studies tell that for a series of compounds that are imperative in industrial and medicinal chemistry, thiophene acts as parent. Among various classes of heterocyclic compounds that have potential central nervous system activity, thiophene is the most important one. In the largely escalating chemical world of heterocyclic compounds showing potential pharmacological character, thiophene nucleus has been recognized as the budding entity. Seventeen Papers were included in this review article to define the central nervous system potential of thiophene. This review article enlightens the rationalized use and scope of thiophene scaffold as novel central nervous system activity such as anticonvulsant, acetylcholinesterase inhibitor, cyclin-dependent kinase 5 (cdk5/p25) inhibitors, CNS depressant, capability to block norepinephrine, serotonin and dopamine reuptake by their respective transporters etc. The Finding of this review confirm the importance of thiophene scaffold as potential central nervous system agents. From this outcome, ideas for future molecular modifications leading to the novel derivatives with better constructive pharmacological potential may be derived.

  20. Immunotherapeutics in Pediatric Autoimmune Central Nervous System Disease: Agents and Mechanisms.

    Science.gov (United States)

    Nosadini, Margherita; Sartori, Stefano; Sharma, Suvasini; Dale, Russell C

    2017-08-01

    Beyond the major advances produced by careful clinical-radiological phenotyping and biomarker development in autoimmune central nervous system disorders, a comprehensive knowledge of the range of available immune therapies and a deeper understanding of their action should benefit therapeutic decision-making. This review discusses the agents used in neuroimmunology and their mechanisms of action. First-line treatments typically include corticosteroids, intravenous immunoglobulin, and plasmapheresis, while for severe disease second-line "induction" agents such as rituximab or cyclophosphamide are used. Steroid-sparing agents such as mycophenolate, azathioprine, or methotrexate are often used in potentially relapsing or corticosteroid-dependent diseases. Lessons from adult neuroimmunology and rheumatology could be translated into pediatric autoimmune central nervous system disease in the future, including the potential utility of monoclonal antibodies targeting lymphocytes, adhesion molecules for lymphocytic migration, cytokines or their receptors, or complement. Finally, many agents used in other fields have multiple mechanisms of action, including immunomodulation, with potential usefulness in neuroimmunology, such as antibiotics, psychotropic drugs, probiotics, gut health, and ketogenic diet. All currently accepted and future potential agents have adverse effects, which can be severe; therefore, a "risk-versus-benefit" determination should guide therapeutic decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Magnetic resonance imaging study of lumbosacral spinal cord nerves before artificial somatic-central nervous system-autonomic reflex pathway establish ment

    International Nuclear Information System (INIS)

    Deng Xianbo; Kong Xiangquan; Feng Gansheng; Han Ping; Liu Dingxi; Ma Hui

    2005-01-01

    Objective: To investigate the value of MRI as imaging technique for lumbosacral spinal nerves before artificial somatic-central nervous system-autonomic reflex pathway establish ment. Methods: Conventional MRI and T 2 W CISS 3D were performed in 10 patients with neurogenic bladder planned for the operation of artificial somatic-central nervous system-autonomic reflex pathway. The Three-dimensional data were then constructed into composite images using a standard multiple planar reformation (MPR). Results: Five patients showed tethered spinal cord syndrome, whose spinal cord nerves were circuitous distributed and had abnormity number when penetrated the dura. Of these 5 patients, one patient was accompanied by spinal cord vas malformation. Four patients had vertebral fracture and spinal injury, and the other one patients demonstrated tumor in vertebral canal on MRI examinations. The spinal cord nerves in these 5 patients floated down river and had normal number of spinal cord nerves. Conclusion: Conventional MRI and T 2 W CISS 3D MRI were essential for the pre-operative planning of artificial somatic-central nervous system-autonomic reflex pathway, especially in patients with tethered spinal cord syndrome. Spinal cord nerves distribute and anterior and posterior roots array can be clearly showed by MPR. (authors)

  2. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    Science.gov (United States)

    Chang, Kang-Ming; Shen, Chuh-Wei

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy. PMID:21584196

  3. The Role of the Autonomic Nervous System in the Pathophysiology of Obesity

    Directory of Open Access Journals (Sweden)

    Daniela Guarino

    2017-09-01

    Full Text Available Obesity is reaching epidemic proportions globally and represents a major cause of comorbidities, mostly related to cardiovascular disease. The autonomic nervous system (ANS dysfunction has a two-way relationship with obesity. Indeed, alterations of the ANS might be involved in the pathogenesis of obesity, acting on different pathways. On the other hand, the excess weight induces ANS dysfunction, which may be involved in the haemodynamic and metabolic alterations that increase the cardiovascular risk of obese individuals, i.e., hypertension, insulin resistance and dyslipidemia. This article will review current evidence about the role of the ANS in short-term and long-term regulation of energy homeostasis. Furthermore, an increased sympathetic activity has been demonstrated in obese patients, particularly in the muscle vasculature and in the kidneys, possibily contributing to increased cardiovascular risk. Selective leptin resistance, obstructive sleep apnea syndrome, hyperinsulinemia and low ghrelin levels are possible mechanisms underlying sympathetic activation in obesity. Weight loss is able to reverse metabolic and autonomic alterations associated with obesity. Given the crucial role of autonomic dysfunction in the pathophysiology of obesity and its cardiovascular complications, vagal nerve modulation and sympathetic inhibition may serve as therapeutic targets in this condition.

  4. Autonomic nervous system dynamics for mood and emotional-state recognition significant advances in data acquisition, signal processing and classification

    CERN Document Server

    Valenza, Gaetano

    2014-01-01

    This monograph reports on advances in the measurement and study of autonomic nervous system (ANS) dynamics as a source of reliable and effective markers for mood state recognition and assessment of emotional responses. Its primary impact will be in affective computing and the application of emotion-recognition systems. Applicative studies of biosignals such as: electrocardiograms; electrodermal responses; respiration activity; gaze points; and pupil-size variation are covered in detail, and experimental results explain how to characterize the elicited affective levels and mood states pragmatically and accurately using the information thus extracted from the ANS. Nonlinear signal processing techniques play a crucial role in understanding the ANS physiology underlying superficially noticeable changes and provide important quantifiers of cardiovascular control dynamics. These have prognostic value in both healthy subjects and patients with mood disorders. Moreover, Autonomic Nervous System Dynamics for Mood and ...

  5. Theoretical foundations for the responsibility of autonomous agents

    NARCIS (Netherlands)

    Hage, Jaap

    This article argues that it is possible to hold autonomous agents themselves, and not only their makers, users or owners, responsible for the acts of these agents. In this connection autonomous systems are computer programs that interact with the outside world without human interference. They

  6. New methodology for preventing pressure ulcers using actimetry and autonomous nervous system recording.

    Science.gov (United States)

    Meffre, R; Gehin, C; Schmitt, P M; De Oliveira, F; Dittmar, A

    2006-01-01

    Pressure ulcers constitute an important health problem. They affect lots of people with mobility disorder and they are difficult to detect and prevent because the damage begins on the muscle. This paper proposes a new approach to study pressure ulcers. We aim at developing a methodology to analyse the probability for a patient to develop a pressure ulcer, and that can detect risky situation. The idea is to relate the mobility disorder to autonomic nervous system (ANS) trouble. More precisely, the evaluation of the consequence of the discomfort on the ANS (stress induced by discomfort) can be relevant for the early detection of the pressure ulcer. Mobility is evaluated through movement measurement. This evaluation, at the interface between soft living tissues and any support has to consider the specificity of the human environment. Soft living tissues have non-linear mechanical properties making conventional rigid sensors non suitable for interface parameters measurement. A new actimeter system has been designed in order to study movements of the human body whatever its support while seating. The device is based on elementary active cells. The number of pressure cells can be easily adapted to the application. The spatial resolution is about 4 cm(2). In this paper, we compare activity measurement of a seated subject with his autonomic nervous system activity, recorded by E.motion device. It has been developed in order to record six parameters: skin potential, skin resistance, skin temperature, skin blood rate, instantaneous cardiac frequency and instantaneous respiratory frequency. The design, instrumentation, and first results are presented.

  7. The influence of concentration/meditation on autonomic nervous system activity and the innate immune response: a case study.

    NARCIS (Netherlands)

    Kox, M.; Stoffels, M.; Smeekens, S.P.; Alfen, N. van; Gomes, M.E.R.; Eijsvogels, T.M.H.; Hopman, M.T.E.; Hoeven, J.G. van der; Netea, M.G.; Pickkers, P.

    2012-01-01

    OBJECTIVE: In this case study, we describe the effects of a particular individual's concentration/meditation technique on autonomic nervous system activity and the innate immune response. The study participant holds several world records with regard to tolerating extreme cold and claims that he can

  8. Early postnatal low-protein nutrition, metabolic programming and the autonomic nervous system in adult life

    Directory of Open Access Journals (Sweden)

    de Oliveira Júlio

    2012-09-01

    Full Text Available Abstract Protein restriction during lactation has been used as a rat model of metabolic programming to study the impact of perinatal malnutrition on adult metabolism. In contrast to protein restriction during fetal life, protein restriction during lactation did not appear to cause either obesity or the hallmarks of metabolic syndrome, such as hyperinsulinemia, when individuals reached adulthood. However, protein restriction provokes body underweight and hypoinsulinemia. This review is focused on the regulation of insulin secretion and the influence of the autonomic nervous system (ANS in adult rats that were protein-malnourished during lactation. The data available on the topic suggest that the perinatal phase of lactation, when insulted by protein deficit, imprints the adult metabolism and thereby alters the glycemic control. Although hypoinsulinemia programs adult rats to maintain normoglycemia, pancreatic β-cells are less sensitive to secretion stimuli, such as glucose and cholinergic agents. These pancreatic dysfunctions may be attributed to an imbalance of ANS activity recorded in adult rats that experienced maternal protein restriction.

  9. Dysregulation of the autonomic nervous system and its association with the presence and intensity of chronic widespread pain

    NARCIS (Netherlands)

    Barakat, A.; Vogelzangs, N.; Licht, C.M.M.; Geenen, R.; Macfarlane, G.J.; de Geus, E.J.C.; Smit, J.H.; Penninx, B.W.J.H.; Dekker, J.

    2012-01-01

    Objective To test the hypotheses that dysregulation of the autonomic nervous system (ANS) is associated with the presence of chronic widespread pain (CWP), and that dysregulation of the ANS is associated with higher pain intensity in CWP. Methods Cross-sectional data were obtained from 1,574

  10. Dysregulation of the Autonomic Nervous System and Its Association With the Presence and Intensity of Chronic Widespread Pain

    NARCIS (Netherlands)

    Barakat, Ansam; Vogelzangs, Nicole; Licht, Carmilla M. M.; Geenen, Rinie; Macfarlane, Gary J.; de Geus, Eco J. C.; Smit, Johannes H.; Penninx, Brenda W. J. H.; Dekker, Joost

    Objective. To test the hypotheses that dysregulation of the autonomic nervous system (ANS) is associated with the presence of chronic widespread pain (CWP), and that dysregulation of the ANS is associated with higher pain intensity in CWP. Methods. Cross-sectional data were obtained from 1,574

  11. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    Directory of Open Access Journals (Sweden)

    Kang-Ming Chang

    2011-01-01

    Full Text Available Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P<.001∗∗∗ after application of the aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.

  12. DISORDERS OF THE AUTONOMIC NERVOUS SYSTEM IN THE CARDIOLOGY PRACTICE: FOCUS ON THE ANALYSIS OF HEART RATE VARIABILITY

    Directory of Open Access Journals (Sweden)

    E. B. Akhmedova

    2015-09-01

    Full Text Available Heart rate variability (HRV in patients with ischemic heart disease, a life-threatening heart rhythm disorders, as well as diabetes mellitus (DM is considered. A significant association between the autonomic regulation of the cardiovascular system and death from cardiovascular causes is identified. The reactions of the autonomic nervous system (ANS can serve as a precipitating factor of arrhythmias in patients with heart disorders. Analysis of HRV at rest is the main and informative method for determination of the ANS disorders. HRV decreases greatly in patients with acute myocardial infarction, cardiac arrhythmia, and DM, predicting a high risk of death. The leading cause of death in diabetic patients is cardiac autonomic neuropathy, with the development of "silent" ischemia and painless myocardial infarction. Autonomic regulation of the heart rate should be assessed for early diagnosis and prevention of complications in the form of sudden death.

  13. Alterations in HPA-axis and autonomic nervous system functioning in childhood anxiety disorders point to a chronic stress hypothesis

    NARCIS (Netherlands)

    Dieleman, G.C.; Huizink, A.C.; Tulen, J.H.M.; Utens, E.M.W.J.; Creemers, H.E.; van der Ende, J.; Verhulst, F.C.

    2015-01-01

    Background: It is of debate whether or not childhood anxiety disorders (AD) can be captured by one taxonomic construct. This study examined whether perceived arousal (PA), autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis measures can distinguish children with different

  14. Alterations in HPA-axis and autonomic nervous system functioning in childhood anxiety disorders point to a chronic stress hypothesis

    NARCIS (Netherlands)

    Dieleman, Gwendolyn C.; Huizink, Anja C.; Tulen, Joke H. M.; Utens, Elisabeth M. W. J.; Creemers, Hanneke E.; van der Ende, Jan; Verhulst, Frank C.

    2015-01-01

    It is of debate whether or not childhood anxiety disorders (AD) can be captured by one taxonomic construct. This study examined whether perceived arousal (PA), autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis measures can distinguish children with different primary

  15. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder.

    Science.gov (United States)

    Streeter, C C; Gerbarg, P L; Saper, R B; Ciraulo, D A; Brown, R P

    2012-05-01

    A theory is proposed to explain the benefits of yoga practices in diverse, frequently comorbid medical conditions based on the concept that yoga practices reduce allostatic load in stress response systems such that optimal homeostasis is restored. It is hypothesized that stress induces (1) imbalance of the autonomic nervous system (ANS) with decreased parasympathetic nervous system (PNS) and increased sympathetic nervous system (SNS) activity, (2) underactivity of the gamma amino-butyric acid (GABA) system, the primary inhibitory neurotransmitter system, and (3) increased allostatic load. It is further hypothesized that yoga-based practices (4) correct underactivity of the PNS and GABA systems in part through stimulation of the vagus nerves, the main peripheral pathway of the PNS, and (5) reduce allostatic load. Depression, epilepsy, post traumatic stress disorder (PTSD), and chronic pain exemplify medical conditions that are exacerbated by stress, have low heart rate variability (HRV) and low GABAergic activity, respond to pharmacologic agents that increase activity of the GABA system, and show symptom improvement in response to yoga-based interventions. The observation that treatment resistant cases of epilepsy and depression respond to vagal nerve stimulation corroborates the need to correct PNS underactivity as part of a successful treatment plan in some cases. According to the proposed theory, the decreased PNS and GABAergic activity that underlies stress-related disorders can be corrected by yoga practices resulting in amelioration of disease symptoms. This has far-reaching implications for the integration of yoga-based practices in the treatment of a broad array of disorders exacerbated by stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature

    NARCIS (Netherlands)

    Bahler, L.; Molenaars, R. J.; Verberne, H. J.; Holleman, F.

    2015-01-01

    Brown adipose tissue (BAT) is able to convert calories into heat rather than storing them. Therefore, activated BAT could be a potential target in the battle against obesity and type 2 diabetes. This review focuses on the role of the autonomic nervous system in the activation of human BAT. Although

  17. Time, touch, and compassion: effects on autonomic nervous system and well-being.

    Science.gov (United States)

    Shaltout, Hossam A; Tooze, Janet A; Rosenberger, Erica; Kemper, Kathi J

    2012-01-01

    Compassion is critical for complementary and conventional care, but little is known about its direct physiologic effects. This study tested the feasibility of delivering two lengths of time (10 and 20 minutes) and two strategies (tactile and nontactile) for a practitioner to nonverbally communicate compassion to subjects who were blind to the interventions. Healthy volunteers were informed that we were testing the effects of time and touch on the autonomic nervous system. Each subject underwent five sequential study periods in one study session: (1) warm-up; (2) control-with the practitioner while both read neutral material; (3) rest; (4) intervention-with practitioner meditating on loving-kindness toward the subject; and (5) rest. Subjects were randomized to receive one of four interventions: (1) 10 minutes tactile; (2) 20 minutes tactile; (3) 10 minutes nontactile; or (4) 20 minutes nontactile. During all interventions, the practitioner meditated on loving-kindness toward the subject. For tactile interventions, the practitioner touched subjects on arms, legs, and hands; for nontactile interventions, the practitioner pretended to read. Subjects' autonomic activity, including heart rate, was measured continuously. Subjects completed visual analog scales for well-being, including relaxation and peacefulness, at warm-up; postcontrol; immediately postintervention; and after the postintervention rest and were asked about what they and the practitioner had done during each study period. The 20 subjects' mean age was 24.3 ± 4 years; 16 were women. The practitioner maintained a meditative state during all interventions as reflected in lower respiratory rate, and subjects remained blind to the practitioner's meditative activity. Overall, interventions significantly decreased heart rate (P < .01), and although other changes did not reach statistical significance, they were in the expected direction, with generally greater effects for the tactile than nontactile strategies

  18. Autonomic nervous system balance in children and adolescents with craniopharyngioma and hypothalamic obesity.

    Science.gov (United States)

    Cohen, Michal; Syme, Catriona; McCrindle, Brian W; Hamilton, Jill

    2013-06-01

    Dysregulation of the autonomic nervous system is thought to be involved in craniopharyngioma-related hypothalamic obesity (CRHO). Increased parasympathetic activity and decreased sympathetic activity have been suggested. We aimed to study autonomic activity using heart rate variability (HRV) and biochemical measures in youth with CRHO compared with controls and to explore relationships between obesity and autonomic indices. A cross-sectional study of 16 youth with CRHO and 16 controls matched for sex, age, and BMI. Anthropometrics, fasting blood-work, resting energy expenditure (REE), 24-h HRV, and 24-h urine catecholamines were assessed. Quality of life, sleepiness, and autonomic symptoms were evaluated. Power spectral analysis of the HRV was performed. HRV power spectral analysis parameters of both parasympathetic activity (mean high frequency (HF (ms(2))) 611±504 vs 459±336, P=0.325) and sympathetic activity (median low frequency/HF 1.62 (1.37, 2.41) vs 1.89 (1.44, 2.99), P=0.650) did not differ between the groups. Parasympathetic activity negatively correlated with central adiposity in both groups (r=-0.53, P=0.034 and r=-0.54, P=0.029) and sympathetic activity positively correlated with central adiposity in CRHO (r=0.51, P=0.043). Youth with CRHO had significantly lower REE; lower health and activity scores in the quality of life questionnaires, and higher sleepiness scores. Autonomic activity was similar in CRHO and control subjects. The degree of central adiposity correlated negatively with parasympathetic activity and positively with sympathetic activity in children with CRHO. These results provide a new perspective regarding autonomic balance in this unique patient population.

  19. The role of the autonomic nervous system in hypertension: a bond graph model study

    International Nuclear Information System (INIS)

    Chen, Shuzhen; Gong, Yuexian; Dai, Kaiyong; Sui, Meirong; Yu, Yi; Ning, Gangmin; Zhang, Shaowen

    2008-01-01

    A bond graph model of the cardiovascular system with embedded autonomic nervous regulation was developed for a better understanding of the role of the autonomic nervous system (ANS) in hypertension. The model is described by a pump model of the heart and a detailed representation of the head and neck, pulmonary, coronary, abdomen and extremity circulation. It responds to sympathetic and parasympathetic activities by modifying systemic peripheral vascular resistance, heart rate, ventricular end-systolic elastance and venous unstressed volumes. The impairment of ANS is represented by an elevation of the baroreflex set point. The simulation results show that, compared with normotensive, in hypertension the systolic and diastolic blood pressure (SBP/DBP) rose from 112/77 mmHg to 144/94 mmHg and the left ventricular wall thickness (LVWT) increased from 10 mm to 12.74 mm. In the case that ANS regulation was absent, both the SBP and DBP further increased by 8 mmHg and the LVWT increased to 13.22 mm. The results also demonstrate that when ANS regulation is not severely damaged, e.g. the baroreflex set point is 97 mmHg, it still has an effect in preventing the rapid rise of blood pressure in hypertension; however, with the worsening of ANS regulation, its protective role weakens. The results agree with human physiological and pathological features in hemodynamic parameters and carotid baroreflex function curves, and indicate the role of ANS in blood pressure regulation and heart protection. In conclusion, the present model may provide a valid approach to study the pathophysiological conditions of the cardiovascular system and the mechanism of ANS regulation

  20. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture

    DEFF Research Database (Denmark)

    Benrick, Anna; Kokosar, Milana; Hu, Min

    2017-01-01

    was higher after EA in controls and women with PCOS. Plasma serotonin levels and homovanillic acid, markers of vagal activity, decreased in both controls and patients with PCOS. Adipose tissue expression of pro-nerve growth factor (proNGF) decreased, and the mature NGF/proNGF ratio increased after EA in PCOS...... of EA increases whole-body glucose uptake by activation of the sympathetic and partly the parasympathetic nervous systems, which could have important clinical implications for the treatment of insulin resistance.-Benrick, A., Kokosar, M., Hu, M., Larsson, M., Maliqueo, M., Marcondes, R. R., Soligo, M......., Protto, V., Jerlhag, E., Sazonova, A., Behre, C. J., Højlund, K., Thorén, P., Stener-Victorin, E. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture....

  1. Hormones and the autonomic nervous system are involved in suprachiasmatic nucleus modulation of glucose homeostasis.

    Science.gov (United States)

    Ruiter, Marieke; Buijs, Ruud M; Kalsbeek, Andries

    2006-05-01

    Glucose is one of the most important energy sources for the body in general, and the brain in particular. It is essential for survival to keep glucose levels within strict boundaries. Acute disturbances of glucose homeostasis are rapidly corrected by hormonal and neuronal mechanisms. Furthermore, changes in energy expenditure associated with the light-dark cycle induce variations in the plasma glucose concentration that are more gradual. Organisms take advantage of adapting their internal physiology to the predictable daily changes in energy expenditure, because it enables them to anticipate these changes and to prevent unnecessary disturbance of homeostasis. The hypothalamic biological clock, located in the suprachiasmatic nucleus (SCN), receives light information from the eyes and transmits this information to the rest of the body to synchronize physiology to the environment. Here we review several studies providing evidence for biological clock control of the daily variation in several aspects of glucose metabolism. Although both hormones and the autonomic nervous system can stimulate glucose uptake or production by organs in the periphery, we have shown that the biological clock control of glucose metabolism mostly occurs through the autonomic nervous system. The critical involvement of the biological clock is also indicated by several studies, indicating that disturbance of the biological clock is often associated with metabolic diseases, such as obesity, diabetes mellitus and hypertension.

  2. Potential benefits of mindfulness during pregnancy on maternal autonomic nervous system function and infant development : Mindfulness, ANS, and infant development

    NARCIS (Netherlands)

    Braeken, M.A.K.A.; Jones, Alexander; Otte, R.A.; Nyklicek, I.; Van Den Bergh, B.R.H.

    2017-01-01

    Mindfulness is known to decrease psychological distress. Possible benefits in pregnancy have rarely been explored. Our aim was to examine the prospective association of mindfulness with autonomic nervous system function during pregnancy and with later infant social-emotional development. Pregnant

  3. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study.

    Science.gov (United States)

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-Ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension-Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes

  4. The Cardiovascular Autonomic Nervous System and Anaesthesia

    African Journals Online (AJOL)

    QuickSilver

    system that continues to sustain and control our vital organ systems. .... vagal tone and increased sympathetic outflow to the sinus node due to the fall in blood pressure) ... intraoperative autonomic balance of a particular patient population.

  5. Lack of circadian variation in the activity of the autonomic nervous system after major abdominal operations

    DEFF Research Database (Denmark)

    Gögenur, Ismail; Rosenberg-Adamsen, Susan; Lie, Claus

    2002-01-01

    OBJECTIVE: Most sudden postoperative deaths occur during the night and we conjectured that this was associated with circadian variations in the autonomic nervous tone, reflected in heart rate variability. DESIGN: Prospective clinical study. SETTINGS: University hospital, Denmark. SUBJECTS: 44...... OUTCOME MEASURES: Heart rate and heart rate variability. RESULTS: Circadian variation calculated from the SDNN (p = 0.43) the pNN50 (p = 0.11), the RMSSD (p = 0.47), and mean NN:SDNN ratio (p = 0.13) was absent postoperatively. Circadian variation in the heart rate was present but was set on a higher...... level compared with reference values. CONCLUSION: After major abdominal operations there was a lack of circadian variation in the autonomic nervous tone....

  6. Autonomic Nervous System Responses to Hearing-Related Demand and Evaluative Threat.

    Science.gov (United States)

    Mackersie, Carol L; Kearney, Lucia

    2017-10-12

    This paper consists of 2 parts. The purpose of Part 1 was to review the potential influence of internal (person-related) factors on listening effort. The purpose of Part 2 was to present, in support of Part 1, preliminary data illustrating the interactive effects of an external factor (task demand) and an internal factor (evaluative threat) on autonomic nervous system measures. For Part 1, we provided a brief narrative review of motivation and stress as modulators of listening effort. For Part 2, we described preliminary data from a study using a repeated-measures (2 × 2) design involving manipulations of task demand (high, low) and evaluative threat (high, low). The low-demand task consisted of repetition of sentences from a narrative. The high-demand task consisted of answering questions about the narrative, requiring both comprehension and recall. During the high evaluative threat condition, participants were filmed and told that their video recordings would be evaluated by a panel of experts. During the low evaluative threat condition, no filming occurred; participants were instructed to "do your best." Skin conductance (sympathetic nervous system activity) and heart rate variability (HRV, parasympathetic activity) were measured during the listening tasks. The HRV measure was the root mean square of successive differences of adjacent interbeat intervals. Twelve adults with hearing loss participated. Skin conductance increased and HRV decreased relative to baseline (no task) for all listening conditions. Skin conductance increased significantly with an increase in evaluative threat, but only for the more demanding task. There was no significant change in HRV in response to increasing evaluative threat or task demand. Listening effort may be influenced by factors other than task difficulty, as reviewed in Part 1. This idea is supported by the preliminary data indicating that the sympathetic nervous system response to task demand is modulated by social evaluative

  7. Substance P immunoreactivity in the enteric nervous system in Rett syndrome.

    Science.gov (United States)

    Deguchi, K; Reyes, C; Chakraborty, S; Antalffy, B; Glaze, D; Armstrong, D

    2001-12-01

    Rett syndrome is associated with profound mental retardation and motor disability in girls. It has a characteristic clinical phenotype which includes abnormalities of the autonomic nervous system. Feeding impairment and severe constipation are two symptoms of this autonomic dysfunction. Substance P, an important peptide in the autonomic nervous system, is decreased in the cerebrospinal fluid of Rett syndrome. We have demonstrated that substance P immunoreactivity is significantly decreased in Rett syndrome brain-stem and may be related to the autonomic dysfunction. In this study, we have continued the investigation of substance P in the enteric nervous system. We immunohistochemically examined the normal developing bowel in 22 controls (ages, 14 gestational weeks to 31 years) using formalin fixed tissue, with antibodies to substance P, tyrosine hydroxylase and vasoactive intestinal peptide. We compared the immunoreactivity of normal controls with 14 cases of Rett syndrome (ages, 5-41 years) and observed that the expression of substance P, tyrosine hydroxylase and vasoactive intestinal peptide immunoreactivity in the bowel in Rett syndrome was not significantly different from that of controls. This suggests that the feeding impairment and constipation in Rett syndrome relate to dysfunction of the autonomic nervous system originating outside of the bowel, in the brain-stem, as suggested by our previous study.

  8. Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder.

    Science.gov (United States)

    Matsumoto, Tamaki; Ushiroyama, Takahisa; Kimura, Tetsuya; Hayashi, Tatsuya; Moritani, Toshio

    2007-12-20

    Premenstrual syndrome (PMS) encompasses a wide variety of cyclic and recurrent physical, emotional, and behavioral symptoms occurring during the late luteal phase of the menstrual cycle and abating shortly following the beginning of menses. Although PMS is widely recognized, its etiopathogenesis is not yet understood. The present study investigates whether the activity of the autonomic nervous system, which plays a vital role in orchestrating physiological homeostasis within the human body, is altered during the menstrual cycle of women with different degrees of premenstrual symptomatology. Sixty-two women in their 20s to 40s with regular menstrual cycles participated in this study. All subjects were examined during the follicular and late luteal phases. Cycle phase was determined by the onset of menstruation and oral temperature and was verified by concentrations of ovarian hormones, estrone, and pregnanediol in a urine sample taken early in the morning. Autonomic nervous system activity was assessed by means of heart-rate variability (HRV) power spectral analysis during supine rest. The Menstrual Distress Questionnaire was used to evaluate physical, emotional, and behavioral symptoms accompanying the menstrual cycle of the subjects. The subjects were categorized in three groups, Control, PMS, and premenstrual dysphoric disorder (PMDD) groups, depending on the severity of premenstrual symptomatology. No intramenstrual cycle difference in any of the parameters of HRV was found in the Control group, which had no or a small increase in premenstrual symptoms. In contrast, Total power and high frequency power, which reflect overall autonomic and parasympathetic nerve activity, respectively, significantly decreased in the late luteal phase from the follicular phase in the PMS group. As for the PMDD group, which had more severe symptoms premenstrually, heart-rate fluctuation as well as all components of the power spectrum of HRV were markedly decreased regardless of the

  9. Child maltreatment under the skin : basal activity and stress reactivity of the autonomic nervous system and attachment representations in maltreating parents

    NARCIS (Netherlands)

    Reijman, Sophie

    2015-01-01

    This dissertation comprises an empirical study and a meta-analytical study on autonomic nervous system (ANS) functioning and attachment representations in maltreating parents. For the empirical study we recruited a sample of 45 mothers with substantiated abuse and neglect and 45 non-maltreating

  10. Relationships between thermic effect of food, insulin resistance and autonomic nervous activity

    OpenAIRE

    Watanabe, Tomonori; Nomura, Masahiro; Nakayasu, Kimiko; Kawano, Tomohito; Ito, Susumu; Nakaya, Yutaka

    2006-01-01

    Background: The thermic effect of food (TEF) is higher in lean than in obese human subjects. Objective: Relationships between TEF and insulin resistance during meals, from the point of view of autonomic nervous activity, were evaluated. Methods : Autonomic nervous activity was evaluated in 20 young adults using the spectral analysis of heart rate variability from one hour before to two hours after a meal. Heart rate data were analyzed based on low frequency components (LF power, 0.04 - 0.15Hz...

  11. Novel platform for ocean survey and autonomous sampling using multi-agent system

    OpenAIRE

    Taher, Tawfiq; Weymouth, G.D.; Varghese, Tony

    2013-01-01

    In-situ surveying and sampling of ocean environments provides critical data for laboratory work and oceanographic research. However, sampling a time-varying ocean field is often time and resource limited-meaning that samples often miss the features of interest. This paper presents a modular autonomous multi-agent robotic system which has been developed to accommodate a variety of research activities. This paper demonstrates the complementary capabilities of the agents by simultaneously survey...

  12. Autonomous sensor manager agents (ASMA)

    Science.gov (United States)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  13. Genetic autonomic disorders.

    Science.gov (United States)

    Axelrod, Felicia B

    2013-03-01

    Genetic disorders affecting the autonomic nervous system can result in abnormal development of the nervous system or they can be caused by neurotransmitter imbalance, an ion-channel disturbance or by storage of deleterious material. The symptoms indicating autonomic dysfunction, however, will depend upon whether the genetic lesion has disrupted peripheral or central autonomic centers or both. Because the autonomic nervous system is pervasive and affects every organ system in the body, autonomic dysfunction will result in impaired homeostasis and symptoms will vary. The possibility of genetic confirmation by molecular testing for specific diagnosis is increasing but treatments tend to remain only supportive and directed toward particular symptoms. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Association between Depression, Pressure Pain Sensitivity, Stress and Autonomous Nervous System Function in Stable Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Bergmann, Natasha; Karpatschof, Benny

    2016-01-01

    Background: Depression and ischemic heart disease (IHD) are associated with persistent stress and autonomic nervous system (ANS) dysfunction. The former can be measured by pressure pain sensitivity (PPS) of the sternum, and the latter by the PPS and systolic blood pressure (SBP) response to a til...... in depression, reduction in persistent stress, and restoration of ANS dysfunction was only seen in non-users, suggesting a central role of beta-adrenergic receptors in the association between these factors....

  15. Learning Sequences of Actions in Collectives of Autonomous Agents

    Science.gov (United States)

    Turner, Kagan; Agogino, Adrian K.; Wolpert, David H.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In this paper we focus on the problem of designing a collective of autonomous agents that individually learn sequences of actions such that the resultant sequence of joint actions achieves a predetermined global objective. We are particularly interested in instances of this problem where centralized control is either impossible or impractical. For single agent systems in similar domains, machine learning methods (e.g., reinforcement learners) have been successfully used. However, applying such solutions directly to multi-agent systems often proves problematic, as agents may work at cross-purposes, or have difficulty in evaluating their contribution to achievement of the global objective, or both. Accordingly, the crucial design step in multiagent systems centers on determining the private objectives of each agent so that as the agents strive for those objectives, the system reaches a good global solution. In this work we consider a version of this problem involving multiple autonomous agents in a grid world. We use concepts from collective intelligence to design goals for the agents that are 'aligned' with the global goal, and are 'learnable' in that agents can readily see how their behavior affects their utility. We show that reinforcement learning agents using those goals outperform both 'natural' extensions of single agent algorithms and global reinforcement, learning solutions based on 'team games'.

  16. Plasticity and Neural Stem Cells in the Enteric Nervous System

    NARCIS (Netherlands)

    Schaefer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-01-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to

  17. Effects of Betel chewing on the central and autonomic nervous systems.

    Science.gov (United States)

    Chu, N S

    2001-01-01

    Betel chewing has been claimed to produce a sense of well-being, euphoria, heightened alertness, sweating, salivation, a hot sensation in the body and increased capacity to work. Betel chewing also leads to habituation, addiction and withdrawal. However, the mechanisms underlying these effects remain poorly understood. Arecoline, the major alkaloid of Areca nut, has been extensively studied, and several effects of betel chewing are thought to be related to the actions of this parasympathomimetic constituent. However, betel chewing may produce complex reactions and interactions. In the presence of lime, arecoline and guvacoline in Areca nut are hydrolyzed into arecaidine and guvacine, respectively, which are strong inhibitors of GABA uptake. Piper betle flower or leaf contains aromatic phenolic compounds which have been found to stimulate the release of catecholamines in vitro. Thus, betel chewing may affect parasympathetic, GABAnergic and sympathetic functions. Betel chewing produces an increase in heart rate, blood pressure, sweating and body temperature. In addition, EEG shows widespread cortical desynchronization indicating a state of arousal. In autonomic function tests, both the sympathetic skin response and RR interval variation are affected. Betel chewing also increases plasma concentrations of norepinephrine and epinephrine. These results suggest that betel chewing mainly affects the central and autonomic nervous systems. Future studies should investigate both the acute and chronic effects of betel chewing. Such studies may further elucidate the psychoactive mechanisms responsible for the undiminished popularity of betel chewing since antiquity. Copyright 2001 National Science Council, ROC and S. Karger AG, Basel.

  18. Myocardial ischaemia and the cardiac nervous system.

    Science.gov (United States)

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some

  19. Inflammatory and apoptotic remodeling in autonomic nervous system following myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Chen Gao

    Full Text Available Chronic myocardial infarction (MI triggers pathological remodeling in the heart and cardiac nervous system. Abnormal function of the autonomic nervous system (ANS, including stellate ganglia (SG and dorsal root ganglia (DRG contribute to increased sympathoexcitation, cardiac dysfunction and arrythmogenesis. ANS modulation is a therapeutic target for arrhythmia associated with cardiac injury. However, the molecular mechanism involved in the pathological remodeling in ANS following cardiac injury remains to be established.In this study, we performed transcriptome analysis by RNA-sequencing in thoracic SG and (T1-T4 DRG obtained from Yorkshire pigs following either acute (3 to 5 hours or chronic (8 weeks myocardial infarction. By differential expression and weighted gene co-expression network analysis (WGCNA, we identified significant transcriptome changes and specific gene modules in the ANS tissues in response to myocardial infarction at either acute or chronic phases. Both differential expressed genes and the member genes of the WGCNA gene module associated with post-infarct condition were significantly enriched for inflammatory signaling and apoptotic cell death. Targeted validation analysis supported a significant induction of inflammatory and apoptotic signal in both SG and DRG following myocardial infarction, along with cellular evidence of apoptosis induction based on TUNEL analysis. Importantly, these molecular changes were observed specifically in the thoracic segments but not in their counterparts obtained from lumbar sections.Myocardial injury leads to time-dependent global changes in gene expression in the innervating ANS. Induction of inflammatory gene expression and loss of neuron cell viability in SG and DRG are potential novel mechanisms contributing to abnormal ANS function which can promote cardiac arrhythmia and pathological remodeling in myocardium.

  20. Should autonomous agents be liable for what they do?

    NARCIS (Netherlands)

    Hage, Jaap; Keirse, A.; Loos, M.

    2017-01-01

    This article argues that it may be useful to sometimes hold autonomous agents, and not only their users, responsible for their acts. In this connection autonomous systems can be computer programs that interact with the outside world without human interference, including ‘intelligent’ weapons and

  1. Heavy alcohol use, rather than alcohol dependence, is associated with dysregulation of the hypothalamic-pituitary-adrenal axis and the autonomic nervous system

    NARCIS (Netherlands)

    Boschloo, Lynn; Vogelzangs, Nicole; Licht, Carmilla M. M.; Vreeburg, Sophie A.; Smit, Johannes H.; van den Brink, Wim; Veltman, Dick J.; de Geus, Eco J. C.; Beekman, Aartjan T. F.; Penninx, Brenda W. J. H.

    2011-01-01

    Heavy alcohol use as well as alcohol dependence (AD) have been associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and the autonomic nervous system (ANS). However, the relative contribution of alcohol use and AD is unclear. Baseline data were derived from 2947 persons of

  2. Effects of gender and game type on autonomic nervous system physiological parameters in long-hour online game players.

    Science.gov (United States)

    Lin, Tung-Cheng

    2013-11-01

    Online game playing may induce physiological effects. However, the physical mechanisms that cause these effects remain unclear. The purpose of this study was to examine the physiological effects of long-hour online gaming from an autonomic nervous system (ANS) perspective. Heart rate variability (HRV), a valid and noninvasive electrocardiographic method widely used to investigate ANS balance, was used to measure physiological effect parameters. This study used a five-time, repeated measures, mixed factorial design. Results found that playing violent games causes significantly higher sympathetic activity and diastolic blood pressure than playing nonviolent games. Long-hour online game playing resulted in the gradual dominance of the parasympathetic nervous system due to physical exhaustion. Gaming workload was found to modulate the gender effects, with males registering significantly higher sympathetic activity and females significantly higher parasympathetic activity in the higher gaming workload group.

  3. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats.

    Science.gov (United States)

    Dos Reis, Daniel Gustavo; Fortaleza, Eduardo Albino Trindade; Tavares, Rodrigo Fiacadori; Corrêa, Fernando Morgan Aguiar

    2014-07-01

    Restraint stress (RS) is an experimental model to study stress-related cardiovascular responses, characterized by sustained pressor and tachycardiac responses. We used pharmacologic and surgical procedures to investigate the role played by sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS) in the mediation of stress-evoked cardiovascular responses. Ganglionic blockade with pentolinium significantly reduced RS-evoked pressor and tachycardiac responses. Intravenous treatment with homatropine methyl bromide did not affect the pressor response but increased tachycardia. Pretreatment with prazosin reduced the pressor and increased the tachycardiac response. Pretreatment with atenolol did not affect the pressor response but reduced tachycardia. The combined treatment with atenolol and prazosin reduced both pressor and tachycardiac responses. Adrenal demedullation reduced the pressor response without affecting tachycardia. Sinoaortic denervation increased pressor and tachycardiac responses. The results indicate that: (1) the RS-evoked cardiovascular response is mediated by the autonomic nervous system without an important involvement of humoral factors; (2) hypertension results primarily from sympathovascular and sympathoadrenal activation, without a significant involvement of the cardiac sympathetic component (CSNS); (3) the abrupt initial peak in the hypertensive response to restraint is sympathovascular-mediated, whereas the less intense but sustained hypertensive response observed throughout the remaining restraint session is mainly mediated by sympathoadrenal activation and epinephrine release; (4) tachycardia results from CSNS activation, and not from PSNS inhibition; (5) RS evokes simultaneous CSNS and PSNS activation, and heart rate changes are a vector of both influences; (6) the baroreflex is functional during restraint, and modulates both the vascular and cardiac responses to restraint.

  4. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    Science.gov (United States)

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart.

  5. Relationships between sensory stimuli and autonomic nervous regulation during real and virtual exercises

    Directory of Open Access Journals (Sweden)

    Iijima Atsuhiko

    2007-10-01

    Full Text Available Abstract Background Application of virtual environment (VE technology to motor rehabilitation increases the number of possible rehabilitation tasks and/or exercises. However, enhancing a specific sensory stimulus sometimes causes unpleasant sensations or fatigue, which would in turn decrease motivation for continuous rehabilitation. To select appropriate tasks and/or exercises for individuals, evaluation of physical activity during recovery is necessary, particularly the changes in the relationship between autonomic nervous activity (ANA and sensory stimuli. Methods We estimated the ANA from the R-R interval time series of electrocardiogram and incoming sensory stimuli that would activate the ANA. For experiments in real exercise, we measured vehicle data and electromyogram signals during cycling exercise. For experiments in virtual exercise, we measured eye movement in relation to image motion vectors while the subject was viewing a mountain-bike video image from a first-person viewpoint. Results For the real cycling exercise, the results were categorized into four groups by evaluating muscle fatigue in relation to the ANA. They suggested that fatigue should be evaluated on the basis of not only muscle activity but also autonomic nervous regulation after exercise. For the virtual exercise, the ANA-related conditions revealed a remarkable time distribution of trigger points that would change eye movement and evoke unpleasant sensations. Conclusion For expanding the options of motor rehabilitation using VE technology, approaches need to be developed for simultaneously monitoring and separately evaluating the activation of autonomic nervous regulation in relation to neuromuscular and sensory systems with different time scales.

  6. Relationships between thermic effect of food, insulin resistance and autonomic nervous activity.

    Science.gov (United States)

    Watanabe, Tomonori; Nomura, Masahiro; Nakayasu, Kimiko; Kawano, Tomohito; Ito, Susumu; Nakaya, Yutaka

    2006-02-01

    The thermic effect of food (TEF) is higher in lean than in obese human subjects. Relationships between TEF and insulin resistance during meals, from the point of view of autonomic nervous activity, were evaluated. Autonomic nervous activity was evaluated in 20 young adults using the spectral analysis of heart rate variability from one hour before to two hours after a meal. Heart rate data were analyzed based on low frequency components (LF power, 0.04-0.15 Hz), high frequency components (HF power, 0.15-0.40 Hz), and LF/HF ratios. Energy expenditure and the TEF were measured 30 min after a meal. Homeostasis model of insulin resistance index (HOMA-IR) was also measured. The LF/HF ratio was significantly increased 30 min after a meal (pinsulin sensitivity induces a poor response of sympathetic nervous activity in the postprandial phase and a reduction in postprandial energy expenditure.

  7. Autonomous parsing of behavior in a multi-agent setting

    NARCIS (Netherlands)

    Vanderelst, D.; Barakova, E.I.; Rutkowski, L.; Tadeusiewicz, R.

    2008-01-01

    Imitation learning is a promising route to instruct robotic multi-agent systems. However, imitating agents should be able to decide autonomously what behavior, observed in others, is interesting to copy. Here we investigate whether a simple recurrent network (Elman Net) can be used to extract

  8. Neuronal degeneration in autonomic nervous system of Dystonia musculorum mice

    Directory of Open Access Journals (Sweden)

    Liu Kang-Jen

    2011-01-01

    Full Text Available Abstract Background Dystonia musculorum (dt is an autosomal recessive hereditary neuropathy with a characteristic uncoordinated movement and is caused by a defect in the bullous pemphigoid antigen 1 (BPAG1 gene. The neural isoform of BPAG1 is expressed in various neurons, including those in the central and peripheral nerve systems of mice. However, most previous studies on neuronal degeneration in BPAG1-deficient mice focused on peripheral sensory neurons and only limited investigation of the autonomic system has been conducted. Methods In this study, patterns of nerve innervation in cutaneous and iridial tissues were examined using general neuronal marker protein gene product 9.5 via immunohistochemistry. To perform quantitative analysis of the autonomic neuronal number, neurons within the lumbar sympathetic and parasympathetic ciliary ganglia were calculated. In addition, autonomic neurons were cultured from embryonic dt/dt mutants to elucidate degenerative patterns in vitro. Distribution patterns of neuronal intermediate filaments in cultured autonomic neurons were thoroughly studied under immunocytochemistry and conventional electron microscopy. Results Our immunohistochemistry results indicate that peripheral sensory nerves and autonomic innervation of sweat glands and irises dominated degeneration in dt/dt mice. Quantitative results confirmed that the number of neurons was significantly decreased in the lumbar sympathetic ganglia as well as in the parasympathetic ciliary ganglia of dt/dt mice compared with those of wild-type mice. We also observed that the neuronal intermediate filaments were aggregated abnormally in cultured autonomic neurons from dt/dt embryos. Conclusions These results suggest that a deficiency in the cytoskeletal linker BPAG1 is responsible for dominant sensory nerve degeneration and severe autonomic degeneration in dt/dt mice. Additionally, abnormally aggregated neuronal intermediate filaments may participate in

  9. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Oey, P.L.; Vos, P.E.; Wieneke, G.H.; Wokke, J.H.J.; Blankestijn, P.J.; Karemaker, J.M.

    2002-01-01

    The literature on the involvement of the autonomic nervous system (ANS) in amyotrophic lateral sclerosis (ALS) is conflicting. We therefore investigated several aspects of autonomic function, namely muscle sympathetic nerve activity (MSNA), blood pressure, cardiac function (electrocardiogram; ECG),

  10. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Oey, P. Liam; Vos, Pieter E.; Wieneke, George H.; Wokke, John H. J.; Blankestijn, Peter J.; Karemaker, John M.

    2002-01-01

    The literature on the involvement of the autonomic nervous system (ANS) in amyotrophic lateral sclerosis (ALS) is conflicting. We therefore investigated several aspects of autonomic function, namely muscle sympathetic nerve activity (MSNA), blood pressure, cardiac function (electrocardiogram; ECG),

  11. Planning of Autonomous Multi-agent Intersection

    Directory of Open Access Journals (Sweden)

    Viksnin Ilya I.

    2016-01-01

    Full Text Available In this paper, we propose a traffic management system with agents acting on behalf autonomous vehicle at the crossroads. Alternatively to existing solutions based on usage of semiautonomous control systems with the control unit, proposed in this paper algorithm apply the principles of decentralized multi-agent control. Agents during their collaboration generate intersection plan and determinate the optimal order of road intersection for a given criterion based on the exchange of information about them and their environment. The paper contains optimization criteria for possible routes selection and experiments that perform in order to estimate the proposed model. Experiment results show that this model can significantly reduce traffic density compared to the traditional traffic management systems. Moreover, the proposed algorithm efficiency increases with road traffic density. Furthermore, the availability of control unit in the system significantly reduces the negative impact of possible failures and hacker attacks.

  12. Aromatherapy Improves Work Performance Through Balancing the Autonomic Nervous System.

    Science.gov (United States)

    Huang, Lin; Capdevila, Lluis

    2017-03-01

    This study analyzed the efficacy of aromatherapy in improving work performance and reducing workplace stress. The initial sample comprised 42 administrative university workers (M age  = 42.21 years, standard deviation = 7.12; 10 male). All sessions were performed in a university computer classroom. The participants were randomly assigned into an aromatherapy group (AG) and a control group (CG), and they were invited to participate in a specific session only once. They were seated in front of a computer. During the intervention period, some oil diffusers were switched on and were in operation throughout the session with petitgrain essential oil for AG sessions and a neutral oil (almond) for CG sessions. At the same time, participants completed a computer task on a specific Web site typing on their keyboard until they had finished it. The single times were different for all participants and were recorded on the Web site as "performance time." Before and after the intervention, participants completed anxiety and mood state questionnaires (the Stait-Trait Anxiety Inventory [STAI] and the Profile of Mood States [POMS]). Heart-rate variability (HRV) was measured before (PRE), during (20-25 min), and after (POS) the intervention to analyze autonomic nervous system regulation. The AG performed the Web site task 2.28 min faster than the CG (p = 0.05). The two groups showed differences in the following HRV parameters: low frequency (p = 0.05), high frequency (p = 0.02), standard deviation of all RR intervals (p = 0.05), and root mean square of differences (p = 0.02). All participants in all groups showed a decrease from PRE to POST for STAI (p Aromatherapy (inhaling petitgrain essential oil) can improve performance in the workplace. These results could be explained by an autonomic balance on the sympathetic/parasympathetic system through a combined action of the petitgrain main components (linalyl acetate, linalool, and myrcene). The final

  13. Distraction or cognitive overload? Using modulations of the autonomic nervous system to discriminate the possible negative effects of advanced assistance system.

    Science.gov (United States)

    Ruscio, D; Bos, A J; Ciceri, M R

    2017-06-01

    The interaction with Advanced Driver Assistance Systems has several positive implications for road safety, but also some potential downsides such as mental workload and automation complacency. Malleable attentional resources allocation theory describes two possible processes that can generate workload in interaction with advanced assisting devices. The purpose of the present study is to determine if specific analysis of the different modalities of autonomic control of nervous system can be used to discriminate different potential workload processes generated during assisted-driving tasks and automation complacency situations. Thirty-five drivers were tested in a virtual scenario while using head-up advanced warning assistance system. Repeated MANOVA were used to examine changes in autonomic activity across a combination of different user interactions generated by the advanced assistance system: (1) expected take-over request without anticipatory warning; (2) expected take-over request with two-second anticipatory warning; (3) unexpected take-over request with misleading warning; (4) unexpected take-over request without warning. Results shows that analysis of autonomic modulations can discriminate two different resources allocation processes, related to different behavioral performances. The user's interaction that required divided attention under expected situations produced performance enhancement and reciprocally-coupled parasympathetic inhibition with sympathetic activity. At the same time, supervising interactions that generated automation complacency were described specifically by uncoupled sympathetic activation. Safety implications for automated assistance systems developments are considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Neurotoxic impact of mercury on the central nervous system evaluated by neuropsychological tests and on the autonomic nervous system evaluated by dynamic pupillometry.

    Science.gov (United States)

    Milioni, Ana Luiza V; Nagy, Balázs V; Moura, Ana Laura A; Zachi, Elaine C; Barboni, Mirella T S; Ventura, Dora F

    2017-03-01

    Mercury vapor is highly toxic to the human body. The present study aimed to investigate the occurrence of neuropsychological dysfunction in former workers of fluorescent lamps factories that were exposed to mercury vapor (years after cessation of exposure), diagnosed with chronic mercurialism, and to investigate the effects of such exposure on the Autonomic Nervous System (ANS) using the non-invasive method of dynamic pupillometry. The exposed group and a control group matched by age and educational level were evaluated by the Beck Depression Inventory and with the computerized neuropsychological battery CANTABeclipse - subtests of working memory (Spatial Span), spatial memory (Spatial Recognition Memory), visual memory (Pattern Recognition Memory) and action planning (Stockings of Cambridge). The ANS was assessed by dynamic pupillometry, which provides information on the operation on both the sympathetic and parasympathetic functions. Depression scores were significantly higher among the former workers when compared with the control group. The exposed group also showed significantly worse performance in most of the cognitive functions assessed. In the dynamic pupillometry test, former workers showed significantly lower response than the control group in the sympathetic response parameter (time of 75% of pupillary recovery at 10cd/m 2 luminance). Our study found indications that are suggestive of cognitive deficits and losses in sympathetic autonomic activity among patients occupationally exposed to mercury vapor. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  16. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study.

    Directory of Open Access Journals (Sweden)

    Tanja G M Vrijkotte

    Full Text Available In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5-6 years.Cross-sectional data from an apparently healthy population (within the ABCD study were collected at age 5-6 years in 1540 children. Heart rate (HR, respiratory sinus arrhythmia (RSA; parasympathetic activity and pre-ejection period (PEP; sympathetic activity were assessed during rest. Metabolic components were waist-height ratio (WHtR, systolic blood pressure (SBP, fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed.In analysis adjusted for child's physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01, higher SBP (p<0.001 and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01. Lower PEP was only associated with higher SBP (p <0.05. Of all children, 5.6% had 3 or more (out of 5 adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001.This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5-6 years.

  17. Does dysfunction of the autonomic nervous system affect success of renal denervation in reducing blood pressure?

    Science.gov (United States)

    Fricke, Lisa; Petroff, David; Desch, Steffen; Lurz, Philipp; Reinhardt, Sebastian; Sonnabend, Melanie; Classen, Joseph; Baum, Petra

    2017-01-01

    Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1) and normal or enhanced in nine patients (group 2). The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1-21 mmHg, p = 0.035) and from 166 to 145 mmHg (8-34 mmHg, p = 0.005), respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3-22 mmHg) greater in group 2 than in group 1 (p = 0.045). Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.

  18. Does dysfunction of the autonomic nervous system affect success of renal denervation in reducing blood pressure?

    Directory of Open Access Journals (Sweden)

    Lisa Fricke

    2017-04-01

    Full Text Available Objectives: Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. Methods: A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Results: Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1 and normal or enhanced in nine patients (group 2. The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1–21 mmHg, p = 0.035 and from 166 to 145 mmHg (8–34 mmHg, p = 0.005, respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3–22 mmHg greater in group 2 than in group 1 (p = 0.045. Conclusion: Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.

  19. Evaluation of Autonomic Nervous System, Saliva Cortisol Levels, and Cognitive Function in Major Depressive Disorder Patients

    Directory of Open Access Journals (Sweden)

    Sukonthar Ngampramuan

    2018-01-01

    Full Text Available Major depressive disorder (MDD is associated with changes in autonomic nervous system (ANS and cognitive impairment. Heart rate variability (HRV and Pulse pressure (PP parameters reflect influences of the sympathetic and parasympathetic nervous system. Cortisol exerts its greatest effect on the hippocampus, a brain area closely related to cognitive function. This study aims to examine the effect of HRV, PPG, salivary cortisol levels, and cognitive function in MDD patients by using noninvasive techniques. We have recruited MDD patients, diagnosed based on DSM-V-TR criteria compared with healthy control subjects. Their HRV and PP were measured by electrocardiogram (ECG and photoplethysmography (PPG. Salivary cortisol levels were collected and measured on the same day. MDD patients exhibited elevated values of mean HR, standard deviation of HR (SDHR, low frequency (LF power, low frequency/high frequency (LF/HF ratio, mean PP, standard deviation of pulse pressure (SDPP, and salivary cortisol levels. Simultaneously, they displayed lower values of mean of R-R intervals (mean NN, standard deviation of R-R intervals (SDNN, high frequency (HF power, and WCST scores. Results have shown that the ANS of MDD patients were dominated by the sympathetic activity and that they have cognitive deficits especially in the domain of executive functioning.

  20. Autonomic nervous system activity in purebred Arabian horses evaluated according to the low frequency and high frequency spectrum versus racing performance

    Directory of Open Access Journals (Sweden)

    Iwona Janczarek

    2016-01-01

    Full Text Available Emotional excitability influences horses’ performance in sports and races. The aim of the study was to analyse whether the balance of the autonomic system which can occur when sympathetic system activity is at various levels might impact the horses’ racing performance. The study was carried out on 67 purebred Arabian horses trained for racing. The following indices were analysed: low frequency (LF, high frequency (HF, and the ratio of spectrum power at low frequencies to high frequencies (LF/HF. The autonomic nervous system activity was measured × 3 during the training season, at three-month intervals. Each examination included a 30-min measurement at rest and after a training session. The racing performance indices in these horses were also analysed. Better racing results were found in horses with enhanced LF/HF. The worst racing results were determined in horses with low LF.

  1. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriëtte; van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous

  2. Social Adversity and Antisocial Behavior: Mediating Effects of Autonomic Nervous System Activity.

    Science.gov (United States)

    Fagan, Shawn E; Zhang, Wei; Gao, Yu

    2017-11-01

    The display of antisocial behaviors in children and adolescents has been of interest to criminologists and developmental psychologists for years. Exposure to social adversity is a well-documented predictor of antisocial behavior. Additionally, measures of autonomic nervous system (ANS) activity, including heart rate variability (HRV), pre-ejection period (PEP), and heart rate, have been associated with antisocial behaviors including rule-breaking and aggression. Social neuroscience research has begun to investigate how neurobiological underpinnings affect the relationship between social adversity and antisocial/psychopathic behavior in children and adolescents. This study investigated the potential mediating effects of ANS activity on the relationship between social adversity and antisocial behavior in a group of 7- to 10-year-old children from the community (N = 339; 48.2% male). Moderated multiple mediation analyses revealed that low resting heart rate, but not PEP or HRV, mediated the relationship between social adversity and antisocial behavior in males only. Social adversity but not ANS measures were associated with antisocial behavior in females. Findings have implications for understanding the neural influences that underlie antisocial behavior, illustrate the importance of the social environment regarding the expression of these behaviors, and highlight essential gender differences.

  3. Lost among the trees? The autonomic nervous system and paediatrics.

    Science.gov (United States)

    Rees, Corinne A

    2014-06-01

    The autonomic nervous system (ANS) has been strikingly neglected in Western medicine. Despite its profound importance for regulation, adjustment and coordination of body systems, it lacks priority in training and practice and receives scant attention in numerous major textbooks. The ANS is integral to manifestations of illness, underlying familiar physical and psychological symptoms. When ANS activity is itself dysfunctional, usual indicators of acute illness may prove deceptive. Recognising the relevance of the ANS can involve seeing the familiar through fresh eyes, challenging assumptions in clinical assessment and in approaches to practice. Its importance extends from physical and psychological well-being to parenting and safeguarding, public services and the functioning of society. Exploration of its role in conditions ranging from neurological, gastrointestinal and connective tissue disorders, diabetes and chronic fatigue syndrome, to autism, behavioural and mental health difficulties may open therapeutic avenues. The ANS offers a mechanism for so-called functional illnesses and illustrates the importance of recognising that 'stress' takes many forms, physical, psychological and environmental, desirable and otherwise. Evidence of intrauterine and post-natal programming of ANS reactivity suggests that neonatal care and safeguarding practice may offer preventive opportunity, as may greater understanding of epigenetic change of ANS activity through, for example, accidental or psychological trauma or infection. The aim of this article is to accelerate recognition of the importance of the ANS throughout paediatrics, and of the potential physical and psychological cost of neglecting it. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot

  5. The relationship between nature-based tourism and autonomic nervous system function among older adults.

    Science.gov (United States)

    Chang, Liang-Chih

    2014-01-01

    Nature-based tourism has recently become a topic of interest in health research. This study was aimed at examining relationships among nature-based tourism, stress, and the function of the autonomic nervous system (ANS). Three hundred and twenty-two older adults living in Taichung City, Taiwan, were selected as participants. Data were collected by a face-to-face survey that included measures of the frequency of participation in domestic and international nature-based tourism and the stress and ANS function of these participants. The data were analyzed using a path analysis. The results demonstrated that the frequency of participation in domestic nature-based tourism directly contributed to ANS function and that it also indirectly contributed to ANS function through stress reduction. Domestic nature-based tourism can directly and indirectly contribute to ANS function among older adults. Increasing the frequency of participation in domestic nature-based tourism should be considered a critical element of health programs for older adults. © 2014 International Society of Travel Medicine.

  6. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Petra Baum

    Full Text Available OBJECTIVE: To assess the distribution of autonomic nervous system (ANS dysfunction in overweight and obese children. METHODS: Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF, high frequency power, ln(HF; ln(LF/HF ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio, root mean square of successive differences (RMSSD; sympathetic skin response (SSR; and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity. The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. RESULTS: Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys. E/I ratio (p = 0.003, ln(HF (p = 0.03, pupil diameter in darkness (p = 0.01 were negatively correlated with BMI-SDS, whereas ln(LF/HF was positively correlated (p = 0.05. Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08. None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. CONCLUSION: These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction

  7. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.

    Science.gov (United States)

    Baum, Petra; Petroff, David; Classen, Joseph; Kiess, Wieland; Blüher, Susann

    2013-01-01

    To assess the distribution of autonomic nervous system (ANS) dysfunction in overweight and obese children. Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF), high frequency power, ln(HF); ln(LF/HF) ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio), root mean square of successive differences (RMSSD); sympathetic skin response (SSR); and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity). The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS) was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR) were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys). E/I ratio (p = 0.003), ln(HF) (p = 0.03), pupil diameter in darkness (p = 0.01) were negatively correlated with BMI-SDS, whereas ln(LF/HF) was positively correlated (p = 0.05). Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08). None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction raises the possibility that obesity may give

  8. 3H-digoxin distribution in the nervous system in ventricular tachycardia

    International Nuclear Information System (INIS)

    Frazer, G.; Binnion, P.

    1981-01-01

    The distribution of 3H-digoxin has been measured in a large number of tissues from the central, autonomic, and peripheral nervous system after the induction of ventricular tachycardia by infusing digoxin into anesthetized dogs. In most parts of the nervous system the tissue digoxin concentration was close to that in the cerebrospinal fluid. Digoxin accumulation in the choroid plexus probably represented a labeling of adenosine triphosphatase. There was a markedly higher concentration of digoxin in the neurohypophysis than in the adenohypophysis, and the very high levels in the neurohypophysis are hard to explain. There may be a relationship between the pituitary and the hypothalamic digoxin levels, although the concentration in the latter was unimpressive. The fornix showed a modest increase in 3H-digoxin concentration and may play a role, as its efferent discharge goes to the hypothalamus. The high concentration of digoxin in the area postrema suggests that this central nervous system structure is responsible, at least in part, for producing digoxin-induced cardiac arrhythmias. It may act as a sensing organ sensitive to blood digoxin concentration. Either it is the only central nervous structure implicated, or it is involved together with the fornix-hypothalamus-hypophysis pathways. Further proof is given for the importance of the autonomic nervous system in cardiac arrhythmias by the high digoxin levels in the superior cervical sympathetic ganglion and adrenal medulla

  9. Socially intelligent autonomous agents that learn from human reward

    NARCIS (Netherlands)

    Li, Guangliang

    2016-01-01

    In the future, autonomous agents will operate in human inhabited environments in many real world applications and become an integral part of human’s daily lives. Therefore, when autonomous agents enter into the real world, they need to adapt to many novel, dynamic and complex situations that cannot

  10. A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids

    International Nuclear Information System (INIS)

    Karavas, Christos-Spyridon; Kyriakarakos, George; Arvanitis, Konstantinos G.; Papadakis, George

    2015-01-01

    Highlights: • A decentralized energy management system based on multi agent systems theory. • A decentralized energy management system is technically feasible. • A decentralized approach utilizes the devices better than a centralized one. • A decentralized energy management system is economically competitive. - Abstract: The autonomous polygeneration microgrid topology has been developed in order to cover holistically needs in a remote area such as electrical energy, space heating and cooling, potable water through desalination and hydrogen as fuel for transportation. The existence of an advanced energy management system is essential for the operation of an autonomous polygeneration microgrid. So far, energy management systems based on a centralized management and control have been developed for the autonomous polygeneration microgrid topology based on computational intelligence approaches. A decentralized management and control energy management system can have important benefits, when taking into consideration the autonomous character of these microgrids. This paper presents the design and investigation of a decentralized energy management system for the autonomous polygeneration microgrid topology. The decentralized energy management system gives the possibility to control each unit of the microgrid independently. The most important advantage of using a decentralized architecture is that the managed microgrid has much higher chances of partial operation in cases when malfunctions occur at different parts of it, instead of a complete system breakdown. The designed system was based on a multi-agent system and employed Fuzzy Cognitive Maps for its implementation. It was then compared through a case study with an existing centralized energy management system. The technical performance of the decentralized solution performance is on par with the existing centralized one, presenting improvements in financial and operational terms for the implementation and

  11. Effects of insula resection on autonomic nervous system activity

    NARCIS (Netherlands)

    de Morree, Helma; Rutten, Geert-Jan; Szabo, B.M.; Sitskoorn, Margriet; Kop, Wijo

    2016-01-01

    Background: The insula is an essential component of the central autonomic network and plays a critical role in autonomic regulation in response to environmental stressors. The role of the insula in human autonomic regulation has been primarily investigated following cerebrovascular accidents, but

  12. An Intelligent Multiagent System for Autonomous Microgrid Operation

    Directory of Open Access Journals (Sweden)

    Tetsuo Kinoshita

    2012-09-01

    Full Text Available A microgrid is an eco-friendly power system because renewable sources such as solar and wind power are used as the main power sources. For this reason, much research, development, and demonstration projects have recently taken place in many countries. Operation is one of the important research topics for microgrids. For efficient and economical microgrid operation, a human operator is required as in other power systems, but it is difficult because there are some restrictions related to operation costs and privacy issues. To overcome the restriction, autonomous operation for microgrids is required. Recently, an intelligent agent system for autonomous microgrid operation has been studied as a potential solution. This paper proposes a multiagent system for autonomous microgrid operation. To build the multiagent system, the functionalities of agents, interactions among agents, and an effective agent protocol have been designed. The proposed system has been implemented by using an ADIPS/DASH framework as an agent platform. The intelligent multiagent system for microgrid operation based on the proposed scheme is tested to show the functionality and feasibility on a distributed environment through the Internet.

  13. Requirement analysis for autonomous systems and intelligent agents in future Danish electric power systems

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten

    2010-01-01

    we review innovative control architectures in electric power systems such as Microgrids, Virtual power plants and Cell based systems. We evaluate application of autonomous systems and intelligent agents in each of these control architectures particularly in the context of Denmark's strategic energy...... plans. The second part formulates a flexible control architecture for electric power systems with very high penetration of distributed generation. This control architecture is based upon the requirements identified in the first part. We also present development of a software framework to test......Denmark has already achieved a record of 20% penetration of wind power and now moving towards even higher targets with an increasing part of the electricity produced by distributed generators (DGs). In this paper we report work from a sub activity "subgrid design" of the EcoGrid.dk project. First...

  14. Fuzzy Decision-Making Fuser (FDMF for Integrating Human-Machine Autonomous (HMA Systems with Adaptive Evidence Sources

    Directory of Open Access Journals (Sweden)

    Yu-Ting Liu

    2017-06-01

    Full Text Available A brain-computer interface (BCI creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This

  15. Fuzzy Decision-Making Fuser (FDMF) for Integrating Human-Machine Autonomous (HMA) Systems with Adaptive Evidence Sources.

    Science.gov (United States)

    Liu, Yu-Ting; Pal, Nikhil R; Marathe, Amar R; Wang, Yu-Kai; Lin, Chin-Teng

    2017-01-01

    A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion

  16. An Educational Board Game to Assist PharmD Students in Learning Autonomic Nervous System Pharmacology.

    Science.gov (United States)

    Jones, J Shawn; Tincher, Lindsay; Odeng-Otu, Emmanuel; Herdman, Michelle

    2015-10-25

    Objective. To examine whether playing a board game can assist PharmD students in learning autonomic nervous system (ANS) pharmacology. Design. Of 72 students enrolled in a required second-year pharmacology course, 22 students volunteered to play the board game, which was followed by an in-class examination consisting of 42 ANS questions (ANSQs) and 8 control questions (CTLQs). Participants were given a pretest and a posttest to assess immediate educational improvement. Participants' scores for pretest, posttest, in-class examination, and ANSQs were compared. Also, scores for examination, ANSQs, and CTLQs were compared between board game participants (PART) and nonparticipating classmates (NPART). Assessment. Board game participants scored progressively higher between the pretest, posttest, examination, and ANSQs. Additionally, PART scores were higher than NPART scores for examination and ANSQs. Difference between PART and NPART CTLQ scores was not significant. Conclusion. A board game can assist PharmD students in learning ANS pharmacology.

  17. Role of the autonomic nervous system in rat liver regeneration.

    Science.gov (United States)

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  18. Changes in autonomic nervous system activity after treatment with alpha-blocker in men with lower urinary tract symptoms

    Directory of Open Access Journals (Sweden)

    Kang Hee Shim

    2018-01-01

    Full Text Available Purpose: To determine changes in autonomic nervous system activity after treatment in men with lower urinary tract symptoms (LUTS, we evaluated changes in patients' symptoms, uroflowmetry, and heart rate variability (HRV after treatment with alpha-blockers for 12 weeks. Materials and Methods: Ninety-five men who had LUTS (International Prostate Symptom Score [IPSS] ≥8 were included in this study. We divided them into two groups on the basis of a low frequency/high frequency (LF/HF ratio of 1.6. After treatment with Xatral XL (Handok Inc., Korea 10 mg for 3 months, we rechecked their IPSS, uroflowmetry, HRV and compared these with the baseline measurements. Results: Fifty-four men were assigned to the low LF/HF group (group A: LF/HF ≤1.6 and 41 men to the high LF/HF group (group B: LF/HF >1.6. At baseline and 12 weeks, none of the parameters differed significantly between the groups except for HF, which is one of the parameters of HRV. IPSS, the IPSS-voiding subscore, and the IPSS-storage subscore decreased and maximal uroflow increased significantly after 12 weeks of treatment. Whereas the baseline LF/HF ratio increased from 0.89±0.407 to 1.80±1.804 after treatment in group A, it decreased from 3.93±5.471 to 1.79±1.153 in group B. Conclusions: The efficacies of Xatral XL were clear in both groups. We found that the LF/HF ratio in the two groups merged to a value of approximately 1.79 after treatment. We suggest that this could be a clue to the importance of balance in autonomic nervous system activity in men with LUTS.

  19. Characterizing Psychological Dimensions in Non-Pathological Subjects through Autonomic Nervous System Dynamics

    Directory of Open Access Journals (Sweden)

    Mimma eNardelli

    2015-03-01

    Full Text Available The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS dynamics and specific dimensions such as anxiety, social phobia, stress and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and nonlinear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and nonlinear analysis was performed on Heart Rate Variability, InterBreath Interval series, and Inter-Beat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, nonlinear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions.

  20. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    Science.gov (United States)

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  1. Microtubule-Targeting Agents Enter the Central Nervous System (CNS: Double-edged Swords for Treating CNS Injury and Disease

    Directory of Open Access Journals (Sweden)

    Eun-Mi Hur

    2014-12-01

    Full Text Available Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  2. Influence of tilt training on activation of the autonomic nervous system in patients with vasovagal syncope.

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Halawa, Bogumił; Mazurek, Walentyna

    2006-04-01

    Tilt training is a new treatment for vasovagal syncope. Its therapeutic efficacy is thought to be the result of the desensitization of cardiopulmonary receptors, but it could be the influence of the tilt training on the activation of the autonomic nervous system as well. The study group consisted of 24 vasovagal patients (17 women and 7 men) aged 32.5 +/- 11.8 years. The diagnostic head-up tilt test was performed according to the Italian protocol with nitroglycerin if necessary. The monitoring head-up tilt test was performed according to the Westminster protocol without provocation, after 1 to 3 months of tilt training. Holter ECG recordings for HRV parameters (time and frequency domain) were obtained from selected 2-min intervals before, during and after the diagnostic and monitoring tilt test. The diagnostic test was positive in the passive phase in 6 and after provocation in 18 patients. During the training period no syncope occurred. Analysing the HRV parameters we demonstrated the following findings: I. mRR decreases immediately after assumption of a vertical position in both tests (diagnostic and monitoring) but in the diagnostic test its further decrease occurs earlier than in the monitoring test; 2. the absolute power of the HF component is greater in the early phase of tilt after tilt training than in the corresponding period in the diagnostic test. After a longer period of tilt training the activation of the sympathetic nervous system in response to the erect position is diminished.

  3. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    Directory of Open Access Journals (Sweden)

    Luba Sominsky

    Full Text Available Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p. exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA axis functioning. Altered autonomic nervous system (ANS activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH in the adrenal glands on postnatal days (PNDs 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli. Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of

  4. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    Science.gov (United States)

    Sominsky, Luba; Fuller, Erin A; Bondarenko, Evgeny; Ong, Lin Kooi; Averell, Lee; Nalivaiko, Eugene; Dunkley, Peter R; Dickson, Phillip W; Hodgson, Deborah M

    2013-01-01

    Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.

  5. Autonomic dysfunction in different subtypes of multiple system atrophy.

    Science.gov (United States)

    Schmidt, Claudia; Herting, Birgit; Prieur, Silke; Junghanns, Susann; Schweitzer, Katherine; Globas, Christoph; Schöls, Ludger; Reichmann, Heinz; Berg, Daniela; Ziemssen, Tjalf

    2008-09-15

    Multiple system atrophy (MSA) can clinically be divided into the cerebellar (MSA-C) and the parkinsonian (MSA-P) variant. However, till now, it is unknown whether autonomic dysfunction in these two entities differs regarding severity and profile. We compared the pattern of autonomic dysfunction in 12 patients with MSA-C and 26 with MSA-P in comparison with 27 age- and sex-matched healthy controls using a standard battery of autonomic function tests and a structured anamnesis of the autonomic nervous system. MSA-P patients complained significantly more often about the symptoms of autonomic dysfunctions than MSA-C patients, especially regarding vasomotor, secretomotor, and gastrointestinal subsystems. However, regarding cardiovascular, sudomotor pupil, urogenital, and sleep subsystems, there were no significant quantitative or qualitative differences as analyzed by autonomic anamnesis and testing. Our results suggest that there are only minor differences in the pattern of autonomic dysfunction between the two clinical MSA phenotypes. (c) 2007 Movement Disorder Society.

  6. Fairness in multi-agent systems

    NARCIS (Netherlands)

    Jong, de S.; Tuyls, K.P.; Verbeeck, K.

    2008-01-01

    Multi-agent systems are complex systems in which multiple autonomous entities, called agents, cooperate in order to achieve a common or personal goal. These entities may be computer software, robots, and also humans. In fact, many multi-agent systems are intended to operate in cooperation with or as

  7. Autonomous System Technologies for Resilient Airspace Operations

    Science.gov (United States)

    Houston, Vincent E.; Le Vie, Lisa R.

    2017-01-01

    Increasing autonomous systems within the aircraft cockpit begins with an effort to understand what autonomy is and developing the technology that encompasses it. Autonomy allows an agent, human or machine, to act independently within a circumscribed set of goals; delegating responsibility to the agent(s) to achieve overall system objective(s). Increasingly Autonomous Systems (IAS) are the highly sophisticated progression of current automated systems toward full autonomy. Working in concert with humans, these types of technologies are expected to improve the safety, reliability, costs, and operational efficiency of aviation. IAS implementation is imminent, which makes the development and the proper performance of such technologies, with respect to cockpit operation efficiency, the management of air traffic and data communication information, vital. A prototype IAS agent that attempts to optimize the identification and distribution of "relevant" air traffic data to be utilized by human crews during complex airspace operations has been developed.

  8. Drug-induced liver injury due to antimicrobials, central nervous system agents, and nonsteroidal anti-inflammatory drugs.

    Science.gov (United States)

    Devarbhavi, Harshad; Andrade, Raúl J

    2014-05-01

    Antimicrobial agents including antituberculosis (anti-TB) agents are the most common cause of idiosyncratic drug-induced liver injury (DILI) and drug-induced liver failure across the world. Better molecular and genetic biomarkers are acutely needed to help identify those at risk of liver injury particularly for those needing antituberculosis therapy. Some antibiotics such as amoxicillin-clavulanate and isoniazid consistently top the lists of agents in retrospective and prospective DILI databases. Central nervous system agents, particularly antiepileptics, account for the second most common class of agents implicated in DILI registries. Hepatotoxicity from older antiepileptics such as carbamazepine, phenytoin, and phenobarbital are often associated with hypersensitivity features, whereas newer antiepileptic drugs have a more favorable safety profile. Antidepressants and nonsteroidal anti-inflammatory drugs carry very low risk of significant liver injury, but their prolific use make them important causes of DILI. Early diagnosis and withdrawal of the offending agent remain the mainstays of minimizing hepatotoxicity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Effect of autogenic training on cardiac autonomic nervous activity in high-risk fire service workers for posttraumatic stress disorder.

    Science.gov (United States)

    Mitani, Satoko; Fujita, Masatoshi; Sakamoto, Satoko; Shirakawa, Taro

    2006-05-01

    We investigated the effect of autogenic training (AT) on cardiac autonomic nervous activity in fire services workers with the use of the questionnaire of the Japanese-language version of Impact of Event Scale-Revised (IES-R-J) and indexes of heart rate variability. We studied 22 male fire services workers who were divided into posttraumatic stress disorder (PTSD)-related stress group (n=10) and control group (n=12). They underwent AT twice or three times a week for 2 months. Posttraumatic stress disorder-related stress group showed a significantly higher cardiac sympathetic nervous activity and a significantly lower cardiac parasympathetic nervous activity than control group at baseline. Autogenic training significantly decreased cardiac sympathetic nervous activity and significantly increased cardiac parasympathetic nervous activity in both groups. These changes were accompanied by a significant decrease in the total points of IES-R-J. Autogenic training is effective for ameliorating the disturbance of cardiac autonomic nervous activity and psychological issues secondary to PTSD.

  10. Improving Human/Autonomous System Teaming Through Linguistic Analysis

    Science.gov (United States)

    Meszaros, Erica L.

    2016-01-01

    An area of increasing interest for the next generation of aircraft is autonomy and the integration of increasingly autonomous systems into the national airspace. Such integration requires humans to work closely with autonomous systems, forming human and autonomous agent teams. The intention behind such teaming is that a team composed of both humans and autonomous agents will operate better than homogenous teams. Procedures exist for licensing pilots to operate in the national airspace system and current work is being done to define methods for validating the function of autonomous systems, however there is no method in place for assessing the interaction of these two disparate systems. Moreover, currently these systems are operated primarily by subject matter experts, limiting their use and the benefits of such teams. Providing additional information about the ongoing mission to the operator can lead to increased usability and allow for operation by non-experts. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables the prediction of the operator's intent and allows the interface to supply the operator's desired information.

  11. Etiologic Agents of Central Nervous System Infections among Febrile Hospitalized Patients in the Country of Georgia

    OpenAIRE

    Akhvlediani, Tamar; Bautista, Christian T.; Shakarishvili, Roman; Tsertsvadze, Tengiz; Imnadze, Paata; Tatishvili, Nana; Davitashvili, Tamar; Samkharadze, Tamar; Chlikadze, Rusudan; Dvali, Natia; Dzigua, Lela; Karchava, Mariam; Gatserelia, Lana; Macharashvili, Nino; Kvirkvelia, Nana

    2014-01-01

    OBJECTIVES: There is a large spectrum of viral, bacterial, fungal, and prion pathogens that cause central nervous system (CNS) infections. As such, identification of the etiological agent requires multiple laboratory tests and accurate diagnosis requires clinical and epidemiological information. This hospital-based study aimed to determine the main causes of acute meningitis and encephalitis and enhance laboratory capacity for CNS infection diagnosis. METHODS: Children and adults patients cli...

  12. Evolutionary autonomous agents and the nature of apraxia

    Directory of Open Access Journals (Sweden)

    Jin Frank

    2005-01-01

    Full Text Available Abstract Background Evolutionary autonomous agents are robots or robot simulations whose controller is a dynamical neural network and whose evolution occurs autonomously under the guidance of a fitness function without the detailed or explicit direction of an external programmer. They are embodied agents with a simple neural network controller and as such they provide the optimal forum by which sensorimotor interactions in a specified environment can be studied without the computational assumptions inherent in standard neuroscience. Methods Evolutionary autonomous agents were evolved that were able to perform identical movements under two different contexts, one which represented an automatic movement and one which had a symbolic context. In an attempt to model the automatic-voluntary dissociation frequently seen in ideomotor apraxia, lesions were introduced into the neural network controllers resulting in a behavioral dissociation with loss of the ability to perform the movement which had a symbolic context and preservation of the simpler, automatic movement. Results Analysis of the changes in the hierarchical organization of the networks in the apractic EAAs demonstrated consistent changes in the network dynamics across all agents with loss of longer duration time scales in the network dynamics. Conclusion The concepts of determinate motor programs and perceptual representations that are implicit in the present day understanding of ideomotor apraxia are assumptions inherent in the computational understanding of brain function. The strength of the present study using EAAs to model one aspect of ideomotor apraxia is the absence of these assumptions and a grounding of all sensorimotor interactions in an embodied, autonomous agent. The consistency of the hierarchical changes in the network dynamics across all apractic agents demonstrates that this technique is tenable and will be a valuable adjunct to a computational formalism in the understanding

  13. Autonomic and Apoptotic, Aeronautical and Aerospace Systems, and Controlling Scientific Data Generated Therefrom

    Science.gov (United States)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2015-01-01

    A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data.

  14. Self-Organizing and Autonomous Learning Agents and Systems

    National Research Council Canada - National Science Library

    Shen, Wei-Min

    2004-01-01

    ...) Autonomous discovery and response to unexpected topology changes; (2) A new distributed functional language called DH2 for programming of self-reconfigurable systems using hormone-inspired computational methods...

  15. Prenatal stress and balance of the child's cardiac autonomic nervous system at age 5-6 years.

    Directory of Open Access Journals (Sweden)

    Aimée E van Dijk

    Full Text Available OBJECTIVE: Autonomic nervous system (ANS misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. METHODS: Mothers from a prospective birth cohort (ABCD study filled out a questionnaire at gestational week 16 [IQR 12-20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80(th percentiles. Indicators of cardiac ANS in the offspring at age 5-6 years are: pre-ejection period (PEP, heart rate (HR, respiratory sinus arrhythmia (RSA and cardiac autonomic balance (CAB, measured with electrocardiography and impedance cardiography in resting supine and sitting positions. RESULTS: 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p≥0.17. Accumulation of maternal stress was also not associated with HR, PEP, RSA and CAB (p≥0.07. CONCLUSION: Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac ANS balance in the offspring, at least in rest, and at the age of five-six years.

  16. Insights into the background of autonomic medicine.

    Science.gov (United States)

    Laranjo, Sérgio; Geraldes, Vera; Oliveira, Mário; Rocha, Isabel

    2017-10-01

    Knowledge of the physiology underlying the autonomic nervous system is pivotal for understanding autonomic dysfunction in clinical practice. Autonomic dysfunction may result from primary modifications of the autonomic nervous system or be secondary to a wide range of diseases that cause severe morbidity and mortality. Together with a detailed history and physical examination, laboratory assessment of autonomic function is essential for the analysis of various clinical conditions and the establishment of effective, personalized and precise therapeutic schemes. This review summarizes the main aspects of autonomic medicine that constitute the background of cardiovascular autonomic dysfunction. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Adeno-associated viral vectors as agents for gene delivery : application in disorders and trauma of the central nervous system

    NARCIS (Netherlands)

    Ruitenberg, Marc J; Eggers, Ruben; Boer, Gerard J; Verhaagen, J.

    2002-01-01

    The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors,

  18. Person perception and autonomic nervous system response: the costs and benefits of possessing a high social status.

    Science.gov (United States)

    Cloutier, J; Norman, G J; Li, T; Berntson, G G

    2013-02-01

    This research was designed to investigate the relationship between sympathetic and parasympathetic autonomic nervous system (ANS) responses to the perception of social targets varying in social status. Participants varying in subjective financial status were presented with faces assigned with either a low, average, or high financial status. Electrocardiographic and impedance cardiography signals were recorded and measures of sympathetic (pre-ejection period; PEP) and parasympathetic (high frequency heart rate variability; HF HRV) cardiac control were derived. These measures associated with the presentation of each face condition were examined in relation to the subjective status of the perceivers. Participants with high subjective financial status showed reduced sympathetic activity when viewing low- and medium-status targets as compared to high-status targets, and lower parasympathetic response when viewing high- and medium-status targets relative to low-status targets. Copyright © 2012. Published by Elsevier B.V.

  19. Association between depression, pressure pain sensitivity, stress and autonomous nervous system function in stable ischemic heart disease

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Bergmann, Natasha; Karpatschof, Benny

    2016-01-01

    Background: Depression and ischemic heart disease (IHD) are associated with persistent stress and autonomic nervous system (ANS) dysfunction. The former can be measured by pressure pain sensitivity (PPS) of the sternum, and the latter by the PPS and systolic blood pressure (SBP) response to a tilt...... table test (TTT). Beta-blocker treatment reduces the efferent beta-adrenergic ANS function, and thus, the physiological stress response. Objective: To test the effect of beta-blockers on changes in depression score in patients with IHD, as well as the influence on persistent stress and ANS dysfunction...... PPS score correlated in non-users, only (r = 0.69, p = 0.007). Reduction in resting PPS correlated with an increase in PPS and SBP response to TTT. Conclusions: Stress intervention in patients with IHD was anti-depres- sive in non-users, only. Similarly, the association between the reduction...

  20. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.

  1. Autonomic Nervous System Responses to Concussion: Arterial Pulse Contour Analysis

    Directory of Open Access Journals (Sweden)

    Michael F La Fountaine

    2016-02-01

    Full Text Available The arterial pulse wave (APW has a distinct morphology whose contours reflect dynamics in cardiac function and peripheral vascular tone as a result of sympathetic nervous system (SNS control. With a transition from rest to increased metabolic demand, the expected augmentation of SNS outflow will not only affect arterial blood pressure and heart rate, it will also induce changes to the contours of the APW. Following a sports concussion, a transient state cardiovascular autonomic dysfunction is present. How this state affects the APW, has yet to be described. A prospective, parallel-group study on cardiovascular autonomic control (i.e., digital electrocardiogram and continuous beat-to-beat blood pressure was performed in the seated upright position in ten athletes with concussion and 7 non-injured control athletes. Changes in APW were compared at rest and during the first 60 seconds (F60 of an isometric handgrip test (IHGT in concussed athletes and non-injured controls within 48 hours (48hr and 1 week (1wk of injury. The concussion group was further separated by the length of time until they were permitted to return to play (RTP>1wk; RTP≤1wk. SysSlope, an indirect measurement of stroke volume, was significantly lower in the concussion group at rest and during F60 at 48hr and 1wk; a paradoxical decline in SysSlope occurred at each visit during the transition from rest to IHGT F60. The RTP>1wk group had lower SysSlope (405±200; 420±88; 454±236 mmHg/s, respectively at rest 48hr compared to the RTP≤1wk and controls. Similarly at 48hr rest, several measurements of arterial stiffness were abnormal in RTP>1wk compared to RTP≤1wk and controls: Peak-to-Notch Latency (0.12±0.04; 0.16±0.02; 0.17±0.05, respectively, Notch Relative Amplitude (0.70±0.03; 0.71±0.04; 0.66±0.14, respectively and Stiffness Index (6.4±0.2; 5.7±0.4; 5.8±0.5, respectively. Use of APW revealed that concussed athletes have a transient increase in peripheral artery

  2. Autonomic Regulation of Splanchnic Circulation

    Directory of Open Access Journals (Sweden)

    Kathleen A Fraser

    1991-01-01

    Full Text Available The role of the autonomic nervous system in circulatory regulation of the splanchnic organs (stomach, small intestine, colon, liver, pancreas and spleen is reviewed. In general, the sympathetic nervous system is primarily involved in vasoconstriction, while the parasympathetic contributes to vasodilation. Vasoconstriction in the splanchnic circulation appears to be mediated by alpha-2 receptors and vasodilation by activation of primary afferent nerves with subsequent release of vasodilatory peptides, or by stimulation of beta-adrenergic receptors. As well, an important function of the autonomic nervous system is to provide a mechanism by which splanchnic vascular reserve can be mobilized during stress to maintain overall cardiovascular homeostasis.

  3. Family conflict, autonomic nervous system functioning, and child adaptation: state of the science and future directions.

    Science.gov (United States)

    El-Sheikh, Mona; Erath, Stephen A

    2011-05-01

    The family is one of the primary contexts of child development. Marital and parent-child conflict (family conflict) are common and predict a wide range of negative behavioral and emotional outcomes in children. Thus, an important task for developmental researchers is to identify the processes through which family conflict contributes to children's psychological maladjustment, as well as vulnerability and protective factors in the context of family conflict. In the current paper, we aim to advance a conceptual model that focuses on indices of children's autonomic nervous system (ANS) functioning that increase vulnerability or provide protection against psychological maladjustment in the context of family conflict. In doing so, we provide a selective review that reflects the state of the science linking family conflict, children's ANS activity, and child psychological adjustment, and offer directions and guidance for future research. Our hope is to accelerate research at the intersection of family conflict and ANS functioning to advance understanding of risk and resilience among children.

  4. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    Langer, Oliver; Halldin, Christer

    2002-01-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[ 18 F]fluorodopamine, (-)-6-[ 18 F]fluoronorepinephrine and (-)-[ 11 C]epinephrine, and radiolabelled catecholamine analogues, such as [ 123 I]meta-iodobenzylguanidine, [ 11 C]meta-hydroxyephedrine, [ 18 F]fluorometaraminol, [ 11 C]phenylephrine and meta-[ 76 Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[ 18 F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  5. A Game Theory Approach to Multi-Agent Decentralized Energy Management of Autonomous Polygeneration Microgrids

    Directory of Open Access Journals (Sweden)

    Christos-Spyridon Karavas

    2017-11-01

    Full Text Available Energy management systems are essential and indispensable for the secure and optimal operation of autonomous polygeneration microgrids which include distributed energy technologies and multiple electrical loads. In this paper, a multi-agent decentralized energy management system was designed. In particular, the devices of the microgrid under study were controlled as interactive agents. The energy management problem was formulated here through the application of game theory, in order to model the set of strategies between two players/agents, as a non-cooperative power control game or a cooperative one, according to the level of the energy produced by the renewable energy sources and the energy stored in the battery bank, for the purpose of accomplishing optimal energy management and control of the microgrid operation. The Nash equilibrium was used to compromise the possible diverging goals of the agents by maximizing their preferences. The proposed energy management system was then compared with a multi-agent decentralized energy management system where all the agents were assumed to be cooperative and employed agent coordination through Fuzzy Cognitive Maps. The results obtained from this comparison, demonstrate that the application of game theory based control, in autonomous polygeneration microgrids, can ensure operational and financial benefits over known energy management approaches incorporating distributed intelligence.

  6. Autonomous Agents on Expedition: Humans and Progenitor Ants and Planetary Exploration

    Science.gov (United States)

    Rilee, M. L.; Clark, P. E.; Curtis, S. A.; Truszkowski, W. F.

    2002-01-01

    The Autonomous Nano-Technology Swarm (ANTS) is an advanced mission architecture based on a social insect analog of many specialized spacecraft working together to achieve mission goals. The principal mission concept driving the ANTS architecture is a Main Belt Asteroid Survey in the 2020s that will involve a thousand or more nano-technology enabled, artificially intelligent, autonomous pico-spacecraft (architecture. High level, mission-oriented behaviors are to be managed by a control / communications layer of the swarm, whereas common low level functions required of all spacecraft, e.g. attitude control and guidance and navigation, are handled autonomically on each spacecraft. At the higher levels of mission planning and social interaction deliberative techniques are to be used. For the asteroid survey, ANTS acts as a large community of cooperative agents while for precursor missions there arises the intriguing possibility of Progenitor ANTS and humans acting together as agents. For optimal efficiency and responsiveness for individual spacecraft at the lowest levels of control we have been studying control methods based on nonlinear dynamical systems. We describe the critically important autonomous control architecture of the ANTS mission concept and a sequence of partial implementations that feature increasingly autonomous behaviors. The scientific and engineering roles that these Progenitor ANTS could play in human missions or remote missions with near real time human interactions, particularly to the Moon and Mars, will be discussed.

  7. Flexible Decision Control in an Autonomous Trading Agent

    NARCIS (Netherlands)

    J. Collins (John); W. Ketter (Wolfgang); M. Gini (Maria)

    2007-01-01

    textabstractAn autonomous trading agent is a complex piece of software that must operate in a competitive economic environment and support a research agenda. We describe the structure of decision processes in the MinneTAC trading agent, focusing on the use of evaluators – configurable, composable

  8. Brain Hypoactivation, Autonomic Nervous System Dysregulation, and Gonadal Hormones in Depression: A Preliminary Study

    Science.gov (United States)

    Holsen, Laura M.; Lee, Jong-Hwan; Spaeth, Sarah B.; Ogden, Lauren A.; Klibanski, Anne; Whitfield-Gabrieli, Susan; Sloan, Richard P.; Goldstein, Jill M.

    2012-01-01

    The comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) is among the 10th leading cause of morbidity and mortality worldwide. Thus, understanding the co-occurrence of these disorders will have major public health significance. MDD is associated with an abnormal stress response, manifested in brain circuitry deficits, gonadal dysfunction, and autonomic nervous system (ANS) dysregulation. Contribution of the relationships between these systems to the pathophysiology of MDD is not well understood. The objective of this preliminary study was to investigate, in parallel, relationships between HPG-axis functioning, stress response circuitry activation, and parasympathetic reactivity in healthy controls and women with MDD. Using fMRI with pulse oximetry [from which we calculated the high frequency (HF) component of R-R interval variability (HF-RRV), a measure of parasympathetic modulation] and hormone data, we studied eight women with recurrent MDD in remission and six controls during a stress response paradigm. We demonstrated that hypoactivations of hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and subgenual ACC were associated with lower parasympathetic cardiac modulation in MDD women. Estradiol and progesterone attenuated group differences in the effect of HF-RRV on hypoactivation in the amygdala, hippocampus, ACC, and OFC in MDD women. Findings have implications for understanding the relationship between mood, arousal, heart regulation, and gonadal hormones, and may provide insights into MDD and CVD risk comorbidity. PMID:22395084

  9. Social functioning and autonomic nervous system sensitivity across vocal and musical emotion in Williams syndrome and autism spectrum disorder.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2016-01-01

    Both Williams syndrome (WS) and autism spectrum disorders (ASD) are associated with unusual auditory phenotypes with respect to processing vocal and musical stimuli, which may be shaped by the atypical social profiles that characterize the syndromes. Autonomic nervous system (ANS) reactivity to vocal and musical emotional stimuli was examined in 12 children with WS, 17 children with ASD, and 20 typically developing (TD) children, and related to their level of social functioning. The results of this small-scale study showed that after controlling for between-group differences in cognitive ability, all groups showed similar emotion identification performance across conditions. Additionally, in ASD, lower autonomic reactivity to human voice, and in TD, to musical emotion, was related to more normal social functioning. Compared to TD, both clinical groups showed increased arousal to vocalizations. A further result highlighted uniquely increased arousal to music in WS, contrasted with a decrease in arousal in ASD and TD. The ASD and WS groups exhibited arousal patterns suggestive of diminished habituation to the auditory stimuli. The results are discussed in the context of the clinical presentation of WS and ASD. © 2015 Wiley Periodicals, Inc.

  10. Odors generated from the Maillard reaction affect autonomic nervous activity and decrease blood pressure through the olfactory system.

    Science.gov (United States)

    Zhou, Lanxi; Ohata, Motoko; Owashi, Chisato; Nagai, Katsuya; Yokoyama, Issei; Arihara, Keizo

    2018-02-01

    Systolic blood pressure (SBP) of rats decreases significantly following exposure to the odor generated from the Maillard reaction of protein digests with xylose. This study identified active odorants that affect blood pressure and demonstrated the mechanism of action. Among the four potent odorants that contribute most to the odor of the Maillard reaction sample, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 5-methyl-2-pyrazinemethanol (MPM) decreased SBP significantly. The earliest decrease in blood pressure was observed 5 min after exposure to DMHF. Application of zinc sulfate to the nasal cavity eliminated the effect. Furthermore, gastric vagal (parasympathetic) nerve activity was elevated and renal sympathetic nerve activity was lowered after exposure to DMHF. It is indicated that DMHF affects blood pressure through the olfactory system, and the mechanism for the effect of DMHF on blood pressure involves the autonomic nervous system. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Science.gov (United States)

    2009-01-01

    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic

  12. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Directory of Open Access Journals (Sweden)

    Moulton Alan

    2009-10-01

    Full Text Available Abstract Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS, screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1 the thoracospinal concept for right thoracic AIS in girls; (2 the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3 white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4 central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively, with asymmetry as an adverse response (hormesis; this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept. In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic

  13. Intelligent autonomous systems 12. Vol. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukhan [Sungkyunkwan Univ., Gyeonggi-Do (Korea, Republic of). College of Information and Communication Engineering; Yoon, Kwang-Joon [Konkuk Univ., Seoul (Korea, Republic of); Cho, Hyungsuck [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Lee, Jangmyung (eds.) [Pusan National Univ. (Korea, Republic of). Dept. of Electronics Engineering

    2013-02-01

    Recent research in Intelligent and Autonomous Systems. Volume 2 of the proceedings of the 12th International Conference IAS-12, held June 26-29, 2012, jeju Island, Korea. Written by leading experts in the field. Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of ''Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security and space applications, and intelligent autonomous systems for manufacturing and healthcare. This volume 2 includes contributions devoted to Service Robotics and Human-Robot Interaction and Autonomous Multi-Agent Systems and Life Engineering.

  14. Neighborhood Stress and Autonomic Nervous System Activity during Sleep.

    Science.gov (United States)

    Mellman, Thomas Alan; Bell, Kimberly Ann; Abu-Bader, Soleman Hassan; Kobayashi, Ihori

    2018-04-04

    Stressful neighborhood environments are known to adversely impact health and contribute to health disparities but underlying mechanisms are not well understood. Healthy sleep can provide a respite from sustained sympathetic nervous system (SNS) activity. Our objective was to evaluate relationships between neighborhood stress and nocturnal and daytime SNS and parasympathetic nervous system (PNS) activity. Eighty five urban-residing African Americans (56.5% female; mean age of 23.0) participated. Evaluation included surveys of neighborhood stress and sleep-related vigilance; and continuous ECG and actigraphic recording in participants' homes from which heart rate variability (HRV) analysis for low frequency/high frequency (LF/HF) ratio and normalized high frequency (nHF), as indicators of SNS and PNS activity, respectively, and total sleep time (TST), and wake after sleep onset were derived. All significant relationships with HRV measures were from the sleep period. Neighborhood disorder correlated negatively with nHF (r = -.24, p = .035). There were also significant correlations of HRV indices with sleep duration and sleep fears. Among females, LF/HF correlated with exposure to violence, r = .39, p = .008 and nHF with census tract rates for violent crime (r = -.35, p = .035). In a stepwise regression, TST accounted for the variance contributed by violent crime to nHF in the female participants. Further investigation of relationships between neighborhood environments and SNS/PNS balance during sleep and their consequences, and strategies for mitigating such effects would have implications for health disparities.

  15. Autonomic reactivity of children to separation and reunion with foster parents

    NARCIS (Netherlands)

    Schuengel, C.; Oosterman, M.

    2007-01-01

    OBJECTIVE: To determine whether foster children showed different autonomic nervous system activity on separation and reunion than control children. Autonomic nervous system activity in foster children was examined in relation to time in placement and disinhibited attachment. METHOD: The sample

  16. Monitoring the autonomic nervous activity as the objective evaluation of music therapy for severely and multiply disabled children.

    Science.gov (United States)

    Orita, Makiko; Hayashida, Naomi; Shinkawa, Tetsuko; Kudo, Takashi; Koga, Mikitoshi; Togo, Michita; Katayama, Sotetsu; Hiramatsu, Kozaburo; Mori, Shunsuke; Takamura, Noboru

    2012-07-01

    Severely and multiply disabled children (SMDC) are frequently affected in more than one area of development, resulting in multiple disabilities. The aim of the study was to evaluate the efficacy of music therapy in SMDC using monitoring changes in the autonomic nervous system, by the frequency domain analysis of heart rate variability. We studied six patients with SMDC (3 patients with cerebral palsy, 1 patient with posttraumatic syndrome after head injury, 1 patient with herpes encephalitis sequelae, and 1 patient with Lennox-Gastaut syndrome characterized by frequent seizures, developmental delay and psychological and behavioral problems), aged 18-26 (mean 22.5 ± 3.5). By frequency domain method using electrocardiography, we measured the high frequency (HF; with a frequency ranging from 0.15 to 0.4 Hz), which represents parasympathetic activity, the low frequency/high frequency ratio, which represents sympathetic activity between the sympathetic and parasympathetic activities, and heart rate. A music therapist performed therapy to all patients through the piano playing for 50 min. We monitored each study participant for 150 min before therapy, 50 min during therapy, and 10 min after therapy. Interestingly, four of 6 patients showed significantly lower HF components during music therapy than before therapy, suggesting that these four patients might react to music therapy through the suppression of parasympathetic nervous activities. Thus, music therapy can suppress parasympathetic nervous activities in some patients with SMDC. The monitoring changes in the autonomic nervous activities could be a powerful tool for the objective evaluation of music therapy in patients with SMDC.

  17. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.

  18. Parent emotion socialization and pre-adolescent's social and emotional adjustment: Moderating effects of autonomic nervous system reactivity.

    Science.gov (United States)

    McQuade, Julia D; Breaux, Rosanna P

    2017-12-01

    This study examined whether measures of children's autonomic nervous system (ANS) reactivity to social stress moderated the effect of parent emotion socialization on children's social and emotional adjustment. Sixty-one children (9-13 years) completed a peer rejection task while their respiratory sinus arrhythmia reactivity (RSA-R) and skin conductance level reactivity (SCL-R) were assessed. Parents' report of supportive and non-supportive reactions to their child's negative emotions served as measures of emotion socialization. Measures of children's social and emotional adjustment included: teacher-rated peer rejection, aggression, and prosocial behavior and parent-rated aggressive/dysregulated behavior and emotion regulation skills. Measures of children's ANS reactivity moderated the effect of parent emotion socialization on children's adjustment. Supportive responses were more protective for children evidencing RSA augmentation whereas non-supportive responses were more detrimental for children evidencing low SCL-R. Thus children's ANS reactivity during social stress may represent a biological vulnerability that influences sensitivity to parent emotion socialization. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  20. Psychological traits influence autonomic nervous system recovery following esophageal intubation in health and functional chest pain.

    Science.gov (United States)

    Farmer, A D; Coen, S J; Kano, M; Worthen, S F; Rossiter, H E; Navqi, H; Scott, S M; Furlong, P L; Aziz, Q

    2013-12-01

    Esophageal intubation is a widely utilized technique for a diverse array of physiological studies, activating a complex physiological response mediated, in part, by the autonomic nervous system (ANS). In order to determine the optimal time period after intubation when physiological observations should be recorded, it is important to know the duration of, and factors that influence, this ANS response, in both health and disease. Fifty healthy subjects (27 males, median age 31.9 years, range 20-53 years) and 20 patients with Rome III defined functional chest pain (nine male, median age of 38.7 years, range 28-59 years) had personality traits and anxiety measured. Subjects had heart rate (HR), blood pressure (BP), sympathetic (cardiac sympathetic index, CSI), and parasympathetic nervous system (cardiac vagal tone, CVT) parameters measured at baseline and in response to per nasum intubation with an esophageal catheter. CSI/CVT recovery was measured following esophageal intubation. In all subjects, esophageal intubation caused an elevation in HR, BP, CSI, and skin conductance response (SCR; all p < 0.0001) but concomitant CVT and cardiac sensitivity to the baroreflex (CSB) withdrawal (all p < 0.04). Multiple linear regression analysis demonstrated that longer CVT recovery times were independently associated with higher neuroticism (p < 0.001). Patients had prolonged CSI and CVT recovery times in comparison to healthy subjects (112.5 s vs 46.5 s, p = 0.0001 and 549 s vs 223.5 s, p = 0.0001, respectively). Esophageal intubation activates a flight/flight ANS response. Future studies should allow for at least 10 min of recovery time. Consideration should be given to psychological traits and disease status as these can influence recovery. © 2013 John Wiley & Sons Ltd.

  1. Autonomic nervous system status and responsiveness and the ...

    African Journals Online (AJOL)

    inflexibility or decreased responsiveness in the face of a challenge.1,2 In view of the ... and parasympathetic control were seen with time domain and Poincare ... autonomic shift that results in heart rate acceleration.7 The differences between ...

  2. Requirement analysis for autonomous systems and intelligent ...

    African Journals Online (AJOL)

    First we review innovative control architectures in electric power systems such as Microgrids, Virtual power plants and Cell based systems. We evaluate application of autonomous systems and intelligent agents in each of these control architectures particularly in the context of Denmark's strategic energy plans. The second ...

  3. On heart rate variability and autonomic activity in homeostasis and in systemic inflammation.

    Science.gov (United States)

    Scheff, Jeremy D; Griffel, Benjamin; Corbett, Siobhan A; Calvano, Steve E; Androulakis, Ioannis P

    2014-06-01

    Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The Autonomic Nervous System Regulates the Heart Rate through cAMP-PKA Dependent and Independent Coupled-Clock Pacemaker Cell Mechanisms.

    Science.gov (United States)

    Behar, Joachim; Ganesan, Ambhighainath; Zhang, Jin; Yaniv, Yael

    2016-01-01

    Sinoatrial nodal cells (SANCs) generate spontaneous action potentials (APs) that control the cardiac rate. The brain modulates SANC automaticity, via the autonomic nervous system, by stimulating membrane receptors that activate (adrenergic) or inactivate (cholinergic) adenylyl cyclase (AC). However, these opposing afferents are not simply additive. We showed that activation of adrenergic signaling increases AC-cAMP/PKA signaling, which mediates the increase in the SANC AP firing rate (i.e., positive chronotropic modulation). However, there is a limited understanding of the underlying internal pacemaker mechanisms involved in the crosstalk between cholinergic receptors and the decrease in the SANC AP firing rate (i.e., negative chronotropic modulation). We hypothesize that changes in AC-cAMP/PKA activity are crucial for mediating either decrease or increase in the AP firing rate and that the change in rate is due to both internal and membrane mechanisms. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, PKA activity and AP firing rate were tightly linked in response to either adrenergic receptor stimulation (by isoproterenol, ISO) or cholinergic stimulation (by carbachol, CCh). To identify the main molecular targets that mediate between PKA signaling and pacemaker function, we developed a mechanistic computational model. The model includes a description of autonomic-nervous receptors, post- translation signaling cascades, membrane molecules, and internal pacemaker mechanisms. Yielding results similar to those of the experiments, the model simulations faithfully reproduce the changes in AP firing rate in response to CCh or ISO or a combination of both (i.e., accentuated antagonism). Eliminating AC-cAMP-PKA signaling abolished the core effect of autonomic receptor stimulation on the AP firing rate. Specifically, disabling the phospholamban modulation of the SERCA activity resulted in a significantly reduced effect

  5. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system

    Directory of Open Access Journals (Sweden)

    Marta Chaverra

    2017-05-01

    Full Text Available Hereditary sensory and autonomic neuropathies (HSANs are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS dysfunction. HSAN type III, known as familial dysautonomia (FD, results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1 for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4 are associated with central nervous system (CNS disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on

  6. Learning by Heart: Students Use Heart Rate Patterns To Identify Nervous System Imbalances.

    Science.gov (United States)

    Ackerly, Spafford C.

    2001-01-01

    Introduces a science unit on heart rate variability (HVR) patterns. Uses spectral analysis to determine the effects of environmental stimulants such as music and emotional stress on heart rate. Observes relaxation techniques and their effects on the autonomous nervous system. (Contains 12 references.) (YDS)

  7. Philosophical aspects of the use of autonomous agents in music production

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer; Moore, Tim

    2008-01-01

    Music interaction through software agents is bound to become the goal of researchers in the near future. Some of the situations to be found in mu- sic interaction using autonomous agents are analyzed here. The seclusion sce- nario, in which a single person is isolated with her own musical ideas......, is dis- armed if an autonomous agent is recognized as a (quasi-) person. This enables the interaction that produces the meaning of the music. The unilateral scenario, in which music tends to contain either novelty, or understanding, is avoided if enough interaction and encounters are taking place....

  8. Bacterial Signaling to the Nervous System through Toxins and Metabolites.

    Science.gov (United States)

    Yang, Nicole J; Chiu, Isaac M

    2017-03-10

    Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Chinese-chi and Kundalini yoga Meditations Effects on the Autonomic Nervous System: Comparative Study

    Directory of Open Access Journals (Sweden)

    Anilesh Dey

    2016-06-01

    Full Text Available Cardiac disease is one of the major causes for death all over the world. Heart rate variability (HRV is a significant parameter that used in assessing Autonomous Nervous System (ANS activity. Generally, the 2D Poincare′ plot and 3D Poincaré plot of the HRV signals reflect the effect of different external stimuli on the ANS. Meditation is one of such external stimulus, which has different techniques with different types of effects on the ANS. Chinese Chi-meditation and Kundalini yoga are two different effective meditation techniques. The current work is interested with the analysis of the HRV signals under the effect of these two based on meditation techniques. The 2D and 3D Poincare′ plots are generally plotted by fitting respectively an ellipse/ellipsoid to the dense region of the constructed Poincare′ plot of HRV signals. However, the 2D and 3D Poincaré plots sometimes fail to describe the proper behaviour of the system. Thus in this study, a three-dimensional frequency-delay plot is proposed to properly distinguish these two famous meditation techniques by analyzing their effects on ANS. This proposed 3D frequency-delay plot is applied on HRV signals of eight persons practicing same Chi-meditation and four other persons practising same Kundalini yoga. To substantiate the result for larger sample of data, statistical Student t-test is applied, which shows a satisfactory result in this context. The experimental results established that the Chi-meditation has large impact on the HRVcompared to the Kundalini yoga.

  10. A strategy learning model for autonomous agents based on classification

    Directory of Open Access Journals (Sweden)

    Śnieżyński Bartłomiej

    2015-09-01

    Full Text Available In this paper we propose a strategy learning model for autonomous agents based on classification. In the literature, the most commonly used learning method in agent-based systems is reinforcement learning. In our opinion, classification can be considered a good alternative. This type of supervised learning can be used to generate a classifier that allows the agent to choose an appropriate action for execution. Experimental results show that this model can be successfully applied for strategy generation even if rewards are delayed. We compare the efficiency of the proposed model and reinforcement learning using the farmer-pest domain and configurations of various complexity. In complex environments, supervised learning can improve the performance of agents much faster that reinforcement learning. If an appropriate knowledge representation is used, the learned knowledge may be analyzed by humans, which allows tracking the learning process

  11. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette syndrome

    OpenAIRE

    Yoko eNagai

    2015-01-01

    This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in epilepsy (small) and tics in Tourette Syndrome (TS). In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g., syncope), or in relation to Sudden Unexpected Death in Epilepsy (SUDEP). Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of e...

  12. Effects of Brazilian scorpion venoms on the central nervous system.

    Science.gov (United States)

    Nencioni, Ana Leonor Abrahão; Neto, Emidio Beraldo; de Freitas, Lucas Alves; Dorce, Valquiria Abrão Coronado

    2018-01-01

    In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus , T. bahiensis , T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus , T. silvestres, T. brazilae , T. confluens , T. costatus , T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis . Little information is available regarding the other Brazilian Tityus species.

  13. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    International Nuclear Information System (INIS)

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data

  14. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  15. Development of autonomous operation system

    International Nuclear Information System (INIS)

    Endou, Akira; Watanabe, Kenshiu; Miki, Tetsushi

    1992-01-01

    To enhance operation reliability of nuclear plants by removing human factors, study on an autonomous operation system has been carried out to substitute artificial intelligence (AI) for plant operators and, in addition, traditional controllers used in existing plants. For construction of the AI system, structurization of knowledge on the basis of the principles such as physical laws, function and structure of relevant objects and generalization of problem solving process are intended. A hierarchical distributed cooperative system configuration in employed because it is superior from the viewpoint of dynamical reorganization of system functions. This configuration is realized by an object-oriented multi-agent system. Construction of a prototype system was planned and the conceptual design was made for FBR plant in order to evaluate applicability of AI to the autonomous operation and to have a prospect for the realization of the system. The prototype system executes diagnosis, state evaluation, operation and control for the main plant subsystems. (author)

  16. DYNAMICS OF CLINICAL AND BIOCHEMICAL PARAMETERS AND FUNCTIONAL STATE OF THE AUTONOMIC NERVOUS SYSTEM IN PATIENTS WITH ACUTE HEPATITIS B WITH CHRONIC ALCOHOL USE IN HEPATOTOXIC DOSES

    Directory of Open Access Journals (Sweden)

    O. O. Furyk

    2014-02-01

    Full Text Available Relevance of hepatitis B due to the high incidence complexity of pathogenesis, ineffective treatment, severe consequences of the disease. Among combined lesions of the liver, special attention is paid to viral-alcoholic type. One of the mechanisms of chronic hepatitis of different etiology is violation of the functional activity of the autonomic nervous system. The aim of this work- to determine the dynamics of spectral indices of heart rate variability in patients with acute hepatitis B from chronic use of alcohol in hepatotoxic doses. Materials and methods. 133 patients with acute hepatitis B were under observation. Patients were divided into groups taking account the presence or absence of chronic use of alcohol in hepatotoxic doses and using the classification of alcohol consumption based on the frequency and dose of consumed alcohol. I group comprised 52 patients with chronic use of alcohol in the hepatotoxic doses, II group consisted of 81 patient without this factor. Heart rate variability was diagnosed using computer cardiointervalometry performed by electrocardiographic diagnostic system CardioLab-2000. 20 healthy individuals were in the control group. Results and discussion. Prodromal period in patients of the I group was longer (p0,05. However, only patients in group I had marked hemorrhagic manifestations (5,8 % and itching (7.7%. Average serum total bilirubin level was higher (p<0,05 in patients from the I group than in patients from II group. Functional state of autonomic nervous system in patients of both groups were decreased in acute period (vagotonia. Period of convalescence in patients from the I group was accompanied by more severe autonomic dysfunction in 33,6 % (p<0,05. Conclusions. 1. Acute hepatitis B in patients with chronic alcohol use in hepatotoxic doses is characterized by longer (p<0,05 prodrome, cholestatic (7,7% and hemorrhagic manifestations (5,8%, higher levels of hyperbilirubinemia (p<0,05, and during

  17. The oral cavity as a guide for the application of low level laser energy and its direct effect on the autonomic nervous system providing true energy healing for all health practitioners

    Science.gov (United States)

    Yolin, Herbert S.

    2008-03-01

    This manuscript is intended to demonstrate the important role that dentistry plays in regulating the balance of the Autonomic Nervous System (ANS) through the proprioceptive feedback of the posterior teeth to the brain. An old paradigm called Dental Distress Syndrome, relatively unknown in dentistry today, has at its core, the importance of the height of the posterior (back) teeth and its impact on total body health which is greatly aided by low level laser energy. The rationale behind the belief that the alteration of the posterior teeth affects the ANS begins with basic concepts in embryology. The functioning of the ANS will support the fact of Dental Distress Syndrome. Health practitioners of all disciplines can learn to recognize Dental Distress Syndrome and initiate non-invasive treatment and team with a trained dentist to enhance the wellness and health of the patient if they so desire. A synopsis of my oral paper presented to the Academy of Laser Dentistry demonstrating temporary balancing of the Autonomic Nervous System with three minutes of cold laser energy, as well as my rationale as to why results vary with different cold lasers will be discussed. Clinical case studies will be presented.

  18. Neuron-glia crosstalk in the autonomic nervous system and its possible role in the progression of metabolic syndrome: A new hypothesis

    Directory of Open Access Journals (Sweden)

    RODRIGO eDEL RIO

    2015-12-01

    Full Text Available Metabolic syndrome (MS is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.

  19. Correction of autonomic nervous system indicators due to the effect of geomagnetic perturbations in patients with remote after effects of closed traumatic brain injury

    Directory of Open Access Journals (Sweden)

    V. A. Коrshnyak

    2016-08-01

      Abstract The authors show that in modern biology, life is seen as the ability of living matter, and namely in medicine – the ability of human body, to maintain the existence in natural environment. From this perspective, it is extremely necessary to synchronize the activity of body structures among themselves taking into account the changes of environmental factors. Achieving the harmony between the body activity and environmental changes is carried out using an external pacemaker of life processes’ activity, the role of which is performed by the geomagnetic field (GMF.  This became possible due to the fact that the life processes are cyclical, i.e. they possess rhythmic characteristics, and GMF is an electromagnetic field which is changing its characteristics rhythmically.  The material for the present study were the data obtained during the neurological examination of 20 healthy people and 100 patients with remote consequences of CTBI which were treated in the clinic of autonomic nervous system pathology of the SI "Institute of neurology, psychiatry and narcology of the NAMS of Ukraine". The results investigations have showed that geomagnetic perturbations, which modify the GMF parameters, exacerbate the disorders of VNS in patients with remote after effects of CTBI. It is associated with the increased desynchronization of the activity of suprasegmental structures of VNS and with breach of brain vascular system’s status that occurs during a magnetic storm. The acupuncture that is aimed at restoring of synchronization of activity of suprasegmental structures of VNS significantly reduces its sensitivity to the geomagnetic disturbances. Keywords: magnetic storm, closed head injury, autonomic nervous system.

  20. [Central nervous system control of energy homeostasis].

    Science.gov (United States)

    Machleidt, F; Lehnert, H

    2011-03-01

    The brain is continuously supplied with information about the distribution and amount of energy stores from the body periphery. Endocrine, autonomic and cognitive-hedonic signals are centrally integrated and exert effects on the whole organism via anabolic and catabolic pathways. The adiposity signals insulin and leptin reflect the amount of body fat and are part of a negative feedback mechanism between the periphery and the central nervous system. The hypothalamic arcuate nucleus is the most important central nervous structure, which integrates this information. Furthermore, the CNS is able to directly measure and to respond to changes in the concentration of certain nutrients. In order to develop effective therapies for the treatment of disorders of energy balance the further elucidation of these neuro-biological processes is of crucial importance. This article provides an overview of the CNS regulation of metabolism and its underlying molecular mechanisms. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Persuasive negotiation for autonomous agents: A rhetorical approach

    OpenAIRE

    Ramchurn, S.D.; Jennings, N. R.; Sierra, C.

    2003-01-01

    Persuasive negotiation occurs when autonomous agents exchange proposals that are backed up by rhetorical arguments (such as threats, rewards, or appeals). The role of such rhetorical arguments is to persuade the negotiation opponent to accept proposals more readily. To this end, this paper presents a rhetorical model of persuasion that defines the main types of rhetorical particles that are used and that provides a decision making model to enable an agent to determine what type of rhetorical ...

  2. Learning Agents for Autonomous Space Asset Management (LAASAM)

    Science.gov (United States)

    Scally, L.; Bonato, M.; Crowder, J.

    2011-09-01

    Current and future space systems will continue to grow in complexity and capabilities, creating a formidable challenge to monitor, maintain, and utilize these systems and manage their growing network of space and related ground-based assets. Integrated System Health Management (ISHM), and in particular, Condition-Based System Health Management (CBHM), is the ability to manage and maintain a system using dynamic real-time data to prioritize, optimize, maintain, and allocate resources. CBHM entails the maintenance of systems and equipment based on an assessment of current and projected conditions (situational and health related conditions). A complete, modern CBHM system comprises a number of functional capabilities: sensing and data acquisition; signal processing; conditioning and health assessment; diagnostics and prognostics; and decision reasoning. In addition, an intelligent Human System Interface (HSI) is required to provide the user/analyst with relevant context-sensitive information, the system condition, and its effect on overall situational awareness of space (and related) assets. Colorado Engineering, Inc. (CEI) and Raytheon are investigating and designing an Intelligent Information Agent Architecture that will provide a complete range of CBHM and HSI functionality from data collection through recommendations for specific actions. The research leverages CEI’s expertise with provisioning management network architectures and Raytheon’s extensive experience with learning agents to define a system to autonomously manage a complex network of current and future space-based assets to optimize their utilization.

  3. Overfeeding, autonomic regulation and metabolic consequences.

    NARCIS (Netherlands)

    Scheurink, A.J.W.; Balkan, B; Strubbe, J.H.; van Dijk, G.; Steffens, A.B

    The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The

  4. A Diversified Investment Strategy Using Autonomous Agents

    Science.gov (United States)

    Barbosa, Rui Pedro; Belo, Orlando

    In a previously published article, we presented an architecture for implementing agents with the ability to trade autonomously in the Forex market. At the core of this architecture is an ensemble of classification and regression models that is used to predict the direction of the price of a currency pair. In this paper, we will describe a diversified investment strategy consisting of five agents which were implemented using that architecture. By simulating trades with 18 months of out-of-sample data, we will demonstrate that data mining models can produce profitable predictions, and that the trading risk can be diminished through investment diversification.

  5. Autonomic dysfunction in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Dümcke, Christine Winkler; Møller, Søren

    2008-01-01

    Liver cirrhosis and portal hypertension are frequently associated with signs of circulatory dysfunction and peripheral polyneuropathy, which includes defects of the autonomic nervous system. Autonomic dysfunction, which is seen in both alcoholic and non-alcoholic liver cirrhosis and increases...

  6. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners.

    Science.gov (United States)

    Manzi, Vincenzo; Castagna, Carlo; Padua, Elvira; Lombardo, Mauro; D'Ottavio, Stefano; Massaro, Michele; Volterrani, Maurizio; Iellamo, Ferdinando

    2009-06-01

    In athletes, exercise training induces autonomic nervous system (ANS) adaptations that could be used to monitor training status. However, the relationship between training and ANS in athletes has been investigated without regard for individual training loads. We tested the hypothesis that in long-distance athletes, changes in ANS parameters are dose-response related to individual volume/intensity training load and could predict athletic performance. A spectral analysis of heart rate (HR), systolic arterial pressure variability, and baroreflex sensitivity by the sequences technique was investigated in eight recreational athletes during a 6-mo training period culminating with a marathon. Individualized training load responses were monitored by a modified training impulse (TRIMP(i)) method, which was determined in each athlete using the individual HR and lactate profiling determined during a treadmill test. Monthly TRIMP(i) steadily increased during the training period. All the ANS parameters were significantly and very highly correlated to the dose of exercise with a second-order regression model (r(2) ranged from 0.90 to 0.99; P marathon. These results suggest that in recreational athletes, ANS adaptations to exercise training are dose related on an individual basis, showing a progressive shift toward a sympathetic predominance, and that LF oscillations in HRV at peak training load could predict athletic achievement in this athlete population.

  7. Baseline autonomic nervous system arousal and physical and relational aggression in preschool: the moderating role of effortful control.

    Science.gov (United States)

    Gower, Amy L; Crick, Nicki R

    2011-09-01

    The current study investigates whether established associations between physical aggression and low autonomic nervous system arousal, as indexed by heart rate and blood pressure, also apply to the study of the development of relational aggression. Baseline heart rate and blood pressure were collected in two samples of preschoolers, and teachers reported on classroom physical and relational aggression. In Study 1, lower systolic and diastolic blood pressure were related to increased engagement in relational aggression among older preschoolers. In Study 2, lower heart rate and blood pressure predicted increased engagement in classroom physical and relational aggression concurrently and across a preschool year in some cases. Low baseline arousal-aggression associations were strongest for children with poorer self-regulation abilities, whereas high self-regulation appeared to protect children with low heart rate and blood pressure from engagement in aggressive classroom behavior. These findings suggest the utility of examining baseline physiological measures in the study of relational aggression as well as physical aggression. Implications for interventions targeted to physical and relational aggression in early childhood are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Assessment of autonomic nervous system by using empirical mode decomposition-based reflection wave analysis during non-stationary conditions

    International Nuclear Information System (INIS)

    Chang, C C; Hsiao, T C; Kao, S C; Hsu, H Y

    2014-01-01

    Arterial blood pressure (ABP) is an important indicator of cardiovascular circulation and presents various intrinsic regulations. It has been found that the intrinsic characteristics of blood vessels can be assessed quantitatively by ABP analysis (called reflection wave analysis (RWA)), but conventional RWA is insufficient for assessment during non-stationary conditions, such as the Valsalva maneuver. Recently, a novel adaptive method called empirical mode decomposition (EMD) was proposed for non-stationary data analysis. This study proposed a RWA algorithm based on EMD (EMD-RWA). A total of 51 subjects participated in this study, including 39 healthy subjects and 12 patients with autonomic nervous system (ANS) dysfunction. The results showed that EMD-RWA provided a reliable estimation of reflection time in baseline and head-up tilt (HUT). Moreover, the estimated reflection time is able to assess the ANS function non-invasively, both in normal, healthy subjects and in the patients with ANS dysfunction. EMD-RWA provides a new approach for reflection time estimation in non-stationary conditions, and also helps with non-invasive ANS assessment. (paper)

  9. Gross anatomy and development of the peripheral nervous system.

    Science.gov (United States)

    Catala, Martin; Kubis, Nathalie

    2013-01-01

    The nervous system is divided into the central nervous system (CNS) composed of the brain, the brainstem, the cerebellum, and the spinal cord and the peripheral nervous system (PNS) made up of the different nerves arising from the CNS. The PNS is divided into the cranial nerves III to XII supplying the head and the spinal nerves that supply the upper and lower limbs. The general anatomy of the PNS is organized according to the arrangement of the fibers along the rostro-caudal axis. The control of the development of the PNS has been unravelled during the last 30 years. Motor nerves arise from the ventral neural tube. This ventralization is induced by morphogenetic molecules such as sonic hedgehog. In contrast, the sensory elements of the PNS arise from a specific population of cells originating from the roof of the neural tube, namely the neural crest. These cells give rise to the neurons of the dorsal root ganglia, the autonomic ganglia and the paraganglia including the adrenergic neurons of the adrenals. Furthermore, the supportive glial Schwann cells of the PNS originate from the neural crest cells. Growth factors as well as myelinating proteins are involved in the development of the PNS. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Central Nervous System Vasculitis

    Science.gov (United States)

    ... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...

  11. Effects of metronome breathing on the assessment of autonomic control using heart rate variability

    NARCIS (Netherlands)

    Haaksma, J; Brouwer, J; vandenBerg, MP; Dijk, WA; Dassen, WRM; Crijns, HJGM; Mulder, Lambertus; Mulder, Gysbertus

    1996-01-01

    Analysis of Heart Rate Variability is a non-invasive quantitative tool to study the influence of the autonomic nervous system on the heart. Rapid variations in heart rate, related to breathing are primarily mediated by the vagal limb of the autonomic nervous system. The resulting variations in heart

  12. Sex-specific effects of intranasal oxytocin on autonomic nervous system and emotional responses to couple conflict

    Science.gov (United States)

    Nater, Urs M.; Schaer, Marcel; La Marca, Roberto; Bodenmann, Guy; Ehlert, Ulrike; Heinrichs, Markus

    2013-01-01

    Unhappy couple relationships are associated with impaired individual health, an effect thought to be mediated through ongoing couple conflicts. Little is known, however, about the underlying mechanisms regulating psychobiological stress, and particularly autonomic nervous system (ANS) reactivity, during negative couple interaction. In this study, we tested the effects of the neuropeptide oxytocin on ANS reactivity during couple conflict in a standardized laboratory paradigm. In a double-blind, placebo-controlled design, 47 heterosexual couples (total n = 94) received oxytocin or placebo intranasally prior to instructed couple conflict. Participants’ behavior was videotaped and salivary alpha-amylase (sAA), a measure of sympathetic activity, and emotional arousal were repeatedly measured during the experiment. Oxytocin significantly reduced sAA during couple conflict in women, whereas men showed increases in sAA levels (sex × group interaction: B = −49.36, t = −2.68, P = 0.009). In men, these increases were related to augmented emotional arousal (r = 0.286, P = 0.028) and more positive behavior (r = 0.291, P = 0.026), whereas there was no such association in women. Our results imply sex-specific effects of oxytocin on sympathetic activity, to negative couple interaction, with the neuropeptide reducing sAA responses and emotional arousal in women while increasing them in men. PMID:22842905

  13. Effects of Music Therapy on the Cardiovascular and Autonomic Nervous System in Stress-Induced University Students: A Randomized Controlled Trial.

    Science.gov (United States)

    Lee, Kyoung Soon; Jeong, Hyeon Cheol; Yim, Jong Eun; Jeon, Mi Yang

    2016-01-01

    Stress is caused when a particular relationship between the individual and the environment emerges. Specifically, stress occurs when an individual's abilities are challenged or when one's well-being is threatened by excessive environmental demands. The aim of this study was to measure the effects of music therapy on stress in university students. Randomized controlled trial. Sixty-four students were randomly assigned to the experimental group (n = 33) or the control group (n = 31). Music therapy. Initial measurement included cardiovascular indicators (blood pressure and pulse), autonomic nervous activity (standard deviation of the normal-to-normal intervals [SDNN], normalized low frequency, normalized high frequency, low/high frequency), and subjective stress. After the first measurement, participants in both groups were exposed to a series of stressful tasks, and then a second measurement was conducted. The experimental group then listened to music for 20 minutes and the control group rested for 20 minutes. A third and final measurement was then taken. There were no significant differences between the two groups in the first or second measurement. However, after music therapy, the experimental group and the control group showed significant differences in all variables, including systolic blood pressure (p = .026), diastolic blood pressure (p = .037), pulse (p music tends to relax the body and may stimulate the parasympathetic nervous system. These results suggest music therapy as an intervention for stress reduction.

  14. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jørgensen, L S; Christiansen, P; Raundahl, U

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...

  15. Peripheral nervous system involvement in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    P. R. Kamchatnov

    2016-01-01

    Full Text Available Diabetes mellitus is a widespread disease often affecting peripheral nervous system. This include diabetic autonomous neuropathy that can endanger the patient's life. Timely detection of complications of diabetes mellitus as well as its adequate therapy can improve prognosis of the disease. The possibilities of Milgamma and Tiogamma for pathogenic therapy in patients with diabetic polyneuropathy are considered in this paper. Gabagamma can be effectively relieve neuropathic pain and used together with other drugs that normalize nerve tissue metabolism.

  16. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, Wendy M. [Washington State Univ., Pullman, WA (United States)

    2010-05-01

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.

  17. Planning and Execution: The Spirit of Opportunity for Robust Autonomous Systems

    Science.gov (United States)

    Muscettola, Nicola

    2004-01-01

    One of the most exciting endeavors pursued by human kind is the search for life in the Solar System and the Universe at large. NASA is leading this effort by designing, deploying and operating robotic systems that will reach planets, planet moons, asteroids and comets searching for water, organic building blocks and signs of past or present microbial life. None of these missions will be achievable without substantial advances in.the design, implementation and validation of autonomous control agents. These agents must be capable of robustly controlling a robotic explorer in a hostile environment with very limited or no communication with Earth. The talk focuses on work pursued at the NASA Ames Research center ranging from basic research on algorithm to deployed mission support systems. We will start by discussing how planning and scheduling technology derived from the Remote Agent experiment is being used daily in the operations of the Spirit and Opportunity rovers. Planning and scheduling is also used as the fundamental paradigm at the core of our research in real-time autonomous agents. In particular, we will describe our efforts in the Intelligent Distributed Execution Architecture (IDEA), a multi-agent real-time architecture that exploits artificial intelligence planning as the core reasoning engine of an autonomous agent. We will also describe how the issue of plan robustness at execution can be addressed by novel constraint propagation algorithms capable of giving the tightest exact bounds on resource consumption or all possible executions of a flexible plan.

  18. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Yoko eNagai

    2015-09-01

    Full Text Available This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in Epilepsy and tics in Tourette Syndrome (TS. In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g. syncope, or in relation to Sudden Unexpected Death in Epilepsy (SUDEP. Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behaviour influence central nervous system thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated

  19. Research Institute for Autonomous Precision Guided Systems

    National Research Council Canada - National Science Library

    Rogacki, John R

    2007-01-01

    ... vehicles, cooperative flight of autonomous aerial vehicles using GPS and vision information, cooperative and sharing of information in search missions involving multiple autonomous agents, multi-scale...

  20. The role of the autonomic nervous system in the resting tachycardia of human hyperthyroidism.

    Science.gov (United States)

    Maciel, B C; Gallo, L; Marin Neto, J A; Maciel, L M; Alves, M L; Paccola, G M; Iazigi, N

    1987-02-01

    The mechanisms that control resting heart rate in hyperthyroidism were evaluated in six patients before and after treatment with propylthiouracil. The patients were subjected to pharmacological blockade under resting conditions in two experimental sessions: first session, propranolol (0.2 mg/kg body weight); second session, atropine (0.04 mg/kg body weight) followed by propranolol (0.2 mg/kg body weight). All drugs were administered intravenously. Resting heart rate was significantly reduced from 100 +/- 6.5 beats/min to 72 +/- 2.5 beats/min (P less than 0.005) after clinical and laboratory control of the disease. After double blockade, intrinsic heart rate was reduced from 105 +/- 6.8 beats/min before treatment to 98 +/- 6.0 beats/min after treatment (P less than 0.025). The reduction in heart rate caused by propranolol was not significantly different before (-13 +/- 1.4 beats/min) and after (-9 +/- 1.0 beats/min) propylthiouracil. In contrast, atropine induced a higher elevation of heart rate after treatment (45 +/- 8.6 beats/min) than before treatment (26 +/- 4.0 beats/min). The present results suggest no appreciable participation of the sympathetic component of the autonomic nervous system in the tachycardia of hyperthyroidism, at least under the conditions of the present study. The small change observed in intrinsic heart rate, although significant, seems to indicate that this is not the most important mechanism involved in this tachycardia. Our results suggest that an important reduction in the efferent activity of the parasympathetic component participates in the mechanisms that modify resting heart rte in hyperthyroidism.

  1. The pattern of autonomic tone disorder and its correction in children with overactive bladder

    Directory of Open Access Journals (Sweden)

    S. L. Morozov

    2014-01-01

    Full Text Available Autonomic nervous system dysregulation is one of the leading components in the pathogenesis of neurogenic bladder dysfunction. These disorders lead to diverse changes in the functions of the sympathetic and parasympathetic systems with disordered release of mediators (norepinephrine, acetylcholine, hormones of the adrenal cortex and other endocrine glands, a number of biologically active substances (polypeptides, prostaglandins, as well as to the impaired sensitivity of vascular a- and p-adrenoceptors. Children with dysuria concurrently develop visceral, CNS, and circulatory system dysfunctions and metabolic disturbances. The paper describes the clinical trial of children with overactive bladder, which demonstrates the autonomic tone in these patients (и=44. The findings point to the important involvement of the autonomic nervous system in the pathogenesis of the disease and provide a rationale for the incorporation of vegetotropic drugs normalizing the autonomic nervous system into the combination therapy of overactive bladder.

  2. From Autonomous Systems to Sociotechnical Systems: Designing Effective Collaborations

    Directory of Open Access Journals (Sweden)

    Kyle J. Behymer

    Full Text Available Effectiveness in sociotechnical systems often depends on coordination among multiple agents (including both humans and autonomous technologies. This means that autonomous technologies must be designed to function as collaborative systems, or team players. In many complex work domains, success is beyond the capabilities of humans unaided by technologies. However, at the same time, human capabilities are often critical to ultimate success, as all automated control systems will eventually face problems their designers did not anticipate. Unfortunately, there is often an either/or attitude with respect to humans and technology that tends to focus on optimizing the separate human and autonomous components, with the design of interfaces and team processes as an afterthought. The current paper discusses the limitations of this approach and proposes an alternative where the goal of design is a seamless integration of human and technological capabilities into a well-functioning sociotechnical system. Drawing lessons from both the academic (SRK Framework and commercial (IBM’s Watson, video games worlds, suggestions for enriching the coupling between the human and automated systems by considering both technical and social aspects are discussed.

  3. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  4. Self-emergence of Lexicon Consensus in a Population of Autonomous Agents by Means of Evolutionary Strategies

    Science.gov (United States)

    Maravall, Darío; de Lope, Javier; Domínguez, Raúl

    In Multi-agent systems, the study of language and communication is an active field of research. In this paper we present the application of evolutionary strategies to the self-emergence of a common lexicon in a population of agents. By modeling the vocabulary or lexicon of each agent as an association matrix or look-up table that maps the meanings (i.e. the objects encountered by the agents or the states of the environment itself) into symbols or signals we check whether it is possible for the population to converge in an autonomous, decentralized way to a common lexicon, so that the communication efficiency of the entire population is optimal. We have conducted several experiments, from the simplest case of a 2×2 association matrix (i.e. two meanings and two symbols) to a 3×3 lexicon case and in both cases we have attained convergence to the optimal communication system by means of evolutionary strategies. To analyze the convergence of the population of agents we have defined the population's consensus when all the agents (i.e. the 100% of the population) share the same association matrix or lexicon. As a general conclusion we have shown that evolutionary strategies are powerful enough optimizers to guarantee the convergence to lexicon consensus in a population of autonomous agents.

  5. Formal Verification of Autonomous Vehicle Platooning

    OpenAIRE

    Kamali, Maryam; Dennis, Louise A.; McAree, Owen; Fisher, Michael; Veres, Sandor M.

    2016-01-01

    The coordination of multiple autonomous vehicles into convoys or platoons is expected on our highways in the near future. However, before such platoons can be deployed, the new autonomous behaviors of the vehicles in these platoons must be certified. An appropriate representation for vehicle platooning is as a multi-agent system in which each agent captures the "autonomous decisions" carried out by each vehicle. In order to ensure that these autonomous decision-making agents in vehicle platoo...

  6. Contribution of the autonomic nervous system to blood pressure and heart rate variability changes in early experimental hyperthyroidism.

    Science.gov (United States)

    Safa-Tisseront, V; Ponchon, P; Laude, D; Elghozi, J L

    1998-07-10

    A great deal of uncertainty persists regarding the exact nature of the interaction between autonomic nervous system activity and thyroid hormones in the control of heart rate and blood pressure. We now report on thyrotoxicosis produced by daily intraperitoneal (i.p.) injection of L-thyroxine (0.5 mg/kg body wt. in 1 ml of 5 mM NaOH for 5 days). Control rats received i.p. daily injections of the thyroxine solvent. In order to estimate the degree of autonomic activation in hyperthyroidism, specific blockers were administered intravenously: atropine (0.5 mg/kg), prazosin (1 mg/kg), atenolol (1 mg/kg) or the combination of atenolol and atropine. A jet of air was administered in other animals to induce sympathoactivation. Eight animals were studied in each group. The dose and duration of L-thyroxine treatment was sufficient to induce a significant degree of hyperthyroidism with accompanying tachycardia, systolic blood pressure elevation, increased pulse pressure, cardiac hypertrophy, weight loss, tachypnea and hyperthermia. In addition, the intrinsic heart period observed after double blockade (atenolol + atropine) was markedly decreased after treatment with L-thyroxine (121.5+/-3.6 ms vs. 141.2+/-3.7 ms, P hyperthyroidism and in these rats the jet of air did not significantly affect the heart period level. The thyrotoxicosis was associated with a reduction of the 0.4 Hz component of blood pressure variability (analyses on 102.4 s segments, modulus 1.10+/-0.07 vs. 1.41+/-0.06 mm Hg, P hyperthyroidism. The marked rise in the intrinsic heart rate could be the main determinant of tachycardia. The blood pressure elevation may reflexly induce vagal activation and sympathetic (vascular and cardiac) inhibition.

  7. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  8. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  9. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    Science.gov (United States)

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  10. Radiation risks to the developing nervous system

    International Nuclear Information System (INIS)

    Kriegel, H.; Schmahl, W.; Stieve, F.E.; Gerber, G.B.

    1986-01-01

    A symposium dealing with 'Radiation Risks to the Developing Nervous System' held at Neuherberg, June 18-20, 1985 was organised by the Radiation Protection Programme of the Commission of the European Communities and the Gesellschaft fuer Strahlen- und Umweltforschung mbH. The proceedings of this symposium present up-to-date information on the development of the nervous system and the modifications caused by prenatal radiation there upon. A large part of the proceedings is devoted to the consequences of prenatal irradiation in experimental animals with respect to alterations in morphology, biochemistry and behaviour, to the influence of dose, dose rate and radiation quality and to the question whether damage of the brain can arise from a synergistic action of radiation together with other agents. Since animal models for damage to the human central nervous system have inherent short-comings due to the differences in structure, complexity and development it is discussed how experimental studies could be applied to the human situation. The most recent data on persons exposed in utero at Hiroshima and Nagasaki are reviewed. A round table discussion, published in full, analyses all this information with a view to radiation protection, and defines the areas where future studies are needed. Separate abstracts were prepared for papers in these proceedings. (orig./MG)

  11. [Hemodynamics, the autonomic nervous system and water metabolism as criteria for developing the general adaptation syndrome in pregnant women].

    Science.gov (United States)

    Gur'ianov, V A; Shepetovskaia, N L; Pivovarova, G M; Tolmachev, G N; Volodin, A V

    2007-01-01

    By taking into account the fact that the autonomic nervous and cardiovascular systems (ANS and CVS) are the major links of development of the general adaptation syndrome in pregnancy, which are affected by all the processes involved in the development of the syndrome, the author analyzed the state of these systems in healthy non-pregnant and pregnant women (HNPW and HPW) and in pregnant women with gestosis. HNPW were found to have already a prerequisite for impairing pregnancy adaptive processes as ANS and CVS dysfunction. In HPW, these impairments were more pronounced. In the pregnant women, impaired adaptive processes manifested themselves as excess sympathicotonia in 72% and parasympathicotonia in 23% of cases despite the treatment performed, which was accompanied by hypokinetic hemodynamics in 53 and 50%, respectively. In hyper- and eukinetic hemodynamics, there were no physiologically required decreases in total peripheral vascular resistance while in hypokinetic hemodynamics, there was its pathological increase. Such disorders enhance the significance of abdominal compartment syndrome, aortocaval compression, ischemia-reperfusion, hydrodynamic and membranogenic (capillary leakage) factors of impaired water metabolism, which contributes to adaptation derangement. Based on the findings, the authors have created a developmental modulation algorithm for the general adaptation syndrome by completed pregnancy and surgical delivery.

  12. Effects of reward and punishment on task performance, mood and autonomic nervous function, and the interaction with personality.

    Science.gov (United States)

    Sakuragi, Sokichi; Sugiyama, Yoshiki

    2009-06-01

    The effects of reward and punishment are different, and there are individual differences in sensitivity to reward and punishment. The purpose of this study was to investigate the effects of reward and punishment on task performance, mood, and autonomic nervous function, along with the interaction with personality. Twenty-one healthy female subjects volunteered for the experiment. The task performance was evaluated by required time and total errors while performing a Wisconsin Card Sorting Test. We assessed their personalities using the Minnesota Multiphasic Personality Inventory (MMPI) questionnaire, and mood states by a profile of mood states. Autonomic nervous function was estimated by a spectral analysis of heart rate variability, baroreflex sensitivity, and blood pressure. Repeated measures analysis of variance (ANOVA) revealed significant interaction of condition x time course on mood and autonomic nervous activity, which would indicate a less stressed state under the rewarding condition, but revealed no significant interaction of condition x time course on the task performance. The interactions with personality were further analyzed by repeated measures ANOVA applying the clinical scales of MMPI as independent variables, and significant interactions of condition x time course x Pt (psychasthenia) on task performance, mood, and blood pressure, were revealed. That is, the high Pt group, whose members tend to be sensitive and prone to worry, showed gradual improvement of task performance under the punishing situation with slight increase in systolic blood pressure, while showed no improvement under the rewarding situation with fatigue sense attenuation. In contrast, the low Pt group, whose members tend to be adaptive and self-confident, showed gradual improvement under the rewarding situation. Therefore, we should carefully choose the strategy of reward or punishment, considering the interaction with personality as well as the context in which it is given.

  13. Regulated open multi-agent systems (ROMAS) a multi-agent approach for designing normative open systems

    CERN Document Server

    Garcia, Emilia; Botti, Vicente

    2015-01-01

    Addressing the open problem of engineering normative open systems using the multi-agent paradigm, normative open systems are explained as systems in which heterogeneous and autonomous entities and institutions coexist in a complex social and legal framework that can evolve to address the different and often conflicting objectives of the many stakeholders involved. Presenting  a software engineering approach which covers both the analysis and design of these kinds of systems, and which deals with the open issues in the area, ROMAS (Regulated Open Multi-Agent Systems) defines a specific multi-agent architecture, meta-model, methodology and CASE tool. This CASE tool is based on Model-Driven technology and integrates the graphical design with the formal verification of some properties of these systems by means of model checking techniques. Utilizing tables to enhance reader insights into the most important requirements for designing normative open multi-agent systems, the book also provides a detailed and easy t...

  14. Morbidity rate of nervous system among medical personnel occupationally exposed to chronic low dose irradiation

    International Nuclear Information System (INIS)

    Jonkova, A.

    1987-01-01

    The morbidity rate of the nervous system among 1190 subjects, medical personnel, working with sources and environment of ionizing radiation was studied by the personal analysis of the diseases, written down in the personal out-patient department cards as well as of a control group of 870 medical workers of various other specialities. The morbidity rate of the nervous system among the medical personnel, exposed to chronic occupational radiation effect, was established not to be higher than that of the other medical workers - 38.0 and 40.3% respectively. Neuroses and peripheral nervous diseases have the greatest relative share in the structure of morbidity rate of the nervous system in both groups examined, with no statistical significance in the differences of the indices. The significantly higher incidence of autonome dystonias, established among the personnel from the X-ray departments and consulting rooms could be discussed in connection with the great relative share of the subjects from that group with a length of service over 15 years and had received the possible maximum cumulative equivalent doses. 3 tabs., 21 refs

  15. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome.

    Science.gov (United States)

    Jarrett, Monica; Heitkemper, Margaret; Czyzewski, Danita; Zeltzer, Lonnie; Shulman, Robert J

    2012-05-01

    Adults with irritable bowel syndrome (IBS) have been reported to have alterations in autonomic nervous system function as measured by vagal activity via heart rate variability. Whether the same is true for children is unknown. We compared young children 7 to 10 years of age with functional abdominal pain (FAP) or IBS to healthy children (HC) and explored the relationship of vagal activity and sympathovagal balance to psychological distress and stool type. Children completed questionnaires, kept a 2-week pain/stool diary, and wore a 24-hour Holter monitor to assess vagal activity. Group comparisons on vagal activity were controlled for age and body mass index. Indicators of vagal activity and sympathovagal balance did not differ between FAP/IBS children (70 girls, 30 boys) and HC (44 girls, 18 boys). Psychological distress measures were generally higher in FAP/IBS than HC, primarily in girls. Exploratory analyses suggest a potential negative correlation between vagal activity and psychological distress in FAP/IBS girls but not boys. In contrast to reports in women, no differences were found in vagal activity between FAP/IBS and HC. Preliminary findings suggest that in girls with FAP/IBS there is an inverse relationship between vagal activity and psychological distress. The results from this study suggest a possible relationship between emotional state and vagal activity in prepubertal girls (but not boys) with FAP/IBS. Age and/or duration of symptoms may explain our contrasting findings versus adults with IBS. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Training-related modulations of the autonomic nervous system in endurance athletes: is female gender cardioprotective?

    Science.gov (United States)

    Fürholz, Monika; Radtke, Thomas; Roten, Laurent; Tanner, Hildegard; Wilhelm, Ilca; Schmid, Jean-Paul; Saner, Hugo; Wilhelm, Matthias

    2013-03-01

    The risk of sudden death is increased in athletes with a male predominance. Regular physical activity increases vagal tone, and may protect against exercise-induced ventricular arrhythmias. We investigated training-related modulations of the autonomic nervous system in female and male endurance athletes. Runners of a 10-mile race were invited. Of 873 applicants, 68 female and 70 male athletes were randomly selected and stratified according to their average weekly training hours in a low (≤4 h) and high (>4 h) volume training group. Analysis of heart rate variability was performed over 24 h. Spectral components (high frequency [HF] and low frequency [LF] power in normalized units) were analyzed for hourly 5 min segments and averaged for day- and nighttime. One hundred and fourteen athletes (50 % female, mean age 42 ± 7 years) were included. No significant gender difference was observed for training volume and 10-mile race time. Over the 24-h period, female athletes exhibited a higher HF and lower LF power for each hourly time-point. Female gender and endurance training hours were independent predictors of a higher HF and lower LF power. In female athletes, higher training hours were associated with a higher HF and lower LF power during nighttime. In male athletes, the same was true during daytime. In conclusion, female and male athletes showed a different circadian pattern of the training-related increase in markers of vagal tone. For a comparable amount of training volume, female athletes maintained their higher markers of vagal tone, possibly indicating a superior protection against exercise-induced ventricular arrhythmias.

  17. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  18. [A role of the autonomic nervous system in cerebro-cardiac disorders].

    Science.gov (United States)

    Basantsova, N Yu; Tibekina, L M; Shishkin, A N

    The authors consider anatomical/physiological characteristics and a role of different autonomic CNS regions, including insula cortex, amygdala complex, anterior cingulate cortex, ventral medial prefrontal cortex, hypothalamus and epiphysis, involved in the regulation of cardiovascular activity. The damage of these structures, e.g., due to the acute disturbance of cerebral blood circulation, led to arrhythmia, including fatal arrhythmia, in previously intact myocardium; systolic and diastolic dysfunction, ischemic changes considered in the frames of cerebro-cardial syndrome. On the cellular level, the disturbance of autonomic regulation resulted in catechol amine excitotoxicity, oxidative stress and free radical myocardium injury.

  19. Active Learning for Autonomous Intelligent Agents: Exploration, Curiosity, and Interaction

    OpenAIRE

    Lopes, Manuel; Montesano, Luis

    2014-01-01

    In this survey we present different approaches that allow an intelligent agent to explore autonomous its environment to gather information and learn multiple tasks. Different communities proposed different solutions, that are in many cases, similar and/or complementary. These solutions include active learning, exploration/exploitation, online-learning and social learning. The common aspect of all these approaches is that it is the agent to selects and decides what information to gather next. ...

  20. Bidirectional Prospective Associations between Cardiac Autonomic Activity and Inflammatory Markers

    NARCIS (Netherlands)

    Hu, Mandy X; Lamers, Femke; Neijts, Melanie; Willemsen, Gonneke; de Geus, Eco J C; Penninx, Brenda W J H

    2018-01-01

    OBJECTIVE: Autonomic nervous system (ANS) imbalance has been cross-sectionally associated with inflammatory processes. Longitudinal studies are needed to shed light on the nature of this relationship. We examined cross-sectional and bidirectional prospective associations between cardiac autonomic

  1. 9th KES Conference on Agent and Multi-Agent Systems : Technologies and Applications

    CERN Document Server

    Howlett, Robert; Jain, Lakhmi

    2015-01-01

    Agents and multi-agent systems are related to a modern software paradigm which has long been recognized as a promising technology for constructing autonomous, complex and intelligent systems. The topics covered in this volume include agent-oriented software engineering, agent co-operation, co-ordination, negotiation, organization and communication, distributed problem solving, specification of agent communication languages, agent privacy, safety and security, formalization of ontologies and conversational agents. The volume highlights new trends and challenges in agent and multi-agent research and includes 38 papers classified in the following specific topics: learning paradigms, agent-based modeling and simulation, business model innovation and disruptive technologies, anthropic-oriented computing, serious games and business intelligence, design and implementation of intelligent agents and multi-agent systems, digital economy, and advances in networked virtual enterprises. Published p...

  2. Autonomic Impairment in Borderline Personality Disorder: A Laboratory Investigation

    Science.gov (United States)

    Weinberg, Anna; Klonsky, E. David; Hajcak, Greg

    2009-01-01

    Recent research suggests that emotional dysfunction in psychiatric disorders can be reflected in autonomic abnormalities. The present study examines sympathetic and parasympathetic autonomic nervous system activity in individuals with Borderline Personality Disorder (BPD) before, during, and following a social stressor task. Data were obtained…

  3. Autonomous Collaborative Agents for Onboard Multi-Sensor Re-Targeting, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In our Phase I effort we developed a prototype software-agent based framework to provide for autonomous re-targeting of sensors hosted on satellites in polar orbits,...

  4. Effect of Forest Walking on Autonomic Nervous System Activity in Middle-Aged Hypertensive Individuals: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chorong Song

    2015-03-01

    Full Text Available There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0 ± 10.6 years were instructed to walk predetermined courses in forest and urban environments (as control. Course length (17-min walk, walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased “comfortable”, “relaxed”, “natural” and “vigorous” feelings and decreased “tension-anxiety,” “depression,” “anxiety-hostility,” “fatigue” and “confusion”. A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.

  5. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    Science.gov (United States)

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  6. Rituximab treatment in primary angiitis of the central nervous system.

    Science.gov (United States)

    Patel, Shreeya; Ross, Laura; Oon, Shereen; Nikpour, Mandana

    2018-06-01

    Primary angiitis of the central nervous system (PACNS) is a rare autoimmune vasculitis affecting the brain and spinal cord. Treatment with biological agents has revolutionised the treatment of many rheumatic conditions but there is scant literature regarding the use of biological agents in PACNS. We present three cases of PACNS treated with rituximab, including two cases of relapsed disease, and a literature review suggesting a role for rituximab in this condition. © 2018 Royal Australasian College of Physicians.

  7. Autonomic dysfunction in diabetes : a consequence of cardiovascular damage

    NARCIS (Netherlands)

    Lefrandt, J D; Smit, A J; Zeebregts, C J; Gans, R O B; Hoogenberg, K H

    2010-01-01

    In 1976, D.J. Ewing showed a clear survival disadvantage for diabetic patients that had 'diabetic autonomic neuropathy', as assessed by heart rate and blood pressure variations during a battery of bedside tests. However, these variations do not solely depend on autonomic nervous system function, but

  8. The nervous systems of cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Westfall, J A

    1995-01-01

    specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions......Cnidarians have simple nervous systems and it was probably within this group or a closely-related ancestor that nervous systems first evolved. The basic plan of the cnidarian nervous system is that of a nerve net which, at some locations, has condensed to form nerve plexuses, or circular...... that the peptides are located in neuronal dense-cored vesicles associated with both synaptic and non-synaptic release sites. All these data indicate that evolutionarily "old" nervous systems use peptides as transmitters. We have also investigated the biosynthesis of the cnidarian neuropeptides. These neuropeptides...

  9. Peripheral Nervous System Manifestations in Systemic Autoimmune Diseases

    OpenAIRE

    COJOCARU, Inimioara Mihaela; COJOCARU, Manole; SILOSI, Isabela; VRABIE, Camelia Doina

    2014-01-01

    The peripheral nervous system refers to parts of the nervous system outside the brain and spinal cord. Systemic autoimmune diseases can affect both the central and peripheral nervous systems in a myriad of ways and through a heterogeneous number of mechanisms leading to many different clinical manifestations. As a result, neurological complications of these disorders can result in significant morbidity and mortality. The most common complication of peripheral nervous system (PNS) involvement ...

  10. Advances in Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other

  11. An Autonomous Mobile Agent-Based Distributed Learning Architecture-A Proposal and Analytical Analysis

    Directory of Open Access Journals (Sweden)

    I. Ahmed M. J. SADIIG

    2005-10-01

    Full Text Available An Autonomous Mobile Agent-Based Distributed Learning Architecture-A Proposal and Analytical Analysis Dr. I. Ahmed M. J. SADIIG Department of Electrical & Computer EngineeringInternational Islamic University GombakKuala Lumpur-MALAYSIA ABSTRACT The traditional learning paradigm invoving face-to-face interaction with students is shifting to highly data-intensive electronic learning with the advances in Information and Communication Technology. An important component of the e-learning process is the delivery of the learning contents to their intended audience over a network. A distributed learning system is dependent on the network for the efficient delivery of its contents to the user. However, as the demand of information provision and utilization increases on the Internet, the current information service provision and utilization methods are becoming increasingly inefficient. Although new technologies have been employed for efficient learning methodologies within the context of an e-learning environment, the overall efficiency of the learning system is dependent on the mode of distribution and utilization of its learning contents. It is therefore imperative to employ new techniques to meet the service demands of current and future e-learning systems. In this paper, an architecture based on autonomous mobile agents creating a Faded Information Field is proposed. Unlike the centralized information distribution in a conventional e-learning system, the information is decentralized in the proposed architecture resulting in increased efficiency of the overall system for distribution and utilization of system learning contents efficiently and fairly. This architecture holds the potential to address the heterogeneous user requirements as well as the changing conditions of the underlying network.

  12. Autonomous Mission Operations for Sensor Webs

    Science.gov (United States)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC

  13. Anxiety during pregnancy and autonomic nervous system activity: A longitudinal observational and cross-sectional study.

    Science.gov (United States)

    Mizuno, Taeko; Tamakoshi, Koji; Tanabe, Keiko

    2017-08-01

    To assess the longitudinal change in autonomic nervous system (ANS) activity during pregnancy and the association between anxiety during pregnancy and ANS activity. Pregnant Japanese women with a singleton fetus and normal pregnancy were recruited (n=65). ANS activity and anxiety were measured using a self-rating questionnaire at approximately 20, 30, and 36weeks of gestation. Very low (VLF) and high (HF) frequency bands of heart rate variability spectrums were used. Anxiety was assessed using the Japanese version of the State-Trait Anxiety Inventory. A score of 45 or more on trait-anxiety and the other represent the trait-anxiety group and the non- trait-anxiety group, respectively. The state-anxiety group and the non-state-anxiety group were defined in the same manner. Longitudinal observation of individual pregnant women indicated the significant increasing trend (p=0.002) of VLF power and the significant decreasing trend (p<0.001) of HF power during 20 to 36 gestation weeks. Compared with the non-trait-anxiety group, the trait-anxiety group had significantly lower VLF values at 20 gestational weeks (p=0.033) and had significantly lower HF values at 30 and 36 gestational weeks (p=0.015 and p=0.044, respectively). The increasing rate of VLF from 20 to 36 gestational weeks was higher among the trait-anxiety group. The same associations were observed between the state-anxiety and non-state-anxiety groups at 20 gestational weeks. Anxiety during pregnancy decreased heart rate variability. Anxiety in second trimester pregnancy promoted a subsequent increase in sympathetic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Assurance in Agent-Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gilliom, Laura R.; Goldsmith, Steven Y.

    1999-05-10

    Our vision of the future of information systems is one that includes engineered collectives of software agents which are situated in an environment over years and which increasingly improve the performance of the overall system of which they are a part. At a minimum, the movement of agent and multi-agent technology into National Security applications, including their use in information assurance, is apparent today. The use of deliberative, autonomous agents in high-consequence/high-security applications will require a commensurate level of protection and confidence in the predictability of system-level behavior. At Sandia National Laboratories, we have defined and are addressing a research agenda that integrates the surety (safety, security, and reliability) into agent-based systems at a deep level. Surety is addressed at multiple levels: The integrity of individual agents must be protected by addressing potential failure modes and vulnerabilities to malevolent threats. Providing for the surety of the collective requires attention to communications surety issues and mechanisms for identifying and working with trusted collaborators. At the highest level, using agent-based collectives within a large-scale distributed system requires the development of principled design methods to deliver the desired emergent performance or surety characteristics. This position paper will outline the research directions underway at Sandia, will discuss relevant work being performed elsewhere, and will report progress to date toward assurance in agent-based systems.

  15. Assurance in Agent-Based Systems

    International Nuclear Information System (INIS)

    Gilliom, Laura R.; Goldsmith, Steven Y.

    1999-01-01

    Our vision of the future of information systems is one that includes engineered collectives of software agents which are situated in an environment over years and which increasingly improve the performance of the overall system of which they are a part. At a minimum, the movement of agent and multi-agent technology into National Security applications, including their use in information assurance, is apparent today. The use of deliberative, autonomous agents in high-consequence/high-security applications will require a commensurate level of protection and confidence in the predictability of system-level behavior. At Sandia National Laboratories, we have defined and are addressing a research agenda that integrates the surety (safety, security, and reliability) into agent-based systems at a deep level. Surety is addressed at multiple levels: The integrity of individual agents must be protected by addressing potential failure modes and vulnerabilities to malevolent threats. Providing for the surety of the collective requires attention to communications surety issues and mechanisms for identifying and working with trusted collaborators. At the highest level, using agent-based collectives within a large-scale distributed system requires the development of principled design methods to deliver the desired emergent performance or surety characteristics. This position paper will outline the research directions underway at Sandia, will discuss relevant work being performed elsewhere, and will report progress to date toward assurance in agent-based systems

  16. Eye Accommodation, Personality, and Autonomic Balance.

    Science.gov (United States)

    1979-11-01

    associated with central nervous system action, "transient catecnolamine ( dopamine and norepinephrine) action followed by a cholinergic rebound together with...parallels of psycnopatny: A psychophysiological model relating autonomic imbalance to hyperactivity, psychopathy, and autism . Advnces in Cild

  17. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed. © 2016 Elsevier Inc. All rights reserved.

  18. Differential effects of high-fat and high-carbohydrate isoenergetic meals on cardiac autonomic nervous system activity in lean and obese women.

    Science.gov (United States)

    Tentolouris, N; Tsigos, C; Perea, D; Koukou, E; Kyriaki, D; Kitsou, E; Daskas, S; Daifotis, Z; Makrilakis, K; Raptis, S A; Katsilambros, N

    2003-11-01

    Food ingestion can influence autonomic nervous system activity. This study compares the effects of 2 different isoenergetic meals on sympathetic nervous system (SNS) activity, assessed by heart rate variability (HRV) and plasma norepinephrine (NE) levels, in lean and obese women. Fifteen lean and 15 obese healthy women were examined on 2 occasions: after a carbohydrate (CHO)-rich and after a fat-rich test meal. Measurements of blood pressure, heart rate, resting energy expenditure, plasma glucose, lipids, insulin, leptin, and NE, as well as spectral analysis of the HRV, were performed at baseline and every 1 hour for 3 hours after meals. At baseline, obese women had higher SNS activity than lean controls (higher values of low-to-high frequency ratio [LF/HF], 1.52 +/- 0.31 v 0.78 +/- 0.13, P=.04; and plasma NE levels, 405.6 +/- 197.9 v 240.5 +/- 95.8 pg/mL, Pmeal a greater increase in LF/HF and in plasma NE levels was observed in lean, compared to obese women (1.21 +/- 0.6 v 0.32 +/- 0.06, P=.04; and 102.9 +/- 35.4 v 38.7 +/- 12.3 pg/mL, P=.01, respectively), while no differences were observed after the fat-rich meal. Meal-induced thermogenesis was higher after the CHO-rich as compared to the fat-rich meal and was comparable between lean and obese women. Changes in HRV were not associated with the thermogenic response to the test meals. In conclusion, consumption of a CHO-rich meal causes greater cardiac SNS activation in lean than in obese women, while fat ingestion does not result in any appreciable change in either group. SNS activation does not appear to influence the thermic effect of the food in either lean or obese women.

  19. Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving

    OpenAIRE

    Shalev-Shwartz, Shai; Shammah, Shaked; Shashua, Amnon

    2016-01-01

    Autonomous driving is a multi-agent setting where the host vehicle must apply sophisticated negotiation skills with other road users when overtaking, giving way, merging, taking left and right turns and while pushing ahead in unstructured urban roadways. Since there are many possible scenarios, manually tackling all possible cases will likely yield a too simplistic policy. Moreover, one must balance between unexpected behavior of other drivers/pedestrians and at the same time not to be too de...

  20. Autonomic correlates at rest and during evoked attention in children with attention-deficit/hyperactivity disorder and effects of methylphenidate.

    Science.gov (United States)

    Negrao, Bianca Lee; Bipath, Priyesh; van der Westhuizen, Deborah; Viljoen, Margaretha

    2011-01-01

    The aim of this study was to assess autonomic nervous system functioning in children with attention-deficit/hyperactivity disorder (ADHD) and to examine the effects of methylphenidate and focussed attention. Children with ADHD (n = 19) were tested while they were stimulant free and during a period in which they were on stimulants. On both occasions, autonomic nervous system functioning was tested at baseline and during focussed attention. Autonomic nervous system functioning of control subjects was also tested at baseline and during focussed attention. Autonomic nervous system activity was determined by means of heart rate variability (HRV) and skin conductivity analyses. Attention was evoked by means of the BioGraph Infiniti biofeedback apparatus. HRV was determined by time domain, frequency domain and Poincaré analysis of RR interval data. Skin conductivity was determined by the BioGraph Infiniti biofeedback apparatus. The main findings of this study were (a) that stimulant-free children with ADHD showed a sympathetic underarousal and parasympathetic overarousal of the sympathovagal balance relative to control subjects; (b) methylphenidate shifted the autonomic balance of children with ADHD towards normal levels; however, a normal autonomic balance was not reached, and (c) stimulant-free children with ADHD exhibited a shift in the sympathovagal balance towards the sympathetic nervous system from baseline to focussed attention; however, methylphenidate appeared to abolish this shift. Stimulant-free children with ADHD have a parasympathetic dominance of the autonomic balance, relative to control subjects. Methylphenidate attempts to restore the normal autonomic balance in children with ADHD, but inhibits the normal autonomic nervous system response to a cognitive challenge. These results indicate that methylphenidate may have a suppressive effect on the normal stress response. Although this may be of benefit to those who interact with children who suffer from ADHD

  1. In vitro interactions of amantadine hydrochloride, R-(-)-deprenyl hydrochloride and valproic acid sodium salt with antifungal agents against filamentous fungal species causing central nervous system infection.

    Science.gov (United States)

    Galgóczy, L; Tóth, Liliána; Virágh, M; Papp, T; Vágvölgyi, C S

    2012-12-01

    The mortality rates of fungal infections that affect the central nervous system are high in consequence of the absence of effective antifungal drugs with good penetration across the blood-brain barrier and the blood-cerebrospinal fluid barrier. In the present work in vitro antifungal activities of three good penetrating non-antifungal drugs (amantadine hydrochloride, R-(-)-deprenyl hydrochloride, valproic acid sodium salt) and their combinations with three antifungal agents (amphotericin B, itraconazole, terbinafine) were tested with broth microdilution method against eight fungal isolates belonging to Zygomycetes (Lichtheimia corymbifera, Rhizomucor miehei, Rhizopus microsporus var. rhizopodiformis, Saksenaeavasiformis) and Aspergillus genus (A. flavus, A. fumigatus, A. nidulans, A. terreus). These are known to be possible agents of central nervous fungal infections (CNFI). When used alone, the investigated nonantifungal drugs exerted slight antifungal effects. In their combinations with antifungal agents they acted antagonistically, additively and synergistically against zygomyceteous isolates. Primarily antagonistic interactions were revealed between the investigated drugs in case of Aspergilli, but additive and synergistic interactions were also observed. The additive and synergistic combinations allowed the usage of reduced concentrations of antifungal agents to inhibit the fungal growth in our study. These combinations would be a basis of an effective, less toxic therapy for treatment of CNFI.

  2. Conceptual design of autonomous operation system for nuclear power plants

    International Nuclear Information System (INIS)

    Endou, A.; Saiki, A.; Miki, T.; Himeno, Y.

    1993-01-01

    Conceptual design of an autonomous operation system for nuclear power plants has been carried out. Prime objective is to grade up operation reliability by eliminating human factors and enhancing control capabilities. For this objective, operators' role and traditional controllers are replaced with artificial intelligence (AI). Norms of autonomy are defined as (a) to maintain its own basic functions, (b) to protect oneself from catastrophic events, (c) to reorganize oneself in case of its partial failure, (d) to harmonize with the environment, and (e) to improve its performance by itself. For the present, a great emphasis is put on realizing humanlike knowledge-based decision-making process by AI in accordance with the norms (a) and (c). To do this, the authors take a model-based approach and it is intended to make modeling of a problem-solving process from multiple viewpoints and structurization of knowledge used in the process. A hierarchical distributed cooperative system configuration is adopted to allow to dynamically reorganize system functions and it is realized by an object-oriented multi-agent system. Plural agents based on different methodology from each other are applied to individual function or methodology diversity is assured to prevent loss of system functions by common cause failure and to reorganize integrant agents. A prototype autonomous operation system is now under development. (orig.)

  3. Emotion Regulation via the Autonomic Nervous System in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    Musser, Erica D.; Backs, Richard W.; Schmitt, Colleen F.; Ablow, Jennifer C.; Measelle, Jeffery R.; Nigg, Joel T.

    2011-01-01

    Despite growing interest in conceptualizing ADHD as involving disrupted emotion regulation, few studies have examined the physiological mechanisms related to emotion regulation in children with this disorder. This study examined parasympathetic and sympathetic nervous system reactivity via measures of respiratory sinus arrhythmia (RSA) and cardiac…

  4. Effects of Short Forest Bathing Program on Autonomic Nervous System Activity and Mood States in Middle-Aged and Elderly Individuals

    Science.gov (United States)

    Yu, Chia-Pin; Lin, Chia-Min; Tsai, Ming-Jer; Tsai, Yu-Chieh; Chen, Chun-Yu

    2017-01-01

    The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h) forest bathing program in the Xitou Nature Education Area (XNEA), Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years) middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV), and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of “tension-anxiety”, “anger-hostility”, “fatigue-inertia”, “depression-dejection”, and “confusion-bewilderment” were significantly lower, whereas the positive mood subscale score of “vigor-activity” was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals. PMID:28792445

  5. Effects of Short Forest Bathing Program on Autonomic Nervous System Activity and Mood States in Middle-Aged and Elderly Individuals.

    Science.gov (United States)

    Yu, Chia-Pin; Lin, Chia-Min; Tsai, Ming-Jer; Tsai, Yu-Chieh; Chen, Chun-Yu

    2017-08-09

    The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h) forest bathing program in the Xitou Nature Education Area (XNEA), Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years) middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV), and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of "tension-anxiety", "anger-hostility", "fatigue-inertia", "depression-dejection", and "confusion-bewilderment" were significantly lower, whereas the positive mood subscale score of "vigor-activity" was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals.

  6. Effects of Short Forest Bathing Program on Autonomic Nervous System Activity and Mood States in Middle-Aged and Elderly Individuals

    Directory of Open Access Journals (Sweden)

    Chia-Pin Yu

    2017-08-01

    Full Text Available The present study investigated changes in autonomic nervous system activity and emotions after a short (2 h forest bathing program in the Xitou Nature Education Area (XNEA, Taiwan. One hundred and twenty-eight (60.0 ± 7.44 years middle-aged and elderly participants were recruited. Physiological responses, pulse rate, systolic and diastolic blood pressure, heart rate variability (HRV, and psychological indices were measured before and after the program. We observed that pulse rate, systolic and diastolic blood pressure were significantly lower after the program, which indicated physiological benefits from stress recovery. The Profile of Mood States negative mood subscale scores of “tension-anxiety”, “anger-hostility”, “fatigue-inertia”, “depression-dejection”, and “confusion-bewilderment” were significantly lower, whereas the positive mood subscale score of “vigor-activity” was higher. Furthermore, participants exhibited significantly lower anxiety levels according to the State-Trait Anxiety Inventory. However, changes in sympathetic and parasympathetic nerve activity were nonsignificant. Our study determined that the short forest bathing program is a promising therapeutic method for enhancing heart rate and blood pressure functions as well as an effective psychological relaxation strategy for middle-aged and elderly individuals.

  7. Temperament Affects Sympathetic Nervous Function in a Normal Population

    OpenAIRE

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho; Yu, Bum-Hee

    2012-01-01

    Objective Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Methods Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean vers...

  8. Teamwork in Multi-Agent Systems A Formal Approach

    CERN Document Server

    Dunin-Keplicz, Barbara Maria

    2010-01-01

    What makes teamwork tick?. Cooperation matters, in daily life and in complex applications. After all, many tasks need more than a single agent to be effectively performed. Therefore, teamwork rules!. Teams are social groups of agents dedicated to the fulfilment of particular persistent tasks. In modern multiagent environments, heterogeneous teams often consist of autonomous software agents, various types of robots and human beings. Teamwork in Multi-agent Systems: A Formal Approach explains teamwork rules in terms of agents' attitudes and their complex interplay. It provides the first comprehe

  9. Some of the structural and functional features of the autonomic nervous system and diagnosis in clinical practice in the treatment and rehabilitation of patients from diverse backgrounds with vegetative violations

    Directory of Open Access Journals (Sweden)

    N. I. Samosyuk

    2015-03-01

    educational-methodical manual "some structural and functional features of the autonomic nervous system and their Diagnostics in clinical and resort practice in the treatment and rehabilitation of patients from diverse backgrounds with vegetative violations" are known and new data on the operation of the autonomic nervous system. In particular, describes the effect of the left and right hemispheres of the brain, function of the insula sympathetic and parasympathetic divisions of the autonomic nervous system. The manual briefly describes the enteric nervous system, with its powerful vegetative-trophic and immuno-corrective function. An important place in the manual is the modern samples and tests to determine the functional of the autonomic nervous system, which together with the study of variational pulsometry parameters may serve as an objective criterion of the autonomic nervous system. The manual also provides autonomic disorders in different parts of the autonomic nervous system. Manual is intended for a wide range of doctors-clinicians involved in the treatment and rehabilitation of patients with neurological and therapeutic profile, etc.

  10. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.

    Science.gov (United States)

    Toth, Marton Lorant; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A; Bhanot, Gyan; Rongo, Chris; Hall, David H; Driscoll, Monica

    2012-06-27

    Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.

  11. Parkinson disease: the enteric nervous system spills its guts.

    Science.gov (United States)

    Derkinderen, P; Rouaud, T; Lebouvier, T; Bruley des Varannes, S; Neunlist, M; De Giorgio, R

    2011-11-08

    Lewy pathology in Parkinson disease (PD) extends well beyond the CNS, also affecting peripheral autonomic neuronal circuits, especially the enteric nervous system (ENS). The ENS is an integrative neuronal network also referred to as "the brain in the gut" because of its similarities to the CNS. We have recently shown that the ENS can be readily analyzed using routine colonic biopsies. This led us to propose that the ENS could represent a unique window to assess the neuropathology in living patients with PD. In this perspective, we discuss current evidence which indicates that the presence of ENS pathology may by exploited to improve our understanding and management of PD and likely other neurodegenerative disorders.

  12. Accomplishments and challenges in development of an autonomous operation system

    International Nuclear Information System (INIS)

    Endou, A.; Saiki, A.; Yoshikawa, S.; Okusa, K.; Suda, K.

    1994-01-01

    The authors are studying an autonomous operation system for nuclear power plants in which AI plays key roles as an alternative of plant operators and traditional controllers. In contrast with past studies dedicated to assist the operators, the ultimate target of development of the autonomous operation system is to operate the nuclear plants by AI. To realize humanlike decision-making process by means of AI, the authors used a model-based approach from multiple viewpoints and methodology diversity. A hierarchical distributed cooperative multi-agent system configuration is adopted to allow to incorporate diversified methodologies and to dynamically reorganize system functions. In the present paper, accomplishments to date in the course of the development are described. Challenges for developing methodologies to attain dynamic reorganization are also addressed. (author)

  13. Scheduling lessons learned from the Autonomous Power System

    Science.gov (United States)

    Ringer, Mark J.

    1992-01-01

    The Autonomous Power System (APS) project at NASA LeRC is designed to demonstrate the applications of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Diagnosis, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The AIPS scheduler was tested within the APS system. This scheduler is able to efficiently assign available power to the requesting activities and share this information with other software agents within the APS system in order to implement the generated schedule. The AIPS scheduler is also able to cooperatively recover from fault situations by rescheduling the affected loads on the Brassboard in conjunction with the APEX FDIR system. AIPS served as a learning tool and an initial scheduling testbed for the integration of FDIR and automated scheduling systems. Many lessons were learned from the AIPS scheduler and are now being integrated into a new scheduler called SCRAP (Scheduler for Continuous Resource Allocation and Planning). This paper will service three purposes: an overview of the AIPS implementation, lessons learned from the AIPS scheduler, and a brief section on how these lessons are being applied to the new SCRAP scheduler.

  14. What Are the Parts of the Nervous System?

    Science.gov (United States)

    ... Email Print What are the parts of the nervous system? The nervous system consists of two main parts: the central nervous system and the peripheral nervous system: The central nervous system is made up of the brain and ...

  15. Investigation of the Effects of Continuous Low-Dose Epidural Analgesia on the Autonomic Nervous System Using Hilbert Huang Transform

    Directory of Open Access Journals (Sweden)

    Wei-Ren Chuang

    2010-01-01

    Full Text Available Effects of continuous low-dose epidural bupivacaine (0.05-0.1% infusion on the Doppler velocimetry for labor analgesia have been well documented. The aim of this study was to monitor the activity of the autonomic nervous system (ANS for women in labor based on Hilbert Huang transform (HHT, which performs signal processing for nonlinear systems, such as human cardiac systems. Thirteen pregnant women were included in the experimental group for labor analgesia. They received continuous epidural bupivacaine 0.075% infusion. The normal-to-normal intervals (NN-interval were downloaded from an ECG holter. Another 20 pregnant women in non-anesthesia labor (average gestation age was 38.6 weeks were included in the comparison group. In this study, HHT was used to decompose components of ECG signals, which reflect three different frequency bands of a person's heart rate spectrum (viz. high frequency (HF, low frequency (LF and very low frequency (VLF. It was found that the change of energy in subjects without anesthesia was more active than that with continuous epidural bupivacaine 0.075% infusion. The energy values of the experimental group (i.e., labor analgesia of HF and LF of ANS activities were significantly lower (P < 0.05 than the values of the comparison group (viz. labor without analgesia, but the trend of energy ratio of LF/HF was opposite. In conclusion, the sympathetic and parasympathetic components of ANS are all suppressed by continuous low-dose epidural bupivacaine 0.075% infusion, but parasympathetic power is suppressed more than sympathetic power.

  16. Regulation of Neurotransmitter Responses in the Central Nervous System.

    Science.gov (United States)

    1987-05-01

    and identify by block number) FIELD GROUP SUB-GROUP J’-aminobutyric acid; yclic AM’P; neuromodulation ; brain 1ABTAT(Continue on reverse if necessary and...crucial enzyme for regulating neuromodulation in brain. Given the ultimate goal of developing novel pharmacological agents for N! manipulating...central nervous system function, the discovery of a biochemical response to a neuromodulator can be considered a major step in that direction. Thus, up to

  17. Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system.

    Science.gov (United States)

    Hideaki, Waki; Tatsuya, Hisajima; Shogo, Miyazaki; Naruto, Yoshida; Hideaki, Tamai; Yoichi, Minakawa; Yoshihiro, Okuma; Kazuo, Uebaba; Hidenori, Takahashi

    2015-12-01

    A previous study has reported that low-frequency (LF) electroacupuncture (EA) influences salivary secretory immunoglobulin A (sIgA) and the autonomic nervous system (ANS). The ANS is known to control the secretion volume of sIgA; however, the effect of high-frequency (HF) EA on salivary sIgA has not been determined. We investigated whether HF EA affects salivary sIgA levels and the ANS. Sixteen healthy subjects were randomly classified into two groups: a control group and an EA group. After a 5 min rest, subjects in the EA group received EA at 100 Hz bilaterally at LI4 and LI11 for 15 min before resting for a further 40 min post-stimulation. Subjects in the control group rested for a total of 60 min. Measurements of the ANS and sIgA levels in both groups were made before, immediately after, 20 min after, and 40 min after rest or 15 min EA treatment. HF and LF components of heart rate variability were analysed as markers of ANS function. LF/HF ratio and HF were taken as indices of sympathetic and parasympathetic nerve activity, respectively. Salivary protein concentrations and sIgA levels were determined by Bradford protein assay and ELISA, respectively. LF/HF ratio was significantly increased immediately after EA. HF was significantly increased at 20 min after EA and sIgA level was significantly increased at 40 min after EA. In addition, HF and salivary sIgA level were positively correlated with each another. HF EA exerted sequential positive effects on sympathetic nerve activity, parasympathetic nerve activity, and salivary sIgA level (immediately and after 20 and 40 min, respectively). HF EA may increase salivary sIgA levels by influencing parasympathetic nerve activity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Data Provisioning Systems for Autonomous Vehicles

    National Research Council Canada - National Science Library

    Varaiya, Pravin

    1999-01-01

    This project is part of a portfolio comprising four other projects to investigate the possibility of operating a collection of intelligent autonomous agents so that the collection can undertakes complex missions...

  19. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    Science.gov (United States)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  20. Larval nervous systems

    DEFF Research Database (Denmark)

    Nielsen, Claus

    2015-01-01

    as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords......, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence...

  1. An Approach for Autonomy: A Collaborative Communication Framework for Multi-Agent Systems

    Science.gov (United States)

    Dufrene, Warren Russell, Jr.

    2005-01-01

    Research done during the last three years has studied the emersion properties of Complex Adaptive Systems (CAS). The deployment of Artificial Intelligence (AI) techniques applied to remote Unmanned Aerial Vehicles has led the author to investigate applications of CAS within the field of Autonomous Multi-Agent Systems. The core objective of current research efforts is focused on the simplicity of Intelligent Agents (IA) and the modeling of these agents within complex systems. This research effort looks at the communication, interaction, and adaptability of multi-agents as applied to complex systems control. The embodiment concept applied to robotics has application possibilities within multi-agent frameworks. A new framework for agent awareness within a virtual 3D world concept is possible where the vehicle is composed of collaborative agents. This approach has many possibilities for applications to complex systems. This paper describes the development of an approach to apply this virtual framework to the NASA Goddard Space Flight Center (GSFC) tetrahedron structure developed under the Autonomous Nano Technology Swarm (ANTS) program and the Super Miniaturized Addressable Reconfigurable Technology (SMART) architecture program. These projects represent an innovative set of novel concepts deploying adaptable, self-organizing structures composed of many tetrahedrons. This technology is pushing current applied Agents Concepts to new levels of requirements and adaptability.

  2. Autonomic nervous system activity as risk predictor in the medical emergency department: a prospective cohort study.

    Science.gov (United States)

    Eick, Christian; Rizas, Konstantinos D; Meyer-Zürn, Christine S; Groga-Bada, Patrick; Hamm, Wolfgang; Kreth, Florian; Overkamp, Dietrich; Weyrich, Peter; Gawaz, Meinrad; Bauer, Axel

    2015-05-01

    To evaluate heart rate deceleration capacity, an electrocardiogram-based marker of autonomic nervous system activity, as risk predictor in a medical emergency department and to test its incremental predictive value to the modified early warning score. Prospective cohort study. Medical emergency department of a large university hospital. Five thousand seven hundred thirty consecutive patients of either sex in sinus rhythm, who were admitted to the medical emergency department of the University of Tübingen, Germany, between November 2010 and March 2012. None. Deceleration capacity of heart rate was calculated within the first minutes after emergency department admission. The modified early warning score was assessed from respiratory rate, heart rate, systolic blood pressure, body temperature, and level of consciousness as previously described. Primary endpoint was intrahospital mortality; secondary endpoints included transfer to the ICU as well as 30-day and 180-day mortality. One hundred forty-two patients (2.5%) reached the primary endpoint. Deceleration capacity was highly significantly lower in nonsurvivors than survivors (2.9 ± 2.1 ms vs 5.6 ± 2.9 ms; p model yielded an area under the receiver-operator characteristic curve of 0.706 (0.667-0.750). Implementing deceleration capacity into the modified early warning score model led to a highly significant increase of the area under the receiver-operator characteristic curve to 0.804 (0.770-0.835; p capacity was also a highly significant predictor of 30-day and 180-day mortality as well as transfer to the ICU. Deceleration capacity is a strong and independent predictor of short-term mortality among patients admitted to a medical emergency department.

  3. The central nervous system

    International Nuclear Information System (INIS)

    Holmes, R.A.

    1984-01-01

    The first section presents a comprehensive evaluation of radionuclide imaging of the central nervous system and provides a comparison of the detection accuracies of radionuclide imaging (RNI) and XCT in certain lesions, realizing that the XCT results may vary when radiocontrast or newer generation XCT scanners are used. Although conventional radionuclide imaging of the central nervous system has experienced no significant changes over the last 7 years except for mild refinements, a new section has been added on positron emission tomography (PET). Most positron radiopharmaceuticals passively cross the intact blood-brain barrier, and their localization has catalyzed renewed interest in our ability to metabolically study and obtain images of the central nervous system. The section on radionuclide cisternography has been rewritten to reflect present day practice and the wider application of XCT in describing conditions affecting the ventricular system

  4. A Neural Path Integration Mechanism for Adaptive Vector Navigation in Autonomous Agents

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Dasgupta, Sakyasingha; Wörgötter, Florentin

    2015-01-01

    Animals show remarkable capabilities in navigating their habitat in a fully autonomous and energy-efficient way. In many species, these capabilities rely on a process called path integration, which enables them to estimate their current location and to find their way back home after long-distance...... of autonomous agent navigation, but it also reproduces various aspects of animal navigation. Finally, we discuss how the proposed path integration mechanism may be used as a scaffold for spatial learning in terms of vector navigation.......Animals show remarkable capabilities in navigating their habitat in a fully autonomous and energy-efficient way. In many species, these capabilities rely on a process called path integration, which enables them to estimate their current location and to find their way back home after long...

  5. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  6. Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: a case-controlled feasibility study.

    Science.gov (United States)

    Adams, Scott C; Schondorf, Ronald; Benoit, Julie; Kilgour, Robert D

    2015-05-18

    Preliminary evidence suggests cancer- and chemotherapy-related autonomic nervous system (ANS) dysfunction may contribute to the increased cardiovascular (CV) morbidity- and mortality-risks in cancer survivors. However, the reliability of these findings may have been jeopardized by inconsistent participant screening and assessment methods. Therefore, good laboratory practices must be established before the presence and nature of cancer-related autonomic dysfunction can be characterized. The purpose of this study was to assess the feasibility of conducting concurrent ANS and cardiovascular evaluations in young adult cancer patients, according to the following criteria: i) identifying methodological pitfalls and proposing good laboratory practice criteria for ANS testing in cancer, and ii) providing initial physiologic evidence of autonomic perturbations in cancer patients using the composite autonomic scoring scale (CASS). Thirteen patients (mixed diagnoses) were assessed immediately before and after 4 cycles of chemotherapy. Their results were compared to 12 sex- and age-matched controls. ANS function was assessed using standardized tests of resting CV (tilt-table, respiratory sinus arrhythmia and Valsalva maneuver) and sudomotor (quantitative sudomotor axon reflex test) reactivity. Cardiovascular reactivity during exercise was assessed using a modified Astrand-Ryhming cycle ergometer protocol. Our feasibility criteria addressed: i) recruitment potential, ii) retention rates, iii) pre-chemotherapy assessment potential, iv) test performance/tolerability, and v) identification and minimizing the influence of potentially confounding medication. T-tests and repeated measures ANOVAs were used to assess between- and within-group differences at baseline and follow-up. The overall success rate in achieving our feasibility criteria was 98.4 %. According to the CASS, there was evidence of ANS impairment at baseline in 30.8 % of patients, which persisted in 18.2 % of patients

  7. Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: a case-controlled feasibility study

    International Nuclear Information System (INIS)

    Adams, Scott C.; Schondorf, Ronald; Benoit, Julie; Kilgour, Robert D.

    2015-01-01

    Preliminary evidence suggests cancer- and chemotherapy-related autonomic nervous system (ANS) dysfunction may contribute to the increased cardiovascular (CV) morbidity- and mortality-risks in cancer survivors. However, the reliability of these findings may have been jeopardized by inconsistent participant screening and assessment methods. Therefore, good laboratory practices must be established before the presence and nature of cancer-related autonomic dysfunction can be characterized. The purpose of this study was to assess the feasibility of conducting concurrent ANS and cardiovascular evaluations in young adult cancer patients, according to the following criteria: i) identifying methodological pitfalls and proposing good laboratory practice criteria for ANS testing in cancer, and ii) providing initial physiologic evidence of autonomic perturbations in cancer patients using the composite autonomic scoring scale (CASS). Thirteen patients (mixed diagnoses) were assessed immediately before and after 4 cycles of chemotherapy. Their results were compared to 12 sex- and age-matched controls. ANS function was assessed using standardized tests of resting CV (tilt-table, respiratory sinus arrhythmia and Valsalva maneuver) and sudomotor (quantitative sudomotor axon reflex test) reactivity. Cardiovascular reactivity during exercise was assessed using a modified Astrand-Ryhming cycle ergometer protocol. Our feasibility criteria addressed: i) recruitment potential, ii) retention rates, iii) pre-chemotherapy assessment potential, iv) test performance/tolerability, and v) identification and minimizing the influence of potentially confounding medication. T-tests and repeated measures ANOVAs were used to assess between- and within-group differences at baseline and follow-up. The overall success rate in achieving our feasibility criteria was 98.4 %. According to the CASS, there was evidence of ANS impairment at baseline in 30.8 % of patients, which persisted in 18.2 % of patients

  8. Intracellular Calcium Dynamics and Autonomic Stimulation in Atrial Fibrillation: Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Chung-Chuan Chou, MD

    2008-01-01

    Full Text Available While atrial fibrillation is characterized by the co-existence of multiple activation waves within the atria, rapid activations in the pulmonary veins play an important role for the initiation and maintenance of atrial fibrillation. In addition to reentry, non-reentrant mechanisms resulting from abnormal intracellular calcium handling and intracellular calcium overload can also be responsible for these rapid activations in the pulmonary veins. Meanwhile, alterations of autonomic tone, involving both the sympathetic and parasympathetic nervous system, have been implicated in initiating paroxysmal atrial fibrillation. But the effectiveness of autonomic modulation as an adjunctive therapeutic strategy to catheter ablation of atrial fibrillation has been inconsistent. The interactions between the autonomic nervous system and atrial fibrillation are more complex than currently understood and further mechanistic and clinical studies are warranted.

  9. Autonomic regulation of hepatic glucose production

    NARCIS (Netherlands)

    Bisschop, Peter H.; Fliers, Eric; Kalsbeek, Andries

    2015-01-01

    Glucose produced by the liver is a major energy source for the brain. Considering its critical dependence on glucose, it seems only natural that the brain is capable of monitoring and controlling glucose homeostasis. In addition to neuroendocrine pathways, the brain uses the autonomic nervous system

  10. Alterations in cardiac autonomic control in spinal cord injury.

    Science.gov (United States)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan; Malmqvist, Lasse; Wecht, Jill Maria; Krassioukov, Andrei

    2018-01-01

    A spinal cord injury (SCI) interferes with the autonomic nervous system (ANS). The effect on the cardiovascular system will depend on the extent of damage to the spinal/central component of ANS. The cardiac changes are caused by loss of supraspinal sympathetic control and relatively increased parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update of the current knowledge related to the alterations in cardiac autonomic control following SCI. With this purpose the review includes the following subheadings: 2. Neuro-anatomical plasticity and cardiac control 2.1 Autonomic nervous system and the heart 2.2 Alteration in autonomic control of the heart following spinal cord injury 3. Spinal shock and neurogenic shock 3.1 Pathophysiology of spinal shock 3.2 Pathophysiology of neurogenic shock 4. Autonomic dysreflexia 4.1 Pathophysiology of autonomic dysreflexia 4.2 Diagnosis of autonomic dysreflexia 5. Heart rate/electrocardiography following spinal cord injury 5.1 Acute phase 5.2 Chronic phase 6. Heart rate variability 6.1 Time domain analysis 6.2 Frequency domain analysis 6.3 QT-variability index 6.4 Nonlinear (fractal) indexes 7. Echocardiography 7.1 Changes in cardiac structure following spinal cord injury 7.2 Changes in cardiac function following spinal cord injury 8. International spinal cord injury cardiovascular basic data set and international standards to document the remaining autonomic function in spinal cord injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation.

    Science.gov (United States)

    Yuan, Junhui; Matsuura, Eiji; Higuchi, Yujiro; Hashiguchi, Akihiro; Nakamura, Tomonori; Nozuma, Satoshi; Sakiyama, Yusuke; Yoshimura, Akiko; Izumo, Shuji; Takashima, Hiroshi

    2013-04-30

    To identify the clinical features of Japanese patients with suspected hereditary sensory and autonomic neuropathy (HSAN) on the basis of genetic diagnoses. On the basis of clinical, in vivo electrophysiologic, and pathologic findings, 9 Japanese patients with sensory and autonomic nervous dysfunctions were selected. Eleven known HSAN disease-causing genes and 5 related genes were screened using a next-generation sequencer. A homozygous mutation, c.3993delGinsTT, was identified in exon 22 of SCN9A from 2 patients/families. The clinical phenotype was characterized by adolescent or congenital onset with loss of pain and temperature sensation, autonomic nervous dysfunctions, hearing loss, and hyposmia. Subsequently, this mutation was discovered in one of patient 1's sisters, who also exhibited sensory and autonomic nervous system dysfunctions, with recurrent fractures being the most predominant feature. Nerve conduction studies revealed definite asymmetric sensory nerve involvement in patient 1. In addition, sural nerve pathologic findings showed loss of large myelinated fibers in patient 1, whereas the younger patient showed normal sural nerve pathology. We identified a novel homozygous mutation in SCN9A from 2 Japanese families with autosomal recessive HSAN. This loss-of-function SCN9A mutation results in disturbances in the sensory, olfactory, and autonomic nervous systems. We propose that SCN9A mutation results in the new entity of HSAN type IID, with additional symptoms including hyposmia, hearing loss, bone dysplasia, and hypogeusia.

  12. Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men.

    Science.gov (United States)

    Shin, Ki Ok; Moritani, Toshio

    2007-04-01

    We investigated whether capsaicin ingestion (150 mg) enhances substrate oxidation associated with thermogenic sympathetic activity as an energy metabolic modulator without causing prolongation of the cardiac OT interval during aerobic exercise in humans. Ten healthy males [24.4 (4.3) y] volunteered for this study. The cardiac autonomic nervous activities evaluated by means of heart rate variability of power spectral analysis, energy metabolism, and ECG QT interval were continuously measured during 5-min rest and 30-min exercise at 50% of maximal ventilatory threshold (50% VT(max)) on a stationary ergometer with placebo or capsaicin oral administration chosen at random. The results indicated that there were no significant differences in heart rate during rest or exercise between the two trials. Autonomic nervous activity increased in the capsaicin tablet trial during exercise, but the difference did not reach statistical significance. Capsaicin, however, significantly induced a lower respiratory gas exchange ratio [0.92 (0.02) vs. 0.94 (0.02), means (SE), p means (SE), p < 0.05] during exercise. On the other hand, the data on the cardiac OT interval showed no significant difference, indicating that oral administration of capsaicin did not cause any adverse effect on cardiac depolarization-repolarization. In conclusion, it may be considered that capsaicin consumption 1 h before low intensity exercise (50% VT(max)) is a valuable supplement for the treatment of individuals with hyperlipidemia and/or obesity because it improves lipolysis without any adverse effects on the cardiac depolarization and repolarization process.

  13. Negotiation and argumentation in multi-agent systems

    CERN Document Server

    Lopes, Fernando

    2014-01-01

    Multi-agent systems (MAS) composed of autonomous agents representing individuals or organizations and capable of reaching mutually beneficial agreements through negotiation and argumentation are becoming increasingly important and pervasive.Research on both automated negotiation and argumentation in MAS has a vigorous, exciting tradition. However, efforts to integrate both areas have received only selective attention in the academia and the practitioner literature. A symbiotic relationship could significantly strengthen each area's progress and trigger new R&D challenges and prospects toward t

  14. Etiologic theories of idiopathic scoliosis. Somatic nervous system and the NOTOM escalator concept as one component in the pathogenesis of adolescent idiopathic scoliosis.

    Science.gov (United States)

    Burwell, R G; Dangerfield, P H; Freeman, B J C

    2008-01-01

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). In recent years encouraging advances thought to be related to the pathogenesis of AIS have been made in several fields. After reviewing concepts of AIS pathogenesis we formulated a collective model of pathogenesis. The central concept of this collective model is a normal neuro-osseous timing of maturation (NOTOM) system operating in a child's internal world during growth and maturation; this provides a dynamic physiological balance of postural equilibrium continuously renewed between two synchronous, polarized processes (NOTOM escalator) linked through sensory input and motor output, namely: 1) osseous escalator-increasing skeletal size and relative segmental mass, and 2) neural escalator - including the CNS body schema. The latter is recalibrated continuously as the body adjusts to biomechanical and kinematic changes resulting from skeletal enlargement, enabling it to coordinate motor actions. We suggest that AIS progression results from abnormality of the neural and/or osseous components of these normal escalator in time and/or space - as asynchrony and/or asymmetries - which cause a failure of neural systems to control asymmetric growth of a rapidly enlarging and moving adolescent spine. This putative initiating asymmetric growth in the spine is explained in separate papers as resulting from dysfunction of the hypothalamus expressed through the sympathetic nervous system (leptin-sympathetic nervous system concept for AIS pathogenesis). In girls, the expression of AIS may result from disharmony between the somatic and autonomic nervous systems - relative postural maturational delay in the somatic nervous system and hypothalamic dysfunction in the autonomic nervous system, with the conflict being fought out in the spine and trunk of the girl and compounded by biomechanical spinal growth modulation.

  15. Autonomic nervous system modulation and clinical outcome after pulmonary vein isolation using the second-generation cryoballoon.

    Science.gov (United States)

    Miyazaki, Shinsuke; Nakamura, Hiroaki; Taniguchi, Hiroshi; Hachiya, Hitoshi; Kajiyama, Takatsugu; Watanabe, Tomonori; Igarashi, Miyako; Ichijo, Sadamitsu; Hirao, Kenzo; Iesaka, Yoshito

    2017-09-01

    The intrinsic cardiac autonomic nervous system (ANS) plays a significant role in atrial fibrillation (AF) mechanisms. This study evaluated the incidence and impact of intraprocedural vagal reactions and ANS modulation by pulmonary vein isolation (PVI) using second-generation cryoballoons on outcomes. One hundred three paroxysmal AF patients underwent PVI with one 28-mm second-generation balloon. The median follow-up was 15.0 (12.0-18.0) months. ANS modulation was defined as a >20% cycle length decrease on 3-minute resting electrocardiograms at 1, 3, 6, and 12 months postindex procedure relative to baseline if sinus rhythm was maintained. Marked sinus arrests/bradycardia and atrioventricular block (intraprocedural vagal reaction) occurred in 14 and 2 patients, and all sinus arrest/bradycardia occurred in 44 patients with left superior pulmonary veins (PVs) targeted before right PVs. ANS modulation was identified in 66 of 95 (69.5%) patients, and it persisted 12-month postprocedure in 36 (37.9%) patients. Additional β-blocker administration was required in 9 patients for sinus tachycardia. ANS modulation was similarly observed in patients with and without intraprocedural vagal reactions (P = 0.443). Forty-eight (46.6%) patients experienced early recurrences, and the single procedure success at 12 months was 72.7%. Neither intraprocedural vagal reactions nor ANS modulation predicted AF freedom within or after the blanking period. Thirty-three patients underwent second procedures, and reconnections were detected in 39 of 130 (30.0%) PVs among 23 (69.7%) patients. The incidence of reconnections was similar in patients with and without ANS modulation. Increased heart rate persisted in 37.9% of patients even at 12-month post-second-generation cryoballoon PVI. Neither intraprocedural vagal reactions nor increased heart rate predicted a single procedure clinical outcome. © 2017 Wiley Periodicals, Inc.

  16. Autonomic nervous system activity and anxiety and depressive symptoms in mothers up to 2 years postpartum.

    Science.gov (United States)

    Izumi, Mie; Manabe, Emiko; Uematsu, Sayo; Watanabe, Ayako; Moritani, Toshio

    2016-01-01

    We investigated the association between autonomic nervous system (ANS) activity and symptoms of anxiety and depression for the first 2 years postpartum. A total of 108 participants within 2 years postpartum underwent physiological measurements of ANS activity using the heart rate variability (HRV) power spectrum and self-reported questionnaires (14-item Hospital Anxiety and Depression Score). The cutoff points for anxiety and depressive symptom scores in this questionnaire were as follows: 7 or less, non-cases; 8-10, doubtful cases; 11 or more, definite cases. This study was conducted from 2012 to 2014 at University Hospital in Kyoto Prefectural University of Medicine and a nearby obstetrics and gynecology department clinic in Japan. Anxiety and depression non-cases accounted for 67.6% (n = 73) of subjects, anxiety non-cases and depression doubtful and definite cases 7.4% (n = 8), anxiety doubtful and definite cases and depression non-cases 8.3% (n = 9), and anxiety and depression doubtful and definite cases 16.7% (n = 18). Findings were similar for women with anxiety or depression, with total power (TP), low-frequency (LF) and high-frequency (HF) components of HRV among doubtful and definite cases significantly lower than among non-cases for both anxiety (p = 0.006, 0.034, 0.029, respectively) and depression (p = 0.001, 0.004, 0.007). Significant correlations were observed between TP, LF and HF and anxiety and depression scores (respective values for anxiety: rs = -0.331, p <0.001; rs = -0.286, p = 0.003; rs = -0.269, p = 0.005; and depression: rs = -0.389, rs = -0.353, rs = -0.337, all p <0.001). The present study demonstrated that mothers with anxiety or depressive symptoms had significantly lower HRV (HF, LF and TP) than those without.

  17. A Framework for Organization-Aware Agents

    DEFF Research Database (Denmark)

    Jensen, Andreas Schmidt; Dignum, Virginia; Villadsen, Jørgen

    2016-01-01

    This short paper introduces and summarizes the AORTA reasoning framework that can be integrated into BDI-agents to enable organizational decision-making. This work has recently been published in the Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS), as [3].......This short paper introduces and summarizes the AORTA reasoning framework that can be integrated into BDI-agents to enable organizational decision-making. This work has recently been published in the Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS), as [3]....

  18. [Stress and autonomic dysregulation in patients with fibromyalgia syndrome].

    Science.gov (United States)

    Friederich, H-C; Schellberg, D; Mueller, K; Bieber, C; Zipfel, S; Eich, W

    2005-06-01

    The aim of the present study was to evaluate to what extent the orthostatic dysregulation of FMS patients can be attributed primarily to reduced baroreceptor-mediated activation of the sympathetic nervous system and whether a hyporeactive sympathetic nervous system can also be confirmed for mental stress. A total of 28 patients with primary FMS were examined and compared with 15 healthy subjects. Diagnostic investigations of the autonomic nervous system were based on measuring HRV in frequency range and assessing spontaneous baroreflex sensitivity (sBRS) under mental stress and passive orthostatism. Both under orthostatic and mental stress FMS patients exhibited reduced activation of the sympathetic nervous system as measured by the spectral power of HRV in the low-frequency range and the mean arterial blood pressure or heart rate. The present study provided no indications for dysregulation of sBRS. The results obtained confirm the hypothesis of a hyporeactive stress system in FMS patients for both peripherally and centrally mediated stimulation of the sympathetic nervous system.

  19. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  20. Baroreflex Sensitivity And Autonomic Nervous System Function In Carotid Sinus Hypersensitivity

    DEFF Research Database (Denmark)

    Brinth, Louise Schouborg; Pors, Kirsten; Theibel, Ann Cathrine

    2015-01-01

    hypersensitivity ranging from reduced to increased sensitivity compared to controls. We wanted to establish whether measures of baroreflex sensitivity and autonomic function differed between patients diagnosed with carotid sinus hypersensitivity and age matched controls. We included 36 patients (12 women; 74 +/-10...... sensitivity may not follow the same neuronal pathways as those responding to the crude external pressures applied during carotid sinus massage...

  1. Dissociation of sad facial expressions and autonomic nervous system responding in boys with disruptive behavior disorders

    Science.gov (United States)

    Marsh, Penny; Beauchaine, Theodore P.; Williams, Bailey

    2009-01-01

    Although deficiencies in emotional responding have been linked to externalizing behaviors in children, little is known about how discrete response systems (e.g., expressive, physiological) are coordinated during emotional challenge among these youth. We examined time-linked correspondence of sad facial expressions and autonomic reactivity during an empathy-eliciting task among boys with disruptive behavior disorders (n = 31) and controls (n = 23). For controls, sad facial expressions were associated with reduced sympathetic (lower skin conductance level, lengthened cardiac preejection period [PEP]) and increased parasympathetic (higher respiratory sinus arrhythmia [RSA]) activity. In contrast, no correspondence between facial expressions and autonomic reactivity was observed among boys with conduct problems. Furthermore, low correspondence between facial expressions and PEP predicted externalizing symptom severity, whereas low correspondence between facial expressions and RSA predicted internalizing symptom severity. PMID:17868261

  2. Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system

    Science.gov (United States)

    Hideaki, Waki; Tatsuya, Hisajima; Shogo, Miyazaki; Naruto, Yoshida; Hideaki, Tamai; Yoichi, Minakawa; Yoshihiro, Okuma; Kazuo, Uebaba; Hidenori, Takahashi

    2015-01-01

    Background A previous study has reported that low-frequency (LF) electroacupuncture (EA) influences salivary secretory immunoglobulin A (sIgA) and the autonomic nervous system (ANS). The ANS is known to control the secretion volume of sIgA; however, the effect of high-frequency (HF) EA on salivary sIgA has not been determined. We investigated whether HF EA affects salivary sIgA levels and the ANS. Method Sixteen healthy subjects were randomly classified into two groups: a control group and an EA group. After a 5 min rest, subjects in the EA group received EA at 100 Hz bilaterally at LI4 and LI11 for 15 min before resting for a further 40 min post-stimulation. Subjects in the control group rested for a total of 60 min. Measurements of the ANS and sIgA levels in both groups were made before, immediately after, 20 min after, and 40 min after rest or 15 min EA treatment. HF and LF components of heart rate variability were analysed as markers of ANS function. LF/HF ratio and HF were taken as indices of sympathetic and parasympathetic nerve activity, respectively. Salivary protein concentrations and sIgA levels were determined by Bradford protein assay and ELISA, respectively. Results LF/HF ratio was significantly increased immediately after EA. HF was significantly increased at 20 min after EA and sIgA level was significantly increased at 40 min after EA. In addition, HF and salivary sIgA level were positively correlated with each another. Conclusions HF EA exerted sequential positive effects on sympathetic nerve activity, parasympathetic nerve activity, and salivary sIgA level (immediately and after 20 and 40 min, respectively). HF EA may increase salivary sIgA levels by influencing parasympathetic nerve activity. PMID:26449884

  3. Central nervous system manifestations of HIV infection in children

    International Nuclear Information System (INIS)

    George, Reena; Andronikou, Savvas; Plessis, Jaco du; Plessis, Anne-Marie du; Maydell, Arthur; Toorn, Ronald van

    2009-01-01

    Vertically transmitted HIV infection is a major problem in the developing world due to the poor availability of antiretroviral agents to pregnant women. HIV is a neurotrophic virus and causes devastating neurological insults to the immature brain. The effects of the virus are further compounded by the opportunistic infections and neoplasms that occur as a result of the associated immune suppression. This review focuses on the imaging features of HIV infection and its complications in the central nervous system. (orig.)

  4. Central nervous system manifestations of HIV infection in children

    Energy Technology Data Exchange (ETDEWEB)

    George, Reena; Andronikou, Savvas; Plessis, Jaco du; Plessis, Anne-Marie du; Maydell, Arthur [University of Stellenbosch, Department of Radiology, Tygerberg Academic Hospital, Cape Town (South Africa); Toorn, Ronald van [University of Stellenbosch, Department of Paediatrics and Child Health, Tygerberg Academic Hospital, Cape Town (South Africa)

    2009-06-15

    Vertically transmitted HIV infection is a major problem in the developing world due to the poor availability of antiretroviral agents to pregnant women. HIV is a neurotrophic virus and causes devastating neurological insults to the immature brain. The effects of the virus are further compounded by the opportunistic infections and neoplasms that occur as a result of the associated immune suppression. This review focuses on the imaging features of HIV infection and its complications in the central nervous system. (orig.)

  5. Children’s Autonomic Nervous System Reactivity Moderates the Relations between Family Adversity and Sleep Problems in Latino 5-Year Olds in the CHAMACOS Study

    Directory of Open Access Journals (Sweden)

    Abbey Alkon

    2017-06-01

    Full Text Available Sleep problems are common for young children especially if they live in adverse home environments. Some studies investigate if young children may also be at a higher risk of sleep problems if they have a specific biological sensitivity to adversity. This paper addresses the research question, does the relations between children’s exposure to family adversities and their sleep problems differ depending on their autonomic nervous system’s sensitivity to challenges? As part of a larger cohort study of Latino, low-income families, we assessed the cross-sectional relations among family demographics (education, marital status, adversities [routines, major life events (MLE], and biological sensitivity as measured by autonomic nervous system (ANS reactivity associated with parent-rated sleep problems when the children were 5 years old. Mothers were interviewed in English or Spanish and completed demographic, family, and child measures. The children completed a 15-min standardized protocol while continuous cardiac measures of the ANS [respiratory sinus arrhythmia (RSA, preejection period (PEP] were collected during resting and four challenge conditions. Reactivity was defined as the mean of the responses to the four challenge conditions minus the first resting condition. Four ANS profiles, co-activation, co-inhibition, reciprocal low RSA and PEP reactivity, and reciprocal high RSA and PEP reactivity, were created by dichotomizing the reactivity scores as high or low reactivity. Logistic regression models showed there were significant main effects for children living in families with fewer daily routines having more sleep problems than for children living in families with daily routines. There were significant interactions for children with low PEP reactivity and for children with the reciprocal, low reactivity profiles who experienced major family life events in predicting children’s sleep problems. Children who had a reciprocal, low reactivity

  6. Autonomic response to exercise as measured by cardio- vascular ...

    African Journals Online (AJOL)

    estimate the involvement of the autonomic nervous system (ANS) influence and balance in ... activity in response to exercise, training and overtraining. This ..... However, a lower HR and higher values for time domain HRV indicators were ...

  7. Biologically inspired autonomous agent navigation using an integrated polarization analyzing CMOS image sensor

    NARCIS (Netherlands)

    Sarkaer, M.; San Segundo Bello, D.; Van Hoof, C.; Theuwissen, A.

    2010-01-01

    The navigational strategies of insects using skylight polarization are interesting for applications in autonomous agent navigation because they rely on very little information for navigation. A polarization navigation sensor using the Stokes parameters to determine the orientation is presented. The

  8. Nervous system examination on YouTube

    OpenAIRE

    Azer Samy A; AlEshaiwi Sarah M; AlGrain Hala A; AlKhelaif Rana A

    2012-01-01

    Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “...

  9. Design and Development a Control and Monitoring System for Greenhouse Conditions Based-On Multi Agent System

    Directory of Open Access Journals (Sweden)

    Seyed Hamidreza Kasaei

    2011-12-01

    Full Text Available The design of a multi-agent system for integrated management of greenhouse production is described. The model supports the integrated greenhouse production, with targets set to quality and quantity of produce with the minimum possible cost in resources and environmental consequences.
    In this paper, we propose a real time and robust system for monitoring and control of the greenhouse condition which can automatically control of greenhouse temperature, lights, humidity, CO2 concentration, sunshine, pH, salinity, water available, soil temperature and soil nutrient for efficient production. We will propose a multi-agent methodology for integrated management systems in greenhouses. In this regards wireless sensor networks play a vital role to monitor
    greenhouse and environment parameters. Each control process of the greenhouse environment is modeled as an autonomous agent with its own inputs, outputs and its own interactions with the other agents. Each agent acts autonomously, as it knows a priori the desired environmental setpoints. Many researchers have been making attempts to develop the greenhouse environment management system. The existing environment management systems are bulky, very costly and difficult to maintain. In the last years, Multi Agent Systems and Wireless Sensor Networks are becoming important solutions to this problem. This paper describes the implementation and
    configuration of the wireless sensor network to monitor and control various parameter of greenhouse. The developed system is simple, cost effective, and easily installable.

  10. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders.

    Science.gov (United States)

    Pistorio, Elisabetta; Luca, Maria; Luca, Antonina; Messina, Vincenzo; Calandra, Carmela

    2011-10-28

    To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI) as a new possible biomarker. 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs). The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR) official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV) and lipid metabolism has been investigated. Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  11. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders

    Directory of Open Access Journals (Sweden)

    Messina Vincenzo

    2011-10-01

    Full Text Available Abstract Objective To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI as a new possible biomarker. Methods 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs. The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV and lipid metabolism has been investigated. Results Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Conclusions Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  12. Aging changes in the nervous system

    Science.gov (United States)

    ... ency/article/004023.htm Aging changes in the nervous system To use the sharing features on this page, please enable JavaScript. The brain and nervous system are your body's central control center. They control ...

  13. Dendrimer advances for the central nervous system delivery of therapeutics.

    Science.gov (United States)

    Xu, Leyuan; Zhang, Hao; Wu, Yue

    2014-01-15

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.

  14. Central nervous system tumors

    International Nuclear Information System (INIS)

    Curran, W.J. Jr.

    1991-01-01

    Intrinsic tumors of the central nervous system (CNS) pose a particularly challenging problem to practicing oncologists. These tumors rarely metastasize outside the CNS, yet even histologically benign tumors can be life-threatening due to their local invasiveness and strategic location. The surrounding normal tissues of the nervous system is often incapable of full functional regeneration, therefore prohibiting aggressive attempts to use either complete surgical resection or high doses of irradiation. Despite these limitations, notable achievements have recently been recorded in the management of these tumors

  15. The Central Nervous System and Bone Metabolism: An Evolving Story.

    Science.gov (United States)

    Dimitri, Paul; Rosen, Cliff

    2017-05-01

    Our understanding of the control of skeletal metabolism has undergone a dynamic shift in the last two decades, primarily driven by our understanding of energy metabolism. Evidence demonstrating that leptin not only influences bone cells directly, but that it also plays a pivotal role in controlling bone mass centrally, opened up an investigative process that has changed the way in which skeletal metabolism is now perceived. Other central regulators of bone metabolism have since been identified including neuropeptide Y (NPY), serotonin, endocannabinoids, cocaine- and amphetamine-regulated transcript (CART), adiponectin, melatonin and neuromedin U, controlling osteoblast and osteoclast differentiation, proliferation and function. The sympathetic nervous system was originally identified as the predominant efferent pathway mediating central signalling to control skeleton metabolism, in part regulated through circadian genes. More recent evidence points to a role of the parasympathetic nervous system in the control of skeletal metabolism either through muscarinic influence of sympathetic nerves in the brain or directly via nicotinic receptors on osteoclasts, thus providing evidence for broader autonomic skeletal regulation. Sensory innervation of bone has also received focus again widening our understanding of the complex neuronal regulation of bone mass. Whilst scientific advance in this field of bone metabolism has been rapid, progress is still required to understand how these model systems work in relation to the multiple confounders influencing skeletal metabolism, and the relative balance in these neuronal systems required for skeletal growth and development in childhood and maintaining skeletal integrity in adulthood.

  16. Radiation injury to the nervous system

    International Nuclear Information System (INIS)

    Gutin, P.H.; Leibel, S.A.; Sneline, G.E.

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system

  17. Radiation-induced tumors of the nervous system

    International Nuclear Information System (INIS)

    Bernstein, M.; Laperriere, N.

    1991-01-01

    Therapeutic and nontherapeutic ionizing radiation has long been recognized as a putative carcinogenic agent, but the evidence that radiation causes tumors is circumstantial at worst and statistically significant at best. There are no distinct histological, biochemical, cytogenetic, or clinical criteria that can be used to determine if an individual tumor was caused directly by previous irradiation of the anatomic area. Additional supportive evidence for radiation-induced tumors includes a position correlation between radiation dose and tumor incidence (usually in the low dose range) and experimental induction of the same neoplasm in appropriate animal models. even if these criteria are fulfilled, coincidental development of a second tumor can never be discounted in an individual patient, particularly if there is an underlying diathesis to develop multiple tumors of different histology, such as in Recklinghausen's disease, or if there is an strong family history for the development of neoplastic disease. In this paper, the authors critically evaluate the available evidence to support the hypothesis that radiation induces tumors in the nervous system. The current concepts of radiation carcinogenesis are discussed and are followed by a discussion of animal data and clinical experience in humans. Finally, a brief discussion on treatment of radiation-induced nervous system tumors is presented

  18. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  19. Your Brain and Nervous System

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Brain & Nervous System KidsHealth / For Kids / Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  20. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  1. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  2. Modeling of a production system using the multi-agent approach

    Science.gov (United States)

    Gwiazda, A.; Sękala, A.; Banaś, W.

    2017-08-01

    The method that allows for the analysis of complex systems is a multi-agent simulation. The multi-agent simulation (Agent-based modeling and simulation - ABMS) is modeling of complex systems consisting of independent agents. In the case of the model of the production system agents may be manufactured pieces set apart from other types of agents like machine tools, conveyors or replacements stands. Agents are magazines and buffers. More generally speaking, the agents in the model can be single individuals, but you can also be defined as agents of collective entities. They are allowed hierarchical structures. It means that a single agent could belong to a certain class. Depending on the needs of the agent may also be a natural or physical resource. From a technical point of view, the agent is a bundle of data and rules describing its behavior in different situations. Agents can be autonomous or non-autonomous in making the decision about the types of classes of agents, class sizes and types of connections between elements of the system. Multi-agent modeling is a very flexible technique for modeling and model creating in the convention that could be adapted to any research problem analyzed from different points of views. One of the major problems associated with the organization of production is the spatial organization of the production process. Secondly, it is important to include the optimal scheduling. For this purpose use can approach multi-purposeful. In this regard, the model of the production process will refer to the design and scheduling of production space for four different elements. The program system was developed in the environment NetLogo. It was also used elements of artificial intelligence. The main agent represents the manufactured pieces that, according to previously assumed rules, generate the technological route and allow preprint the schedule of that line. Machine lines, reorientation stands, conveyors and transport devices also represent the

  3. Cohesive Motion Control Algorithm for Formation of Multiple Autonomous Agents

    Directory of Open Access Journals (Sweden)

    Debabrata Atta

    2010-01-01

    Full Text Available This paper presents a motion control strategy for a rigid and constraint consistent formation that can be modeled by a directed graph whose each vertex represents individual agent kinematics and each of directed edges represents distance constraints maintained by an agent, called follower, to its neighbouring agent. A rigid and constraint consistent graph is called persistent graph. A persistent graph is minimally persistent if it is persistent, and no edge can be removed without losing its persistence. An acyclic (free of cycles in its sensing pattern minimally persistent graph of Leader-Follower structure has been considered here which can be constructed from an initial Leader-Follower seed (initial graph with two vertices, one is Leader and another one is First Follower and one edge in between them is directed towards Leader by Henneberg sequence (a procedure of growing a graph containing only vertex additions. A set of nonlinear optimization-based decentralized control laws for mobile autonomous point agents in two dimensional plane have been proposed. An infinitesimal deviation in formation shape created continuous motion of Leader is compensated by corresponding continuous motion of other agents fulfilling the shortest path criteria.

  4. [Features of Autonomic Response in Children with Bronchial Asthma in the Period of Exacerbation].

    Science.gov (United States)

    Lebedenko, A A; Semernik, O E

    2015-01-01

    Asthma is one of the urgent problems of modern pediatrics, but neuroregulation mechanisms underlying this disease have not been fully disclosed so far. The autonomic interaction assessment in patients with bronchial asthma is important to understand the pathogenesis and prognosis of the disease. The aim of this study was to investigate features of autonomic response in children with asthma in the period of exacerbation. The autonomic nervous system ANS) of 82 children aged 6 to 18 years old with asthma in the period of exacerbation were investigated. The spectral analysis of the heart rate variability and the correlation rhythmography method (skaterography) were used to assess the ANS state. Investigations were carried out at rest and after clinoorthostatic test. Non-respiratory (slow) waves reflecting (be degree of activity of humoral and neural canals of heart rate central regulation were dominated at the spectrogram of 72 (87.80%) children experiencing asthma attack; more than half of patients (58.53%) had predominantly very low-frequency component (VLF%) in the range of fluctuation rate that indicated (the influence of neurohumoral regulation. A significant increase in vagosympathetic balance coefficient (LE/HF) was recorded after clinoorthostatic test indicating the activation of the sympathetic nervous system. According to the correlation rhytlimnography data, a considerable scattering of scattergraphy points was detected in patients in (the baseline state that indicated the predominant influence of parasympathetic nervous system. After the clinoorthostatic test, on the contrary, we observed the of the scattergraphy cloud that could indicate sympathicotonia. The imbalance of the autonomic nervous system in the form of activation of the sympathetic amid neurohumoral regulation department was found in children with asthma.

  5. Parasympathetic nervous system dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment

    OpenAIRE

    Wang, Yang; Zekveld, Adriana A.; Naylor, Graham; Ohlenforst, Barbara; Jansma, Elise P.; Lorens, Artur; Lunner, Thomas; Kramer, Sophia E.

    2016-01-01

    Context\\ud Although the pupil light reflex has been widely used as a clinical diagnostic tool for autonomic nervous system dysfunction, there is no systematic review available to summarize the evidence that the pupil light reflex is a sensitive method to detect parasympathetic dysfunction. Meanwhile, the relationship between parasympathetic functioning and hearing impairment is relatively unknown.\\ud \\ud Objectives\\ud To 1) review the evidence for the pupil light reflex being a sensitive meth...

  6. Effect of exposure to anesthesia on the functions of nervous system of children in the growth period

    Directory of Open Access Journals (Sweden)

    Fei DENG

    2015-04-01

    Full Text Available With the update of concept of anesthesia and the improvement in anesthesia technology, an increasing number of children received surgical treatment under general anesthesia. Subsequently, the influence of anesthetic agents on the development of nervous system becomes a focused issue. Basic research found that anesthetic agents can lower the synaptic plasticity of nervous system, produce neuronal apoptosis and other neurodegenerative diseases during the vulnerable window period for brain development, thus affect learning and memory function when the children reach adulthood. Since 2007, a number of research centers around the world conducted a large-scale clinical study on this issue, but there are relevant studies showing that there is no direct correlation between the two. DOI: 10.11855/j.issn.0577-7402.2015.03.16

  7. Dietary Carotenoids and the Nervous System

    Directory of Open Access Journals (Sweden)

    Billy R. Hammond

    2015-12-01

    Full Text Available This issue of Foods is focused on the general topic of carotenoids within the nervous system. The focus is on the effects of the xanthophylls on the central nervous system (CNS, reflecting the majority of work in this area. [...

  8. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette Syndrome.

    Science.gov (United States)

    Nagai, Yoko

    2015-01-01

    This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in epilepsy (small) and tics in Tourette Syndrome (TS). In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g., syncope), or in relation to Sudden Unexpected Death in Epilepsy (SUDEP). Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in epilepsy and TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behavior influence central thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated to gain a strong position within the next generation of treatment for epilepsy, as a non-invasive technique with minimal side effects. This approach also takes advantage of the current practical opportunity to utilize growing digital health technology.

  9. Diagnostic evaluation of brain SPECT imaging in diseases of nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Yongsheng, Jiang; Chengmo, Zhu; Jixian, Zhang; Weijia, Tian [Shanghai Second Medical Univ. (China). Ruijing Hospital

    1992-11-01

    The dynamic distributions of home made ECD and the Amersham brain SPECT imaging agent 'Ceretec' in normal person as well as their diagnostic use in diseases of nervous system were investigated. Semi-quantitative analysis combined with direct observation was more accurate for the diagnosis. Aside from cerebrovascular diseases, SPECT brain imaging has its unique value for the diagnosis of transient ischemic attack, Alzheimer disease, multiple ischemic dementia and epilepsy etc.

  10. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    Science.gov (United States)

    Kember, Guy; Ardell, Jeffrey L; Shivkumar, Kalyanam; Armour, J Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  11. Autonomous Operations System: Development and Application

    Science.gov (United States)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  12. Importance of early physical rehabilitation in improving functional state of vegetative nervous system of women with postmastectomy syndrome

    Directory of Open Access Journals (Sweden)

    Tatiana Odynets

    2016-02-01

    Full Text Available Purpose: to determine the expediency of early application of physical rehabilitation to improve the functional state of vegetative nervous system of women with postmastectomy syndrome. Material & Methods: theoretical analysis of scientific and methodical literature, analysis of heart rate variability, methods of mathematical statistics. The study involved 135 women with postmastectomy syndrome who underwent radical mastectomy for Madden. Results: at the end of the research value of high-frequency component of the spectrum was significantly higher in women MG1 compared to MG on 257,72 ms² (p<0,01 and the stress index was lower on 107,01 c. u (p<0,001. Conclusions: the feasibility of early rehabilitation intervention to improve the functional state of the autonomic nervous system is not detected during the year classes on problem-oriented programs.

  13. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    Science.gov (United States)

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  14. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  15. Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system--a fMRI study in healthy volunteers.

    Science.gov (United States)

    Rubio, Amandine; Van Oudenhove, Lukas; Pellissier, Sonia; Ly, Huynh Giao; Dupont, Patrick; Lafaye de Micheaux, Hugo; Tack, Jan; Dantzer, Cécile; Delon-Martin, Chantal; Bonaz, Bruno

    2015-02-15

    The human brain responds both before and during the application of aversive stimuli. Anticipation allows the organism to prepare its nociceptive system to respond adequately to the subsequent stimulus. The context in which an uncomfortable stimulus is experienced may also influence neural processing. Uncertainty of occurrence, timing and intensity of an aversive event may lead to increased anticipatory anxiety, fear, physiological arousal and sensory perception. We aimed to identify, in healthy volunteers, the effects of uncertainty in the anticipation of uncomfortable rectal distension, and the impact of the autonomic nervous system (ANS) activity and anxiety-related psychological variables on neural mechanisms of anticipation of rectal distension using fMRI. Barostat-controlled uncomfortable rectal distensions were preceded by cued uncertain or certain anticipation in 15 healthy volunteers in a fMRI protocol at 3T. Electrocardiographic data were concurrently registered by MR scanner. The low frequency (LF)-component of the heart rate variability (HRV) time-series was extracted and inserted as a regressor in the fMRI model ('LF-HRV model'). The impact of ANS activity was analyzed by comparing the fMRI signal in the 'standard model' and in the 'LF-HRV model' across the different anticipation and distension conditions. The scores of the psychological questionnaires and the rating of perceived anticipatory anxiety were included as covariates in the fMRI data analysis. Our experiments led to the following key findings: 1) the subgenual anterior cingulate cortex (sgACC) is the only activation site that relates to uncertainty in healthy volunteers and is directly correlated to individual questionnaire score for pain-related anxiety; 2) uncertain anticipation of rectal distension involved several relevant brain regions, namely activation of sgACC and medial prefrontal cortex and deactivation of amygdala, insula, thalamus, secondary somatosensory cortex, supplementary

  16. FY1995 distributed control of man-machine cooperative multi agent systems; 1995 nendo ningen kyochogata multi agent kikai system no jiritsu seigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    In the near future, distributed autonomous systems will be practical in many situations, e.g., interactive production systems, hazardous environments, nursing homes, and individual houses. The agents which consist of the distributed system must not give damages to human being and should be working economically. In this project man-machine cooperative multi agent systems are studied in many kind of respects, and basic design technology, basic control technique are developed by establishing fundamental theories and by constructing experimental systems. In this project theoretical and experimental studies are conducted in the following sub-projects: (1) Distributed cooperative control in multi agent type actuation systems (2) Control of non-holonomic systems (3) Man-machine Cooperative systems (4) Robot systems learning human skills (5) Robust force control of constrained systems In each sub-project cooperative nature between machine agent systems and human being, interference between artificial multi agents and environment and new function emergence in coordination of the multi agents and the environment, robust force control against for the environments, control methods for non-holonomic systems, robot systems which can mimic and learn human skills were studied. In each sub-project, some problems were hi-lighted and solutions for the problems have been given based on construction of experimental systems. (NEDO)

  17. Autonomic skin responses in females with Fabry disease

    DEFF Research Database (Denmark)

    Møller, Anette Torvin; Bach, Flemming W.; Feldt-Rasmussen, Ulla

    2009-01-01

    Fabry disease is a genetic lysosomal disorder with dysfunction of the lysosomal enzyme alpha-galactosidase A causing accumulation of glycolipids in multiple organs including the nervous system and with neuropathy as a prominent manifestation. Neurological symptoms include pain and autonomic...... dysfunction. This study examined peripheral autonomic nerve function in 19 female patients with Fabry disease and 19 sex and age-matched controls by measuring (1) sweat production following acetylcholine challenge; (2) the sympathetically mediated vasoconstrictor responses to inspiratory gasp, stress...

  18. Central nervous system side effects associated with zolpidem treatment.

    Science.gov (United States)

    Toner, L C; Tsambiras, B M; Catalano, G; Catalano, M C; Cooper, D S

    2000-01-01

    Zolpidem is one of the newer medications developed for the treatment of insomnia. It is an imidazopyridine agent that is an alternative to the typical sedative-hypnotic agents. Zolpidem use is gaining favor because of its efficacy and its side effect profile, which is milder and less problematic than that of the benzodiazepines and barbiturates used to treat insomnia. Still, side effects are not uncommon with zolpidem use. We report a series of cases in which the patients developed delirium, nightmares and hallucinations during treatment with zolpidem. We will review its pharmacology, discuss previous reports of central nervous system side effects, examine the impact of drug interactions with concurrent use of antidepressants, examine gender differences in susceptibility to side effects, and explore the significance of protein binding in producing side effects.

  19. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  20. Simulation Framework for Rebalancing of Autonomous Mobility on Demand Systems

    Directory of Open Access Journals (Sweden)

    Marczuk Katarzyna A.

    2016-01-01

    This study is built upon our previous work on Autonomous Mobility on Demand (AMOD systems. Our methodology is simulation-based and we make use of SimMobility, an agent-based microscopic simulation platform. In the current work we focus on the framework for testing different rebalancing policies for the AMOD systems. We compare three different rebalancing methods: (i no rebalancing, (ii offline rebalancing, and (iii online rebalancing. Simulation results indicate that rebalancing reduces the required fleet size and shortens the customers’ wait time.

  1. Dissociation of sad facial expressions and autonomic nervous system responding in boys with disruptive behavior disorders

    OpenAIRE

    Marsh, Penny; Beauchaine, Theodore P.; Williams, Bailey

    2007-01-01

    Although deficiencies in emotional responding have been linked to externalizing behaviors in children, little is known about how discrete response systems (e.g., expressive, physiological) are coordinated during emotional challenge among these youth. We examined time-linked correspondence of sad facial expressions and autonomic reactivity during an empathy-eliciting task among boys with disruptive behavior disorders (n = 31) and controls (n = 23). For controls, sad facial expressions were ass...

  2. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  3. Nervous system examination on YouTube

    Directory of Open Access Journals (Sweden)

    Azer Samy A

    2012-12-01

    Full Text Available Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47% of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2 and mainly covered examination of the whole nervous system (8 videos, 13%, cranial nerves (42 videos, 69%, upper limbs (6 videos, 10%, lower limbs (3 videos, 5%, balance and co-ordination (2 videos, 3%. The other 68 (53% videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0. The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers. The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD. Conclusions Currently, YouTube provides an adequate resource

  4. Nervous system examination on YouTube

    Science.gov (United States)

    2012-01-01

    Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Conclusions Currently, YouTube provides an adequate resource for learning

  5. Nervous system examination on YouTube.

    Science.gov (United States)

    Azer, Samy A; Aleshaiwi, Sarah M; Algrain, Hala A; Alkhelaif, Rana A

    2012-12-22

    Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words "nervous system examination", "nervous system clinical examination", "cranial nerves examination", "CNS examination", "examination of cerebellum", "balance and coordination examination". Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Currently, YouTube provides an adequate resource for learning nervous system examination, which can be used by medical students

  6. Balance of automatic nervous system in children having signs of endothelial dysfunction, that were born and are domiciled in contaminated territories

    International Nuclear Information System (INIS)

    Kondrashova, V.G.; Kolpakov, Yi.Je.; Vdovenko, V.Yu.; And Others

    2014-01-01

    Due to peculiarities of physiological pathways providing adaptive responses the children having signs of endothelial dysfunction are characterized by a more pronounced dysregulation of autonomous nervous system both in a resting state and under a functional load simulation, and also by a high strain of adaptation pathways. The lack of autonomous support of cardiovascular system is caused by inadequate adaptive responses of both central regulatory bodies (hypothalamus, vasomotor center) and peripheral receptors. Mainly the failure of segmental autonomous (parasympathetic) structures was revealed. The mode of their response to stress in this case corresponds to that in healthy individuals but at a lower functional level. There is a reduced aerobic capacity of the organism by the Robinson index, contributing to low adaptive range to non-specific stress in children being domiciled on contaminated territories including children having the endothelial dysfunction. Endothelial dysfunction was associated with more pronounced manifestations of autonomic dysregulation and reduced aerobic capacity of the organism being the risk factors of development of a range of somatic diseases requiring the development of prevention measures in children permanently residing in contaminated areas

  7. [Central nervous system involvement in systemic lupus erythematosus - diagnosis and therapy].

    Science.gov (United States)

    Szmyrka, Magdalena

    Nervous system involvement in lupus belongs to its severe complications and significantly impacts its prognosis. Neuropsychiatric lupus includes 19 disease manifestations concerning both central and peripheral nervous system. This paper presents clinical aspects of central nervous system involvement in lupus. It reviews its epidemiology, risk factors and principles of diagnosis and therapy.

  8. Growing Up of Autonomous Agents: an Emergent Phenomenon

    Science.gov (United States)

    Morgavi, Giovanna; Marconi, Lucia

    2008-10-01

    A fundamental research challenge is the design of robust artifacts that are capable of operating under changing environments and noisy input, and yet exhibit the desired behavior and response time. These systems should be able to adapt and learn how to react to unforeseen scenarios as well as to display properties comparable to biological entities. The turn to nature has brought us many unforeseen great concepts. Biological systems are able to handle many of these challenges with an elegance and efficiency still far beyond current human artifacts. A living artifact grows up when its capabilities, abilities/knowledge, shift to a further level of complexity, i.e. the complexity rank of its internal capabilities performs a step forward. In the attempt to define an architecture for autonomous growing up agents [1]. We conducted an experiment on the abstraction process in children as natural parts of a cognitive system. We found that linguistic growing up involve a number of different trial processes. We identified a fixed number of distinct paths that were crossed by children. Once a given interpretation paths was discovered useless, they tried to follow another path, until the new meaning was emerging. This study generates suggestion about the evolutionary conditions conducive to the emergence of growing up in robots and provides guidelines for designing artificial evolutionary systems displaying spontaneous adaptation abilities. The importance of multi-sensor perception, motivation and emotional drives are underlined and, above all, the growing up insights shows similarities to emergent self-organized behaviors.

  9. Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.

    Science.gov (United States)

    Denise, Pr Pierre

    As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in

  10. Effect of Sleep/Wake Cycle on Autonomic Regulation

    International Nuclear Information System (INIS)

    Jabeen, S.

    2015-01-01

    Objective: To evaluate the association between irregular sleep/wake cycle in shift workers and autonomic regulation. Study Design: Cross-sectional, analytical study. Place and Duration of Study: Dow University Hospital, Karachi, from August to November 2013. Methodology: All health care providers working in rotating shifts making a total (n=104) were included. Instrument was an integrated questionnaire applied to assess autonomic regulation, taken from Kroz et al. on scoring criteria, ranging from 18 - 54, where higher rating signifies strong autonomic regulation, indicating a stable Autonomic Nervous System (ANS) and vice versa. Participants were interviewed and their response was recorded by the investigator. Influence of sleep misalignment was measured quantitatively to extract index of autonomic activity. Results: There was a reduced trend in autonomic strength amongst shift workers. The mean score obtained on the Autonomic Scale was 37.8 ± 5.9. Conclusion: Circadian misalignment has an injurious influence on ANS which might be valuable in controlling autonomic dysfunction that leads to fatal triggers in rotating shift workers. (author)

  11. Autonomic networking-on-chip bio-inspired specification, development, and verification

    CERN Document Server

    Cong-Vinh, Phan

    2011-01-01

    Despite the growing mainstream importance and unique advantages of autonomic networking-on-chip (ANoC) technology, Autonomic Networking-On-Chip: Bio-Inspired Specification, Development, and Verification is among the first books to evaluate research results on formalizing this emerging NoC paradigm, which was inspired by the human nervous system. The FIRST Book to Assess Research Results, Opportunities, & Trends in ""BioChipNets"" The third book in the Embedded Multi-Core Systems series from CRC Press, this is an advanced technical guide and reference composed of contributions from prominent re

  12. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control

    Science.gov (United States)

    Ardell, Jeffrey L.; Shivkumar, Kalyanam; Armour, J. Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as ‘free-floating’ in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease. PMID:28692680

  13. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  14. Central nervous system mesenchymal chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Salvati, M.; Frati, A.; Piccirilli, M.; Agrillo, A.; Brogna, C.; Occhiogrosso, G.; Giangaspero, F. [INM Neuromed IRCCS, Pozzilli (Italy). Dept. of Neurosurgery; Caroli, E. [Policlinico S. Andrea, Rome (Italy). Dept. of Neurological Sciences, Neurosurgery

    2005-06-15

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival.

  15. Central nervous system mesenchymal chondrosarcoma

    International Nuclear Information System (INIS)

    Salvati, M.; Frati, A.; Piccirilli, M.; Agrillo, A.; Brogna, C.; Occhiogrosso, G.; Giangaspero, F.; Caroli, E.

    2005-01-01

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival

  16. Early and late endocrine effects in pediatric central nervous system diseases.

    Science.gov (United States)

    Aslan, Ivy R; Cheung, Clement C

    2014-01-01

    Endocrinopathies are frequently linked to central nervous system disease, both as early effects prior to the disease diagnosis and/or late effects after the disease has been treated. In particular, tumors and infiltrative diseases of the brain and pituitary, such as craniopharyngioma, optic pathway and hypothalamic gliomas, intracranial germ cell tumor, and Langerhans cell histiocytosis, can present with abnormal endocrine manifestations that precede the development of neurological symptoms. Early endocrine effects include diabetes insipidus, growth failure, obesity, and precocious or delayed puberty. With improving prognosis and treatment of childhood brain tumors, many survivors experience late endocrine effects related to medical and surgical interventions. Chemotherapeutic agents and radiation therapy can affect the hypothalamic-pituitary axes governing growth, thyroid, gonadal, and adrenal function. In addition, obesity and metabolic alterations are frequent late manifestations. Diagnosing and treating both early and late endocrine manifestations can dramatically improve the growth, well-being, and quality of life of patients with childhood central nervous system diseases.

  17. Catecholamines and diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1995-01-01

    In diabetic patients with autonomic neuropathy plasma noradrenaline concentration, used as an index of sympathetic nervous activity, is low. This decrease is, however, only found in patients with a long duration of diabetes with clinically severe autonomic neuropathy. This apparent insensitivity...... of plasma catecholamine measurements is not due to changes in the clearance of catecholamines in diabetic autonomic neuropathy. The physiological responses to infused adrenaline and to noradrenaline are enhanced, for noradrenaline mainly cardiovascular responses. Adrenoceptors (alpha and beta adrenoceptors......) are not altered in circulating blood cells in diabetic autonomic neuropathy. Thus, a generalized up-regulation of adrenoceptors does not occur in diabetic autonomic neuropathy....

  18. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jorgensen, L.S.; Christiansen, P.; Raundahl, U.

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...... and serum cortisol did not increase at all in any of the groups. As a measure of parasympathetic neural activity, independent of sympathetic neural activity, the beat-to-beat variation of the heart rate was calculated. The functional patients had a significantly higher beat-to-beat variation expressed...... as the mean square successive differences of the R-R intervals (MSSD), indicating a higher basal parasympathetic neural activity (mean MSSD +/- SEM = 64 +/- 6 msec in the functional group, 46 +/- 6 msec in the healthy group, and 49 +/- 6 msec in the organic group; P = 0.03). A reduced sympathetic neural...

  19. Multi-agent robotic systems and applications for satellite missions

    Science.gov (United States)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi-agent

  20. Temperament affects sympathetic nervous function in a normal population.

    Science.gov (United States)

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho; Yu, Bum-Hee

    2012-09-01

    Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population.

  1. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com [National Research Tomsk State University, 634050, Tomsk, Lenin Avenue, 36 (Russian Federation)

    2015-11-17

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  2. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    International Nuclear Information System (INIS)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-01-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  3. Cooperative control of multi-agent systems optimal and adaptive design approaches

    CERN Document Server

    Lewis, Frank L; Hengster-Movric, Kristian; Das, Abhijit

    2014-01-01

    Task complexity, communication constraints, flexibility and energy-saving concerns are all factors that may require a group of autonomous agents to work together in a cooperative manner. Applications involving such complications include mobile robots, wireless sensor networks, unmanned aerial vehicles (UAVs), spacecraft, and so on. In such networked multi-agent scenarios, the restrictions imposed by the communication graph topology can pose severe problems in the design of cooperative feedback control systems.  Cooperative control of multi-agent systems is a challenging topic for both control theorists and practitioners and has been the subject of significant recent research. Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs.  It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design.  B...

  4. Irrigation System through Intelligent Agents Implemented with Arduino Technology

    Directory of Open Access Journals (Sweden)

    Rodolfo SALAZAR

    2013-11-01

    Full Text Available The water has become in recent years a valuable and increasingly scarce. Its proper use in agriculture has demanded incorporate new technologies, mainly in the area of ICT. In this paper we present a smart irrigation system based on multi-agent architecture using fuzzy logic. The architecture incorporates different types of intelligent agents that an autonomous way monitor and are responsible for deciding if required enable / disable the irrigation system. This project proposes a real and innovative solution to the problem of inadequate water use with current irrigation systems employed in agricultural projects. This article presents the different technologies used, their adaptation to the solution of the problem and briefly discusses the first results obtained.

  5. Understanding and controlling the enteric nervous system

    NARCIS (Netherlands)

    Boeckxstaens, G. E.

    2002-01-01

    The enteric nervous system or the `Little Brain' of the gut controls gastrointestinal motility and secretion, and is involved in visceral sensation. In this chapter, new developments in understanding the function of the enteric nervous system are described. In particular, the interaction of this

  6. Alterations in HPA-axis and autonomic nervous system functioning in childhood anxiety disorders point to a chronic stress hypothesis.

    Science.gov (United States)

    Dieleman, Gwendolyn C; Huizink, Anja C; Tulen, Joke H M; Utens, Elisabeth M W J; Creemers, Hanneke E; van der Ende, Jan; Verhulst, Frank C

    2015-01-01

    It is of debate whether or not childhood anxiety disorders (AD) can be captured by one taxonomic construct. This study examined whether perceived arousal (PA), autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis measures can distinguish children with different primary diagnoses of clinical anxiety disorders (AD) from each other, and from a general population reference group (GP). The study sample consisted of 152 AD children (comparing separation anxiety disorder, generalized anxiety disorder, social phobia and specific phobia), aged 8- to 12-years, and 200 same-aged reference children. HPA-axis functioning was measured by a diurnal cortisol profile. ANS functioning was measured by continuous measures of skin conductance level in rest and during a mental arithmetic task and high frequency heart rate variability in rest. PA was assessed by a questionnaire. The AD sample showed lower high frequency heart rate variability during rest, heightened anticipatory PA, higher basal and reactive skin conductance levels and lower basal HPA-axis functioning compared to the GP sample. The existence of three or more clinical disorders, i.e. a high clinical 'load', was associated with lower basal HPA-axis functioning, higher skin conductance level and lower posttest PA. Specific phobia could be discerned from social phobia and separation anxiety disorder on higher skin conductance level. Our findings indicated that children with AD have specific psychophysiological characteristics, which resemble the psychophysiological characteristics of chronic stress. A high clinical 'load' is associated with an altered ANS and HPA-axis functioning. Overall, ANS and HPA-axis functioning relate to AD in general, accept for specific phobia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    Science.gov (United States)

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  8. Sensitivity of the autonomic nervous system to visual and auditory affect across social and non-social domains in Williams syndrome

    Directory of Open Access Journals (Sweden)

    Anna Maaria Järvinen

    2012-09-01

    Full Text Available Although individuals with Williams syndrome (WS typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of peaks and valleys of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS responsivity, in individuals with WS contrasted with a typically developing (TD group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR reactivity, and a failure for electrodermal activity (EDA to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social-affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested.

  9. Sensitivity of the Autonomic Nervous System to Visual and Auditory Affect Across Social and Non-Social Domains in Williams Syndrome

    Science.gov (United States)

    Järvinen, Anna; Dering, Benjamin; Neumann, Dirk; Ng, Rowena; Crivelli, Davide; Grichanik, Mark; Korenberg, Julie R.; Bellugi, Ursula

    2012-01-01

    Although individuals with Williams syndrome (WS) typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of “peaks and valleys” of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS) responsivity, in individuals with WS contrasted with a typically developing (TD) group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR) reactivity, and a failure for electrodermal activity to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested. PMID:23049519

  10. Aetiologies of Central Nervous System Infection in Viet Nam: A Prospective Provincial Hospital-Based Descriptive Surveillance Study

    NARCIS (Netherlands)

    Ho Dang Trung, Nghia; Le Thi Phuong, Tu; Wolbers, Marcel; Nguyen van Minh, Hoang; Nguyen Thanh, Vinh; van, Minh Pham; Thieu, Nga Tran Vu; van, Tan Le; Song, Diep To; Thi, Phuong Le; Thi Phuong, Thao Nguyen; van, Cong Bui; Tang, Vu; Ngoc Anh, Tuan Hoang; Nguyen, Dong; Trung, Tien Phan; Thi Nam, Lien Nguyen; Kiem, Hao Tran; Thi Thanh, Tam Nguyen; Campbell, James; Caws, Maxine; Day, Jeremy; de Jong, Menno D.; van Vinh, Chau Nguyen; van Doorn, H. Rogier; Tinh, Hien Tran; Farrar, Jeremy; Schultsz, Constance; Loi, Tran Quoc; Son, Nguyen Truong; Bay, Phan Van Be; Tham, Nguyen Thi Hong; Phuong, Le Thi; Tri, Le Trung; Binh, Nguyen Thi Nguyet; Du, Doan Cong; Thao, Nguyen Thi Phuong; Tien, Truong Thi My; La, Tran Thi Phi; Cong, Bui Van; Diep, Pham Ngoc; Dong, Duong Phuoc; Lanh, Tran Thi Mong; Dom, Pham Van; Dung, Tran Quang; Tri, Phan Nhut; Ho, Tang Thi; Tai, Nguyen Anh; Luc, Quach Van; Phuoc, Dinh Xuan

    2012-01-01

    Background: Infectious diseases of the central nervous system (CNS) remain common and life-threatening, especially in developing countries. Knowledge of the aetiological agents responsible for these infections is essential to guide empiric therapy and develop a rational public health policy. To date

  11. Effect of autonomic blocking agents and structurally related substances on the “salt arousal of drinking”

    NARCIS (Netherlands)

    Wied, D. de

    The effect of autonomic blocking agents and structurally related substances was studied in rats in which thirst was produced by the administration of a hypertonic sodium chloride solution. Scopolamine, methamphetamine, amphetamine, chlorpromazine, atropine, mecamylamine, hexamethonium, nethalide,

  12. Study on autonomous decentralized-cooperative function monitoring system

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Numano, Masayoshi; Someya, Minoru; Fukuto, Junji; Mitomo, Nobuo; Miyazaki, Keiko; Matsukura, Hiroshi; Tanba, Yasuyuki

    1999-01-01

    In this study, a study further advanced on a base of results of study on artificial intelligence for nuclear power', one of nuclear basis crossover studies, conducted at five years planning from 1989 fiscal year was executed. Here was conducted on study on a system technology for supplying cooperation, judgement process, judgement results, and so forth between decentralized artificial intelligent elements (agents) to operation managers (supervisors) by focussing a system for monitoring if autonomous decentralized system containing plant operation and robot group action functioned appropriately. In 1997 fiscal year, by mainly conducting development for displaying working state of robot group, some investigations on integrated management of each function already development and maintained were executed. Furthermore, some periodical meetings on realization of its integration with operation control system and maintenance system with other research institutes were conducted. (G.K.)

  13. Chapter 1. Central nervous system

    International Nuclear Information System (INIS)

    Planiol, T.; Veyre, A.; Plagne, R.

    1975-01-01

    The present situation with regard to explorations of the central nervous system by radioactive compounds is reviewed. For the sake of clarity the brain and cerebrospinal fluid examinations are described separately, with emphasis nevertheless on their complementarity. The tracers used in each of these examinations are listed, together with the criteria governing their choice. The different techniques employed are described. Scintigraphy is presented apart from gamma-angio-encephalography since it is not possible with rectilinear scintigraphs to observe the circulatory phase. The results are interpreted by an analysis of normal and pathological aspects of the different stages of the central nervous system [fr

  14. Assessment of the cardiovascular and gastrointestinal autonomic complications of diabetes

    DEFF Research Database (Denmark)

    Brock, Christina; Brock, Birgitte; Pedersen, Anne Grave

    2016-01-01

    The global prevalence of diabetes mellitus is increasing; arguably as a consequence of changes in diet, lifestyle and the trend towards urbanization. Unsurprisingly, the incidence of both micro and macrovascular complications of diabetes mirrors this increasing prevalence. Amongst the complications...... with the highest symptom burden, yet frequently under-diagnosed and sub-optimally treated, is diabetic autonomic neuropathy, itself potentially resulting in cardiovascular autonomic neuropathy and gastrointestinal (GI) tract dysmotility. The aims of this review are fourfold. Firstly to provide an overview...... of the pathophysiological processes that cause diabetic autonomic neuropathy. Secondly, to discuss both the established and emerging cardiometric methods for evaluating autonomic nervous system function in vivo. Thirdly, to examine the tools for assessing pan-GI and segmental motility and finally, we will provide...

  15. The effect of anaerobic and aerobic tests on autonomic nervous system activity in healthy young athletes

    Directory of Open Access Journals (Sweden)

    W Ratkowski

    2010-03-01

    Full Text Available INTRODUCTION. In the evaluation of physical efficiency in professional athletes two tests are used: Wingate test (WT and incremental test for maximal oxygen uptake (IT. In the former anaerobic power is evaluated and in the latter aerobic power. The influence of these tests on autonomic nervous system (ANS activity is not fully examined. The aim of the study was to assess the influence of anaerobic and aerobic tests performed on the consecutive days, on the ANS activity in young healthy athletes. MATERIALS AND METHODS. Ten athletes aged 17 ± 1 were included in the study. The ANS parameters (baroreflex sensitivity – BRS_WBA, heart rate variability–HRV were analysed on the basis of 10-minute systolic arterial pressure and heart period (HP records during controlled breathing (0.23 Hz. BRS_WBA, HRV indices and mean HP were analysed before (examination 1 and 1 hour after WT (examination 2, 1 hour after IT (examination 3, and on the day after the tests (examination 4. RESULTS. The borderline statistically significant decrease in BRS_WBA in examination 2 in comparison to 1 was found (16.4 ± 10.5 vs 9.4 ± 3.9 ms/mmHg, p=0.059. In examination 3 in comparison to 1 the significant decrease in BRS_WBA was found (8.8 ± 6.2 ms/mmHg, p<0.05. SDNN, PNN50, RMSSD and HF were significantly lower in examination 2 comparing to 1 (p<0.05; the changes of HFnu were borderline statistically significant (p=0.059. These lower values were also noticed after examination 3 and returned to the initial values in examination 4. The mean HP showed similar changes. LF/HF increased significantly in examination 2 in comparison to 1 (p<0.05. The changes in LFnu were borderline statistically significant. CONCLUSIONS. Anaerobic and aerobic exercise tests lead to the decrease in ANS parasympathetic activity and to the increase in sympathetic one in young healthy athletes. These changes persist for at least one hour after exertion. The return to the initial values is observed the

  16. Differential Autonomic Nervous System Reactivity in Depression and Anxiety During Stress Depending on Type of Stressor.

    Science.gov (United States)

    Hu, Mandy X; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    2016-06-01

    It remains unclear whether depressive and anxiety disorders are associated with hyporeactivity or hyperreactivity of the autonomic nervous system (ANS) and whether deviant reactivity occurs in all types of stressors. This study compared ANS reactivity in people with current or remitted depression/anxiety with reactivity in healthy controls during two stress conditions. From the Netherlands Study of Depression and Anxiety, data of 804 individuals with current depression/anxiety, 913 individuals with remitted depression/anxiety, and 466 healthy controls (mean age = 44.1 years; 66.4% female) were available. Two conditions were used to evoke stress: a) an n-back task, a cognitively challenging stressor, and 2) a psychiatric interview, evoking personal-emotional stress related to the occurrence of symptoms of depression/anxiety. Indicators of ANS activity were heart rate (HR), root mean square of differences between successive interbeat intervals (RMSSD), respiratory sinus arrhythmia (RSA), and preejection period. As compared with controls, participants with psychopathology had significant hyporeactivity of HR (controls = 4.1 ± 4.2 beats/min; remitted = 3.5 ± 3.5 beats/min; current psychopathology = 3.1 ± 3.4 beats/min), RMSSD (controls = -6.2 ± 14.5 milliseconds; remitted = -5.4 ± 17.8 milliseconds; current psychopathology = -3.5 ± 15.4 milliseconds), and RSA (controls = -9.3 ± 17.0 milliseconds; remitted = -7.4 ± 16.5 milliseconds; current psychopathology = -6.9 ± 15.0 milliseconds) during the n-back task. In contrast, during the psychiatric interview, they showed significant hyperreactivity of HR (controls = 2.7 ± 3.4 beats/min; remitted = 3.5 ± 3.4 beats/min; current psychopathology = 4.0 ± 3.3 beats/min), RMSSD (controls = -3.4 ± 12.2 milliseconds; remitted = -4.1 ± 12.1 milliseconds; current psychopathology = -5.6 ± 11.8 milliseconds), and RSA (controls = -3.8 ± 8.1 milliseconds; remitted = -4.3 ± 7.9 milliseconds; current psychopathology = -5.0

  17. 3D printed nervous system on a chip.

    Science.gov (United States)

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.

  18. Short separation regression improves statistical significance and better localizes the hemodynamic response obtained by near-infrared spectroscopy for tasks with differing autonomic responses.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette; Aasted, Christopher M; Petkov, Mike P; Becerra, Lino; Borsook, David; Boas, David A

    2015-07-01

    Autonomic nervous system response is known to be highly task-dependent. The sensitivity of near-infrared spectroscopy (NIRS) measurements to superficial layers, particularly to the scalp, makes it highly susceptible to systemic physiological changes. Thus, one critical step in NIRS data processing is to remove the contribution of superficial layers to the NIRS signal and to obtain the actual brain response. This can be achieved using short separation channels that are sensitive only to the hemodynamics in the scalp. We investigated the contribution of hemodynamic fluctuations due to autonomous nervous system activation during various tasks. Our results provide clear demonstrations of the critical role of using short separation channels in NIRS measurements to disentangle differing autonomic responses from the brain activation signal of interest.

  19. Mutations in the nervous system--specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II.

    Science.gov (United States)

    Shekarabi, Masoud; Girard, Nathalie; Rivière, Jean-Baptiste; Dion, Patrick; Houle, Martin; Toulouse, André; Lafrenière, Ronald G; Vercauteren, Freya; Hince, Pascale; Laganiere, Janet; Rochefort, Daniel; Faivre, Laurence; Samuels, Mark; Rouleau, Guy A

    2008-07-01

    Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system-specific exon of the with-no-lysine(K)-1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII.

  20. Sex Differences in Autonomic Correlates of Conduct Problems and Aggression

    Science.gov (United States)

    Beauchaine, Theodore P.; Hong, James; Marsh, Penny

    2008-01-01

    The study aims to evaluate group differences in autonomic nervous system (ANS) responding between males and females with conduct problems and determine whether aggression accounts for variance in ANS responding over the effects of conduct problems. The results indicated marked differences in psycho-physiological responses between males and females.

  1. Study on collaborative optimization control of ventilation and radon reduction system based on multi-agent technology

    International Nuclear Information System (INIS)

    Dai Jianyong; Meng Lingcong; Zou Shuliang

    2015-01-01

    According to the radioactive safety features such as radon and its progeny, combined with the theory of ventilation system, structure of multi-agent system for ventilation and radon reduction system is constructed with the application of multi agent technology. The function attribute of the key agent and the connection between the nodes in the multi-agent system are analyzed to establish the distributed autonomous logic structure and negotiation mechanism of multi agent system of ventilation and radon reduction system, and thus to implement the coordination optimization control of the multi-agent system. The example analysis shows that the system structure of the multi-agent system of ventilation and reducing radon system and its collaborative mechanism can improve and optimize the radioactive pollutants control, which provides a theoretical basis and important application prospect. (authors)

  2. A Secure, Scalable and Elastic Autonomic Computing Systems Paradigm: Supporting Dynamic Adaptation of Self-* Services from an Autonomic Cloud

    Directory of Open Access Journals (Sweden)

    Abdul Jaleel

    2018-05-01

    Full Text Available Autonomic computing embeds self-management features in software systems using external feedback control loops, i.e., autonomic managers. In existing models of autonomic computing, adaptive behaviors are defined at the design time, autonomic managers are statically configured, and the running system has a fixed set of self-* capabilities. An autonomic computing design should accommodate autonomic capability growth by allowing the dynamic configuration of self-* services, but this causes security and integrity issues. A secure, scalable and elastic autonomic computing system (SSE-ACS paradigm is proposed to address the runtime inclusion of autonomic managers, ensuring secure communication between autonomic managers and managed resources. Applying the SSE-ACS concept, a layered approach for the dynamic adaptation of self-* services is presented with an online ‘Autonomic_Cloud’ working as the middleware between Autonomic Managers (offering the self-* services and Autonomic Computing System (requiring the self-* services. A stock trading and forecasting system is used for simulation purposes. The security impact of the SSE-ACS paradigm is verified by testing possible attack cases over the autonomic computing system with single and multiple autonomic managers running on the same and different machines. The common vulnerability scoring system (CVSS metric shows a decrease in the vulnerability severity score from high (8.8 for existing ACS to low (3.9 for SSE-ACS. Autonomic managers are introduced into the system at runtime from the Autonomic_Cloud to test the scalability and elasticity. With elastic AMs, the system optimizes the Central Processing Unit (CPU share resulting in an improved execution time for business logic. For computing systems requiring the continuous support of self-management services, the proposed system achieves a significant improvement in security, scalability, elasticity, autonomic efficiency, and issue resolving time

  3. Toward Intelligent Autonomous Agents for Cyber Defense: Report of the 2017 Workshop by the North Atlantic Treaty Organization (NATO) Research Group IST-152 RTG

    Science.gov (United States)

    2018-04-18

    simple example? 15. SUBJECT TERMS cybersecurity , cyber defense, autonomous agents, resilience, adversarial intelligence 16. SECURITY CLASSIFICATION...explained” based on other attack sequences (e.g., Kullback–Leibler [K-L] divergence). For example, the DARPA Explainable Artificial Intelligence ...a failure of humanity, not artificial intelligence . The notion of self-guidance approaches the field of robot ethics. How can autonomous agents be

  4. Toward Intelligent Autonomous Agents for Cyber Defense: Report of the 2017 Workshop by the North Atlantic Treaty Organization (NATO) Research Group IST-152-RTG

    Science.gov (United States)

    2018-04-01

    simple example? 15. SUBJECT TERMS cybersecurity , cyber defense, autonomous agents, resilience, adversarial intelligence 16. SECURITY CLASSIFICATION...explained” based on other attack sequences (e.g., Kullback–Leibler [K-L] divergence). For example, the DARPA Explainable Artificial Intelligence ...a failure of humanity, not artificial intelligence . The notion of self-guidance approaches the field of robot ethics. How can autonomous agents be

  5. Brain and Nervous System

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Brain and Nervous System KidsHealth / For Parents / Brain and ... healthy, and remove waste products. All About the Brain The brain is made up of three main ...

  6. Candida infection of the central nervous system following neurosurgery: a 12-year review.

    LENUS (Irish Health Repository)

    O'Brien, Deirdre

    2012-02-01

    BACKGROUND: Candida infection of the central nervous system (CNS) following neurosurgery is relatively unusual but is associated with significant morbidity and mortality. We present our experience with this infection in adults and discuss clinical characteristics, treatment options, and outcome. METHODS: All episodes of Candida isolated from the central nervous system were identified by searching our laboratory database. Review of the cases was performed by means of a retrospective chart review. RESULTS: Eleven episodes of Candida CSF infection following neurosurgery were identified over a 12-year period. Candida albicans was the predominant species isolated (n = 8, 73%). All infections were associated with foreign intracranial material, nine with external ventricular drains (82%), one with a ventriculoperitoneal shunt, one with a lumbar drain, and one with Gliadel wafers (1,3-bis [2-chloroethyl]-1-nitrosurea). Fluconazole or liposomal amphotericin B were the most common anti-fungal agents used. The mortality rate identified in our series was 27%. CONCLUSIONS: Candida infection following neurosurgery remains a relatively rare occurrence but one that causes significant mortality. These are complex infections, the management of which benefits from a close liaison between the clinical microbiologist and neurosurgeon. Prompt initiation of antifungal agents and removal of infected devices offers the best hope of a cure.

  7. What Health-Related Functions Are Regulated by the Nervous System?

    Science.gov (United States)

    ... What health-related functions are regulated by the nervous system? The nervous system plays a role in nearly every aspect of ... feeling emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth ...

  8. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  9. Central Nervous System Vasculitis: Still More Questions than Answers

    Science.gov (United States)

    Alba, Marco A; Espígol-Frigolé, Georgina; Prieto-González, Sergio; Tavera-Bahillo, Itziar; García-Martínez, Ana; Butjosa, Montserrat; Hernández-Rodríguez, José; Cid, Maria C

    2011-01-01

    The central nervous system (CNS) may be involved by a variety of inflammatory diseases of blood vessels. These include primary angiitis of the central nervous system (PACNS), a rare disorder specifically targeting the CNS vasculature, and the systemic vasculitides which may affect the CNS among other organs and systems. Both situations are severe and convey a guarded prognosis. PACNS usually presents with headache and cognitive impairment. Focal symptoms are infrequent at disease onset but are common in more advanced stages. The diagnosis of PACNS is difficult because, although magnetic resonance imaging is almost invariably abnormal, findings are non specific. Angiography has limited sensitivity and specificity. Brain and leptomeningeal biopsy may provide a definitive diagnosis when disclosing blood vessel inflammation and are also useful to exclude other conditions presenting with similar findings. However, since lesions are segmental, a normal biopsy does not completely exclude PACNS. Secondary CNS involvement by systemic vasculitis occurs in less than one fifth of patients but may be devastating. A prompt recognition and aggressive treatment is crucial to avoid permanent damage and dysfunction. Glucocorticoids and cyclophosphamide are recommended for patients with PACNS and for patients with secondary CNS involvement by small-medium-sized systemic vasculitis. CNS involvement in large-vessel vasculitis is usually managed with high-dose glucocorticoids (giant-cell arteritis) or glucocorticoids and immunosuppressive agents (Takayasu’s disease). However, in large vessel vasculitis, where CNS symptoms are usually due to involvement of extracranial arteries (Takayasu’s disease) or proximal portions of intracranial arteries (giant-cell arteritis), revascularization procedures may also have an important role. PMID:22379458

  10. Central nervous system complications after liver transplantation.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study.

    Directory of Open Access Journals (Sweden)

    Karin A M Janssens

    Full Text Available Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS. However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous system (ANS levels during a standardized stressful situation, and whether these associations are symptom-specific.We examined 715 adolescents (16.1 years, 51.3% girls from the Dutch cohort study Tracking Adolescents' Individual Lives Sample during the Groningen Social Stress Test (GSST. FSS were assessed by the Youth Self-Report, and clustered into a cluster of overtiredness, dizziness and musculoskeletal pain and a cluster of headache and gastrointestinal symptoms. Perceived stress levels (i.e. unpleasantness and arousal were assessed by the Self-Assessment Manikin, and cardiac ANS activity by assessing heart rate variability (HRV-HF and pre-ejection period (PEP. Perceived stress and cardiac ANS levels before, during, and after the GSST were studied as well as cardiac ANS reactivity. Linear regression analyses were used to examine the associations.Perceived arousal levels during (beta = 0.09, p = 0.04 and after (beta = 0.07, p = 0.047 the GSST, and perceived unpleasantness levels before (beta = 0.07, p = 0.048 and during (beta = 0.12, p = 0.001 the GSST were related to FSS during the past couple of months. The association between perceived stress and FSS was stronger for the FSS cluster of overtiredness, dizziness and musculoskeletal pain than for the cluster of headache and gastrointestinal symptoms. Neither ANS activity levels before, during, and after the GSST, nor maximal HF-HRV and PEP reactivity were related to FSS.This study suggests that perceived stress levels during social stress are related to FSS, whereas cardiac ANS activity and reactivity are not related to FSS.

  12. Autonomic Dysregulation during Sensory Stimulation in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Schaaf, Roseann C.; Benevides, Teal W.; Leiby, Benjamin E.; Sendecki, Jocelyn A.

    2015-01-01

    Autonomic nervous system (ANS) activity during sensory stimulation was measured in 59 children with autism spectrum disorder (ASD) ages 6-9 in comparison to 30 typically developing controls. Multivariate comparisons revealed significant differences between groups in the respiratory sinus arrhythmia (parasympathetic measure) vector of means across…

  13. A perspective on agent systems paradigm, formalism, examples

    CERN Document Server

    Cetnarowicz, Krzysztof

    2015-01-01

    This monograph presents the concept of agents and agent systems. It starts with a formal approach and then presents examples of practical applications. In order to form the principles of construction of autonomous agents, a model of the agent is introduced. Subsequent parts of the monograph include several examples of applications of the term agent. Descriptions of different examples of applications of agent systems in such fields as evolution systems, mobile robot systems, artificial intelligence systems are given. The book constitutes an outline of methodology of the design and realization of agent systems based on the M-agent architecture oriented on different areas of applications.                                                                                                                                                                     �...

  14. MULTIAGENT PLANNING OF INTERSECTION PASSAGE BY AUTONOMOUS VEHICLES

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2016-09-01

    Full Text Available We propose a traffic management system for autonomous vehicles that are agents at the intersection. In contrast to the known solutions based on the usage of semiautonomous control systems in assembly with the control unit, this algorithm is based on the principles of decentralized multiagent control. The best travel plan for intersection passage is produced by means of optimization methods jointly by all agents belonging to a dynamic collaboration of autonomous vehicles. The order of road intersection optimal for a given criterion is determined by the agents in the process of information exchange about themselves and environment. Our experiments show that this protocol can reduce significantly the traffic density as compared to the traditional systems of traffic management. Moreover, the effectiveness of the proposed algorithm increases with increasing density of road traffic. In addition, the absence of the critical object, that is the control unit, in the control system, reduces significantly the effectiveness of possible failures and hacker attacks on the intersection control system.

  15. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  16. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  17. Involvement of autonomic nervous activity changes in gastroesophageal reflux in neonates during sleep and wakefulness.

    Directory of Open Access Journals (Sweden)

    Djamal-Dine Djeddi

    Full Text Available BACKGROUND: It has been suggested that disturbed activity of the autonomic nervous system is one of the factors involved in gastroesophageal reflux (GER in adults. We sought to establish whether transient ANS dysfunction (as assessed by heart rate variability is associated with the occurrence of GER events in neonates during sleep and wakefulness. METHODS: Nineteen neonates with suspected GER underwent simultaneous, synchronized 12-hour polysomnography and esophageal multichannel impedance-pH monitoring. We compared changes in HRV parameters during three types of periods (control and prior to and during reflux with respect to the vigilance state. RESULTS: The vigilance state influenced the distribution of GER events (P<0.001, with 53.4% observed during wakefulness, 37.6% observed during active sleep and only 9% observed during quiet sleep. A significant increase in the sympathovagal ratio (+32%, P=0.013 was observed in the period immediately prior to reflux (due to a 15% reduction in parasympathetic activity (P=0.017, relative to the control period. This phenomenon was observed during both wakefulness and active sleep. CONCLUSION: Our results showed that GER events were preceded by a vigilance-state-independent decrease in parasympathetic tone. This suggests that a pre-reflux change in ANS activity is one of the factors contributing to the mechanism of reflux in neonates.

  18. Optical cuff for optogenetic control of the peripheral nervous system

    Science.gov (United States)

    Michoud, Frédéric; Sottas, Loïc; Browne, Liam E.; Asboth, Léonie; Latremoliere, Alban; Sakuma, Miyuki; Courtine, Grégoire; Woolf, Clifford J.; Lacour, Stéphanie P.

    2018-02-01

    Objective. Nerves in the peripheral nervous system (PNS) contain axons with specific motor, somatosensory and autonomic functions. Optogenetics offers an efficient approach to selectively activate axons within the nerve. However, the heterogeneous nature of nerves and their tortuous route through the body create a challenging environment to reliably implant a light delivery interface. Approach. Here, we propose an optical peripheral nerve interface—an optocuff—, so that optogenetic modulation of peripheral nerves become possible in freely behaving mice. Main results. Using this optocuff, we demonstrate orderly recruitment of motor units with epineural optical stimulation of genetically targeted sciatic nerve axons, both in anaesthetized and in awake, freely behaving animals. Behavioural experiments and histology show the optocuff does not damage the nerve thus is suitable for long-term experiments. Significance. These results suggest that the soft optocuff might be a straightforward and efficient tool to support more extensive study of the PNS using optogenetics.

  19. [Factors of anxiety and autonomic tonus in senior preschool children from Magnitogorsk].

    Science.gov (United States)

    Ingel', F I; Stepanova, A A; Stepanova, O P; Legostaeva, T B; Koganova, Z I; Kozlova, O B

    2013-01-01

    In the paper there are presented the results of a study of anxiety and balance ofparts of autonomous nervous system in healthy children 5-7 years old, residing in different parts of Magnitogorsk. It is shown that state of heightened and high alert was shown to be more common among children living on the left bank of the Urals river around the Magnitogorsk Metallurgical Integrated Plant. In these children an imbalance in the work of the parts of the autonomic nervous system was detected more frequently, at that shifts were observed mainly in the direction to ergotropic tone. At the same time balanced work of the parts of the autonomic nervous system was observed more frequently in children living on the right bank of the Urals river. Discovered psychosomatic features of examined children turned out to be associated with both the social characteristics of family lifestyle and the emotional stress of parents, and the contents of some organic compounds in total snow samples collected in the territories of kindergartens which they attended. One ofthe most significant results ofthe work we consider the detection of a correlation relationship between emotional stress of parents and activity of key enzymes in their children, reflecting the protective and adaptive reactions of the organism. On the basis of these and previously obtained data, we suggest that social and psychological factors of the family are not only a potential source of maladaptation of the child, but, probably, can have an impact on the stability and sensitivity of the genome of children.

  20. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    Science.gov (United States)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  1. Spectral convergence in tapping and physiological fluctuations: Coupling and independence of 1/f noise in the central and autonomic nervous systems

    Directory of Open Access Journals (Sweden)

    Lillian M. Rigoli

    2014-09-01

    Full Text Available When humans perform a response task or timing task repeatedly, fluctuations in measures of timing from one action to the next exhibit long-range correlations known as 1/f noise. The origins of 1/f noise in timing have been debated for over twenty years, with one common explanation serving as a default: Humans are composed of physiological processes throughout the brain and body that operate over a wide range of timescales, and these processes combine to be expressed as a general source of 1/f noise. To test this explanation, the present study investigated the coupling versus independence of 1/f noise in timing deviations, key-press durations, pupil dilations, and heartbeat intervals while tapping to an audiovisual metronome. All four dependent measures exhibited clear 1/f noise, regardless of whether tapping was synchronized or syncopated. 1/f spectra for timing deviations were found to match those for key-press durations on an individual basis, and 1/f spectra for pupil dilations matched those in heartbeat intervals. Results indicate a complex, multiscale relationship among 1/f noises arising from common sources, such as those arising from timing functions versus those arising from autonomic nervous system functions. Results also provide further evidence against the default hypothesis that 1/f noise in human timing is just the additive combination of processes throughout the brain and body. Our findings are better accommodated by theories of complexity matching that begin to formalize multiscale coordination as a foundation of human behavior.

  2. A study on the observation system for autonomous, distributed and cooperative function in a future type nuclear power plant

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Numano, Masayoshi; Someya, Minoru; Fukuto, Junji; Mitomo, Nobuo; Miyazaki, Keiko; Matsukura, Hiroshi; Niwa, Yasuyuki; Takahashi, Masato

    2000-01-01

    The concept of advanced future plants are discussed by five research institutes; Ship Research Institute, Electrotechnical Laboratory, The Institute of Physical and Chemical Research, Japan Atomic Energy Research Institute, and Power Reactor and Nuclear Fuel Development Corporation (Cross-over group). And, an autonomous plant is identified as a future type plant. In this future type plant, there are many agents that consist plant sub-systems or plant components and have artificial intelligence. They are distributed in plant and have autonomous functions, and cooperate each other to establish total plant function. Even if the plant has autonomous function, human operators have to always watch the plant state. Therefore, the needs of the observation system for autonomous, distributed, and cooperative functions are strongly required. The present paper has presented a new idea about the observation system, and developed fundamental functions for this observation system, that is, plant function model, auto-classification of plant states, three dimensional graphical display, expression of robot group's activity. Also, autonomous plant simulator has been developed for this research activity. Finally, the effectiveness of this observation system has been evaluated by experiments of operator's reaction to this system. (author)

  3. Autonomous e-coaching in the wild: Empirical validation of a model-based reasoning system

    OpenAIRE

    Kamphorst, B.A.; Klein, M.C.A.; van Wissen, A.

    2014-01-01

    Autonomous e-coaching systems have the potential to improve people's health behaviors on a large scale. The intelligent behavior change support system eMate exploits a model of the human agent to support individuals in adopting a healthy lifestyle. The system attempts to identify the causes of a person's non-adherence by reasoning over a computational model (COMBI) that is based on established psychological theories of behavior change. The present work presents an extensive, monthlong empiric...

  4. Decentralized control of multi-agent aerial transportation system

    KAUST Repository

    Toumi, Noureddine

    2017-04-01

    Autonomous aerial transportation has multiple potential applications including emergency cases and rescue missions where ground intervention may be difficult. In this context, the following work will address the control of multi-agent Vertical Take-off and Landing aircraft (VTOL) transportation system. We develop a decentralized method. The advantage of such a solution is that it can provide better maneuverability and lifting capabilities compared to existing systems. First, we consider a cooperative group of VTOLs transporting one payload. The main idea is that each agent perceive the interaction with other agents as a disturbance while assuming a negotiated motion model and imposing certain magnitude bounds on each agent. The theoretical model will be then validated using a numerical simulation illustrating the interesting features of the presented control method. Results show that under specified disturbances, the algorithm is able to guarantee the tracking with a minimal error. We describe a toolbox that has been developed for this purpose. Then, a system of multiple VTOLs lifting payloads will be studied. The algorithm assures that the VTOLs are coordinated with minimal communication. Additionally, a novel gripper design for ferrous objects is presented that enables the transportation of ferrous objects without a cable. Finally, we discuss potential connections to human in the loop transportation systems.

  5. Identification of high- and low-affinity NGF receptors during development of the chicken central nervous system

    International Nuclear Information System (INIS)

    Escandon, E.; Chao, M.V.

    1990-01-01

    In order to study regulation of the nerve growth factor (NGF) receptor during embryogenesis in chick brain, we have used affinity crosslinking of tissues with 125 I-NGF. NGF interacts with high- and low-affinity receptors; high-affinity receptors are required for the majority of NGF's actions. Most measurements of receptor levels do not distinguish between high- and low-affinity forms of the receptor. We have used the lipophilic crosslinking agent HSAB to identify the high-affinity, functional receptor during development of the chicken central nervous system. A peak of expression during Embryonic Days 5-10 was detected in all regions of the chicken central nervous system, but, shortly after birth, only the cerebellar region displays significant levels of NGF receptor protein. The time course of expression confirms the dramatic regulation of the NGF receptor gene during defined embryonic periods. The detection of high-affinity NGF receptors in brain and neural retina provides strong evidence that NGF is involved in essential ontogenetic events in the development of the chicken central nervous system

  6. CSIR eNews: Mobile Intelligent Autonomous Systems

    CSIR Research Space (South Africa)

    CSIR

    2008-03-01

    Full Text Available autonomous systems Distinguished scientist from India to share knowledge with CSIR An esteemed scientist from India, Dr Jitendra Raol, will spend the next 14 months at the CSIR, specifically in the mobile intelligence autonomous systems (MIAS) emerging...

  7. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report.

  8. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report

  9. Extraversion, Neuroticism and Strength of the Nervous System

    Science.gov (United States)

    Frigon, Jean-Yves

    1976-01-01

    The hypothesized identity of the dimensions of extraversion-introversion and strength of the nervous system was tested on four groups of nine subjects (neurotic extraverts, stable extraverts, neurotic introverts, stable introverts). Strength of the subjects' nervous system was estimated using the electroencephalographic (EEG) variant of extinction…

  10. Central nervous system depressant activityof Leonurus sibiricus ...

    African Journals Online (AJOL)

    The methanol extract of aerial parts of Leonurus sibiricus was shown to possess central nervous system depressant action by significantly decreased the time of onset of sleep and potentiated the pentobarbital induced sleeping time in mice. Keywords: Leonurus sibiricus, labiatae, central nervous depressant, sedation

  11. Instructable autonomous agents. Ph.D. Thesis

    Science.gov (United States)

    Huffman, Scott Bradley

    1994-01-01

    In contrast to current intelligent systems, which must be laboriously programmed for each task they are meant to perform, instructable agents can be taught new tasks and associated knowledge. This thesis presents a general theory of learning from tutorial instruction and its use to produce an instructable agent. Tutorial instruction is a particularly powerful form of instruction, because it allows the instructor to communicate whatever kind of knowledge a student needs at whatever point it is needed. To exploit this broad flexibility, however, a tutorable agent must support a full range of interaction with its instructor to learn a full range of knowledge. Thus, unlike most machine learning tasks, which target deep learning of a single kind of knowledge from a single kind of input, tutorability requires a breadth of learning from a broad range of instructional interactions. The theory of learning from tutorial instruction presented here has two parts. First, a computational model of an intelligent agent, the problem space computational model, indicates the types of knowledge that determine an agent's performance, and thus, that should be acquirable via instruction. Second, a learning technique, called situated explanation specifies how the agent learns general knowledge from instruction. The theory is embodied by an implemented agent, Instructo-Soar, built within the Soar architecture. Instructo-Soar is able to learn hierarchies of completely new tasks, to extend task knowledge to apply in new situations, and in fact to acquire every type of knowledge it uses during task performance - control knowledge, knowledge of operators' effects, state inferences, etc. - from interactive natural language instructions. This variety of learning occurs by applying the situated explanation technique to a variety of instructional interactions involving a variety of types of instructions (commands, statements, conditionals, etc.). By taking seriously the requirements of flexible

  12. Development of an autonomous power system testbed

    International Nuclear Information System (INIS)

    Barton, J.R.; Adams, T.; Liffring, M.E.

    1985-01-01

    A power system testbed has been assembled to advance the development of large autonomous electrical power systems required for the space station, spacecraft, and aircraft. The power system for this effort was designed to simulate single- or dual-bus autonomous power systems, or autonomous systems that reconfigure from a single bus to a dual bus following a severe fault. The approach taken was to provide a flexible power system design with two computer systems for control and management. One computer operates as the control system and performs basic control functions, data and command processing, charge control, and provides status to the second computer. The second computer contains expert system software for mission planning, load management, fault identification and recovery, and sends load and configuration commands to the control system

  13. Effects of glucose ingestion on autonomic and cardiovascular measures during rest and mental challenge

    NARCIS (Netherlands)

    Synowski, S.J.; Kop, W.J.; Warwick, Z.S.; Waldstein, S.R.

    2013-01-01

    Background High levels of dietary sugar consumption may result in dysregulated glucose metabolism and lead to elevated cardiovascular disease risk via autonomic nervous system and cardiovascular dysfunction. Altered cardiovascular function can be examined using perturbation tasks such as mental

  14. An overview of travel-associated central nervous system infectious diseases: risk assessment, general considerations and future directions.

    Science.gov (United States)

    Izadi, Morteza; Is'haqi, Arman; Is'haqi, Mohammad Ali; Jonaidi Jafari, Nematollah; Rahamaty, Fatemeh; Banki, Abdolali

    2014-08-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors.

  15. Modern approaches to agent-based complex automated negotiation

    CERN Document Server

    Bai, Quan; Ito, Takayuki; Zhang, Minjie; Ren, Fenghui; Aydoğan, Reyhan; Hadfi, Rafik

    2017-01-01

    This book addresses several important aspects of complex automated negotiations and introduces a number of modern approaches for facilitating agents to conduct complex negotiations. It demonstrates that autonomous negotiation is one of the most important areas in the field of autonomous agents and multi-agent systems. Further, it presents complex automated negotiation scenarios that involve negotiation encounters that may have, for instance, a large number of agents, a large number of issues with strong interdependencies and/or real-time constraints.

  16. Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment

    Science.gov (United States)

    ... teratoid/rhabdoid tumor. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. The extent or spread ... different types of treatment for patients with central nervous system atypical teratoid/rhabdoid tumor. Different types of treatment ...

  17. Nutritional and metabolic diseases involving the nervous system.

    Science.gov (United States)

    Kopcha, M

    1987-03-01

    This article will discuss eight diseases that alter normal nervous system function: hypovitaminosis A, water deprivation/salt toxicity, ammonia toxicosis, hypomagnesemia, hypocalcemia, nervous ketosis, hepatoencephalopathy, and rumen metabolic acidosis.

  18. Development of Semantic Web-Enabled BDI Multi-Agent Systems Using SEA_ML: An Electronic Bartering Case Study

    OpenAIRE

    Challenger, M.; Tezel, Baris Tekin; Alaca, Ömer Faruk; Tekinerdogan, B.; Kardas, Geylani

    2018-01-01

    In agent-oriented software engineering (AOSE), the application of model-driven development (MDD) and the use of domain-specific modeling languages (DSMLs) for Multi-Agent System (MAS) development are quite popular since the implementation of MAS is naturally complex, error-prone, and costly due to the autonomous and proactive properties of the agents. The internal agent behavior and the interaction within the agent organizations become even more complex and hard to implement when the requirem...

  19. Improving cerebral oxygenation, cognition and autonomic nervous system control of a chronic alcohol abuser through a three-month running program

    Directory of Open Access Journals (Sweden)

    Daniel Aranha Cabral

    2017-12-01

    Full Text Available The abusive use of alcohol has shown to be associated to cerebral damage, impaired cognition, poor autonomic nervous control, impaired cardiovascular health, increased levels of stress and anxiety, depression symptoms and poor quality of life. Aerobic exercise has shown to be an efficient tool to reduce and overcome these issues. In this case report, a patient (forty-four years old, male under treatment in public psychiatric hospital, classified as having a substance use disorder, underwent a three-month running program. The maximal oxygen consumption increased from 24.2ml/kg/min to 30.1ml/kg/min, running time increased from 6min to 45min (650% and distance covered from 765m to 8700m (1037.2%. In prefrontal cortex oxygenation, oxyhemoglobin levels improved by 76.1%, deoxyhemoglobin decreased 96.9% and total hemoglobin increased 78.8% during exercise. Reaction time in the cognitive test during rest decreased 23%, and the number of correct answers increased by 266.6%. Parasympathetic cardiac parameters increased in several heart rate variability indices. Thus, we conclude that running exercise performed by an alcoholic patient hospitalized in a psychiatric hospital improves cerebral function, cognition and cardiovascular health. Keywords: Alcohol addiction, Near infrared spectroscopy, Prefrontal cortex, Running exercise, Treatment

  20. Central Nervous System Effects of Intrauterine Zika Virus Infection: A Pictorial Review.

    Science.gov (United States)

    Ribeiro, Bianca Guedes; Werner, Heron; Lopes, Flávia P P L; Hygino da Cruz, L Celso; Fazecas, Tatiana M; Daltro, Pedro A N; Nogueira, Renata A

    2017-10-01

    Relatively few agents have been associated with congenital infections involving the brain. One such agent is the Zika virus, which has caused several outbreaks worldwide and has spread in the Americas since 2015. The Zika virus is an arbovirus transmitted by infected female mosquito vectors, such as the Aedes aegypti mosquito. This virus has been commonly associated with congenital infections of the central nervous system and has greatly increased the rates of microcephaly. Ultrasonography (US) remains the method of choice for fetal evaluation of congenital Zika virus infection. For improved assessment of the extent of the lesions, US should be complemented by magnetic resonance (MR) imaging. Postnatal computed tomography and MR imaging can also unveil additional findings of central nervous system involvement, such as microcephaly with malformation of cortical development, ventriculomegaly, and multifocal calcifications in the cortical-subcortical junction, along with associated cortical atrophy. The calcifications may be punctate, dystrophic, linear, or coarse and may follow a predominantly bandlike distribution. A small anterior fontanelle with prematurely closed sutures is also observed with Zika virus infection. In this review, the prenatal and postnatal neurologic imaging findings of congenital Zika virus infection are covered. Radiologists must be aware of this challenging entity and have knowledge of the various patterns that may be depicted with each imaging modality and the main differential diagnosis of the disease. As in other neurologic infections, serial imaging is able to help demonstrate the progression of the findings. © RSNA, 2017.

  1. Central nervous system affecting drugs and road traffic accidents ...

    African Journals Online (AJOL)

    Central nervous system affecting drugs and road traffic accidents among commercial motorcyclists. ... including driving under the influence of drugs that affect the central nervous system (CNS). ... Keywords: Brain, influence, riders, substances ...

  2. Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion.

    Science.gov (United States)

    Mourot, Laurent; Bouhaddi, Malika; Gandelin, Emmanuel; Cappelle, Sylvie; Dumoulin, Gilles; Wolf, Jean-Pierre; Rouillon, Jean Denis; Regnard, Jacques

    2008-01-01

    Moderately cold head-out water immersion stimulates both baro- and cold-receptors, and triggers complex and contradictory effects on the cardiovascular system and its autonomic nervous control. To assess the effects of water immersion and cold on cardiovascular status and related autonomic nervous activity. Hemodynamic variables and indexes of autonomic nervous activity (analysis of heart rate and blood pressure variability) were evaluated in 12 healthy subjects during 3 exposures of 20 min each in the upright position, i.e., in air (AIR, 24-25 degrees C), and during head-out water immersion at 35-36 degrees C (WIn) and 26-27 degrees C (WIc). Plasma noradrenaline, systolic and diastolic blood pressure, and total peripheral resistances were reduced during WIn compared to AIR (263.9 +/- 39.4 vs. 492.5 +/- 35.7 pg x ml(-1), 116.5 +/- 3.7 and 65.4 +/- 1.7 mmHg vs. 140.8 +/- 4.7 and 89.8 +/- 2.8 mmHg, 14.1 +/- 1.0 vs. 16.3 +/- 0.9 mmHg x L(-1) x min, respectively) while they were increased during WIc (530.8 +/- 84.7 pg ml(-1), 148.0 +/- 7.0 mmHg, 80.8 +/- 3.0 mmHg, and 25.8 +/- 1.9 mmHg x L(-1) x min, respectively). The blood pressure variability was reduced to the same extent during WIc and Win compared to AIR. Heart rate decreased during WIn (67.8 +/- 2.7 vs. 81.2 +/- 2.7 bpm during AIR), in parallel with an increased cardiac parasympathetic activity. This pattern was strengthened during WIc (55.3 +/- 2.2 bpm). Thermoneutral WI lowered sympathetic activity and arterial tone, while moderate whole-body skin cooling triggered vascular sympathetic activation. Conversely, both WI and cold triggered cardiac parasympathetic activation, highlighting a complex autonomic control of the cardiovascular system.

  3. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  4. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    Science.gov (United States)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  5. Autonomy in robots and other agents.

    Science.gov (United States)

    Smithers, T

    1997-06-01

    The word "autonomous" has become widely used in artificial intelligence, robotics, and, more recently, artificial life and is typically used to qualify types of systems, agents, or robots: we see terms like "autonomous systems," "autonomous agents," and "autonomous robots." Its use in these fields is, however, both weak, with no distinctions being made that are not better and more precisely made with other existing terms, and varied, with no single underlying concept being involved. This ill-disciplined usage contrasts strongly with the use of the same term in other fields such as biology, philosophy, ethics, law, and human rights, for example. In all these quite different areas the concept of autonomy is essentially the same, though the language used and the aspects and issues of concern, of course, differ. In all these cases the underlying notion is one of self-law making and the closely related concept of self-identity. In this paper I argue that the loose and varied use of the term autonomous in artificial intelligence, robotics, and artificial life has effectively robbed these fields of an important concept. A concept essentially the same as we find it in biology, philosophy, ethics, and law, and one that is needed to distinguish a particular kind of agent or robot from those developed and built so far. I suggest that robots and other agents will have to be autonomous, i.e., self-law making, not just self-regulating, if they are to be able effectively to deal with the kinds of environments in which we live and work: environments which have significant large scale spatial and temporal invariant structure, but which also have large amounts of local spatial and temporal dynamic variation and unpredictability, and which lead to the frequent occurrence of previously unexperienced situations for the agents that interact with them.

  6. Autonomic regulation of hepatic glucose production.

    Science.gov (United States)

    Bisschop, Peter H; Fliers, Eric; Kalsbeek, Andries

    2015-01-01

    Glucose produced by the liver is a major energy source for the brain. Considering its critical dependence on glucose, it seems only natural that the brain is capable of monitoring and controlling glucose homeostasis. In addition to neuroendocrine pathways, the brain uses the autonomic nervous system to communicate with peripheral organs. Within the brain, the hypothalamus is the key region to integrate signals on energy status, including signals from lipid, glucose, and hormone sensing cells, with afferent neural signals from the internal and external milieu. In turn, the hypothalamus regulates metabolism in peripheral organs, including the liver, not only via the anterior pituitary gland but also via multiple neuropeptidergic pathways in the hypothalamus that have been identified as regulators of hepatic glucose metabolism. These pathways comprise preautonomic neurons projecting to nuclei in the brain stem and spinal cord, which relay signals from the hypothalamus to the liver via the autonomic nervous system. The neuroendocrine and neuronal outputs of the hypothalamus are not separate entities. They appear to act as a single integrated regulatory system, far more subtle, and complex than when each is viewed in isolation. Consequently, hypothalamic regulation should be viewed as a summation of both neuroendocrine and neural influences. As a result, our endocrine-based understanding of diseases such as diabetes and obesity should be expanded by integration of neural inputs into our concept of the pathophysiological process. © 2014 American Physiological Society.

  7. Autonomous Systems and Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Systems and Operations (ASO) project will develop an understanding of the impacts of increasing communication time delays on mission operations,...

  8. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Heung Yong Jin

    2015-12-01

    Full Text Available Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM and type 2 diabetes mellitus (T2DM. Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN. Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed.

  9. Dynamics of spectral components of heart rate variability during changes in autonomic balance

    DEFF Research Database (Denmark)

    Højgaard, M V; Holstein-Rathlou, N H; Agner, E

    1998-01-01

    Frequency domain analysis of heart rate variability (HRV) has been proposed as a semiquantitative method for assessing activities in the autonomic nervous system. We examined whether absolute powers, normalized powers, and the low frequency-to-high frequency ratio (LF/HF) derived from the HRV power...... spectrum could detect shifts in autonomic balance in a setting with low sympathetic nervous tone. Healthy subjects were examined for 3 h in the supine position during 1) control conditions (n = 12), 2) acute beta-blockade (n = 11), and 3) chronic beta-blockade (n = 10). Heart rate fell during the first 40...... min of the control session (72 +/- 2 to 64 +/- 2 beats/min; P powers of all spectral areas rose during the first 60 min in all three settings, more so with beta-blockade (P

  10. 12th International Conference on Intelligent Autonomous Systems

    CERN Document Server

    Cho, Hyungsuck; Yoon, Kwang-Joon; Lee, Jangmyung

    2013-01-01

    Intelligent autonomous systems are emerged as a key enabler for the creation of a new paradigm of services to humankind, as seen by the recent advancement of autonomous cars licensed for driving in our streets, of unmanned aerial and underwater vehicles carrying out hazardous tasks on-site, and of space robots engaged in scientific as well as operational missions, to list only a few. This book aims at serving the researchers and practitioners in related fields with a timely dissemination of the recent progress on intelligent autonomous systems, based on a collection of papers presented at the 12th International Conference on Intelligent Autonomous Systems, held in Jeju, Korea, June 26-29, 2012. With the theme of “Intelligence and Autonomy for the Service to Humankind, the conference has covered such diverse areas as autonomous ground, aerial, and underwater vehicles, intelligent transportation systems, personal/domestic service robots, professional service robots for surgery/rehabilitation, rescue/security ...

  11. Personality change at the intersection of autonomic arousal and stress.

    Science.gov (United States)

    Hart, Daniel; Eisenberg, Nancy; Valiente, Carlos

    2007-06-01

    We hypothesized that personality change in children can be predicted by the interaction of family risk with susceptibility to autonomic arousal and that children characterized by both high-risk families and highly reactive autonomic nervous systems tend to show maladaptive change. This hypothesis was tested in a 6-year longitudinal study in which personality-type prototypicality, problem behavior, and negative emotional intensity were measured at 2-year intervals. The results indicated that children who both had exaggerated skin conductance responses (a measure of autonomic reactivity) and were living in families with multiple risk factors were most likely to develop an undercontrolled personality type and to exhibit increases in problem behavior and negative emotional intensity. The implications of the results for understanding personality change are discussed.

  12. The circadian system and the balance of the autonomic nervous system.

    Science.gov (United States)

    Buijs, Ruud M; Escobar, Carolina; Swaab, Dick F

    2013-01-01

    Our biological clock, the suprachiasmatic nucleus (SCN), sets the pace of our life: it provides a rhythmic function to our sleep-wake cycle. In order to do so properly the SCN synchronizes our physiology to behavioral patterns by directing the autonomic and hormonal output of the hypothalamus to the different organs of the body that require a different setting - activity or inactivity - during particular phases of the day or night. In this chapter we show that this delicate balance requires that the SCN should not only provide an output to these organs but also be informed about the physiological state of the organs in order to adapt its output. This occurs via a hypothalamic neuronal network that provides the necessary input to the SCN. We argue that the feedback that the SCN receives from its hypothalamic target structures is essential to maintain a balance in our physiological functions, which fluctuate during the sleep-wake cycle. We propose that this crucial role of the hypothalamus in the homeostatic response is the reason why, e.g., in aging or depression, changes in the functioning of the biological clock, the SCN, lead to the development of pathology. In addition, if this balance is not adequately organized, for example, if the signals of the biological clock are violated by being active and eating during the night, as in shift work, one will be more susceptible to diseases such as hypertension, obesity, diabetes, and metabolic syndrome. © 2013, Elsevier B.V. All rights reserved.

  13. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection.

    Science.gov (United States)

    Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J

    2008-05-01

    Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.

  14. Central and peripheral nervous systems: master controllers in cancer metastasis.

    Science.gov (United States)

    Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning

    2013-12-01

    Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.

  15. Focal lesions in the central nervous system

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Budinger, T.F.; Tobias, C.A.; Born, J.L.

    1980-01-01

    This report reviews the animal and human studies currently in progress at LBL with heavy-ion beams to induce focal lesions in the central nervous system, and discusses the potential future prospects of fundamental and applied brain research with heavy-ion beams. Methods are being developed for producing discrete focal lesions in the central nervous system using the Bragg ionization peak to investigate nerve pathways and neuroendocrine responses, and for treating pathological disorders of the brain

  16. Statin therapy inhibits remyelination in the central nervous system

    DEFF Research Database (Denmark)

    Miron, Veronique E; Zehntner, Simone P; Kuhlmann, Tanja

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood...... that OPCs were maintained in an immature state (Olig2(strong)/Nkx2.2(weak)). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating...... the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes....

  17. Laser puncture therapy of nervous system disorders

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  18. Corticosteroids In Infections Of Central Nervous System

    Directory of Open Access Journals (Sweden)

    Meena AK

    2003-01-01

    Full Text Available Infections of central nervous system are still a major problem. Despite the introduction of newer antimicrobial agents, mortality and long-term sequelace associated with these infections is unacceptably high. Based on the evidence that proinflammtory cytokines have a role in pathophysiology of bacterial and tuberculous meningitis, corticosteroids with a potent anti-inflammatory and immunomodulating effect have been tested and found to be of use in experimental and clinical studies, Review of the available literature suggests steroid administration just prior to antimicrobial therapy is effective in decreasing audiologic and neurologic sequelae in childern with H. influenzae nenigitis. Steroid use for bacterial meningitis in adults is found to be beneficial in case of S. pneumoniae. The value of adjunctive steroid therapy for other bacterial causes of meningitis remains unproven. Corticocorticoids are found to be of no benefit in viral meningitis, Role of steroids in HIV positive patients needs to be studied.

  19. Acute effects of Finnish sauna and cold-water immersion on haemodynamic variables and autonomic nervous system activity in patients with heart failure.

    Science.gov (United States)

    Radtke, Thomas; Poerschke, Daniel; Wilhelm, Matthias; Trachsel, Lukas D; Tschanz, Hansueli; Matter, Friederike; Jauslin, Daniel; Saner, Hugo; Schmid, Jean-Paul

    2016-04-01

    The haemodynamic response to Finnish sauna and subsequent cold-water immersion in heart failure patients is unknown. Haemodynamic response to two consecutive Finnish sauna (80℃) exposures, followed by a final head-out cold-water immersion (12℃) was measured in 37 male participants: chronic heart failure (n = 12, 61.8 ± 9.2 years), coronary artery disease (n = 13, 61.2 ± 10.6 years) and control subjects (n = 12, 60.9 ± 8.9 years). Cardiac output was measured non-invasively with an inert gas rebreathing method prior to and immediately after the first sauna exposure and after cold-water immersion, respectively. Blood pressure was measured before, twice during and after sauna. The autonomic nervous system was assessed by power spectral analysis of heart rate variability. Total power, low-frequency and high-frequency components were evaluated. The low frequency/high frequency ratio was used as a marker of sympathovagal balance. Sauna and cold-water immersion were well tolerated by all subjects. Cardiac output and heart rate significantly increased in all groups after sauna and cold-water immersion (p heart failure patients. In coronary artery disease patients and controls a prolonged increase in low frequency/high frequency ratio was observed after the first sauna exposure. Acute exposure to Finnish sauna and cold-water immersion causes haemodynamic alterations in chronic heart failure patients similarly to control subjects and in particular did not provoke an excessive increase in adrenergic activity or complex arrhythmias. © The European Society of Cardiology 2015.

  20. Structural and functional features of central nervous system lymphatic vessels.

    Science.gov (United States)

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  1. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system

    NARCIS (Netherlands)

    Buijs, R. M.; Hermes, M. H.; Kalsbeek, A.

    1998-01-01

    Vasopressin (VP) is one of the principal neurotransmitters of the suprachiasmatic nucleus (SCN). By means of anatomical, physiological and electrophysiological techniques we have demonstrated that VP containing pathways from the SCN serve to affect neuroendocrine and 'autonomic' neurons in the

  2. Multi-agent simulation of competitive electricity markets: Autonomous systems cooperation for European market modeling

    International Nuclear Information System (INIS)

    Santos, Gabriel; Pinto, Tiago; Morais, Hugo; Sousa, Tiago M.; Pereira, Ivo F.; Fernandes, Ricardo; Praça, Isabel; Vale, Zita

    2015-01-01

    Highlights: • Definition of an ontology allowing the communication between multi-agents systems. • Social welfare evaluation in different electricity markets. • Demonstration of the use of the proposed ontology between two multi-agents systems. • Strategic biding in electricity markets. • European electricity markets comparison. - Abstract: The electricity market restructuring, and its worldwide evolution into regional and even continental scales, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in a rising complexity in power systems operation. Several power system simulators have been developed in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex and constantly changing environment. The main contribution of this paper is given by the integration of several electricity market and power system models, respecting to the reality of different countries. This integration is done through the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The continuous development of Multi-Agent System for Competitive Electricity Markets platform provides the means for the exemplification of the usefulness of this ontology. A case study using the proposed multi-agent platform is presented, considering a scenario based on real data that simulates the European Electricity Market environment, and comparing its performance using different market mechanisms. The main goal is to demonstrate the advantages that the integration of various market models and simulation platforms have for the study of the electricity markets’ evolution

  3. Central Nervous System Infections in Denmark

    Science.gov (United States)

    2018-02-04

    Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis

  4. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    nervous system. The present .... In the vertebrate nervous system, special types of cells called radial glia .... As men- tioned earlier, astrocytes extend a 'foot process' (Figure 3) that ... capillaries that for a long time it was thought that these cells.

  5. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  6. Etiologic agents of central nervous system infections among febrile hospitalized patients in the country of Georgia.

    Directory of Open Access Journals (Sweden)

    Tamar Akhvlediani

    Full Text Available OBJECTIVES: There is a large spectrum of viral, bacterial, fungal, and prion pathogens that cause central nervous system (CNS infections. As such, identification of the etiological agent requires multiple laboratory tests and accurate diagnosis requires clinical and epidemiological information. This hospital-based study aimed to determine the main causes of acute meningitis and encephalitis and enhance laboratory capacity for CNS infection diagnosis. METHODS: Children and adults patients clinically diagnosed with meningitis or encephalitis were enrolled at four reference health centers. Cerebrospinal fluid (CSF was collected for bacterial culture, and in-house and multiplex RT-PCR testing was conducted for herpes simplex virus (HSV types 1 and 2, mumps virus, enterovirus, varicella zoster virus (VZV, Streptococcus pneumoniae, HiB and Neisseria meningitidis. RESULTS: Out of 140 enrolled patients, the mean age was 23.9 years, and 58% were children. Bacterial or viral etiologies were determined in 51% of patients. Five Streptococcus pneumoniae cultures were isolated from CSF. Based on in-house PCR analysis, 25 patients were positive for S. pneumoniae, 6 for N. meningitidis, and 1 for H. influenzae. Viral multiplex PCR identified infections with enterovirus (n = 26, VZV (n = 4, and HSV-1 (n = 2. No patient was positive for mumps or HSV-2. CONCLUSIONS: Study findings indicate that S. pneumoniae and enteroviruses are the main etiologies in this patient cohort. The utility of molecular diagnostics for pathogen identification combined with the knowledge provided by the investigation may improve health outcomes of CNS infection cases in Georgia.

  7. Etiologic Agents of Central Nervous System Infections among Febrile Hospitalized Patients in the Country of Georgia

    Science.gov (United States)

    Akhvlediani, Tamar; Bautista, Christian T.; Shakarishvili, Roman; Tsertsvadze, Tengiz; Imnadze, Paata; Tatishvili, Nana; Davitashvili, Tamar; Samkharadze, Tamar; Chlikadze, Rusudan; Dvali, Natia; Dzigua, Lela; Karchava, Mariam; Gatserelia, Lana; Macharashvili, Nino; Kvirkvelia, Nana; Habashy, Engy Emil; Farrell, Margaret; Rowlinson, Emily; Sejvar, James; Hepburn, Matthew; Pimentel, Guillermo; Dueger, Erica; House, Brent; Rivard, Robert

    2014-01-01

    Objectives There is a large spectrum of viral, bacterial, fungal, and prion pathogens that cause central nervous system (CNS) infections. As such, identification of the etiological agent requires multiple laboratory tests and accurate diagnosis requires clinical and epidemiological information. This hospital-based study aimed to determine the main causes of acute meningitis and encephalitis and enhance laboratory capacity for CNS infection diagnosis. Methods Children and adults patients clinically diagnosed with meningitis or encephalitis were enrolled at four reference health centers. Cerebrospinal fluid (CSF) was collected for bacterial culture, and in-house and multiplex RT-PCR testing was conducted for herpes simplex virus (HSV) types 1 and 2, mumps virus, enterovirus, varicella zoster virus (VZV), Streptococcus pneumoniae, HiB and Neisseria meningitidis. Results Out of 140 enrolled patients, the mean age was 23.9 years, and 58% were children. Bacterial or viral etiologies were determined in 51% of patients. Five Streptococcus pneumoniae cultures were isolated from CSF. Based on in-house PCR analysis, 25 patients were positive for S. pneumoniae, 6 for N. meningitidis, and 1 for H. influenzae. Viral multiplex PCR identified infections with enterovirus (n = 26), VZV (n = 4), and HSV-1 (n = 2). No patient was positive for mumps or HSV-2. Conclusions Study findings indicate that S. pneumoniae and enteroviruses are the main etiologies in this patient cohort. The utility of molecular diagnostics for pathogen identification combined with the knowledge provided by the investigation may improve health outcomes of CNS infection cases in Georgia. PMID:25369023

  8. Central nervous system prophylaxis in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Zahid, Mohammad Faizan; Khan, Nadia; Hashmi, Shahrukh K; Kizilbash, Sani Haider; Barta, Stefan K

    2016-08-01

    Central nervous system (CNS) involvement with diffuse large B-cell lymphoma (DLBCL) is a relatively uncommon manifestation; with most cases of CNS involvement occuring during relapse after primary therapy. CNS dissemination typically occurs early in the disease course and is most likely present subclinically at the time of diagnosis in many patients who later relapse in the CNS. CNS relapse in these patients is associated with poor outcomes. Based on a CNS relapse rate of 5% in DLBCL and weighing the benefits against the toxicities, universal application of CNS prophylaxis is not justified. The introduction of rituximab has significantly reduced the incidence of CNS relapse in DLBCL. Different studies have employed other agents for CNS prophylaxis, such as intrathecal chemotherapy and high-dose systemic agents with sufficient CNS penetration. If CNS prophylaxis is to be given, it should be preferably administered during primary chemotherapy. However, there is no strong evidence that supports any single approach for CNS prophylaxis. In this review, we outline different strategies of administering CNS prophylaxis in DLBCL patients reported in literature and discuss their advantages and drawbacks. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Influence of thyroid in nervous system growth.

    Science.gov (United States)

    Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L

    2001-08-01

    Nervous system growth and differentiation are closely correlated with the presence of iodine and thyroid hormones in initial development stages. In the human species, encephalon maturation during the first quarter of pregnancy is affected according to recent studies by the transplacenta passage of maternal thyroid hormones while it depends on initial iodiothyronin secretion by the foetal gland after the 12th week of pregnancy. Thyroid hormone deficiency during nervous system development causes altered noble nervous cells, such as the pyramidal cortical and Purkinje cells, during glial cell proliferation and differentiation alike. Neurons present cell hypoplasia with reduced axon count, dendritic branching, synaptic spikes and interneuron connections. Oligodendrocytes decrease in number and average myelin content consequently drops. Biochemical studies on hypothyroid rats have demonstrated alterations to neuron intraplasmatic microtubule content and organisation, changed mitochondria number and arrangement and anomalies in T3 nuclear and citoplasmatic receptor maturation. Alterations to microtubules are probably responsible for involvement of the axon-dendrite system, and are the consequence of deficient thyroid hormone action on the mitochondria, the mitochondria enzymes and proteins associated with microtubules. Nuclear and citoplasmatic receptors have been identified and gene clonation studies have shown two families of nuclear receptors that include several sub-groups in their turn. A complex scheme of temporal and spatial expression of these receptors exists, so they probably contribute with one complementary function, although their physiological role differs. The action of thyroid hormones occurs by changing cell protein levels because of their regulation at the transcriptional or post-transcriptional level. Genes submitted to thyroid hormone control are either expressed by oligodendrytes, which are myelin protein coders or glial differentiation mediators, or

  10. Explanation of diagnostic criteria for radiation-induced nervous system disease

    International Nuclear Information System (INIS)

    Xing Zhiwei; Jiang Enhai

    2012-01-01

    National occupational health standard-Diagnostic Criteria for Radiation-Induced Nervous System Disease has been issued and implemented by the Ministry of health. This standard contained three independent criteria of the brain, spinal cord and peripheral nerve injury. These three kinds of disease often go together in clinic,therefore,the three diagnostic criteria were merged into radioactive nervous system disease diagnostic criteria for entirety and maneuverability of the standard. This standard was formulated based on collection of the clinical practice experience, extensive research of relevant literature and foreign relevant publications. It is mainly applied to diagnosis and treatment of occupational radiation-induced nervous system diseases, and to nervous system diseases caused by medical radiation exposure as well. In order to properly implement this standard, also to correctly deal with radioactive nervous system injury, the main contents of this standard including dose threshold, clinical manifestation, indexing standard and treatment principle were interpreted in this article. (authors)

  11. Microbiota-gut-brain axis and the central nervous system

    OpenAIRE

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-01-01

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated ...

  12. [Heart rate variability as a method of assessing the autonomic nervous system in polycystic ovary syndrome].

    Science.gov (United States)

    de Sá, Joceline Cássia Ferezini; Costa, Eduardo Caldas; da Silva, Ester; Azevedo, George Dantas

    2013-09-01

    Polycystic ovary syndrome (PCOS) is an endocrine disorder associated with several cardiometabolic risk factors, such as central obesity, insulin resistance, type 2 diabetes, metabolic syndrome, and hypertension. These factors are associated with adrenergic overactivity, which is an important prognostic factor for the development of cardiovascular disorders. Given the common cardiometabolic disturbances occurring in PCOS women, over the last years studies have investigated the cardiac autonomic control of these patients, mainly based on heart rate variability (HRV). Thus, in this review, we will discuss the recent findings of the studies that investigated the HRV of women with PCOS, as well as noninvasive methods of analysis of autonomic control starting from basic indexes related to this methodology.

  13. Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Sun, Denghao; Takeda, Nobuo

    2014-01-01

    This study combines our hierarchical fiber-optic-based delamination detection system with a microvascular self-healing material to develop the first autonomous sensing-healing system applicable to large-scale composite structures. In this combined system, embedded vascular modules are connected through check valves to a surface-mounted supply tube of a pressurized healing agent while fiber-optic-based sensors monitor the internal pressure of these vascular modules. When delamination occurs, the healing agent flows into the vascular modules breached by the delamination and infiltrates the damage for healing. At the same time, the pressure sensors identify the damaged modules by detecting internal pressure changes. This paper begins by describing the basic concept of the combined system and by discussing the advantages that arise from its hierarchical nature. The feasibility of the system is then confirmed through delamination infiltration tests. Finally, the hierarchical system is validated in a plate specimen by focusing on the detection and infiltration of the damage. Its self-diagnostic function is also demonstrated. (paper)

  14. Design of an Autonomous Transport System for Coastal Areas

    Directory of Open Access Journals (Sweden)

    Andrzej Lebkowski

    2018-03-01

    Full Text Available The article presents a project of an autonomous transport system that can be deployed in coastal waters, bays or between islands. Presented solutions and development trends in the transport of autonomous and unmanned units (ghost ships are presented. The structure of the control system of autonomous units is discussed together with the presentation of applied solutions in the field of artificial intelligence. The paper presents the concept of a transport system consisting of autonomous electric powered vessels designed to carry passengers, bikes, mopeds, motorcycles or passenger cars. The transport task is to be implemented in an optimal way, that is, most economically and at the same time as safe as possible. For this reason, the structure of the electric propulsion system that can be found on such units is shown. The results of simulation studies of autonomous system operation using simulator of marine navigational environment are presented.

  15. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    OpenAIRE

    Schor, Nina F.

    2008-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel...

  16. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue

  17. Learning Networks: connecting people, organizations, autonomous agents and learning resources to establish the emergence of effective lifelong learning

    NARCIS (Netherlands)

    Koper, Rob; Sloep, Peter

    2003-01-01

    Koper, E.J.R., Sloep, P.B. (2002) Learning Networks connecting people, organizations, autonomous agents and learning resources to establish the emergence of effective lifelong learning. RTD Programma into Learning Technologies 2003-2008. More is different… Heerlen, Nederland: Open Universiteit

  18. Autonomous Agents as Artistic Collaborators

    DEFF Research Database (Denmark)

    Kadish, David

    In this paper, I ask whether it is possible to exert creative direction on the emergence of large scale patterns from the actions of autonomous or semi-autonomous actors. As an artist and an engineer, I undertake installations and projects with an intent to create, to make art or innovative...... structures. At the same time, one of my artistic interests is in ceding a great deal of creative control to a cluster of robotic actors, in the process interrogating the lack of control that we, as a species, exert over the world. Here, I explore this idea in the context of an ongoing project called...... that navigate the space as well. My work has implications for how we as a species address planetary-scale challenges and whether we can organize societies to find emergent solutions to complex problems. Behind my artistic interest is the idea that "creation" has no teleological impulse. The creative force from...

  19. Autonomous stimulus triggered self-healing in smart structural composites

    International Nuclear Information System (INIS)

    Norris, C J; White, J A P; McCombe, G; Chatterjee, P; Bond, I P; Trask, R S

    2012-01-01

    Inspired by the ability of biological systems to sense and autonomously heal damage, this research has successfully demonstrated the first autonomous, stimulus triggered, self-healing system in a structural composite material. Both the sensing and healing mechanisms are reliant on microvascular channels incorporated within a laminated composite material. For the triggering mechanism, a single air filled vessel was pressurized, sealed and monitored. Upon drop weight impact (10 J), delamination and microcrack connectivity between the pressurized vessel and those open to ambient led to a pressure loss which, with the use of a suitable sensor, triggered a pump to deliver a healing agent to the damage zone. Using this autonomous healing approach, near full recovery of post-impact compression strength was achieved (94% on average). A simplified alternative system with healing agent continuously flowing through the vessels, akin to blood flow, was found to offer 100% recovery of the material’s virgin strength. Optical microscopy and ultrasonic C-scanning provided further evidence of large-scale infusion of matrix damage with the healing agent. The successful implementation of this bioinspired technology could substantially enhance the integrity and reliability of aerospace structures, whilst offering benefits through improved performance/weight ratios and extended lifetimes. (paper)

  20. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  1. Cardiovascular risk and mortality in end-stage renal disease patients undergoing dialysis: sleep study, pulmonary function, respiratory mechanics, upper airway collapsibility, autonomic nervous activity, depression, anxiety, stress and quality of life: a prospective, double blind, randomized controlled clinical trial.

    Science.gov (United States)

    dos Reis Santos, Israel; Danaga, Aline Roberta; de Carvalho Aguiar, Isabella; Oliveira, Ezequiel Fernandes; Dias, Ismael Souza; Urbano, Jessica Julioti; Martins, Aline Almeida; Ferraz, Leonardo Macario; Fonsêca, Nina Teixeira; Fernandes, Virgilio; Fernandes, Vinicius Alves Thomaz; Lopes, Viviane Cristina Delgado; Leitão Filho, Fernando Sérgio Studart; Nacif, Sérgio Roberto; de Carvalho, Paulo de Tarso Camillo; Sampaio, Luciana Maria Malosá; Giannasi, Lílian Christiane; Romano, Salvatore; Insalaco, Giuseppe; Araujo, Ana Karina Fachini; Dellê, Humberto; Souza, Nadia Karina Guimarães; Giannella-Neto, Daniel; Oliveira, Luis Vicente Franco

    2013-10-08

    Chronic kidney disease (CKD) is one of the most serious public health problems. The increasing prevalence of CKD in developed and developing countries has led to a global epidemic. The hypothesis proposed is that patients undergoing dialysis would experience a marked negative influence on physiological variables of sleep and autonomic nervous system activity, compromising quality of life. A prospective, consecutive, double blind, randomized controlled clinical trial is proposed to address the effect of dialysis on sleep, pulmonary function, respiratory mechanics, upper airway collapsibility, autonomic nervous activity, depression, anxiety, stress and quality of life in patients with CKD. The measurement protocol will include body weight (kg); height (cm); body mass index calculated as weight/height(2); circumferences (cm) of the neck, waist, and hip; heart and respiratory rates; blood pressures; Mallampati index; tonsil index; heart rate variability; maximum ventilatory pressures; negative expiratory pressure test, and polysomnography (sleep study), as well as the administration of specific questionnaires addressing sleep apnea, excessive daytime sleepiness, depression, anxiety, stress, and quality of life. CKD is a major public health problem worldwide, and its incidence has increased in part by the increased life expectancy and increasing number of cases of diabetes mellitus and hypertension. Sleep disorders are common in patients with renal insufficiency. Our hypothesis is that the weather weight gain due to volume overload observed during interdialytic period will influence the degree of collapsibility of the upper airway due to narrowing and predispose to upper airway occlusion during sleep, and to investigate the negative influences of haemodialysis in the physiological variables of sleep, and autonomic nervous system, and respiratory mechanics and thereby compromise the quality of life of patients. The protocol for this study is registered with the Brazilian

  2. Diseases of the nervous system associated with calcium channelopathies

    NARCIS (Netherlands)

    Todorov, Boyan Bogdanov

    2010-01-01

    The aim of the studies described in this thesis was to investigate how abnormal CaV2.1 channel function can cause disease, in particular motor coordination dysfunction. The chapters illustrate how various neuronal cell types in the periphery (peripheral nervous system) and the central nervous system

  3. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  4. Sjogrens Syndrome Presenting with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Tülay Terzi

    2012-01-01

    Full Text Available Sjogren’s syndrome is a slowly progressive autoimmune disease. Neurological involvement occurs in approximately 20-25% cases in Sjogren’s syndrome. 87% of the neurological involvement is peripheral nervous system, almost 13% in the form of central nervous system involvement. Affected central nervous system may show similar clinical and radiological findings as in multiple sclerosis (MS. In this paper, a 43-year-old patient is discussed who was referred with the complaint of dizziness, there was MS- like lesions in brain imaging studies and was diagnosed with Sjogren’s syndrome. MS- like clinical and radiologic tables can be seen, albeit rarely in Sjogren’s syndrome. In these cases, early diagnosis and early treatment for the sjögren has a great importance for the prognosis of the disease.

  5. Multi-agent platform for development of educational games for children with autism

    NARCIS (Netherlands)

    Alers, S.H.M.; Barakova, E.I.

    2009-01-01

    Multi-agent system of autonomous interactive blocks that can display its active state through color and light intensity has been developed. Depending on the individual rules, these autonomous blocks could express emergent behaviors which are a basis for various educational games. The multi-agent

  6. Bidirectional Prospective Associations Between Cardiac Autonomic Activity and Inflammatory Markers.

    Science.gov (United States)

    Hu, Mandy Xian; Lamers, Femke; Neijts, Melanie; Willemsen, Gonneke; de Geus, Eco J C; Penninx, Brenda W J H

    2018-06-01

    Autonomic nervous system (ANS) imbalance has been cross-sectionally associated with inflammatory processes. Longitudinal studies are needed to shed light on the nature of this relationship. We examined cross-sectional and bidirectional prospective associations between cardiac autonomic measures and inflammatory markers. Analyses were conducted with baseline (n = 2823), 2-year (n = 2099), and 6-year (n = 1774) data from the Netherlands Study of Depression and Anxiety. To compare the pattern of results, prospective analyses with ANS (during sleep, leisure time, and work) and inflammation were conducted in two data sets from the Netherlands Twin Register measured for 4.9 years (n = 356) and 5.4 years (n = 472). Autonomic nervous system measures were heart rate (HR) and respiratory sinus arrhythmia (RSA). Inflammatory markers were C-reactive protein (CRP) and interleukin (IL)-6. The Netherlands Study of Depression and Anxiety results showed that higher HR and lower RSA were cross-sectionally significantly associated with higher inflammatory levels. Higher HR predicted higher levels of CRP (B = .065, p < .001) and IL-6 (B = .036, p = .014) at follow-up. Higher CRP levels predicted lower RSA (B = -.024, p = .048) at follow-up. The Netherlands Twin Register results confirmed that higher HR was associated with higher CRP and IL-6 levels 4.9 years later. Higher IL-6 levels predicted higher HR and lower RSA at follow-up. Autonomic imbalance is associated with higher levels of inflammation. Independent data from two studies converge in evidence that higher HR predicts subsequent higher levels of CRP and IL-6. Inflammatory markers may also predict future ANS activity, but evidence for this was less consistent.

  7. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system

    Directory of Open Access Journals (Sweden)

    Han Ruolan

    2008-04-01

    Full Text Available Abstract Background Cancer treatment with a variety of chemotherapeutic agents often is associated with delayed adverse neurological consequences. Despite their clinical importance, almost nothing is known about the basis for such effects. It is not even known whether the occurrence of delayed adverse effects requires exposure to multiple chemotherapeutic agents, the presence of both chemotherapeutic agents and the body's own response to cancer, prolonged damage to the blood-brain barrier, inflammation or other such changes. Nor are there any animal models that could enable the study of this important problem. Results We found that clinically relevant concentrations of 5-fluorouracil (5-FU; a widely used chemotherapeutic agent were toxic for both central nervous system (CNS progenitor cells and non-dividing oligodendrocytes in vitro and in vivo. Short-term systemic administration of 5-FU caused both acute CNS damage and a syndrome of progressively worsening delayed damage to myelinated tracts of the CNS associated with altered transcriptional regulation in oligodendrocytes and extensive myelin pathology. Functional analysis also provided the first demonstration of delayed effects of chemotherapy on the latency of impulse conduction in the auditory system, offering the possibility of non-invasive analysis of myelin damage associated with cancer treatment. Conclusions Our studies demonstrate that systemic treatment with a single chemotherapeutic agent, 5-FU, is sufficient to cause a syndrome of delayed CNS damage and provide the first animal model of delayed damage to white-matter tracts of individuals treated with systemic chemotherapy. Unlike that caused by local irradiation, the degeneration caused by 5-FU treatment did not correlate with either chronic inflammation or extensive vascular damage and appears to represent a new class of delayed degenerative damage in the CNS.

  8. A System for Fast Navigation of Autonomous Vehicles

    Science.gov (United States)

    1991-09-01

    AD-A243 523 4, jj A System for Fast Navigation of Autonomous Vehicles Sanjiv Singh, Dai Feng, Paul Keller, Gary Shaffer, Wen Fan Shi, Dong Hun Shin...FUNDING NUMBERS A System for Fast Navigation of Autonomous Vehicles 6. AUTHOR(S) S. Singh, D. Feng, P. Keller, G. Shaffer, W.F. Shi, D.H. Shin, J. West...common in the control of autonomous vehicles to establish the necessary kinematic models but to ignore an explicit representation of the vehicle dynamics

  9. The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites.

    Science.gov (United States)

    Maurer, Laura L; Philbert, Martin A

    2015-01-01

    The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems. The inherent predilection of chemicals for highly conserved biochemical systems confers selective vulnerability of the nervous system to neurotoxicants. This chapter discusses selective vulnerability of the nervous system in the context of neuron-specific decrements (axonopathy, myelinopathy, disruption of neurotransmission), and the degree to which neuronal damage is facilitated or ameliorated by surrounding nonneural cells in both the central and peripheral nervous systems. © 2015 Elsevier B.V. All rights reserved.

  10. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future.

    Science.gov (United States)

    Plog, Benjamin A; Nedergaard, Maiken

    2018-01-24

    The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudolymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters the brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and then drives the perivenous drainage of interstitial fluid (ISF) and its solute. Here, we review the role of the glymphatic pathway in CNS physiology, the factors known to regulate glymphatic flow, and the pathologic processes in which a breakdown of glymphatic CSF-ISF exchange has been implicated in disease initiation and progression. Important areas of future research, including manipulation of glymphatic activity aiming to improve waste clearance and therapeutic agent delivery, are also discussed.

  11. [Evaluation of autonomic nervous system function with heart rate variability analysis in patients with hyperthyroidism and during euthyroidism after pharmacologic and surgical treatment].

    Science.gov (United States)

    Barczyński, M; Tabor, S; Thor, P

    1997-01-01

    The aim of the present study was both to estimate autonomic nervous system (ANS) function in patients with hyperthyroidism by the heart rate variability (HRV) analysis and to evaluate the impact of pharmacological and surgical treatment on the ANS function. Analysis of the HRV underwent 10 female patients in course of thyreotoxicosis and after reaching full clinical and biochemical euthyroidism, after pharmacological therapy and in month after surgical treatment. The 10 minutes records at rest, in horizontal position were evaluated. The HRV parameters like mean of the heart rate, mean of RR intervals, standard deviation of all normal RR intervals (SDNN), range of the heart rate variability, low frequency (LF), high frequency (HF) components of the heart rate power spectral density and LF/HF ratio were assessed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. The statistical significance (p hyperthyroidism in comparison to the control group (151.6/346.8 ms; 2.4/0.74; 24.4/57.2 ms2). In course of pharmacological euthyroidism there were statistically significant (p hyperthyroidism (270/151.6 ms; 0.995/2.4; 39/24.4 ms2). In euthyroidism after surgical treatment all the above parameters kept the similar levels as in pharmacological euthyroidism (no statistical significance for p hyperthyroid patients there is advantage of sympathetic part of ANS over parasympathetic one which is due to sharp reduction of parasympathetic system activity. Pharmacological therapy with thyreostatics normalises balance of ANS to the level of the control group and after surgical treatment the balance keeps the same. Moreover, in the estimation of ANS as important as LF/HF ratio is the mean range of RR intervals.

  12. Vitamin D and the central nervous system.

    Science.gov (United States)

    Wrzosek, Małgorzata; Łukaszkiewicz, Jacek; Wrzosek, Michał; Jakubczyk, Andrzej; Matsumoto, Halina; Piątkiewicz, Paweł; Radziwoń-Zaleska, Maria; Wojnar, Marcin; Nowicka, Grażyna

    2013-01-01

    Vitamin D is formed in human epithelial cells via photochemical synthesis and is also acquired from dietary sources. The so-called classical effect of this vitamin involves the regulation of calcium homeostasis and bone metabolism. Apart from this, non-classical effects of vitamin D have recently gained renewed attention. One important yet little known of the numerous functions of vitamin D is the regulation of nervous system development and function. The neuroprotective effect of vitamin D is associated with its influence on neurotrophin production and release, neuromediator synthesis, intracellular calcium homeostasis, and prevention of oxidative damage to nervous tissue. Clinical studies suggest that vitamin D deficiency may lead to an increased risk of disease of the central nervous system (CNS), particularly schizophrenia and multiple sclerosis. Adequate intake of vitamin D during pregnancy and the neonatal period seems to be crucial in terms of prevention of these diseases.

  13. Recent advances in agent-based complex automated negotiation

    CERN Document Server

    Ito, Takayuki; Zhang, Minjie; Fujita, Katsuhide; Robu, Valentin

    2016-01-01

    This book covers recent advances in Complex Automated Negotiations as a widely studied emerging area in the field of Autonomous Agents and Multi-Agent Systems. The book includes selected revised and extended papers from the 7th International Workshop on Agent-Based Complex Automated Negotiation (ACAN2014), which was held in Paris, France, in May 2014. The book also includes brief introductions about Agent-based Complex Automated Negotiation which are based on tutorials provided in the workshop, and brief summaries and descriptions about the ANAC'14 (Automated Negotiating Agents Competition) competition, where authors of selected finalist agents explain the strategies and the ideas used by them. The book is targeted to academic and industrial researchers in various communities of autonomous agents and multi-agent systems, such as agreement technology, mechanism design, electronic commerce, related areas, as well as graduate, undergraduate, and PhD students working in those areas or having interest in them.

  14. The nervous systems of basally branching nemertea (palaeonemertea.

    Directory of Open Access Journals (Sweden)

    Patrick Beckers

    Full Text Available In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade. Thus, palaeonemertean species are likely the most informative when comparing with other invertebrate groups. We therefore analyzed the nervous system of several palaeonemertean species by combining histology and immunostaining. 3D reconstructions based on the aligned slices were performed to get an overall impression of the central nervous system, and immunohistochemistry was chosen to reveal fine structures and to be able to compare the data with recently published results. The insights presented here permit a first attempt to reconstruct the primary organization of the nemertean nervous system. This comparative analysis allows substantiating homology hypotheses for nerves of the peripheral nervous system. This study also provides evidence that the nemertean brain primarily consists of two lobes connected by a strong ventral commissure and one to several dorsal commissures. During nemertean evolution, the brain underwent continuous compartmentalization into a pair of dorsal and ventral lobes interconnected by commissures and lateral tracts. Given that this conclusion can be corroborated by cladistic analyses, nemerteans should share a common ancestor with spiralians that primarily have a simple brain consisting of paired medullary, frontally commissurized and reinforced cords. Such an organization resembles the situation found in presumably basally branching annelids or mollusks.

  15. The Potential of the Bi-Directional Gaze: A Call for Neuroscientific Research on the Simultaneous Activation of the Sympathetic and Parasympathetic Nervous Systems through Tantric Practice

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Lidke

    2016-11-01

    Full Text Available This paper is a call for the development of a neuroscientific research protocol for the study of the impact of Tantric practice on the autonomic nervous system. Tantric texts like Abhinavagupta’s Tantrāloka map out a complex meditative ritual system in which inward-gazing, apophatic, sense-denying contemplative practices are combined with outward-gazing, kataphatic sense-activating ritual practices. Abhinavagupta announces a culminating “bi-directional” state (pratimīlana-samādhi as the highest natural state (sahaja-samādhi in which the practitioner becomes a perfected yogi (siddhayogi. This state of maximized cognitive capacities, in which one’s inward gaze and outward world-engagement are held in balance, appears to be one in which the anabolic metabolic processes of the parasympathetic nervous system and the catabolic metabolic processes of the sympathetic nervous systems are simultaneously activated and integrated. Akin to secularized mindfulness and compassion training protocols like Emory’s CBCT, I propose the development of secularized “Tantric protocols” for the development of secular and tradition-specific methods for further exploring the potential of the human neurological system.

  16. Flocking algorithm for autonomous flying robots.

    Science.gov (United States)

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.

  17. Designing and implementing nervous system simulations on LEGO robots.

    Science.gov (United States)

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  18. CT diagnosis of congenital anomalies of the central nervous system

    International Nuclear Information System (INIS)

    Mori, Koreaki

    1980-01-01

    In the diagnosis of central nervous system congenital anomalies, understanding of embryology of the central nervous system and pathophysiology of each anomaly are essential. It is important for clinical approach to central nervous system congenital anomalies to evaluate the size of the head and tention of the anterior fontanelle. Accurate diagnosis of congenital anomalies depends on a correlation of CT findings to clinical pictures. Clinical diagnosis of congenital anomalies should include prediction of treatability and prognosis, in addition to recognition of a disease. (author)

  19. Autonomously managed high power systems

    International Nuclear Information System (INIS)

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  20. Do you get it? User-evaluated explainable BDI agents

    NARCIS (Netherlands)

    Broekens, J.; Harbers, M.; Hindriks, K.; Bosch, K. van den; Jonker, C.; Meyer, J.J.C.

    2010-01-01

    In this paper we focus on explaining to humans the behavior of autonomous agents, i.e., explainable agents. Explainable agents are useful for many reasons including scenario-based training (e.g. disaster training), tutor and pedagogical systems, agent development and debugging, gaming, and

  1. Intelligent agents: adaptation of autonomous bimodal microsystems

    Science.gov (United States)

    Smith, Patrice; Terry, Theodore B.

    2014-03-01

    Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.

  2. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  3. Frequency of autonomic neuropathy in patients with erectile dysfunction in diabetes mellitus

    International Nuclear Information System (INIS)

    Ghafoor, A.; Zaidi, S.M.H.; Moazzam, A.

    2015-01-01

    Background: Among diabetic patients autonomic neuropathy (AN) is one of the most frequent complications. This affects peripheral nervous system and thus results into erectile dysfunction (ED). The main objectives of the study were to determine the frequency of autonomic neuropathy (AN) in diabetic patients with ED and to find out the associated risk factors. Method: In this descriptive case series, a total 200 consecutive patients of Diabetes Mellitus with erectile dysfunction attended the Department of Endocrinology and Metabolism (DEM), Services Hospital Lahore during three months (from June to August 2013), were included. For assessing erectile dysfunction (ED) and autonomic neuropathy (AN) International Index of Erectile Function (IIEF) and Composite Autonomic Scoring System (CASS) were used respectively. Other factors impacting the autonomic functions in diabetes like duration of diabetes, age of patient, body mass index (BMI), and glycaemic control (HbAlc), hypertension and smoking status were recorded. Results: Average age of the patients was 57.58±9.53 years (95 percentage C.I. 55.54-59.63). Frequency of autonomic neuropathy (AN) in ED patients was 86 (43 percentage). Duration of diabetes Mellitus and BMI were statistically significantly different among patients with severe, moderate and mild autonomic neuropathy. Conclusions: Autonomic neuropathy was very frequent in diabetic patients with erectile dysfunction. The associated risk factors are duration of disease and body mass index. (author)

  4. One-dimensional autonomous systems and dissipative systems

    International Nuclear Information System (INIS)

    Lopez, G.

    1996-01-01

    The Lagrangian and the Generalized Linear Momentum are given in terms of a constant of motion for a one-dimensional autonomous system. The possibility of having an explicit Hamiltonian expression is also analyzed. The approach is applied to some dissipative systems. Copyright copyright 1996 Academic Press, Inc

  5. Technique for laparoscopic autonomic nerve preserving total mesorectal excision.

    Science.gov (United States)

    Breukink, S O; Pierie, J P E N; Hoff, C; Wiggers, T; Meijerink, W J H J

    2006-05-01

    With the introduction of total mesorectal excision (TME) for treatment of rectal cancer, the prognosis of patients with rectal cancer is improved. With this better prognosis, there is a growing awareness about the quality of life of patients after rectal carcinoma. Laparoscopic total mesorectal excision (LTME) for rectal cancer offers several advantages in comparison with open total mesorectal excision (OTME), including greater patient comfort and an earlier return to daily activities while preserving the oncologic radicality of the procedure. Moreover, laparoscopy allows good exposure of the pelvic cavity because of magnification and good illumination. The laparoscope seems to facilitate pelvic dissection including identification and preservation of critical structures such as the autonomic nervous system. The technique for laparoscopic autonomic nerve preserving total mesorectal excision is reported. A three- or four-port technique is used. Vascular ligation, sharp mesorectal dissection and identification and preservation of the autonomic pelvic nerves are described.

  6. Effects of different "relaxing" music styles on the autonomic nervous system.

    Science.gov (United States)

    Perez-Lloret, Santiago; Diez, Joaquín; Domé, María Natalia; Delvenne, Andrea Alvarez; Braidot, Nestor; Cardinali, Daniel P; Vigo, Daniel Eduardo

    2014-01-01

    The objective of this study was to assess the effects on heart rate variability (HRV) of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melody that they would use to relax. The low-to-high-frequency ratio was significantly higher when subjects were exposed to "new age" music when compared with silence (3.4 ± 0.3 vs. 2.6 ± 0.3, respectively, P classical" or "romantic" melodies (2.1 ± 0.4 and 2.2 ± 0.3). These results were related to a reduction in the high frequency component with "new age" compared to silence (17.4 ± 1.9 vs. 23.1 ± 1.1, respectively P music induced a shift in HRV from higher to lower frequencies, independently on the music preference of the listener.

  7. Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors

    DEFF Research Database (Denmark)

    von Deimling, A; Fimmers, R; Schmidt, M C

    2000-01-01

    Brain tumors pose a particular challenge to molecular oncology. Many different tumor entities develop in the nervous system and some of them appear to follow distinct pathogenic routes. Molecular genetic alterations have increasingly been reported in nervous system neoplasms. However......, a considerable number of affected genes remain to be identified. We present here a comprehensive allelotype analysis of 466 nervous system tumors based on loss of heterozygosity (LOH) studies with 129 microsatellite markers that span the genome. Specific alterations of the EGFR, CDK4, CDKN2A, TP53, DMBT1, NF2...... may provide a valuable framework for future studies to delineate molecular pathways in many types of human central nervous system tumors....

  8. Multi-agent cooperative systems applied to precision applications

    International Nuclear Information System (INIS)

    McKay, M.D.; Anderson, M.O.; Gunderson, R.W.; Flann, N.; Abbott, B.

    1998-01-01

    Regulatory agencies are imposing limits and constraints to protect the operator and/or the environment. While generally necessary, these controls also tend to increase cost and decrease efficiency and productivity. Intelligent computer systems can be made to perform these hazardous tasks with greater efficiency and precision without danger to the operators. The Idaho national Engineering and Environmental Laboratory and the Center for Self-Organizing and Intelligent Systems at Utah State University have developed a series of autonomous all-terrain multi-agent systems capable of performing automated tasks within hazardous environments. This paper discusses the development and application of cooperative small-scale and large-scale robots for use in various activities associated with radiologically contaminated areas, prescription farming, and unexploded ordinances

  9. Latino children’s autonomic nervous system reactivity moderates the relations between cumulative socioeconomic adversity in the first five years and externalizing behavior problems at seven years

    Directory of Open Access Journals (Sweden)

    Abbey Alkon

    2016-05-01

    Full Text Available Background: Thirty-seven percent of Hispanic and Latino children under 5 years of age are living in poverty in the United States. Children growing up under conditions of cumulative adversity are at much greater risk for compromised psychosocial adjustment with long-lasting ramifications for mental and physical health. This study assessed whether the relations between adversity early in life and later externalizing behaviors was moderated by children’s autonomic nervous system (ANS reactivity for immigrant, poor, MexicanAmerican children. Methods: A cumulative socioeconomic adversity index of children’s exposure to poverty, father’s absence, household crowding, mothers speaking Spanish, and poor housing condition at 6 months and 1, 3.5, and 5 years of age was calculated. At 5 years, ANS profiles during resting and social- and emotion-evoking challenges were calculated as combined parasympathetic and sympathetic difference scores. At 7 years, parents assessed children’s externalizing behavior problems. Results: Multiple regression models (n=220 showed that the relations between cumulative socioeconomic adversity and externalizing behaviors were moderated by children’s ANS profiles of coactivation during a social, not emotion-evoking, challenge, controlling for relevant covariates. Conclusions: Children living in adverse conditions early in life with specific psychobiologic responses to social challenges may be at risk for developing externalizing behavior problems later in life.

  10. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R

    2000-01-01

    This article focuses on the production of chemokines by resident glial cells of the nervous system. We describe studies in two distinct categories of inflammation within the nervous system: immune-mediated inflammation as seen in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis...

  11. Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies.

    Science.gov (United States)

    Palma, Jose-Alberto; Kaufmann, Horacio

    2018-03-01

    Dysfunction of the autonomic nervous system afflicts most patients with Parkinson disease and other synucleinopathies such as dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure, reducing quality of life and increasing mortality. For example, gastrointestinal dysfunction can lead to impaired drug pharmacodynamics causing a worsening in motor symptoms, and neurogenic orthostatic hypotension can cause syncope, falls, and fractures. When recognized, autonomic problems can be treated, sometimes successfully. Discontinuation of potentially causative/aggravating drugs, patient education, and nonpharmacological approaches are useful and should be tried first. Pathophysiology-based pharmacological treatments that have shown efficacy in controlled trials of patients with synucleinopathies have been approved in many countries and are key to an effective management. Here, we review the treatment of autonomic dysfunction in patients with Parkinson disease and other synucleinopathies, summarize the nonpharmacological and current pharmacological therapeutic strategies including recently approved drugs, and provide practical advice and management algorithms for clinicians, with focus on neurogenic orthostatic hypotension, supine hypertension, dysphagia, sialorrhea, gastroparesis, constipation, neurogenic overactive bladder, underactive bladder, and sexual dysfunction. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  12. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson's disease with autonomic failure

    International Nuclear Information System (INIS)

    Braune, S.; Luecking, C.H.; Reinhardt, M.; Bathmann, J.; Krause, T.; Lehmann, M.

    1998-01-01

    Objective - To selectively investigate postganglionic sympathetic cardiac neurons in patients with Parkinson's disease and autonomic failure. Material and methods - Metaiodobenzylguanidine (MIBG) is a pharmacologically inactive analogue of noradrenaline, which is similarly metabolized in noradrenergic neurons. Therefore the uptake of radiolabelled MIBG represents not only the localization of postganglionic sympathetic neurons but also their functional integrity. Ten patients with Parkinson's disease and autonomic failure underwent standardized autonomic testing, assessment of catecholamine plasma levels and scintigraphy with [ 123 I]MIGB. Results - The cardiac uptake of MIBG, as demonstrated by the heart/mediastinum ratio, was significantly lower in patients in comparison with controls. Scintigraphy with MIBG allowed the selective in-vivo investigation of postganglionic sympathetic cardiac efferent in patients with autonomic failure, a procedure which was previously confined to post-mortem examination. Conclusion - These findings point to a relevant postganglionic pattern of involvement of the autonomic nervous system (ANS) in Parkinson's disease and autonomic failure. (au)

  13. DNA methylation-based classification of central nervous system tumours

    DEFF Research Database (Denmark)

    Capper, David; Jones, David T.W.; Sill, Martin

    2018-01-01

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter-observer variabil......Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter......-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show...

  14. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  15. Microbiota-gut-brain axis and the central nervous system.

    Science.gov (United States)

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  16. Cheap electricity with autonomous solar cell systems

    International Nuclear Information System (INIS)

    Ouwens, C.D.

    1993-01-01

    A comparison has been made between the costs of an autonomous solar cell system and a centralized electricity supply system. In both cases investment costs are the main issue. It is shown that for households in densely populated sunny areas, the use of autonomous solar cell systems is - even with today's market prices - only as expensive or even cheaper than a grid connection, as long as efficient electric appliances are used. The modular nature of solar cell systems makes it possible to start with any number of appliances, depending on the amount of money available to be spent. (author)

  17. Radiation therapy of tumours of the central nervous system

    International Nuclear Information System (INIS)

    Skolyszewski, J.

    1980-01-01

    The aim of this work is to present the principles of radiation therapy of tumours of the central nervous system, according to the experience of the Institute of Oncology in Krakow. The text was designed primarily for the radiotherapists involved in the treatment of tumours of the central nervous system, and may be used as an auxiliary textbook for those preparing for the examination in radiotherapy. (author)

  18. Operator Informational Needs for Multiple Autonomous Small Vehicles

    Science.gov (United States)

    Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal

    2015-01-01

    With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.

  19. Pazopanib efficacy in recurrent central nervous system hemangiopericytomas.

    Science.gov (United States)

    Apra, Caroline; Alentorn, Agusti; Mokhtari, Karima; Kalamarides, Michel; Sanson, Marc

    2018-04-26

    There is currently no treatment for solitary fibrous tumors/hemangiopericytomas (SFT/H) of the central nervous system recurring after multiple surgeries and radiotherapies. The NAB2-STAT6 gene fusion is the hallmark of these tumors, and upregulates Early Growth Factor, activating several growth pathways. We treated two patients presenting pluri-recurrent meningeal SFT/H with Pazopanib, a broad-spectrum tyrosine kinase inhibitor. We analyzed the exome and RNA sequencing data of one of them and, in addition to another meningeal SFT/H, compared it to the transcriptomic profiling of 5 systemic SFT/H. A dramatic clinical and radiological response was observed in both cases, respectively 84 and 43% decrease after 3 months. As a comparison, Pazopanib has only a stabilizing effect in systemic SFT/H. Indeed, central nervous system SFT/H show overexpression of different tyrosine kinases targeted by Pazopanib. Two consecutive patients with untreatable central nervous system SFT/H showed a spectacular partial response to Pazopanib, an unprecedented result in SFT/H. This result could be explained by differences in expression profiles and calls for a confirmation in a larger cohort of patients.

  20. Central nervous system medication use in older adults with intellectual disability: Results from the successful ageing in intellectual disability study.

    Science.gov (United States)

    Chitty, Kate M; Evans, Elizabeth; Torr, Jennifer J; Iacono, Teresa; Brodaty, Henry; Sachdev, Perminder; Trollor, Julian N

    2016-04-01

    Information on the rates and predictors of polypharmacy of central nervous system medication in older people with intellectual disability is limited, despite the increased life expectancy of this group. This study examined central nervous system medication use in an older sample of people with intellectual disability. Data regarding demographics, psychiatric diagnoses and current medications were collected as part of a larger survey completed by carers of people with intellectual disability over the age of 40 years. Recruitment occurred predominantly via disability services across different urban and rural locations in New South Wales and Victoria. Medications were coded according to the Monthly Index of Medical Specialties central nervous system medication categories, including sedatives/hypnotics, anti-anxiety agents, antipsychotics, antidepressants, central nervous system stimulants, movement disorder medications and anticonvulsants. The Developmental Behaviour Checklist for Adults was used to assess behaviour. Data were available for 114 people with intellectual disability. In all, 62.3% of the sample was prescribed a central nervous system medication, with 47.4% taking more than one. Of those who were medicated, 46.5% had a neurological diagnosis (a seizure disorder or Parkinson's disease) and 45.1% had a psychiatric diagnosis (an affective or psychotic disorder). Linear regression revealed that polypharmacy was predicted by the presence of neurological and psychiatric diagnosis, higher Developmental Behaviour Checklist for Adults scores and male gender. This study is the first to focus on central nervous system medication in an older sample with intellectual disability. The findings are in line with the wider literature in younger people, showing a high degree of prescription and polypharmacy. Within the sample, there seems to be adequate rationale for central nervous system medication prescription. Although these data do not indicate non-adherence to