WorldWideScience

Sample records for autonomic nervous function

  1. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  2. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  3. Analysis of Autonomic Nervous System Functional Age and Heart Rate Variability in Mine Workers

    Directory of Open Access Journals (Sweden)

    Vasicko T

    2016-04-01

    Full Text Available Introduction: Heavy working conditions and many unpropitious factors influencing workers health participate in development of various health disorders, among other autonomic cardiovascular regulation malfunction. The aim of this study is to draw a comparison of autonomic nervous system functional age and heart rate variability changes between workers with and without mining occupational exposure.

  4. [Alteration of neurobehavioral and autonomic nervous function in aluminum electrolytic workers].

    Science.gov (United States)

    He, Shuchang; Zhang, Aimin; Niu, Qiao; Wang, Sheng; Chen, Yilan

    2003-05-01

    In order to explore the impairment of Aluminum on the neurobehavioral, autonomic nervous function. Neurobehavioral test battery (NCTB) recommended by WHO and autonomic nervous system (ANS) function test recommended by Ewing DJ were conducted in 32 Al electrolytic workers and 34 controls. Results showed that the scores of confusion-bewilderment and tension-anxious in Al exposed workers were higher than that of control group, while the scores of POMSA, POMSD, POMSF and POMSV in Al-exposed group had no obvious change. The scores of DSY, PA and PAC were lower than that of control group. The scores of DSPF, DDSPB, DSP, SANN, SANP and BVR had no significant alteration. R-R interval variability of maximin ratio of immediate standing up, which reflects parasympathetic nervous modification ability in aluminum electrolytic workers, was lower than that of the control group. This implied that Al exposure had adverse impact on workers' mood state, neurobehavioral and parasympathetic nervous function. PMID:12914271

  5. Early deprivation and autonomic nervous system functioning in post-institutionalized children.

    Science.gov (United States)

    Esposito, Elisa A; Koss, Kalsea J; Donzella, Bonny; Gunnar, Megan R

    2016-04-01

    The relations between early deprivation and the development of the neuroendocrine and central components of the mammalian stress response have been examined frequently. However, little is known about the impact of early deprivation on the developmental trajectories of autonomic function. Children adopted between 15-36 months from institutional care were examined during their first 16 months post-adoption (N = 60). Comparison groups included same-aged peers reared in their birth families (N = 50) and children adopted internationally from overseas foster care (N = 46). The present study examined trajectories of baseline autonomic nervous system function longitudinally following entry into adopted families. Post-institutionalized children had higher sympathetic tone, measured by pre-ejection period (PEP). Individual differences in PEP soon after adoption served as a mediator between early deprivation and parent-reported behavioral problems 2 years post-adoption. There were no group differences in parasympathetic function, indexed by respiratory sinus arrhythmia. All three groups showed similar trajectories of ANS function across the 16 month period. PMID:26497289

  6. Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety.

    Directory of Open Access Journals (Sweden)

    Luba Sominsky

    Full Text Available Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p. exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA axis functioning. Altered autonomic nervous system (ANS activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH in the adrenal glands on postnatal days (PNDs 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli. Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of

  7. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jørgensen, L S; Christiansen, P; Raundahl, U;

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...

  8. Effects of work stress and home stress on autonomic nervous function in Japanese male workers

    OpenAIRE

    Maeda, Eri; IWATA, Toyoto; Murata, Katsuyuki

    2014-01-01

    Autonomic imbalance is one of the important pathways through which psychological stress contributes to cardiovascular diseases/sudden death. Although previous studies have focused mainly on stress at work (work stress), the association between autonomic function and stress at home (home stress) is still poorly understood. The purpose was to clarify the effect of work/home stress on autonomic function in 1,809 Japanese male workers. We measured corrected QT (QTc) interval and QT index on the e...

  9. Novel heart rate parameters for the assessment of autonomic nervous system function in premature infants.

    Science.gov (United States)

    Lucchini, M; Fifer, W P; Sahni, R; Signorini, M G

    2016-09-01

    Autonomic nervous system (ANS) balance is a key factor in homeostatic control of cardiac activity, breathing and certain reflex reactions such as coughing, sneezing and swallowing and thus plays a crucial role for survival. ANS impairment has been related to many neonatal pathologies, including sudden infant death syndrome (SIDS). Moreover, some conditions have been identified as risk factors for SIDS, such as prone sleep position. There is an urgent need for timely and non-invasive assessment of ANS function in at-risk infants. Systematic measurement of heart rate variability (HRV) offers an optimal approach to access indirectly both sympathetic and parasympathetic influences on ANS functioning. In this paper, data from premature infants collected in a sleep physiology laboratory in the NICU are presented: traditional and novel approaches to HRV analyses are applied and compared in order to evaluate their relative merits in the assessment of ANS activity and the influence of sleep position. Indices from time domain and nonlinear approaches contributed as markers of physiological development in premature infants. Moreover, significant differences were observed as a function of sleep position. PMID:27480495

  10. Family conflict, autonomic nervous system functioning, and child adaptation: state of the science and future directions.

    Science.gov (United States)

    El-Sheikh, Mona; Erath, Stephen A

    2011-05-01

    The family is one of the primary contexts of child development. Marital and parent-child conflict (family conflict) are common and predict a wide range of negative behavioral and emotional outcomes in children. Thus, an important task for developmental researchers is to identify the processes through which family conflict contributes to children's psychological maladjustment, as well as vulnerability and protective factors in the context of family conflict. In the current paper, we aim to advance a conceptual model that focuses on indices of children's autonomic nervous system (ANS) functioning that increase vulnerability or provide protection against psychological maladjustment in the context of family conflict. In doing so, we provide a selective review that reflects the state of the science linking family conflict, children's ANS activity, and child psychological adjustment, and offer directions and guidance for future research. Our hope is to accelerate research at the intersection of family conflict and ANS functioning to advance understanding of risk and resilience among children. PMID:23786705

  11. Autonomic nervous regulation of ovarian function by noxious somatic afferent stimulation

    OpenAIRE

    Uchida, Sae; Kagitani, Fusako

    2014-01-01

    It is well known that ovarian function is regulated by hypothalamic–pituitary–ovarian hormones. However, although several histological studies have described the autonomic innervation of the ovary, the involvement of these autonomic nerves in ovarian function is unclear. Recently, it has been shown that both the superior ovarian nerve (SON) and the ovarian nerve plexus (ONP) induce vasoconstrictor activity by activation of alpha 1-adrenoceptors, whereas the SON, but not the ONP, inhibits ovar...

  12. Measuring quality of sleep and autonomic nervous function in healthy Japanese women

    Directory of Open Access Journals (Sweden)

    Sato M

    2014-01-01

    Full Text Available Miki Sato,1 Yuko Yasuhara,2 Tetsuya Tanioka,2 Yukie Iwasa,2 Masafumi Miyake,3 Toshiyuki Yasui,2 Masahito Tomotake,2 Haruo Kobayashi,4 Rozzano C Locsin51Department of Nursing, Faculty of Nursing, Shikoku University, 2Department of Nursing, Institute of Health Biosciences, The University of Tokushima Graduate School, 3Tokushima Prefectural Minami Health Care Center, Tokushima, 4Faculty of Medical Welfare, Kawasaki University of Medical Welfare, Kurashiki, Japan; 5Christine E Lynn College of Nursing, Florida Atlantic University, Boca Raton, FL, USAAbstract: The purpose of this study was to determine the relationship between quality of sleep and autonomic nervous functioning in healthy adult Japanese women using three measures, namely, the Pittsburgh Sleep Quality Index (PSQI for subjective assessment of sleep quality, actigraphy for objective assessment of sleep, and heart rate variability using high frequency and low frequency domains. Participants were 31 healthy women in their 20s to 40s who met the selection criteria, including having normal monthly menstrual periods. Participants were categorized as good or poor sleepers according to their PSQI score. Median correlation coefficients of activity count and high frequency were −0.62 (range −0.43 to −0.84 for good sleepers and −0.45 (range 0.003 to −0.64 for poor sleepers. Good sleepers showed a significantly higher correlation of activity count and high frequency (Z=−2.11, P<0.05. Median correlation coefficients of activity count and low frequency/high frequency were 0.54 (range 0.29–0.73 for good sleepers and 0.41 (range 0.11–0.63 for poor sleepers. The PSQI, actigraphy data, and heart rate variability results showed positive correlations between sleep time as measured by PSQI and duration of inactivity as measured by actigraphy (r=0.446, P<0.05 and sleep time as measured by actigraphy (r=0.377, P<0.05, and a negative correlation between sleep time as measured by PSQI and the

  13. Physiology of the Autonomic Nervous System

    OpenAIRE

    McCorry, Laurie Kelly

    2007-01-01

    This manuscript discusses the physiology of the autonomic nervous system (ANS). The following topics are presented: regulation of activity; efferent pathways; sympathetic and parasympathetic divisions; neurotransmitters, their receptors and the termination of their activity; functions of the ANS; and the adrenal medullae. In addition, the application of this material to the practice of pharmacy is of special interest. Two case studies regarding insecticide poisoning and pheochromocytoma are i...

  14. Functional autonomic nervous system profile in children with autism spectrum disorder

    OpenAIRE

    Kushki, Azadeh; Brian, Jessica; Dupuis, Annie; Anagnostou, Evdokia

    2014-01-01

    Background Autonomic dysregulation has been recently reported as a feature of autism spectrum disorder (ASD). However, the nature of autonomic atypicalities in ASD remain largely unknown. The goal of this study was to characterize the cardiac autonomic profile of children with ASD across four domains affected in ASD (anxiety, attention, response inhibition, and social cognition), and suggested to be affected by autonomic dysregulation. Methods We compared measures of autonomic cardiac regulat...

  15. Social functioning and autonomic nervous system sensitivity across vocal and musical emotion in Williams syndrome and autism spectrum disorder.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2016-01-01

    Both Williams syndrome (WS) and autism spectrum disorders (ASD) are associated with unusual auditory phenotypes with respect to processing vocal and musical stimuli, which may be shaped by the atypical social profiles that characterize the syndromes. Autonomic nervous system (ANS) reactivity to vocal and musical emotional stimuli was examined in 12 children with WS, 17 children with ASD, and 20 typically developing (TD) children, and related to their level of social functioning. The results of this small-scale study showed that after controlling for between-group differences in cognitive ability, all groups showed similar emotion identification performance across conditions. Additionally, in ASD, lower autonomic reactivity to human voice, and in TD, to musical emotion, was related to more normal social functioning. Compared to TD, both clinical groups showed increased arousal to vocalizations. A further result highlighted uniquely increased arousal to music in WS, contrasted with a decrease in arousal in ASD and TD. The ASD and WS groups exhibited arousal patterns suggestive of diminished habituation to the auditory stimuli. The results are discussed in the context of the clinical presentation of WS and ASD. PMID:26248474

  16. Functional state of the autonomic nervous system in bronchial asthma in children

    OpenAIRE

    HONKELDIEVA HURMATHON KAMCHIEVNA; ALIMDZHANOV IBRAHIM INAMOVICH; ABDULLAEVA МAVJUDA ERGASHEVNA; TOJIBOEV TEMUR TOPVOLDI YGLI; MAMATKHYJAEV MIRHOJIDDIN SADRIDDINKHOJI YGLI

    2016-01-01

    These shifts vegetative status have undoubted positive effect on the microcirculation and the rhythm of the circulatory system, facilitating a more rapid liquidation of clinical manifestations of autonomic dysfunction and create psihoemotsinalnogo patient comfort mode.

  17. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function.

    Directory of Open Access Journals (Sweden)

    Huijing Xia

    Full Text Available Oxidative stress in the central nervous system mediates the increase in sympathetic tone that precedes the development of hypertension. We hypothesized that by transforming Angiotensin-II (AngII into Ang-(1-7, ACE2 might reduce AngII-mediated oxidative stress in the brain and prevent autonomic dysfunction. To test this hypothesis, a relationship between ACE2 and oxidative stress was first confirmed in a mouse neuroblastoma cell line (Neuro2A cells treated with AngII and infected with Ad-hACE2. ACE2 overexpression resulted in a reduction of reactive oxygen species (ROS formation. In vivo, ACE2 knockout (ACE2(-/y mice and non-transgenic (NT littermates were infused with AngII (10 days and infected with Ad-hACE2 in the paraventricular nucleus (PVN. Baseline blood pressure (BP, AngII and brain ROS levels were not different between young mice (12 weeks. However, cardiac sympathetic tone, brain NADPH oxidase and SOD activities were significantly increased in ACE2(-/y. Post infusion, plasma and brain AngII levels were also significantly higher in ACE2(-/y, although BP was similarly increased in both genotypes. ROS formation in the PVN and RVLM was significantly higher in ACE2(-/y mice following AngII infusion. Similar phenotypes, i.e. increased oxidative stress, exacerbated dysautonomia and hypertension, were also observed on baseline in mature ACE2(-/y mice (48 weeks. ACE2 gene therapy to the PVN reduced AngII-mediated increase in NADPH oxidase activity and normalized cardiac dysautonomia in ACE2(-/y mice. Altogether, these data indicate that ACE2 gene deletion promotes age-dependent oxidative stress, autonomic dysfunction and hypertension, while PVN-targeted ACE2 gene therapy decreases ROS formation via NADPH oxidase inhibition and improves autonomic function. Accordingly, ACE2 could represent a new target for the treatment of hypertension-associated dysautonomia and oxidative stress.

  18. Autonomic Nervous System and Immune System Interactions

    OpenAIRE

    Kenney, MJ; Ganta, CK

    2014-01-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsiv...

  19. Exercise and autonomic function.

    Science.gov (United States)

    Goldsmith, R L; Bloomfield, D M; Rosenwinkel, E T

    2000-03-01

    The complex interplay between the dichotomous subdivisions of the autonomic nervous system establishes and maintains a delicately tuned homeostasis in spite of an ever-changing environment. Aerobic exercise training can increase activity of the parasympathetic nervous system and decrease sympathetic activity. Conversely, it is well-documented that cardiac disease is often characterized by attenuated parasympathetic activity and heightened sympathetic tone. A correlation between autonomic disequilibrium and disease has led to the hypothesis that exercise training, as a therapy that restores the autonomic nervous system towards normal function, may be associated with, and possibly responsible for, outcome improvements in various populations. This is merely one of the many benefits that is conferred by chronic exercise training and reviewed in this issue. PMID:10758814

  20. Nutritional stimulation of the autonomic nervous system

    Institute of Scientific and Technical Information of China (English)

    Misha DP Luyer; Quirine Habes; Richard van Hak; Wim Buurman

    2011-01-01

    Disturbance of the inflammatory response in the gut is important in several clinical diseases ranging from inflammatory bowel disease to postoperative ileus. Several feedback mechanisms exist that control the inflammatory cascade and avoid collateral damage. In the gastrointestinal tract, it is of particular importance to control the immune response to maintain the balance that allows dietary uptake and utilization of nutrients on one hand, while preventing invasion of bacteria and toxins on the other hand. The process of digestion and absorption of nutrients requires a relative hyporesponsiveness of the immune cells in the gut to luminal contents which is not yet fully understood. Recently, the autonomic nervous system has been identified as an important pathway to control local and systemic inflammation and gut barrier integrity. Activation of the pathway is possible via electrical or via pharmacological interventions, but is also achieved in a physiological manner by ingestion of dietary lipids. Administration of dietary lipids has been shown to be very effective in reducing the inflammatory cascade and maintaining intestinal barrier integrity in several experimental studies. This beneficial effect of nutrition on the inflammatory inflammatory response and intestinal barrier integrity opens new therapeutic opportunities for treatment of certain gastrointestinal disorders. Furthermore, this neural feedback mechanism provides more insight in the relative hyporesponsiveness of the immune cells in the gut. Here, we will discuss the regulatory function of the autonomic nervous system on the inflammatory response and gut barrier function and the potential benefit in a clinical setting.

  1. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Ineke Nederend

    2016-04-01

    Full Text Available Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that measure both branches of the nervous system for prolonged periods of time in well-defined patient cohorts in various phases of childhood and adolescence are currently lacking. Pending such studies, there is not yet a good grasp on the extent and direction of sympathetic and parasympathetic autonomic function in pediatric congenital heart disease. Longitudinal studies in homogenous patient groups linking autonomic nervous system function and clinical outcome are warranted.

  2. Discrimination ability and reproducibility of a new index reflecting autonomic nervous function based on pulsatile amplitude of photoplethysmography.

    Science.gov (United States)

    Kano, Yusuke; Yoshizawa, Makoto; Sugita, Norihiro; Abe, Makoto; Homma, Noriyasu; Tanaka, Akira; Yamauchi, Tsuyoshi; Miura, Hidekazu; Shiraishi, Yasuyuki; Yambe, Tomoyuki

    2014-01-01

    A new physiological index (μ(PA)) is proposed to represent the autonomic nervous system (ANS) function. The index μ(PA) is defined as the natural logarithm of the ratio between two different frequency components of the pulsatile amplitude of the photoplethysmogram (PPG) signal. The discrimination ability and the reproducibility of μ(PA) have been compared with other traditional ANS indices. In the experiment, the electrocardiogram, the PPG and continuous blood pressure were measured in 59 healthy young subjects (age 25.7 ± 6.3) and 86 healthy elderly subjects (age 70.2 ± 4.1) at rest. The discrimination ability and the reproducibility were evaluated by Cohen's d between young and elderly groups and by the interclass correlation coefficient, respectively. The results showed that the elderly subjects were significantly (p<;0.001) lower than young subjects in μ(PA) and a few traditional indices introduced to be compared with μ(PA). Therefore, it suggests that μ(PA) is associated with the decrease in the ANS function accompanied by aging. Moreover, it showed that the discrimination ability and the reproducibility of the proposed index are comparable or larger than those of traditional indices. The proposed index based on the PPG signal will be applied to tele-healthcare systems for monitoring people's health in daily life in combination with the ratio of the standard deviation of the R-R intervals to their average value (CVRR). PMID:25570325

  3. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis

    OpenAIRE

    Taweesak Janyacharoen; Narupon Kunbootsri; Preeda Arayawichanon; Seksun Chainansamit; Kittisak Sawanyawisuth

    2015-01-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients.Twenty-six allergic rhinitis patients, 12 males and 14 females wer...

  4. Effect of intra-abdominal fat accumulation on autonomic nervous function in patients with hypertension

    Directory of Open Access Journals (Sweden)

    Hong XIAO

    2012-05-01

    Full Text Available Objective  To explore the relationship between intra-abdominal fat accumulation and heart rate variability. Methods  A total of 353 patients with hypertension were enrolled in this study, among them there were 197 males and 156 females, aged from 27 to 85 years old with a mean of 55±13 years. All the patients received abdominal fat ultrasonography, 24-hour ambulatory ECG and blood biochemical tests, and they were divided into intra-abdominal fat accumulation group and normal intra-abdominal fat group according to the fat thickness measured by B-mode ultrasound value (male ≥38.5mm, female ≥34.7mm. They were redivided into four subgroups based on interquartile range of the fat thickness for comparing the difference in heart rate variability between 4 groups. Results  Each subject had a 24-hour ECG recording taken and the standard HRV time-domain indices: SDNN (standard deviation of the normal-to-normal RR intervals, reflecting total nervous tension, SDANN (standard deviation of the averages of RR intervals in all 5-minute segments, reflecting sympathetic tone, and RMSSD (the root mean square successive differences and SDNN index (mean of the standard deviations of RR intervals in all 5-minute segments, reflecting vagal nerve tone were determined. Results showed all the aforesaid indices were lower in the intra-abdominal fat group than in the normal intra-abdominal fat group (P 38.0mm group than in 38.0mm group than in 15.6-27.0mm group; SDNN and SDNN index were significantly lower in the 27.1-38.0mm group than in < 15.5mm group; SDNN was significantly lower in the 27.1-38.0mm group than in 15.6-27.0mm group. Linear regression analysis indicated intra-abdominal fat thickness, fasting blood glucose and sex were the main risk factors of the SDNN; abdominal fat thickness and sex were main factors influencing SDANN, and abdominal fat thickness, fasting blood glucose and diastolic blood pressure were main influencial factors of SDNN index

  5. N-Acetylmannosamine improves sleep-wake quality in middle-aged mice: relevance to autonomic nervous function.

    Science.gov (United States)

    Kuwahara, Masayoshi; Ito, Koichi; Hayakawa, Koji; Yagi, Shintaro; Shiota, Kunio

    2015-01-01

    Aging is associated with a variety of physiological changes originating peripherally and centrally, including within the autonomic nervous system. Sleep-wake disturbances constitute reliable hallmarks of aging in several animal species and humans. Recent studies have been interested in N-acetylmannosamine (ManNAc) a potential therapeutic agent for improving quality of life, as well as preventing age-related cognitive decline. In this study, ManNAc (5.0 mg/ml) was administered in the drinking water of middle-aged male C57BL/6J mice (55 weeks old) for 7 days. Mice were housed under a 12:12 h light:dark cycle at 23-24 °C. We evaluated bio-behavioral activity using electrocardiogram, body temperature and locomotor activity recorded by an implanted telemetry transmitter. To estimate sleep-wake profile, surface electroencephalogram and electromyogram leads connected to a telemetry transmitter were also implanted in mice. Autonomic nervous activity was evaluated using power spectral analysis of heart rate variability. ManNAc-treated mice spent more time in a wakeful state and less time in slow wave sleep during the dark phase. Parasympathetic nervous activity was increased following ManNAc treatment, then the sympatho-vagal balance was shifted predominance of parasympathetic nervous system. Furthermore, improvement in sleep-wake pattern was associated with increased parasympathetic nervous activity. These results suggest that ManNAc treatment can improve bio-behavioral activity and sleep-wake quality in middle-aged mice. This may have implications for improving sleep patterns in elderly humans. PMID:25443216

  6. Sensitivity of the resting-state haemodynamic response function estimation to autonomic nervous system fluctuations.

    Science.gov (United States)

    Wu, Guo-Rong; Marinazzo, Daniele

    2016-05-13

    The haemodynamic response function (HRF) is a key component of the blood oxygen level-dependent (BOLD) signal, providing the mapping between neural activity and the signal measured with functional magnetic resonance imaging (fMRI). Most of the time the HRF is associated with task-based fMRI protocols, in which its onset is explicitly included in the design matrix. On the other hand, the HRF also mediates the relationship between spontaneous neural activity and the BOLD signal in resting-state protocols, in which no explicit stimulus is taken into account. It has been shown that resting-state brain dynamics can be characterized by looking at sparse BOLD 'events', which can be retrieved by point process analysis. These events can be then used to retrieve the HRF at rest. Crucially, cardiac activity can also induce changes in the BOLD signal, thus affecting both the number of these events and the estimation of the haemodynamic response. In this study, we compare the resting-state haemodynamic response retrieved by means of a point process analysis, taking the cardiac fluctuations into account. We find that the resting-state HRF estimation is significantly modulated in the brainstem and surrounding cortical areas. From the analysis of two high-quality datasets with different temporal and spatial resolution, and through the investigation of intersubject correlation, we suggest that spontaneous point process response durations are associated with the mean interbeat interval and low-frequency power of heart rate variability in the brainstem. PMID:27044997

  7. ACE2-Mediated Reduction of Oxidative Stress in the Central Nervous System Is Associated with Improvement of Autonomic Function

    OpenAIRE

    Huijing Xia; Sonia Suda; Sharell Bindom; Yumei Feng; Gurley, Susan B.; Dale Seth; L Gabriel Navar; Eric Lazartigues

    2011-01-01

    Oxidative stress in the central nervous system mediates the increase in sympathetic tone that precedes the development of hypertension. We hypothesized that by transforming Angiotensin-II (AngII) into Ang-(1-7), ACE2 might reduce AngII-mediated oxidative stress in the brain and prevent autonomic dysfunction. To test this hypothesis, a relationship between ACE2 and oxidative stress was first confirmed in a mouse neuroblastoma cell line (Neuro2A cells) treated with AngII and infected with Ad-hA...

  8. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease

    OpenAIRE

    Ineke Nederend; Jongbloed, Monique R. M.; de Geus, Eco J. C.; Blom, Nico A; Arend D. J. ten Harkel

    2016-01-01

    Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that...

  9. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    OpenAIRE

    Dierckx, Bram

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate, respiratory rate, digestion, and perspiration. It is divided into two partially antagonistic systems: the sympathetic nervous system and the parasympathetic or vagal nervous system. In general, the vagal syste...

  10. Central nervous system involvement in the autonomic responses to psychological distress

    OpenAIRE

    de Morree, H. M.; Szabó, B. M.; Rutten, G.-J.; Kop, W.J.

    2012-01-01

    Psychological distress can trigger acute coronary syndromes and sudden cardiac death in vulnerable patients. The primary pathophysiological mechanism that plays a role in stress-induced cardiac events involves the autonomic nervous system, particularly disproportional sympathetic activation and parasympathetic withdrawal. This article describes the relation between psychological distress and autonomic nervous system function, with a focus on subsequent adverse cardiovascular outcomes. The rol...

  11. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    NARCIS (Netherlands)

    B. Dierckx (Bram)

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate, respiratory

  12. Autonomic nervous dysfunction in hamsters infected with West Nile virus.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Clinical studies and case reports clearly document that West Nile virus (WNV can cause respiratory and gastrointestinal (GI complications. Other functions controlled by the autonomic nervous system may also be directly affected by WNV, such as bladder and cardiac functions. To investigate how WNV can cause autonomic dysfunctions, we focused on the cardiac and GI dysfunctions of rodents infected with WNV. Infected hamsters had distension of the stomach and intestines at day 9 after viral challenge. GI motility was detected by a dye retention assay; phenol red dye was retained more in the stomachs of infected hamsters as compared to sham-infected hamsters. The amplitudes of electromygraphs (EMGs of intestinal muscles were significantly reduced. Myenteric neurons that innervate the intestines, in addition to neurons in the brain stem, were identified to be infected with WNV. These data suggest that infected neurons controlling autonomic function were the cause of GI dysfunction in WNV-infected hamsters. Using radiotelemetry to record electrocardiograms and to measure heart rate variability (HRV, a well-accepted readout for autonomic function, we determined that HRV and autonomic function were suppressed in WNV-infected hamsters. Cardiac histopathology was observed at day 9 only in the right atrium, which was coincident with WNV staining. A subset of WNV infected cells was identified among cells with hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4 as a marker for cells in the sinoatrial (SA and atrioventricular (AV nodes. The unique contribution of this study is the discovery that WNV infection of hamsters can lead to autonomic dysfunction as determined by reduced HRV and reduced EMG amplitudes of the GI tract. These data may model autonomic dysfunction of the human West Nile neurological disease.

  13. Obesity and the Activity of the Autonomic Nervous System

    OpenAIRE

    ÇOLAK, Ramis

    2000-01-01

    This study was conducted to examine the autonomic nervous system functions of obese people. The study group consisted of 30 healthy obese people (20 female, 10 male, age range 18-58, median 37.6±9.7 years of age) and the control group consisted of 30 healthy nonobese people (18 female, 12 male, age range 17- 56, median 34.4±7.5 years). Each function was tested by non-invasive applications (orthostatic test, isometric exercise test, Valsalva ratio test, 30/15 ratio test, heart rate...

  14. The impact of posttraumatic stress disorder versus resilience on nocturnal autonomic nervous system activity as functions of sleep stage and time of sleep.

    Science.gov (United States)

    Kobayashi, Ihori; Lavela, Joseph; Bell, Kimberly; Mellman, Thomas A

    2016-10-01

    Posttraumatic stress disorder (PTSD) has been associated with sleep disturbances including alterations in sleep stages and recently, elevated nocturnal autonomic nervous system (ANS) arousal (i.e., dominance of the sympathetic nervous system over the parasympathetic nervous system). Data suggest that sleep contributes to the regulation of ANS activity. In our previous ambulatory heart rate variability (HRV) monitoring study, strong relationships between sleep and nocturnal ANS activity in resilient participants (i.e., individuals who had never had PTSD despite exposure to high-impact trauma) were not seen with PTSD. In this study, we examined the impact of PTSD vs. resilience on ANS activity as a function of sleep stage and time of sleep. Participants (age 18-35) with current PTSD (n=38) and resilience (n=33) completed two overnight polysomnography recordings in a lab setting. The second night electrocardiogram was analyzed for frequency domain HRV parameters and heart rate within rapid-eye-movement (REM) and non-REM (NREM) sleep periods. Results indicated that ANS arousal indexed by HRV was greater during REM compared with NREM sleep and that the REM-NREM difference was greater in the PTSD than in the resilient participants. This effect of PTSD was reduced to non-significance when analyses controlled for REM sleep percentage, which was lower with PTSD. Exploratory analyses revealed that the REM-NREM difference in HRV was correlated with REM sleep percentage in resilient participants, but not with PTSD. In contrast with our data from home settings, the present study did not find increased overall nocturnal ANS arousal with PTSD. Analyses did reveal higher heart rate during initial NREM sleep with more rapid decline over the course of NREM sleep with PTSD compared with resilience. Findings suggest that elevated ANS arousal indexed by heart rate with PTSD is specific to the early part of sleep and possible impairment in regulating ANS activity with PTSD related to

  15. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis

    Directory of Open Access Journals (Sweden)

    Taweesak Janyacharoen

    2015-10-01

    Full Text Available Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients.Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks.There were statistically significant increased low frequency normal units (LF n.u., PNIF and showed decreased high frequency normal units (HF n.u. at six weeks after aquatic exercise compared with the control group.Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergicrhinitis patients.

  16. Is There Anything "Autonomous" in the Nervous System?

    Science.gov (United States)

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  17. Gyrosonics a Novel Stimulant for Autonomic Nervous System

    CERN Document Server

    Ghatak, S K; Choudhuri, R; Banerjee, S

    2009-01-01

    Gyrosonics refers to novel audio binaural stimulus that produces rotational perceptions of sound movement in head at a particular predetermined frequency. Therapeutic effect observed with this is considered to be associated with modification of arousal of autonomic nervous system. The heart rate variability (HRV), non-invasive measure of autonomic nervous system, has been measured for group of 30 subjects for pre- and post- gyrosonic installation. The time- and frequency- domain analysis of HRV results show overall decrease in sympathetic response and increase in para- sympathetic response due to listening of gyro sonics.

  18. Patterns of Sensitivity to Emotion in Children with Williams Syndrome and Autism: Relations between Autonomic Nervous System Reactivity and Social Functioning

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Grichanik, Mark; Arnold, Andrew J.; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2015-01-01

    Williams syndrome (WS) and autism spectrum disorder (ASD) are associated with atypical social-emotional functioning. Affective visual stimuli were used to assess autonomic reactivity and emotion identification, and the social responsiveness scale was used to determine the level social functioning in children with WS and ASD contrasted with typical…

  19. Patterns of Sensitivity to Emotion in Children with Williams Syndrome and Autism: Relations Between Autonomic Nervous System Reactivity and Social Functioning.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Grichanik, Mark; Arnold, Andrew J; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2015-08-01

    Williams syndrome (WS) and autism spectrum disorder (ASD) are associated with atypical social-emotional functioning. Affective visual stimuli were used to assess autonomic reactivity and emotion identification, and the social responsiveness scale was used to determine the level social functioning in children with WS and ASD contrasted with typical development (TD), to examine syndrome-specific and syndrome-general features. Children with ASD exhibited the highest arousal in response to faces, with a lack of difference in autonomic sensitivity across different emotional expressions, unlike in WS and TD. The WS group demonstrated unique deficits in identifying neutral stimuli. While autonomic responsivity to neutral faces was associated with social functioning in all children, converging profiles characterized children with WS contrasted with TD and ASD. PMID:25800866

  20. An Electerophisioligic Study Of Autonomic Nervous System In Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Noorolahi Moghaddam H

    2003-11-01

    Full Text Available Autonomic nervous system dysfunction in diabetics can occur apart from peripheral sensorimotor polyneuropathy and sometimes leads to complaints which may be diagnosed by electrodiagnostic methods. Moreover glycemic control of these patients may prevent such a complications."nMaterials and Methods: 30 diabetic patients were compared to the same number of age and sex-matched controls regarding to electrophysiologic findings of autonomic nervous system. Symptoms referable to autonomic disorder including nightly diarrhea, dizziness, urinary incontinence, constipation, nausea, and mouth dryness were recorded in all diabetic patients. Palmar and plantar SSR and expiration to inspiration ratio (E: I and Valsalva ratio were recorded in all diabetics and control individuals by electromyography device. In addition NCS was performed on two sensory and two motor nerves in diabetic patients."nResults: There was no relation between age of diabetics and abnormal D: I ratio, Valsalva ratio and degree of electrophysiologic autonomic impairment. Also no relation between peripheral sensorimotor polyneuropathy and electrophysiologic autonomic impairment was found. Plantar SSR was absent in 80% of diabetics with orthostatic hypotension (p~ 0.019. Palmar and plantar SSR were absent in many diabetics in comparison to control group (for palmar SSR p~ 0.00 and for plantar SSR p< 0.015. There was no relation between diabetes duration since diagnosis and electrophysiologic autonomic impairment."nConclusion: According to the above mentioned findings diabetic autonomic neuropathy develops apart from peripheral sensorimotor polyneuropathy and probably with different mechanisms. Remarkable absence of palmar SSR in diabetics with orthostatic hypotension can be due to its sympathetic origin. Absence of any relation between diabetes duration and electrophysiologic autonomic impairment can be due to late diagnosis of type 2 diabetes or no pathophysiologic relation between chronic

  1. Impact of Six-Month Caloric Restriction on Autonomic Nervous System Activity in Healthy, Overweight, Individuals

    OpenAIRE

    de Jonge, Lillian; Moreira, Emilia AM; Martin, Corby K.; Ravussin, Eric

    2009-01-01

    Caloric restriction (CR) increases maximum lifespan but the mechanisms are unclear. Dominance of the sympathetic nervous System (SNS) over the Parasympathetic Nervous System (PNS) has been shown to be a strong risk factor for cardiovascular disease. Obesity and aging are associated with increased SNS activity and weight loss and/or exercise seem to have positive effects on this balance. We therefore evaluated the effect of different approaches of CR on autonomic function in 48 overweight indi...

  2. Investigation of Autonomic Nervous System Function and Influencing Factors of Employees in Changchun%长春市企业员工自主神经系统功能状况及影响因素调查

    Institute of Scientific and Technical Information of China (English)

    赵璐; 张秀敏; 刘红箭; 李晶华; 吴方园; 刘妍妤; 刘莹圆; 王云

    2016-01-01

    目的:通过测量长春市企业员工的心率变异性,了解其自主神经系统功能状况,分析相关影响因素,为改善企业员工自主神经系统功能提供参考依据。方法:采用整群抽样的方法,以自填式调查问卷的形式收集企业员工的基本信息,采用SUN-8800健康检测系统对长春市两家企业427名员工进行心率变异性测定。结果:调查人群自主神经系统活性偏低的检出率为75.2%,调节功能异常的检出率为63.0%。多元线性回归分析显示,性别、年龄、企业性质、BMI指数、吸烟、饮酒对该人群的心率变异性频域指标的影响具有统计学意义(P<0.05)。结论:长春市企业员工中普遍存在自主神经系统活性减低和调节功能失衡的现象,男性、大龄、超重与肥胖、吸烟、饮酒是企业员工自主神经系统功能的危险因素,其中,超重与肥胖、吸烟、饮酒是应进行干预的重要危险因素。%Objective: To know the status of autonomic nervous system function, analyze influencing factors, provide scientific basis for making policy of autonomic nervous system function improvement of employees in Changchun by measuring their heart rate variability. Methods:Questionnaire and SUN - 8800 health detecting system were conducted among 427 employees of 2 enterprises to gather essential information and determine heart rate variability through cluster sampling method. Results:There were 75. 2% of the survey population with lower functional ac⁃tiveness of the autonomic nervous system and 63. 0% with unbalanced regulation of autonomic nervous system. The results of multiple linear re⁃gression analysis indicated that there were statistical differences(P<0. 05) in frequency-domain indicators of heart rate variability because of different sex, age, type of enterprise, BMI index, smoking and drinking. Conclusion: The autonomic nervous system function of employees in

  3. Lost among the trees? The autonomic nervous system and paediatrics.

    Science.gov (United States)

    Rees, Corinne A

    2014-06-01

    The autonomic nervous system (ANS) has been strikingly neglected in Western medicine. Despite its profound importance for regulation, adjustment and coordination of body systems, it lacks priority in training and practice and receives scant attention in numerous major textbooks. The ANS is integral to manifestations of illness, underlying familiar physical and psychological symptoms. When ANS activity is itself dysfunctional, usual indicators of acute illness may prove deceptive. Recognising the relevance of the ANS can involve seeing the familiar through fresh eyes, challenging assumptions in clinical assessment and in approaches to practice. Its importance extends from physical and psychological well-being to parenting and safeguarding, public services and the functioning of society. Exploration of its role in conditions ranging from neurological, gastrointestinal and connective tissue disorders, diabetes and chronic fatigue syndrome, to autism, behavioural and mental health difficulties may open therapeutic avenues. The ANS offers a mechanism for so-called functional illnesses and illustrates the importance of recognising that 'stress' takes many forms, physical, psychological and environmental, desirable and otherwise. Evidence of intrauterine and post-natal programming of ANS reactivity suggests that neonatal care and safeguarding practice may offer preventive opportunity, as may greater understanding of epigenetic change of ANS activity through, for example, accidental or psychological trauma or infection. The aim of this article is to accelerate recognition of the importance of the ANS throughout paediatrics, and of the potential physical and psychological cost of neglecting it. PMID:24573884

  4. The autonomic nervous system at high altitude

    OpenAIRE

    Hainsworth, Roger; Drinkhill, Mark J.; Rivera-Chira, Maria

    2007-01-01

    The effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. Sympathetic activity increases and there are increases in blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise. The sympathetic excitation results from hypoxia, partly through chemoreceptor reflexes and partly through altered baroreceptor function. High pulmonary arterial pressures may also cause reflex systemic...

  5. 高血压前期与自主神经功能改变关系分析%The Relationship between prehypertension and the Changes of Autonomic Nervous System Function

    Institute of Scientific and Technical Information of China (English)

    郭琳; 聂连涛; 李中健

    2014-01-01

    目的:探讨高血压前期( prehypertension,PHT)与自主神经功能改变的关系,为预防高血压发生提供依据。方法根据纳入、排除标准,选取2013年1月—2014年3月来河南大学淮河医院就诊的患者520例。根据《中国高血压指南》(2010)中PHT的诊断标准,将520例患者分为对照组(非PHT组)和研究组( PHT组)。其中,对照组200例,研究组320例,根据收缩压和舒张压升高情况,将研究组分为3个亚组。应用美国DMS公司12.0TOP版动态心电图分析软件,监测心率减速力( deceleration capacity of rate,DC)和心率变异性( heart rate variability,HRV)两个自主神经功能指标,定性、定量分析两组自主神经功能改变情况。结果研究组DC低于对照组,差异有统计学意义(P0.05)。结论 PHT的发生可能与自主神经功能失调有关。DC和HRV可以定性、定量了解PHT人群自主神经功能改变情况,及时调整自主神经功能有助于预防高血压的发生。%Objective To explore the relationship between prehypertension and the changes of autonomic nervous sys-tem function,and to provide evidence for the prevention of hypertension. Methods By random sampling method,520 patients visiting in Huaihe Hospital of Henan University from January 2013 to March 2014 were selected and divided into control group (non PHT group,n=200)and research group(PHT group,n=320)according to the diagnostic criteria for PHT mentioned in the" Chinese Hypertension Guide",the latter being subdivided into three groups according to the rise of systolic and diastolic blood pressure. Two autonomic nervous function indexes,the deceleration capacity of rate( deceleration capacity of rate,DC) and heart rate variability( heart rate variability,HRV)were detected to compare the two groups' autonomic function change qualitatively and quantitatively,by DMS 12. 0 TOP version,a kind of dynamic ECG analysis software

  6. [State of the autonomic nervous system after induced abortion in the lst trimester].

    Science.gov (United States)

    Bakuleva, L P; Gatina, G A; Kuz'mina, T I; Solov'eva, A D

    1990-04-01

    The autonomic nervous system has been examined in 271 patients with a history of first-trimester induced abortion. It was ascertained that induced abortion affected the autonomic nervous system, thus impairing adaptive potentials and entailing the onset or aggravation of preexisting autonomic vascular dystonia. PMID:2378404

  7. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  8. Cardiac sympathetic dysfunction in Parkinson's disease. Relationship between results of 123I-MIBG scintigraphy and autonomic nervous function evaluated by the Valsalva maneuver

    International Nuclear Information System (INIS)

    We examined whether the results of 123I-MIBG scintigraphy reflect cardiac sympathetic nerve function in patients with Parkinson's disease (PD). The subjects were 62 patients with PD (age, 65.4±6.3 years) and 53 controls (65.2±7.1 years). All subjects underwent 123I-MIBG scintigraphy and QTc interval measurement on electrocardiogram (ECG). Hemodynamic autonomic function was estimated by the Valsalva maneuver in 37 subjects (63.9±5.2 years) randomly selected from the patients with PD. As control, the Valsalva maneuver was also done in 20 randomly selected controls (64.1±5.0 years), and 123I-MIBG scintigraphy was performed in 21 controls (67.7±5.3 years old). The subjects rested in a supine position for 20 min and were given an intravenous injection of 111 MBq 123I-MIBG. Relative organ uptake was determined by the region of interest (ROI) in the anterior view and the ratio of average pixel count in the heart (H) to that in the mediastinum (M) was calculated (H/M ratio) for early (after 15 min) and delayed (after 3 hrs) periods. The Valsalva maneuver was done by having the subjects exhale into a mouthpiece at an expiratory pressure of 40 mmHg for 15 seconds. Blood pressure and RR intervals were measured during the Valsalva maneuver by tonometry, using a noninvasive blood pressure monitoring system (ANS 508, Nihon Colin Co., Ltd.). Baroreceptor reflex sensitivities (BRS) of the second phase (BRS II) and fourth phase (BRS IV) of the Valsalva maneuver were calculated, and blood pressure elevations during the late second phase (IIp) and fourth phase (IVp) were measured. QTc was greater in the patients with PD (417 ms) than in the control subjects (409 ms). The H/M ratios of the early and delayed images in the patients with PD (1.76, 1.61) were significantly lower than those in the control subjects (2.56, 2.45). The early and delayed H/M ratios significantly correlated with the severity of disease according to Hoehn-Yahr stage. QTc interval and IVp significantly

  9. Involvement of the autonomic nervous system in Chagas heart disease

    Directory of Open Access Journals (Sweden)

    Edison Reis Lopes

    1983-12-01

    Full Text Available The autonomic nervous system and especially the intracardiac autonomic nervous system is involved in Chagas' disease. Ganglionitis and periganglionitis were noted in three groups ofpatients dying with Chagas'disease: 1 Those in heart failure; 2 Those dying a sudden, non violent death and; 3 Those dying as a consequence ofaccidents or homicide. Hearts in the threegroups also revealed myocarditis and scattered involvement of intramyocardial ganglion cells as well as lesions of myelinic and unmyelinic fibers ascribable to Chagas'disease. In mice with experimentally induced Chagas' disease weobserved more intensive neuronal lesions of the cardiac ganglia in the acute phase of infection. Perhaps neuronal loss has a role in the pathogenesis of Chagas cardiomyopathy. However based on our own experience and on other data from the literature we conclude that the loss of neurones is not the main factor responsible for the manifestations exhibited by chronic chagasic patients. On the other hand the neuronal lesions may have played a role in the sudden death ofone group of patients with Chagas'disease but is difficult to explain the group of patients who did not die sudderly but instead progressed to cardiac failure.

  10. Motor execution detection based on autonomic nervous system responses

    International Nuclear Information System (INIS)

    Triggered assistance has been shown to be a successful robotic strategy for provoking motor plasticity, probably because it requires neurologic patients’ active participation to initiate a movement involving their impaired limb. Triggered assistance, however, requires sufficient residual motor control to activate the trigger and, thus, is not applicable to individuals with severe neurologic injuries. In these situations, brain and body–computer interfaces have emerged as promising solutions to control robotic devices. In this paper, we investigate the feasibility of a body–machine interface to detect motion execution only monitoring the autonomic nervous system (ANS) response. Four physiological signals were measured (blood pressure, breathing rate, skin conductance response and heart rate) during an isometric pinching task and used to train a classifier based on hidden Markov models. We performed an experiment with six healthy subjects to test the effectiveness of the classifier to detect rest and active pinching periods. The results showed that the movement execution can be accurately classified based only on peripheral autonomic signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity of 85.2%. These results are encouraging to perform further research on the use of the ANS response in body–machine interfaces. (paper)

  11. The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system

    OpenAIRE

    Porges, Stephen W.

    2009-01-01

    The polyvagal theory describes an autonomic nervous system that is influenced by the central nervous system, sensitive to afferent influences, characterized by an adaptive reactivity dependent on the phylogeny of the neural circuits, and interactive with source nuclei in the brainstem regulating the striated muscles of the face and head. The theory is dependent on accumulated knowledge describing the phylogenetic transitions in the vertebrate autonomic nervous system. Its specific focus is on...

  12. Assessment of Fetal Autonomic Nervous System Activity by Fetal Magnetocardiography

    Directory of Open Access Journals (Sweden)

    Akimune Fukushima

    2008-01-01

    Full Text Available Aim: To clarify the significance of heart rate variability for the evaluation of an autonomic nervous system (ANS in the normal fetus using fetal magnetocardiography (FMCG.Methods: Subjects consisted of normal pregnancy (n = 35 at 28–39 weeks gestation. FMCG was recorded using 64-channel magnetocardiography (MCG in a magnetically shielded room. The QRS interval was derived from signal-averaged MCG. The R–R interval variability induced by an R-wave trigger was eventually adopted to calculate for time-domain and frequency domain analysis. The power spectrum in the frequency domain was derived from frequency-field components using the maximum entropy method of fetal heart rate variability. Based on frequency analysis, the ranges of the LF and HF domains were defined as 0.01–0.15 and 0.15–0.4 Hz, respectively. We defined a coeffi cient of variance (CVRR as an index of parasympathetic activity, and defined a low frequency/high frequency (LF/HF ratio as a sympathetic activity.Results: The value of CVRR in the normal pregnancy group displayed a slight increasing trend with gestational age (y = 1.77 + 0.10x; r = 0.32. In contrast, the LF/HF ratio in the normal pregnancy group clearly increased over the gestational period (one-way ANOVA: P = 0.003.Conclusions: Analyses based on the time and frequency domains of heart rate variability using FMCG enable an evaluation of fetal ANS activity. Sympathetic nervous activity increased with gestational age in the normal pregnancy group.

  13. Modulation of Autonomous Nervous System activity by gyrosonic stimulation

    CERN Document Server

    Ghatak, S K; Choudhuri, R; Bandopadhaya, S

    2010-01-01

    A novel audio binaural stimulus that generates rotational perceptions of sound movement in brain at a particular predetermined frequency is referred as gyrosonics. The influence of gyrosonics on autonomic nervous system of healthy subjects has been examined by analyzing heart rate variability (HRV) in time- and frequency- domain. The M-lagged Poincare plot shows that the parameters SD1, SD2 and ratio SD12 (SD1/SD2) increases with lagged number M, and M-dependence is well described by Pade' approximant $\\chi \\frac{1+\\beta M}{1+\\gamma M}$ where values of $\\chi$, $\\beta$ and $ \\gamma$ depend on parameters SD1,SD2 and SD12. The values of these parameters for different M are augmented after gyrosonic stimulation. The slope and magnitude of curvature of SD1 and SD12 vs M plot increase considerably due to stimulation. The DFA analysis exhibits decrease in value of exponent $\\alpha$ due to stimulation. This stimulation results slower Heart rate, higher values of the standard deviation SD and the root-mean squared suc...

  14. Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases.

    Science.gov (United States)

    He, Bo; Lu, Zhibing; He, Wenbo; Huang, Bing; Jiang, Hong

    2016-06-01

    The cardiac autonomic nervous system has been known to play an important role in the development and progression of cardiovascular diseases. Autonomic modulation by electrical stimulation of the parasympathetic nervous system, which increases the parasympathetic activity and suppresses the sympathetic activity, is emerging as a therapeutic strategy for the treatment of cardiovascular diseases. Here, we review the recent literature on autonomic modulation by electrical stimulation of the parasympathetic nervous system, including vagus nerve stimulation, transcutaneous auricular vagal stimulation, spinal cord stimulation, and ganglionated plexi stimulation, in the treatment of heart failure, atrial fibrillation, and ventricular arrhythmias. PMID:26914959

  15. The Nervous System and Gastrointestinal Function

    Science.gov (United States)

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  16. Functional Imaging of Autonomic Regulation: Methods and Key Findings

    OpenAIRE

    Macey, Paul M.; Ogren, Jennifer A.; Kumar, Rajesh; Harper, Ronald M.

    2016-01-01

    Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI). The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and ...

  17. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    and REM sleep control, indicating that the disorder may serve as a human model for the sleep-wake and REM sleep flip-flop switches. The increased frequency of transitions may cause increased sympathetic activity during sleep and thereby increased heart rate, or the increased heart rate could be caused...... confirm that hypocretin deficiency affects the autonomic nervous system of patients with narcolepsy and that the hypocretin system is important for proper heart rate modulation at rest.Furthermore, it was shown that hypocretin deficiency and cataplexy are associated with signs of destabilized sleep-wake...

  18. A Comparative Study of Gender Differences in Age Associated Changes in Autonomic Nervous System

    Directory of Open Access Journals (Sweden)

    Kiran D Thorat

    2013-06-01

    Full Text Available There is much clinical evidence to suggest that cardiovascular functions vary both in males and females and the activity of autonomic nervous system varies with age and gender. The cardiovascular responses of blood pressure, cardiac output, heart rate and other variables to change in posture differ between the sexes. This study evaluated the gender differences in age-associated changes in cardiac sympathetic activity. This was a prospective study with the Primary Data which was collected from Pravara Rural Hospital Loni, Maharashtra, India. Total 80 completely healthy male and female subjects were selected for the study and divided into three groups according to their age. All the subjects were evaluated using CANWIN cardiac autonomic neuropathy analyzer; a windows based cardiac autonomic neuropathy analysis system with interpretation.Descriptive statistics was done using “unpaired t” test and one way ANOVA results were used to compare between the three study groups. Comparison of outcome parameters was calculated with significance test. This study suggests that gender differences exist in age-related changes in cardiac sympathetic activity. There is marked influence of age on sympathetic nervous system activation due to impaired sensitivity of baroreceptors in women than in men of the same age group

  19. Effect of Muslim Prayer (Salat) on α Electroencephalography and Its Relationship with Autonomic Nervous System Activity

    OpenAIRE

    Doufesh, Hazem; Ibrahim, Fatimah; Ismail, Noor Azina; Wan Ahmad, Wan Azman

    2014-01-01

    Objectives: This study investigated the effect of Muslim prayer (salat) on the α relative power (RPα) of electroencephalography (EEG) and autonomic nervous activity and the relationship between them by using spectral analysis of EEG and heart rate variability (HRV).

  20. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    involving brain stem areas, which is consistent with the Braak hypothesis. In the narcolepsy patients, it was shown that a reduced HRR to arousals was primarily predicted by hypocretin deficiency in both rapid-eye-movement (REM) and non-REM sleep, independent of cataplexy and other factors. The results......, which includes the cardiac centre and controls autonomic functions, and therefore autonomic dysfunction may be experienced early in the disease course. Sleep disturbances are also common non-motor complications of PD, and therefore PD patients undergo polysomnography at the Danish Center for Sleep...... narcolepsy patients on autonomic function and on the sleep transition rate. The results showed an attenuated heart rate response (HRR) in PD patients compared to controls and early PD (iRBD patients). Also iRBD patients had an attenuated HRR compared to control subjects, and the method to measure the HRR may...

  1. [AUTONOMIC NERVOUS SYSTEM AND ITS IMBALANCE IN NEURO INTENSIVE CARE UNIT].

    Science.gov (United States)

    Popugaev, K A; Lubnin, A Yu; Zabelin, M V; Samoylov, A S

    2016-01-01

    The autonomic nervous system (ANS) provides homeostasis due to the innervation of the secretory glands, smooth muscle and cardiac muscle. Higher centers of the ANS (primarily the hypothalamus, some centers of the brain stem and limbic system) form a integrative network, which plays a key role in coordinating the functioning of the endocrine, immune system and other parts of the central nervous system. Intracranial centers of the ANS are responsible for the consciousness, behavioral, emotional, and other components of the higher nervous activity. Thus, the significance of the ANS can't be overestimated. At the same time today in neurointensive care there are no clear criteria for ANS dysfunction, we don't have universally recognized monitoring facilities for ANS and approaches to targeted therapy of its disorders. This paradox is even more important as in the pathogenesis of some critical conditions such as neurogenic pulmonary edema, stunned myocardium, cardiomyopathy Takotsubo lies precisely ANS imbalance. This review devoted to the ANS and some problems associated with its imbalance. PMID:27468506

  2. Human Skin Hypoxia Modulates Cerebrovascular and Autonomic Functions

    OpenAIRE

    Olivia Pucci; Clifford Qualls; Anne Battisti-Charbonney; Balaban, Dahlia Y.; Fisher, Joe A.; Jim Duffin; Otto Appenzeller

    2012-01-01

    Because the skin is an oxygen sensor in amphibians and mice, we thought to confirm this function also in humans. The human upright posture, however, introduces additional functional demands for the maintenance of oxygen homeostasis in which cerebral blood flow and autonomic nervous system (ANS) function may also be involved. We examined nine males and three females. While subjects were breathing ambient air, at sea level, we changed gases in a plastic body-bag during two conditions of the exp...

  3. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training

    Directory of Open Access Journals (Sweden)

    M.C. Martins-Pinge

    2011-09-01

    Full Text Available The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  4. Effects of Betel chewing on the central and autonomic nervous systems.

    Science.gov (United States)

    Chu, N S

    2001-01-01

    Betel chewing has been claimed to produce a sense of well-being, euphoria, heightened alertness, sweating, salivation, a hot sensation in the body and increased capacity to work. Betel chewing also leads to habituation, addiction and withdrawal. However, the mechanisms underlying these effects remain poorly understood. Arecoline, the major alkaloid of Areca nut, has been extensively studied, and several effects of betel chewing are thought to be related to the actions of this parasympathomimetic constituent. However, betel chewing may produce complex reactions and interactions. In the presence of lime, arecoline and guvacoline in Areca nut are hydrolyzed into arecaidine and guvacine, respectively, which are strong inhibitors of GABA uptake. Piper betle flower or leaf contains aromatic phenolic compounds which have been found to stimulate the release of catecholamines in vitro. Thus, betel chewing may affect parasympathetic, GABAnergic and sympathetic functions. Betel chewing produces an increase in heart rate, blood pressure, sweating and body temperature. In addition, EEG shows widespread cortical desynchronization indicating a state of arousal. In autonomic function tests, both the sympathetic skin response and RR interval variation are affected. Betel chewing also increases plasma concentrations of norepinephrine and epinephrine. These results suggest that betel chewing mainly affects the central and autonomic nervous systems. Future studies should investigate both the acute and chronic effects of betel chewing. Such studies may further elucidate the psychoactive mechanisms responsible for the undiminished popularity of betel chewing since antiquity. PMID:11385294

  5. Potential Autonomic Nervous System Effects of Statins in Heart Failure

    OpenAIRE

    Horwich, Tamara; Middlekauff, Holly

    2008-01-01

    Sympathetic nervous system activation in heart failure, as indexed by elevated norepinephrine levels, higher muscle sympathetic nerve activity and reduced heart rate variability, is associated with pathologic ventricular remodeling, increased arrhythmias, sudden death, and increased mortality. Recent evidence suggests that HMG-CoA reductase inhibitor (statin) therapy may provide survival benefit in heart failure of both ischemic and non-ischemic etiology, and one potential mechanism of benefi...

  6. The role of the autonomic nervous system in hypertension: a bond graph model study

    International Nuclear Information System (INIS)

    A bond graph model of the cardiovascular system with embedded autonomic nervous regulation was developed for a better understanding of the role of the autonomic nervous system (ANS) in hypertension. The model is described by a pump model of the heart and a detailed representation of the head and neck, pulmonary, coronary, abdomen and extremity circulation. It responds to sympathetic and parasympathetic activities by modifying systemic peripheral vascular resistance, heart rate, ventricular end-systolic elastance and venous unstressed volumes. The impairment of ANS is represented by an elevation of the baroreflex set point. The simulation results show that, compared with normotensive, in hypertension the systolic and diastolic blood pressure (SBP/DBP) rose from 112/77 mmHg to 144/94 mmHg and the left ventricular wall thickness (LVWT) increased from 10 mm to 12.74 mm. In the case that ANS regulation was absent, both the SBP and DBP further increased by 8 mmHg and the LVWT increased to 13.22 mm. The results also demonstrate that when ANS regulation is not severely damaged, e.g. the baroreflex set point is 97 mmHg, it still has an effect in preventing the rapid rise of blood pressure in hypertension; however, with the worsening of ANS regulation, its protective role weakens. The results agree with human physiological and pathological features in hemodynamic parameters and carotid baroreflex function curves, and indicate the role of ANS in blood pressure regulation and heart protection. In conclusion, the present model may provide a valid approach to study the pathophysiological conditions of the cardiovascular system and the mechanism of ANS regulation

  7. Autonomic and endocrine control of cardiovascular function

    Institute of Scientific and Technical Information of China (English)

    Richard; Gordan; Judith; K; Gwathmey; Lai-Hua; Xie

    2015-01-01

    The function of the heart is to contract and pump oxygenated blood to the body and deoxygenated blood to the lungs.To achieve this goal,a normal human heart must beat regularly and continuously for one’s entire life.Heartbeats originate from the rhythmic pacing discharge from the sinoatrial(SA) node within the heart itself.In the absence of extrinsic neural or hormonal influences,the SA node pacing rate would be about 100 beats per minute.Heart rate and cardiac output,however,must vary in response to the needs of the body’s cells for oxygen and nutrients under varying conditions.In order to respond rapidly to the changing requirements of the body’s tissues,the heart rate and contractility are regulated by the nervous system,hormones,and other factors.Here we review how the cardiovascular system is controlled and influenced by not only a unique intrinsic system,but is also heavily influenced by the autonomic nervous system as well as the endocrine system.

  8. Child Abuse and Autonomic Nervous System Hyporesponsivity among Psychiatrically Impaired Children

    Science.gov (United States)

    Ford, Julian D.; Fraleigh, Lisa A.; Albert, David B.; Connor, Daniel F.

    2010-01-01

    Objective: Sexually or physically abused children are at risk for neurobiological dysregulation as well as for internalizing and disruptive behavior disorders. Stress-related autonomic nervous system (ANS) down-regulation has been proposed as a sequela of abuse and was investigated in the present study. Methods: Child Protective Services…

  9. Circadian profile of cardiac autonomic nervous modulation in healthy subjects

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Richardt, Gert; Potratz, Jürgen;

    2003-01-01

    , awoke around 7 A.M., and had 6 to 8 hours of sleep. Circadian profiles of vagus-associated HRV parameters revealed a marked day-night pattern, with a peak at nighttime and a plateau at daytime. The characteristic nocturnal peak and the day-night amplitude diminished with aging by decade. Estimates of......UNLABELLED: Circadian Profile of Heart Rate Variability. INTRODUCTION: Although heart rate variability (HRV) has been established as a tool to study cardiac autonomic activity, almost no data are available on the circadian patterns of HRV in healthy subjects aged 20 to 70 years. METHODS AND RESULTS...

  10. Multifractal and nonlinear assessment of autonomous nervous system response during transient myocardial ischaemia

    International Nuclear Information System (INIS)

    We assess autonomic nervous system response during prolonged percutaneous transluminal coronary angioplasty (PTCA) using heart rate variability analysis with multifractal indices. These indices are used to evaluate the effects of the PTCA procedures at different arteries and locations. A total of 55 patients from the Staff3 database, with no prior history of myocardial infarction, were included in the study. The indices increased significantly during the transient ischaemia and reperfusion periods, indicating an increase in nonlinear multifractal characteristics and a change in temporal correlations in heartbeat fluctuations. This indicates that significant multifractal and nonlinear complex reactions in the autonomic control of the heart rate occurred during coronary artery occlusions and suggests that the multifractal indices may be a promising nonlinear technique for evaluating autonomic nervous system response in the presence of transient myocardial ischaemia

  11. Preclinical and clinical evaluation of autonomic function in humans.

    Science.gov (United States)

    Joyner, Michael J

    2016-07-15

    This review focuses on how to assess autonomic function in humans including various ways to measure heart rate, catecholamines, and sympathetic neural activity. The need to assess autonomic function is paramount in many experimental paradigms because of the following. (1) Autonomic dysfunction is present in common diseases like hypertension, diabetes and heart failure, and the magnitude of this dysfunction is broadly related to morbidity and mortality in these disorders. (2) The relationship between autonomic dysfunction and morbidity and mortality can be causal. (3) Interventions that modulate or reverse autonomic dysfunction can improve outcomes in the affected patients. The techniques discussed are also frequently used to understand the autonomic response to sympathoexcitatory manoeuvres like exercise, the cold pressor test or mental stress. Because these manoeuvres can engage a variety of sensory and efferent pathways, under some circumstances the physiological responses measured by many of the techniques are directionally similar, in others they are divergent. Thus any investigator seeking to study the autonomic nervous system or its contribution to either normal physiology or pathophysiological conditions must carefully balance a number of considerations to ensure that the right technique is used to address the question of interest. PMID:27098282

  12. Exercise and autonomic function in health and cardiovascular disease.

    Science.gov (United States)

    Rosenwinkel, E T; Bloomfield, D M; Arwady, M A; Goldsmith, R L

    2001-08-01

    Autonomic nervous system activity contributes to the regulation of cardiac output during rest, exercise, and cardiovascular disease. Measurement of HRV has been particularly useful in assessing parasympathetic activity, while its utility for assessing sympathetic function and overall sympathovagal balance remains controversial. Studies have revealed that parasympathetic tone dominates the resting state, while exercise is associated with prompt withdrawal of vagal tone and subsequent sympathetic activation. Conversely, recovery is characterized by parasympathetic activation followed by sympathetic withdrawal, although clarification of the normal trajectory and autonomic basis of heart rate decay following exercise is needed. Abnormalities in autonomic physiology--especially increased sympathetic activity, attenuated vagal tone, and delayed heart rate recovery--have been associated with increased mortality. Exercise training is associated with a relative enhancement of vagal tone, improved heart rate recovery after exercise, and reduced morbidity in patients with cardiovascular disease. However, whether exercise training leads to reduced mortality in this population because of its ability to specifically modulate autonomic function is unknown at the present time. Although the results of a recent randomized study in patients with CHF and a meta-analysis in the setting of a recent myocardial infarction determined that exercise training leads to improved outcomes in these populations, neither study measured autonomic function. Improved autonomic function due to exercise training is a promising rationale for explaining improvements in outcome, although more research is needed to confirm this hypothesis. PMID:11570111

  13. Effect of resistance training on autonomic nervous function of essential hypertension patients%抗阻训练对高血压患者自主神经功能的影响

    Institute of Scientific and Technical Information of China (English)

    蔡建

    2014-01-01

    目的:观察长期规律抗阻训练对原发性高血压患者自主神经功能的调节作用,探讨运动降压可能的神经生物学机制。方法:36名原发性高血压患者随机分为实验组和对照组。实验组进行16周抗阻训练,对照组保持日常生活习惯不变。实验前后分别测定心率、血压、心率变异性(HRV)、血压变异性(BPV)和压力反射敏感性(BRS)。结果:运动前,两组各参数均无显著性差异(P >0.05)。运动后,实验组心率无显著性变化( P >0.05),收缩压(P 0.05);对照组所有指标均无显著性变化(P >0.05)。结论:16周渐进性抗阻训练减弱了原发性高血压患者交感缩血管神经活动,降低心脏迷走调制,对压力反射功能无明显影响。%Objective:To observe the regulative role of resistance training on autonomic nervous function of essential hypertension patients and to investigate the possible mechanism of exercise-induced blood pressure reduction. Methods:36 essential hypertension patients were randomly divided into experimental group and control group. Subjects of experimental group conducted resistance training of 16 weeks and control group sustained normal life. Before and after test, heart rate,blood pressure,heart rate variability(HRV),blood pressure variability( BPV) and baroreflex sensitivity(BRS)were measured. Results:Before the experiment,all indexes of the two groups had no difference(P > 0. 05). After the experiment,heart rate had no change (P > 0. 05),SBP and DBP decreased(P 0. 05)in experimental group;there are no significant differences of all indicators in control group(P > 0. 05). Conclusion:Progressive resistance training of 16 weeks attenuated sympathetic vasoconstrictive nerve activity,depress cardiac vagal modulation but had no effect on baroreflex function in essential hypertension patients.

  14. Functional Imaging of Autonomic Regulation: Methods and Key Findings

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    2016-01-01

    Full Text Available Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI. The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: 1 describe the fMRI neuroimaging methodology for assessment of autonomic neural control, 2 outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, 3 illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and 4 highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with

  15. When do the symptoms of autonomic nervous system malfunction appear in patients with Parkinson’s disease?

    Directory of Open Access Journals (Sweden)

    De Luka Silvio R.

    2014-01-01

    disease, involved side of the body, pain and freezing, but mini mental status (MMS score and Hamilton depression and anxiety rating scale were significantly lower (p < 0.05. Conclusion. Our results confirm a high prevalence of autonomic nervous system disturbances among PD patients from the near onset of disease, with a predominant sympathetic nervous system involvement. The patients who developed complete autonomic neuropathy (both sympathetic and parasympathetic were individuals with considerable level of functional failure, more severe clinical presentation and the existing anxiety and depression. [Projekat Ministarstva nauke Republike Srbije, br. 175090

  16. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    Science.gov (United States)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  17. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun’ichi; Teramukai, Satoshi

    2015-01-01

    Background The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illnes...

  18. Relationship between duration of illness and cardiac autonomic nervous activity in anorexia nervosa

    OpenAIRE

    Nakai, Yoshikatsu; Fujita, Masatoshi; Nin, Kazuko; Noma, Shun'ichi; Teramukai, Satoshi

    2015-01-01

    Background: The mortality rate associated with anorexia nervosa (AN) is high, and death is mainly attributable to cardiac events. A wide range of autonomic nervous system disturbances may be mechanisms underlying the increased cardiovascular mortality and sudden death of patients with AN. Heart rate variability (HRV) has been proven to be a reliable noninvasive method for quantitative assessment of sympathetic and parasympathetic regulation of heart rate (HR). The longer the duration of illne...

  19. Erythromelalgia as a manifestation of autonomic nervous system involvement in multiple sclerosis.

    Science.gov (United States)

    Adamec, Ivan; Lakoš Jukić, Ines; Habek, Mario

    2016-07-01

    Erythromelalgia is a rare condition characterized by burning pain, erythema and increased temperature of the hands or the feet. Its etiology is not completely understood but it is believed that the underlying cause is a peripheral vascular dysfunction that leads to simultaneous tissue hypoxia and hyperemia. We present a rare co-occurrence of erythromelalgia and multiple sclerosis in a patient with autonomic nervous system dysfunction and propose a causative interconnection. PMID:27456866

  20. Autonomic nervous system dysfunction predicts poor prognosis in patients with mild to moderate tetanus

    OpenAIRE

    Shamsi Rohmah; Talati Naasha; Khealani Bhojo A; Wasay Mohammad; Syed Nadir A; Salahuddin Naseem

    2005-01-01

    Abstract Background Autonomic nervous system (ANS) dysfunction is present in up to one third of patients with tetanus. The prognostic value of ANS dysfunction is known in severe tetanus but its value is not well established in mild to moderate tetanus. Methods Medical records of all patients admitted with tetanus at two academic tertiary care centers in Karachi, Pakistan were reviewed. The demographic, clinical and laboratory data was recorded and analyzed. ANS dysfunction was defined as pres...

  1. Effects of Deep Brain Stimulation on Autonomic Function.

    Science.gov (United States)

    Basiago, Adam; Binder, Devin K

    2016-01-01

    Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson's disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target. PMID:27537920

  2. Effects of Deep Brain Stimulation on Autonomic Function

    Directory of Open Access Journals (Sweden)

    Adam Basiago

    2016-08-01

    Full Text Available Over the course of the development of deep brain stimulation (DBS into a well-established therapy for Parkinson’s disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target.

  3. Effects of diving and oxygen on autonomic nervous system and cerebral blood flow.

    Science.gov (United States)

    Winklewski, Pawel J; Kot, Jacek; Frydrychowski, Andrzej F; Nuckowska, Magdalena K; Tkachenko, Yurii

    2013-09-01

    Recreational scuba diving is a popular leisure activity with the number of divers reaching several millions worldwide. Scuba diving represents a huge challenge for integrative physiology. In mammalian evolution, physiological reflexes developed to deal with lack of oxygen, rather than with an excess, which makes adaptations to scuba diving more difficult to describe and understand than those associated with breath-hold diving. The underwater environment significantly limits the use of equipment to register the organism's functions, so, in most instances, scientific theories are built on experiments that model real diving to some extent, like hyperbaric exposures, dive reflexes or water immersion. The aim of this review is to summarise the current knowledge related to the influence exerted by physiological conditions specific to diving on the autonomic nervous system and cerebral blood flow. The main factors regulating cerebral blood flow during scuba diving are discussed as follows: 1) increased oxygen partial pressure; 2) immersion-related trigemino-cardiac reflexes and 3) exposure to cold, exercise and stress. Also discussed are the potential mechanisms associated with immersion pulmonary oedema. PMID:24122190

  4. Assessment of autonomic function in untreated adult coeliac disease

    Institute of Scientific and Technical Information of China (English)

    Gian Marco Giorgetti; Antonio Tursi; Cesare Iani; Flavio Arciprete; Giovanni Brandimarte; Ambrogio Capria; Luigi Fontana

    2004-01-01

    AIM: Some recent studies showed that alteration of upper-gut motility in coeliac disease may be related to dysfunction of autonomic nervous system. The aim of our study was to investigate whether autonomic nervous system was altered in untreated and unselected coeliac disease patients.METHODS: We studied 8 untreated and consecutive coeliac disease patients (2 males and 6 females, age range 37±14.5 years). Histological evaluation of duodenal mucosa, anti-gliadin antibodies (AGA), antiendomysial antibodies (EMA) and anti-tTG antibodies and sorbitol H2 breath test were performed in all patients. Extrinsic autonomic neuropathy was assessed by the standardized measurement of cardiovascular reflexes (lying-to-standing, Valsalva manoeuvre, deep breathing, sustained handgrip). The results obtained were compared with a healthy, asymptomatic control group (6 males and 7females, age range 42.3±13.5 years). RESULTS: Coeliac patients exhibited a lower increase of PAS as a response to isometric effort, a reduction of spectral power LF as a response to clinostatic position, but without statistical significance. Also they showed a lower tolerance to orthostatic position, associated with a latent disequilibrium of sympathetic-vagal balance, a relative prevalence of parasympathetic component of the autonomic function. However, these results were not statistically significant when compared with control group (P = n.s.). And they were unchanged after 6 and 12 mo of gluten-free diet.CONCLUSION: This study failed to confirm a significant correlation between autonomic dysfunction and coeliac disease, yet we could not exclude a role of autonomic dysfunction in the genesis of systemic symptoms in some coeliacs.

  5. Effect of Autonomic Nervous System on the Transmurai Dispersion of Ventricular Repolarization in Intact Canine

    Institute of Scientific and Technical Information of China (English)

    张存泰; 徐大文; 李泱; 刘念; 王琳; 陆再英

    2004-01-01

    Summary: The effect of the autonomic nerves on the transmural dispersion of ventricular repolarization in intact canine was investigated. By using the monophasic action potential (MAP) recording technique, monophasic action potentials (MAPs) of the epicardium (Epi), midmyocardium (Mid)and endocardium (Endo) were recorded simultaneously by specially designed plunge-needle electrodes at the left ventricular free wall in 12 open-chest dogs. MAPD90 and transmural dispersion of repolarization among three myocardial layers as well as the incidence of the EAD before autonomic nervous stimulation and during autonomic nervous stimulation were compared. The results showed that the MAPD90 of Epi, Mid and Endo before autonomic nervous stimulation were 278±11 ms,316± 16 ms and 270± 12 ms respectively, the MAPD90of Mid was significantly longer than that of Epi or Endo (P<0.01). MAPD90 of Epi, Mid and Endo were shortened by 19±4 ms, 45±6 ms,18± 3 ms respectively during sympathetic stimulation. Compared with that of the control, the transmural dispersion of repolarization during sympathetic stimulation was shortened from 44 ± 4 ms to 15±3 ms (P<0. 01), but early afterdepolarizations were elicited in the Mid of 5 dogs (41 0%)during sympathetic stimulation. Parasympathetic stimulation did not significantly affect the MAPD90 in the three layers. It is concluded that there is the transmural dispersion of ventricular repolarization in intact canine. Sympathetic stimulation can reduce transmural dispersion of repolarization, but it can produce early afterdepolarizations in the Mid. Parasympathetic stimulation does not significantly affect the transmural dispersion of ventricular repolarization.

  6. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Petra Baum

    Full Text Available OBJECTIVE: To assess the distribution of autonomic nervous system (ANS dysfunction in overweight and obese children. METHODS: Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF, high frequency power, ln(HF; ln(LF/HF ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio, root mean square of successive differences (RMSSD; sympathetic skin response (SSR; and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity. The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. RESULTS: Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys. E/I ratio (p = 0.003, ln(HF (p = 0.03, pupil diameter in darkness (p = 0.01 were negatively correlated with BMI-SDS, whereas ln(LF/HF was positively correlated (p = 0.05. Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08. None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. CONCLUSION: These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction

  7. Autonomic function testing aboard the ISS using “PNEUMOCARD”

    Science.gov (United States)

    Baevsky, R. M.; Funtova, I. I.; Diedrich, A.; Chernikova, A. G.; Drescher, J.; Baranov, V. M.; Tank, J.

    2009-10-01

    Investigations of blood pressure, heart rate (HR), and heart rate variability (HRV) during long term space flights on board the "ISS" have shown characteristic changes of autonomic cardiovascular control. Therefore, alterations of the autonomic nervous system occurring during spaceflight may be responsible for in- and post-flight disturbances. The device "Pneumocard" was developed to further investigate autonomic cardiovascular and respiratory function aboard the ISS. The hard-software diagnostic complex "Pneumocard" was used during in-flight experiment aboard ISS for autonomic function testing. ECG, photoplethysmography, respiration, transthoracic bioimpedance and seismocardiography were assessed in one male cosmonaut (flight lengths six month). Recordings were made prior to the flight, late during flight, and post-flight during spontaneous respiration and controlled respiration at different rates. HR remained stable during flight. The values were comparable to supine measurements on earth. Respiratory frequency and blood pressure decreased during flight. Post flight HR and BP values increased compared to in-flight data exceeding pre-flight values. Cardiac time intervals did not change dramatically during flight. Pulse wave transit time decreased during flight. The maximum of the first time derivative of the impedance cardiogram, which is highly correlated with stroke volume was not reduced in-flight. Our results demonstrate that autonomic function testing aboard the ISS using "Pneumocard" is feasible and generates data of good quality. Despite the decrease in BP, pulse wave transit time was found reduced in space as shown earlier. However, cardiac output did not decrease profoundly in the investigated cosmonaut. Autonomic testing during space flight detects individual changes in cardiovascular control and may add important information to standard medical control. The recent plans to support a flight to Mars, makes these kinds of observations all the more relevant

  8. Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder

    Directory of Open Access Journals (Sweden)

    Hayashi Tatsuya

    2007-12-01

    spectrum of HRV were markedly decreased regardless of the menstrual cycle compared to those of the other two groups. Conclusion Several theories have been proposed to explain the underlying mechanisms of PMS with its complex web of bio-psycho-social factors. Although causes and consequences continue to elude, the present study provides intriguing and novel findings that the altered functioning of the autonomic nervous system in the late luteal phase could be associated with diverse psychosomatic and behavioral symptoms appearing premenstrually. In addition, when symptoms become more severe (as seen in women with PMDD, the sympathovagal function might be more depressed regardless of the menstrual cycle.

  9. Dysregulation of the autonomous nervous system in patients with temporomandibular disorder: a pupillometric study.

    Directory of Open Access Journals (Sweden)

    Annalisa Monaco

    Full Text Available The role of the autonomic nervous system (ANS was recently investigated in Temporomandibular disorders (TMD. Several authors argue that in subjects with TMD there is a dysregulation of ANS. Recent literature support that Pupillometry is a simple non-invasive tool to study ANS. The aim of this study was to investigate the relationship between TMD and ANS activity using pupillometry recording in Infrared light at rest Mandible Position (RP; Infrared light at Forced Habitual Occlusion (FHO; Yellow-green light at RP; Yellow-green light at FHO. Forty female subjects were enrolled: 20 case patients showed TMD based on the Research Diagnostic Criteria for TMD, and 20 control patients, aged matched, had no signs or symptoms of TMD. Statistical analysis was performed on average pupil size. Ratio between pupil size in FHO and RP (FHO/RP ratio and yellow-green and infrared (light/darkness ratio lighting were carried out. Within group differences of pupil size and of "ratio" were analyzed using a paired t test, while differences of pupil size between groups were tested using an unpaired t test. Statistical comparisons between groups showed no significant differences of absolute values of pupil dimension in RP and FHO, both in yellow-green and in infrared lighting. In addition, there were no significant differences within groups comparing RP and FHO in yellow-green light. In within group comparison of pupil size, differences between RP and FHO were significant in infrared conditions. Control subjects increased, whereas TMD patients decreased pupil size at FHO in infrared lightening. FHO/RP ratio in darkness and light/darkness ratio in RP were significantly different between groups. Taken together, these data suggest that TMD subjects have an impairment of the sympathetic-adrenergic component of the ANS to be activated under stress. The present study provides preliminary pupillometric data confirming that adrenergic function is dysregulated in patients with

  10. Expression of K2P channels in sensory and motor neurons of the autonomic nervous system.

    Science.gov (United States)

    Cadaveira-Mosquera, Alba; Pérez, Montse; Reboreda, Antonio; Rivas-Ramírez, Paula; Fernández-Fernández, Diego; Lamas, J Antonio

    2012-09-01

    Several types of neurons within the central and peripheral somatic nervous system express two-pore-domain potassium (K2P) channels, providing them with resting potassium conductances. We demonstrate that these channels are also expressed in the autonomic nervous system where they might be important modulators of neuronal excitability. We observed strong mRNA expression of members of the TRESK and TREK subfamilies in both the mouse superior cervical ganglion (mSCG) and the mouse nodose ganglion (mNG). Motor mSCG neurons strongly expressed mRNA transcripts for TRESK and TREK-2 subunits, whereas TASK-1 and TASK-2 subunits were only moderately expressed, with only few or very few transcripts for TREK-1 and TRAAK (TRESK ≈ TREK-2 > TASK-2 ≈ TASK-1 > TREK-1 > TRAAK). Similarly, the TRESK and TREK-1 subunits were the most strongly expressed in sensorial mNG neurons, while TASK-1 and TASK-2 mRNAs were moderately expressed, and fewer TREK-2 and TRAAK transcripts were detected (TRESK ≈ TREK-1 > TASK-1 ≈ TASK-2 > TREK-2 > TRAAK). Moreover, cell-attached single-channel recordings showed a major contribution of TRESK and TREK-1 channels in mNG. As the level of TRESK mRNA expression was not statistically different between the ganglia analysed, the distinct expression of TREK-1 and TREK-2 subunits was the main difference observed between these structures. Our results strongly suggest that TRESK and TREK channels are important modulators of the sensorial and motor information flowing through the autonomic nervous system, probably exerting a strong influence on vagal reflexes. PMID:22544515

  11. Adiponectin Depolarizes Parvocellular Paraventricular Nucleus Neurons Controlling Neuroendocrine and Autonomic Function

    OpenAIRE

    Hoyda, Ted Donald; Samson, Willis Kendrick; Ferguson, Alastair Victor

    2008-01-01

    Adiponectin plays important roles in the control of energy homeostasis and autonomic function through peripheral and central nervous system actions. The paraventricular nucleus (PVN) of the hypothalamus is a primary site of neuroendocrine (NE) and autonomic integration, and, thus, a potential target for adiponectin actions. Here, we investigate actions of adiponectin on parvocellular PVN neurons. Adiponectin influenced the majority (65%) of parvocellular PVN neurons, depolarizing 47%, whereas...

  12. Relations between blood supply of brain of students and condition of autonomic nervous system and risk factors

    OpenAIRE

    L. D. Korovina; T. M. Zaporozhets

    2015-01-01

    The purpose of our research was to estimate the brain blood supply level by rheoencephalography method in junior students of the Medical academy and to determine the blood supply links with the autonomic regulation state, behavioural and alimentary factors. Rheo-encephalographic study, research of the autonomic nervous system state, heart rate regulation and questioning of 17–29 year-old students have been conducted. Basic hemodynamic indices were normal in all surveyed students. Increase in ...

  13. Complex Nonlinear Autonomic Nervous System Modulation Link Cardiac Autonomic Neuropathy and Peripheral Vascular Disease

    Directory of Open Access Journals (Sweden)

    Kinda eKhalaf

    2015-03-01

    Full Text Available Background: Physiological interactions are abundant within, and between, body systems. These interactions may evolve into discrete states during pathophysiological processes resulting from common mechanisms. An association between arterial stenosis, identified by low ankle-brachial pressure index (ABPI and cardiovascular disease (CVD as been reported. Whether an association between vascular calcification - characterized by high ABPI and a different pathophysiology - is similarly associated with CVD, has not been established. The current study aims to investigate the association between ABPI, and cardiac rhythm, as an indicator of cardiovascular health and functionality, utilising heart rate variability (HRV.Methods and Results: Two hundred and thirty six patients underwent ABPI assessment. Standard time and frequency domain, and non-linear HRV measures were determined from 5-minute electrocardiogram. ABPI data were divided into normal (n=101, low (n=67 and high (n=66 and compared to HRV measures.(DFAα1 and SampEn were significantly different between the low ABPI, high ABPI and control groups (p<0.05.Conclusion: A possible coupling between arterial stenosis and vascular calcification with decreased and increased HRV respectively was observed. Our results suggest a model for interpreting the relationship between vascular pathophysiology and cardiac rhythm. The cardiovascular system may be viewed as a complex system comprising a number of interacting subsystems. These cardiac and vascular subsystems/networks may be coupled and undergo transitions in response to internal or external perturbations. From a clinical perspective, the significantly increased sample entropy compared to the normal ABPI group and the decreased and increased complex correlation properties measured by DFA for the low and high ABPI groups respectively, may be useful indicators that a more holistic treatment approach in line with this more complex clinical picture is required.

  14. Heart Rate Variability as a Method for Assessment of the Autonomic Nervous System and the Adaptations to Different Physiological and Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Taralov Zdravko Z.

    2016-04-01

    Full Text Available The autonomic nervous system controls the smooth muscles of the internal organs, the cardiovascular system and the secretory function of the glands and plays a major role in the processes of adaptation. Heart rate variability is a non-invasive and easily applicable method for the assessment of its activity. The following review describes the origin, parameters and characteristics of this method and its potential for evaluation of the changes of the autonomic nervous system activity in different physiological and pathological conditions such as exogenous hypoxia, physical exercise and sleep. The application of heart rate variability in daily clinical practice would be beneficial for the diagnostics, the outcome prognosis and the assessment of the effect of treatment in various diseases.

  15. Heart Rate Variability as a Method for Assessment of the Autonomic Nervous System and the Adaptations to Different Physiological and Pathological Conditions.

    Science.gov (United States)

    Taralov, Zdravko Z; Terziyski, Kiril V; Kostianev, Stefan S

    2015-01-01

    The autonomic nervous system controls the smooth muscles of the internal organs, the cardiovascular system and the secretory function of the glands and plays a major role in the processes of adaptation. Heart rate variability is a non-invasive and easily applicable method for the assessment of its activity. The following review describes the origin, parameters and characteristics of this method and its potential for evaluation of the changes of the autonomic nervous system activity in different physiological and pathological conditions such as exogenous hypoxia, physical exercise and sleep. The application of heart rate variability in daily clinical practice would be beneficial for the diagnostics, the outcome prognosis and the assessment of the effect of treatment in various diseases. PMID:27180343

  16. [The influence of aging on autonomic nervous system activity and gastric myoelectric activity in humans].

    Science.gov (United States)

    Thor, P J; Kolasińska-Kloch, W; Pitala, A; Janik, A; Kopp, B; Sibiga, W

    1999-01-01

    The study was performed on 84 healthy volunteers (33 women, 52 men) of age 20-71 years with no history of the circulatory or gastrointestinal system disease. The gastric myoelectrical activity (EGG) was recorded with the cutaneous electrodes--electrogastrography Synectics (Sweden). The activity of the cardiac autonomic nervous system was measured by HRV (heart rate variability) recorded with EGG and computer assisted programme Proster (Poland). Subject were divided into 5 groups according to the decade of age (20-70). Percentage of basal electrical rhythm (BER) dysrhythmias increased (1.9 +/- 0.5% vs 21.1 +/- 3.2% in fasting and 2.4 +/- 1.2% vs 24.6 +/- 5% postprandially but decrease of the EGG amplitude after the meal was observed (270 +/- 20% vs 90 +/- 7%) in youngest and oldest group respectively. With the ageing the cardiac sympathetic and parasympathetic activity (LF and HF) decreased in first and last group respectively. In the forth decade in man and women the sympathetic activity system prevalence expressed by the LF/HF rate increased (1.09 +/- 0.2 vs. 2.14 +/- 0.5) (p < 0.05). The results of our study suggest the deleterious influence of the ageing on the of autonomic system activity as shown by changes in HRV and dysrhythmia of the gastric slow waves in EGG. PMID:10909474

  17. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    Science.gov (United States)

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart. PMID:23366661

  18. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    Directory of Open Access Journals (Sweden)

    Kang-Ming Chang

    2011-01-01

    Full Text Available Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P<.001∗∗∗ after application of the aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.

  19. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders

    Directory of Open Access Journals (Sweden)

    Messina Vincenzo

    2011-10-01

    Full Text Available Abstract Objective To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI as a new possible biomarker. Methods 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs. The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV and lipid metabolism has been investigated. Results Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Conclusions Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.

  20. Stimulation of the autonomic nervous system in colorectal surgery: a study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Berghmans Tim MP

    2012-06-01

    Full Text Available Abstract Background Postoperative ileus (POI is a well-known complication of abdominal surgery and is considered to be caused by a local inflammation in the gut. Previously it has been shown that both local and systemic inflammation can be reduced by stimulation of the autonomic nervous system via lipid rich nutrition. Stimulation of the autonomic nervous system releases acetylcholine from efferent vagal nerve endings that binds to nicotinic receptors located on the inflammatory cells leading to a decrease of pro-inflammatory mediators. Besides administration of nutrition there are other ways of stimulating the autonomic nervous system such as gum chewing. Methods/design This prospective, placebo-controlled randomized trial will include 120 patients undergoing colorectal surgery which are randomized for gum chewing preoperatively and in the direct postoperative phase or a placebo. Postoperative ileus will be assessed both clinically by time to first flatus and time to first defecation and by determination of gastric motility using ultrasound to measure dimensions of the antrum. Furthermore the inflammatory response is quantified by analyzing pro-inflammatory mediators. Finally, markers of gut barrier integrity will be measured as well as occurrence of postoperative complications. Discussion We hypothesize that chewing gum preoperatively and in the direct postoperative phase in patients undergoing colorectal surgery dampens local and systematic inflammation, via activation of the autonomic nervous system. Down-regulation of the inflammatory cascade via stimulation of the vagus nerve will ameleriote POI and enhance postoperative recovery. Trial registration NTR2867

  1. Autonomic nervous system dysfunction and serum levels of neurotoxic and neurotrophic cytokines in patients with cobalamin deficiency

    Directory of Open Access Journals (Sweden)

    Özcan Çeneli

    2010-12-01

    Full Text Available neurotrophiccytokines epidermal growth factor (EGF and interleukin-6 (IL-6 plays a role in the pathogenesisof cobalamin (Cbl deficiency-induced neuropathy. The aim of this study was to evaluate autonomicnervous system dysfunction and to look for any relationship between autonomic nervous systemdisturbances and serum cytokine levels (TNF-

  2. Cardiac Autonomic Function in Patients With Ankylosing Spondylitis

    Science.gov (United States)

    Wei, Cheng-Yu; Kung, Woon-Man; Chou, Yi-Sheng; Wang, Yao-Chin; Tai, Hsu-Chih; Wei, James Cheng-Chung

    2016-01-01

    Abstract Ankylosing spondylitis (AS) is a chronic inflammatory disease involing spine and enthesis. The primary aim of this study is to investigate the autonomic nervous system (ANS) function and the association between ANS and the functional status or disease activity in AS. The study included 42 AS patients, all fulfilling the modified New York criteria. All the patients are totally symptom free for ANS involvement and had normal neurological findings. These AS patients and 230 healthy volunteers receive analysis of 5 minutes heart rate variability (HRV) in lying posture. In addition, disease activity and functional status of these AS patients are assessed by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Bath Ankylosing Spondylitis Global Score (BAS-G). Both groups were age and sex-matched. Although the HRV analysis indicates that the peaks of total power (TP, 0–0.5 Hz) and high-frequency power (HF, 0.15–0.40 Hz) are similar in both groups, the activities of low-frequency power (LF, 0.04–0.15 Hz), LF in normalized units (LF%), and the ratio of LF to HF (LF/HF) in AS patients are obviously lower than healthy controls. The erythrocyte sedimentation rate and C-reactive protein revealed negative relationship with HF. The AS patients without peripheral joint disease have higher LF, TP, variance, LF%, and HF than the patients with peripheral joint disease. The AS patients without uvetis have higher HF than the patients with uvetis. The total scores of BASDI, BASFI, and BAS-G do not show any association to HRV parameters. AS patients have significantly abnormal cardiac autonomic regulation. This is closely related with some inflammatory activities. Reduced autonomic function may be one of the factors of high cardiovascular risk in AS patients. PMID:27227940

  3. DISORDERS OF THE AUTONOMIC NERVOUS SYSTEM IN THE CARDIOLOGY PRACTICE: FOCUS ON THE ANALYSIS OF HEART RATE VARIABILITY

    Directory of Open Access Journals (Sweden)

    E. B. Akhmedova

    2015-09-01

    Full Text Available Heart rate variability (HRV in patients with ischemic heart disease, a life-threatening heart rhythm disorders, as well as diabetes mellitus (DM is considered. A significant association between the autonomic regulation of the cardiovascular system and death from cardiovascular causes is identified. The reactions of the autonomic nervous system (ANS can serve as a precipitating factor of arrhythmias in patients with heart disorders. Analysis of HRV at rest is the main and informative method for determination of the ANS disorders. HRV decreases greatly in patients with acute myocardial infarction, cardiac arrhythmia, and DM, predicting a high risk of death. The leading cause of death in diabetic patients is cardiac autonomic neuropathy, with the development of "silent" ischemia and painless myocardial infarction. Autonomic regulation of the heart rate should be assessed for early diagnosis and prevention of complications in the form of sudden death.

  4. [Spontaneous recovery of function in central nervous system lesions].

    Science.gov (United States)

    Anghinah, A

    1975-12-01

    A rewiev of the mechanisms responsible for the spontaneous recuperation of function in patients with lesions of the central nervous sistem is made. The spontaneous reorganization theories of the nervous structures and the vicarious function are also referred to. In the last two decades experimental contributions have been accentuated, specially the one conducted by the group of researchers directed by Windle and Guth, who had shown the possibility of regeneration in the central nervous system, as well Lawrende and Kuypers, Brodal, Goldberger and others, which defended the vircarious function as the probable mechanisms of recuperation. PMID:1191098

  5. Error awareness revisited: accumulation of multimodal evidence from central and autonomic nervous systems.

    Science.gov (United States)

    Wessel, Jan R; Danielmeier, Claudia; Ullsperger, Markus

    2011-10-01

    The differences between erroneous actions that are consciously perceived as errors and those that go unnoticed have recently become an issue in the field of performance monitoring. In EEG studies, error awareness has been suggested to influence the error positivity (Pe) of the response-locked event-related brain potential, a positive voltage deflection prominent approximately 300 msec after error commission, whereas the preceding error-related negativity (ERN) seemed to be unaffected by error awareness. Erroneous actions, in general, have been shown to promote several changes in ongoing autonomic nervous system (ANS) activity, yet such investigations have only rarely taken into account the question of subjective error awareness. In the first part of this study, heart rate, pupillometry, and EEG were recorded during an antisaccade task to measure autonomic arousal and activity of the CNS separately for perceived and unperceived errors. Contrary to our expectations, we observed differences in both Pe and ERN with respect to subjective error awareness. This was replicated in a second experiment, using a modified version of the same task. In line with our predictions, only perceived errors provoke the previously established post-error heart rate deceleration. Also, pupil size yields a more prominent dilatory effect after an erroneous saccade, which is also significantly larger for perceived than unperceived errors. On the basis of the ERP and ANS results as well as brain-behavior correlations, we suggest a novel interpretation of the implementation and emergence of error awareness in the brain. In our framework, several systems generate input signals (e.g., ERN, sensory input, proprioception) that influence the emergence of error awareness, which is then accumulated and presumably reflected in later potentials, such as the Pe. PMID:21268673

  6. Autonomic Nervous System Dysfunction and Inflammation Contribute to the Increased Cardiovascular Mortality Risk Associated With Depression

    Science.gov (United States)

    Kop, Willem J.; Stein, Phyllis K.; Tracy, Russell P.; Barzilay, Joshua I.; Schulz, Richard; Gottdiener, John S.

    2011-01-01

    Objective To investigate prospectively whether autonomic nervous system (ANS) dysfunction and inflammation play a role in the increased cardiovascular disease (CVD)-related mortality risk associated with depression. Methods Participants in the Cardiovascular Health Study (n = 907; mean age, 71.3 ± 4.6 years; 59.1% women) were evaluated for ANS indices derived from heart rate variability (HRV) analysis (frequency and time domain HRV, and nonlinear indices, including detrended fluctuation analysis (DFA1) and heart rate turbulence). Inflammation markers included C-reactive protein, interleukin-6, fibrinogen, and white blood cell count). Depressive symptoms were assessed, using the 10-item Centers for Epidemiological Studies Depression scale. Cox proportional hazards models were used to investigate the mortality risk associated with depression, ANS, and inflammation markers, adjusting for demographic and clinical covariates. Results Depression was associated with ANS dysfunction (DFA1, p = .018), and increased inflammation markers (white blood cell count, p = .012, fibrinogen p = .043) adjusting for covariates. CVD-related mortality occurred in 121 participants during a median follow-up of 13.3 years. Depression was associated with an increased CVD mortality risk (hazard ratio, 1.88; 95% confidence interval, 1.23–2.86). Multivariable analyses showed that depression was an independent predictor of CVD mortality (hazard ratio, 1.72; 95% confidence interval, 1.05–2.83) when adjusting for independent HRV and inflammation predictors (DFA1, heart rate turbulence, interleukin-6), attenuating the depression-CVD mortality association by 12.7% (p < .001). Conclusion Autonomic dysfunction and inflammation contribute to the increased cardiovascular mortality risk associated with depression, but a large portion of the predictive value of depression remains unexplained by these neuroimmunological measures. PMID:20639389

  7. Dynamic analysis of mental sweating and the peripheral vessels for the activity of the autonomic nervous system by optical coherence tomography

    Science.gov (United States)

    Ohmi, Masato; Takada, Daisuke; Wada, Yuki; Haruna, Masamitsu

    2012-01-01

    OCT is highly potential for dynamic analysis of physiological functions of mental sweating and peripheral vessels as demonstrated by the authors. Both mental sweating and the peripheral vessels reflect the activity of the sympathetic nerve of the autonomic nervous system (ANS). The sympathetic nerve also exhibits the LF/HF ratio of the heart rate variability (HRV). In this paper, we demonstrate dynamic analysis of mental sweating and the peripheral vessels for the external stimulus by SS-OCT. In the experiment, the Kraepelin test as a continuous stimulus was applied to the volunteer to discuss in detail dynamics of the physiological function of such small organs in response to the HRV.

  8. An Autonomic Nervous System Model Applied to the Analysis of Orthostatic Tests

    Directory of Open Access Journals (Sweden)

    Virginie Le Rolle

    2008-01-01

    Full Text Available One of the clinical examinations performed to evaluate the autonomic nervous system (ANS activity is the tilt test, which consists in studying the cardiovascular response to the change of a patient's position from a supine to a head-up position. The analysis of heart rate variability signals during tilt tests has been shown to be useful for risk stratification and diagnosis on different pathologies. However, the interpretation of such signals is a difficult task. The application of physiological models to assist the interpretation of these data has already been proposed in the literature, but this requires, as a previous step, the identification of patient-specific model parameters. In this paper, a model-based approach is proposed to reproduce individual heart rate signals acquired during tilt tests. A new physiological model adapted to this problem and coupling the ANS, the cardiovascular system (CVS, and global ventricular mechanics is presented. Evolutionary algorithms are used for the identification of patient-specific parameters in order to reproduce heart rate signals obtained during tilt tests performed on eight healthy subjects and eight diabetic patients. The proposed approach is able to reproduce the main components of the observed heart rate signals and represents a first step toward a model-based interpretation of these signals.

  9. Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system.

    Science.gov (United States)

    Ziemssen, Tjalf; Reimann, Manja; Gasch, Julia; Rüdiger, Heinz

    2013-09-01

    Biological rhythms, describing the temporal variation of biological processes, are a characteristic feature of complex systems. The analysis of biological rhythms can provide important insights into the pathophysiology of different diseases, especially, in cardiovascular medicine. In the field of the autonomic nervous system, heart rate variability (HRV) and baroreflex sensitivity (BRS) describe important fluctuations of blood pressure and heart rate which are often analyzed by Fourier transformation. However, these parameters are stochastic with overlaying rhythmical structures. R-R intervals as independent variables of time are not equidistant. That is why the trigonometric regressive spectral (TRS) analysis--reviewed in this paper--was introduced, considering both the statistical and rhythmical features of such time series. The data segments required for TRS analysis can be as short as 20 s allowing for dynamic evaluation of heart rate and blood pressure interaction over longer periods. Beyond HRV, TRS also estimates BRS based on linear regression analyses of coherent heart rate and blood pressure oscillations. An additional advantage is that all oscillations are analyzed by the same (maximal) number of R-R intervals thereby providing a high number of individual BRS values. This ensures a high confidence level of BRS determination which, along with short recording periods, may be of profound clinical relevance. The dynamic assessment of heart rate and blood pressure spectra by TRS allows a more precise evaluation of cardiovascular modulation under different settings as has already been demonstrated in different clinical studies. PMID:23812502

  10. Characterizing Psychological Dimensions in Non-Pathological Subjects through Autonomic Nervous System Dynamics

    Directory of Open Access Journals (Sweden)

    Mimma eNardelli

    2015-03-01

    Full Text Available The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS dynamics and specific dimensions such as anxiety, social phobia, stress and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and nonlinear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and nonlinear analysis was performed on Heart Rate Variability, InterBreath Interval series, and Inter-Beat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, nonlinear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions.

  11. Brain and nervous system (image)

    Science.gov (United States)

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve ...

  12. Assessment of the autonomic nervous system is an appropriate biological marker for the well-being in erectile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Tolga Dogru; Orhan Murat Kocak; Nurper Erberk-Ozen; Murat Basar

    2008-01-01

    Aim: To investigate whether the autonomic nervous system (ANS) components are suitable biological markers for representing well-being in patients with erectile dysfunction (ED). Methods: The present study included 74 male patients who had applied for check-ups in the cardiology outpatient clinic at Kirikkale University (Kirikkale, Turkey) and who had been diagnosed as having hyperlipidemia. Of these patients, 26 had an additional diagnosis of ED and made up the patient group. The remaining 48 patients formed the control group. Well-being was assessed with short- form 36 (SF-36). The International Index of Erectile Function (IIEF) was used as a measure of libido and erectile function. Quantitative assessment of the ANS was made based on the analysis of heart rate variability by means of 24-h holter monitorization. Results: Comparisons between the ED and control groups showed significant differences only in energy scale of SF-36. The ED group also had significantly higher values of sympathetic activity. Except for the general health score of SF-36, which was found to be correlated with parasympathetic activity only in ED group, there were similar correlation patterns within the groups. Although well-being and sympathetic activity were corre- lated negatively, parasympathetic activity and well-being were correlated positively. Conclusion: Quantitative as- sessment of the ANS by heart rate variability analysis might be a suitable marker for well-being of patients with ED. (Asian J Androl 2008 Jul; 10: 643-650)

  13. Autonomic nervous system dynamics for mood and emotional-state recognition significant advances in data acquisition, signal processing and classification

    CERN Document Server

    Valenza, Gaetano

    2014-01-01

    This monograph reports on advances in the measurement and study of autonomic nervous system (ANS) dynamics as a source of reliable and effective markers for mood state recognition and assessment of emotional responses. Its primary impact will be in affective computing and the application of emotion-recognition systems. Applicative studies of biosignals such as: electrocardiograms; electrodermal responses; respiration activity; gaze points; and pupil-size variation are covered in detail, and experimental results explain how to characterize the elicited affective levels and mood states pragmatically and accurately using the information thus extracted from the ANS. Nonlinear signal processing techniques play a crucial role in understanding the ANS physiology underlying superficially noticeable changes and provide important quantifiers of cardiovascular control dynamics. These have prognostic value in both healthy subjects and patients with mood disorders. Moreover, Autonomic Nervous System Dynamics for Mood and ...

  14. Optimizing the level of the physical health of the students with a glance of the type of autonomic nervous system

    Directory of Open Access Journals (Sweden)

    Grygus I.M.

    2013-06-01

    Full Text Available It is analyzed the changes in the level of physical health of students of the Faculty of Physical Education under the influence of physical training with a glance of the type of autonomic nervous system. The study involved 87 students of first and second courses. Is used methods for determining the level of physical health of students: Apanasenko G.L., teacher observations, statistics. Hold a special physical training with the prevalence of the type of the autonomic nervous system. The basis of influence was the principle of individualization of physical activity, the systematic and gradual. A significant high level of physical fitness at the end of the study, the main group of students. In this group, overall assessment of the level of physical health is above the average level by improving the life, power and index Robinson.

  15. Treatment effect of uvulopalatopharyngoplasty on autonomic nervous activity during sleep in patients with obstructive sleep apnea syndrome

    Institute of Scientific and Technical Information of China (English)

    蒋光峰; 孙炜; 李娜; 孙彦; 张念凯

    2004-01-01

    @@ Obstructive sleep apnea syndrome (OSAS) is characterized by repetitive episodes of upper airway obstruction during sleep. The prevalence of OSAS in middle-aged population is about 2%-4%.1 Many OSAS patients can be accompanied by serious cardiovascular complications, such as hypertension.2 The aim of this study was to find the changes of autonomic nervous system (ANS) during sleep, and the impact of surgical treatment on heart rate variability (HRV) in OSAS patients.

  16. Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder

    OpenAIRE

    Hayashi Tatsuya; Kimura Tetsuya; Ushiroyama Takahisa; Matsumoto Tamaki; Moritani Toshio

    2007-01-01

    Abstract Background Premenstrual syndrome (PMS) encompasses a wide variety of cyclic and recurrent physical, emotional, and behavioral symptoms occurring during the late luteal phase of the menstrual cycle and abating shortly following the beginning of menses. Although PMS is widely recognized, its etiopathogenesis is not yet understood. The present study investigates whether the activity of the autonomic nervous system, which plays a vital role in orchestrating physiological homeostasis with...

  17. Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats.

    OpenAIRE

    N'Guyen, J M; C. Magnan; Laury, M C; Thibault, C.; Leveteau, J; Gilbert, M.; Pénicaud, L.; Ktorza, A

    1994-01-01

    The fact that the potentiating effect of prolonged hyperglycemia on the subsequent insulin secretion is observed in vivo but not in vitro suggests the involvement of extrapancreatic factors in the in vivo memory of pancreatic beta cells to glucose. We have investigated the possible role of the autonomic nervous system. Rats were made hyperglycemic by a 48-h infusion with glucose (HG rats). At the end of glucose infusion as well as 6 h postinfusion, both parasympathetic and sympathetic nerve a...

  18. Human skin hypoxia modulates cerebrovascular and autonomic functions.

    Directory of Open Access Journals (Sweden)

    Olivia Pucci

    Full Text Available Because the skin is an oxygen sensor in amphibians and mice, we thought to confirm this function also in humans. The human upright posture, however, introduces additional functional demands for the maintenance of oxygen homeostasis in which cerebral blood flow and autonomic nervous system (ANS function may also be involved. We examined nine males and three females. While subjects were breathing ambient air, at sea level, we changed gases in a plastic body-bag during two conditions of the experiment such as to induce skin hypoxia (with pure nitrogen or skin normoxia (with air. The subjects performed a test of hypoxic ventilatory drive during each condition of the experiment. We found no differences in the hypoxic ventilatory drive tests. However, ANS function and cerebral blood flow velocities were modulated by skin hypoxia and the effect was significantly greater on the left than right middle cerebral arteries. We conclude that skin hypoxia modulates ANS function and cerebral blood flow velocities and this might impact life styles and tolerance to ambient hypoxia at altitude. Thus the skin in normal humans, in addition to its numerous other functions, is also an oxygen sensor.

  19. Human skin hypoxia modulates cerebrovascular and autonomic functions.

    Science.gov (United States)

    Pucci, Olivia; Qualls, Clifford; Battisti-Charbonney, Anne; Balaban, Dahlia Y; Fisher, Joe A; Duffin, Jim; Appenzeller, Otto

    2012-01-01

    Because the skin is an oxygen sensor in amphibians and mice, we thought to confirm this function also in humans. The human upright posture, however, introduces additional functional demands for the maintenance of oxygen homeostasis in which cerebral blood flow and autonomic nervous system (ANS) function may also be involved. We examined nine males and three females. While subjects were breathing ambient air, at sea level, we changed gases in a plastic body-bag during two conditions of the experiment such as to induce skin hypoxia (with pure nitrogen) or skin normoxia (with air). The subjects performed a test of hypoxic ventilatory drive during each condition of the experiment. We found no differences in the hypoxic ventilatory drive tests. However, ANS function and cerebral blood flow velocities were modulated by skin hypoxia and the effect was significantly greater on the left than right middle cerebral arteries. We conclude that skin hypoxia modulates ANS function and cerebral blood flow velocities and this might impact life styles and tolerance to ambient hypoxia at altitude. Thus the skin in normal humans, in addition to its numerous other functions, is also an oxygen sensor. PMID:23056597

  20. Expression and function of aquaporins in peripheral nervous system

    OpenAIRE

    Ma, Tong-hui; Gao, Hong-Wen; Fang, Xue-Dong; Yang, Hong

    2011-01-01

    The expression and role of the aquaporin (AQP) family water channels in the peripheral nervous system was less investigated. Since 2004, however, significant progress has been made in the immunolocalization, regulation and function of AQPs in the peripheral nervous system. These studies showed selective localization of three AQPs (AQP1, AQP2, and AQP4) in dorsal root ganglion neurons, enteric neurons and glial cells, periodontal Ruffini endings, trigeminal ganglion neurons and vomeronasal sen...

  1. [Progress of Researches on Relationship between Acu-moxibustion Induced Modulation of Small Intestinal Motility and Autonomic Nervous Activity ].

    Science.gov (United States)

    Zhang, Na; Yu, Zhi; Xu, Bin

    2014-12-01

    A large body of evidence of clinical and experimental outcomes showed that acupuncture and moxibustion can effectively treat disorders of small intestinal motility. The present articJe collected related literatures and made an analysis on the correlation between the effect of acupuncture-moxibustion intervention and needle-manipulation techniques, stimulating quantities, acupoint recipes, and the body functional states, as well as the corresponding mechanisms. Results indicate that acupuncture stimulation of acupoints of the limbs mainly enhance the motility of the small intestine, while acupuncture stimulation of acupoints in the abdominal region predominately suppress it, which may be closely associated with its effects on activities of the autonomic nervous system. This conclusion tells us that in clinical treatment of small intestinal hypodynamia, acupoints of the limbs should be selected first while in treating intestinal hyperdynamia, those acupoints in the abdominal region should be taken preferably. In ad- dition, at present, non-invaded detection techniques of the small intestinal motility are definitely and urgently needed and will greatly promote the progress of researches of acu-moxibustion on the mechanism underlying modulation of small intestinal motility. PMID:25632580

  2. Assessment of autonomic nervous system by using empirical mode decomposition-based reflection wave analysis during non-stationary conditions

    International Nuclear Information System (INIS)

    Arterial blood pressure (ABP) is an important indicator of cardiovascular circulation and presents various intrinsic regulations. It has been found that the intrinsic characteristics of blood vessels can be assessed quantitatively by ABP analysis (called reflection wave analysis (RWA)), but conventional RWA is insufficient for assessment during non-stationary conditions, such as the Valsalva maneuver. Recently, a novel adaptive method called empirical mode decomposition (EMD) was proposed for non-stationary data analysis. This study proposed a RWA algorithm based on EMD (EMD-RWA). A total of 51 subjects participated in this study, including 39 healthy subjects and 12 patients with autonomic nervous system (ANS) dysfunction. The results showed that EMD-RWA provided a reliable estimation of reflection time in baseline and head-up tilt (HUT). Moreover, the estimated reflection time is able to assess the ANS function non-invasively, both in normal, healthy subjects and in the patients with ANS dysfunction. EMD-RWA provides a new approach for reflection time estimation in non-stationary conditions, and also helps with non-invasive ANS assessment. (paper)

  3. Regular Football Practice Improves Autonomic Cardiac Function in Male Children

    Directory of Open Access Journals (Sweden)

    Fernandes

    2015-09-01

    Full Text Available Background The role of the autonomic nervous system (ANS in the cardiovascular regulation is of primal importance. Since it has been associated with adverse conditions such as cardiac arrhythmias, sudden death, sleep disorders, hypertension and obesity. Objectives The present study aimed to investigate the impact of recreational football practice on the autonomic cardiac function of male children, as measured by heart rate variability. Patients and Methods Forty-seven male children aged 9 - 12 years were selected according to their engagement with football oriented practice outside school context. The children were divided into a football group (FG; n = 22 and a control group (CG; n = 25. The FG had regular football practices, with 2 weekly training sessions and occasional weekend matches. The CG was not engaged with any physical activity other than complementary school-based physical education classes. Data from physical activity, physical fitness, and heart rate variability measured in time and frequency domains were obtained. Results The anthropometric and body composition characteristics were similar in both groups (P > 0.05. The groups were also similar in time spent daily on moderate-to-vigorous physical activities (FG vs. CG: 114 ± 64 vs. 87 ± 55 minutes; P > 0.05. However, the FG performed better (P < 0.05 in Yo-Yo intermittent endurance test (1394 ± 558 vs. 778 ± 408 m and 15-m sprint test (3.06 ± 0.17 vs. 3.20 ± 0.23 s. Also, the FG presented enhanced autonomic function. Significant differences were detected (P < 0.05 between groups for low frequency normalized units (38.0 ± 15.2 vs. 47.3 ± 14.2 n.u (normalized units, high frequency normalized units (62.1 ± 15.2 vs. 52.8 ± 14.2 n.u., and LF:HF ratio (0.7 ± 0.4 vs. 1.1 ± 0.6 ms2. Conclusions Children engaged with regular football practice presented enhanced physical fitness and autonomic function, by increasing vagal tone at rest.

  4. Chinese-chi and Kundalini yoga Meditations Effects on the Autonomic Nervous System: Comparative Study

    Directory of Open Access Journals (Sweden)

    Anilesh Dey

    2016-06-01

    Full Text Available Cardiac disease is one of the major causes for death all over the world. Heart rate variability (HRV is a significant parameter that used in assessing Autonomous Nervous System (ANS activity. Generally, the 2D Poincare′ plot and 3D Poincaré plot of the HRV signals reflect the effect of different external stimuli on the ANS. Meditation is one of such external stimulus, which has different techniques with different types of effects on the ANS. Chinese Chi-meditation and Kundalini yoga are two different effective meditation techniques. The current work is interested with the analysis of the HRV signals under the effect of these two based on meditation techniques. The 2D and 3D Poincare′ plots are generally plotted by fitting respectively an ellipse/ellipsoid to the dense region of the constructed Poincare′ plot of HRV signals. However, the 2D and 3D Poincaré plots sometimes fail to describe the proper behaviour of the system. Thus in this study, a three-dimensional frequency-delay plot is proposed to properly distinguish these two famous meditation techniques by analyzing their effects on ANS. This proposed 3D frequency-delay plot is applied on HRV signals of eight persons practicing same Chi-meditation and four other persons practising same Kundalini yoga. To substantiate the result for larger sample of data, statistical Student t-test is applied, which shows a satisfactory result in this context. The experimental results established that the Chi-meditation has large impact on the HRVcompared to the Kundalini yoga.

  5. Cardiovascular autonomic function in Cushing's syndrome.

    Science.gov (United States)

    Fallo, F; Maffei, P; Dalla Pozza, A; Carli, M; Della Mea, P; Lupia, M; Rabbia, F; Sonino, N

    2009-01-01

    Cardiac autonomic dysfunction is associated with increased cardiovascular mortality. No data on sympathovagal balance are available in patients with Cushing's syndrome, in whom cardiovascular risk is high. We studied 10 patients with newly diagnosed Cushing's syndrome (1 male/9 females; age mean+/-SD, 47+/-10 yr) and 10 control subjects matched for age, sex, body mass index, and cardiovascular risk factors. In both groups there were 7 patients with arterial hypertension, 3 with diabetes mellitus, and 2 with obesity. Cardiac autonomic function was evaluated by analysis of short time heart rate variability (HRV) measures in frequency domain over 24-h, daytime, and nighttime. The 24-h ambulatory blood pressure monitoring and echocardiography were also performed. In comparison with controls, patients with Cushing's syndrome had lower 24-h (1.3+/-0.6 vs 3.7+/-1.5, mean+/-SD, p<0.01), daytime (2.0+/-1.4 vs 4.5+/-1.6, p<0.01), and night-time (1.0+/-0.4 vs 3.5+/-2.3, p<0.01) low-frequency/ high frequency (LF/HF) power ratio. In the presence of similar LF power, the difference was due to elevation in HF power in Cushing's syndrome compared to controls: 24-h, 12.7+/-6.7 vs 5.8+/-2.8, p<0.01; daytime, 10.2+/-7.3 vs 4.5+/-2.1, p<0.05; nighttime, 14.2+/-7.0 vs 7.8+/-4.7, p<0.05. Eight Cushing patients vs 4 controls had a non-dipping blood pressure profile. At echocardiography, Cushing patients had a greater left ventricular mass index and/or relative wall thickness, and impaired diastolic function, compared with controls. Compared to controls, patients with Cushing's syndrome showed a sympathovagal imbalance, characterized by a relatively increased parasympathetic activity. Whether this autonomic alteration is meant to counterbalance cortisol-induced effects on blood pressure and cardiac structure/function or has a different pathophysiological significance is still unknown. PMID:19337014

  6. Clinical Assessment of Cardiovascular and Autonomic Function

    Directory of Open Access Journals (Sweden)

    Diego Benitez

    2004-10-01

    Full Text Available This paper presents a non-invasive virtual medical instrument for the clinical assessment of cardiovascular and autonomic function. The virtual instrument was developed with the aim of analysing and understanding the physiological changes that occurs in the heart and circulation during vasovagal blackout attacks. The automated virtual instrument allows impedance cardiography analysis, time and frequency heart rate and blood pressure variability analysis, invasive and non-invasive baroreflex sensitivity assessment and forearm blood flow measurements. Using this virtual instrument five control subjects (3 male, mean age 30.6 ± 5.4 and five vasovagal syncope suffers (2 male, mean age 38.6 ± 6.3 were used in a study to try to identify the differences between the two groups to tilt induced syncope. The results obtained suggest that there are fundamental differences in the physiological responses to orthostatic stress between vasovagal patients and controls, which are evident before the onset of major haemodynamic changes.

  7. Evaluation of autonomic functions in subclinical hypothyroid and hypothyroid patients

    OpenAIRE

    Mahajan, Aarti S.; Ram Lal; Dhanwal, Dinesh K.; Jain, Ajay K.; Veena Chowdhury

    2013-01-01

    Background: Autonomic dysfunction may contribute to cardiovascular morbidity in subclinical hypothyroid patients. It is controversial whether the abnormality exists in sympathetic or the parasympathetic function. It is also not known whether the severity of autonomic dysfunction is related to the degree of thyroid deficiency. Design of Study: Prospective case control. Materials and Methods: Autonomic functions based on heart rate (HR) and blood pressure (BP) responses to various maneuvers wer...

  8. Autonomic nervous system dysfunction predicts poor prognosis in patients with mild to moderate tetanus

    Directory of Open Access Journals (Sweden)

    Shamsi Rohmah

    2005-01-01

    Full Text Available Abstract Background Autonomic nervous system (ANS dysfunction is present in up to one third of patients with tetanus. The prognostic value of ANS dysfunction is known in severe tetanus but its value is not well established in mild to moderate tetanus. Methods Medical records of all patients admitted with tetanus at two academic tertiary care centers in Karachi, Pakistan were reviewed. The demographic, clinical and laboratory data was recorded and analyzed. ANS dysfunction was defined as presence of labile or persistent hypertension or hypotension and sinus tachycardia, tachyarrythmia or bradycardia on EKG. Patients were divided into two groups based on presence of ANS dysfunction (ANS group and non ANS group. Tetanus severity was classified on the basis of Ablett criteria. Results Ninety six (64 males; 32 females patients were admitted with the diagnosis over a period of 10 years. ANS group had 31 (32% patients while non ANS group comprised of 65 (68% patients. Both groups matched for age, gender, symptom severity, use of tetanus immunoglobulin and antibiotics. Twelve patients in ANS group had mild to moderate tetanus (Ablett I and II and 19 patients had severe/very severe tetanus (Ablett III and IV. Fifteen (50% patients in ANS group required ventilation as compared to 28 (45% in non-ANS group (p = 0.09. Fourteen (47% patients died in ANS group as compared to 10 (15% in non ANS group (p= 0.002. Out of those 14 patients died in ANS group, six patients had mild to moderate tetanus and eight patients had severe/ very severe tetanus. Major cause of death was cardiac arrhythmias (13/14; 93% in ANS group and respiratory arrest (7/10; 70% in non ANS group. Ten (33% patients had complete recovery in ANS group while in non ANS group 35(48% patients had complete recovery (p= 0.05. Conclusions ANS dysfunction was present in one third of our tetanus population. 40% patients with ANS dysfunction had only mild to moderate tetanus. ANS dysfunction

  9. A study of autonomic function tests in obese people

    OpenAIRE

    Rinku Garg, Varun Malhotra, Neera Goel, Usha Dhar, Yogesh Tripathi

    2013-01-01

    Background: Obesity is one of the common significant health hazards and is associated with autonomic dysfunction. Aims and objectives: The present study was designed to assess the underlying autonomic neuropathy in obese subjects and to compare it with age-matched controls. Material and Methods: Thirty obese subjects in the age group of 21-40 years were recruited for the study. Six non-invasive autonomic function tests were performed out of which four were based mainly on parasympathetic cont...

  10. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  11. Insights into the clinical and functional significance of cardiac autonomic dysfunction in Chagas disease

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Junqueira Junior

    2012-04-01

    Full Text Available INTRODUCTION: Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS: Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS: We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS: Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.

  12. A study of autonomic functions and obesity in postmenopausal women

    OpenAIRE

    Arunima Chaudhuri; Borade, Nirmala G.; Jyotsna Tirumalai; Daniel Saldanha; Balaram Ghosh; Kalpana Srivastava

    2012-01-01

    Background: Easy accessibility to Medicare and better living conditions has increased life expectancy in recent years. There are over 60 million postmenopausal women above 55 years in India. Obesity, physical inactivity, and altered estrogen metabolism play an integrated role in contributing to the disease risk profile of postmenopausal women. These same risk factors also affect modulation of the autonomic nervous system. A study was undertaken to test the hypothesis whether there is indeed a...

  13. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    International Nuclear Information System (INIS)

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data

  14. Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature.

    Science.gov (United States)

    Bahler, L; Molenaars, R J; Verberne, H J; Holleman, F

    2015-12-01

    Brown adipose tissue (BAT) is able to convert calories into heat rather than storing them. Therefore, activated BAT could be a potential target in the battle against obesity and type 2 diabetes. This review focuses on the role of the autonomic nervous system in the activation of human BAT. Although the number of studies focusing on BAT in humans is limited, involvement of the sympathetic nervous system (SNS) in BAT activation is evident. Metabolic BAT activity can be visualized with (18)F-fluorodeoxyglucose, whereas sympathetic activation of BAT can be visualized with nuclear-medicine techniques using different radiopharmaceuticals. Also, interruption of the sympathetic nerves leading to BAT activation diminishes sympathetic stimulation, resulting in reduced metabolic BAT activity. Furthermore, both β- and α-adrenoceptors might be important in the stimulation process of BAT, as pretreatment with propranolol or α-adrenoceptor blockade also diminishes BAT activity. In contrast, high catecholamine levels are known to activate and recruit BAT. There are several interventional studies in which BAT was successfully inhibited, whereas only one interventional study aiming to activate BAT resulted in the intended outcome. Most studies have focused on the SNS for activating BAT, although the parasympathetic nervous system might also be a target of interest. To better define the possible role of BAT in strategies to combat the obesity epidemic, it seems likely that future studies focusing on both histology and imaging are essential for identifying the factors and receptors critical for activation of human BAT. PMID:26404650

  15. Evaluation of autonomic functions in subclinical hypothyroid and hypothyroid patients

    Directory of Open Access Journals (Sweden)

    Aarti S Mahajan

    2013-01-01

    Full Text Available Background: Autonomic dysfunction may contribute to cardiovascular morbidity in subclinical hypothyroid patients. It is controversial whether the abnormality exists in sympathetic or the parasympathetic function. It is also not known whether the severity of autonomic dysfunction is related to the degree of thyroid deficiency. Design of Study: Prospective case control. Materials and Methods: Autonomic functions based on heart rate (HR and blood pressure (BP responses to various maneuvers were evaluated and scored in twenty two subclinical hypothyroid patients, 30-50 years and compared with twenty hypothyroid patients. Biochemical estimation of TSH, fT 3 , fT 4 , TPO antibody was done. Result: Sympathetic function abnormalities were seen in 82% subclinical hypothyroid patients and 85%hypothyroid patients when one test was abnormal. Parasympathetic dysfunction was also recorded in eight patients in both groups. When two abnormal tests were used as the selection criteria sympathetic function abnormality was observed in about 41% subclinical hypothyroid and 65% hypothyroid patients. There were no intergroup differences in autonomic functions, score and TPO levels. The TSH levels were not related to type or degree of autonomic dysfunction. Systolic BP in both groups and diastolic BP in hypothyroid patients were higher with lower thyroxine levels but the patients were normotensive. Conclusion: Autonomic dysfunction of comparable degree was seen in subclinical hypothyroid and hypothyroid patients. Sympathetic function abnormality was more common although decreased parasympathetic function reactivity was also present. These abnormalities were unrelated to TSH levels.

  16. Emotion Regulation via the Autonomic Nervous System in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    Musser, Erica D.; Backs, Richard W.; Schmitt, Colleen F.; Ablow, Jennifer C.; Measelle, Jeffery R.; Nigg, Joel T.

    2011-01-01

    Despite growing interest in conceptualizing ADHD as involving disrupted emotion regulation, few studies have examined the physiological mechanisms related to emotion regulation in children with this disorder. This study examined parasympathetic and sympathetic nervous system reactivity via measures of respiratory sinus arrhythmia (RSA) and cardiac…

  17. How Can Music Influence the Autonomic Nervous System Response in Patients with Severe Disorder of Consciousness?

    Science.gov (United States)

    Riganello, Francesco; Cortese, Maria D.; Arcuri, Francesco; Quintieri, Maria; Dolce, Giuliano

    2015-01-01

    Activations to pleasant and unpleasant musical stimuli were observed within an extensive neuronal network and different brain structures, as well as in the processing of the syntactic and semantic aspects of the music. Previous studies evidenced a correlation between autonomic activity and emotion evoked by music listening in patients with Disorders of Consciousness (DoC). In this study, we analyzed retrospectively the autonomic response to musical stimuli by mean of normalized units of Low Frequency (nuLF) and Sample Entropy (SampEn) of Heart Rate Variability (HRV) parameters, and their possible correlation to the different complexity of four musical samples (i.e., Mussorgsky, Tchaikovsky, Grieg, and Boccherini) in Healthy subjects and Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS) patients. The complexity of musical sample was based on Formal Complexity and General Dynamics parameters defined by Imberty's semiology studies. The results showed a significant difference between the two groups for SampEn during the listening of Mussorgsky's music and for nuLF during the listening of Boccherini and Mussorgsky's music. Moreover, the VS/UWS group showed a reduction of nuLF as well as SampEn comparing music of increasing Formal Complexity and General Dynamics. These results put in evidence how the internal structure of the music can change the autonomic response in patients with DoC. Further investigations are required to better comprehend how musical stimulation can modify the autonomic response in DoC patients, in order to administer the stimuli in a more effective way. PMID:26696818

  18. Autonomic nervous system and lipid metabolism: findings in anxious-depressive spectrum and eating disorders

    OpenAIRE

    Messina Vincenzo; Luca Antonina; De Luca Maria; Pistorio Elisabetta; Calandra Carmela

    2011-01-01

    Abstract Objective To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI) as a new possible biomarker. Methods 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs). The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental...

  19. Effects of different "relaxing" music styles on the autonomic nervous system

    OpenAIRE

    Santiago Pérez-Lloret; Joaquín Diez; María Natalia Domé; Andrea Alvarez Delvenne; Nestor Braidot; Daniel P. Cardinali; Daniel Eduardo Vigo

    2014-01-01

    The objective of this study was to assess the effects on heart rate variability (HRV) of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melo...

  20. How can music influence the Autonomic Nervous System response in patients with severe Disorder of Consciousness?

    Directory of Open Access Journals (Sweden)

    Francesco eRiganello

    2015-12-01

    Full Text Available Activations to pleasant and unpleasant musical stimuli were observed within an extensive neuronal network and different brain structures, as well as in the processing of the syntactic and semantic aspects of the music. Previous studies evidenced a correlation between autonomic activity and emotion evoked by music listening in patients with Disorders of Consciousness (DoC. In this study, we analyzed retrospectively the autonomic response to musical stimuli by mean of normalized units of Low Frequency (nuLF and Sample Entropy (SampEn of Heart Rate Variability (HRV parameters, and their possible correlation to the different complexity of four musical samples (i.e. Mussorgsky, Tchaikovsky, Grieg and Boccherini in Healthy subjects and Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS patients.The complexity of musical sample was based on Formal Complexity and General Dynamics parameters defined by Imberty’s semiology studies.The results showed a significant difference between the two groups for SampEn during the listening of Mussorgsky’s music and for nuLF during the listening of Boccherini and Mussorgsky’s music.Moreover, the VS/UWS group showed a reduction of nuLF as well as SampEn comparing music of increasing Formal Complexity and General Dynamics.These results put in evidence how the internal structure of the music can change the autonomic response in patients with DoC. Further investigations are required to better comprehend how musical stimulation can modify the autonomic response in DoC patients, in order to administer the stimuli in a more effective way.

  1. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    OpenAIRE

    Kang-Ming Chang; Chuh-Wei Shen

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic ...

  2. Measurement of the effect of Isha Yoga on cardiac autonomic nervous system using short-term heart rate variability

    Directory of Open Access Journals (Sweden)

    Krishnan Muralikrishnan

    2012-01-01

    Full Text Available Background: Beneficial effects of Yoga have been postulated to be due to modulation of the autonomic nervous system. Objective: To assess the effect of Isha Yoga practices on cardiovascular autonomic nervous system through short-term heart rate variability (HRV. Design of the Study: Short-term HRV of long-term regular healthy 14 (12 males and 2 females Isha Yoga practitioners was compared with that of age- and gender-matched 14 (12 males and 2 females non-Yoga practitioners. Methods and Materials: ECG Lead II and respiratory movements were recorded in both groups using Polyrite during supine rest for 5 min and controlled deep breathing for 1 minute. Frequency domain analysis [RR interval is the mean of distance between subsequent R wave peaks in ECG], low frequency (LF power, high frequency (HF power, LF normalized units (nu, HF nu, LF/HF ratio] and time domain analysis [Standard Deviation of normal to normal interval (SDNN, square of mean squared difference of successive normal to normal intervals (RMSSD, normal to normal intervals which are differing by 50 ms (NN50, and percentage of NN50 (pNN50] of HRV variables were analyzed for supine rest. Time domain analysis was recorded for deep breathing. Results: Results showed statistically significant differences between Isha Yoga practitioners and controls in both frequency and time domain analyses of HRV indices, with no difference in resting heart rate between the groups. Conclusions: Practitioners of Isha Yoga showed well-balanced beneficial activity of vagal efferents, an overall increased HRV, and sympathovagal balance, compared to non-Yoga practitioners during supine rest and deep breathing.

  3. Study on the correlation of the autonomic nervous system responses to a stressor of high discomfort with personality traits.

    Science.gov (United States)

    LeBlanc, J; Ducharme, M B; Thompson, M

    2004-09-30

    The present study investigated Eysenck's predictions concerning the correlation of personality to arousal at higher levels of stress. Twenty young adults were exposed to a physical stress causing great discomfort, specifically a cold wind (4 degrees C at 60 km/h) exposure to the face for 3 min. Autonomic nervous system (ANS) responses were measured by continuous heart rate and plasma catecholamine determinations before, during and after the test. At the end of the test, the participants gave a rating of discomfort on a 0 to 10 scale. The personality traits were assessed with the Big-Five Inventory test (BFI). Results indicated that higher levels of trait extraversion were positively correlated with discomfort ratings and with the increased heart rate and the noradrenaline responses. Neuroticism was negatively correlated to discomfort and the autonomic responses. These findings tend to support Eysenck's theory on the role of personality on arousal at higher levels of stress. It is also proposed that the better tolerance to this severe stress observed with neuroticism is correlated to a certain habituation process caused by light to moderate arousal frequently experienced by participants with this personality trait during their daily activities. PMID:15327912

  4. [Assessment of the Effect of Pain on Autonomic Nervous System in Human Body Using Heart Rate Variability Analysis].

    Science.gov (United States)

    Fu, Qingbiao; Liu, Chunlin; Zhang, Fang; Fang, Yi; Shen, Dai; Zhang, Jian

    2015-12-01

    The purpose of this study is to discuss the feasibility of establishing capsaicin pain model and the possibility to evaluate different degrees of pain by the heart rate variability (HRV). It also aims to investigate the changes of autonomic nervous activity of volunteers during the process of pain caused by capsaicin. A total of 30 volunteers were selected, who were physically and mentally healthy, into the study. To assess the effects of capsaicin on the healthy volunteers, we recorded the Visual Analogue Scale (VAS) scores after the capsaicin stimulus. Additionally, the electrocardiogram signals and HRV analysis index before and after stimulating were also recorded, respectively. More specifically, the HRV analysis indexes included the time domain index, the frequency domain index, and the nonlinear analysis index. The results demonstrated that the activity of the autonomic nerves was enhanced in the process of capsaicin stimulus, especially for the sympathetic nerve, which exhibited a significantly differences in HRV. In conclusion, the degree of pain can be reflected by the HRV. It is feasible to establish a capsaicin pain model. And in further experiments, HRV analysis could be used as a reference index for quantitative evaluation of pain. PMID:27079091

  5. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    Directory of Open Access Journals (Sweden)

    Bruno Rodrigues

    2014-01-01

    Full Text Available The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week and detraining (DT on inflammatory and metabolic profile after myocardial infarction (MI in rats. Male Wistar rats were divided into control (C, n=8, sedentary infarcted (SI, n=9, trained infarcted (TI,  n=10; 3 months of ET, and detrained infarcted (DI, n=11; 2 months of ET + 1 month of DT. After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis, and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI.

  6. Impaired Neural Structure and Function Contributing to Autonomic Symptoms in Congenital Central Hypoventilation Syndrome

    Directory of Open Access Journals (Sweden)

    Ronald M Harper

    2015-10-01

    Full Text Available Congenital central hypoventilation syndrome (CCHS patients show major autonomic alterations in addition to their better-known breathing deficiencies. The processes underlying CCHS, mutations in the PHOX2B gene, target autonomic neuronal development, with frame shift extent contributing to symptom severity. Many autonomic characteristics, such as impaired pupillary constriction and poor temperature regulation, reflect parasympathetic alterations, and can include disturbed alimentary processes, with malabsorption and intestinal motility dyscontrol. The sympathetic nervous system changes can exert life-threatening outcomes, with dysregulation of sympathetic outflow leading to high blood pressure, time-altered and dampened heart rate and breathing responses to challenges, cardiac arrhythmia, profuse sweating, and poor fluid regulation. The central mechanisms contributing to failed autonomic processes are readily apparent from structural and functional magnetic resonance imaging studies, which reveal substantial cortical thinning, tissue injury, and disrupted functional responses in hypothalamic, hippocampal, posterior thalamic, and basal ganglia sites and their descending projections, as well as insular, cingulate, and medial frontal cortices, which influence subcortical autonomic structures. Midbrain structures are also compromised, including the raphe system and its projections to cerebellar and medullary sites, the locus coeruleus, and medullary reflex integrating sites, including the dorsal and ventrolateral medullary nuclei. The damage to rostral autonomic sites overlaps metabolic, affective and cognitive regulatory regions, leading to hormonal disruption, anxiety, depression, behavioral control, and sudden death concerns. The injuries suggest that interventions for mitigating hypoxic exposure and nutrient loss may provide cellular protection, in the same fashion as interventions in other conditions with similar malabsorption, fluid turnover

  7. Effects of different "relaxing" music styles on the autonomic nervous system

    Directory of Open Access Journals (Sweden)

    Santiago Pérez-Lloret

    2014-01-01

    Full Text Available The objective of this study was to assess the effects on heart rate variability (HRV of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melody that they would use to relax. The low-to-high-frequency ratio was significantly higher when subjects were exposed to "new age" music when compared with silence (3.4 ± 0.3 vs. 2.6 ± 0.3, respectively, P < 0.02, while no differences were found with "classical" or "romantic" melodies (2.1 ± 0.4 and 2.2 ± 0.3. These results were related to a reduction in the high frequency component with "new age" compared to silence (17.4 ± 1.9 vs. 23.1 ± 1.1, respectively P < 0.004. Significant differences across melodies were also found for nonlinear HRV indexes. Subjects′ preferences did not correlate with autonomic responses to melodies. The results suggest that "new age" music induced a shift in HRV from higher to lower frequencies, independently on the music preference of the listener.

  8. Effects of different "relaxing" music styles on the autonomic nervous system.

    Science.gov (United States)

    Perez-Lloret, Santiago; Diez, Joaquín; Domé, María Natalia; Delvenne, Andrea Alvarez; Braidot, Nestor; Cardinali, Daniel P; Vigo, Daniel Eduardo

    2014-01-01

    The objective of this study was to assess the effects on heart rate variability (HRV) of exposure to different styles of "relaxing" music. Autonomic responses to musical stimuli were correlated with subjective preferences regarding the relaxing properties of each music style. Linear and nonlinear HRV analysis was conducted in 25 healthy subjects exposed to silence or to classical, new age or romantic melodies in a random fashion. At the end of the study, subjects were asked to choose the melody that they would use to relax. The low-to-high-frequency ratio was significantly higher when subjects were exposed to "new age" music when compared with silence (3.4 ± 0.3 vs. 2.6 ± 0.3, respectively, P music induced a shift in HRV from higher to lower frequencies, independently on the music preference of the listener. PMID:25209037

  9. Responses of the autonomic nervous system in altitude adapted and high altitude pulmonary oedema subjects

    Science.gov (United States)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Radhakrishnan, U.; Sen Gupta, J.; Nayar, H. S.

    1985-06-01

    Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500 4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.

  10. Pumilio-2 function in the mouse nervous system.

    Science.gov (United States)

    Siemen, Henrike; Colas, Damien; Heller, H Craig; Brüstle, Oliver; Pera, Renee A Reijo

    2011-01-01

    Coordinated mRNA translation at the synapse is increasingly recognized as a critical mechanism for neuronal regulation. Pumilio, a translational regulator, is known to be involved in neuronal homeostasis and memory formation in Drosophila. Most recently, the mammalian Pumilio homolog Pumilio-2 (Pum2) has been found to play a role in the mammalian nervous system, in particular in regulating morphology, arborization and excitability of neuronal dendrites, in vitro. However, the role of Pum2 in vivo remains unclear. Here, we report our investigation of the functional and molecular consequences of Pum2 disruption in vivo using an array of neurophysiology, behavioral and gene expression profiling techniques. We used Pum2-deficient mice to monitor in vivo brain activity using EEG and to study behavior traits, including memory, locomotor activity and nesting capacities. Because of the suspected role of Pum2 in neuronal excitability, we also examined the susceptibility to seizure induction. Finally, we used a quantitative gene expression profiling assay to identify key molecular partners of Pum2. We found that Pum2-deficient mice have abnormal behavioral strategies in spatial and object memory test. Additionally, Pum2 deficiency is associated with increased locomotor activity and decreased body weight. We also observed environmentally-induced impairment in nesting behavior. Most importantly, Pum2-deficient mice showed spontaneous EEG abnormalities and had lower seizure thresholds using a convulsing dosage of pentylenetetrazole. Finally, some genes, including neuronal ion channels, were differentially expressed in the hippocampus of Pum2-deficient mice. These findings demonstrate that Pum2 serves key functions in the adult mammalian central nervous system encompassing neuronal excitability and behavioral response to environmental challenges. PMID:22016787

  11. Cooperative Control for Multiple Autonomous Vehicles Using Descriptor Functions

    OpenAIRE

    Marta Niccolini; Lorenzo Pollini; Mario Innocenti

    2014-01-01

    The paper presents a novel methodology for the control management of a swarm of autonomous vehicles. The vehicles, or agents, may have different skills, and be employed for different missions. The methodology is based on the definition of descriptor functions that model the capabilities of the single agent and each task or mission. The swarm motion is controlled by minimizing a suitable norm of the error between agents’ descriptor functions and other descriptor functions which models the enti...

  12. Effect of Forest Walking on Autonomic Nervous System Activity in Middle-Aged Hypertensive Individuals: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chorong Song

    2015-03-01

    Full Text Available There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0 ± 10.6 years were instructed to walk predetermined courses in forest and urban environments (as control. Course length (17-min walk, walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased “comfortable”, “relaxed”, “natural” and “vigorous” feelings and decreased “tension-anxiety,” “depression,” “anxiety-hostility,” “fatigue” and “confusion”. A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.

  13. Quantification of cardiac autonomic nervous activities in ambulatory dogs by eliminating cardiac electric activities using cubic smoothing spline

    International Nuclear Information System (INIS)

    With the development of an implantable radio transmitter system, direct measurement of cardiac autonomic nervous activities (CANAs) became possible for ambulatory animals for a couple of months. However, measured CANAs include not only CANA but also cardiac electric activity (CEA) that can affect the quantification of CANAs. In this study, we propose a novel CEA removal method using moving standard deviation and cubic smoothing spline. This method consisted of two steps of detecting CEA segments and eliminating CEAs in detected segments. Using implanted devices, we recorded stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA) and superior left ganglionated plexi nerve activity (SLGPNA) directly from four ambulatory dogs. The CEA-removal performance of the proposed method was evaluated and compared with commonly used high-pass filtration (HPF) for various heart rates and CANA amplitudes. Results tested with simulated CEA and simulated true CANA revealed stable and excellent performance of the suggested method compared to the HPF method. The averaged relative error percentages of the proposed method were less than 0.67%, 0.65% and 1.76% for SGNA, VNA and SLGPNA, respectively. (paper)

  14. Assessment of Fetal Autonomic Nervous System Activity by Fetal Magnetocardiography: Comparison of Normal Pregnancy and Intrauterine Growth Restriction

    Directory of Open Access Journals (Sweden)

    Akimune Fukushima

    2011-01-01

    Full Text Available Objective. To clarify the developmental activity of the autonomic nervous system (ANS of the normal fetus and intrauterine growth restriction (IUGR cases using fetal magnetocardiography (FMCG. Subjects and Methods. Normal pregnancy (n=35 and IUGR (n=12 cases at 28–39 and 32–37 weeks of gestation, respectively, were included in this study. The R-R interval variability was used to calculate the coefficient of variance (CVRR and low frequency/high frequency (LF/HF ratio. Results. The value of CVRR in the normal pregnancy group displayed a slight increasing trend with gestational age. However, no such trend was observed in the IUGR group. In contrast, the LF/HF ratio in both the normal pregnancy group and the IUGR group clearly increased over the gestational period; the normal group showing statistical significance. Conclusion. The development of fetal ANS activity in IUGR cases might differ from that observed in the normal pregnancy group, and this may facilitate early detection of IUGR.

  15. The significance of amlodipine on autonomic nervous system adjustment (ANSA method: A new approach in the treatment of hypertension

    Directory of Open Access Journals (Sweden)

    Milovanović Branislav

    2009-01-01

    Full Text Available Introduction. Cardiovascular autonomic modulation is altered in patients with essential hypertension. Objective To evaluate acute and long-term effects of amlodipine on cardiovascular autonomic function and haemodynamic status in patients with mild essential hypertension. Methods. Ninety patients (43 male, mean age 52.12 ±10.7 years with mild hypertension were tested before, 30 minutes after the first 5 mg oral dose of amlodipine and three weeks after monotherapy with amlodipine. A comprehensive study protocol was done including finger blood pressure variability (BPV and heart rate variability (HRV beat-to-beat analysis with impedance cardiography, ECG with software short-term HRV and nonlinear analysis, 24-hour Holter ECG monitoring with QT and HRV analysis, 24-hour blood pressure (BP monitoring with systolic and diastolic BPV analysis, cardiovascular autonomic reflex tests, cold pressure test, mental stress test. The patients were also divided into sympathetic and parasympathetic groups, depending on predominance in short time spectral analysis of sympathovagal balance according to low frequency and high frequency values. Results. We confirmed a significant systolic and diastolic BP reduction, and a reduction of pulse pressure during day, night and early morning hours. The reduction of supraventricular and ventricular ectopic beats during the night was also achieved with therapy, but without statistical significance. The increment of sympathetic activity in early phase of amlodipine therapy was without statistical significance and persistence of sympathetic predominance after a few weeks of therapy detected based on the results of short-term spectral HRV analysis. All time domain parameters of long-term HRV analysis were decreased and low frequency amongst spectral parameters. Amlodipne reduced baroreflex sensitivity after three weeks of therapy, but increased it immediately after the administration of the first dose. Conclusion. The results

  16. Pulmonary function, cholinergic bronchomotor tone, and cardiac autonomic abnormalities in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Melo E.

    2003-01-01

    Full Text Available This prospective study analyzed the involvement of the autonomic nervous system in pulmonary and cardiac function by evaluating cardiovascular reflex and its correlation with pulmonary function abnormalities of type 2 diabetic patients. Diabetic patients (N = 17 and healthy subjects (N = 17 were evaluated by 1 pulmonary function tests including spirometry, He-dilution method, N2 washout test, and specific airway conductance (SGaw determined by plethysmography before and after aerosol administration of atropine sulfate, and 2 autonomic cardiovascular activity by the passive tilting test and the magnitude of respiratory sinus arrhythmia (RSA. Basal heart rate was higher in the diabetic group (87.8 ± 11.2 bpm; mean ± SD than in the control group (72.9 ± 7.8 bpm, P<0.05. The increase of heart rate at 5 s of tilting was 11.8 ± 6.5 bpm in diabetic patients and 17.6 ± 6.2 bpm in the control group (P<0.05. Systemic arterial pressure and RSA analysis did not reveal significant differences between groups. Diabetes intragroup analysis revealed two behaviors: 10 patients with close to normal findings and 7 with significant abnormalities in terms of RSA, with the latter subgroup presenting one or more abnormalities in other tests and clear evidence of cardiovascular autonomic dysfunction. End-expiratory flows were significantly lower in diabetic patients than in the control group (P<0.05. Pulmonary function tests before and after atropine administration demonstrated comparable responses by both groups. Type 2 diabetic patients have cardiac autonomic dysfunction that is not associated with bronchomotor tone alterations, probably reflecting a less severe impairment than that of type 1 diabetes mellitus. Yet, a reduction of end-expiratory flow was detected.

  17. Can we Modulate the Autonomic Nervous System to Improve the Life of Patients with Heart Failure? The Case of Vagal Stimulation

    OpenAIRE

    Schwartz, Peter J.

    2014-01-01

    An imbalance of the autonomic nervous system, with reduced vagal and increased sympathetic activity, contributes to pathogenesis and clinical deterioration in heart failure (HF). Experimental studies have demonstrated that vagal stimulation (VS) has an antifibrillatory effect that has proved beneficial in animal models of HF. The potential value of chronic VS in man was first investigated with an implantable neuro-stimulator capable of delivering low current pulses with adjustable parameters ...

  18. Magnetic resonance imaging study of lumbosacral spinal cord nerves before artificial somatic-central nervous system-autonomic reflex pathway establish ment

    International Nuclear Information System (INIS)

    Objective: To investigate the value of MRI as imaging technique for lumbosacral spinal nerves before artificial somatic-central nervous system-autonomic reflex pathway establish ment. Methods: Conventional MRI and T2W CISS 3D were performed in 10 patients with neurogenic bladder planned for the operation of artificial somatic-central nervous system-autonomic reflex pathway. The Three-dimensional data were then constructed into composite images using a standard multiple planar reformation (MPR). Results: Five patients showed tethered spinal cord syndrome, whose spinal cord nerves were circuitous distributed and had abnormity number when penetrated the dura. Of these 5 patients, one patient was accompanied by spinal cord vas malformation. Four patients had vertebral fracture and spinal injury, and the other one patients demonstrated tumor in vertebral canal on MRI examinations. The spinal cord nerves in these 5 patients floated down river and had normal number of spinal cord nerves. Conclusion: Conventional MRI and T2W CISS 3D MRI were essential for the pre-operative planning of artificial somatic-central nervous system-autonomic reflex pathway, especially in patients with tethered spinal cord syndrome. Spinal cord nerves distribute and anterior and posterior roots array can be clearly showed by MPR. (authors)

  19. The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia

    Science.gov (United States)

    de Castro, Fernando

    2016-01-01

    The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920’s, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield’s famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today. PMID:27147984

  20. Identifying functional thermodynamics in autonomous Maxwellian ratchets

    Science.gov (United States)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2016-02-01

    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly—for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds. As such, it broadly describes the minimal energetic cost of any computation by a thermodynamic system.

  1. Cardiac autonomic functions in children with familial Mediterranean fever.

    Science.gov (United States)

    Şahin, Murat; Kır, Mustafa; Makay, Balahan; Keskinoğlu, Pembe; Bora, Elçin; Ünsal, Erbil; Ünal, Nurettin

    2016-05-01

    Familial Mediterranean fever (FMF) is the most common inherited autoinflammatory disease in the world. The long-term effects of subclinical inflammation in FMF are not well recognized. Some studies have suggested that FMF is associated with cardiac autonomic dysfunction in adult FMF patients. The objective of this study was to investigate the cardiac autonomic functions in pediatric FMF patients by using several autonomic tests. Thirty-five patients with FMF and 35 healthy controls were enrolled in this cross-sectional study. Demographic data, disease-specific data, and orthostatic symptoms were recorded. In all participants, 12-lead electrocardiography (ECG), 24 h ambulatory electrocardiographic monitoring, transthoracic echocardiography, treadmill exercise test, and head upright tilt-table (HUTT) test were performed. The heart rate recovery (HRR) indices of the two groups were similar. Also, chronotropic response was similar in both groups. The time-domain parameters of heart rate variability (HRV) were similar in both groups, except mean RR (p = 0.024). Frequencies of ventricular and supraventricular ectopic stimuli were similar in both groups. There were no statistically significant differences between the groups in average QT and average corrected QT interval length, average QT interval dispersion, and average QT corrected dispersion. There was no significant difference between the two groups regarding the ratio of clinical dysautonomic reactions on HUTT. However, we observed a significantly higher rate of dysautonomic reactions on HUTT in patients with exertional leg pain than that in patients without (p = 0.013). When the fractal dimension of time curves were compared, FMF patients exhibited significantly lower diastolic blood pressure parameters than controls in response to HUTT. Cardiovascular autonomic dysfunction in children with FMF is not prominent. Particularly, patients with exertional leg pain are more prone to have dysautonomic features

  2. Sensitivity of the Autonomic Nervous System to Visual and Auditory Affect Across Social and Non-Social Domains in Williams Syndrome

    Science.gov (United States)

    Järvinen, Anna; Dering, Benjamin; Neumann, Dirk; Ng, Rowena; Crivelli, Davide; Grichanik, Mark; Korenberg, Julie R.; Bellugi, Ursula

    2012-01-01

    Although individuals with Williams syndrome (WS) typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of “peaks and valleys” of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS) responsivity, in individuals with WS contrasted with a typically developing (TD) group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR) reactivity, and a failure for electrodermal activity to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested. PMID:23049519

  3. Sensitivity of the autonomic nervous system to visual and auditory affect across social and non-social domains in Williams syndrome

    Directory of Open Access Journals (Sweden)

    AnnaMaariaJärvinen

    2012-09-01

    Full Text Available Although individuals with Williams syndrome (WS typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of “peaks and valleys” of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS responsivity, in individuals with WS contrasted with a typically developing (TD group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR reactivity, and a failure for electrodermal activity (EDA to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social-affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested.

  4. Non-autonomous morse-decomposition and Lyapunov functions for gradient-like processes

    OpenAIRE

    Aragão Costa, Eder Ritis; Caraballo Garrido, Tomás; Carvalho, Alexandre Nolasco; Langa Rosado, José Antonio

    2013-01-01

    We define (time dependent) Morse-decompositions for non-autonomous evolution processes (non-autonomous dynamical systems) and prove that a non-autonomous gradient-like evolution process possesses a Morsedecomposition on the associated pullback attractor. We also prove the existence of an associated Lyapunov function which describes the gradient behavior of the system. Finally, we apply these abstract results to non-autonomous perturbations of autonomous gradient-like evolution processes (s...

  5. The Autonomic Nervous System and Atrial Fibrillation: The Roles of Pulmonary Vein Isolation and Ganglionated Plexi Ablation

    Directory of Open Access Journals (Sweden)

    Benjamin J. Scherlag

    2009-08-01

    Full Text Available After the sequential successes of catheter ablation for the treatment of pre-excitation syndromes (WPW, junctional reentry (AVNRT atrial flutter (AFL and ventricular arrhythmias, clinical electrophysiologists have focused on the myocardial basis of atrial fibrillation (AF. Thus, the strategy for ablation of drug and cardioversion refractory AF was to isolate the myocardial connections from the focal firing pulmonary veins (PVs in addition to altering the atrial substrate maintaining AF. However, the overall success rates have not achieved those of the other types of ablation procedures. In this review we have summarized the favorable aspects and drawbacks of pulmonary vein isolation (PVI. As for the role of the Intrinsic Cardiac Autonomic Nervous System (ICANS, both basic and clinical evidence has shown that ganglionated plexi (GP stimulation promotes initiation and maintenance of AF, and that GP ablation reduces recurrence of AF following catheter or surgical ablation of these structures. Based on these findings, the GP Hyperactivity Hypothesis has been proposed to explain, at least in part, the mechanistic basis for the focal form of AF. For example, PV isolation may not always be necessary for elimination of AF, as in the early stages of paroxysmal AF. GP ablation alone, in these cases, may suffice for focal AF termination. In the persistent and long standing persistent forms the substrate for AF may be more extensive and therefore require GP ablation plus PV isolation and/or CFAE ablations. Clinical reports, both catheter based as well as minimally invasive surgical procedures, which include PVI plus GP ablation have shown relatively long-term success rates much closer to or equal to those achieved by myocardial ablation procedures in patients with WPW, AVNRT and AFL.

  6. The Autonomic Nervous System and Atrial Fibrillation:The Roles of Pulmonary Vein Isolation and Ganglionated Plexi Ablation

    Directory of Open Access Journals (Sweden)

    Benjamin J. Scherlag, PhD

    2009-08-01

    Full Text Available After the sequential successes of catheter ablation for the treatment of pre-excitation syndromes (WPW, junctional reentry (AVNRT atrial flutter (AFL and ventricular arrhythmias, clinical electrophysiologists have focused on the myocardial basis of atrial fibrillation (AF. Thus, the strategy for ablation of drug and cardioversion refractory AF was to isolate the myocardial connections from the focal firing pulmonary veins (PVs in addition to altering the atrial substrate maintaining AF. However, the overall success rates have not achieved those of the other types of ablation procedures. In this review we have summarized the favorable aspects and drawbacks of pulmonary vein isolation (PVI. As for the role of the Intrinsic Cardiac Autonomic Nervous System (ICANS, both basic and clinical evidence has shown that ganglionated plexi (GP stimulation promotes initiation and maintenance of AF, and that GP ablation reduces recurrence of AF following catheter or surgical ablation of these structures. Based on these findings, the GP Hyperactivity Hypothesis has been proposed to explain, at least in part, the mechanistic basis for the focal form of AF. For example, PV isolation may not always be necessary for elimination of AF, as in the early stages of paroxysmal AF. GP ablation alone, in these cases, may suffice for focal AF termination. In the persistent and long standing persistent forms the substrate for AF may be more extensive and therefore require GP ablation plus PV isolation and/or CFAE ablations. Clinical reports, both catheter based as well as minimally invasive surgical procedures, which include PVI plus GP ablation have shown relatively long-term success rates much closer to or equal to those achieved by myocardial ablation procedures in patients with WPW, AVNRT and AFL.

  7. Pure Autonomic Failure

    Science.gov (United States)

    ... Drugs GARD Information Navigator FAQs About Rare Diseases Pure autonomic failure Title Other Names: Bradbury Eggleston syndrome; ... Categories: Nervous System Diseases ; RDCRN Summary Summary Listen Pure autonomic failure is characterized by generalized autonomic failure ...

  8. A study of cardiovascular autonomic function in normal pregnancy

    Directory of Open Access Journals (Sweden)

    Sumana Panja

    2013-04-01

    Full Text Available Objective: The present study was designed to evaluate the physiological responses to noninvasive cardiovascular autonomic function tests in normal pregnancy and compare them with non- pregnant controls. Materials and Methods: The study population comprised of 90 apparently healthy, pregnant women divided equally into three groups based on their period of gestation and 30 otherwise healthy, non-pregnant women as controls. The standard autonomic function tests based on cardiovascular reflexes, including heart rate response tests and blood pressure response tests were performed. Result: It was observed that variability of mean between and within all the population groups and controls was significantly different. Multiple comparison analysis revealed a significantly lower Deep Breathing Difference in pregnant subjects, significant difference in Valsalva Ratio in third trimester group, a significantly lower Postural Tachycardia Index only during last trimester and a significantly higher fall in systolic blood pressure on standing only during 1st trimester. A significantly lower alteration in diastolic blood pressure during isometric handgrip in later trimesters and a significant increase in overall cardiovascular autonomic score between and within all groups were also observed. Conclusion: The observations serve to corroborate that the cardiovascular indices in pregnant women are significantly altered in comparison to non-pregnant women, thus highlighting the importance of cardiovascular monitoring during pregnancy. The study also helped to reaffirm the efficacy of simple cardiovascular reflex tests in research on pregnancy physiology.

  9. ROLE OF YOGA ON CARDIC AUTONOMIC FUNCTION TESTS AND COGNITION IN TYPE 2 DIABETES

    Science.gov (United States)

    Rajani, Santhakumari Nagothu; Indla, Yogananda Reddy; Archana, R; Rajesh, P

    2016-01-01

    According to International Diabetic Federation, type 2 diabetic population is on the rise globally and cognitive decline is one of the complications seen in type 2 diabetes. The present study is aimed at exploring the role of regular practice of yoga on cognition in type 2 diabetes and also to study the relation between the cognition and functional status of autonomic nervous system by considering the Cardiac Autonomic (CAN) function tests. Ten type 2 diabetic subjects of both the sex, aged between 35-55 years, who practiced yoga for a period of six months at Yogi Vemana Yoga Research Institute were recruited as test group. Age and sex matched ten type 2 diabetic subjects were recruited as control group; both the group subjects are on oral hypoglycemic agents. Glycosylated hemoglobin concentration was estimated with Bio-Rad instrument, cognition was assessed with Addenbrooke's Cognitive Examination Revised battery and Cardiac autonomic function tests were also conducted. Unpaired student t test was performed and p<0.05 is considered statistically significant. The mean HbA1c concentration in control and test group subjects is 7.8±1.84 and 6.9±0.4% (p=0.03) respectively. Mean cognitive scores in test and control group subjects are 93±4.5 and 85±4.0 (p=0.008) respectively. CAN test results didn't showed any significance between the test and control group. But CAN functions are affected in both the groups. Regular practice of yoga in combination with oral hypoglycemic agents has a positive effect on cognition in type 2 diabetes. PMID:27390720

  10. Influence of hydrotherapy on clinical and cardiac autonomic function in migraine patients

    OpenAIRE

    M U Sujan; M. Raghavendra Rao; Ravikiran Kisan; Hulegar A Abhishekh; Atchayaram Nalini; Trichur R Raju; Sathyaprabha, T. N.

    2016-01-01

    Background: Migraine is associated with autonomic symptoms. The growing body of literature suggests that the dysfunctional autonomic nervous system might play a pivotal role in the pathogenesis of migraine. Thermal therapies have been hypothesized to modulate these changes and alleviate pain. However, data regarding the efficacy of hydrotherapy in migraine remain scant. We evaluated the effect of add on hydrotherapy procedure (a hot arm and foot bath with ice massage to head) in migraine pati...

  11. Experimental Study of the Effect of Autonomic Nervous System on the Transmural Dispersion of Ventricular Repolarization under Acute Myocardial Ischemia in Vivo

    Institute of Scientific and Technical Information of China (English)

    张存泰; 徐大文; 李泱; 刘念; 钟江华; 王琳; 陆再英

    2002-01-01

    Summary: The effect of the autonomic nerves on the transmural dispersion of ventricular repolariza tion (TDR) under acute myocardial ischemia in intact canine was investigated. Using the monophasic action potential (MAP) recording technique, MAPs of the epicardium (Epi), midmyocardium (Mid) and endocardium (Endo) were recorded simultaneously by specially designed plunge-needle electrodes at the left ventricular free wall under acute myocardial ischemia in 12 open-chest dogs.MAPD90 and TDR among three myocardial layers as well as the incidence of the early afterdepolar ization (EAD) before autonomic nervous stimulation and during autonomic nervous stimulation were compared. It was found that 10 min after acute myocardial I~hemia, TDR was increased from 55±8.ms to 86± 15 ms during sympathetic stimulation (P<0. 01). The TDR (53± 9 ms) during parasympathetic stimulation was not significantly different from that of the control (55±8 ms) (P>0.05). The EAD was elicited in the Mid of 2 dogs (16 %) 10 min after acute myocardial ischemia,but the EAD were elicited in the Mid of 7 dogs (58 %) during sympathetic stimulation (P<0. 01).It was concluded that: (1) Sympathetic stimulation can increase the transmural dispersion of repolari zation and induce early afterdepolarizations in the Mid under acute myocardial ischemia, which pro-vide the opportunity for the ventricular arrhythmia developing; (2) Parasympathetic stimulation has no significant effect on the transmural dispersion of repolarization under myocardial ischemia.

  12. Study on the autonomic dispersion cooperation function monitoring system

    International Nuclear Information System (INIS)

    This study aims to conduct to further promoting study under the research results of nuclear energy basic crossover study of ''Artificial intelligence for nuclear energy'' started under a five-year plan from fiscal year of 1989. In detail, it was conducted to pay an attention for the system of monitoring if autonomic dispersion cooperation function containing plant operation, robot group action and others does its correct function, to promote the study on a system technique to propose some informations widely to its operator on cooperation, judgement process, judgement results and others between artificial intelligence agencies dispersed everywhere. Concretely, some investigations were also conducted on integration with study on agent technique, study on systemization technique, and study executed in the other institute joining to the crossover study. Present study has been promoted under a five-year plan on 6 thema shown as follows: 1) Study on stepwise expression technique of the autonomic function, 2) Study on action state expression technique of the dispersion cooperation function, 3) Study on expression technique of decision making process, 4) Integration with operation control system, 5) Integration with maintenance control system, and 6) Comprehensive evaluation experiment. In fiscal year of 1995, upgrading of image displaying function using three dimensional image displayer for a part of plant state expression technique and trial production and investigation of plan state automatic classifying function were conducted. (G.K.)

  13. Leader-follower function for autonomous military convoys

    Science.gov (United States)

    Vasseur, Laurent; Lecointe, Olivier; Dento, Jerome; Cherfaoui, Nourrdine; Marion, Vincent; Morillon, Joel G.

    2004-09-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales Airborne Systems as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational added value." The paper details the "robotic convoy" theme (named TEL1), which main purpose is to develop a robotic leader-follower function so that several unmanned vehicles can autonomously follow teleoperated, autonomous or on-board driven leader. Two modes have been implemented: Perceptive follower: each autonomous follower anticipates the trajectory of the vehicle in front of it, thanks to a dedicated perception equipment. This mode is mainly based on the use of perceptive data, without any communication link between leader and follower (to lower the cost of future mass development and extend the operational capabilities). Delayed follower: the leader records its path and transmits it to the follower; the follower is able to follow the recorded trajectory again at any delayed time. This mode uses localization data got from inertial measurements. The paper presents both modes with detailed algorithms and the results got from the military acceptance tests performed on wheeled 4x4 vehicles (DARDS French ATD).

  14. Heart rate variability and the influence of craniosacral therapy on autonomous nervous system regulation in persons with subjective discomforts:a pilot study

    Institute of Scientific and Technical Information of China (English)

    Wanda Girsberger; Ulricke Bnziger; Gerhard Lingg; Harald Lothaller; Peter-Christian Endler

    2014-01-01

    BACKGROUND:Subjective discomforts in a preclinical range are often due to imbalanced autonomic nervous system activity, which is a focus of craniosacral therapy. OBJECTIVE:The aim of this work was to determine any changes in heart rate variability (HRV) in a study on craniosacral therapy. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS: This is a quasi-experimental (controlled) study with cross-over design. In a private practice, measurements were performed on 31 patients with subjective discomforts before and after a control and an intervention period. HRV was determined using a device that requires a measuring time of 140 s and electrode contact only with the ifngertips. Main PRIMARY OUTCOME MEASURES: HRV change under the inlfuence of a deifned one-time intervention (test intervention) with craniosacral therapy versus control (deifned rest period). RESULTS:Standard deviation of all RR-intervals (ms) and total power of RR-interval variability in the frequency range (ms2) were together interpreted as an indicator of test subjects’ autonomic nervous activity and as a measure of their ability to cope with demands on their health. Neither of these parameters increased during the control period (P>0.05), whereas during the test intervention period there was an increase in both (P0.05). No changes were observed in the low frequency/high frequency ratio (sympathetic-vagal balance) in the course of the control or the test intervention period (P>0.05). CONCLUSION: Craniosacral treatment had a favourable effect on autonomic nervous activity. This in itself is an interesting result, but further research will be needed to distinguish speciifc effects of craniosacral therapy technique from less speciifc therapist-client interaction effects.

  15. The oral cavity as a guide for the application of low level laser energy and its direct effect on the autonomic nervous system providing true energy healing for all health practitioners

    Science.gov (United States)

    Yolin, Herbert S.

    2008-03-01

    This manuscript is intended to demonstrate the important role that dentistry plays in regulating the balance of the Autonomic Nervous System (ANS) through the proprioceptive feedback of the posterior teeth to the brain. An old paradigm called Dental Distress Syndrome, relatively unknown in dentistry today, has at its core, the importance of the height of the posterior (back) teeth and its impact on total body health which is greatly aided by low level laser energy. The rationale behind the belief that the alteration of the posterior teeth affects the ANS begins with basic concepts in embryology. The functioning of the ANS will support the fact of Dental Distress Syndrome. Health practitioners of all disciplines can learn to recognize Dental Distress Syndrome and initiate non-invasive treatment and team with a trained dentist to enhance the wellness and health of the patient if they so desire. A synopsis of my oral paper presented to the Academy of Laser Dentistry demonstrating temporary balancing of the Autonomic Nervous System with three minutes of cold laser energy, as well as my rationale as to why results vary with different cold lasers will be discussed. Clinical case studies will be presented.

  16. Accessing autonomic function can early screen metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Kan Sun

    Full Text Available BACKGROUND: Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS: The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend <0.0001. Moreover, EZSCAN value was associated with an increase in the number of metabolic syndrome components (p for trend <0.0001. Compared with the no risk group (EZSCAN value 0-24, participants at the high risk group (EZSCAN value: 50-100 had a 2.35 fold increased risk of prevalent metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61-0.64 for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. CONCLUSIONS AND SIGNIFICANCE: In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome.

  17. Autonomic dysfunction is common in HIV and associated with distal symmetric polyneuropathy

    OpenAIRE

    Robinson-Papp, Jessica; Sharma, Sandeep; Simpson, David M; Morgello, Susan

    2013-01-01

    Neurologic complications of HIV are well characterized in the central and peripheral nervous systems but not in the autonomic nervous system, perhaps due to the complexities of measuring autonomic function in medically ill populations. We hypothesized that autonomic dysfunction is common in HIV, can be meaningfully measured with an autonomic reflex screen, and is associated with distal symmetric polyneuropathy (DSP) but not with signs of CNS disease. We also sought to characterize immuno-viro...

  18. Functional structure and dynamics of the human nervous system

    Science.gov (United States)

    Lawrence, J. A.

    1981-01-01

    The status of an effort to define the directions needed to take in extending pilot models is reported. These models are needed to perform closed-loop (man-in-the-loop) feedback flight control system designs and to develop cockpit display requirements. The approach taken is to develop a hypothetical working model of the human nervous system by reviewing the current literature in neurology and psychology and to develop a computer model of this hypothetical working model.

  19. Pumilio-2 Function in the Mouse Nervous System

    OpenAIRE

    Siemen, Henrike; Colas, Damien; Heller, H. Craig; Brüstle, Oliver; Reijo Pera, Renee A.

    2011-01-01

    Coordinated mRNA translation at the synapse is increasingly recognized as a critical mechanism for neuronal regulation. Pumilio, a translational regulator, is known to be involved in neuronal homeostasis and memory formation in Drosophila. Most recently, the mammalian Pumilio homolog Pumilio-2 (Pum2) has been found to play a role in the mammalian nervous system, in particular in regulating morphology, arborization and excitability of neuronal dendrites, in vitro. However, the role of Pum2 in ...

  20. Functional state of the nervous system of sportsmen of playing types of sport

    Directory of Open Access Journals (Sweden)

    Turchina N.I.

    2010-10-01

    Full Text Available The functional state of the nervous system of sportsmen is considered. In research 95 sportsmen took part in the age of 21-27 years (from them there is a 41 men and 54 women. The quantitative and high-quality estimations of level of the psychophysiological state are used. The level of the psychophysiological state of sportsmen is educed - "high", "middle", subzero". It is set that duration of sporting experience stipulates effectiveness of indexes of the functional state of the nervous ystem of sportsmen. It is indicated that the level of the functional state of the nervous system stipulates success of activity of sportsman

  1. Assessment of autonomic function after acute spinal cord injury using heart rate variability analyses

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; Biering-Sørensen, Tor; Bartholdy, Kim; Krassioukov, A; Welling, K-L; Svendsen, J H; Kruse, A; Hansen, Birgitte; Biering-Sørensen, F

    2015-01-01

    OBJECTIVES: Spinal cord injury (SCI) often results in severe dysfunction of the autonomic nervous system. C1-C8 SCI affects the supraspinal control to the heart, T1-T5 SCI affects the spinal sympathetic outflow to the heart, and T6-T12 SCI leaves sympathetic control to the heart intact. Heart rate...

  2. Study on autonomous decentralized-cooperative function monitoring system

    International Nuclear Information System (INIS)

    In this study, on a base of result of a nuclear substrate cross-over study on 'Artificial intelligence for nuclear plant' promoted by 5 years plan since 1989 fiscal year, further developed studies are conducted. The studies are promoted by next 5 years plan on following 6 items: (1) Study on stratified expression technique of autonomous function. (2) Study on expression technique of motion state in decentralized-cooperative function. (3) Study on expression technique of decision making process. (4) Integration to operation control system. (5) Integration to maintenance system. And, (6) Comprehensive evaluation experiment. In 1996 fiscal year, improvement and investigation on automatic classification function of plant state were executed. And, preparation of development environment for expression of robot group motion state was conducted. Furthermore, communication experiment using network to realize integration to operation control and maintenance systems and periodical meetings with other institutes were conducted. (G.K.)

  3. Influence of hydrotherapy on clinical and cardiac autonomic function in migraine patients

    Directory of Open Access Journals (Sweden)

    M U Sujan

    2016-01-01

    Full Text Available Background: Migraine is associated with autonomic symptoms. The growing body of literature suggests that the dysfunctional autonomic nervous system might play a pivotal role in the pathogenesis of migraine. Thermal therapies have been hypothesized to modulate these changes and alleviate pain. However, data regarding the efficacy of hydrotherapy in migraine remain scant. We evaluated the effect of add on hydrotherapy procedure (a hot arm and foot bath with ice massage to head in migraine patients. Methods: Forty chronic migraine patients fulfilling the International Classification of Headache Disorders II criteria were recruited from the neurology outpatient clinic. Patients were randomized to receive either hydrotherapy plus conventional pharmacological care (n = 20 or conventional medication only (n = 20. Hydrotherapy group received treatment with hot arm and foot bath (103°F to 110°F and ice massage to head daily for 20 min for 45 days. Patients were assessed using headache impact test (HIT, visual analog scale for pain and cardiac autonomic function by heart rate variability (HRV before and after intervention period. Results: There was a significant decrease in HIT score, frequency, and intensity of headaches following treatment in both the groups. However, it was more evident in add on hydrotherapy group compared to pharmacological treatment alone group. There was also significant improvement in the HRV parameters. In particular, there was a significant decrease in heart rate (P = 0.017, increase in high frequency (HF (P = 0.014 and decrease in low frequency/HF ratio (P = 0.004 in add on hydrotherapy group. Conclusion: Our study shows that add on hydrotherapy enhanced the vagal tone in addition to reducing the frequency and intensity of headaches in migraine patients.

  4. Functional Observational Battery Testing for Nervous System Effects of Drugs and Other Chemicals

    Science.gov (United States)

    Screening for behavioral toxicity, or neurotoxicity, has become standard practice in preclinical safety pharmacology and toxicology. Behavior represents the integrated sum of activities mediated by the nervous system. Current screening batteries, such as the functional observat...

  5. Study on autonomous decentralized-cooperative function monitoring system

    International Nuclear Information System (INIS)

    In this study, a study further advanced on a base of results of study on artificial intelligence for nuclear power', one of nuclear basis crossover studies, conducted at five years planning from 1989 fiscal year was executed. Here was conducted on study on a system technology for supplying cooperation, judgement process, judgement results, and so forth between decentralized artificial intelligent elements (agents) to operation managers (supervisors) by focussing a system for monitoring if autonomous decentralized system containing plant operation and robot group action functioned appropriately. In 1997 fiscal year, by mainly conducting development for displaying working state of robot group, some investigations on integrated management of each function already development and maintained were executed. Furthermore, some periodical meetings on realization of its integration with operation control system and maintenance system with other research institutes were conducted. (G.K.)

  6. Comparing the accuracy of ES-BC, EIS-GS, and ES Oxi on body composition, autonomic nervous system activity, and cardiac output to standardized assessments

    Directory of Open Access Journals (Sweden)

    Lewis JE

    2011-09-01

    Full Text Available John E Lewis1, Stacey L Tannenbaum1, Jinrun Gao3, Angelica B Melillo1, Evan G Long1, Yaima Alonso2, Janet Konefal1, Judi M Woolger2, Susanna Leonard1, Prabjot K Singh1, Lawrence Chen1, Eduard Tiozzo1 1Department of Psychiatry and Behavioral Sciences, 2Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 3State Farm Insurance, Bloomington, IL, USA Background and purpose: The Electro Sensor Complex (ESC is software that combines three devices using bioelectrical impedance, galvanic skin response, and spectrophotometry: (1 ES-BC (Electro Sensor-Body Composition; LD Technology, Miami, FL to assess body composition, (2 EIS-GS (Electro Interstitial Scan-Galvanic Skin; LD Technology to predict autonomic nervous system activity, and (3 ES Oxi (Electro Sensor Oxi; LD Technology to assess cardiac output. The objective of this study was to compare each to a standardized assessment: ES-BC to dual-energy X-ray absorptiometry (DXA, EIS-GS to heart rate variability, and ES Oxi to BioZ Dx Diagnostic System (BioZ Dx; SonoSite Inc, Bothell, WA. Patients and methods: The study was conducted in two waves. Fifty subjects were assessed for body composition and autonomic nervous system activity. Fifty-one subjects were assessed for cardiac output. Results: We found adequate relative and absolute agreement between ES-BC and DXA for fat mass (r = 0.97, P < 0.001 with ES-BC overestimating fat mass by 0.1 kg and for body fat percentage (r = 0.92, P < 0.001 with overestimation of fat percentage by 0.4%. For autonomic nervous system activity, we found marginal relative agreement between EIS-GS and heart rate variability by using EIS-GS as the predictor in a linear regression equation (adjusted R2 = 0.56, P = 0.03. For cardiac output, adequate relative and absolute agreement was found between ES Oxi and BioZ Dx at baseline (r = 0.60, P < 0.001, after the first exercise stage (r = 0.79, P < 0.001, and after the second exercise stage (r = 0.86, P

  7. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jørgensen, L S; Christiansen, P; Raundahl, U;

    1993-01-01

    cortisol measurements were included, to assess the pituitary-adrenocortical axis. Heart rate, systolic blood pressure, and plasma adrenaline increased significantly in all groups in response to a stress test (mental arithmetic). Plasma noradrenaline increased in the DU patients only, and plasma ACTH and...

  8. Sensorized Garments and Textrode-Enabled Measurement Instrumentation for Ambulatory Assessment of the Autonomic Nervous System Response in the ATREC Project

    Directory of Open Access Journals (Sweden)

    Cosme Llerena

    2013-07-01

    Full Text Available Advances in textile materials, technology and miniaturization of electronics for measurement instrumentation has boosted the development of wearable measurement systems. In several projects sensorized garments and non-invasive instrumentation have been integrated to assess on emotional, cognitive responses as well as physical arousal and status of mental stress through the study of the autonomous nervous system. Assessing the mental state of workers under stressful conditions is critical to identify which workers are in the proper state of mind and which are not ready to undertake a mission, which might consequently risk their own life and the lives of others. The project Assessment in Real Time of the Stress in Combatants (ATREC aims to enable real time assessment of mental stress of the Spanish Armed Forces during military activities using a wearable measurement system containing sensorized garments and textile-enabled non-invasive instrumentation. This work describes the multiparametric sensorized garments and measurement instrumentation implemented in the first phase of the project required to evaluate physiological indicators and recording candidates that can be useful for detection of mental stress. For such purpose different sensorized garments have been constructed: a textrode chest-strap system with six repositionable textrodes, a sensorized glove and an upper-arm strap. The implemented textile-enabled instrumentation contains one skin galvanometer, two temperature sensors for skin and environmental temperature and an impedance pneumographer containing a 1-channel ECG amplifier to record cardiogenic biopotentials. With such combinations of garments and non-invasive measurement devices, a multiparametric wearable measurement system has been implemented able to record the following physiological parameters: heart and respiration rate, skin galvanic response, environmental and peripheral temperature. To ensure the proper functioning of the

  9. Sensorized garments and textrode-enabled measurement instrumentation for ambulatory assessment of the autonomic nervous system response in the ATREC project.

    Science.gov (United States)

    Seoane, Fernando; Ferreira, Javier; Alvarez, Lorena; Buendia, Ruben; Ayllón, David; Llerena, Cosme; Gil-Pita, Roberto

    2013-01-01

    Advances in textile materials, technology and miniaturization of electronics for measurement instrumentation has boosted the development of wearable measurement systems. In several projects sensorized garments and non-invasive instrumentation have been integrated to assess on emotional, cognitive responses as well as physical arousal and status of mental stress through the study of the autonomous nervous system. Assessing the mental state of workers under stressful conditions is critical to identify which workers are in the proper state of mind and which are not ready to undertake a mission, which might consequently risk their own life and the lives of others. The project Assessment in Real Time of the Stress in Combatants (ATREC) aims to enable real time assessment of mental stress of the Spanish Armed Forces during military activities using a wearable measurement system containing sensorized garments and textile-enabled non-invasive instrumentation. This work describes the multiparametric sensorized garments and measurement instrumentation implemented in the first phase of the project required to evaluate physiological indicators and recording candidates that can be useful for detection of mental stress. For such purpose different sensorized garments have been constructed: a textrode chest-strap system with six repositionable textrodes, a sensorized glove and an upper-arm strap. The implemented textile-enabled instrumentation contains one skin galvanometer, two temperature sensors for skin and environmental temperature and an impedance pneumographer containing a 1-channel ECG amplifier to record cardiogenic biopotentials. With such combinations of garments and non-invasive measurement devices, a multiparametric wearable measurement system has been implemented able to record the following physiological parameters: heart and respiration rate, skin galvanic response, environmental and peripheral temperature. To ensure the proper functioning of the implemented

  10. Cerebral Hemispheric Lateralization Associated with Hippocampal Sclerosis May Affect Interictal Cardiovascular Autonomic Functions in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Rokia Ghchime

    2016-01-01

    Full Text Available It is well established that the temporal lobe epilepsy (TLE is linked to the autonomic nervous system dysfunctions. Seizures alter the function of different systems such as the respiratory, cardiovascular, gastrointestinal, and urogenital systems. The aim of this work was to evaluate the possible factors which may be involved in interictal cardiovascular autonomic function in temporal lobe epilepsy with complex partial seizures, and with particular attention to hippocampal sclerosis. The study was conducted in 30 patients with intractable temporal lobe epilepsy (19 with left hippocampal sclerosis, 11 with right hippocampal sclerosis. All subjects underwent four tests of cardiac autonomic function: heart rate changes in response to deep breathing, heart rate, and blood pressure variations throughout resting activity and during hand grip, mental stress, and orthostatic tests. Our results show that the right cerebral hemisphere predominantly modulates sympathetic activity, while the left cerebral hemisphere mainly modulates parasympathetic activity, which mediated tachycardia and excessive bradycardia counterregulation, both of which might be involved as a mechanism of sudden unexpected death in epilepsy patients (SUDEP.

  11. The influence of montelukast on the autonomic nervous system activity in rats with cyclophosphamide-induced hemorrhagic cystitis

    Directory of Open Access Journals (Sweden)

    Dobrek Lukasz

    2015-09-01

    Full Text Available The complex pathogenesis of cyclophosphamide-induced hemorrhagic cystitis involves arachidonic acid-derived inflammatory mediators, among them leukotrienes. Montelukast, a leukotriene receptor antagonist, is reported to exert an alleviatory effect in the course of cystitis associated with overactive bladder symptoms. The aim of this study was to verify whether the effect of montelukast is also associated with its influence on autonomic activity. The experiment included 20 rats with cyclophosphamide-induced hemorrhagic cystitis (75 mg/kg, four doses every second day, among them, 10 treated with oral montelukast (10 mg/kg for 8 days and 10 controls. Time and frequency domain analyses of heart rate variability (HRV were conducted in all the rats as an indirect measure of their autonomic activity. The montelukast-treated animals showed an increase in root mean square of successive differences (rMSSD, as well as an increase in HRV spectrum total power (TP and power of very low (VLF spectral component. This suggests that due to its anti-inflammatory and its anti-leukotriene effect, montelukast improves overall autonomic activity, with no preferential influence on either the sympathetic or parasympathetic part. Furthermore, the increase in VLF corresponds to attenuation of inflammatory response. In conclusion, this study showed that aside from its antagonistic effect on leukotriene receptors, montelukast can also modulate autonomic activity.

  12. Restoring nervous system structure and function using tissue engineered living scaffolds

    Institute of Scientific and Technical Information of China (English)

    Laura A Struzyna; James P Harris; Kritika S Katiyar; H Isaac Chen; D KacyCullen

    2015-01-01

    Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following ner-vous system injury or neurodegenerative disease. Disconnection of axon pathways – the long-distance ifbers connecting specialized regions of the central nervous system or relaying peripheral signals – is a common feature of many neurological disorders and injury. However, functional axonal regenera-tion rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engi-neered “living scaffolds”, which are preformed three-dimensional constructs consisting of living neural cells in a deifned, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration – mimicking key developmental mechanisms– or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  13. The influence of montelukast on the autonomic nervous system activity in rats with cyclophosphamide-induced hemorrhagic cystitis

    OpenAIRE

    Dobrek Lukasz; Skowron Beata; Baranowska Agnieszka; Thor Piotr Jan

    2015-01-01

    The complex pathogenesis of cyclophosphamide-induced hemorrhagic cystitis involves arachidonic acid-derived inflammatory mediators, among them leukotrienes. Montelukast, a leukotriene receptor antagonist, is reported to exert an alleviatory effect in the course of cystitis associated with overactive bladder symptoms. The aim of this study was to verify whether the effect of montelukast is also associated with its influence on autonomic activity. The experiment included 20 rats with cyclophosp...

  14. Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    OpenAIRE

    Ashkenazy, Y.; Lewkowicz, M.; Levitan, J.; Moelgaard, H.; Thomsen, P. E. Bloch; Saermark, K.

    1998-01-01

    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclu...

  15. The effects of stimulation of the autonomic nervous system via perioperative nutrition on postoperative ileus and anastomotic leakage following colorectal surgery (SANICS II trial): a study protocol for a double-blind randomized controlled trial

    OpenAIRE

    Peters, Emmeline G; Smeets, Boudewijn JJ; Dekkers, Marloes; Buise, Marc D; de Jonge, Wouter J.; Slooter, Gerrit D; Reilingh, Tammo S de Vries; Wegdam, Johannes A; Nieuwenhuijzen, Grard AP; Rutten, Harm JT; de Hingh, Ignace HJT; Hiligsmann, Mickael; Buurman, Wim A.; Luyer, Misha DP

    2015-01-01

    Background Postoperative ileus and anastomotic leakage are important complications following colorectal surgery associated with short-term morbidity and mortality. Previous experimental and preclinical studies have shown that a short intervention with enriched enteral nutrition dampens inflammation via stimulation of the autonomic nervous system and thereby reduces postoperative ileus. Furthermore, early administration of enteral nutrition reduced anastomotic leakage. This study will investig...

  16. TSH RECEPTOR GENETIC ALTERATIONS IN THE AUTONOMOUSLY FUNCTIONING THYROID ADENOMAS

    Institute of Scientific and Technical Information of China (English)

    施秉银; 李雪萍; 李社莉; 薛明战; 王毅; 徐莉

    2004-01-01

    Objective To determine the relationship between TSH receptor gene mutations and autonomously functioning thyroid adenomas (AFTAs). Methods The thyroid samples from 14 cases of diagnosed AFTAs were analyzed, with normal thyroid specimens adjacent to the tumors as controls. The 155 base pairs DNA fragments which encompassed the third cytoplasmic loop and the sixth transmembrane segments in the TSH receptor gene exon 10 were amplified by Polymerase chain reaction (PCR) and analyzed by the single-strand conformation polymorphism (SSCP). Direct sequencing of the PCR products was performed with Prism Dye Terminator Cycle Sequencing Core Kit. Results 6 of 14 AFTA specimens displayed abnormal migration in SSCP analysis. In sequence analysis of 3 abnormally migrated samples, one base substitution at nucleotide 1957 (A to C) and two same insertion mutations of one adenosine nucleotide between nucleotide 1972 and 1973 were identified. No mutations were found in controls. Conclusion This study confirmed the presence of TSH receptor gene mutations in AFTAs; both one-point substitution mutation and one-base insertion mutation were found to be responsible for the pathogenesis of AFTAs.

  17. Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    CERN Document Server

    Ashkenazy, Yu; Levitan, J; Moelgaard, H; Bloch-Thomsen, P E; Saermark, K

    1998-01-01

    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclusive. We suggest a delimiting diagnostic value of the standard deviation of the filtered, reconstructed RR interval time series in the range of $\\sim 0.035$ (for the above mentioned filter), below which individuals are at risk.

  18. Treatment of Posttraumatic Abdominal Autonomic Neuropathy Manifesting as Functional Dyspepsia and Chronic Constipation: An Integrative East-West Approach.

    Science.gov (United States)

    Shubov, Andrew; Taw, Lawrence

    2015-07-01

    A 52-year-old male with a history of spinal cord injury and cauda equina syndrome resulting in neurogenic bladder presented with chronic constipation and functional dyspepsia that was refractory to medical management. He was treated with an integrative East-West approach including acupuncture, trigger point injections, and Tui Na massage. Both his pain and constipation improved after a series of treatments, and this improvement was largely sustained at 2-year follow-up. This patient's symptoms are consistent with damage to the visceral parasympathetic nervous system. Interestingly, many studies evaluating the mechanisms of acupuncture point to restoration of parasympathetic tone as a mechanism of action. In this article, we describe a case of complex functional gastrointestinal disorders associated with posttraumatic autonomic neuropathy that was refractory to pharmacotherapy and was successfully treated with an integrative East-West approach. PMID:26331105

  19. Artifacts produced during electrical stimulation of the vestibular nerve in cats. [autonomic nervous system components of motion sickness

    Science.gov (United States)

    Tang, P. C.

    1973-01-01

    Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.

  20. What Health-Related Functions Are Regulated by the Nervous System?

    Science.gov (United States)

    ... emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth and development Sensations (such as touch or hearing) and perception (the mental process of interpreting sensory information) Thought and emotions Learning and memory Movement, ...

  1. Long non-coding RNAs in nervous system function and disease

    OpenAIRE

    Qureshi, Irfan A.; Mattick, John S.; Mehler, Mark F.

    2010-01-01

    Central nervous system (CNS) development, homeostasis, stress responses, and plasticity are all mediated by epigenetic mechanisms that modulate gene expression and promote selective deployment of functional gene networks in response to complex profiles of interoceptive and environmental signals. Thus, not surprisingly, disruptions of these epigenetic processes are implicated in the pathogenesis of a spectrum of neurological and psychiatric diseases. Epigenetic mechanisms involve chromatin rem...

  2. Cognitive functions in primary central nervous system lymphoma: Literature review and assessment guidelines

    NARCIS (Netherlands)

    D.D. Correa; L. Maron; H. Harder (Helena); M. Klein (Martin); C.L. Armstrong; P. Calabrese; J.E.C. Bromberg (Jacolien); L.E. Abrey (Lauren); T.T. Batchelor (Tracy); D. Schiff (David)

    2007-01-01

    textabstractBackground: Treatment-related neurotoxicity has been recognized as a significant problem in patients with primary central nervous system lymphoma (PCNSL) as effective treatment has increased survival rates. There is, however, a paucity of research on cognitive functions in this populatio

  3. Consequences for central nervous system functional state of exposure to ionizing radiation modification with antioxidants

    International Nuclear Information System (INIS)

    Aim: to estimate the pattern of ionizing radiation effects modification by antioxidants using central nervous system functional state indices. The studies were carried out using 84 rats. Beta-carotene and alpha-tocopherol were found to significantly improve conditioned activity indices level of the animals exposed to ionizing radiation and emotional-pain stress

  4. Autonomic dysfunction in primary sleep disorders.

    Science.gov (United States)

    Miglis, Mitchell G

    2016-03-01

    The autonomic nervous system plays an important role in the coordination of many important physiologic functions during sleep. Many patients with untreated sleep disorders will describe symptoms of autonomic impairment, and a majority of patients with autonomic impairment have some form of sleep disorder. This article will explore possible explanations for this connection, as well as review the current literature on autonomic impairment in common primary sleep disorders including obstructive sleep apnea, insomnia, restless legs syndrome, periodic limb movement disorder, narcolepsy, and rapid eye movement sleep behavior disorder. PMID:27198946

  5. Regulating Rac in the Nervous System: Molecular Function and Disease Implication of Rac GEFs and GAPs

    Directory of Open Access Journals (Sweden)

    Yanyang Bai

    2015-01-01

    Full Text Available Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs as the activators and GTPase-activating proteins (GAPs as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.

  6. Myocardial 123I-MIBG Uptake and Cardiovascular Autonomic Function in Parkinson's Disease

    OpenAIRE

    Akira Katagiri; Masato Asahina; Nobuyuki Araki; Anupama Poudel; Yoshikatsu Fujinuma; Yoshitaka Yamanaka; Satoshi Kuwabara

    2015-01-01

    Introduction. Patients with Parkinson's disease (PD) showed reduced myocardial 123I-MIBG uptake, which may affect autonomic regulation. We investigated correlation between MIBC accumulation and cardiovascular autonomic function in PD. Methods. We performed myocardial MIBG scintigraphy, heart rate variability (HRV) analysis, and the head-up tilt test (HUT) in 50 PD patients (66.4 ± 7.8 years; duration 5.5 ± 5.9 years). Autonomic function tests were also performed in 50 healthy controls (66.5 ±...

  7. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations

    OpenAIRE

    Morgan, Julie A; Corrigan, Frances; Baune, Bernhard T

    2015-01-01

    Pathologies of central nervous system (CNS) functions are involved in prevalent conditions such as Alzheimer’s disease, depression, and Parkinson’s disease. Notable pathologies include dysfunctions of circadian rhythm, central metabolism, cardiovascular function, central stress responses, and movement mediated by the basal ganglia. Although evidence suggests exercise may benefit these conditions, the neurobiological mechanisms of exercise in specific brain regions involved in these important ...

  8. Renal denervation in an animal model of diabetes and hypertension: Impact on the autonomic nervous system and nephropathy

    Directory of Open Access Journals (Sweden)

    Machado Ubiratan F

    2011-04-01

    Full Text Available Abstract Background The effects of renal denervation on cardiovascular reflexes and markers of nephropathy in diabetic-hypertensive rats have not yet been explored. Methods Aim: To evaluate the effects of renal denervation on nephropathy development mechanisms (blood pressure, cardiovascular autonomic changes, renal GLUT2 in diabetic-hypertensive rats. Forty-one male spontaneously hypertensive rats (SHR ~250 g were injected with STZ or not; 30 days later, surgical renal denervation (RD or sham procedure was performed; 15 days later, glycemia and albuminuria (ELISA were evaluated. Catheters were implanted into the femoral artery to evaluate arterial pressure (AP and heart rate variability (spectral analysis one day later in conscious animals. Animals were killed, kidneys removed, and cortical renal GLUT2 quantified (Western blotting. Results Higher glycemia (p vs. nondiabetics (p vs. SHR. Conclusions Renal denervation in diabetic-hypertensive rats improved previously reduced heart rate variability. The GLUT2 equally overexpressed by diabetes and renal denervation may represent a maximal derangement effect of each condition.

  9. Extended architecture for autonomous robots (architecture for robotic autonomy functionality)

    Czech Academy of Sciences Publication Activity Database

    Březina, Tomáš; Ehrenberger, Zdeněk; Houška, P.; Singule, V.

    Brno : VUT, 2003 - (Březina, T.; Ehrenberger, Z.; Houška, P.; Singule, V.), s. 1-2 ISBN 80-214-2312-9. [Mechanortonics, robotisc and biomechanics 2003. Hrotovice (CZ), 24.03.2003-27.03.2003] Institutional research plan: CEZ:AV0Z2076919 Keywords : mobile robots * autonomous operation * control Subject RIV: JD - Computer Applications, Robotics

  10. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    OpenAIRE

    Jyotsna, Viveka P.; Smita Ambekar; Rajiv Singla; Ansumali Joshi; Anju Dhawan; Neeta Kumar; Deepak, K. K.; Sreenivas, V.

    2013-01-01

    Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam) had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and c...

  11. ASSESSMENT OF CARDIOVASCULAR AUTONOMIC FUNCTION IN ASYMPTOMATIC OBESE YOUNG ADULTS - PREVENTION IS BETTER THAN CURE

    Directory of Open Access Journals (Sweden)

    P Vijetha

    2015-07-01

    Full Text Available Back ground: Obesity is emerging global epidemic in young adults who form the productive group of the society. This has been called as new world syndrome and is a massive reflection of social, economic and cultural problems currently faced by the developing and developed countries. As cardiac autonomic dysfunction often coexists with obesity, early detection of autonomic impairment by simple investigations of autonomic function, can be potentially important to prevent future complications. Objective: To identify cardiovascular autonomic dysfunction in asymptomatic obese young adults. Study design: This study was conducted in the department of Physiology at Kakatiya Medical College, Warangal, A.P, 30 apparently healthy obese subjects of both sex with BMI > 25 kg/sqm were taken as study group. Age and sex matched 30 normal weight subjects (BMI 18.5-22.9 kg/ sqm taken as control group. Methods: Ewing’s battery of 5 noninvasive cardiovascular reflex tests were done for assessing autonomic function. These autonomic function parameters were correlated with BMI, Unpaired Student‘t’ test and Pearson correlation coefficient test were used for statistical analysis. Results: Mean values of all cardiovascular reflex tests were significantly lower in the study group. Conclusion: The results indicate that cardiovascular autonomic dysfunction is present in otherwise healthy obese young adults.

  12. Cardiac biopotentials influence on central nervous system functioning: first steps in hypothesis verification

    Directory of Open Access Journals (Sweden)

    Kondal'skaya Yu.O.

    2012-12-01

    Full Text Available The research goal is to verify the hypothesis on influence of cardiac biopotentials on central nervous system. Materials: 20 healthy individuals aged 18-26 years old have been participated in the investigations. Two groups composed of 10 patients each have been formed. Double increase in heart biopotentials by means of artificial impulse insertion between natural cardiac contractions has been modeled. Artificial impulses have been similar to unaffected ones, produced in a normal heart work. Additional impulses have been generated using external pacemaker and have been linked up with electrodes on the chest. They have been synchronized with the heart rhythm and located in-between R waves. The duration of those impulses has been fully matched to ventricular complex. Their amplitude has been adjusted individually depending on the height of R wave. Nervous system mobility has been used as the indicator reflecting the central nervous system functioning. Degree of mobility has been defined on the basis of tapping test results. The test has been repeated at specific intervals. Groups have been exposed to two adverse testing modes. Additional impulses have been conducted to the patients of group I within an hour over a period of the first and the third 15-minute intervals and to the patients of group II over a period of the second and the fourth 15-minute intervals. In the middle and in the end of each time interval tapping test has been carried out. After preliminary analysis two other modes of stimulation have been tested. The stimulation has been performed within the 40-minute course: over a period of the first 20-minute interval and vice versa. Results: Detailed evaluation has revealed that short-time increase of nervous processes has been checked in combination with decrease in their stability. Conclusion: The data obtained have shown that there is possible influence on central nervous system functioning. The article ends with prospects of further

  13. Skin rubdown with a dry towel, 'kanpu-masatsu' is an aerobic exercise affecting body temperature, energy production, and the immune and autonomic nervous systems.

    Science.gov (United States)

    Watanabe, Mayumi; Takano, Osamu; Tomiyama, Chikako; Matsumoto, Hiroaki; Kobayashi, Takahiro; Urahigashi, Nobuatsu; Urahigashi, Nobuatsu; Abo, Toru

    2012-01-01

    Skin rubdown using a dry towel (SRDT) to scrub the whole body is a traditional therapy for health promotion. To investigate its mechanism, 24 healthy male volunteers were studied. Body temperature, pulse rate, red blood cells (RBCs), serum levels of catecholamines and cortisol, blood gases (PO(2), sO(2), PCO(2) and pH), lactate and glucose, and the ratio and number of white blood cells (WBCs) were assessed before and after SRDT. After SRDT, pulse rate and body temperature were increased. PO(2), sO(2) and pH were also increased and there was no Rouleaux formation by RBCs. Lactate level tended to increase, whereas that of glucose did not. Adrenaline and noradrenaline levels increased, indicating sympathetic nerve (SN) dominance with increase in granulocytes. WBC number and ratio were divided into two groups according to granulocyte ratio (≤ or < 60%) before SRDT: a normal group and a SN group. Only in the SN group did the granulocyte ratio decrease and the lymphocyte ratio and number increase after SRDT. It is suggested that SRDT is a mild aerobic, systemic exercise that might affect the immune system via the autonomic nervous system. PMID:22975635

  14. Baroreflex Sensitivity And Autonomic Nervous System Function In Carotid Sinus Hypersensitivity

    DEFF Research Database (Denmark)

    Brinth, Louise Schouborg; Pors, Kirsten; Theibel, Ann Cathrine; Latif, Tabassam; Kjær, Andreas; Mehlsen, Jesper

    2015-01-01

    Syncope in the elderly may be caused by an apparent hypersensitivity in the high pressure baroreflex control of heart rate and blood pressure - carotid sinus hypersensitivity. Previous studies have found ambiguous results regarding the baroreceptor sensitivity in patients with carotid sinus hyper...... sensitivity may not follow the same neuronal pathways as those responding to the crude external pressures applied during carotid sinus massage...

  15. Therapeutic options in the management of autonomously functioning thyroid adenomas

    International Nuclear Information System (INIS)

    Full text: Autonomously functioning thyroid nodules or adenomas (AFTN or AFTA) was established as a clinical entity in 1918 by Goetsch correlating cellular mitochondrial content with nodular function and showing the inverse correlation between AFTN function and extra nodular tissue function. They are almost always benign and degeneration, which is common in AFTN, can result in the development of hyperthyroidism. It is therefore important to know the function of these nodules by requesting for the thyroid function tests namely T3, T4, and TSH. They are diagnosed by thyroid scans using I-131 or Tc 99m as a hot solitary nodule in one lobe with the other lobe not appearing on scan or suppressed. The frequency of AFTA worldwide is quite variable depending on geography. It ranges from 1% in North America to 10 % in some areas in Europe and Asia or in areas of iodine deficiency. The traditional methods of treatment of these nodules have been surgery and radioactive iodine ablation. Surgical treatment as a rule is indicated in young patients with nodules larger than 3 cm and those with local compressive symptoms. RAI is used in elderly patients and those who are poor surgical risks. The usual dose ranges from 20 to 30 mCi and is definitely larger that when treating Graves' disease. Others have resorted to PEI or percutaneous ethanol injection with reported success. There has been no definite management of these AFTA due to the variable natural history and some would only recommend observation for asymptomatic small adenomas, which are euthyroid. Therefore this paper studied the results of treatment using RAI ablation, surgery or plain observation for AFTA. Percutaneous ethanol injection is not being done in our center. In the local setting, where thyroid disease is still endemic, the incidence of AFTA is not so high. Graves' disease is still the predominating cause of hyperthyroidism followed by multinodular goiter. Toxic AFTA occurs in 3% of the total hyperthyroid

  16. Aromatic effects of a Japanese citrus fruit—yuzu (Citrus junos Sieb. ex Tanaka)—on psychoemotional states and autonomic nervous system activity during the menstrual cycle: a single-blind randomized controlled crossover study

    OpenAIRE

    Matsumoto, Tamaki; Kimura, Tetsuya; Hayashi, Tatsuya

    2016-01-01

    Background Yuzu (Citrus junos Sieb. ex Tanaka), a yellow-golden colored citrus fruit, has traditionally been used to promote psychosomatic health in Japan. While the yuzu produces a distinctive, pleasing aroma of citrus and floral, the efficacy of its fragrance remains unknown. The present study investigated the soothing effects of the fragrance of yuzu essential oil from the perspective of autonomic nervous system activity, which plays a crucial role in the integrity of the mind-body connect...

  17. Aromatic effects of a Japanese citrus fruit-yuzu (Citrus junos Sieb. ex Tanaka)-on psychoemotional states and autonomic nervous system activity during the menstrual cycle: A single-blind randomized controlled crossover study

    OpenAIRE

    Matsumoto, Tamaki; Kimura, Tetsuya; Hayashi, Tatsuya

    2016-01-01

    Background: Yuzu (Citrus junos Sieb. ex Tanaka), a yellow-golden colored citrus fruit, has traditionally been used to promote psychosomatic health in Japan. While the yuzu produces a distinctive, pleasing aroma of citrus and floral, the efficacy of its fragrance remains unknown. The present study investigated the soothing effects of the fragrance of yuzu essential oil from the perspective of autonomic nervous system activity, which plays a crucial role in the integrity of the mind-body connec...

  18. CD44: molecular interactions, signalling and functions in the nervous system.

    Directory of Open Access Journals (Sweden)

    Grzegorz Marek Wilczynski

    2015-05-01

    Full Text Available CD44 is the major surface hyaluronan receptor implicated in intercellular and cell-matrix adhesion, cell migration and signalling. It is a transmembrane, highly glycosylated protein with several isoforms resulting from alternative gene splicing. The CD44 molecule consists of several domains serving different functions: the N-terminal extracellular domain, the stem region, the transmembrane domain and the C-terminal tail. In the nervous system, CD44 expression occurs in both glial and neuronal cells. The role of CD44 in the physiology and pathology of the nervous system is not entirely understood, however, there exists evidence suggesting it might be involved in the axon guidance, cytoplasmic Ca2+ clearance, dendritic arborization, synaptic transmission, epileptogenesis, oligodendrocyte and astrocyte differentiation, post-traumatic brain repair and brain tumour development.

  19. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2011-03-01

    Tuberous sclerosis complex (TSC is an autosomal dominant disease caused by mutations in either the TSC1 (encodes hamartin or TSC2 (encodes tuberin genes. Patients with TSC have hamartomas in various organs throughout the whole body, most notably in the brain, skin, eye, heart, kidney and lung. To study the development of hamartomas, we generated a zebrafish model of TSC featuring a nonsense mutation (vu242 in the tsc2 gene. This tsc2vu242 allele encodes a truncated Tuberin protein lacking the GAP domain, which is required for inhibition of Rheb and of the TOR kinase within TORC1. We show that tsc2vu242 is a recessive larval-lethal mutation that causes increased cell size in the brain and liver. Greatly elevated TORC1 signaling is observed in tsc2vu242/vu242 homozygous zebrafish, and is moderately increased in tsc2vu242/+ heterozygotes. Forebrain neurons are poorly organized in tsc2vu242/vu242 homozygous mutants, which have extensive gray and white matter disorganization and ectopically positioned cells. Genetic mosaic analyses demonstrate that tsc2 limits TORC1 signaling in a cell-autonomous manner. However, in chimeric animals, tsc2vu242/vu242 mutant cells also mislocalize wild-type host cells in the forebrain in a non-cell-autonomous manner. These results demonstrate a highly conserved role of tsc2 in zebrafish and establish a new animal model for studies of TSC. The finding of a non-cell-autonomous function of mutant cells might help explain the formation of brain hamartomas and cortical malformations in human TSC.

  20. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  1. Microglia - insights into immune system structure, function, and reactivity in the central nervous system

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Babcock, Alicia A; Vinters, Harry V

    2011-01-01

    Microglia are essential cellular components of a well-functioning central nervous system (CNS). The development and establishment of the microglial population differs from the other major cell populations in the CNS i.e. neurons and macroglia (astrocytes and oligodendrocytes). This different...... settle to become microglia. Furthermore various functional properties of microglia in the normal and pathological CNS are now being revealed because of combinations of BM transplantations and experimental disease models. Here, we describe some of the latest findings in microglial biology and discuss the...

  2. [The role of the autonomic nervous system on malfunction of gastric motor and myoelectric activity in patients with hyperthyroidism].

    Science.gov (United States)

    Barczyński, M; Thor, P J; Słowiaczek, M; Pitala, A

    2000-01-01

    The aim of this study was to determine both the type of gastric mioelectric and emptying disorders in correlation to degree of severity of hyperthyroidism (clinical and thyroid hormones' blood levels) and ANS function estimated in HRV analysis. The study was performed on a group of 50 patients (35 with multinodular toxic goitre and 15 with Graves' disease, 45 females and 5 males, mean age 39.6 years, mean BMI 23.72) with newly diagnosed and so far untreated hyperthyroidism. The control group were 50 healthy volunteers age-, sex-, and BMI-matched to the studied group. Patients were studied twice, within newly diagnosed thyreotoxicosis and after treatment (Metizol) and reaching stable euthyroid state. The study consisted of: a) percutaneous EGG analysis (Synectics): 30 minutes before and after a test meal (ENRICH Liquid 250 ml), b) HRV analysis (ECG POSTER 2002): 10 minutes at rest and during deep breathing test, c) ultrasound measurement of gastric emptying by Bolondi method. Statistical analysis of collected data was performed. In hyperthyroid patients significant both preprandial and postprandial dysrhythmia (33.01% of bradygastria and 16.49% of tachygastria) was found. In some patients decrease of amplitude of EGG signal was marked as a result of antral hypomotility with coexisting significantly prolonged gastric emptying (110 min). Among severe hyperthyroid patients both the antral food distribution (antrum 35% bigger than in a control group) and impaired proximal stomach relaxation were evident. The degree of gastric mioelectric activity and emptying disorders was proportional to the degree of both severity of clinical manifestation of hyperthyroidism in Zgliczynski scale (from I degree to III degrees) and free thyroid hormones' blood levels (positive correlation). In HRV analysis at rest in hyperthyroid patients comparing to a control group the decrease of both the heart rate variability and a total power was found particularly in HF component resulting in

  3. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives.

    Science.gov (United States)

    Teixeira, Renata Roland; Díaz, Miguel Mauricio; Santos, Tatiane Vanessa da Silva; Bernardes, Jean Tofoles Martins; Peixoto, Leonardo Gomes; Bocanegra, Olga Lucia; Neto, Morun Bernardino; Espindola, Foued Salmen

    2015-01-01

    The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female) and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS) reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive performance. PMID:25807003

  4. Chronic stress induces a hyporeactivity of the autonomic nervous system in response to acute mental stressor and impairs cognitive performance in business executives.

    Directory of Open Access Journals (Sweden)

    Renata Roland Teixeira

    Full Text Available The present study examined the incidence of chronic stress in business executives (109 subjects: 75 male and 34 female and its relationship with cortisol levels, cognitive performance, and autonomic nervous system (ANS reactivity after an acute mental stressor. Blood samples were collected from the subjects to measure cortisol concentration. After the sample collection, the subjects completed the Lipp Inventory of Stress Symptoms for Adults and the Stroop Color-Word Test to evaluate stress and cognitive performance levels, respectively. Saliva samples were collected prior to, immediately after, and five minutes after the test. The results revealed that 90.1% of the stressed subjects experienced stress phases that are considered chronic stress. At rest, the subjects with chronic stress showed higher cortisol levels, and no gender differences were observed. No differences were found between the stressed and non-stressed subjects regarding salivary amylase activity prior to test. Chronic stress also impaired performance on the Stroop test, which revealed higher rates of error and longer reaction times in the incongruent stimulus task independently of gender. For the congruent stimulus task of the Stroop test, the stressed males presented a higher rate of errors than the non-stressed males and a longer reaction time than the stressed females. After the acute mental stressor, the non-stressed male group showed an increase in salivary alpha-amylase activity, which returned to the initial values five minutes after the test; this ANS reactivity was not observed in the chronically stressed male subjects. The ANS responses of the non-stressed vs stressed female groups were not different prior to or after the Stroop test. This study is the first to demonstrate a blunted reactivity of the ANS when male subjects with chronic psychological stress were subjected to an acute mental stressor, and this change could contribute to impairments in cognitive

  5. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the hypothesis that fetal beat-to-beat heart rate variability (fHRV) displays the different time scales of sympatho-vagal development prior to and after 32 weeks of gestation (wks GA). Ninety-two magnetocardiograms of singletons with normal courses of pregnancy between 24 + 1 and 41 + 6 wks GA were studied. Heart rate patterns were either quiet/non-accelerative (fHRP I) or active/accelerative (fHRP II) and recording quality sufficient for fHRV. The sample was divided into the GA groups 32 wks GA. Linear parameters of fHRV were calculated: mean heart rate (mHR), SDNN and RMSSD of normal-to-normal interbeat intervals, power in the low (0.04–0.15 Hz) and high frequency range (0.15–0.4 Hz) and the ratios SDNN/RMSSD and LF/HF as markers for sympatho-vagal balance. fHRP I is characterized by decreasing SDNN/RMSSD, LF/HF and mHR. The decrease is more pronounced 32 wks GA. LF/HF increases in fHRP II during the first half of the third trimester. Non-accelerative fHRP are indicative of parasympathetic dominance >32 wks GA. In contrast, the sympathetic accentuation during accelerative fHRP is displayed in the interrelations between mHR, SDNN and SDNN/RMSSD. Prior to 32 wks GA, fHRV reveals the increasing activity of the respective branches of the autonomic nervous system differentiating the types of fHRP

  6. Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy.

    Science.gov (United States)

    Matzner, Ulrich; Herbst, Eva; Hedayati, Kerstin Khalaj; Lüllmann-Rauch, Renate; Wessig, Carsten; Schröder, Stephan; Eistrup, Carl; Möller, Christer; Fogh, Jens; Gieselmann, Volkmar

    2005-05-01

    A deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy, which is characterized by accumulation of the sphingolipid 3-O-sulfogalactosylceramide (sulfatide). Sphingolipid storage results in progressive demyelination and severe neurologic symptoms. The disease is lethal, and curative therapy is not available. To assess the therapeutic potential of enzyme replacement therapy (ERT), ASA knockout mice were treated by intravenous injection of recombinant human ASA. Plasma levels of ASA declined with a half-time of approximately 40 min, and enzyme was detectable in tissues within minutes after injection. The uptake of injected enzyme was high into liver, moderate into peripheral nervous system (PNS) and kidney and very low into brain. The apparent half-life of endocytosed enzyme was approximately 4 days. A single injection led to a time- and dose-dependent decline of the excess sulfatide in PNS and kidney by up to 70%, but no reduction was seen in brain. Four weekly injections with 20 mg/kg body weight not only reduced storage in peripheral tissues progressively, but also were surprisingly effective in reducing sulfatide storage in brain and spinal cord. The histopathology of kidney and central nervous system was ameliorated. Improved neuromotor coordination capabilities and normalized peripheral compound motor action potential demonstrate the benefits of ERT on the nervous system function. Enzyme replacement may therefore be a promising therapeutic option in this devastating disease. PMID:15772092

  7. International standards to document remaining autonomic function after spinal cord injury

    DEFF Research Database (Denmark)

    Alexander, M S; Biering-Sørensen, Fin; Bodner, D;

    2008-01-01

    of both ASIA and ISCoS for comment and re-revised through webcasts. Topics include an overview of autonomic anatomy, classification of cardiovascular, respiratory, sudomotor and thermoregulatory function, bladder, bowel and sexual function. CONCLUSION:This document describes a new system to document...

  8. The assessment of cardiac autonomic functions in adolescents with a family history of premature atherosclerosis

    Science.gov (United States)

    Dursun, Huseyin; Kilicaslan, Baris; Aydin, Mehmet

    2014-01-01

    OBJECTIVES: Subclinical atherosclerosis has been recently detected in adolescents with a family history of premature atherosclerosis. However, no studies in the literature have assessed the cardiac autonomic functions of these adolescents. The aim of this study was to evaluate the cardiac autonomic functions of adolescents with a family history of premature atherosclerosis compared with those of age- and gender-matched adolescents without a family history of atherosclerosis. METHOD: We evaluated the cardiac autonomic functions of 36 adolescents with a family history of premature atherosclerosis (Group 1) and compared them with those of 31 age- and gender-matched adolescents whose parents did not have premature atherosclerosis (Group 2). Twenty-four-hour time domain (standard deviation of all normal sinus RR intervals [SDNN], standard deviation of the mean of normal RR intervals in each 5-minute segment [SDANN], root-mean-square differences in successive RR intervals) and frequency domain (very low frequency, low frequency, high frequency, low frequency/high frequency) parameters of heart rate variability were used for the evaluation of cardiac autonomic functions. RESULTS: There were no differences in the time and frequency domain parameters of heart rate variability between the two groups. Heart rate was negatively correlated with SDNN (r = -0.278, p = 0.035), while age was significantly correlated with root-mean-square differences in successive RR intervals, high frequency, low frequency and low frequency/high frequency (r = -0.264, -0.370, 0.265 and 0.374, respectively; p<0.05 for all). CONCLUSION: We found that the cardiac autonomic functions of adolescents with a family history of premature atherosclerosis were not different compared with those of adolescents without a positive family history of premature atherosclerosis. It appears that subclinical atherosclerosis does not reach a critical value such that it can alter cardiac autonomic functions

  9. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections

    Directory of Open Access Journals (Sweden)

    Amadio Stefano

    2008-04-01

    Full Text Available Abstract Background Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by interrupting his motor-sensory pathways. In the last few decades tissue engineering has opened the door to new approaches;: however most of them make use of rigid channel guides that may cause cell loss due to the lack of physiological local stresses exerted over the nervous tissue during patient's movement. Electrospinning technique makes it possible to spin microfiber and nanofiber flexible tubular scaffolds composed of a number of natural and synthetic components, showing high porosity and remarkable surface/volume ratio. Results In this study we used electrospun tubes made of biodegradable polymers (a blend of PLGA/PCL to regenerate a 10-mm nerve gap in a rat sciatic nerve in vivo. Experimental groups comprise lesioned animals (control group and lesioned animals subjected to guide conduits implantated at the severed nerve stumps, where the tubular scaffolds are filled with saline solution. Four months after surgery, sciatic nerves failed to reconnect the two stumps of transected nerves in the control animal group. In most of the treated animals the electrospun tubes induced nervous regeneration and functional reconnection of the two severed sciatic nerve tracts. Myelination and collagen IV deposition have been detected in concurrence with regenerated fibers. No significant inflammatory response has been found. Neural tracers revealed the re-establishment of functional neuronal connections and evoked potential results showed the reinnervation of the target muscles in the majority of the treated animals. Conclusion Corroborating previous works, this study indicates that electrospun tubes, with no additional biological coating or drug loading treatment, are promising scaffolds for functional nervous regeneration. They

  10. The brain on itself: Nobel laureates and the history of fundamental nervous system function.

    Science.gov (United States)

    Langmoen, Iver A; Apuzzo, Michael L J

    2007-11-01

    The Nobel Prize in Physiology or Medicine has been given in recognition of work in the neurosciences a number of times. Laureates have been awarded for work on both fundamental and more complex nervous system functions. This review is restricted to contributions by 20th century laureates to the understanding of fundamental nervous system function on the cellular level. In 1906, Camillo Golgi and Ramón y Cajal were awarded for their work on the microscopic structure of the nervous system. Their achievement and those of others within this field, coupled with technological progress, gradually allowed more complex physiological studies. In 1932, the prize was awarded to Charles Sherrington and Edgar Adrian for their discoveries of how neurons function. They were followed in 1944 by Herbert Gasser and Joseph Erlanger who uncovered the highly differentiated functions of single nerve fibers. Alan Hodgkin and Andrew Huxley were awarded for the detection of the ionic mechanism of the action potential and its mathematical explanation in 1963. In 1991, Erwin Neher and Bernd Sakmann were awarded for their work on single ion channels. Although the scientists who proved the hypothesis (Fridjof Nansen, Wilhelm His, and August Forel) were never awarded by the Nobel Committee, their studies gave rise to one of the most fundamental questions in 20th century neuroscience: How is information carried from one neuron to another or to an effector cell? This was first solved in the vegetative nervous system, and, in 1936, Henry Dale and Otto Loewi received the prize for their discoveries relating to chemical transmission of nerve impulses. In 1963, John Eccles was awarded the prize for his work on the physiology of synapses. In 1970, Bernhard Katz received the Nobel Prize for the discovery of quantal release. Katz shared the prize with Julius Axelrod and Ulf von Euler, who were central in finding that transmitters are stored in presynaptic vesicles and that the effect in many synapses is

  11. Correlations among autonomic, sensory, and motor neural function tests in untreated non-insulin-dependent diabetic individuals.

    Science.gov (United States)

    Pfeifer, M A; Weinberg, C R; Cook, D L; Reenan, A; Halar, E; Halter, J B; LaCava, E C; Porte, D

    1985-01-01

    A well-defined group of untreated non-insulin-dependent (NIDD) subjects were evaluated to determine whether involvement of neural function measurements is generalized and symmetrical and to compare the autonomic, sensory, and motor neural measurements. After age adjustment, the sensory and motor neural function measurements were significantly slower in the diabetic group than in normal subjects (P less than 0.01). Similarly, the autonomic nervous system function measurements were also abnormal in the NIDD group (P less than 0.01). Further analysis revealed that each of the specific measurements--median motor nerve conduction velocity (NCV,P less than 0.005), peroneal motor NCV (P less than 0.005), median sensory NCV (P less than 0.005), dark-adapted pupil size after muscarinic blockade (P less than 0.02), pupillary latency time (P less than 0.02), and RR-variation after beta adrenergic blockade (P less than 0.001)--was significantly less by analysis of covariance after age adjustment in the NIDD group than in normal subjects. Thus, there was evidence of motor and sensory neural impairment in the upper and lower extremities as well as evidence of impairment of the reflex arcs involving the parasympathetic nerves to the heart and eye and the sympathetic nerves to the iris. Further analysis revealed that right and left NCV were correlated (P less than 0.01), as were the median motor and median sensory NCV (P less than 0.01), the median motor and peroneal motor NCV (P less than 0.001), and the peroneal motor and median sensory NCV (P less than 0.001). Thus, there was evidence of symmetrical upper and lower limb, as well as motor and sensory proportional involvement of large nerve fiber NCV in this group of NIDD subjects.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4075943

  12. New roles for ‘old’ microRNAs in nervous system function and disease

    Directory of Open Access Journals (Sweden)

    Marion eHartl

    2013-12-01

    Full Text Available Since their discovery, microRNAs became prominent candidates providing missing links on how to explain the developmental and phenotypical variation within one species or among different species. In addition, microRNAs were implicated in diseases such as neurodegeneration and cancer. More recently, the regulation of animal behavior was shown to be influenced by microRNAs. In spite of their numerous functions, only a few microRNAs were discovered by using classic genetic approaches. Due to the very mild or redundant phenotypes of most microRNAs or their genomic location within introns of other genes many regulatory microRNAs were missed. In this review, we focus on three microRNAs first identified in a forward genetic screen in invertebrates for their essential function in animal development, namely bantam, let-7 and miR-279. All three are essential for survival, are not located in introns of other genes, and are highly conserved among species. We highlight their important functions in the nervous system and discuss their emerging roles, especially during nervous system disease and behavior.

  13. The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous System Function

    Science.gov (United States)

    Llinas, Rodolfo R.

    1988-12-01

    This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network oscillations. In such networks, autorhytmic neurons may act as true oscillators (as pacemakers) or as resonators (responding preferentially to certain firing frequencies). Oscillations and resonance in the CNS are proposed to have diverse functional roles, such as (i) determining global functional states (for example, sleep-wakefulness or attention), (ii) timing in motor coordination, and (iii) specifying connectivity during development. Also, oscillation, especially in the thalamo-cortical circuits, may be related to certain neurological and psychiatric disorders. This review proposes that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.

  14. Correlation between LIFG and autonomic activation during stressful tasks: a functional near-infrared spectroscopy (fNIRS) study.

    Science.gov (United States)

    Shi, Jie; Sakatani, Kaoru; Okamoto, Masako; Yamaguchi, Yui; Zuo, Huan-Cong

    2014-10-01

    It remains unclear whether language tasks in one's first (L1) or second (L2) language can cause stress responses and whether frontal, autonomic and behavioral responses to stressful tasks are correlated. In this study, we studied 22 Chinese subjects whose L2 was English and measured the cerebral blood oxygenation in their frontal lobe by using functional near-infrared spectroscopy (fNIRS) as participants engaged in a mental arithmetic task (MAT) and verbal fluency tasks (VFTs) in L1 (Chinese) and L2 (English). To examine the activated cortical areas, we estimated the channel location based on Montreal Neurological Institute (MNI) standard brain space by using a probabilistic estimation method. We evaluated heart rate (HR) changes to analyze autonomic nervous system (ANS) functioning. We found that the MAT and VFTs induced greater increases in HR than did the control (Ctrl) task. Furthermore, subjects developed greater increases in HR in the MAT and VFTL2 than they did in the VFTL1. Compared with the Ctrl task, the MAT and both VFTL1 and VFTL2 produced robust and widespread bilateral activation of the frontal cortex. Interestingly, partial correlation analysis indicated that the activity in the left inferior frontal gyrus (LIFG) [Brodmann's area (BA) 47] was consistently correlated with the increases in HR across the three tasks (MAT, VFTL2, and VFTL1), after controlling for the performance data. The present results suggested that a VFT in L2 may be more stressful than in L1. The LIFG may affect the activation of the sympathetic system induced by stressful tasks, including MATs and VFTs. PMID:25318875

  15. A Double-Blind Atropine Trial for Active Learning of Autonomic Function

    Science.gov (United States)

    Fry, Jeffrey R.; Burr, Steven A.

    2011-01-01

    Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to…

  16. Changes of Pain Perception, Autonomic Function, and Endocrine Parameters during Treatment of Anorectic Adolescents

    Science.gov (United States)

    Bar, Karl-Jurgen; Boettger, Silke; Wagner, Gerd; Wilsdorf, Christine; Gerhard, Uwe Jens; Boettger, Michael K.; Blanz, Bernhard; Sauer, Heinrich

    2006-01-01

    Objectives: The underlying mechanisms of reduced pain perception in anorexia nervosa (AN) are unknown. To gain more insight into the pathology, the authors investigated pain perception, autonomic function, and endocrine parameters before and during successful treatment of adolescent AN patients. Method: Heat pain perception was assessed in 15…

  17. International standards to document remaining autonomic function after spinal cord injury

    DEFF Research Database (Denmark)

    Krassioukov, Andrei; Biering-Sørensen, Fin; Donovan, William; Kennelly, Michael; Kirshblum, Steven; Krogh, Klaus; Alexander, Marca Sipski; Vogel, Lawrence; Wecht, Jill

    2012-01-01

    This is the first guideline describing the International Standards to document remaining Autonomic Function after Spinal Cord Injury (ISAFSCI). This guideline should be used as an adjunct to the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) including the...

  18. Teaching Cardiac Autonomic Function Dynamics Employing the Valsalva (Valsalva-Weber) Maneuver

    Science.gov (United States)

    Junqueira, Luiz Fernando, Jr.

    2008-01-01

    In this report, a brief history of the Valsalva (Valsalva-Weber) maneuver is outlined, followed by an explanation on the use of this approach for the evaluation of cardiac autonomic function based on underlying heart rate changes. The most important methodological and interpretative aspects of the Valsalva-Weber maneuver are critically updated,…

  19. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    Science.gov (United States)

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  20. Peptides in the nervous systems of cnidarians: structure, function, and biosynthesis

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Leviev, I; Carstensen, Kathrine

    1996-01-01

    Cnidarians are the lowest animal group having a nervous system and it was probably within this phylum or in a related ancestor group that nervous systems first evolved. The primitive nervous systems of cnidarians are strongly peptidergic. From a single sea anemone species, Anthopleura elegantissi...

  1. Correlation Functions of an Autonomous Stochastic System with Nonlinear Time Delays

    International Nuclear Information System (INIS)

    The auto-correlation function and the cross-correlation of an autonomous stochastic system with nonlinear time-delayed feedback are investigated by using the stochastic simulation method. There are prominent differences between the roles of quadratic time-delayed feedback and cubic time-delayed feedback on the correlations of an autonomous stochastic system. Under quadratic time-delayed feedback, the nonlinear time delay fails to improve the noisy state of the autonomous stochastic system, the auto-correlation decreases monotonously to zero, and the cross-correlation increases monotonously to zero with the decay time. Under cubic time-delayed feedback, the nonlinear time delay can improve the noisy state of the autonomous stochastic system; the auto-correlation and the cross-correlation show periodical oscillation and attenuation, finally tending to zero with the decay time. Comparing the correlations of the system between with nonlinear time-delayed feedback and linear time-delayed feedback, we find that nonlinear time-delayed feedback lowers the correlation strength of the autonomous stochastic system. (general)

  2. Exploring the Relationship of Autonomic and Endocrine Activity with Social Functioning in Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Smeekens, I.; Didden, R.; Verhoeven, E. W. M.

    2015-01-01

    Several studies indicate that autonomic and endocrine activity may be related to social functioning in individuals with autism spectrum disorder (ASD), although the number of studies in adults is limited. The present study explored the relationship of autonomic and endocrine activity with social functioning in young adult males with ASD compared…

  3. Autonomic nervous system:its response and adaptation to exercises%自主神经系统对运动反应、适应的研究与进展

    Institute of Scientific and Technical Information of China (English)

    邵连杰

    2015-01-01

    背景:心血管系统满足运动过程中不同组织和器官的需求,一次性运动和长时间运动会引起不同的心脏自主神经系统的反应和变化。通过分析心率变异指标提取人体变化的信息,用于运动效果和个体方案的制定成为一个重要的研究领域。目的:从传统的心率变异指标在运动中的应用入手,并结合最新的研究动态,为进一步的心脏自主神经对运动反应和适应研究提供理论支撑。方法:通过计算机检索学术谷歌和PubMed数据库相关文献。检索时间范围为1997年1月至2015年3月。英文检索词为“autonomic nervous system,heart rate variability,HRV,exercise intervention,exercise training”。结果与结论:共检索到405篇相关文献,根据纳入标准保留79篇文献。根据一次性运动心脏自主神经的变化,可以评定有氧工作能力和制定个体干预方案。心脏自主神经对运动干预的反应和适应取决于强度和持续时间,存在较大的个体差异。交感神经和迷走神经长时间兴奋或抑制可能预示过度训练发生。%BACKGROUND:The cardiovascular system meets the demand of different tissues and organs in the motor process. One-time exercise and long-time exercise wil cause different responses and changes of the cardiac autonomic nervous system. Information about changes of the human body can be extractedvia indicators of heart rate variability, which wil be used for formulation of exercise effect and individualized program. It wil be an important field in the future. OBJECTIVE:To study the conventional indicators of heart rate variability used in exercise in combination with the latest research trends, and to provide theoretical support for studying the response and adaptation of cardiac autonomic nervous system to exercises. METHODS: A computer-based search of Google Scholar and PubMed database was performed for relevant articles published from January

  4. Evaluation of cardiac sympathetic nervous function by 123I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness

    International Nuclear Information System (INIS)

    The association between the lack of adrenergic symptoms during hypoglycemia and myocardial 123I-metaiodobenzylguanidine (MIBG) accumulation was investigated in 12 insulin-treated non-insulin-dependent diabetes mellitus (NIDDM) patients who had no evidence of heart disease. These patients were divided into 2 groups according to the presence (group A) or absence (group B) of adrenergic symptoms during hypoglycemia. Autonomic function tests revealed significantly severe autonomic dysfunction in group B compared to that in group A. Insulin infusion test indicated no significant difference in the catecholamine response between the two groups. 123I-MIBG scintigraphy showed that the heart/mediastinum ratio of MIBG uptake was significantly lower, and scintigraphic defect was greater in group B than in group A. There were no significant differences in the washout rate between the two groups. These results suggested that the lack of adrenergic symptoms during hypoglycemia may be associated with cardiac sympathetic nervous dysfunction in insulin-treated NIDDM patients, and this dysfunction is mainly due to cardiac sympathetic denervation. (author)

  5. Evaluation of cardiac sympathetic nervous function by {sup 123}I-metaiodobenzylguanidine scintigraphy in insulin-treated non-insulin dependent diabetics with hypoglycemia unawareness

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomio; Toyama, Takuji; Hoshizaki, Hiroshi [Gunma Prefectural Cardiovascular Center, Maebashi (Japan)] [and others

    1996-02-01

    The association between the lack of adrenergic symptoms during hypoglycemia and myocardial {sup 123}I-metaiodobenzylguanidine (MIBG) accumulation was investigated in 12 insulin-treated non-insulin-dependent diabetes mellitus (NIDDM) patients who had no evidence of heart disease. These patients were divided into 2 groups according to the presence (group A) or absence (group B) of adrenergic symptoms during hypoglycemia. Autonomic function tests revealed significantly severe autonomic dysfunction in group B compared to that in group A. Insulin infusion test indicated no significant difference in the catecholamine response between the two groups. {sup 123}I-MIBG scintigraphy showed that the heart/mediastinum ratio of MIBG uptake was significantly lower, and scintigraphic defect was greater in group B than in group A. There were no significant differences in the washout rate between the two groups. These results suggested that the lack of adrenergic symptoms during hypoglycemia may be associated with cardiac sympathetic nervous dysfunction in insulin-treated NIDDM patients, and this dysfunction is mainly due to cardiac sympathetic denervation. (author).

  6. EXACT NULL CONTROLLABILITY OF NON-AUTONOMOUS FUNCTIONAL EVOLUTION SYSTEMS WITH NONLOCAL CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    Xianlong FU; Yu ZHANG

    2013-01-01

    In this article,by using theory of linear evolution system and Schauder fixed point theorem,we establish a sufficient result of exact null controllability for a non-autonomous functional evolution system with nonlocal conditions.In particular,the compactness condition or Lipschitz condition for the function g in the nonlocal conditions appearing in various literatures is not required here.An example is also provided to show an application of the obtained result.

  7. Effect of Sustained Human Centrifugation on Autonomic Cardiovascular and Vestibular Function

    Science.gov (United States)

    Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Benavides, Edgar W.; Harm, Deborah L.; Rupert, A. H.

    2002-01-01

    Repeated exposure to +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, both sustained exposure to +Gx and changes in otolith function resulting from the gravitational changes of space flight and parabolic flight may adversely affect autonomic cardiovascular function and orthostatic tolerance. HYPOTHESES: Baroreflex function and orthostatic tolerance are acutely improved by a single sustained (30 min) exposure to +3Gz but not +3Gx. Moreover, after 30 min of +3Gx, any changes that occur in autonomic cardiovascular function will relate commensurately to changes in otolith function. METHODS: Twenty-two healthy human subjects were first exposed to 5 min of +3 Gz centrifugation and then subsequently up to a total of30 min of either +3Gz (n = 15) or +3Gx (n = 7) centrifugation. Tests of autonomic cardiovascular function both before and after both types of centrifugation included: (a) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; (b) carotid-cardiac baroreflex tests; ( c) Valsalva tests; and (d) 30-min head-up tilt (HUT) tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: All four +3Gz subjects who were intolerant to HUT before centrifugation became tolerant to HUT after centrifugation. The operational point of the carotid-cardiac baroreflex and the Valsalva-related baroreflex were also enhanced in the +3Gz group but not in the +3Gx group. No significant vestibular-autonomic relationships were detected, other than a significant vestibular-cerebrovascular interaction reported previously. CONCLUSIONS: A single, sustained exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance whereas a similar exposure to +3 Gx centrifugation appears to have less effect.

  8. Autonomic response to approachability characteristics, approach behavior, and social functioning in Williams syndrome.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Bellugi, Ursula

    2015-11-01

    Williams syndrome (WS) is a neurogenetic disorder that is saliently characterized by a unique social phenotype, most notably associated with a dramatically increased affinity and approachability toward unfamiliar people. Despite a recent proliferation of studies into the social profile of WS, the underpinnings of the pro-social predisposition are poorly understood. To this end, the present study was aimed at elucidating approach behavior of individuals with WS contrasted with typical development (TD) by employing a multidimensional design combining measures of autonomic arousal, social functioning, and two levels of approach evaluations. Given previous evidence suggesting that approach behaviors of individuals with WS are driven by a desire for social closeness, approachability tendencies were probed across two levels of social interaction: talking versus befriending. The main results indicated that while overall level of approachability did not differ between groups, an important qualitative between-group difference emerged across the two social interaction contexts: whereas individuals with WS demonstrated a similar willingness to approach strangers across both experimental conditions, TD individuals were significantly more willing to talk to than to befriend strangers. In WS, high approachability to positive faces across both social interaction levels was further associated with more normal social functioning. A novel finding linked autonomic responses with willingness to befriend negative faces in the WS group: elevated autonomic responsivity was associated with increased affiliation to negative face stimuli, which may represent an autonomic correlate of approach behavior in WS. Implications for underlying organization of the social brain are discussed. PMID:26459097

  9. Analytical solution to a non-autonomous second order differential equation with modified hyperbolic tangent function

    International Nuclear Information System (INIS)

    The solution to a non-autonomous second order ordinary differential equation is presented. The real function, dependent on the differentiation variable, is a squared hyperbolic tangent function plus a term that involves the quotient of hyperbolic functions. This function varies from one limiting value to another without having any singularities. The solution is remarkably simple and involves only trigonometric and hyperbolic trigonometric functions. The solution is analyzed in the context of wave propagation in an inhomogeneous one-dimensional medium. The profile is shown to act as a perfect anti-reflection interface, providing a possible alternative route to the fabrication of reflectionless surfaces. (paper)

  10. PET imaging of the autonomic myocardial function: methods and interpretation

    OpenAIRE

    Noordzij, Walter; Slart, Riemer H.J.A.

    2015-01-01

    Cardiac positron emission tomography (PET) is mainly applied in myocardial perfusion and viability detection. Noninvasive imaging of myocardial innervation using PET is a valuable additional methodology in cardiac imaging. Novel methods and different PET ligands have been developed to measure presynaptic and postsynaptic function of the cardiac neuronal system. Obtained PET data can be analysed quantitatively or interpreted qualitatively. Thus far, PET is not a widely used clinical applicatio...

  11. Exploring the relationship of autonomic and endocrine activity with social functioning in adults with autism spectrum disorders

    NARCIS (Netherlands)

    Smeekens, I.; Didden, H.C.M.; Verhoeven, E.W.M.

    2015-01-01

    Several studies indicate that autonomic and endocrine activity may be related to social functioning in individuals with autism spectrum disorder (ASD), although the number of studies in adults is limited. The present study explored the relationship of autonomic and endocrine activity with social fun

  12. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    Directory of Open Access Journals (Sweden)

    Brandon Sights

    2006-10-01

    Full Text Available High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the trend toward relieving the human of the low-level control burden advances, the ability to combine the functionalities of several critical control systems on a single platform becomes imperative.

  13. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-01-01

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality. PMID:25237902

  14. Motion Planning for Autonomous Vehicle Based on Radial Basis Function Neural Network in Unstructured Environment

    Directory of Open Access Journals (Sweden)

    Jiajia Chen

    2014-09-01

    Full Text Available The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  15. Cardiovascular autonomic function tests in type 2 diabetes mellitus with micro albuminuria

    Directory of Open Access Journals (Sweden)

    Sudhavana S.

    2012-06-01

    Full Text Available Introduction: Cardiovascular disease is the leading cause of death in type2 diabetes (DM. Microalbuminuria (MAis strongly associated with cardiovascular complications in type2 diabetes. Impaired cardiovascular autonomicfunction and increased albumin excretion are related in patients with diabetes. So this study is designed toinvestigate the relationship between cardiovascular autonomic function and microalbuminuria in type2 diabetes.Methods: The study comprised of 180 subjects of age group>50 years, classified into 3 groups of 60 subjects each.DM without MA, DM with MA and controls. The tests performed were 1 Heart rate response to deep breathing,valsalva maneuver and standing; 2 Blood pressure response to standing and to sustained handgrip. Individual testswere given score of 0, 1, or 2 and an overall autonomic test score of 0-10 was obtained.Results: Mean autonomic score in control, DM without MA and DM with MA are 1.97 ± 0.81, 5.73 ± 1.26 and 7.00± 1.80 respectively. The Coefficient of variation (% of control, DM without MA, DM with MA is 41.1, 21.9 and25.7 respectively. A significant difference in autonomic score was observed in the DM without MA (P<0.01 andDM with MA (P<0.01 when compared to controls.Conclusion: In conclusion type2 diabetic individuals should be diagnosed early to prevent disease progression tomicroalbuminuria and thus minimize complications.

  16. EFFECT OF SUKHA PRANAYAMA AND BHASTRIKA PRANAYAMA ON CARDIOVASCULAR AUTONOMIC FUNCTIONS AMONG YOUNG HEALTHY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Ghouse

    2016-05-01

    Full Text Available BACKGROUND Practice of Yoga causes several changes in normal physiology. Meditation has positive short and longterm rewards which include a balance of the parasympathetic and sympathetic functions. Cardiovascular autonomic functions are quantified by changes in the heart rate (HR and blood pressure (BP in response to some of the physiological stimuli and different types of Pranayamas is known to alter the autonomic function. OBJECTIVES To assess the effects of Sukha Pranayama and Bhastrika Pranayama on cardiovascular autonomic functions in normal healthy medical students. MATERIALS AND METHODS 50 male and female young healthy volunteers studying at PES Institute of Medical Sciences and Research, Kuppam belonging to age group of 17-22 years were included for the study. Parasympathetic activity was assessed by observing the heart rate changes to immediate standing from lying down position, heart rate changes during deep breathing and heart rate changes during Valsalva manoeuvre using Biopac Student Lab MP30 device. Sympathetic activity was assessed by observing blood pressure changes on immediate standing from lying down position and blood pressure changes during sustained hand grip using sphygmomanometer before and after yoga. RESULTS & CONCLUSION The baseline heart rate and blood pressure response to immediate standing showed a tendency to decrease possibly due to increased vagal tone and decreased sympathetic discharge thereby indicating practice of yogasanas and pranayamas would benefit the young population as it would prepare them in overcoming stress by modulating and optimising sympathetic activities in stressful situations.

  17. Functional aging in the nervous system contributes to age-dependent motor activity decline in C. elegans

    OpenAIRE

    Liu, Jie; Zhang, Bi; Lei, Haoyun; Feng, Zhaoyang; Liu, Jianfeng; Hsu, Ao-Lin; X Z Shawn Xu

    2013-01-01

    Aging is characterized by a progressive decline in multiple physiological functions (i.e. functional aging). As animals age, they exhibit a gradual loss in motor activity, but the underlying mechanisms remain unclear. Here we approach this question in C. elegans by functionally characterizing its aging nervous system and muscles. We find that motor neurons exhibit a progressive functional decline, beginning in early life. Surprisingly, body-wall muscles, which are previously thought to underg...

  18. Assesment of Autonomic Function in Metabolic Syndrome using Combination Heart Rate Variability and Heart Rate Turbulence

    OpenAIRE

    Aydın, Gülay; Sarıkaya, Savaş; Turgut, Okan Onur; Şahin, Şafak; Çakmak, Nuray Yılmaz; Yılmaz, Mehmet Birhan; Tandoğan, İzzet

    2013-01-01

    Background and objective: Metabolic syndrome (MetS) is described as a group of various abnormal metabolic risk factors such as obesity, dyslipidemia, increased blood pressure, increased plasma glucose levels, prothrombotic condition and proinflammatory state. These parameters are related to decreased parasympathetic and increased sympathetic activity. We aimed to evaluate autonomic function using a combination with  heart rate variability (HRV) and  heart rate turbulence (HRT) in metabolic sy...

  19. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    International Nuclear Information System (INIS)

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats

  20. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Energy Technology Data Exchange (ETDEWEB)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil); Mostarda, Cristiano [Departamento de Educação Física, Universidade Federal do Maranhão (UFMA), São Luís, MA (Brazil); Figueroa, Diego Mendrot [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Angelis, Kátia De [Laboratório de Fisiologia Translacional, Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Irigoyen, Maria Cláudia [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Rodrigues, Bruno, E-mail: bruno.rodrigues@incor.usp.br [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil)

    2014-07-15

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  1. SMN deficiency disrupts gastrointestinal and enteric nervous system function in mice.

    Science.gov (United States)

    Gombash, Sara E; Cowley, Christopher J; Fitzgerald, Julie A; Iyer, Chitra C; Fried, David; McGovern, Vicki L; Williams, Kent C; Burghes, Arthur H M; Christofi, Fedias L; Gulbransen, Brian D; Foust, Kevin D

    2015-07-01

    The 2007 Consensus Statement for Standard of Care in Spinal Muscular Atrophy (SMA) notes that patients suffer from gastroesophageal reflux, constipation and delayed gastric emptying. We used two mouse models of SMA to determine whether functional GI complications are a direct consequence of or are secondary to survival motor neuron (Smn) deficiency. Our results show that despite normal activity levels and food and water intake, Smn deficiency caused constipation, delayed gastric emptying, slow intestinal transit and reduced colonic motility without gross anatomical or histopathological abnormalities. These changes indicate alterations to the intrinsic neural control of gut functions mediated by the enteric nervous system (ENS). Indeed, Smn deficiency led to disrupted ENS signaling to the smooth muscle of the colon but did not cause enteric neuron loss. High-frequency electrical field stimulation (EFS) of distal colon segments produced up to a 10-fold greater contractile response in Smn deficient tissues. EFS responses were not corrected by the addition of a neuronal nitric oxide synthase inhibitor indicating that the increased contractility was due to hyperexcitability and not disinhibition of the circuitry. The GI symptoms observed in mice are similar to those reported in SMA patients. Together these data suggest that ENS cells are susceptible to Smn deficiency and may underlie the patient GI symptoms. PMID:25859009

  2. Effect of integrated approach of yoga therapy on autonomic functions in patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    H T Vinutha

    2015-01-01

    Full Text Available Background and Objectives: Integrated approach of yoga therapy (IAYT had shown beneficial effects in the management of type 2 diabetes mellitus (DM. Autonomic dysfunction is one of the major complications of type 2 DM. Research studies have demonstrated that yoga can modulate autonomic functions. Hence, the current study was designed to assess the effect of IAYT on autonomic functions in type 2 diabetics. Materials and Methods: 15 patients of type 2 DM with ages ranging from 35 to 60 years were recruited for the study. They were diagnosed with type 2 diabetes from 1-year to 15 years. Assessments were made on day 1 (before yoga and day 7 (after 1-week of yoga practice. Heart rate variability (HRV, blood pressure (BP response to the isometric handgrip and heart rate response to deep breathing were assessed before and after 1-week of IAYT. Results: There was a significant reduction in fasting plasma glucose from 154.67-130.27 mg/dL (Wilcoxon signed rank test, P = 0.029 following 1-week of IAYT. BP response to isometric hand grip improved significantly (Wilcoxon signed rank test, P = 0.01. There was no statistical significant change in HRV components and heart rate response to deep breathing test. However, there was a trend of increase in the low frequency power (41.07%, high frequency power (6.29%, total power (5.38%, and standard deviation of all NN intervals (SDNN (6.29%. Conclusion: These findings suggest that, IAYT improved autonomic functions in type 2 diabetes patients.

  3. Early atherosclerosis and cardiac autonomic responses to mental stress: a population-based study of the moderating influence of impaired endothelial function

    Directory of Open Access Journals (Sweden)

    Juonala Markus

    2010-03-01

    Full Text Available Abstract Background Acute mental stress may contribute to the cardiovascular disease progression via autonomic nervous system controlled negative effects on the endothelium. The joint effects of stress-induced sympathetic or parasympathetic activity and endothelial function on atherosclerosis development have not been investigated. The present study aims to examine the interactive effect of acute mental stress-induced cardiac reactivity/recovery and endothelial function on the prevalence of carotid atherosclerosis. Methods Participants were 81 healthy young adults aged 24-39 years. Preclinical atherosclerosis was assessed by carotid intima-media thickness (IMT and endothelial function was measured as flow-mediated dilatation (FMD using ultrasound techniques. We also measured heart rate, respiratory sinus arrhythmia (RSA, and pre-ejection period (PEP in response to the mental arithmetic and speech tasks. Results We found a significant interaction of FMD and cardiac RSA recovery for IMT (p = 0.037, and a significant interaction of FMD and PEP recovery for IMT (p = 0.006. Among participants with low FMD, slower PEP recovery was related to higher IMT. Among individuals with high FMD, slow RSA recovery predicted higher IMT. No significant interactions of FMD and cardiac reactivity for IMT were found. Conclusions Cardiac recovery plays a role in atherosclerosis development in persons with high and low FMD. The role of sympathetically mediated cardiac activity seems to be more important in those with impaired FMD, and parasympathetically mediated in those with relatively high FMD. The development of endothelial dysfunction may be one possible mechanism linking slow cardiac recovery and atherosclerosis via autonomic nervous system mediated effect.

  4. Cardiac autonomic function measured by heart rate variability and turbulence in pre-hypertensive subjects.

    Science.gov (United States)

    Erdem, Alim; Uenishi, Masahiro; Küçükdurmaz, Zekeriya; Matsumoto, Kazuo; Kato, Ritsushi; Hara, Motoki; Yazıcı, Mehmet

    2013-01-01

    Non-dipping blood pressure pattern was shown to be associated with increased cardiovascular events. In addition, cardiac autonomic dysfunction was found to be associated with non-dipper phenomenon. In this study, we aimed to evaluate the cardiac autonomic functions in dipper and non-dipper pre-hypertensive subjects. A total of 65 pre-hypertensive subjects were enrolled in this study. They were divided into two groups as non-dippers (40 subjects, 52% female) and dippers (25 subjects, 52.5% female). Cardiac autonomic functions of the two groups were compared with the aid of heart rate variability, heart rate turbulence (HRT), atrial premature contractions (APCs), ventricular premature contractions (VPCs), and mean heart rate (MHR). There was no significant difference between non-dippers and dippers in basal characteristics. The two parameters of HRT, turbulence onset and turbulence slope, were found to be significantly abnormal in non-dippers than in dippers (P < .011 and P < .002, respectively). Heart rate variability parameters, including SDNN, SDANN, RMSSD, and pNN50, were found to be similar in dipper and non-dipper pre-hypertensive subjects (P < .998, P < .453, P < .205, and P < .788, respectively). APCs, VPCs, and MHR were compared, and there were statistical differences between the groups (APCs 5.80 ± 4.55, 9.14 ± 7.33, P < .024; VPCs 8.48 ± 8.83, 13.23 ± 9.68, P < .044; and MHR 70.16 ± 11.08, 76.26 ± 11.31, P < .035; respectively). This study demonstrated a possible cardiac autonomic dysfunction in pre-hypertensive subjects with non-dipper pattern. This may be a basis for future studies related to pre-hypertension and non-dipping BP pattern. PMID:22676318

  5. The mind body problem, part three: ascension of sexual function to cerebral level

    OpenAIRE

    Ion G. Motofei; David L. Rowland

    2016-01-01

    Physiologically, the somatic nervous system intervenes in external interaction between the body and environment, while autonomic nervous system ensures the functioning of internal organs. We present in this paper a psycho-physiological perspective suggesting that mental function (somatic in nature, because coordinates environmental interaction) is closer to and more aligned with the physiologic functioning of autonomic nervous system (due to autonomy, duality, etc.). At opposite end, sexual f...

  6. Effect of 30-min +3 Gz centrifugation on vestibular and autonomic cardiovascular function

    Science.gov (United States)

    Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Harm, Deborah L.; Rupert, A. H.

    2003-01-01

    INTRODUCTION: Repeated exposure to increased +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, it is not known whether such enhancements might also result from a single, more prolonged exposure to increased +Gz. Our study was designed to investigate whether baroreflex function and orthostatic tolerance are acutely improved by a single prolonged exposure to +3 Gz, and moreover, whether changes in autonomic cardiovascular function resulting from exposure to increased +Gz are correlated with changes in otolith function. METHODS: We exposed 15 healthy human subjects to +3 Gz centrifugation for up to 30 min or until symptoms of incipient G-induced loss of consciousness (G-LOC) ensued. Tests of autonomic cardiovascular function both before and after centrifugation included: 1) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; 2) carotid-cardiac baroreflex tests; 3) Valsalva tests; and 4) 30-min head-up tilt tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: Of the 15 subjects who underwent prolonged +3 Gz, 4 were intolerant to 30 min of head-up tilt before centrifugation but became tolerant to such tilt after centrifugation. The Valsalva-related baroreflex as well as a measure of the carotid-cardiac baroreflex were also enhanced after centrifugation. No significant vestibular-autonomic relationships were detected beyond a vestibular-cerebrovascular interaction reported earlier in a subset of seven participants. CONCLUSIONS: A single prolonged exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance.

  7. lin-12 Notch functions in the adult nervous system of C. elegans

    Directory of Open Access Journals (Sweden)

    Tucey Tim M

    2005-07-01

    Full Text Available Abstract Background Notch signaling pathways are conserved across species and traditionally have been implicated in cell fate determination during embryonic development. Notch signaling components are also expressed postdevelopmentally in the brains of adult mice and Drosophila. Recent studies suggest that Notch signaling may play a role in the physiological, rather than developmental, regulation of neurons. Here, we investigate a new non-developmental role for Caenorhabditis elegans lin-12 Notch signaling in neurons regulating the spontaneous reversal rate during locomotion. Results The spontaneous reversal rate of C. elegans during normal locomotion is constant. Both lin-12 gain and loss of function mutant animals had significantly increased reversal rates compared to wild type controls. These defects were caused by lin-12 activity, because the loss of function defect could be rescued by a wild type lin-12 transgene. Furthermore, overexpression of lin-12 recapitulated the gain-of-function defect. Increasing or decreasing lin-12 activity in the postdevelopmental adult animal was sufficient to rapidly and reversibly increase reversals, thereby excluding a developmental role for lin-12. Although lin-12 is expressed in the vulval and somatic gonad lineages, we find that these tissues play no role in regulating reversal rates. In contrast, altering lin-12 activity specifically in the nervous system was sufficient to increase reversals. These behavioral changes require components of the canonical lin-12 signaling cascade, including the ligand lag-2 and the transcriptional effector lag-1. Finally, the C. elegans AMPA/kainate glutamate receptor homolog glr-1 shows strong genetic interactions with lin-12, suggesting that glr-1 and/or other glutamate gated channels may be targets of lin-12 regulation. Conclusion Our results demonstrate a neuronal role for lin-12 Notch in C. elegans and suggest that lin-12 acutely regulates neuronal physiology to

  8. Prospects for mTOR-mediated functional repair after central nervous system trauma.

    Science.gov (United States)

    Berry, Martin; Ahmed, Zubair; Morgan-Warren, Peter; Fulton, Daniel; Logan, Ann

    2016-01-01

    Recent research has suggested that the growth of central nervous system (CNS) axons during development is mediated through the PI3K/Akt/mammalian target of rapamycin (mTOR) intracellular signalling axis and that suppression of activity in this pathway occurs during maturity as levels of the phosphatase and tensin homologue (PTEN) rise and inhibit PI3K activation of mTOR, accounting for the failure of axon regeneration in the injured adult CNS. This hypothesis is supported by findings confirming that suppression of PTEN in experimental adult animals promotes impressive axon regeneration in the injured visual and corticospinal motor systems. This review focuses on these recent developments, discussing the therapeutic potential of a mTOR-based treatment aimed at promoting functional recovery in CNS trauma patients, recognising that to fulfil this ambition, the new therapy should aim to promote not only axon regeneration but also remyelination of regenerated axons, neuronal survival and re-innervation of denervated targets through accurate axonal guidance and synaptogenesis, all with minimal adverse effects. The translational challenges presented by the implementation of this new axogenic therapy are also discussed. PMID:26459109

  9. Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions

    Directory of Open Access Journals (Sweden)

    Xianlong Fu

    2012-07-01

    Full Text Available In this work, we study the existence of mild solutions and strict solutions of semilinear functional evolution equations with nonlocal conditions, where the linear part is non-autonomous and generates a linear evolution system. The fraction power theory and alpha-norm are used to discuss the problems so that the obtained results can be applied to the equations in which the nonlinear terms involve spatial derivatives. In particular, the compactness condition or Lipschitz condition for the function g in the nonlocal conditions appearing in various literatures is not required here. An example is presented to show the applications of the obtained results

  10. Locus coeruleus lesions and PCOS: role of the central and peripheral sympathetic nervous system in the ovarian function of rat

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2012-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction”. “Autonomic and central nervous systems play important roles in the regulation of ovarian physiology”. The noradrenergic nucleus locus coeruleus (LC plays a central role in the regulation of the sympathetic nervous system and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway and its activation is essential to trigger spontaneous or induced LH surges. This study evaluates sympathetic outflow in central and peripheral pathways in PCO rats. Objective: Our objectives in this study were (1 to estimate LC activity in rats with estradiol valerate (EV-induced PCO; (2 to antagonized alpha2a adrenoceptor in systemic conditions with yohimbine. Materials and Methods: Forty two rats were divided into two groups: 1 LC and yohimbine and 2 control. Every group subdivided in two groups: eighteen rats were treated with estradiol valerate for induction of follicular cysts and the remainders were sesame oil groups. Results: Estradiol concentration was significantly augmented by the LC lesion in PCO rats (p<0.001, while LC lesion could not alter serum concentrations of LH and FSH, like yohimbine. The morphological observations of ovaries of LC lesion rats showed follicles with hyperthecosis, but yohimbine reduced the number of cysts, increased corpus lutea and developed follicles. Conclusion: Rats with EV-induced PCO increased sympathetic activity. LC lesion and yohimbine decreased the number of cysts and yohimbine increased corpus lutea and developed follicles in PCO rats.

  11. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood

    Directory of Open Access Journals (Sweden)

    Seung-Hwan Lee

    2016-08-01

    Major conclusions: Implications for the treatment of obesity, type 2 diabetes, dementia, and mood disorders are discussed in the context of brain insulin action. Intranasal insulin may have potential in the treatment of central nervous system-related metabolic disorders.

  12. [Effects of radio- and microwaves emitted by wireless communication devices on the functions of the nervous system selected elements].

    Science.gov (United States)

    Politański, Piotr; Bortkiewicz, Alicja; Zmyślony, Marek

    2016-01-01

    Nervous system is the most "electric" system in the human body. The research of the effects of electromagnetic fields (EMFs) of different frequencies on its functioning have been carried out for years. This paper presents the results of the scientific literature review on the EMF influence on the functioning of the human nervous system with a particular emphasis on the recent studies of the modern wireless communication and data transmission systems. In the majority of the analyzed areas the published research results do not show EMF effects on the nervous system, except for the influence of GSM telephony signal on resting EEG and EEG during patients' sleep and the influence of radiofrequency EMF on the cardiovascular regulation. In other analyzed areas (EMF impact on sleep, the evoked potentials and cognitive processes), there are no consistent results supporting any influence of electromagnetic fields. Neurophysiological studies of the effect of radio- and microwaves on the brain functions in humans are still considered inconclusive. This is among others due to, different exposure conditions, a large number of variables tested, deficiencies in repeatability of research and statistical uncertainties. However, methodological guidelines are already available giving a chance of unifying research that definitely needs to be continued in order to identify biophysical mechanisms of interaction between EMFs and the nervous system. One of the EMF research aspects, on which more and more attention is paid, are inter-individual differences. Med Pr 2016;67(3):411-421. PMID:27364114

  13. Assessment of Autonomic Function by Phase Rectification of RRInterval Histogram Analysis in Chagas Disease

    Directory of Open Access Journals (Sweden)

    Olivassé Nasari Junior

    2015-06-01

    Full Text Available Background: In chronic Chagas disease (ChD, impairment of cardiac autonomic function bears prognostic implications. Phase‑rectification of RR-interval series isolates the sympathetic, acceleration phase (AC and parasympathetic, deceleration phase (DC influences on cardiac autonomic modulation. Objective: This study investigated heart rate variability (HRV as a function of RR-interval to assess autonomic function in healthy and ChD subjects. Methods: Control (n = 20 and ChD (n = 20 groups were studied. All underwent 60-min head-up tilt table test under ECG recording. Histogram of RR-interval series was calculated, with 100 ms class, ranging from 600–1100 ms. In each class, mean RR-intervals (MNN and root-mean-squared difference (RMSNN of consecutive normal RR-intervals that suited a particular class were calculated. Average of all RMSNN values in each class was analyzed as function of MNN, in the whole series (RMSNNT, and in AC (RMSNNAC and DC (RMSNNDC phases. Slopes of linear regression lines were compared between groups using Student t-test. Correlation coefficients were tested before comparisons. RMSNN was log-transformed. (α < 0.05. Results: Correlation coefficient was significant in all regressions (p < 0.05. In the control group, RMSNNT, RMSNNAC, and RMSNNDC significantly increased linearly with MNN (p < 0.05. In ChD, only RMSNNAC showed significant increase as a function of MNN, whereas RMSNNT and RMSNNDC did not. Conclusion: HRV increases in proportion with the RR-interval in healthy subjects. This behavior is lost in ChD, particularly in the DC phase, indicating cardiac vagal incompetence.

  14. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism.

    Science.gov (United States)

    Souza, N S; Dos-Santos, R C; Silveira, Anderson Luiz Bezerra da; R, Sonoda-Côrtes; Gantus, Michel Alexandre Villani; Fortes, F S; Olivares, Emerson Lopes

    2016-04-01

    Premenopausal women are known to show lower incidence of cardiovascular disease than men. During myocardial infarction (MI), homeostatic responses are activated, including the sympathetic autonomic nervous system and the rennin-angiotensin-aldosterone system, which is related to the fluid and electrolyte balance, both aiming to maintain cardiac output. This study sought to perform a serial evaluation of sexual dimorphism in cardiac autonomic control and fluid and electrolyte balance during the development of MI-induced heart failure in rats. Experimental MI was induced in male (M) and female (F) adult (7-9 weeks of age) Wistar rats. The animals were placed in metabolic cages to assess fluid intake and urine volume 1 and 4 weeks after inducing MI (male myocardial infarction (MMI) and female myocardial infarction (FMI) groups). They subsequently underwent echocardiographic evaluation and spectral analysis of heart rate variability. After completing each protocol, the animals were killed for postmortem evaluation and histology. The MMI group showed earlier and more intense cardiac morphological and functional changes than the FMI group, although the extent of MI did not differ between groups (P > 0.05). The MMI group showed higher sympathetic modulation and sodium and water retention than the FMI group (P < 0.05), which may partly explain both the echocardiographic and pathological findings. Females subjected to infarction seem to show attenuation of sympathetic modulation, more favourable fluid and electrolyte balances, and better preserved cardiac function compared to males subjected to the same infarction model. PMID:26748814

  15. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    Directory of Open Access Journals (Sweden)

    Annina Huser

    Full Text Available The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.

  16. Delayed improvement of autonomic nervous abnormality after the Maze procedure: time and frequency domain analysis of heart rate variability using 24 hour Holter monitoring

    OpenAIRE

    K. Fukushima; Emori, T; Shimizu, W; Kurita, T; Aihara, N; Kosakai, Y; Isobe, F.; Shimomura, K.; Kawashima, Y.; Ohe, T

    1997-01-01

    Objective—To analyse heart rate variability in patients with atrial fibrillation after the Maze procedure, to investigate whether the procedure damages the cardiac autonomic fibres supplying the sinus node.
Design and patients—Time and frequency domain analyses of RR variability were performed using 24 hour Holter monitoring one month after surgery in 12 patients with atrial fibrillation who underwent the Maze procedure (Maze group) and in seven patients who underwent cardiac surgery without ...

  17. Autonomic Nervous System Mediates the Hypotensive Effects of Aqueous and Residual Methanolic Extracts of Syzygium polyanthum (Wight) Walp. var. polyanthum Leaves in Anaesthetized Rats

    OpenAIRE

    Ismail, A.; Mohamed, M.; Sulaiman, S. A.; Wan Ahmad, W. A. N.

    2013-01-01

    Syzygium polyanthum (Wight) Walp. var. polyanthum leaves are consumed as a traditional Malay treatment of hypertension. This study investigates hypotensive potential of aqueous (AESP) and residual methanolic (met-AESP) extracts of S. polyanthum leaves and possible involvement of autonomic receptors. AESP and met-AESP (20 to 100 mg/kg) were intravenously administered into anaesthetized Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Blood pressure and heart were monitored for 20 ...

  18. Heart rate variability as a biomarker for autonomic nervous system response differences between children with chronic pain and healthy control children

    OpenAIRE

    Evans S; Seidman LC; Tsao JCI; Lung KC; Zeltzer LK; Naliboff BD

    2013-01-01

    Subhadra Evans,1 Laura C Seidman,1 Jennie CI Tsao,1 Kirsten C Lung,1 Lonnie K Zeltzer,1 Bruce D Naliboff21Pediatric Pain Program, University of California, Los Angeles, CA, USA; 2Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USAAbstract: Studies in adults have demonstrated a relationship between lowered heart rate variability (HRV) and poor health. However, less is known about the role of autonomic arousal in children's well-being. The aim...

  19. Autonomic Nervous System Mediates the Hypotensive Effects of Aqueous and Residual Methanolic Extracts of Syzygium polyanthum (Wight) Walp. var. polyanthum Leaves in Anaesthetized Rats.

    Science.gov (United States)

    Ismail, A; Mohamed, M; Sulaiman, S A; Wan Ahmad, W A N

    2013-01-01

    Syzygium polyanthum (Wight) Walp. var. polyanthum leaves are consumed as a traditional Malay treatment of hypertension. This study investigates hypotensive potential of aqueous (AESP) and residual methanolic (met-AESP) extracts of S. polyanthum leaves and possible involvement of autonomic receptors. AESP and met-AESP (20 to 100 mg/kg) were intravenously administered into anaesthetized Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Blood pressure and heart were monitored for 20 min. AESP and met-AESP induced significant dose-dependent hypotension, but only 100 mg/kg AESP caused mild bradycardia (n = 5). AESP-induced hypotension was more potent than that of met-AESP in WKY. AESP has a faster onset time than that of met-AESP in both WKY and SHR. However, met-AESP-induced hypotension was more sustained than that of AESP in SHR. Blockages of autonomic ganglion and α -adrenergic receptors using hexamethonium and phentolamine (n = 5 for each group) partially attenuated AESP-induced hypotension, suggesting involvement of α -adrenergic receptors. Blockages of autonomic ganglion, β -adrenergic, cholinergic receptors, and nitric oxide production using hexamethonium, propranolol, atropine, and N- ω -nitro-l arginine methyl ester (L-NAME) (n = 5 for each group) partially attenuated met-AESP-induced hypotension, suggesting involvement of β -adrenergic and cholinergic receptors via nitric oxide production. PMID:24454508

  20. Autonomic Nervous System Mediates the Hypotensive Effects of Aqueous and Residual Methanolic Extracts of Syzygium polyanthum (Wight Walp. var. polyanthum Leaves in Anaesthetized Rats

    Directory of Open Access Journals (Sweden)

    A. Ismail

    2013-01-01

    Full Text Available Syzygium polyanthum (Wight Walp. var. polyanthum leaves are consumed as a traditional Malay treatment of hypertension. This study investigates hypotensive potential of aqueous (AESP and residual methanolic (met-AESP extracts of S. polyanthum leaves and possible involvement of autonomic receptors. AESP and met-AESP (20 to 100 mg/kg were intravenously administered into anaesthetized Wistar-Kyoto (WKY and spontaneously hypertensive (SHR rats. Blood pressure and heart were monitored for 20 min. AESP and met-AESP induced significant dose-dependent hypotension, but only 100 mg/kg AESP caused mild bradycardia (n=5. AESP-induced hypotension was more potent than that of met-AESP in WKY. AESP has a faster onset time than that of met-AESP in both WKY and SHR. However, met-AESP-induced hypotension was more sustained than that of AESP in SHR. Blockages of autonomic ganglion and α-adrenergic receptors using hexamethonium and phentolamine (n=5 for each group partially attenuated AESP-induced hypotension, suggesting involvement of α-adrenergic receptors. Blockages of autonomic ganglion, β-adrenergic, cholinergic receptors, and nitric oxide production using hexamethonium, propranolol, atropine, and N-ω-nitro-l arginine methyl ester (L-NAME (n=5 for each group partially attenuated met-AESP-induced hypotension, suggesting involvement of β-adrenergic and cholinergic receptors via nitric oxide production.

  1. Autonomic control of the eye

    Science.gov (United States)

    McDougal, David H.; Gamlin, Paul D.

    2016-01-01

    The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia. PMID:25589275

  2. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    Science.gov (United States)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  3. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  4. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians.

    Directory of Open Access Journals (Sweden)

    Martis W Cowles

    2014-10-01

    Full Text Available Members of the COE family of transcription factors are required for central nervous system (CNS development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals.

  5. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians.

    Science.gov (United States)

    Cowles, Martis W; Omuro, Kerilyn C; Stanley, Brianna N; Quintanilla, Carlo G; Zayas, Ricardo M

    2014-10-01

    Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals. PMID:25356635

  6. Effect of enpishin (press tack acupuncture needles on autonomic function, WBC count and oxidative stress

    Directory of Open Access Journals (Sweden)

    Mitsunori Tsumaki

    2011-07-01

    Full Text Available Acupuncture as a vital component of traditional medical systems of the Far East has been used to restore and maintain health for over three millennia. However, the neurobiological correlates of this therapy remain largely unknown. The purpose of this study was therefore to determine the effect of enpishin acupuncture (press tack needles (PTN on autonomic function, WBC count, and oxidative stress between subjects that received either verum or placebo PTN treatment. Twenty men (mean(SD age: 36.7(5.1 years who provided oral consent were randomized to receive either verum PTN (n = 9 or placebo PTN (n = 11. Bi-Digital O-Ring Test (BDORT was used to select the acupoints for each participant. Autonomic function and oxidative stress level were analyzed before and after the treatment via heart rate variability (HRV and free radical analysis system (FRAS4, respectively. Pre- and post-treatment WBC count was also evaluated. Verum PTN group had a statistically significant increase (p = 0.008 in Ln TP, an index of overall autonomic activity. Subjects in this group also had a significantly greater (p = 0.006 variation in Ln TP than the placebo PTN group in response to the treatment. Similarly, Ln HF of subjects receiving verum PTN showed a marked increase (p = 0.0026 after the treatment. Moreover, a significantly greater (p < 0.001 variation in mean Ln HF before and after the treatment was noted in the verum group than the placebo group, reflecting a greater parasympathetic activation in the former. In contrast, sympathetic activity was not significantly influenced by verum PTN based on the lack of observed changes in LF/HF ratio. In addition, both groups failed to demonstrate significant variations in pre- and post-treatment mean Ln LF/HF ratio. Further, no significant intergroup difference was found with regard to mean variation in Ln LF/HF ratio. Verum PTN did not induce significant changes in WBC count and markers of oxidative stress, namely reactive

  7. A study on the observation system for autonomous, distributed and cooperative function in a future type nuclear power plant

    International Nuclear Information System (INIS)

    The concept of advanced future plants are discussed by five research institutes; Ship Research Institute, Electrotechnical Laboratory, The Institute of Physical and Chemical Research, Japan Atomic Energy Research Institute, and Power Reactor and Nuclear Fuel Development Corporation (Cross-over group). And, an autonomous plant is identified as a future type plant. In this future type plant, there are many agents that consist plant sub-systems or plant components and have artificial intelligence. They are distributed in plant and have autonomous functions, and cooperate each other to establish total plant function. Even if the plant has autonomous function, human operators have to always watch the plant state. Therefore, the needs of the observation system for autonomous, distributed, and cooperative functions are strongly required. The present paper has presented a new idea about the observation system, and developed fundamental functions for this observation system, that is, plant function model, auto-classification of plant states, three dimensional graphical display, expression of robot group's activity. Also, autonomous plant simulator has been developed for this research activity. Finally, the effectiveness of this observation system has been evaluated by experiments of operator's reaction to this system. (author)

  8. Psychobiology of PTSD in the Acute Aftermath of Trauma: Integrating Research on Coping, HPA Function and Sympathetic Nervous System Activity

    OpenAIRE

    Morris, Matthew C.; Rao, Uma

    2012-01-01

    Research on the psychobiological sequelae of trauma has typically focused on long-term alterations in individuals with chronic posttraumatic stress disorder (PTSD). Far less is known about the nature and course of psychobiological risk factors for PTSD during the acute aftermath of trauma. In this review, we summarize data from prospective studies focusing on the relationships among sympathetic nervous system activity, hypothalamic-pituitary-adrenal function, coping strategies and PTSD sympto...

  9. EFFECT OF SPECIFIC “YOGASANAS” ON CARDIOVASCULAR AUTONOMIC FUNCTION TEST

    Directory of Open Access Journals (Sweden)

    Sahoo J K

    2010-03-01

    Full Text Available Evaluation of cardiovascular autonomic functions before and after four yogasanas viz. “Vajrasana” with “Yogamudra”, “Paschimmotanasana”, “Dwipad sahajhasta Bhujangasana”, “Padmasana Yogasana” was carried out. Seventy healthy adults (30 males and 40 females in the age group of 16-20years were studied. They were trained for 15 days by a certified yoga teacher. Autonomic function tests were carried out before and after 2 and 4 months of yoga practice. Resting heart rate (HR, BloodPressure (BP, heart rate and blood pressure response to standing, deep breathing and valsalva maneuver and pressure response to cold pressor test were studied. A statisticaly significant decrease in resting heart rate, systolic blood pressure after 2 and 4 months of yoga training in both males and females was found. There was also statistical significant increase in heart response to deep breathing (E:I ratio from 1.4 (mean to 1.56 in males and 1.4 to 1.49 in females. Valsalva ratio also increased from 1.09 to 1.17 in males and 1.09 to 1.21 in females after 4 months training. Our results indicate that the effects of these asanas is to increase vagal modulation of R:R intervals and reduce sympathovagal balance. However, the study is limited by the facts that it is not controlled.

  10. On the existence and function of galanin receptor heteromers in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Kjell eFuxe

    2012-10-01

    Full Text Available Galanin receptor (GalR subtypes1-3 linked to central galanin neurons may form heteromers with each other and other types of G protein coupled receptors (GPCRs in the Central Nervous System (CNS. These heteromers may be one molecular mechanism for galanin peptides and their N-terminal fragments (gal 1-15 to modulate the function of different types of glia-neuronal networks in the CNS, especially the emotional and the cardiovascular networks. GalR-5-HT1A heteromers likely exist with antagonistic GalR-5-HT1A receptor-receptor interactions in the ascending midbrain raphe 5-HT neuron systems and their target regions. They represent a novel target for antidepressant drugs. Evidence is given for the existence of GalR1-5-HT1A heteromers in cellular models with transinhibition of the protomer signaling. A GalR1-GalR2 heteromer is proposed to be a galanin N-terminal fragment preferring receptor (1-15 in the CNS. Furthermore, a GalR1-GalR2-5-HT1A heterotrimer is postulated to explain why only galanin (1-15 but not galanin (1-29 can antagonistically modulate the 5-HT1A receptors in the dorsal hippocampus rich in gal fragment binding sites. The results underline a putative role of different types of GalR-5-HT1A heteroreceptor complexes in depression. GalR antagonists may also have therapeutic actions in depression by blocking the antagonistic GalR-NPYY1 receptor interactions in putative GalR-NPYY1 receptor heteromers in the CNS resulting in increases in NPYY1 transmission and antidepressant effects. In contrast the galanin fragment receptor (a postulated GalR1-GalR2 heteromer appears to be linked to the NPYY2 receptor enhancing the affinity of the NPYY2 binding sites in a putative GalR1-GalR2-NPYY2 heterotrimer. Finally, putative GalR-α2-adrenoreceptor heteromers with antagonistic receptor-receptor interactions may be a widespread mechanism in the CNS for integration of galanin and noradrenaline signals also of likely relevance for depression.

  11. Epigallocatechin-3-gallate treatment to promote neuroprotection and functional recovery after nervous system injury

    OpenAIRE

    Pere Boadas-Vaello; Enrique Verdú

    2015-01-01

    Traumatic spinal cord injury (SCI) causes motor paralysis, sensory anesthesia and autonomic dysfunction below the lesion site and additionally some SCI patients refer neuropathic pain together with these signs and symptoms. Clinical and experimental studies have revealed the main pathological changes of injured spinal cord implicated in all these signs and symptoms, including neuropathic pain. After few hours of traumatic SCI, it is usual to observe broken blood brain barrier with plasma and ...

  12. Hemodynamic and autonomic nervous system responses to mixed meal ingestion in healthy young and old subjects and dysautonomic patients with postprandial hypotension

    Science.gov (United States)

    Lipsitz, L. A.; Ryan, S. M.; Parker, J. A.; Freeman, R.; Wei, J. Y.; Goldberger, A. L.

    1993-01-01

    BACKGROUND. Although postprandial hypotension is a common cause of falls and syncope in elderly persons and in patients with autonomic insufficiency, the pathophysiology of this disorder remains unknown. METHODS AND RESULTS. We examined the hemodynamic, splanchnic blood pool, plasma norepinephrine (NE), and heart rate (HR) power spectra responses to a standardized 400-kcal mixed meal in 11 healthy young (age, 26 +/- 5 years) and nine healthy elderly (age, 80 +/- 5 years) subjects and 10 dysautonomic patients with symptomatic postprandial hypotension (age, 65 +/- 16 years). Cardiac and splanchnic blood pools were determined noninvasively by radionuclide scans, and forearm vascular resistance was determined using venous occlusion plethysmography. In healthy young and old subjects, splanchnic blood volume increased, but supine blood pressure remained unchanged after the meal. In both groups, HR increased and systemic vascular resistance remained stable. Forearm vascular resistance and cardiac index increased after the meal in elderly subjects, whereas these responses were highly variable and of smaller magnitude in the young. Young subjects demonstrated postprandial increases in low-frequency HR spectral power, representing cardiac sympatho-excitation, but plasma NE remained unchanged. In elderly subjects, plasma NE increased after the meal but without changes in the HR power spectrum. Patients with dysautonomia had a large postprandial decline in blood pressure associated with no change in forearm vascular resistance, a fall in systemic vascular resistance, and reduction in left ventricular end diastolic volume index. HR increased in these patients but without changes in plasma NE or the HR power spectrum. CONCLUSIONS. 1) In healthy elderly subjects, the maintenance of blood pressure homeostasis after food ingestion is associated with an increase in HR, forearm vascular resistance, cardiac index, and plasma NE. In both young and old, systemic vascular resistance is

  13. Evaluation of functional, autonomic and inflammatory outcomes in children with asthma.

    Science.gov (United States)

    de Freitas Dantas Gomes, Evelim Leal; Costa, Dirceu

    2015-03-16

    Asthma is common in childhood. This respiratory disease is characterized by persistent inflammation of the airways even when the child is not in the throes of an attack. Chronic inflammation is caused by an imbalance between pro-inflammatory and anti-inflammatory mechanisms as well as autonomic dysfunction, which plays an important role in the pathogenesis and control of this condition. The impact of these physiopathological aspects leads to inactivity and a sedentary lifestyle, which exerts an influence on functional capacity and control of the disease. The main objective of non-pharmacological therapy is the clinical control of asthma and the minimization of airway obstruction and hyperinflation during an attack. These factors can be controlled with noninvasive ventilation. The aim or the present review was to describe important neural, inflammatory and functional mechanisms that affect children with asthma. PMID:25789303

  14. Adverse Impact of Sleep Restriction and Circadian Misalignment on Autonomic Function in Healthy Young Adults.

    Science.gov (United States)

    Grimaldi, Daniela; Carter, Jason R; Van Cauter, Eve; Leproult, Rachel

    2016-07-01

    Insufficient sleep and circadian rhythm disturbances have been each associated with adverse cardiovascular outcomes in epidemiological studies, but experimental evidence for a causal link is scarce. The present study compares the impact of circadian misalignment (CM) to circadian alignment (CA) on human autonomic function using a nonrandomized parallel group design to achieve the same total sleep time in both conditions. After baseline assessments (3 days with 10-hour bedtimes), 26 healthy young adults were assigned to sleep restriction (SR; eight 5-hour bedtimes) with either fixed nocturnal bedtimes (CA; n=13) or bedtimes delayed by 8.5 hours on 4 of the 8 days (CM; n=13). Daytime ambulatory blood pressure and heart rate (HR; CA, n=11; CM, n=10) and 24-hour urinary norepinephrine levels (CA, n=13; CM, n=13) were assessed at baseline and the end of SR. Nocturnal HR and HR variability were analyzed during sleep at baseline and during the fourth and seventh nights of SR (CA, n=8; CM, n=12). SR resulted in a significant increase in daytime HR in both groups, without changes in blood pressure. SR increased 24-hour urinary norepinephrine in the CM group (30±4 versus 21±2 μg), but not in the circadian alignment group (group×condition, P=0.005). In contrast to the lack of detectable impact of CM on daytime autonomic function, SR with CM elicited greater increases in nocturnal HR, as well as greater reductions in vagal indices of HR variability, than SR without CM (group×condition, Pautonomic function that could lead, under chronic conditions, to enhanced cardiovascular risk. PMID:27271308

  15. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation

    Science.gov (United States)

    Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc

    2016-08-01

    Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.

  16. Autonomic nervous system response patterns in freshmen with different resilience in a military university%某军校不同心理弹性水平的大一新生自主神经反应特点

    Institute of Scientific and Technical Information of China (English)

    张佳佳; 彭李; 李敏

    2011-01-01

    目的 研究不同心理弹性水平军校大学生自主神经反应特点.方法 采用成人心理弹性量表(resilience scale for adults,RSA)对重庆某军校大一新生进行心理测评,筛选出心理弹性高分组和低分组被试共144名,再从中选取愿意参加本实验的心理弹性高分组和低分组被试各27名,其进行自主神经反应(心率、皮电、皮温、指端血容振幅)特点的实验研究.结果 ①静息状态下,心理弹性高分组和低分组被试的自主神经反应没有统计学差异(P>0.05).②悲伤情绪诱导下,心理弹性高分组在皮电上低于心理弹性低分组(t=-2.077,P=0.043).③悲伤情绪诱导后,心理弹性高分组和心理弹性低分组的各个指标的恢复时间上均无统计学差异(P>0.05).结论 心理弹性水平不同的大学生的自主神经活动模式可能存在一定程度的差异.%Objective To investigate the autonomic nervous system response pattern in military college students with different levels of resilience. Methods Resilience Scale for Adults (R.SA) was applied to test 144 college students, and based on the RSA score 54 freshmen who accepted to join the test were selected and were divided into a high resilience group and a low resilience group. Each 27 freshmen of the two groups were tested for autonomic nervous system response pattern. Results ① At resting state, students of the high resilience group and low resilience group did not show significant differences in heart rate ( HR) , skin conductance (SC), skin temperature (ST) and blood volume pulse (BVP) (P>0. 05). ② Compared with those indices obtained at resting state, students of the high resilience group scored lower in HR, SC and ST under sad mood induction, but higher in BVP; students of the low resilience group scored higher in HR and SC under sad mood induction, but lower in ST and BVP. Sad mood induction showed that SC of the high resilience group was significantly lower than that of the

  17. [Isoforms of the human histamine H3 receptor: Generation, expression in the central nervous system and functional implications].

    Science.gov (United States)

    García-Gálvez, Ana Maricela; Arias-Montaño, José Antonio

    2016-01-01

    Histamine plays a significant role as a neuromodulator in the human central nervous system. Histamine-releasing neurons are exclusively located in the tuberomammillary nucleus of the hypothalamus, project to all major areas of the brain, and participate in functions such as the regulation of sleep/wakefulness, locomotor activity, feeding and drinking, analgesia, learning, and memory. The functional effects of histamine are exerted through the activation of four G protein-coupled receptors (H1, H2, H3 and H4), and in the central nervous system the first three receptors are widely expressed. The H3 receptor (H3R) is found exclusively in neuronal cells, where it functions as auto- and hetero-receptor. One remarkable characteristic of the H3R is the existence of isoforms, generated by alternative splicing of the messenger RNA. For the human H3R, 20 isoforms have been reported; although a significant number lack those regions required for agonist binding or receptor signaling, at least five isoforms appear functional upon heterologous expression. In this work we review the evidence for the generation of human H3R isoforms, their expression, and the available information regarding the functionality of such receptors. PMID:26927649

  18. Perception system and functions for autonomous navigation in a natural environment

    Science.gov (United States)

    Chatila, Raja; Devy, Michel; Lacroix, Simon; Herrb, Matthieu

    1994-01-01

    This paper presents the approach, algorithms, and processes we developed for the perception system of a cross-country autonomous robot. After a presentation of the tele-programming context we favor for intervention robots, we introduce an adaptive navigation approach, well suited for the characteristics of complex natural environments. This approach lead us to develop a heterogeneous perception system that manages several different terrain representatives. The perception functionalities required during navigation are listed, along with the corresponding representations we consider. The main perception processes we developed are presented. They are integrated within an on-board control architecture we developed. First results of an ambitious experiment currently underway at LAAS are then presented.

  19. Examining the Roles of Work Autonomous and Controlled Motivations on Satisfaction and Anxiety as a Function of Role Ambiguity.

    Science.gov (United States)

    Gillet, Nicolas; Fouquereau, Evelyne; Lafrenière, Marc-André K; Huyghebaert, Tiphaine

    2016-07-01

    Past research in the self-determination theory has shown that autonomous motivation is associated with positive outcomes (e.g., work satisfaction), whereas controlled motivation is related to negative outcomes (e.g., anxiety). The purpose of the present research was to examine the moderating function of role ambiguity on the relationships between work autonomous and controlled motivations on the one hand, and work satisfaction and anxiety on the other. Six hundred and ninety-eight workers (449 men and 249 women) participated in this study. Results revealed that autonomous motivation was most strongly related to satisfaction when ambiguity was low. In addition, controlled motivation was most strongly related to anxiety when ambiguity was high. In other words, the present findings suggest that the outcomes associated with each form of motivation may vary as a function of role ambiguity. The present study thus offers meaningful insights for organizations, managers, and employees. PMID:27027579

  20. Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish

    DEFF Research Database (Denmark)

    Baatrup, E

    1991-01-01

    1. Today, fish in the environment are inevitably exposed to chemical pollution. Although most hazardous substances are present at concentrations far below the lethal level, they may still cause serious damage to the life processes of these animals. 2. Fish depend on an intact nervous system...... metals are well known pollutants in the aquatic environment. Their interaction with relevant chemical stimuli may interfere with the communication between fish and environment. 5. The affinity for a number of ligands and macromolecules makes heavy metals most potent neurotoxins. 6. The present Mini...

  1. Protective Effects of PARP-1 Knockout on Dyslipidemia-Induced Autonomic and Vascular Dysfunction in ApoE−/− Mice: Effects on eNOS and Oxidative Stress

    OpenAIRE

    Hans, Chetan P.; Feng, Yumei; Naura, Amarjit S; Zerfaoui, Mourad; Rezk, Bashir M.; Xia, Huijing; Kaye, Alan D.; Matrougui, Khalid; Lazartigues, Eric; Boulares, A Hamid

    2009-01-01

    The aims of this study were to investigate the role of poly(ADP-ribose) polymerase (PARP)-1 in dyslipidemia-associated vascular dysfunction as well as autonomic nervous system dysregulation. Apolipoprotein (ApoE) −/− mice fed a high-fat diet were used as a model of atherosclerosis. Vascular and autonomic functions were measured in conscious mice using telemetry. The study revealed that PARP-1 plays an important role in dyslipidemia-associated vascular and autonomic dysfunction. Inhibition of ...

  2. Memories and Promises of the Enteric Nervous System and Its Functions.

    Science.gov (United States)

    Costa, Marcello

    2016-01-01

    This is a very personal reminiscence of the long period of Enteric Nervous System research in which I have been involved. I started to work on the gut in the early 60s really because in Turin when I arrived from Argentina, where my family migrated temporarily after the WWII, nobody was seriously working on the brain. In Anatomy they were studying the neural "intramural plexuses" and that for me was close enough to the nervous system. I grew up in the mountains near Turin near the French border where our ex-family house still bears our name. I joined the Department of Anatomy as an intern student and I was privileged to seat at a desk where a previous generation of young scientists, who studied under the professor of Anatomy A. Levi, the founder of the methods for culturing neural tissue. They were Salvador Luria, Renato Dulbecco and Rita Levi-Montalcini, who, after migrating to the USA, were each were given the Noble prize. PMID:27379629

  3. Autonomic dysregulation in headache patients.

    Science.gov (United States)

    Gass, Jason J; Glaros, Alan G

    2013-12-01

    To analyze autonomic nervous system activity in headache subjects, measurements of heart rate variability (HRV), skin temperature, skin conductance, and respiration were compared to a matched control group. HRV data were recorded in time and frequency domains. Subjects also completed self-report questionnaires assessing psychological distress, fatigue, and sleep dysfunction. Twenty-one headache and nineteen control subjects participated. In the time domain, the number of consecutive R-to-R intervals that varied by more than 50 ms and the standard deviation of the normalized R-to-R intervals, both indices of parasympathetic nervous system activity, were significantly lower in the headache group than the control group. Groups did not differ statistically on HRV measures in the frequency domain. Self-report measures showed significantly increased somatization, hostility, anxiety, symptom distress, fatigue, and sleep problems in the headache group. The results suggest headache subjects have increased sympathetic nervous system activity and decreased parasympathetic activity compared to non-headache control subjects. Headaches subjects also showed greater emotional distress, fatigue, and sleep problems. The results indicate an association between headaches and cardiovascular functioning suggestive of sympathetic nervous system activation in this sample of mixed migraine and tension-type headache sufferers. PMID:23912525

  4. Catecholamines and diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1995-01-01

    plasma catecholamine measurements is not due to changes in the clearance of catecholamines in diabetic autonomic neuropathy. The physiological responses to infused adrenaline and to noradrenaline are enhanced, for noradrenaline mainly cardiovascular responses. Adrenoceptors (alpha and beta adrenoceptors......In diabetic patients with autonomic neuropathy plasma noradrenaline concentration, used as an index of sympathetic nervous activity, is low. This decrease is, however, only found in patients with a long duration of diabetes with clinically severe autonomic neuropathy. This apparent insensitivity of...

  5. Emotional Responses to Odors in Children with High-Functioning Autism: Autonomic Arousal, Facial Behavior and Self-Report

    Science.gov (United States)

    Legisa, Jasna; Messinger, Daniel S.; Kermol, Enzo; Marlier, Luc

    2013-01-01

    Although emotional functioning is impaired in children with autism, it is unclear if this impairment is due to difficulties with facial expression, autonomic responsiveness, or the verbal description of emotional states. To shed light on this issue, we examined responses to pleasant and unpleasant odors in eight children (8-14 years) with…

  6. Necessary and sufficient conditions for the existence of equilibrium in abstract non-autonomous functional differential equations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    non-autonomous finite-delay functional differential equations without any monotone conditions assumed.A minimal set is constructed in terms of which necessary and sufficient conditions for a continuous equilibrium to exist are also obtained.Several illustrative examples are employed to demonstrate our results.

  7. The effect of biofeedback training on patients with functional constipation.

    Science.gov (United States)

    Ding, Meihong; Lin, Zheng; Lin, Lin; Zhang, Hongjie; Wang, Meihfeng

    2012-01-01

    The aim of this prospective quasi-experimental study was to explore the influence of biofeedback training on patients with functional constipation (FC). Changes in clinical symptoms, psychological status, quality of life, and autonomic nervous function in 21 FC patients before and after biofeedback training were investigated. The psychological status and quality of life were evaluated with the Zung Self-Rating Anxiety Scale (SAS), Zung Self-Rating Depression Scale (SDS), and a Chinese version of the MOS 36-Item Short-Form Health Survey. Autonomic nervous function was assessed on the basis of heart rate variability recorded with a HANS-1000 autonomic nervous biofeedback apparatus. After a complete course of training (10 sessions), clinical symptoms were greatly improved (p biofeedback (p .05). We conclude that biofeedback training can improve clinical symptoms, psychological status, and quality of life in FC patients, but further research is needed to determine whether biofeedback training can improve the autonomic nervous function in FC patients. PMID:22472667

  8. Radar occupational exposure: interferences with the function of the nervous system

    International Nuclear Information System (INIS)

    In the modern life and work environment the electromagnetic pollution is obviously increased and therefore the knowledge of its level and effects constitutes a major priority and challenge for the scientific community. In this international content the estimation of the health status of the microwaves exposed people colligated with the evaluation of the exposure have an important role not only for the scientific knowledge but especially for the improvement of the protection standards. Therefore the case of pulsed microwaves which seems to have peculiar biological effects00, especially on the nervous system, has determined us to try to study in a clinical and epidemiological approach the occurrence of such effects upon chronic exposed humans. (author)

  9. Effective components of Chinese herbs reduce central nervous system function decline induced by iron overload

    Institute of Scientific and Technical Information of China (English)

    Xian-hui Dong; Cong Liu; Jiang-tao Bai; Wei-na Kong; Xiao-ping He; Peng Yan; Tie-mei Shao; Wen-guo Yu; Xi-qing Chai; Yan-hua Wu

    2015-01-01

    Abnormally increased levels of iron in the brain trigger cascade ampliifcation in Alzheimer’s dis-ease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer’s disease patients. An APPswe/PS1ΔE9 double transgenic mouse model of Alzheimer’s disease was used. The intragas-tric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer’s disease. These com-pounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer’s disease.

  10. Effective components of Chinese herbs reduce central nervous system function decline induced by iron overload

    Directory of Open Access Journals (Sweden)

    Xian-hui Dong

    2015-01-01

    Full Text Available Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer′s disease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer′s disease patients. An APP swe/PS1ΔE9 double transgenic mouse model of Alzheimer′s disease was used. The intragastric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer′s disease. These compounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer′s disease.

  11. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson's disease with autonomic failure

    International Nuclear Information System (INIS)

    Objective - To selectively investigate postganglionic sympathetic cardiac neurons in patients with Parkinson's disease and autonomic failure. Material and methods - Metaiodobenzylguanidine (MIBG) is a pharmacologically inactive analogue of noradrenaline, which is similarly metabolized in noradrenergic neurons. Therefore the uptake of radiolabelled MIBG represents not only the localization of postganglionic sympathetic neurons but also their functional integrity. Ten patients with Parkinson's disease and autonomic failure underwent standardized autonomic testing, assessment of catecholamine plasma levels and scintigraphy with [123I]MIGB. Results - The cardiac uptake of MIBG, as demonstrated by the heart/mediastinum ratio, was significantly lower in patients in comparison with controls. Scintigraphy with MIBG allowed the selective in-vivo investigation of postganglionic sympathetic cardiac efferent in patients with autonomic failure, a procedure which was previously confined to post-mortem examination. Conclusion - These findings point to a relevant postganglionic pattern of involvement of the autonomic nervous system (ANS) in Parkinson's disease and autonomic failure. (au)

  12. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Yoko eNagai

    2015-09-01

    Full Text Available This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in Epilepsy and tics in Tourette Syndrome (TS. In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g. syncope, or in relation to Sudden Unexpected Death in Epilepsy (SUDEP. Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behaviour influence central nervous system thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated

  13. A Rare Presentation of Autonomously Functioning Papillary Thyroid Cancer: Malignancy in Marine-Lenhart Syndrome Nodule

    Science.gov (United States)

    Uludag, Mehmet; Aygun, Nurcihan; Ozel, Alper; Yener Ozturk, Feyza; Karasu, Rabia; Ozguven, Banu Yilmaz; Citgez, Bulent; Mihmanli, Mehmet; Isgor, Adnan

    2016-01-01

    Objective. Marine-Lenhart Syndrome (MLS) is defined as concomitant occurrence of autonomously functioning thyroid nodule (AFTN) with Graves' disease (GD). Malignancy in a functional nodule is rare. We aimed to present an extremely rare case of papillary thyroid cancer in a MLS nodule with lateral lymph node metastases. Case. A 43-year-old male presented with hyperthyroidism and Graves' ophthalmopathy. On Tc99m pertechnetate scintigraphy, a hyperactive nodule in the left upper thyroid pole was detected and the remaining tissue showed a mildly increased uptake. The ultrasonography demonstrated 15.5 × 13.5 × 12 mm sized hypoechoic nodule in the left upper pole of the thyroid and round lymph nodes on the left side of the neck. Fine needle aspiration biopsy (FNAB) of the nodule and lymph node revealed cytological findings consistent with papillary cancer. Total thyroidectomy with central and left modified radical neck dissection was performed. On pathologic examination, two foci of micropapillary cancer were detected. The skip metastases were present in three lymph nodes on the neck. Conclusion. AFTN can be seen rarely in association with GD. It is not possible to exclude malignancy due to the clinical and imaging findings. In the presence of suspicious clinical and sonographic features, FNAB should be performed. PMID:27110424

  14. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion

    Science.gov (United States)

    Kuksenok, Olga; Balazs, Anna C.

    2015-04-01

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks.

  15. A Rare Presentation of Autonomously Functioning Papillary Thyroid Cancer: Malignancy in Marine-Lenhart Syndrome Nodule

    Directory of Open Access Journals (Sweden)

    Mehmet Uludag

    2016-01-01

    Full Text Available Objective. Marine-Lenhart Syndrome (MLS is defined as concomitant occurrence of autonomously functioning thyroid nodule (AFTN with Graves’ disease (GD. Malignancy in a functional nodule is rare. We aimed to present an extremely rare case of papillary thyroid cancer in a MLS nodule with lateral lymph node metastases. Case. A 43-year-old male presented with hyperthyroidism and Graves’ ophthalmopathy. On Tc99m pertechnetate scintigraphy, a hyperactive nodule in the left upper thyroid pole was detected and the remaining tissue showed a mildly increased uptake. The ultrasonography demonstrated 15.5 × 13.5 × 12 mm sized hypoechoic nodule in the left upper pole of the thyroid and round lymph nodes on the left side of the neck. Fine needle aspiration biopsy (FNAB of the nodule and lymph node revealed cytological findings consistent with papillary cancer. Total thyroidectomy with central and left modified radical neck dissection was performed. On pathologic examination, two foci of micropapillary cancer were detected. The skip metastases were present in three lymph nodes on the neck. Conclusion. AFTN can be seen rarely in association with GD. It is not possible to exclude malignancy due to the clinical and imaging findings. In the presence of suspicious clinical and sonographic features, FNAB should be performed.

  16. Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion.

    Science.gov (United States)

    Kuksenok, Olga; Balazs, Anna C

    2015-01-01

    Human motion is enabled by the concerted expansion and contraction of interconnected muscles that are powered by inherent biochemical reactions. One of the challenges in the field of biomimicry is eliciting this form of motion from purely synthetic materials, which typically do not generate internalized reactions to drive mechanical action. Moreover, for practical applications, this bio-inspired motion must be readily controllable. Herein, we develop a computational model to design a new class of polymer gels where structural reconfigurations and internalized reactions are intimately linked to produce autonomous motion, which can be directed with light. These gels contain both spirobenzopyran (SP) chromophores and the ruthenium catalysts that drive the oscillatory Belousov-Zhabotinsky (BZ) reaction. Importantly, both the SP moieties and the BZ reaction are photosensitive. When these dual-functionalized gels are exposed to non-uniform illumination, the localized contraction of the gel (due to the SP moieties) in the presence of traveling chemical waves (due to the BZ reaction) leads to new forms of spontaneous, self-sustained movement, which cannot be achieved by either of the mono-functionalized networks. PMID:25924823

  17. Effects of Sweet Bee Venom on the Central Nervous System in Rats -using the Functional Observational Battery-

    Directory of Open Access Journals (Sweden)

    Joong Chul An

    2011-09-01

    Full Text Available Objectives: This study was performed to analyse the effects of Sweet Bee Venom(Sweet BV-pure melittin, the major component of honey bee venom on the central nervous system in rats. Methods: All experiments were conducted at Biotoxtech Company, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice (GLP. Male rats of 5 weeks old were chosen for this study and after confirming condition of rats was stable, Sweet BV was administered in thigh muscle of rats. And checked the effects of Sweet BV on the central nervous system using the functional observational battery (FOB, which is a neuro-toxicity screening assay composed of 30 descriptive, scalar, binary, and continuous endpoints. And home cage observations, home cage removal and handling, open field activity, sensorimotor reflex test/physiological measurements were conducted. Results: 1. In the home cage observation, there was not observed any abnormal signs in rats. 2. In the observation of open field activity, the reduction of number of unit areas crossed and rearing count was observed caused by Sweet BV treatment. 3. In the observation of handling reactivity, there was not observed any abnormal signs in rats. 4. In the observation of sensorimotor reflex tests/physiological measurements, there was not observed any neurotoxic signs in rats. 5. In the measurement of rectal temperature, treatment of Sweet BV did not showed great influences in the body temperature of rats. Conclusions: Above findings suggest that Sweet BV is relatively safe treatment in the central nervous system. But in the using of over dose, Sweet BV may the cause of local pain and disturbance of movement. Further studies on the subject should be conducted to yield more concrete evidences.

  18. The role of the surface on microglia function: implications for central nervous system tissue engineering.

    Science.gov (United States)

    Pires, Liliana R; Rocha, Daniela N; Ambrosio, Luigi; Pêgo, Ana Paula

    2015-02-01

    In tissue engineering, it is well accepted that a scaffold surface has a decisive impact on cell behaviour. Here we focused on microglia-the resident immune cells of the central nervous system (CNS)-and on their response to poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) fibrous and flat surfaces obtained by electrospinning and solvent cast, respectively. This study aims to provide cues for the design of instructive surfaces that can contribute to the challenging process of CNS regeneration. Cell morphology was evidently affected by the substrate, mirroring the surface main features. Cells cultured on flat substrates presented a round shape, while cells with elongated processes were observed on the electrospun fibres. A higher concentration of the pro-inflammatory cytokine tumour necrosis factor-α was detected in culture media from microglia on fibres. Still, astrogliosis is not exacerbated when astrocytes are cultured in the presence of microglia-conditioned media obtained from cultures in contact with either substrate. Furthermore, a significant percentage of microglia was found to participate in the process of myelin phagocytosis, with the formation of multinucleated giant cells being observed only on films. Altogether, the results presented suggest that microglia in contact with the tested substrates may contribute to the regeneration process, putting forward P(TMC-CL) substrates as supporting matrices for nerve regeneration. PMID:25540243

  19. Epidemiology of Gait and Daily Functioning : The role of the nervous system

    NARCIS (Netherlands)

    V.J.A. Verlinden (Vincent)

    2015-01-01

    markdownabstractAcross the world, people continue to live longer, resulting in increasing numbers of older people. Age-related functional deficiencies, such as problems in gait and daily functioning, will therefore become a major issue for society. People with problems in gait and daily functioning

  20. Exponential stability for abstract linear autonomous functional differential equations with infinite delay

    OpenAIRE

    Tijun Xiao; Falun Huang; Jin Liang

    1998-01-01

    Based on our preceding paper, this note is concerned with the exponential stability of the solution semigroup for the abstract linear autonomous functional differential equation x˙(t)=L(xt)                              (∗) where L is a continuous linear operator on some abstract phase space B into a Banach space E. We prove that the sol...

  1. Using the Initial Systolic Time Interval to assess cardiac autonomic function in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Jan H. Meijer

    2011-12-01

    Full Text Available The Initial Systolic Time Interval (ISTI has been defined as the time difference between the peak electrical and peak mechanical activity of the heart. ISTI is obtained from the electro-cardiogram and the impedance cardiogram. The response of ISTI while breathing at rest and to a deep breathing stimulus was studied in a group of patients suffering from Parkinson's disease (PD and a group of healthy control subjects. ISTI showed substantial variability during these manoeuvres. The tests showed that the variability of RR and ISTI was substantially different between PD patients and controls. It is hypothesized that in PD patients the sympathetic system compensates for the loss of regulatory control function of the blood-pressure by the parasympathetic system. It is concluded that ISTI is a practical, additional and independent parameter that can be used to assist other tests in evaluating autonomic control of the heart in PD patients.doi:10.5617/jeb.216 J Electr Bioimp, vol. 2, pp. 98-101, 2011

  2. Informational and Statistical Analysis of Heart Rate Variability in the Assessment of the Human Vegetative Nervous System Functional State

    Directory of Open Access Journals (Sweden)

    A.V. Ilyakhinskiy

    2015-09-01

    Full Text Available The aim of the investigation is to study the potential of the informational and statistical method in the analysis of heart rate variability in assessing functional state of the vegetative nervous system, and to develop criteria for evaluating the degree of self-organization of the processes controlling cardiac activity and tone state. Materials and Methods. The investigation included 156 people of both genders, which were divided into three groups. Group 1 (n=60 comprised practically healthy individuals aged 18–23 years, group 2 (n=38 included practically healthy individuals aged 32–60 years, and group 3 (n=58 consisted of patients with the diagnosis of “acute cerebral circulatory disorder, stroke”. Electrocardiograms recording with the following plotting of cardiointervalograms and their analysis were performed using electrocardiograph Poli-Spectrum-8 (Neurosoft, Russia, programs Poli-Spectrum and Poli-Spectrum-Rhythm, as well as programs especially developed by the authors for computation of Dirichlet distribution parameters. Results. For practically healthy people the state of regulatory systems with the dominance of self-organization processes and parasympathetic nervous system tone prevailed. Self-organization coefficient S equal to one is a sort of a boundary between a normal state of the human organism regulatory systems and conditions caused by insufficiency or inadequacy of the adaptive systems, for which its value becomes less than one. While a self-organization coefficient evaluates a general state of the human adaptive regulatory systems, a coefficient of the tone state determines the character of cardiovascular system functioning. Regulatory systems having the values of self-organization coefficient and tone coefficient below one may be considered to be in a critical state. Conclusion. Informational and statistical approach to the analysis of heart rate variability allows a more precise evaluation of the functional

  3. Autonomic and surgical substrate modulation of atrial fibrillation

    OpenAIRE

    Krul, S.P.J.

    2016-01-01

    This thesis focuses on the effects of fibrosis and the autonomic nervous system on conduction in patients with atrial fibrillation and the surgical ablation of the atria and autonomic nervous system as treatment of atrial fibrillation. Atrial fibrillation is the most common arrhythmia and results from multiple pathophysiological mechanisms. Both fibrosis and the autonomic nervous system influence the occurrence and maintenance of AF. Animal and clinical studies have shown that the parasympath...

  4. Role of the nervous system in cancer metastasis.

    Science.gov (United States)

    Li, Sha; Sun, Yanlai; Gao, Dongwei

    2013-04-01

    The notion that tumors lack innervation was proposed several years ago. However, nerve fibers are irregulatedly found in some tumor tissues. Their terminals interaction with cancer cells are considered to be neuro-neoplastic synapses. Moreover, neural-related factors, which are important players in the development and activity of the nervous system, have been found in cancer cells. Thus, they establish a direct connection between the nervous system and tumor cells. They modulate the process of metastasis, including degradation of base membranes, cancer cell invasion, migration, extravasation and colonization. Peripheral nerve invasion provides another pathway for the spread of cancer cells when blood and lymphatic metastases are absent, which is based on the interactions between the microenvironments of nerve fibers and tumor cells. The nervous system also modulates angiogenesis, the tumor microenvironment, bone marrow, immune functions and inflammatory pathways to influence metastases. Denervation of the tumor has been reported to enhance cancer metastasis. Stress, social isolation and other emotional factors may increase distant metastasis through releasing hormones from the brain, the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Disruption of circadian rhythms will also promote cancer metastasis through direct and indirect actions of the nervous system. Therefore, the nervous system plays an important role in cancer metastasis. PMID:23599747

  5. Relationship between the mismatch of 123I-BMIPP and 201Tl myocardial single-photon emission computed tomography and autonomic nervous system activity in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    The purpose of this study was to elucidate the relationship between the mismatch of thallium-201 (Tl) and iodine-123-beta-methyl-iodophenyl-pentadecanoic acid (BMIPP) myocardial single-photon emission computed tomography (SPECT) and autonomic nervous system activity in myocardial infarction (MI) patients. The subjects were 40 patients (34 males, 6 females) who underwent examinations by 123I-BMIPP and 201Tl myocardial SPECT imaging and 24-hour Holter monitoring within a 3-day period 3 weeks after the onset of their first MI. R-R intervals were analyzed every hour over a period of 24 hours by fast Fourier transformation (FFT). High frequency (HF) and low frequency (LF) were defined as markers of cardiac vagal activity in the former and the LF/HF ratio as sympathetic activity. Greater or more extensive decreases in the BMIPP image than that in the Tl image were defined as a positive mismatch. Patients were divided into positive and negative mismatch groups of 20 patients each. There were no significant differences between the 2 groups in age, sex, site of infarction, max CK (creatine kinase), max CK-MB, or left ventricular ejection fraction. The incidences of clinical signs suggesting residual myocardial ischemia were significantly greater in the positive than in the negative mismatch group (P123I-BMIPP and 201Tl myocardial SPECT 3 weeks after a first acute myocardial infarction with uncomplicated moderate or severe heart failure and decreased heart rate variability are related to residual myocardial ischemia. A combined assessment of heart rate variability in 24 hour Holter electrocardiogram (ECG) monitoring and perfusion-metabolism mismatch in 123I-BMIPP and 201Tl myocardial SPECT is useful for determining residual myocardial ischemia in the follow-up of those with acute myocardial infarction. (author)

  6. Acute Onset of Intracerebral Hemorrhage due to Autonomic Dysreflexia.

    Science.gov (United States)

    Eker, Amber; Yigitoglu, Pembe Hare; Ipekdal, H Ilker; Tosun, Aliye

    2014-05-01

    Autonomic dysreflexia is a clinical emergency syndrome of uncontrolled sympathetic output that can occur in patients who have a history of spinal cord injury. Despite its frequency in spinal cord injury patients, central nervous system complications are very rare. We report a man with traumatic high level incomplete spinal cord injury who suffered hypertensive right thalamic hemorrhage secondary to an episode of autonomic dysreflexia. Prompt recognition and removal of the triggering factor, the suprapubic catheter obstruction which led to hypertensive attack, the patient had a favorable functional outcome after the resorption of the hematoma and effective rehabilitation programme. PMID:25132935

  7. Effects of Obstructive Sleep Apneas on Endothelial Function and Autonomic Modulation in Adult Man

    Institute of Scientific and Technical Information of China (English)

    Xu Zhong; Yi Xiao; Rong Huang

    2012-01-01

    Objective To study the effects of obstructive sleep apneas on endothelial function and autonomic modulation.Methods From June 2009 to June 201 1,male patients with obstructive sleep apnea hypopnea syndrome (OSAHS) were consecutively enrolled in this study.Patients with an apnea/hypopnea index (AHI) of greater than 15 and without previous treatment for OSAHS were included as Group OSAHS and obese subjects with an AHI of less than 5 were included as non-OSAHS controls (Group Control).Electrocardiography and beat-to-beat blood pressure were continuously recorded from the radial artery by applanation tonometry which was synchronized with polysomnography recording.Endothelial function was measured by arterial augmentation index (AAI).Spectral analysis of heart rate variability (HRV) and blood pressure variability (BPV) were computed for cardiac parasympathetic modulation (high frequency power,HF); sympathetic modulation (low frequency power,LF),sympathovagal balance (LF/HF power of R-R variability,LF/HF)and BPV sympathetic modulation (BPV LF) in normalized units [total power of the components/(total power-very LF power) × 100].Results Finally,27 moderate-severe OSAHS patients and 22 non-OSAHS obese controls were recruited in the Group OSAHS and Group Control,respectively.In Group OSAHS,the age was 43.3±9.3 year-old,body mass index (BMI) was 36.8±8.7 kg/m2; in Group Control,the age was 42.9±8.6 year-old,BMI was 34.4±7.9 kg/m2; there were no significant differences in age and BMI between the Group OSAHS and Group Control (all P>0.05).The baseline AAI (12.5%±2.2% vs.8.2%±2.1%) and BPV LF (68.3%± 13.5% vs.61.1%±11.7%) of the Group OSAHS were significantly higher than those of the Group Control (all P<0.05).And after overnight sleep,systolic BP (143.7± 14.2 vs.132.8± 13.3 mm Hg),diastolic BP (87.7±7.7 vs.78.6±5.5 mm Hg),HRV LF (69.7%±14.4% vs.64.3%±12.1%),HRV LF/HF (3.7±2.0 vs.2.3± 1.3) and BPV LF (77.8%± 15.6% vs.68.3%±13

  8. Role of central nervous system in acute radiation syndrome functional metabolic encephalopathy

    International Nuclear Information System (INIS)

    In adult rabbit, the effect on the brain of a whole-body or encephalic gamma irradiation is a function of the absorbed dose and begins after 25 rads. Three phases are described in the mechanism of radiation effect. In the initial phase, irradiation acts as a direct stimulus of cerebral structures. The second phase is a response towards aggression which includes: the effect of stimulation of various cerebral structures; their response and the induced feed-back mechanism; the release of metabolites inducing a functional metabolic encephalopathy in which occur: modification of blood pressure; modification of pulmonary ventilation; modification of acido-basic blood equilibrium. The third phase consists of functional recovery

  9. Effect of long-term music therapy intervention on autonomic function in anthracycline-treated breast cancer patients.

    Science.gov (United States)

    Chuang, Chih-Yuan; Han, Wei-Ru; Li, Pei-Chun; Song, Mi-Yun; Young, Shuenn-Tsong

    2011-12-01

    Anthracyclines are potent antineoplastic agents associated with cardiotoxicity, which may lead to congestive heart failure, causing impairment of autonomic cardiovascular function as assessed by heart rate variability (HRV). This decreases survival rates. This study aimed to determine whether music therapy intervention improves autonomic function in anthracycline-treated breast cancer patients, and if so, whether such improvements persist after cessation of the intervention. Participants were 12 women with breast cancer who had undergone mastectomy or breast-conserving treatment and adjuvant chemotherapy; they attended 8 weekly music therapy sessions, each lasting 2 hours. Electrocardiogram traces (5 minutes) for HRV analysis were recorded 4 times: prior to the first music session, T1; after the fourth music session, T2; after the eighth music session, T3; and 4 weeks after the completion of music therapy, T4. HRV parameters were subjected to a nonparametric Friedman test on the differences between T1 and T2, T3, and T4. The standard deviation of normal intervals and the total power of HRV parameters, related to global autonomic function, were significantly higher at T3 than at T1. The root-mean-square differences of successive normal R-R intervals and high-frequency (HF) HRV parameters, related to parasympathetic activity, were significantly increased, but no change was seen in the LF/HF ratio of HRV parameters (which is related to sympathetic activity) during the music therapy. Global autonomic function and parasympathetic activity had not changed significantly at T4 relative to T1. The authors provide preliminary evidence of the benefits of music therapy for anthracycline-treated breast cancer survivors. PMID:21382955

  10. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    Science.gov (United States)

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  11. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  12. Bypassing damaged nervous tissue

    CERN Document Server

    Shneider, M N

    2016-01-01

    We show the principal ability of bypassing damaged demyelinated portions of nervous tissue, thereby restoring its normal function for the passage of action potentials. We carry out a theoretical analysis on the basis of the synchronization mechanism of action potential propagation along a bundle of neurons, proposed recently in [1]. And we discuss the feasibility of implement a bypass to restore damaged nervous tissue and creating an artificial neuron network.

  13. Central nervous system and peripheral immune functions and the sleep-wake system.

    OpenAIRE

    Moldofsky, H

    1994-01-01

    This paper reviews the relationship of aspects of the immune system to the sleep-wake system in animals and humans. In addition to the influence of certain cytokines such as interleukin-1 (IL-1) on the sleeping-waking brain, circadian measures of plasma IL-1 and peripheral immune cellular functions, for example, natural killer cell activities and cortisol are related to the sleep-wake system in humans. Changes in the circadian patterns of immune functions over the menstrual cycle are associat...

  14. A Measure for Brain Complexity: Relating Functional Segregation and Integration in the Nervous System

    Science.gov (United States)

    Tononi, Giulio; Sporns, Olaf; Edelman, Gerald M.

    1994-05-01

    In brains of higher vertebrates, the functional segregation of local areas that differ in their anatomy and physiology contrasts sharply with their global integration during perception and behavior. In this paper, we introduce a measure, called neural complexity (C_N), that captures the interplay between these two fundamental aspects of brain organization. We express functional segregation within a neural system in terms of the relative statistical independence of small subsets of the system and functional integration in terms of significant deviations from independence of large subsets. C_N is then obtained from estimates of the average deviation from statistical independence for subsets of increasing size. C_N is shown to be high when functional segregation coexists with integration and to be low when the components of a system are either completely independent (segregated) or completely dependent (integrated). We apply this complexity measure in computer simulations of cortical areas to examine how some basic principles of neuroanatomical organization constrain brain dynamics. We show that the connectivity patterns of the cerebral cortex, such as a high density of connections, strong local connectivity organizing cells into neuronal groups, patchiness in the connectivity among neuronal groups, and prevalent reciprocal connections, are associated with high values of C_N. The approach outlined here may prove useful in analyzing complexity in other biological domains such as gene regulation and embryogenesis.

  15. Autonomic skin responses in females with Fabry disease

    DEFF Research Database (Denmark)

    Møller, Anette Torvin; Bach, Flemming W.; Feldt-Rasmussen, Ulla;

    2009-01-01

    Fabry disease is a genetic lysosomal disorder with dysfunction of the lysosomal enzyme alpha-galactosidase A causing accumulation of glycolipids in multiple organs including the nervous system and with neuropathy as a prominent manifestation. Neurological symptoms include pain and autonomic...... response to iontophoresis of acetylcholine (p = 0.04) and a smaller capsaicin-induced flare compared to controls. These findings suggest that female patients both have an impaired C-fiber function and local abnormalities in blood vessels and sweat glands....

  16. Effects of Weekly Low-Frequency rTMS on Autonomic Measures in Children with Autism Spectrum Disorder

    OpenAIRE

    Manuel Fernando Casanova; Marie Hensley; Xiaoli Li

    2014-01-01

    The term autism spectrum disorder (ASD) describes a range of conditions characterized by impairments in social interactions, communication, and by restricted and repetitive behaviors. ASD may also present with symptoms suggestive of autonomic nervous system (ANS) dysfunction. The objective of this study was to determine the effect of 18 sessions of low frequency repetitive transcranial magnetic stimulation (rTMS) on autonomic function in children with ASD by recording electrocardiogram (EKG) ...

  17. Effects of weekly low-frequency rTMS on autonomic measures in children with autism spectrum disorder

    OpenAIRE

    Casanova, Manuel Fernando; Hensley, Marie K.; Sokhadze, Estate M.; El-Baz, Ayman S.; Wang, Yao; Li, Xiaoli; Sears, Lonnie

    2014-01-01

    The term autism spectrum disorder (ASD) describes a range of conditions characterized by impairments in social interactions, communication, and by restricted and repetitive behaviors. Autism spectrum disorder may also present with symptoms suggestive of autonomic nervous system (ANS) dysfunction. The objective of this study was to determine the effect of 18 sessions of low frequency (LF) repetitive transcranial magnetic stimulation (rTMS) on autonomic function in children with ASD by recordin...

  18. Physiological and pathophysiological functions of Swiprosin-1/EFhd2 in the nervous system.

    Science.gov (United States)

    Mielenz, Dirk; Gunn-Moore, Frank

    2016-08-15

    Synaptic dysfunction and dysregulation of Ca(2+) are linked to neurodegenerative processes and behavioural disorders. Our understanding of the causes and factors involved in behavioural disorders and neurodegeneration, especially Alzheimer's disease (AD), a tau-related disease, is on the one hand limited and on the other hand controversial. Here, we review recent data about the links between the Ca(2+)-binding EF-hand-containing cytoskeletal protein Swiprosin-1/EFhd2 and neurodegeneration. Specifically, we summarize the functional biochemical data obtained in vitro with the use of recombinant EFhd2 protein, and integrated them with in vivo data in order to interpret the emerging role of EFhd2 in synaptic plasticity and in the pathophysiology of neurodegenerative disorders, particularly involving the tauopathies. We also discuss its functions in actin remodelling through cofilin and small GTPases, thereby linking EFhd2, synapses and the actin cytoskeleton. Expression data and functional experiments in mice and in humans have led to the hypothesis that down-regulation of EFhd2, especially in the cortex, is involved in dementia. PMID:27515255

  19. Progressive alterations of central nervous system structure and function are caused by charged particle radiation

    Science.gov (United States)

    Nelson, G. A.; Cns Nscor Team

    A new NASA-sponsored program project (NSCOR) has been organized to conduct the first comprehensive investigation of the response of a mammalian brain structure (mouse hippocampus) to charged-particle radiation. The NSCOR collaboration has three main goals. The first goal is to quantify the time- and dose-dependent changes in cellular composition and architecture. By using stereology on preserved brains, subsets of cells (neurons, glia, endothelia and stem cells) will be quantified out to 2 years after irradiation with accelerated protons and iron ions. To further characterize changes in vasculature architecture a polymer infusion technique will be used to produce a three-dimensional vasculature cast that then will be mapped by x-ray tomography to determine topological changes, and microscopic infarcts associated with amyloid protein deposits. The 2nd goal is to quantify hippocampal function(s). The primary measurement of function will be extracellular electrical recordings from hippocampal ``brain slices'' that reflect underlying functions such as connectivity, action potential generation & conduction, and neurotransmitter formation, secretion, and uptake. Individual nerve membrane properties will be assessed by ``patch clamp'' recordings. Two non-invasive methods will evaluate brain function and the evolution of changes with time. Electroencephalograms will map macroscopic spontaneous electrical activity while two state-of-the-art MRI magnetization sequences will visualize and quantify local oxygen utilization and white matter fiber tracts structural integrity. To quantify the brains' overall performance under stress, animals will receive a systemic shock mediated by the immune system in the form of a reaction to lipopolysaccharide. A second strategy will employ the APP23 transgenic mouse that develops the pathological changes associated with Alzheimer's disease. Measurements of irradiated mice will determine whether radiation exposure affects the latency and

  20. Testing for autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1984-01-01

    disease, and may be nonspecific. A number of recently developed quantifiable and reproducible autonomic nerve function tests are reviewed, with emphasis on the physiological basis of the tests and on practical applicability. Finally, diagnostic criteria, based on autonomic nerve function tests, are...

  1. CENTRAL NERVOUS REGULATION OF SPLEEN FUNCTION: NEW INSIGHTS FROM ANIMAL STUDIES

    Directory of Open Access Journals (Sweden)

    Manoj G Tyagi

    2012-05-01

    Full Text Available The spleen is located in the upper left quadrant of the abdomen. It has two main functions that is acting as part of the immune system and as a filter. The spleen has a thin connective tissue capsule from which short septa extend inwards. These septa are, in turn, connected to a complex reticulin framework.There are two distinct components of the spleen, the red pulp and the white pulp. The red pulp consists of large numbers of sinuses and sinusoids filled with blood and is responsible for the filtration function of the spleen. The splenic venomotor fibres join the left phrenic nerve in the mid-cervical region. Coursing with it as non-medullated fibres, they eventually perforate the diaphragm, where for a time they accompany the inferior phrenic artery. Deviating towards the celiac ganglion, they next join company with the splenic vein, and are eventually distributed to localised parts of the vein. This review article evaluates the conventional knowledge and points to new insights into neural regulation of spleen.

  2. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function

    International Nuclear Information System (INIS)

    The radiopharmaceutical, metaiodobenzylguanidine (MIBG) acts as an analog of norepinephrine (NE). Experiments in rats were carried out to determine how closely the movements of [125I]MIBG in the heart mimicked those of [3H]NE, and if the changes [125I] MIBG concentrations would reflect injury to, and function of, adrenergic neurons in the heart. Injury to adrenergic neurons by 6-hydroxydopamine substantially reduced the uptake of [125I] MIBG into the left ventricle, but the effect was less than that on uptake of [3H]NE uptake and concentration of endogenous NE. Similarly, when desmethylimipramine was given to inhibit the uptake-1 pathway of neurons, the reduction in uptake of [125I]MIBG was statistically significant but less than that of [3H]NE; part of this difference may be attributable to partial uptake of [125I]MIBG into neurons by a diffusion pathway. Substantial fractions of [125I]MIBG and [3H]NE were displaced from the heart by the sympathomimetic drug, phenylpropanolamine. When adrenergic neurons of the heart were stimulated by feeding of rats, the disappearance rates of [3H]NE and [125I]MIBG from the heart were significantly increased. Although not a perfect analog of [3H]NE, [125I]MIBG appears to enter and leave the heart in patterns similar to those of [3H]NE. Thus, movements of [125I]MIBG give indices of adrenergic neuron injury and function in the heart

  3. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Directory of Open Access Journals (Sweden)

    Machi JF

    2016-03-01

    groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=-0.6, P<0.003. Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009 and vagal tonus (r=-0.7, P<0.0002; and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002, sympathetic tonus (r=0.55, P<0.006, and physical capacity (r=-0.55, P<0.003. The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction, inflammation, and oxidative stress. Keywords: autonomic nervous system, aging, aerobic exercise, female rats

  4. The subtle body: an interoceptive map of central nervous system function and meditative mind-brain-body integration.

    Science.gov (United States)

    Loizzo, Joseph J

    2016-06-01

    Meditation research has begun to clarify the brain effects and mechanisms of contemplative practices while generating a range of typologies and explanatory models to guide further study. This comparative review explores a neglected area relevant to current research: the validity of a traditional central nervous system (CNS) model that coevolved with the practices most studied today and that provides the first comprehensive neural-based typology and mechanistic framework of contemplative practices. The subtle body model, popularly known as the chakra system from Indian yoga, was and is used as a map of CNS function in traditional Indian and Tibetan medicine, neuropsychiatry, and neuropsychology. The study presented here, based on the Nalanda tradition, shows that the subtle body model can be cross-referenced with modern CNS maps and challenges modern brain maps with its embodied network model of CNS function. It also challenges meditation research by: (1) presenting a more rigorous, neural-based typology of contemplative practices; (2) offering a more refined and complete network model of the mechanisms of contemplative practices; and (3) serving as an embodied, interoceptive neurofeedback aid that is more user friendly and complete than current teaching aids for clinical and practical applications of contemplative practice. PMID:27164469

  5. Acute central nervous system (CNS) toxicity of total body irradiation (TBI) measured using neuropsychological testing of attention functions

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to investigate acute normal tissue damage of low irradiation doses to the healthy, adult central nervous system (CNS) using neuropsychological testing of attention functions. Methods and Materials: Neuropsychological testing (IQ, attention [modified Trail-Making Test A, Digit Symbol Test, D2 Test, Wiener Determination Machine]) was used to examine 40 patients (43 ± 10 years) before and immediately after the first fraction (1.2 Gy) of hyperfractionated total body irradiation (TBI) at the University of Heidelberg. The patients received antiemetic premedication. Test results are given as mean percentiles ± standard deviation, with 50 ± 34 being normal. Thirty-eight control patients (53 ± 15 years) were studied to quantify the influence of hospitalization, stress, and repeated testing. Results: The patients showed normal baseline test results (IQ = 101 ± 14, attention = 54 ± 28) and no decrease in test results after 1.2 Gy TBI. Attention functions improved (66 ± 25) corresponding to a practice effect of repeated testing that was seen in the control group, although alternate versions of the tests were used (IQ = 104 ± 10, attention before = 42 ± 29, attention after = 52 ± 31). Conclusion: Our data show no deterioration of neuropsychologic test results acutely after 1.2 Gy whole body exposure in adult patients without CNS disease receiving antiemetic medication

  6. Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions

    Directory of Open Access Journals (Sweden)

    Jamart Jacques

    2010-03-01

    Full Text Available Abstract Background Transcranial direct current stimulation (tDCS is used in human physiological studies and for therapeutic trials in patients with abnormalities of cortical excitability. Its safety profile places tDCS in the pole-position for translating in real-world therapeutic application. However, an episode of transient respiratory depression in a subject receiving tDCS with an extracephalic electrode led to the suggestion that such an electrode montage could modulate the brainstem autonomic centres. We investigated whether tDCS applied over the midline frontal cortex in 30 healthy volunteers (sham n = 10, cathodal n = 10, anodal n = 10 with an extracephalic reference electrode would modulate brainstem activity as reflected by the monitoring and stringent analysis of vital parameters: heart rate (variability, respiratory rate, blood pressure and sympatho-vagal balance. We reasoned that this study could lead to two opposite but equally interesting outcomes: 1 If tDCS with an extracephalic electrode modulated vital parameters, it could be used as a new tool to explore the autonomic nervous system and, even, to modulate its activity for therapeutic purposes. 2 On the opposite, if applying tDCS with an extracephalic electrode had no effect, it could thus be used safely in healthy human subjects. This outcome would significantly impact the field of non-invasive brain stimulation with tDCS. Indeed, on the one hand, using an extracephalic electrode as a genuine neutral reference (as opposed to the classical "bi-cephalic" tDCS montages which deliver bi-polar stimulation of the brain would help to comfort the conclusions of several modern studies regarding the spatial location and polarity of tDCS. On the other hand, using an extracephalic reference electrode may impact differently on a given cortical target due to the change of direct current flow direction; this may enlarge the potential interventions with tDCS. Results Whereas the respiratory

  7. Cell Death, Neuronal Plasticity and Functional Loading in the Development of the Central Nervous System

    Science.gov (United States)

    Keefe, J. R.

    1985-01-01

    Research on the precise timing and regulation of neuron production and maturation in the vestibular and visual systems of Wistar rats and several inbred strains of mice (C57B16 and Pallid mutant) concentrated upon establishing a timing baseline for mitotic development of the neurons of the vestibular nuclei and the peripheral vestibular sensory structures (maculae, cristae). This involved studies of the timing and site of neuronal cell birth and preliminary studies of neuronal cell death in both central and peripheral elements of the mammalian vestibular system. Studies on neuronal generation and maturation in the retina were recently added to provide a mechanism for more properly defining the in utero' developmental age of the individual fetal subject and to closely monitor potential transplacental effects of environmentally stressed maternal systems. Information is given on current efforts concentrating upon the (1) perinatal period of development (E18 thru P14) and (2) the role of cell death in response to variation in the functional loading of the vestibular and proprioreceptive systems in developing mammalian organisms.

  8. Effects of different forms of central nervous system prophylaxis on neuropsychologic function in childhood leukemia

    International Nuclear Information System (INIS)

    A comparison of the late effects on intellectual and neuropsychologic function of three different CNS prophylaxis regimens was conducted in 104 patients treated for childhood acute lymphocytic leukemia. Of the children studied, 33 were randomized to treatment with intrathecal (IT) methotrexate alone, 36 to IT methotrexate plus 2,400 rad cranial irradiation, and 35 to IT methotrexate plus intravenous intermediate dose methotrexate. All patients were in their first (complete) continuous remission, were a minimum of one year post-CNS prophylaxis and had no evidence of CNS disease at the time of evaluation. In contrast to the other two treatment groups, children whose CNS prophylaxis included cranial irradiation attained significantly lower mean Full Scale IQs, performed more poorly on the Wide Range Achievement Test, a measure of school abilities, and exhibited a greater number of difficulties on a variety of other neuropsychologic measures. The poorer performance of the irradiated group was independent of sex of the patient, time since treatment and age at diagnosis. These data suggest that the addition of 2,400 rad cranial irradiation to CNS prophylaxis in ALL puts these children at greater risk for mild global loss in intellectual and neuropsychologic ability

  9. Anatomy of the cardiac nervous system with clinical and comparative morphological implications.

    Science.gov (United States)

    Kawashima, Tomokazu

    2011-03-01

    Unlike autonomic nervous preservation in other surgeries for improving patient quality of life, autonomic cardiac nervous system (ACNS) preservation has been neglected in cardiovascular surgery because of technical difficulties and other unsolved issues. Because such ACNS preservation in cardiovascular surgery is anticipated in the future, detailed anatomical investigation of the human ACNS is required. Therefore, we have conducted morphological studies of the ACNS from macroscopic, clinical, and evolutionary anatomical viewpoints. In this study, I review detailed anatomical studies of the human ACNS together with their clinical implications. In addition, the evolutionary comparative anatomical significance of primate ACNS is also summarized to help understand and translate the findings of functional experiments to humans. These integrated findings will be the subject of a future study unifying molecular embryological and anatomical findings to clarify cardiac functions based on functional animal experiments, clinical applications such as improving surgery techniques and individual order-made surgery in cardiac surgery, and for future evaluation in regenerative medicine. PMID:21116884

  10. Adenosine A(1) Receptors in the Central Nervous System : Their Functions in Health and Disease, and Possible Elucidation by PET Imaging

    NARCIS (Netherlands)

    Paul, S.; Elsinga, P. H.; Ishiwata, K.; Dierckx, R. A. J. O.; van Waarde, A.

    2011-01-01

    Adenosine is a neuromodulator with several functions in the central nervous system (CNS), such as inhibition of neuronal activity in many signaling pathways. Most of the sedating, anxiolytic, seizure-inhibiting and protective actions of adenosine are mediated by adenosine A(1) receptors (A(1)R) on t

  11. Uterine autonomic nerve innervation plays a crucial role in regulating rat uterine mast cell functions during embryo implantation.

    Science.gov (United States)

    Yuan, Xue-Jun; Huang, Li-Bo; Qiao, Hui-Li; Deng, Ze-Pei; Fa, Jing-Jing

    2009-12-01

    To explore the potential mechanism of how uterine innervations would affect the uterine mast cell (MC) population and functions during the periimplantation. We herein first examined the consequence of uterine neurectomy on embryo implantation events. We observed that amputation of autonomic nerves innervating the uterus led to on-time implantation failure in rats. Exploiting MC culture and ELISA approaches, we then further analyzed the effect of neurectomy on cellular histamine levels and its release from uterine MCs, to elucidate the relation of the autonomic nerves and local cellular immunity in the uterine during early pregnancy. We observed that disconnection of autonomic nerve innervation significantly increased the population of uterine MCs. Most interestingly, these increased number of uterine MCs in neuroectomized rats contained a much reduced cellular level of histamine. Our subsequent challenge experiments revealed that uterine MCs in nerve amputated rats exhibited enhanced histamine releasing rate in response to substance P and antiIgE, suggesting loss of nerve innervation in the uterus not only increases the population of uterine MCs, but also facilitates the release of histamine from MCs, thus subsequently interfere with the normal implantation process. Collectively, our findings provide a new line of evidence supporting the concept that immune-neuro-endocrine network plays important role during pregnancy establishment and maintenance. PMID:19765668

  12. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette Syndrome.

    Science.gov (United States)

    Nagai, Yoko

    2015-01-01

    This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in epilepsy (small) and tics in Tourette Syndrome (TS). In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g., syncope), or in relation to Sudden Unexpected Death in Epilepsy (SUDEP). Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in epilepsy and TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behavior influence central thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated to gain a strong position within the next generation of treatment for epilepsy, as a non-invasive technique with minimal side effects. This approach also takes advantage of the current practical opportunity to utilize growing digital health technology. PMID:26441491

  13. The effect of aerobic exercise on autonomic function and pain in women with fibromyalgia.

    OpenAIRE

    Brandsarbakken, Håvard

    2010-01-01

    Fibromyalgia (FM) is a chronic pain syndrome often accompanied by an autonomic dysfunction. Reduced heart rate variability (HRV) indicating an enhanced sympathetic drive at rest and a lack of sympathetic reactivity during stress is commonly seen in subjects with FM. Earlier studies have shown that aerobic exercise can increase HRV in healthy persons. The aim of this study was to use recordings of HRV and blood pressure (BP) in the evaluation of the effects of a moderate intensity aerobic exer...

  14. Evaluation of functional, autonomic and inflammatory outcomes in children with asthma

    OpenAIRE

    de Freitas Dantas Gomes, Evelim Leal; Costa, Dirceu

    2015-01-01

    Asthma is common in childhood. This respiratory disease is characterized by persistent inflammation of the airways even when the child is not in the throes of an attack. Chronic inflammation is caused by an imbalance between pro-inflammatory and anti-inflammatory mechanisms as well as autonomic dysfunction, which plays an important role in the pathogenesis and control of this condition. The impact of these physiopathological aspects leads to inactivity and a sedentary lifestyle, which exerts ...

  15. Brain and nervous system (image)

    Science.gov (United States)

    ... complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, nerve cells deteriorated ...

  16. Cell Autonomous Lipin 1 Function Is Essential for Development and Maintenance of White and Brown Adipose Tissue

    OpenAIRE

    Nadra, Karim; Médard, Jean-Jacques; Mul, Joram D.; Han, Gil-Soo; Grès, Sandra; Pende, Mario; Metzger, Daniel; Chambon, Pierre; Cuppen, Edwin; Saulnier-Blache, Jean-Sébastien; Carman, George M.; Desvergne, Béatrice; Chrast, Roman

    2012-01-01

    Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2Cre/+/LpfEx2-3/fEx2-3 mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2Cre-ERT2/+/LpfEx2-3/fEx2-3 ...

  17. Noise in the nervous system

    OpenAIRE

    Faisal, A. Aldo; Selen, Luc P.J.; Wolpert, Daniel M

    2008-01-01

    Random disturbances of signals, termed ‘noise’, pose a fundamental problem for information processing and affect all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecu...

  18. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia

    OpenAIRE

    Grisé, Kenneth N.; T. Dylan Olver; Matthew W. McDonald; Adwitia Dey; Mao Jiang; James C. Lacefield; J. Kevin Shoemaker; Noble, Earl G.; C. W. James Melling

    2016-01-01

    Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM e...

  19. Cardiac autonomic functions and the emergence of violence in a highly realistic model of social conflict in humans.

    Directory of Open Access Journals (Sweden)

    Jozsef Haller

    2014-10-01

    Full Text Available Among the multitude of factors that can transform human social interactions into violent conflicts, biological features received much attention in recent years as correlates of decision making and aggressiveness especially in critical situations. We present here a highly realistic new model of human aggression and violence, where genuine acts of aggression are readily performed and which at the same time allows the parallel recording of biological concomitants. Particularly, we studied police officers trained at the International Training Centre (Budapest, Hungary, who are prepared to perform operations under extreme conditions of stress. We found that aggressive arousal can transform a basically peaceful social encounter into a violent conflict. Autonomic recordings show that this change is accompanied by increased heart rates, which was associated earlier with reduced cognitive complexity of perceptions ("attentional myopia" and promotes a bias towards hostile attributions and aggression. We also observed reduced heart rate variability in violent subjects, which is believed to signal a poor functioning of prefrontal-subcortical inhibitory circuits and reduces self-control. Importantly, these autonomic particularities were observed already at the beginning of social encounters i.e. before aggressive acts were initiated, suggesting that individual characteristics of the stress-response define the way in which social pressure affects social behavior, particularly the way in which this develops into violence. Taken together, these findings suggest that cardiac autonomic functions are valuable external symptoms of internal motivational states and decision making processes, and raise the possibility that behavior under social pressure can be predicted by the individual characteristics of stress responsiveness.

  20. Functional rearrangement of language areas in patients with tumors of the central nervous system using functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    The aim of this study was to determine the reorganization of the language areas in patients with tumors located near speech centers using functional magnetic resonance imaging (fMRI). fMRI was performed prior to the surgical treatment of 11 right-handed patients with tumors located close to the Broca’s or Wernicke’s areas of the left hemisphere. The analysis included a record of the activity in four regions of interest (ROIs): Broca’s and Wernicke’s areas, and their anatomic homologues in the right hemisphere. For each patient a regional lateralization index was calculated separately for Broca’s area versus its right-hemisphere homolog and Wernicke’s area versus its right-hemisphere homolog. The results were correlated with the histopathological type of the tumor and its size. Our fMRI examinations showed activation of the Broca’s area in the right hemisphere in 3/4 cases of low grade gliomas (LGG) localized in the left frontal lobe. In one case of the high grade glioma (HGG) only the left hemisphere Broca’s area was activated (LI=1). Activation in Wernicke’s area in both hemispheres was obtained irrespective of the size and histological type of the tumor. All tumors localized in the left temporal lobe were HGG. We obtained activation only in the right hemisphere Wernicke’s area in 4/5 of the cases. In 4/5 of the cases activation in Broca’s area was present- in 2 cases in the left hemisphere, in 1 case in the right hemisphere and in 1 case bilateral. The presence of a neoplastic lesion in close topographic relationship to language areas induces their functional reorganization. fMRI is an useful method for determination of language areas localization in pre-operative planning. HGG tumors localized near Wernicke’s area lead to transfer its function to the healthy hemisphere and/or to decreased activity in the affected hemisphere

  1. Frequency of autonomic neuropathy in patients with erectile dysfunction in diabetes mellitus

    International Nuclear Information System (INIS)

    Background: Among diabetic patients autonomic neuropathy (AN) is one of the most frequent complications. This affects peripheral nervous system and thus results into erectile dysfunction (ED). The main objectives of the study were to determine the frequency of autonomic neuropathy (AN) in diabetic patients with ED and to find out the associated risk factors. Method: In this descriptive case series, a total 200 consecutive patients of Diabetes Mellitus with erectile dysfunction attended the Department of Endocrinology and Metabolism (DEM), Services Hospital Lahore during three months (from June to August 2013), were included. For assessing erectile dysfunction (ED) and autonomic neuropathy (AN) International Index of Erectile Function (IIEF) and Composite Autonomic Scoring System (CASS) were used respectively. Other factors impacting the autonomic functions in diabetes like duration of diabetes, age of patient, body mass index (BMI), and glycaemic control (HbAlc), hypertension and smoking status were recorded. Results: Average age of the patients was 57.58±9.53 years (95 percentage C.I. 55.54-59.63). Frequency of autonomic neuropathy (AN) in ED patients was 86 (43 percentage). Duration of diabetes Mellitus and BMI were statistically significantly different among patients with severe, moderate and mild autonomic neuropathy. Conclusions: Autonomic neuropathy was very frequent in diabetic patients with erectile dysfunction. The associated risk factors are duration of disease and body mass index. (author)

  2. Ocular and neurodevelopmental features of Duchenne muscular dystrophy: a signature of dystrophin function in the central nervous system.

    Science.gov (United States)

    Ricotti, Valeria; Jägle, Herbert; Theodorou, Maria; Moore, Anthony T; Muntoni, Francesco; Thompson, Dorothy A

    2016-04-01

    Multiple isoforms of dystrophin (Dp427, Dp260, Dp140, Dp71) are expressed differentially in the central nervous system (CNS) including the retinal layers. Disruption of these protein products is responsible for cognitive dysfunction, electroretinogram (ERG) abnormalities and behavioural disorders in Duchenne muscular dystrophy (DMD). We studied the ocular characteristics and neuropsychiatric profile of 16 DMD boys. The ISCEV standard, full-field flash ERGs were assessed. Intellectual ability and behavioural disturbances were measured. All genotypes were associated with mildly abnormal photopic ERG a:b-wave amplitude ratios. In addition, we identified the following genotype/phenotype correlations: boys with mutations upstream of exon 30 (ie, isolated Dp427 altered expression) showed normal scotopic a:b ratios, abnormal photopic oscillatory potential OP2 and normal scotopic OP2. Conversely, all boys with DMD mutations downstream of exon 30 showed profoundly 'negative' scotopic ERGs (a:b ratios >1). In these patients, the involvement of Dp260 isoform resulted in the absence of slow rod pathway signalling in15 Hz scotopic flicker ERGs. These boys had abnormal scotopic OP2 and normal photopic OP2. Finally, children with mutations also affecting Dp71 were associated with more pronounced electronegative ERGs. When correlating ERGs to neurodevelopmental outcome, we found a positive correlation between negative scotopic ERGs and neurodevelopmental disturbances, and the most severe findings were in boys with Dp71 disruption. These findings suggest a strong association between DMD mutations affecting different DMD isoforms with characteristically abnormal scotopic ERGs and severe neurodevelopmental problems. The role of the ERG as a potential biomarker for dystrophin function in the CNS and response to novel genetic therapies warrants further exploration. PMID:26081639

  3. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  4. Ghrelin Inhibits Autonomic Function in Healthy Controls, but has No Effect on Obese and Vagotomized Subjects

    OpenAIRE

    Huda, MS; Mani, Hamidreza; Dovey, Terence M; Halford, Jason CG; Boyland, Emma; Daousi, Christina; Wilding, John; Pinkney, Jonathan H

    2010-01-01

    Abstract Objective: Ghrelin inhibits sympathetic nervous system (SNS) activity in rodents. We studied the effect of ghrelin on healthy humans, in obesity or in vagotomized subjects. Design: Randomized, double blind, placebo controlled crossover Subjects: 7 lean (mean body mass index (BMI) 23.6 +/-0.9 kg/m2), 7 morbidly obese (mean BMI 50.9 +/-4.4 kg/m2) and 7 post-gastrectomy subjects (mean BMI 22.0-?1.1 kg/ m2). Measurements: Subjects were randomized to intravenous ghr...

  5. Surgical implantation and functional assessment of an invasive telemetric system to measure autonomic responses in domestic pigs.

    Science.gov (United States)

    Krause, A; Zebunke, M; Bellmann, O; Mohr, E; Langbein, J; Puppe, B

    2016-01-01

    The first aim of this study was to establish a surgical procedure to implant a new telemetric device for the continuous recording of electrocardiogram (ECG) and blood pressure (BP) in freely moving pigs. A second aim was the functional assessment of cardiovascular parameters, including heart rate variability (HRV) and blood pressure variability (BPV), so that these data could be used as the basis for the objective evaluation of autonomic activity and balance in different behavioural contexts. Eleven domestic pigs (German Landrace) underwent surgery for the placement of a telemetric device. At day 15 after surgery, 512 consecutive inter-beat intervals and pressure waves were analysed using different detection methods (automatic and manually corrected) while the animals were resting or feeding, respectively. HRV and BPV were calculated. Incomplete datasets were found in four pigs due to missing ECG or BP signals. Technical and surgical issues concerning catheterisation and detachment of the negative ECG lead were continuously improved. In the remaining pigs, excellent signal quality (manually corrected data of 1%) was obtained during resting and acceptable signal quality (ECG recordings. Sympathetic arousal with accompanying vagal withdrawal during feeding was documented. The established surgical implantation and functional assessment of the telemetric system with the reliable registration of cardiovascular parameters in freely moving pigs could serve as a basis for future studies of autonomic regulation in context of stress and animal welfare. PMID:26626089

  6. Gastrointestinal autonomic nerve tumor of the stomach

    OpenAIRE

    Meshikhes, Abdul-Wahed N.; Al-Garni, Ayed A.; Sami A Al-Momen; Al-Nahawi, Mamdouh; Abu Subaih, Jawad

    2014-01-01

    Patient: Female, 32 Final Diagnosis: Gastrintestinal Autonomic Nerve Tumor (GANT) Symptoms: anemia • anorexia • fatigue • fever • hearburn • nausea • weight loss Medication: — Clinical Procedure: — Specialty: Gastroenterology and Hepatology Objective: Rare disease Background: Gastrointestinal autonomic nerve tumors (GANT) are extremely rare tumors that are related to gastrointestinal autonomic nervous plexuses. They are distinguished from stromal tumors by their unique ultrastructural feature...

  7. Major Autonomic Neuroregulatory Pathways Underlying Short- and Long-Term Control of Cardiovascular Function.

    Science.gov (United States)

    Salman, Ibrahim M

    2016-03-01

    Short-term and long-term blood pressure (BP) regulation and its maintenance at levels adequate to perfuse tissue organs involve an integrated action of multiple neural, cardiovascular, renal, endocrine and local tissue control systems. In the recent year, there has been a growing interest in the understanding of neural pathways key to BP control. For instance, through major advances in studies using both anesthetized and conscious animals, our knowledge of the essential neural mechanisms that subserve the baroreceptor, cardiopulmonary and chemoreceptor reflexes, and those evoked by the activation of stress pathways has dramatically increased. While the importance of these neural pathways in the maintenance of cardiovascular homeostasis is well established, the recognition of the central processing nuclei that integrate various afferent inputs to produce synchronous adjustments of autonomic outflows is still progressively expanding. Based on the literature provided thus far, the present review provides an overview in relation to the important neural determinants of BP control and later offers a concise description of major neuronal pathways that control autonomic outflows to the cardiovascular system in the short and long term. PMID:26838031

  8. 糖基转移酶在神经系统中的作用%The Function of glycosyltransferase in nervous system

    Institute of Scientific and Technical Information of China (English)

    陶涛; 严美娟; 沈爱国

    2011-01-01

    神经系统的发育及其正常功能的维持受到精确的控制,其调控异常导致的神经系统疾病成为危害健康的重要因素.研究神经系统的发育及其疾病发生的分子机制是生命科学的热点.糖基转移酶是一组催化糖链合成及糖链与蛋白质或者脂质形成复合物的酶类.糖基转移酶可以调节神经细胞表面多种蛋白质及脂质的糖基化,参与神经系统的发生及多种疾病发病过程的调控.对糖基转移酶在神经系统发育和疾病中的作用做一综述.%The development and function maintenance of the nervous system is under precise control, and its abnormal regulations always cause nervous system diseases. Therefore, much effort is made to understand the development and pathology of the nervous system. Glycosyltransferases were discovered as a group enzymes which could catalysis the synthesis of carbohydrate chain and forming of carbohydrate-protein/lipid complex. It is reported that glycosyltransferases are involved in many biological processes, and also participates in nervous system biology. The function of the glycosyltransferases in the development and the pathology of the nervous system are summarized.

  9. Agent, autonomous

    OpenAIRE

    Luciani, Annie

    2007-01-01

    The expression autonomous agents, widely used in virtual reality, computer graphics, artificial intelligence and artificial life, corresponds to the simulation of autonomous creatures, virtual (i.e. totally computed by a program), or embodied in a physical envelope, as done in autonomous robots.

  10. Functional state of the vegetative nervous system of children from the Belarus monitoring areas and its dependence on the lead and nitrate content in the blood

    International Nuclear Information System (INIS)

    74 children in age of 9-15 years from the Belarus controllable polluted zones were surveyed to study the features of a functional state of the vegetative nervous system and compare them with whole-body counting and levels of the accumulation of lead and nitrates in blood. Correlation between parameters of a functional state of a vegetative nervous system and levels of the pathogenesis accumulation was established. It is shown pathogenesis accelerate a realization of inheritance diseases, especially cardiovascular. Multielement monitoring has allowed to allocate groups of the heaviest ecological risk and to define the most important pollutants: 137Cs, 90Sr, 131I, Pu, Pb and nitrates. The complaints on stomach ache (53 %), ostealgia (45 %), increased tire (49 %), head ache (60 %), increased tendency to perspire (45 %), irritable (37 %) were typical for surveyed children. 2 tabs

  11. The mind body problem, part three: ascension of sexual function to cerebral level

    Directory of Open Access Journals (Sweden)

    Ion G. Motofei

    2016-04-01

    Full Text Available Physiologically, the somatic nervous system intervenes in external interaction between the body and environment, while autonomic nervous system ensures the functioning of internal organs. We present in this paper a psycho-physiological perspective suggesting that mental function (somatic in nature, because coordinates environmental interaction is closer to and more aligned with the physiologic functioning of autonomic nervous system (due to autonomy, duality, etc.. At opposite end, sexual function (autonomic in nature, erection for example being a parasympathetic vasodilatory reflex seems to be compatible and even dependent by a somatic participation (erectile response is rather induced by environmental stimuli than internal visceral stimuli. The perspective presented here is that the mind and sexuality are two distinct relational processes which, being related to the same environmental stimuli/ peripheral afferents, should be supported by a common (somatic-autonomic neurobiological substrate.

  12. Location and function of serotonin in the central and peripheral nervous system of the Colorado potato beetle.

    NARCIS (Netherlands)

    Haeften, van T.

    1993-01-01

    In this thesis we have localized serotoninergic neurons in the central and peripheral nervous system of the Colorado potato beetle, Leptinotarsa decemlineata by means of immunohistochemistry with a specific antiserurn to serotonin and assessed the possible role of these neurons in feeding physiology

  13. Cell autonomous lipin 1 function is essential for development and maintenance of white and brown adipose tissue.

    Science.gov (United States)

    Nadra, Karim; Médard, Jean-Jacques; Mul, Joram D; Han, Gil-Soo; Grès, Sandra; Pende, Mario; Metzger, Daniel; Chambon, Pierre; Cuppen, Edwin; Saulnier-Blache, Jean-Sébastien; Carman, George M; Desvergne, Béatrice; Chrast, Roman

    2012-12-01

    Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2(Cre/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice led to their replacement by newly formed Lpin1-positive adipocytes, thus establishing a role for lipin 1 in mature adipocyte maintenance. Importantly, we observed that the presence of newly formed Lpin1-positive adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice protected these animals against WAT inflammation and hepatic steatosis induced by a high-fat diet. Loss of lipin 1 also affected BAT development and function, as revealed by histological changes, defects in the expression of peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, and UCP1, and functionally by altered cold sensitivity. Finally, our data indicate that phosphatidic acid, which accumulates in WAT of animals lacking lipin 1 function, specifically inhibits differentiation of preadipocytes. Together, these observations firmly demonstrate a cell autonomous role of lipin 1 in WAT and BAT biology and indicate its potential as a therapeutical target for the treatment of obesity. PMID:23028044

  14. High Frequency Yoga Breathing: A Review of Nervous System Effects and Adjunctive Therapeutic and Premeditation Potential

    Directory of Open Access Journals (Sweden)

    Anna Andaházy

    2016-05-01

    Full Text Available High frequency yoga breathing (HFYB results in a shifting of the autonomic nervous system balance towards sympathetic nervous system dominance. In an effort to more fully understand the complex effects of this form of yogic breath-work, tests are being conducted on practitioners’ physiological and neurological response processes. Studies on heart rate variability (HRV indicating cardiac autonomic control have shown a resulting reduction of vagal activity following HFYB, leading to passive sympathetic dominance without overt excitation or exhaustion. Comparative cognitive tests taken after the practice have shown that HFYB results in reduced auditory and visual reaction times, and a decrease in optical illusion. The vigilant, wakeful, yet relaxed state induced by HFYB has been associated with improvements in attention, memory, sensorimotor performance, and mood. As breathing bridges conscious and unconscious functions, the potential role of HFYB as an adjunctive therapeutic intervention as well as its possible application in preparation for meditation is considered.

  15. Autonomous linear lossless systems

    OpenAIRE

    Rao, Shodhan; Rapisarda, Paolo

    2008-01-01

    We define a lossless autonomous system as one having a quadratic differential form associated with it called an energy function, which is positive and which is conserved. We define an oscillatory system as one which has all its trajectories bounded on the entire time axis. In this paper, we show that an autonomous system is lossless if and only if it is oscillatory. Next we discuss a few properties of energy functions of autonomous lossless systems and a suitable way of splitting a given ener...

  16. Separation of autonomous function from cell density in non-immunogenic hyperthyroidism. Pt. 2. Quantified comparison before and after radioiodine therapy

    International Nuclear Information System (INIS)

    Regional autonomous cell mass (Q: cell density ratio) and function (T: toxicity index) were compared by double isotope parametric thyroid scintigraphy (Als et al., Nucl. Med. 1995; 34) in 53 patients with non-immunogenic hyperthyroidism before and after radioiodine therapy (aRIT) and showed a break-down (medians) of Q: 4.3→1.0 (toxic adenomas: TA), 2→1.1 (multifocal functional autonomies: MFA) (p1 may represent a clinically sub-critical mass of residual autonomous tissue. This new technique facilitates individual pretherapeutic evaluations and aRIT quality control. (orig.)

  17. Autonomic consequences of spinal cord injury.

    Science.gov (United States)

    Hou, Shaoping; Rabchevsky, Alexander G

    2014-10-01

    Spinal cord injury (SCI) results not only in motor and sensory deficits but also in autonomic dysfunctions. The disruption of connections between higher brain centers and the spinal cord, or the impaired autonomic nervous system itself, manifests a broad range of autonomic abnormalities. This includes compromised cardiovascular, respiratory, urinary, gastrointestinal, thermoregulatory, and sexual activities. These disabilities evoke potentially life-threatening symptoms that severely interfere with the daily living of those with SCI. In particular, high thoracic or cervical SCI often causes disordered hemodynamics due to deregulated sympathetic outflow. Episodic hypertension associated with autonomic dysreflexia develops as a result of massive sympathetic discharge often triggered by unpleasant visceral or sensory stimuli below the injury level. In the pelvic floor, bladder and urethral dysfunctions are classified according to upper motor neuron versus lower motor neuron injuries; this is dependent on the level of lesion. Most impairments of the lower urinary tract manifest in two interrelated complications: bladder storage and emptying. Inadequate or excessive detrusor and sphincter functions as well as detrusor-sphincter dyssynergia are examples of micturition abnormalities stemming from SCI. Gastrointestinal motility disorders in spinal cord injured-individuals are comprised of gastric dilation, delayed gastric emptying, and diminished propulsive transit along the entire gastrointestinal tract. As a critical consequence of SCI, neurogenic bowel dysfunction exhibits constipation and/or incontinence. Thus, it is essential to recognize neural mechanisms and pathophysiology underlying various complications of autonomic dysfunctions after SCI. This overview provides both vital information for better understanding these disorders and guides to pursue novel therapeutic approaches to alleviate secondary complications. PMID:25428850

  18. Evaluation of standard haemodynamic tests of autonomic function and HbA1c as predictors of delayed gastric emptying in patients with type 1 diabetes mellitus.

    LENUS (Irish Health Repository)

    Lydon, A

    2012-02-03

    We examined the relation between chronic glycaemic control (using glycosylated haemoglobin), haemodynamic autonomic function and rate of gastric emptying in 16 patients with type 1 diabetes mellitus. Gastric emptying was measured using a paracetamol absorption technique. Parameters of gastric emptying include area under the plasma paracetamol concentration time curve. Patients were classified as diabetic autonomic neuropathy positive or negative using five standardized haemodynamic reflex tests. Area under the plasma paracetamol concentration time curve in the neuropathy positive (10.36 (4.5) mmol.-1. min) and negative (9.84 (3.0) mmol.-1. min) groups were similar (.P.=0.42) using unpaired Student\\'s.t. -tests. Glycosylated haemoglobin concentration and area under the plasma paracetamol concentration time curve (.n.=16) demonstrated a Pearson\\'s correlation co-efficient of 0.24. Neither tests of haemodynamic autonomic function, nor concentration of glycosylated haemoglobin, are predictive of diabetic gastroparesis.

  19. A STUDY OF CARDIAC AUTONOMIC CONTROL AND PULMONARY FUNCTIONS IN DIFFERENT PHASES OF MENSTRUAL CYCLE

    Directory of Open Access Journals (Sweden)

    Vishrutha KV

    2012-08-01

    Full Text Available Menstrual cycle is a physiological cyclical occurrence in women. This is associated with variationsin metabolism and associated endocrine fluctuations. Among other things, the cardio respiratory changes too havebeen observed. In the present study, we investigated the autonomic control of heart, and concurrent changes in therespiratory system. Material and methods:Forty seven normally menstruating women were recruited from a groupof 80 subjects reported for this study voluntarily. ECG was recorded from limb lead II time domain and frequencydomain analysis of Heart rate Variability (HRV was done. Their respiratory parameters namely PEFR, FEV1weredetermined. Results:The results of this study were analysed by applying Wilcoxon’s signed rank sum test. In Timedomain analysis RMSSD (36.91±2.73, p<0.05 showed significant decrease during ovulation, while otherparameters did not show significant variation among the three phases. Frequency domain analysis yielded results tosuggest that there is increased variability during Ovulatory and Luteal phase (p<0.05. PEFR and FEV1increased inluteal phase (p<0.05.Conclusions:The results of our study reiterated the findings of reports of previous studies onthe heart rate variability suggesting that the HRV was more during ovulatory and luteal phase. This is suggestive ofthe role of Progesterone on the HRV. Similarly the respiratory parameters too showed an increased PEFR and FEV1suggesting a decreased airway resistance, while other parameters remained unchanged.

  20. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  1. Interpretation of the 2012 edition of international standards to document remaining autonomic function after spinal cord injury%2012年版“脊髓损伤后残存自主神经功能国际记录标准”简要介绍

    Institute of Scientific and Technical Information of China (English)

    秦江; 侯树勋; 石秀秀; 唐家广; 唐金树; 任东风; 曹峥

    2014-01-01

    The 2012 edition of international standards to document remaining autonomic function after spinal cord injury ( ISAFSCI ) is published in the journal of “Topics in Spinal Cord Injury Rehabilitation ( TSCIR )” by the American Spinal Injury Association ( ASIA ) and the International Spinal Cord Society ( ISCoS ). The remaining autonomic function after spinal cord injury ( SCI ) is assessed in the form of standardized sheets, and individualized treatment programs are provided for the patients. This is the 2nd revision after the 2009 edition, which is more convenient and practical. This interpretation mainly consists of the following aspects: background of the standards set, content, how to evaluate and problems in the clinical practice. It aims to provide some experience and advice to colleagues who are engaged in the treatment SCI, and valuable comments and suggestions on the imperfections will be highly appreciated. The detailed anatomical and functional aspects of the autonomic nervous system can be learned through its ofifcial website ( www. ASIAlearningcenter.com ), which will not be repeated here.

  2. The administration of the Rorschach inkblot method and changes in autonomic nervous system activity [Aplikace Rorschachovy metody a změny v aktivitě autonomního nervového systému

    Directory of Open Access Journals (Sweden)

    Emil Šiška

    2009-09-01

    Full Text Available BACKGROUND: The administration of some psychological methods can be a temporary source of stress and evoke in some patients a pathophysiological reaction with a negative health outcome. OBJECTIVE: The aim of the study was to find out whether the administration of the Rorschach Inkblot Method (RIM can change the autonomic nervous system (ANS activity in terms of shifting the sympathovagal balance towards sympathetic activity. METHODS: The RIM test was applied to 39 healthy females (22.8 ± 2.4 years. ANS activity was measured by the spectral analysis of heart rate variability (SA HRV before, during, and after the RIM test. The same algorithm as in the previous procedure was employed in 30 healthy females (21.41 ± 1.7 years, however the Stroop color word test (SCWD, a very powerful stressor with a marked impact on ANS activity, instead of the RIM, was administered. Five relative parameters of SA HRV were used: percentages of VLF (very low frequency, LF (low frequency and HF (high frequency components (from the spectral power total and VLF/HF and LF/HF ratios. Changes in VLF/HF and LF/HF during the RIM and SCWT tests were used to compare the tests. RESULTS: During the RIM administration, a significant decrease in spectral power in HF (%, a significant increase in VLF (% and LF (%, and a significant increase in LF/HF and VLF/HF ratios have been shown. No significant differences in VLF/HF (markers of stressful situations among the RIM and the SCWT were found. CONCLUSIONS: The administration of the RIM can act as a powerful stressor and causes a significant decrease in parasympathetic activity and the shift of sympathovagal balance towards sympathetic activity. Administration of RIM and SCWT tests can produce stress of comparable intensity, with a similar impact on ANS activity. [VÝCHODISKA: Použití některých psychologických metod může přechodně působit jako zdroj stresu a u některých pacientů vyvolat patofyziologické reakce s negativn

  3. Autonomic Dysregulation in Multiple Sclerosis.

    Science.gov (United States)

    Pintér, Alexandra; Cseh, Domonkos; Sárközi, Adrienn; Illigens, Ben M; Siepmann, Timo

    2015-01-01

    Multiple sclerosis (MS) is a chronic, progressive central neurological disease characterized by inflammation and demyelination. In patients with MS, dysregulation of the autonomic nervous system may present with various clinical symptoms including sweating abnormalities, urinary dysfunction, orthostatic dysregulation, gastrointestinal symptoms, and sexual dysfunction. These autonomic disturbances reduce the quality of life of affected patients and constitute a clinical challenge to the physician due to variability of clinical presentation and inconsistent data on diagnosis and treatment. Early diagnosis and initiation of individualized interdisciplinary and multimodal strategies is beneficial in the management of autonomic dysfunction in MS. This review summarizes the current literature on the most prevalent aspects of autonomic dysfunction in MS and provides reference to underlying pathophysiological mechanisms as well as means of diagnosis and treatment. PMID:26213927

  4. Changes in the autonomic endocrine system in children from zones of radioactive contamination under the effect of spa treatment

    International Nuclear Information System (INIS)

    Clinical and functional examinations were carried out in 175 children aged 9 to 15 years living at territories contaminated with radionuclides, and 57 children from ecologically pure regions. Blood concentrations of triiodothyronine (T3), thyroxin (T4), thyrotropic hormone (TTH), thyroxin-binding globulin (TBG), and hydrocortisone were radioimmunoassayed. Ultrasonic scanning was carried out using Aloca device with 7.5 MHz pick-up. The status of the autonomic nervous system was assessed in all the children. Analysis of the results of studies before and after spa treatment revealed hyperplasia (72,6%), changes in the structure of thyroid tissue presenting as nodular formations, and signs of thyroiditis. The parameters of the endocrine and autonomic regulation of the organism correlated. Spa treatment promoted normalization of the thyroid hormone production and of the autonomic nervous regulation

  5. Characterization, localization and function of pertussis toxin-sensitive G proteins in the nervous systems of Aplysia and Loligo

    International Nuclear Information System (INIS)

    The author has characterized pertussis toxin-sensitive G proteins in the nervous systems of the gastropod mollusc Aplysia and the cephalopod Loligo using [32P]ADP-ribosylation and immunoblotting with G protein specific antisera. As in vertebrates, this class of G protein is associated with membranes and enriched in nervous tissue in Aplysia. Analysis of dissected Aplysia ganglia reveal that it is enriched in neuropil, a region containing most of the central nervous system synapses. Because both Aplysia and Loligo synaptosomes are enriched in pertussis toxin-sensitive G proteins, it is likely that they are found in synaptic terminals. Fractionation of Aplysia synaptosomes into membrane and vesicle fractions reveals that, although the majority of G protein is recovered in the plasma membrane fraction, a small proportion is recovered in the vesicle fraction. He shows that G proteins are on intracellular membranes by ADP-ribosylating extruded axoplasm with pertussis toxin. A plausible explanation for vesicular localization of G protein in axoplasm is that G proteins are transported to terminals on vesicles. He has shown, using ligature experiments with Aplysia connectives and temperature block experiments in the giant axon of Loligo, that G proteins move by anterograde fast axonal transport. Injection of pertussis toxin into the identified Aplysia neuron L10 blocks histamine-induced presynaptic inhibition of transmitter release. This suggests that pertussis toxin sensitive G proteins play a role in modulating transmitter release at synaptic terminals. In the giant synapse of Loligo, he presents preliminary data that demonstrates that the activation of G proteins in the presynaptic terminal results in decreased transmitter release

  6. Brain and Nervous System

    Science.gov (United States)

    ... to Know About Zika & Pregnancy Brain and Nervous System KidsHealth > For Parents > Brain and Nervous System Print ... is quite the juggler. Anatomy of the Nervous System If you think of the brain as a ...

  7. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit

    Science.gov (United States)

    Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias

    2016-01-01

    The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. DOI: http://dx.doi.org/10.7554/eLife.14277.001 PMID:27240166

  8. Marcapasso com sensor de contratilidade regulado pelas variações do sistema nervoso autônomo na miocardiopatia chagásica crônica Chagas heart disease and contractility rate responsive pacing controlled by autonomic nervous system variations

    Directory of Open Access Journals (Sweden)

    Oswaldo Tadeu Greco

    1998-12-01

    Full Text Available OBJETIVO: Analisar o desempenho da estimulação cardíaca artificial com marcapasso do tipo VVIR cujo sensor é regulado pelas variações do sistema nervoso autônomo em pacientes chagásicos com distúrbio no sistema de condução. MÉTODOS: Estudados 47 chagásicos, 28 do sexo masculino, com idades entre 24 e 68 anos, 36 tinham bloqueio atrioventricular (AV total; 8, bloqueio AV de 2º grau 2; e 3 doença do nódulo sinusal, e encontravam-se, de acordo com a NYHA, em classe I (4, II (15, III (16 e IV (12. Após o implante de marcapasso do tipo VVIR os pacientes foram acompanhados durante 12 meses. A resposta de freqüência foi registrada em gravações de Holter de 24h e divididos em dois grupos de acordo com a FC em repouso - grupo 1: >65bpm e grupo 2: PURPOSE: To analyse the performance of the artificial cardiac stimulation with the VVIR pacemaker whose sensor is adjusted by the variations of the autonomic nervous system in Chagas disease patients with deficiency of the conduction system. METHODS: Forty-seven Chagas disease patients have been studied, 28 male between 24 and 68 years old, 36 patients had complete AV block, 8 had 2nd degree AV block and the other 3 had sinus node disease. The patients were in class I (4, II (15, III (16 and IV (12 according to the NYHA. A 12-month-follow-up with constant clinical evaluations was carried out after pacemaker implantation. Patients were divided in 2 different groups according to the HR at rest - group 1: >65 beats per minute (bpm and group 2: <=65bpm, for a comparative study considering: 1 HR at stress test after the implantation; 2 arterial blood pressure at rest after the implantation and, 3 evaluation of the identified electrodes such as TIR-60-UP and others. RESULTS: The group 1 had greater HR at rest, and a smaller variation of values at stress than group 2. This shows that with this type of stimulation system it is possible to control each patient separately. The values of blood pressure

  9. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise

    OpenAIRE

    Jia, Tiantian; Ogawa, Yoshiko; Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on fou...

  10. A STUDY OF CARDIOVASCULAR AUTONOMIC DYSFUNCTION IN ASTHMATIC PATIENTS AND DETERMINE ITS CORRELATION WITH SEVERITY

    Directory of Open Access Journals (Sweden)

    Virendra

    2014-01-01

    Full Text Available CONTEXT Bronchial asthma is a chronic inflammatory disorder of the airways affecting people of all ages. It is manifested physiologically by a wide spread narrowing of the air passages , which may be relieved spontaneously or as a result of therapy and clinically by paroxysms of dyspnea , cough and wheezing. Airways are richly innervated by autonomic nervous system which plays a part in the control and their secretion. They regulate many aspects of airw ays’ physiology such as smooth muscle , mucus secretions , blood flow , micro vascular permeability and the migration and release of inflammatory cells. These effects are due to the release of neurotransmitters from autonomic nerves. MATERIAL AND METHODS: The present work was undertaken in 50 cases of bronchial asthma attending medical OPD and indoor and they were randomly selected without any bias of age and sex. Criteria for grading of severity of asthma were determined by clinical & Peak expiratory Flow Rat e [PEFR]. A complete general and systemic examination was carried out and they were specifically examined in detail for signs of autonomic dysfunction employing the standard “Ewing - Clarke” battery of five tests for cardiovascular autonomic functions. Three tests were used for parasympathetic function - 1.Heart rate response to Valsalva maneuver 2. Heart rate variation during deep breathing 3. Immediate Heart rate response to standing . And two tests were used for sympathetic function - 1. Blood pressure respon se to standing 2.Blood pressure response to sustained handgrip . OBSERVATIONS: In the present study , 32 patients (64% were tested positive for autonomic dysfunction out of 50 cases. Maximum number of cases 17(94.44% out of 18 with autonomic dysfunction had severe asthma. 15(46.87% out of 32 cases with autonomic dysfunction had mild - moderate asthma. Thus there was an increase in autonomic dysfunction with increased severity of asthma (p<0.001 highly significant. CONCLUSION

  11. Cardiovascular autonomous dysfunction in diabetics: The influence of disease duration, glycoregulation degree and diabetes type

    Directory of Open Access Journals (Sweden)

    Ninković Vladan

    2008-01-01

    exists regarding the ratio of damage of the sympathetic part of the autonomous nervous system and the value of HbA1c, as well as the ratio of CAN, that is, the total score and HbA1c. Almost two- fold, a bigger coefficient of correlation between the sympathetic score and HbA1c in relation to the coefficient of correlation of the parasympathetic score and HbA1c, points to bigger sensitivity of the sympathetic part of the autonomous nervous system to subacute deterioration of glycoregulation. The correlation between the values of autonomous scores and diabetes type has not been noted. CONCLUSION Our results show that besides disease duration, the subacute deterioration of glycoregulation also leads to the appearance of cardiovascular autonomous dysfunction in diabetes. The sympathetic nervous tissue is functionally more sensitive than the parasympathetic one to metabolic disorders in diabetes. The cardiovascular autonomous dysfunction will occur independently of the type of diabetes.

  12. Def Functions as a Cell Autonomous Factor in Organogenesis of Digestive Organs in Zebrafish

    OpenAIRE

    Ting Tao; Hui Shi; Delai Huang; Jinrong Peng

    2013-01-01

    Digestive organs originate from the endoderm. Morphogenesis of the digestive system is precisely controlled by multiple factors that dictate the cell fate and behavior so that the specific digestive organs are timely formed in the right place and develop into right size and structure. We showed previously that digestive organ expansion factor (def) is a gene whose expression is enriched in the liver, pancreas and intestine. Loss-of-function of def in the def(hi429) mutant confers hypoplastic ...

  13. Endogenous Brain Derived Neurotrophic Factor in the Nucleus Tractus Solitarius Tonically Regulates Synaptic and Autonomic Function

    OpenAIRE

    Clark, Catharine G.; Hasser, Eileen M.; Kunze, Diana L.; Katz, David M.; Kline, David D.

    2011-01-01

    Brain derived neurotrophic factor (BDNF) and its receptor, TrkB, are highly expressed in the nucleus tractus solitarius (nTS), the principal target of cardiovascular primary afferent input to the brainstem. However, little is known about the role of BDNF signaling in nTS in cardiovascular homeostasis. We examined whether BDNF in nTS modulates cardiovascular function in vivo and regulates synaptic and/or neuronal activity in isolated brainstem slices. Microinjection of BDNF into the rat medial...

  14. Def Functions as a Cell Autonomous Factor in Organogenesis of Digestive Organs in Zebrafish

    OpenAIRE

    Tao, Ting; Shi, Hui; Huang, Delai; Peng, Jinrong

    2013-01-01

    Digestive organs originate from the endoderm. Morphogenesis of the digestive system is precisely controlled by multiple factors that dictate the cell fate and behavior so that the specific digestive organs are timely formed in the right place and develop into right size and structure. We showed previously that digestive organ expansion factor (def) is a gene whose expression is enriched in the liver, pancreas and intestine. Loss-of-function of def in the defhi429 mutant confers hypoplastic di...

  15. Functional imaging of the human brainstem during somatosensory input and autonomic output

    Directory of Open Access Journals (Sweden)

    Luke Anthony Henderson

    2013-09-01

    Full Text Available Over the past half a century, many experimental animal investigations have explored the role of various brainstem regions in a variety of conditions. Despite the accumulation of a considerable body of knowledge in primarily anaesthetized preparations, relatively few investigations have explored brainstem function in awake humans. It is important that human brainstem function is explored given that many neurological conditions, from obstructive sleep apnea, chronic pain and hypertension, likely involve significant changes in the processing of information within the brainstem. Recent advances in the collection and processing of magnetic resonance images, has resulted in the possibility of exploring brainstem activity changes in awake healthy individuals and in those with various clinical conditions. We and others have begun to explore changes in brainstem activity in humans during a number of challenges, including during cutaneous and muscle pain, as well as during challenges that evoke increases in sympathetic activity. More recently we have successfully recorded sympathetic nerve activity concurrently with fMRI of the brainstem, which will allow us, for the first time to explore brainstem sites directly responsible for conditions such as hypertension. Since many conditions will involve changes in brainstem function and structure, defining brainstem changes will likely result in a greater ability to develop more effective treatment regimes.

  16. Information transmission capacity of the nervous system of the arm – an information and communication engineering approach to the brachial plexus function

    OpenAIRE

    Hannula, M. (Manne)

    2003-01-01

    Abstract The arm includes a large number of nerve fibres that transfer information between the central nervous system and the receptors, muscles and glands of the arm. In the nervous system there is continuous traffic. At rest, when only the receptors send information continuously towards the central nervous system, the traffic is not as intensive as during stress, e.g. during movements of the arm, when the central nervous system sends information towards the muscles, as well. From an ...

  17. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases.

    Science.gov (United States)

    Kipanyula, Maulilio John; Kimaro, Wahabu Hamisi; Seke Etet, Paul F

    2016-01-01

    The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca(2+)/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca(2+)-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects. PMID:27597899

  18. Origin of heart rate variability and turbulence: an appraisal of autonomic modulation of cardiovascular function.

    Directory of Open Access Journals (Sweden)

    FedericoLombardi

    2011-12-01

    Under controlled conditions, however, the computation of low and high frequency components and of their ratio seems capable of providing adequate information on sympatho-vagal balance in normal subjects as well as in most patients with a preserved left ventricular function, thus providing a unique tool to investigate neural control mechanisms. Analysis on non-linear dynamics of HRV has also been utilised to describe the fractal like characteristic of the variability signal and proven effective to identify patients at risk for sudden cardiac death. A reduction on HRT parameters reflecting reduced baroreflex sensitivity as a likely result of a reduced vagal and of an increased sympathetic modulation of sinus

  19. Correlation between vestibular and autonomous function after 6 months of spaceflight: Data of the SPIN and GAZE-SPIN experiments.

    Science.gov (United States)

    Wuyts, Floris; Clement, Gilles; Naumov, Ivan; Kornilova, Ludmila; Glukhikh, Dmitriy; Hallgren, Emma; MacDougall, Hamish; Migeotte, Pierre-Francois; Delière, Quentin; Weerts, Aurelie; Moore, Steven; Diedrich, Andre

    In 13 cosmonauts, the vestibulo-autonomic reflex was investigated before and after 6 months duration spaceflight. Cosmonauts were rotated on the mini-centrifuge VVIS, which is installed in Star City. Initially, this mini-centrifuge flew on board of the Neurolab mission (STS-90), and served to generate intermittent artificial gravity during that mission, with apparent very positive effects on the preservation of the orthostatic tolerance upon return to earth in the 4 crew members that were subjected to the rotations in space. The current experiments SPIN and GAZE-SPIN are control experiments to test the hypothesis that intermittent artificial gravity in space can serve as a counter measure against several deleterious effects of microgravity. Additionally, the effect of microgravity on the gaze holding system is studied as well. Cosmonauts from a long duration stay in the International Space Station were tested on the VVIS (1 g centripetal interaural acceleration; consecutive right-ear-out anti-clockwise and left-ear-out clockwise measurement) on 5 different days. Two measurements were scheduled about one month and a half prior to launch and the remaining three immediately after their return from space (typically on R+2, R+4, R+9; R = return day from space). The ocular counter roll (OCR) as a measure of otolith function was measured on before, during and after the rotation in the mini centrifuge, using infrared video goggles. The perception of verticality was monitored using an ultrasound system. Gaze holding was tested before, during and after rotation. After the centrifugation part, the crew was installed on a tilt table, and instrumented with several cardiovascular recording equipment (ECG, continuous blood pressure monitoring, respiratory monitoring), as well as with impedance measurement devices to investigate fluid redistribution throughout the operational tilt test. To measure heart rate variability parameters, imposed breathing periods were included in the

  20. Maternal Zinc Supplementation during Pregnancy Affects Autonomic Function of Peruvian Children Assessed at 54 Months of Age12

    OpenAIRE

    Caulfield, Laura E.; Zavaleta, Nelly; Chen, Ping; Lazarte, Fabiola; Albornoz, Carla; Putnick, Diane L.; Bornstein, Marc H; DiPietro, Janet A.

    2010-01-01

    Maternal prenatal zinc supplementation improved fetal autonomic regulation in a nutrient-deficient population in Peru. To evaluate whether differences in autonomic regulation existed in early childhood, we studied 165 children from a zinc supplementation trial (80% of original sample) as part of a comprehensive evaluation at age 54 mo. Electrocardiogram (ECG) data were collected from the children at rest and while they underwent a cognitive testing battery following a standardized protocol. O...

  1. Distribution and putative function of autonomic nerve fibres in the bill skin of the platypus (Ornithorhynchus anatinus).

    OpenAIRE

    Manger, P. R.; Keast, J R; Pettigrew, J D; Troutt, L

    1998-01-01

    The electroreceptors located in the bill skin of the platypus are modified secretory glands. The electroreceptive nerve terminals form bare endings in close proximity to the duct of these glands. In this study, we describe the autonomic innervation of the glands and a separate specialized autonomic innervation of the epidermal portion of the glandular duct. A range of immunohistochemical labels showed that the gland cells of the electroreceptors have a non-noradrenergic (putative parasympathe...

  2. Lipidomics: The Function of Vital Lipids in Embryogenesis Preventing Autism Spectrum Disorders, Treating Sterile Inflammatory Diatheses with a Lymphopoietic Central Nervous System Component

    Directory of Open Access Journals (Sweden)

    Thomas Tallberg

    2011-01-01

    Full Text Available The central role performed by billions of vital central nervous system (CNS lipids “lipidomics” in medical physiology is usually overlooked. A metabolic deficiency embracing these vital lipids can form the aetiology for a variety of diseases. CNS lipids regulate embryogenesis, cell induction, mental balance by preventing autism spectrum disorders, depression, burn-out syndromes like posttraumatic stress disease PTSD, by guarding normal immunity, treating sterile inflammatory diatheses with a titanium containing lymphopoietic CNS lipid component. The propaganda driving for unphysiological fat-free diets is dangerous and can cause serious health problems for a whole generation. This article presents a broad list of various mental and motor bodily functions of which the healthy function depends on these vital CNS lipids. A rigorous fat-free diet can provoke these metabolic lipid deficiencies but they can fortunately be compensated by dietary supplementation, but not by pharmacologic treatment.

  3. Research on the features of cardiac autonomic nervous activity of divers under simulated stressors with computer games%电脑游戏模拟应激条件下潜水员心脏自主神经活动特点的研究

    Institute of Scientific and Technical Information of China (English)

    马海鹰; 经冥; 邓光辉; 江楠楠; 解汝庆

    2013-01-01

    marked [F(2,110) =20.774,P < 0.01)],the main effect on HF was also marked [(F (2,110) =5.647,P <0.05)],the main effects on LF/HF could be significantly noted [(F(2,110) =6.101,P < 0.05)],and the main effect on Lfnu was significant [(F (2,110) =6.184,P < 0.05)] and the main effect of Hfnu was also significant [(F (2,110) =6.735,P < 0.05)].(3) No significant differences could be seen,when comparisons were made between the groups,and interactions were quite obvious in LF/HF between the 2 groups and at different stages [F (2,110) =4.285,P < 0.05].Conclusions (1) Under simulated stressful conditions,cardiac autonomic nervous activity of divers had the following features:sympathetic nerve strain increased at the anticipation period,and parasympathetic nerve strain decreased.However,at the coping period,both sympathetic nerve and parasympathetic nerve strain all decreased,with the parasympathetie nerve strain decreased only with a small margin.(2) Better vagus nerve function in divers could down-regulate the intensity of negative emotion and at the same time incoordination of vagus nerve also had some effect on sensitivity of negative emotion.

  4. Deep Brain Stimulation Frequency—A Divining Rod for New and Novel Concepts of Nervous System Function and Therapy

    Directory of Open Access Journals (Sweden)

    Erwin B. Montgomery

    2016-08-01

    Full Text Available The efficacy of Deep Brain Stimulation (DBS for an expanding array of neurological and psychiatric disorders demonstrates directly that DBS affects the basic electroneurophysiological mechanisms of the brain. The increasing array of active electrode configurations, stimulation currents, pulse widths, frequencies, and pulse patterns provides valuable tools to probe electroneurophysiological mechanisms. The extension of basic electroneurophysiological and anatomical concepts using sophisticated computational modeling and simulation has provided relatively straightforward explanations of all the DBS parameters except frequency. This article summarizes current thought about frequency and relevant observations. Current methodological and conceptual errors are critically examined in the hope that future work will not replicate these errors. One possible alternative theory is presented to provide a contrast to many current theories. DBS, conceptually, is a noisy discrete oscillator interacting with the basal ganglia–thalamic–cortical system of multiple re-entrant, discrete oscillators. Implications for positive and negative resonance, stochastic resonance and coherence, noisy synchronization, and holographic memory (related to movement generation are presented. The time course of DBS neuronal responses demonstrates evolution of the DBS response consistent with the dynamics of re-entrant mechanisms. Finally, computational modeling demonstrates identical dynamics as seen by neuronal activities recorded from human and nonhuman primates, illustrating the differences of discrete from continuous harmonic oscillators and the power of conceptualizing the nervous system as composed on interacting discrete nonlinear oscillators.

  5. Protective effects of PARP-1 knockout on dyslipidemia-induced autonomic and vascular dysfunction in ApoE mice: effects on eNOS and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Chetan P Hans

    Full Text Available The aims of this study were to investigate the role of poly(ADP-ribose polymerase (PARP-1 in dyslipidemia-associated vascular dysfunction as well as autonomic nervous system dysregulation. Apolipoprotein (ApoE(-/- mice fed a high-fat diet were used as a model of atherosclerosis. Vascular and autonomic functions were measured in conscious mice using telemetry. The study revealed that PARP-1 plays an important role in dyslipidemia-associated vascular and autonomic dysfunction. Inhibition of this enzyme by gene knockout partially restored baroreflex sensitivity in ApoE(-/- mice without affecting baseline heart-rate and arterial pressure, and also improved heart-rate responses following selective blockade of the autonomic nervous system. The protective effect of PARP-1 gene deletion against dyslipidemia-induced endothelial dysfunction was associated with preservation of eNOS activity. Dyslipidemia induced PARP-1 activation was accompanied by oxidative tissue damage, as evidenced by increased expression of iNOS and subsequent protein nitration. PARP-1 gene deletion reversed these effects, suggesting that PARP-1 may contribute to vascular and autonomic pathologies by promoting oxidative tissue injury. Further, inhibition of this oxidative damage may account for protective effects of PARP-1 gene deletion on vascular and autonomic functions. This study demonstrates that PARP-1 participates in dyslipidemia-mediated dysregulation of the autonomic nervous system and that PARP-1 gene deletion normalizes autonomic and vascular dysfunctions. Maintenance of eNOS activity may be associated with the protective effect of PARP-1 gene deletion against dyslipidemia-induced endothelial dysfunction.

  6. Increased thyroidal T4 to T3 conversion in autonomously functioning thyroid adenoma: from euthyroidism to thyrotoxicosis.

    LENUS (Irish Health Repository)

    Solter, M

    2012-01-31

    AIM: The aim was to investigate whether the intrathyroid conversion of T4 to T3 in autonomously functioning thyroid adenoma (AFTA) tissue could influence serum T3 levels and suppression of TSH, especially in patients with borderline thyroid function. PATIENTS AND METHODS: In ten patients with AFTA, thyroidal conversion of T4 to T3 was investigated in nodular and paranodular, TSH-suppressed tissue. All patients had normal serum T4 and suppressed TSH. Serum T3 was normal in six, and borderline or slightly increased in four. AFTA and paranodular tissues were surgically removed and frozen at -70 degrees C, then homogenized in a glass homogenizer, centrifuged at 100,000xg, and particulate fraction collected as a pellet. Analysis mixture consisted of thyroid enzyme suspension in 50 mumol\\/L TRIS buffer with 5 mumol DTT and 200 muL 1.3 mumol T4. Incubation was performed at 37 degrees C and the generation of T3 measured after 5, 10, 20 and 40 minutes respectively. RESULTS: T3 production (pmol\\/mg protein) was significantly higher in AFTA than in paranodular tissues (8.8 1.2\\/Mean +\\/- SE\\/vs. 1.8 +\\/- 0.2; p<0.01), and excessively high (9.8, 14.1, 14.2 and 15.0) in four patients with borderline or slightly supranormal serum T3. A significant correlation was found between serum T3 concentrations and T3 generation (T4 conversion) in AFTA tissues. CONCLUSION: Results suggest that increased thyroidal T4 to T3 conversion in AFTA tissue could be involved in an increased delivery of T3, increased serum T3 and suppressed serum TSH, particularly in patients with the disease evolving from euthyroid to an early hyperthyroid phase.

  7. Therapeutic Application of Electric Fields in the Injured Nervous System

    OpenAIRE

    Haan, Niels; Song, Bing

    2014-01-01

    Significance: Nervous system injuries, both in the peripheral nervous system (PNS) and central nervous system are a major cause for pain, loss-of-function, and impairment of daily life. As nervous system injuries commonly heal slowly or incompletely, new therapeutic approaches may be required.

  8. An Electronic Circuit Model of the Interpostsynaptic Functional LINK Designed to Study the Formation of Internal Sensations in the Nervous System

    Directory of Open Access Journals (Sweden)

    Kunjumon I. Vadakkan

    2014-01-01

    Full Text Available The nervous system makes changes in response to the continuous arrival of associative learning stimuli from the environment and executes behavioral motor activities after making predictions based on past experience. The system exhibits dynamic plasticity changes that involve the formation of the first-person internal sensations of perception, memory, and consciousness to which only the owner of the nervous system has access. These properties of natural intelligence need to be verified for their mechanism of formation using engineered systems so that a third person can access them. In the presence of a synaptic junctional delay of up to two milliseconds, we anticipate that the systems property of formation of internal sensations is likely independent of the mode of conduction along the neuronal processes. This allows testing for the formation of internal sensations using electronic circuits. The present work describes the neurobiological context for the formation of the basic units of inner sensations that occur through the reactivation of interpostsynaptic functional LINKs and its connection to motor activity. These mechanisms are translated to an analogue circuit unit for the development of robotic systems.

  9. Autonomic Activation in Insomnia: The Case for Acupuncture

    OpenAIRE

    Huang, Wei; Kutner, Nancy; Bliwise, Donald L.

    2011-01-01

    Current conceptualizations of the biological basis for insomnia typically invoke central nervous system and/or autonomic nervous system arousal. Acupuncture may represent a unique avenue of treatment for poor sleep by virtue of its direct effects on peripheral nerves and muscles, which, in turn, modulate autonomic tone and central activation. In this review, we summarize both basic and clinical research indicating that acupuncture exerts profound influences via a wide variety of potential neu...

  10. Expression and function of Neuregulin 1 and its signaling system ERBB2/3 in the enteric nervous system

    Directory of Open Access Journals (Sweden)

    Martina eBarrenschee

    2015-09-01

    Full Text Available Neuregulin 1 (NRG1 is suggested to promote the survival and maintenance of the enteric nervous system (ENS. As deficiency in its corresponding receptor signaling complex ERBB2/ERBB3 leads to postnatal colonic hypo/aganglionosis we assessed the distributional and expressional pattern of the NRG1-ERBB2/ERBB3 system in the human colon and explored the neurotrophic capacity of NRG1 on cultured enteric neurons.Site-specific mRNA expression of the NRG1-ERBB2/3 system was determined in microdissected samples harvested from enteric musculature and ganglia. Localization of NRG1, ERBB2 and ERBB3 was determined by dual-label-immunohistochemistry using pan-neuronal and pan-glial markers. Morphometric analysis was performed on NRG1-stimulated rat enteric nerve cultures to evaluate neurotrophic effects. mRNA expression of the NRG1-ERBB2/3 system was determined by qPCR. Co-localization of NRG1 with neuronal or synaptic markers was analyzed in enteric nerve cultures stimulated with glial cell line-derived neurotrophic factor (GDNF. The NRG1 system was expressed in both neurons and glial cells of enteric ganglia and in nerve fibers. NRG1 significantly enhanced growth parameters in enteric nerve cell cultures and ErB3 mRNA expression was down-regulated upon NRG1 stimulation. GDNF negatively regulates ErbB2 and ErbB3 mRNA expressionThe NRG1-ERBB2/3 system is physiologically present in the human ENS and NRG1 acts as a neurotrophic factor for the ENS. The down-regulation of ErbB3/ErbB2 in GDNF stimulated nerve cell cultures points to an interaction of both neurotrophic factors. Thus, the data may provide a basis to assess disturbed signaling components of the NRG1 system in enteric neuropathies.

  11. Architecture of autonomous systems

    Science.gov (United States)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  12. Dynamical phase transition in the two-point functions of the autonomous one-dimensional single-species reaction-diffusion systems

    OpenAIRE

    Aghamohammadi, Amir; Khorrami, Mohammad

    2003-01-01

    The evolution of the two-point functions of autonomous one-dimensional single-species reaction-diffusion systems with nearest-neighbor interaction and translationally-invariant initial conditions is investigated. It is shown that the dynamical phase structure of such systems consists of five phases. As an example, a one-parameter family is introduced which can be in each of these phases.

  13. A quarter of a century of function assignment agreements with the autonomous communities. The; Los acuerdos de encomienda con las comunidades autonomas cumplen un cuarto de siglo

    Energy Technology Data Exchange (ETDEWEB)

    Montero Sanchez, M. A.; Rodriguez Marti, M.; Urbano Pollato, I.; Zamora Martin, F.

    2010-07-01

    The CN has the power to commission certain radioactive facility surveillance and inspection functions to the autonomous communities through an agreement between the Council and the regional government in question. The first of these agreements was signed in 1985 with the Regional Government of Catalonia, and during the 25 years that have passed since then similar agreements have been signed with eight other communities: Asturias, the Balearic Islands, the Canary Islands, Galicia, Murcia, Navarra, the Basque Country and the Community of Valencia. (Author)

  14. The clinical presentation and diagnosis of epileptic autonomic auras

    Directory of Open Access Journals (Sweden)

    Marina Revditovna Kremenchugskaya

    2012-12-01

    Full Text Available Objective: to refine the pattern of clinical manifestations of epileptic autonomic auras (EAA and to reveal clinical, electroencephalographic, and neuroimaging ratios. Patients and methods. Eighteen patients (8, 41% men and 10, 59% women aged 9 to 27years (mean 18±5years were examined. The examination encompassed analysis of history data, clinical and neurological studies, long-term video-assisted electroencephalographic monitoring, and magnetic resonance imaging (MRI of the brain. Results. In most patients (n = 12, 67%, the symptoms of EAA corresponded to the criteria for abdominal one. In the other patients, the clinical manifestations resembled autonomic paroxysms as attacks of panic. Interictal pathological changes on an electroencephalogram (EEG were present in the frontal, temporal, and frontotemporal regions in 4 (22%, 6 (33%, and 7 (39% patients, respectively, as well as in both the left and right hemispheres without significant differences. Pathological EEG changes were not found in one case. MRI detected that 13 (72% patients had structural changes that were potentially eliptogenic. Conclusion. The clinical symptoms of EAA give information on the site of a primary pathological focus. It is necessary to differentiate EAA from non-epileptic paroxysmal states. The autonomic phenomena of epileptic genesis help study the functional organizations of the autonomic nervous system.

  15. Effects of metronome breathing on the assessment of autonomic control using heart rate variability

    NARCIS (Netherlands)

    Haaksma, J; Brouwer, J; vandenBerg, MP; Dijk, WA; Dassen, WRM; Crijns, HJGM; Mulder, Lambertus; Mulder, Gysbertus

    1996-01-01

    Analysis of Heart Rate Variability is a non-invasive quantitative tool to study the influence of the autonomic nervous system on the heart. Rapid variations in heart rate, related to breathing are primarily mediated by the vagal limb of the autonomic nervous system. The resulting variations in heart

  16. Nervous function and manifestations of mental psychology in patients with post-stroke depression of different syndrome types of traditional Chinese medicine

    Institute of Scientific and Technical Information of China (English)

    Yan Dong; Bo Yang; Jingling Song; Lihua Yu

    2007-01-01

    BACKGROUND: Poly-criteria pathogenesis of patients with stroke causes diversity of syndrome types of traditional Chinese medicine (TCM); meanwhile, complexity and diversity of pathological mechanism also play a key role in determining severity so as to induce effects on nervous function and manifestation of mental psychology in patients with post-stroke depression (PSD).OBJECTIVE: To analyze the syndrome types of TCM with nervous function and manifestations of mental psychology in PSD patients so as to provide evidence for the treatment based on the syndrome differentiation.DESIGN: Contrast observation.SETTING: Departments of Neurology and Traditional Chinese Medicine, General Hospital of Fuxin Mining Industry Group.PARTICIPANTS: A total of 469 outpatients or inpatients with stroke were selected from the Department of Neurology, General Hospital of Fuxin Mining Industry Group from April 2002 to July 2005. All subjects met the diagnostic criteria of stroke established by the Fourth National Cerebrovascular Disease Academic Meeting in 1995 and were finally diagnosed with CT and MRI. Totally, 177 PSD patients were involved in the final analysis and provided the confirmed consent. There were 121 males and 56 females aged from 46 to 79 years.physicians within 1 week before discharge based on Diagnostics of Traditional Chinese Medicine, which was classified into 5 types, including sputum-stasis stagnation syndrome, qi stagnation and blood stasis,kidney-essence deficiency, deficiency of the spleen and stomach and phlegm-fire disturbing the heart. In addition, they were also assessed by neurologic deficit scale (NDS; 45 points in total; the higher the scores were, the severer the deficit was), Fugl-Meyer assessment, (FMA; 100 points in total, including 66 points of upper limbs and 34 points of lower limbs; the higher the scores were, the stronger the motor function was),modified Barthel index [BI; 100 points in total; the higher the scores were, the better the activity of

  17. Separation of autonomous function from cell density in non-immunogenic hyperthyroidism. Pt. 1. Quantification by double-isotope parametric scintigraphy

    International Nuclear Information System (INIS)

    A new quantitative subtraction method of thyroid scans is proposed which shows that regional function (F) by far exceeds regional cellularity or cell density (C) in potentially toxic thyroidal areas of non-immunogenic hyperthyroidism (NH). A multistep processing of radioiodine and MIBI thyroid scans of patients with non-immunogenic hyperthyroidism led to normalized images of regional function excess and of perinodular enhancement. Two numeric factors were derived from regions of interest: Q (cell density ratio) comparing MIBI uptake in autonomous and suppressed areas and T (toxicity index): The maximal F/C contrast. Q never exceeded 61; T, however, expanded toxicity levels over a range of 6-8735 with toxic adenomas (median=165) and with hot areas of multifocal functional autonomy (median=15). T was weakly correlated to serum TT3 (r=0.41), but not to autonomous tissue mass, ultrasonographic or cytologic criteria. T is governed by inherent features of autonomous tissue and the response of the imbedded thyroid tissue to TSH stimulation. This standardized technique consolidates experiences from visual analysis; the huge T range mirrors the natural evolution from compensated autonomy towards hyperthyroid, decompensated stages. (orig.)

  18. Treatment of autonomously functioning thyroid nodules at a single institution. Radioiodine therapy, surgery, and ethanol injection therapy

    International Nuclear Information System (INIS)

    The purpose of this study was to clarify the efficacy of radioiodine (RI) therapy in Japanese patients with autonomously functioning thyroid nodules (AFTNs). We performed a retrospective analysis to assess the management of AFTN patients. Thyroid lobectomy was performed to treat toxic adenoma (TA) patients, and total thyroidectomy to treat toxic multinodular goiter (TMNG) patients. RI therapy was administered in the form of a single dose (500 MBq) of isotope in the outpatient clinic. Percutaneous ethanol injection therapy (PEIT) was performed under ultrasound guidance. Of the total 205 patients, consisting of 159 TA and 46 TMNG patients, 99 underwent surgery, 50 received RI therapy, and 56 received PEIT. Remission of thyrotoxicosis was achieved in all of the patients who were treated surgically. Hypothyroidism was documented in six of the 72 patients who were treated surgically other than by total thyroidectomy. Remission of thyrotoxicosis was observed in 43 of the 50 patients who were treated by RI therapy. Nine TA patients developed hypothyroidism during the follow-up period after RI therapy. Several PEIT sessions were required to achieve a remission of thyrotoxicosis. Remission of thyrotoxicosis was achieved in 29 of the 56 patients treated by PEIT, and thyrotoxicosis recurred in 17 these 56 patients. Surgery is the treatment of choice for large nodules and nodules that are resistant to other treatments, because it allows prompt control of thyrotoxicosis. RI therapy is a safe and effective means of controlling thyrotoxicosis in AFTN patients. We conclude that RI therapy is the treatment of choice for definitive treatment of AFTN patients who do not have local compression symptoms. (author)

  19. The significance of Ciona intestinalis as a stem organism in integrative studies of functional evolution of the chordate endocrine, neuroendocrine, and nervous systems.

    Science.gov (United States)

    Matsubara, Shin; Kawada, Tsuyoshi; Sakai, Tsubasa; Aoyama, Masato; Osugi, Tomohiro; Shiraishi, Akira; Satake, Honoo

    2016-02-01

    Ascidians are the closest phylogenetic neighbors to vertebrates and are believed to conserve the evolutionary origin in chordates of the endocrine, neuroendocrine, and nervous systems involving neuropeptides and peptide hormones. Ciona intestinalis harbors various homologs or prototypes of vertebrate neuropeptides and peptide hormones including gonadotropin-releasing hormones (GnRHs), tachykinins (TKs), and calcitonin, as well as Ciona-specific neuropeptides such as Ciona vasopressin, LF, and YFV/L peptides. Moreover, molecular and functional studies on Ciona tachykinin (Ci-TK) have revealed the novel molecular mechanism of inducing oocyte growth via up-regulation of vitellogenesis-associated protease activity, which is expected to be conserved in vertebrates. Furthermore, a series of studies on Ciona GnRH receptor paralogs have verified the species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors. These findings confirm the remarkable significance of ascidians in investigations of the evolutionary processes of the peptidergic systems in chordates, leading to the promising advance in the research on Ciona peptides in the next stage based on the recent development of emerging technologies including genome-editing techniques, peptidomics-based multi-color staining, machine-learning prediction, and next-generation sequencing. These technologies and bioinformatic integration of the resultant "multi-omics" data will provide unprecedented insights into the comprehensive understanding of molecular and functional regulatory mechanisms of the Ciona peptides, and will eventually enable the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of chordates. PMID:26031189

  20. Autonomic Impairment in Borderline Personality Disorder: A Laboratory Investigation

    Science.gov (United States)

    Weinberg, Anna; Klonsky, E. David; Hajcak, Greg

    2009-01-01

    Recent research suggests that emotional dysfunction in psychiatric disorders can be reflected in autonomic abnormalities. The present study examines sympathetic and parasympathetic autonomic nervous system activity in individuals with Borderline Personality Disorder (BPD) before, during, and following a social stressor task. Data were obtained…

  1. Cardiovascular autonomic dysfunctions and sleep disorders.

    Science.gov (United States)

    Calandra-Buonaura, Giovanna; Provini, Federica; Guaraldi, Pietro; Plazzi, Giuseppe; Cortelli, Pietro

    2016-04-01

    Animal and human studies have shown that disorders of the autonomic nervous system may influence sleep physiology. Conversely, sleep disorders may be associated with autonomic dysfunctions. The current review describes the clinical presentation, supposed pathogenetic mechanisms and the diagnostic and prognostic implications of impaired cardiovascular autonomic control in sleep disorders. This dysfunction may result from a common pathogenetic mechanism affecting both autonomic cardiovascular control and sleep, as in fatal familial insomnia, or it may be mainly caused by the sleep disorder, as observed in obstructive sleep apnoea. For other sleep disorders, like primary insomnia, restless legs syndrome, narcolepsy type 1 and rapid eye movement sleep behaviour disorder, the causal link with the autonomic dysfunction and its possible impact on health remains unsettled. Given its clinical implications, most of the data available suggest that a systematic assessment of the association between sleep disorders and impaired autonomic control of the cardiovascular system is warranted. Understanding the mechanism of this association may also yield insights into the interaction between the autonomic nervous system and sleep. PMID:26146026

  2. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  3. Cardiovascular autonomic neuropathy in the diabetic patients.

    Directory of Open Access Journals (Sweden)

    Maria Eugenia Niño Mantilla

    2007-11-01

    Full Text Available the dysfunction of the autonomic nervous system is a serious problem in diabetic patients. The cardiovacular autonomic neuropathy is the most important autonomic dysfuntion for it´s implication in the increasesof the mortality rate in diabetis patients. tis ethiopatogenesis is the result of a multifactorial process caused by chronic hyperglycemia, ending up in damage of the autonomic fibers thet innervate the heart and blood vessels, leading to dysfuntional hearth rate control and abnormal vascular dynamics. the associated clinical manifestations include orthotatic hypotension, excecise intolerance, intraoperative cardiovascular liability and silent myocardial ischemia. Being important its recognition, quantitative test to evaluate the cardiovascular funtion, to value its evolution and the effects of the treatment ahould be done, being the most used, the hearth rate response to standing test, and teh valsalva maneuver. the handling of this entity is done improving control of glucose blood levels its the most effective way to prevent the cardiovascular autonomic neuropathy in the diabetic patients.

  4. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia

    Directory of Open Access Journals (Sweden)

    Kenneth N. Grisé

    2016-01-01

    Full Text Available Indices of cardiovascular autonomic neuropathy (CAN in experimental models of Type 1 diabetes mellitus (T1DM are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C, sedentary T1DM (D, control exercise (CX, or T1DM exercise (DX. Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9–17 mM through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY, and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY, including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM.

  5. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia.

    Science.gov (United States)

    Grisé, Kenneth N; Olver, T Dylan; McDonald, Matthew W; Dey, Adwitia; Jiang, Mao; Lacefield, James C; Shoemaker, J Kevin; Noble, Earl G; Melling, C W James

    2016-01-01

    Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9-17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM. PMID:26885531

  6. Autonomic Conditions in Tinnitus and Implications for Korean Medicine

    OpenAIRE

    Eun Ji Choi; Younghee Yun; Seungyeon Yoo; Kyu Seok Kim; Jeong-Su Park; Inhwa Choi

    2013-01-01

    Tinnitus patients suffer from not only auditory sensations but also physical, mental, and social difficulties. Even though tinnitus is believed to be associated with the autonomic nervous system, changes in autonomic conditions in tinnitus patients are not receiving much research attention. The aims of this study were to investigate the autonomic condition of tinnitus patients and to consider Korean medicine in the treatment of tinnitus with an evidence-based approach. We performed a retrospe...

  7. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer's Disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Waldemar, Gunhild; Staehelin Jensen, Troels;

    2015-01-01

    BACKGROUND: Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function. OBJECTIVE: To investigate autonomic...

  8. Reliability of clinical tests to evaluate nerve function and mechanosensitivity of the upper limb peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Bachmann Lucas M

    2009-01-01

    Full Text Available Abstract Background Clinical tests to assess peripheral nerve disorders can be classified into two categories: tests for afferent/efferent nerve function such as nerve conduction (bedside neurological examination and tests for increased mechanosensitivity (e.g. upper limb neurodynamic tests (ULNTs and nerve palpation. Reliability reports of nerve palpation and the interpretation of neurodynamic tests are scarce. This study therefore investigated the intertester reliability of nerve palpation and ULNTs. ULNTs were interpreted based on symptom reproduction and structural differentiation. To put the reliability of these tests in perspective, a comparison with the reliability of clinical tests for nerve function was made. Methods Two experienced clinicians examined 31 patients with unilateral arm and/or neck pain. The examination included clinical tests for nerve function (sensory testing, reflexes and manual muscle testing (MMT and mechanosensitivity (ULNTs and palpation of the median, radial and ulnar nerve. Kappa statistics were calculated to evaluate intertester reliability. A meta-analysis determined an overall kappa for the domains with multiple kappa values (MMT, ULNT, palpation. We then compared the difference in reliability between the tests of mechanosensitivity and nerve function using a one-sample t-test. Results We observed moderate to substantial reliability for the tests for afferent/efferent nerve function (sensory testing: kappa = 0.53; MMT: kappa = 0.68; no kappa was calculated for reflexes due to a lack of variation. Tests to investigate mechanosensitivity demonstrated moderate reliability (ULNT: kappa = 0.45; palpation: kappa = 0.59. When compared statistically, there was no difference in reliability for tests for nerve function and mechanosensitivity (p = 0.06. Conclusion This study demonstrates that clinical tests which evaluate increased nerve mechanosensitivity and afferent/efferent nerve function have comparable moderate to

  9. Usefulness of 123I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients

    International Nuclear Information System (INIS)

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by 123I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18±12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96±0.34 vs 2.27±0.20, %WR; 24.71±16.99% vs 12.89±11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. 123I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  10. Usefulness of {sup 123}I-Meta-iodobenzylguanidine (MIBG) myocardial scintigraphy for evaluation of cardiac sympathetic nervous system function in diabetic patients.

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Koji; Nakatani, Yuko; Doi, Kenji; Adachi, Gakuji; Takada, Kou

    2001-11-01

    The cardiac sympathetic nervous system function of diabetic patients with no definite cardiovascular complications other than hypertension was evaluated by {sup 123}I -MIBG myocardial scintigraphy. The subjects consisted of 82 diabetic patients, 59 men, 23 women, mean age 57 years, 17 with hypertension and 65 with normal blood pressure, and they were compared with normal controls (8 men and 3 women, mean age 54 years). Myocardial scintigraphy was performed 10 minutes and 4 hours after administration of MIBG. The superior mediastinum and whole myocardium were set as regions of interest, and the heart-to-mediastinum ratio (H/M ratio) and the washout rate (%WR) were calculated. The mean observation period was 18{+-}12 months, and 17 of the 65 diabetic patients with normal blood pressure before the study developed hypertension during the observation period. There were significant differences in H/M ratio and %WR between the diabetic patients and normal controls (H/M ratio; 1.96{+-}0.34 vs 2.27{+-}0.20, %WR; 24.71{+-}16.99% vs 12.89{+-}11.94). The diabetic patients with hypertension had higher morbidity with diabetic retinopathy and a lower H/M ratio. The 17 patients who developed hypertension during the observation period showed an increase in %WR and a reduction in the H/M ratio. Five patients who died during the observation period had a reduced H/M ratio and increased of %WR. {sup 123}I-MIBG myocardial scintigraphy in diabetic patients was shown to be useful for detecting cardiac sympathetic nervous system dysfunction, predicting the development of hypertension, and identifying patients who had a poor outcome. Diabetic patients with abnormal signals on MIBG myocardial scintigraphy need to be monitored much more carefully. (K.H.)

  11. Autonomic Modification of Intestinal Smooth Muscle Contractility

    Science.gov (United States)

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  12. Acute Toluene Exposure Alters Expression of Genes in the Central Nervous System Associated With Synaptic Structure and Function

    Science.gov (United States)

    Toluene is a volatile organic compound (VOC) and a ubiquitous air pollutant of interest to EPA regulatory programs. Whereas its acute functional effects are well described, several modes of action in the CNS have been proposed. Therefore, we sought to identify potential pathways ...

  13. microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases

    DEFF Research Database (Denmark)

    Christensen, Mette; Schratt, Gerhard M

    2009-01-01

    microRNAs, small non-coding RNAs that regulate gene expression at the post-transcriptional level, are emerging as important regulatory molecules involved in the fine-tuning of gene expression during neuronal development and function. microRNAs have roles during neuronal stem cell commitment and...

  14. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    Science.gov (United States)

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it. PMID:26578509

  15. Assessment of autonomic dysfunction following spinal cord injury: rationale for additions to International Standards for Neurological Assessment.

    Science.gov (United States)

    Krassioukov, Andrei V; Karlsson, Ann-Katrin; Wecht, Jill M; Wuermser, Lisa-Ann; Mathias, Christopher J; Marino, Ralph J

    2007-01-01

    We present a preliminary report of the discussion of the joint committee of the American Spinal Injury Association (ASIA) and the International Spinal Cord Society concerning the development of assessment criteria for general autonomic function testing following spinal cord injury (SCI). Elements of this report were presented at the 2005 annual meeting of the ASIA. To improve the evaluation of neurological function in individuals with SCI and therefore better assess the effects of therapeutic interventions in the future, we are proposing a comprehensive set of definitions of general autonomic nervous system dysfunction following SCI that should be assessed by clinicians. Presently the committee recommends the recognition and assessment of the following conditions: neurogenic shock, cardiac dysrhythmias, orthostatic hypotension, autonomic dysreflexia, temperature dysregulation, and hyperhidrosis. PMID:17551864

  16. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic and motor systems by high spatial resolution 7 Tesla fMRI

    Science.gov (United States)

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R.; Setsompop, Kawin; Brown, Emery N.; Hamalainen, Matti S.; Rosen, Bruce R.; Wald, Lawrence L.

    2016-01-01

    Object To map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. Materials and Methods We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we utilized the increased contrast-to-noise ratio of 7 Tesla fMRI compared to 3 Tesla and the time efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1 mm-isotropic nominal resolution) while maintaining a short repetition time (2.5 s). Results The delineated Pearson’s correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Conclusion Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson’s disease and other motor disorders. PMID:27126248

  17. Assessment of Functional Disturbances in the Central Nervous System Caused by Severe Carbon Monoxide Poisoning in Rats.

    Science.gov (United States)

    Tolkach, P G; Basharin, V A; Grebenyuk, A N

    2016-02-01

    An experimental model was developed for assessment of disturbances in CNS functions of laboratory animals caused by severe carbon monoxide poisoning. Normalization of the state of experimental rats after acute poisoning was accompanied by the development of cognitive abnormalities. Disturbances in the long-term memory were observed on days 1 and 14 after CO poisoning, while abnormalities in the short-term memory developed on days 1, 7, and 14. Learning impairment were recorded on day 8, while the training course began on day 7. PMID:26906199

  18. Comparative Effects of Acupressure at Local and Distal Acupuncture Points on Pain Conditions and Autonomic Function in Females with Chronic Neck Pain

    Directory of Open Access Journals (Sweden)

    Takako Matsubara

    2011-01-01

    Full Text Available Acupressure on local and distal acupuncture points might result in sedation and relaxation, thereby reducing chronic neck pain. The aim was to investigate the effect of acupressure at local (LP and distal acupuncture points (DP in females with chronic neck pain. Thirty-three females were assigned to three groups: the control group did not receive any stimuli, the LP group received acupressure at local acupuncture points, GB 21, SI 14 and SI 15, and the DP group received acupressure at distal acupuncture points, LI 4, LI 10 and LI 11. Verbal rating scale (VRS, Neck Disability Index (NDI, State-Trait Anxiety Inventory (STAI, muscle hardness (MH, salivary alpha-amylase (sAA activity, heart rate (HR, heart rate variability (HRV values and satisfaction due to acupressure were assessed. VRS, NDI, STAI and MH values decreased after acupressure in the LP and the DP group. HR decreased and the power of high frequency (HF component of HRV increased after acupressure in only the LP group. Although acupressure on not only the LP but also the DP significantly improved pain conditions, acupressure on only the LP affected the autonomic nervous system while acupuncture points per se have different physical effects according to location.

  19. Relationship between autonomic cardiovascular control, case definition, clinical symptoms, and functional disability in adolescent chronic fatigue syndrome: an exploratory study

    Directory of Open Access Journals (Sweden)

    Wyller Vegard B

    2013-02-01

    Full Text Available Abstract Chronic Fatigue Syndrome (CFS is characterized by severe impairment and multiple symptoms. Autonomic dysregulation has been demonstrated in several studies. We aimed at exploring the relationship between indices of autonomic cardiovascular control, the case definition from Centers for Disease Control and Prevention (CDC criteria, important clinical symptoms, and disability in adolescent chronic fatigue syndrome. 38 CFS patients aged 12–18 years were recruited according to a wide case definition (ie. not requiring accompanying symptoms and subjected to head-up tilt test (HUT and a questionnaire. The relationships between variables were explored with multiple linear regression analyses. In the final models, disability was positively associated with symptoms of cognitive impairments (p

  20. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis

    Science.gov (United States)

    FENG, NIANPING; HAO, GUANG; YANG, FENGGANG; QU, FUJUN; ZHENG, HAIHONG; LIANG, SONGLAN; JIN, YONGHUA

    2016-01-01

    Cerebral ischemia, which may lead to cerebral hypoxia and damage of the brain tissue, is a leading cause of human mortality and adult disability. Mesenchymal stem cells (MSCs) are a class of adult progenitor cells with the ability to differentiate into multiple cell types. The transplantation of bone marrow-derived MSCs is a potential therapeutic strategy for cerebral ischemia. However, the underlying mechanism has yet to be elucidated. In the present study, primary MSCs were isolated from healthy rats, labeled and transplanted into the brains of middle cerebral artery occlusion rat models. The location of the labeled MSCs in the rat brains were determined by fluorescent microscopy, and the neurological functions of the rats were scored. Immunohistochemical analyses demonstrated that the protein expression levels of myelin-associated inhibitors of regeneration, including Nogo-A, oligodendrocyte myelin glycoprotein and myelin-associated glycoprotein, were decreased following transplantation of the bone marrow-derived MSCs. Furthermore, the mRNA expression levels of Capase-3 and B-cell lymphoma 2, as determined by reverse transcription-quantitative polymerase chain reactions, were downregulated and upregulated, respectively, in the MSC-transplanted rats; thus suggesting that neural apoptosis was inhibited. The results of the present study suggested that the transplantation of bone marrow-derived MSCs was able to promote the functional recovery of the central nervous system following cerebral ischemia. Accordingly, inhibitors targeting myelin-associated inhibitors and apoptosis may be of clinical significance for cerebral ischemia in the future.

  1. Exercise Reveals the Interrelation of Physical Fitness, Inflammatory Response, Psychopathology, and Autonomic Function in Patients With Schizophrenia

    OpenAIRE

    Ostermann, Stefanie; Herbsleb, Marco; Schulz, Steffen; Donath, Lars; Berger, Sandy; Eisenträger, Daniela; Siebert, Tobias; Müller, Hans-Josef; Puta, Christian; Voss, Andreas; Gabriel, Holger W.; Koch, Kathrin; Bär, Karl-Jürgen

    2012-01-01

    Maintaining and improving fitness are associated with a lower risk of premature death from cardiovascular disease. Patients with schizophrenia are known to exercise less and have poorer health behaviors than average. Physical fitness and physiological regulation during exercise tasks have not been investigated to date among patients with schizophrenia. We studied autonomic modulation in a stepwise exhaustion protocol in 23 patients with schizophrenia and in matched controls, using spirometry ...

  2. NERVOUS-SYSTEM SPECIFIC PROTEINS AS BIOCHEMICAL INDICATORS OF NEUROTOXICITY

    Science.gov (United States)

    Recent advances in neuroimmunology and protein purification methodology have led to the identification of nervous-system specific proteins. Their intimate relationship to the cellular and functional heterogeneity of the nervous system, makes these proteins ideal biochemical marke...

  3. Heart Rate Variability for Quantification of Autonomic Dysfunction in Fibromyalgia

    Science.gov (United States)

    Kang, Jin Ho; Hong, Seok Hyun; Lee, Chang Hyun; Choi, Byoong Yong

    2016-01-01

    Objective To quantify autonomic dysfunction in fibromyalgia patients compared to healthy controls using heart rate variability (HRV). Methods Sixteen patients with fibromyalgia and 16 healthy controls were recruited in this case control study. HRV was measured using the time-domain method incorporating the following parameters: total heartbeats, the mean of intervals between consecutive heartbeats (R-R intervals), the standard deviation of normal to normal R-R intervals (SDNN), the square root of the mean squared differences of successive R-R intervals (RMSSD), ratio of SDNN to RMSSD (SDNN/RMSSD), and difference between the longest and shortest R-R interval under different three conditions including normal quiet breathing, rate controlled breathing, and Valsalva maneuver. The severity of autonomic symptoms in the group of patients with fibromyalgia was measured by Composite Autonomic Symptom Scale 31 (COMPASS 31). Then we analyzed the difference between the fibromyalgia and control groups and the correlation between the COMPASS 31 and aforementioned HRV parameters in the study groups. Results Patients with fibromyalgia had significantly higher SDNN/RMSSD values under both normal quiet breathing and rate controlled breathing compared to controls. Differences between the longest and shortest R-R interval under Valsalva maneuver were also significantly lower in patients with fibromyalgia than in controls. COMPASS 31 score was negatively correlated with SDNN/RMSSD values under rate controlled breathing. Conclusion SDNN/RMSSD is a valuable parameter for autonomic nervous system function and can be used to quantify subjective autonomic symptoms in patients with fibromyalgia. PMID:27152281

  4. Individual Differences in Adolescents' Sympathetic and Parasympathetic Functioning Moderate Associations between Family Environment and Psychosocial Adjustment

    Science.gov (United States)

    Diamond, Lisa M.; Fagundes, Christopher P.; Cribbet, Matthew R.

    2012-01-01

    The present study tested whether individual differences in autonomic nervous system functioning interact with environmental risk factors to predict adolescents' psychosocial functioning. The authors assessed skin conductance and respiratory sinus arrhythmia at rest and during laboratory stressors in 110 14-year-olds. Subsequently, adolescents and…

  5. Facial Vibrotactile Stimulation Activates the Parasympathetic Nervous System: Study of Salivary Secretion, Heart Rate, Pupillary Reflex, and Functional Near-Infrared Spectroscopy Activity

    Directory of Open Access Journals (Sweden)

    Hisao Hiraba

    2014-01-01

    Full Text Available We previously found that the greatest salivation response in healthy human subjects is produced by facial vibrotactile stimulation of 89 Hz frequency with 1.9 μm amplitude (89 Hz-S, as reported by Hiraba et al. (2012, 20011, and 2008. We assessed relationships between the blood flow to brain via functional near-infrared spectroscopy (fNIRS in the frontal cortex and autonomic parameters. We used the heart rate (HRV: heart rate variability analysis in RR intervals, pupil reflex, and salivation as parameters, but the interrelation between each parameter and fNIRS measures remains unknown. We were to investigate the relationship in response to established paradigms using simultaneously each parameter-fNIRS recording in healthy human subjects. Analysis of fNIRS was examined by a comparison of various values between before and after various stimuli (89 Hz-S, 114 Hz-S, listen to classic music, and “Ahh” vocalization. We confirmed that vibrotactile stimulation (89 Hz of the parotid glands led to the greatest salivation, greatest increase in heart rate variability, and the most constricted pupils. Furthermore, there were almost no detectable differences between fNIRS during 89 Hz-S and fNIRS during listening to classical music of fans. Thus, vibrotactile stimulation of 89 Hz seems to evoke parasympathetic activity.

  6. Facial vibrotactile stimulation activates the parasympathetic nervous system: study of salivary secretion, heart rate, pupillary reflex, and functional near-infrared spectroscopy activity.

    Science.gov (United States)

    Hiraba, Hisao; Inoue, Motoharu; Gora, Kanako; Sato, Takako; Nishimura, Satoshi; Yamaoka, Masaru; Kumakura, Ayano; Ono, Shinya; Wakasa, Hirotugu; Nakayama, Enri; Abe, Kimiko; Ueda, Koichiro

    2014-01-01

    We previously found that the greatest salivation response in healthy human subjects is produced by facial vibrotactile stimulation of 89 Hz frequency with 1.9 μ m amplitude (89 Hz-S), as reported by Hiraba et al. (2012, 20011, and 2008). We assessed relationships between the blood flow to brain via functional near-infrared spectroscopy (fNIRS) in the frontal cortex and autonomic parameters. We used the heart rate (HRV: heart rate variability analysis in RR intervals), pupil reflex, and salivation as parameters, but the interrelation between each parameter and fNIRS measures remains unknown. We were to investigate the relationship in response to established paradigms using simultaneously each parameter-fNIRS recording in healthy human subjects. Analysis of fNIRS was examined by a comparison of various values between before and after various stimuli (89 Hz-S, 114 Hz-S, listen to classic music, and "Ahh" vocalization). We confirmed that vibrotactile stimulation (89 Hz) of the parotid glands led to the greatest salivation, greatest increase in heart rate variability, and the most constricted pupils. Furthermore, there were almost no detectable differences between fNIRS during 89 Hz-S and fNIRS during listening to classical music of fans. Thus, vibrotactile stimulation of 89 Hz seems to evoke parasympathetic activity. PMID:24511550

  7. Relations between social-perceptual ability in multi- and unisensory contexts, autonomic reactivity, and social functioning in individuals with Williams syndrome.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Bellugi, Ursula

    2015-07-01

    Compromised social-perceptual ability has been proposed to contribute to social dysfunction in neurodevelopmental disorders. While such impairments have been identified in Williams syndrome (WS), little is known about emotion processing in auditory and multisensory contexts. Employing a multidimensional approach, individuals with WS and typical development (TD) were tested for emotion identification across fearful, happy, and angry multisensory and unisensory face and voice stimuli. Autonomic responses were monitored in response to unimodal emotion. The WS group was administered an inventory of social functioning. Behaviorally, individuals with WS relative to TD demonstrated impaired processing of unimodal vocalizations and emotionally incongruent audiovisual compounds, reflecting a generalized deficit in social-auditory processing in WS. The TD group outperformed their counterparts with WS in identifying negative (fearful and angry) emotion, with similar between-group performance with happy stimuli. Mirroring this pattern, electrodermal activity (EDA) responses to the emotional content of the stimuli indicated that whereas those with WS showed the highest arousal to happy, and lowest arousal to fearful stimuli, the TD participants demonstrated the contrasting pattern. In WS, more normal social functioning was related to higher autonomic arousal to facial expressions. Implications for underlying neural architecture and emotional functions are discussed. PMID:26002754

  8. Separation of autonomous function from cell density in non-immunogenic hyperthyroidism. Pt. 2. Quantified comparison before and after radioiodine therapy

    Energy Technology Data Exchange (ETDEWEB)

    Als, C. [Dept. of Nuclear Medicine, Inselspital, Univ. Bern (Switzerland); Roesler, H. [Dept. of Nuclear Medicine, Inselspital, Univ. Bern (Switzerland); Listewnik, M. [Dept. of Nuclear Medicine, Inselspital, Univ. Bern (Switzerland)

    1996-02-01

    Regional autonomous cell mass (Q: cell density ratio) and function (T: toxicity index) were compared by double isotope parametric thyroid scintigraphy (Als et al., Nucl. Med. 1995; 34) in 53 patients with non-immunogenic hyperthyroidism before and after radioiodine therapy (aRIT) and showed a break-down (medians) of Q: 4.3{yields}1.0 (toxic adenomas: TA), 2{yields}1.1 (multifocal functional autonomies: MFA) (p<0.0001) as of T: 96{yields}1.7 (TA), 15{yields}1.1 (MFA) (p<0.001). Five functional aRIT patterns resulted: euthyroidism (n=37, 70%), at half with scarred/non-scarred autonomous areas (low/higher T, respectively), primary hypothyroidism (n=4), residual hyperthyroidism (n=7), secondary hyperthyroidism (n=5). The last two groups with persistent subnormal TSH values were clearly separated by divergent T, thyroxine and triiodothyronine levels. A resulting T>1 may represent a clinically sub-critical mass of residual autonomous tissue. This new technique facilitates individual pretherapeutic evaluations and aRIT quality control. (orig.) [Deutsch] Regionale autonome Zellmasse (Q: Zelldichtequotient) und Funktion (T: Toxizitaetsindex) wurden bei 53 Patienten mit nichtimmunogener Hyperthyreose vor und nach Radiojodtherapie (nRJT) mittels einer parametrischen Doppelisotopen-Schilddruesenszintigraphie (Als et al., Nucl. Med. 1995; 34) untersucht, und ergaben einen Zusammenbruch (Medianen) von Q: 4,3{yields}1,0 (toxische Adenome: TA), 2{yields}1,1 (multifokale funktionelle Autonomien: MFA) (p<0,0001) sowie von T: 96{yields}1,7 (TA), 15{yields}1,1 (MFA) (p<0,001). Fuenf funktionelle Muster wurden nRJT unterscheidbar: Euthyreose (n=37, 70%), zur Haelfte mit vernarbten/nichtvernarbten autonomen Arealen (respektive niedrige/hoehere T); primaere Hypothyreose (n=4), Rest-Hyperthyreose (n=7), sekundaere Hyperthyreose (n=5). Die beiden letzten Gruppen mit persistierend subnormalen TSH-Werten wurden eindeutig anhand divergierender T-, Trijodthyronin- und Thyroxin

  9. Capsaicin Stimulation on Autonomic Nervous System in Human by Heart Rate Variability Analysis%心率变异性分析评价辣椒素致痛对自主神经活动的影响

    Institute of Scientific and Technical Information of China (English)

    周芳; 房泽; 张健; 申岱

    2015-01-01

    second card (Sigma Tel c-major Audio) of the laptop (DELL INSPIRON 501) was used to collect the ECG of volunteers. Results The VAS scores after the stimulation of capsaicin was 63.36 ± 11.21. The hemodynamic features of pa⁃tients showed the contrast within the two groups, the value of HR at T1 was significantly increased (P>0.05). The results of time-domain analysis showed the value of SDNN and RMSSD at T1 significantly increased (P<0.05). Frequency-analysis showed the value of TP, LF, HF and LF/HF at T1 significantly increased (P<0.05). The result of scatter diagram showed the value of SD1 and SD2 at T1 significantly increased (P<0.05). Conclusion It is feasible to build the capsaicin pain model. During the stimulation of capsaicin, the action of the autonomic nerve has significantly increased. Both the sympathetic nerve and the pneumogastric nerve can be enhanced. The heart rate variability can be used as the indicator to the evaluation of pain.

  10. The nicotine paradox: effect of smoking on autonomic discrimination.

    Science.gov (United States)

    Lombardo, T W; Epstein, L H

    1986-01-01

    Smoking reduces negative affect while it increases sympathetic nervous system activity. However, theories of emotion predict that increased autonomic arousal should increase rather than reduce negative affect. One explanation for this paradox is that nicotine interferes with perception of autonomic activity. We evaluated the effect of smoking on autonomic activity perception by measuring performance on a heartbeat detection task after a high or low dose of nicotine or not smoking. A group of nonsmokers also completed the task. Results failed to support the hypothesis. In light of previous research, the results suggest EMG perception may be more important to the negative affect reduction phenomenon than perception of autonomic activity. PMID:3739820

  11. Autonomous Search

    CERN Document Server

    Hamadi, Youssef; Saubion, Frédéric

    2012-01-01

    Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners. Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the

  12. Autonomic symptoms in idiopathic REM behavior disorder

    DEFF Research Database (Denmark)

    Ferini-Strambi, Luigi; Oertel, Wolfgang; Dauvilliers, Yves;

    2014-01-01

    Patients with idiopathic REM sleep behavior disorder (iRBD) are at very high risk of developing neurodegenerative synucleinopathies, which are disorders with prominent autonomic dysfunction. Several studies have documented autonomic dysfunction in iRBD, but large-scale assessment of autonomic...... symptoms has never been systematically performed. Patients with polysomnography-confirmed iRBD (318 cases) and controls (137 healthy volunteers and 181 sleep center controls with sleep diagnoses other than RBD) were recruited from 13 neurological centers in 10 countries from 2008 to 2011. A validated scale...... to study the disorders of the autonomic nervous system in Parkinson's disease (PD) patients, the SCOPA-AUT, was administered to all the patients and controls. The SCOPA-AUT consists of 25 items assessing the following domains: gastrointestinal, urinary, cardiovascular, thermoregulatory, pupillomotor...

  13. Male sexual and urinary functions after autonomic-nerve-preserving operations for rectal cancer and individualization of the operation based on thin-section MRI findings

    International Nuclear Information System (INIS)

    A prospective study on male sexual and urinary functions after mesorectal excision (ME) or ME plus extended lateral pelvic lymph node dissection (LD) for rectal cancer showed that the patients undergoing ME alone had excellent sexual and urinary functions. The functional results of the patients with ME plus LD were worse than those of the patients with ME alone. Degrees of sexual and urinary dysfunctions depend on the degrees of both autonomic nerve preservation (ANP) and LD. Thus, ideally, ANP and LD should be individualized according to tumor extent. Another prospective study assessing accuracy of thin-section MRI (TSMRI) with a phased-array coil in rectal cancer staging demonstrated that TSMRI is very accurate in detection of mesorectal fascia invasion and lateral pelvic lymph node metastasis, and TSMRI is moderately accurate in prediction of transmural invasion depth and mesorectal lymph node metastasis. In conclusion, individualization of ANP and LD seems possible if it depends on TSMRI findings. (author)

  14. A necessary and sufficient condition for transforming autonomous systems into linear autonomous Birkhoffian systems

    International Nuclear Information System (INIS)

    The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. 保留自主神经的胃癌D2淋巴结清扫技术%Surgical techniques of autonomic nerve preservation in lymph nodes dissection for gastric cancer

    Institute of Scientific and Technical Information of China (English)

    胡祥

    2012-01-01

    Resection of the automonic nervous system in the process of lymph nodes dissection is a major factor leading to postoperative gastrointestinal dysfunction.The era of blind expansion of the wide excision has been questioned,and safety first,radical dissection of the metastatic lymph nodes,low invasive rate and organ function-saving surgery have been highly emphasized.Preserving the gastric autonomic nerve effectively reduces postoperative diarrhea,shortens the time for weight recovery,and prevents insulin secretion disorders and postoperative cholelithiasis.In the process of laparoscopic or open autonomic nerve preservation in lymph node dissection for gastric cancer,full understanding of the anatomy of the autonomic nervous system,recognizing the landmark of the nerves,proper designing the surgical space,dissecting according to the extracellular space in the membrane of the nerve fibers and nerve plexus are factors which ensures the quality and effects of the surgery.

  16. Quantitative morphometric analysis of the myenteric nervous plexus ganglion structures along the human digestive tract

    Directory of Open Access Journals (Sweden)

    Mandić Predrag

    2016-01-01

    Full Text Available Background/Aim. All the functions of the digestive system are controlled, guided and initiated by the autonomic nervous system. A special part of this system placed in the wall of the gastrointestinal tract is known as the enteric or metasympathetic nervous system. The aim of this study was to analyse myenteric nervous plexus in different parts of the digestive tract. Methods. We examined the myenteric nervous plexus of the esophagus, stomach, duodenum, jejunum, ileum, transverse colon and rectum in tissue samples taken from 30 cadavers of persons aged 20-84 years. After standard histological processing sections were stained with hematoxylineosin, cresyl violet (CV and AgNO3 method. Multipurpose test system M42 was used in morphometric analysis. The results were analyzed by t-test and analysis of variance. Results. The number of neurons per cm2 surface was the lowest in the esophagus (2.045 ± 310.30 and the largest in the duodenum (65,511 ± 5,639. The statistical processing showed significant differences (p < 0.001 in the number of neurons between the esophagus and all other parts of the digestive tract. The maximal value of the average surface of the myenteric nervous plexus neurons was observed in the esophagus (588.93 ± 30.45 μm2 and the lowest in the stomach (296.46 ± 22.53 μm2. Conclusion. There are differences in the number of ganglion cells among different parts of the human digestive tract. The differences range from a few to several tens of thousands of neuron/cm2. The myenteric nervous plexus of the esophagus was characterized by a significantly smaller number of neurons but their bodies and nuclei are significantly larger compared to other parts of the digestive tract.

  17. The role of functionalized magnetic iron oxide nanoparticles in the central nervous system injury and repair: new potentials for neuroprotection with Cerebrolysin therapy.

    Science.gov (United States)

    Sharma, Hari Shanker; Menon, Preeti K; Lafuente, José Vicente; Aguilar, Zoraida P; Wang, Y Andrew; Muresanu, Dafin Fior; Mössler, Herbert; Patnaik, Ranjana; Sharma, Aruna

    2014-01-01

    Functionalized Magnetic Iron Oxide Nanoparticles (FMIONPs) are being explored for the development of various biomedical applications, e.g., cancer chemotherapy and/or several other radiological or diagnostic purposes. However, the effects of these NPs per se on the central nervous system (CNS) injury or repair are not well known. This review deals with different aspects of FMIONPs in relation to brain function based on the current literature as well as our own investigation in animal models of CNS injuries. It appears that FMIONPs are innocuous when administered intravenously within the CNS under normal conditions. However, abnormal reactions to FMIONPs in the brain or spinal cord could be seen if they are combined with CNS injuries e.g., hyperthermia or traumatic insults to the brain or spinal cord. Thus, administration of FMIONPs in vivo following whole body hyperthermia (WBH) or a focal spinal cord injury (SCI) exacerbates cellular damage. Since FMIONPs could help in diagnostic purposes or enhance the biological effects of radiotherapy/chemotherapy it is likely that these NPs may have some adverse reaction as well under disease condition. Thus, under such situation, adjuvant therapy e.g., Cerebrolysin (Ever NeuroPharma, Austria), a suitable combination of several neurotrophic factors and active peptide fragments are the need of the hour to contain such cellular damages caused by the FMIONPs in vivo. Our observations show that co-administration of Cerebrolysin prevents the FMIONPs induced pathologies associated with CNS injuries. These observations support the idea that FMIONPs are safe for the CNS in disease conditions when co-administered with cerebrolysin. This indicates that cerebrolysin could be used as an adjunct therapy to prevent cellular damages in disease conditions where the use of FMIONPs is required for better efficacy e.g., cancer treatment. PMID:24730284

  18. Semantic Web Meets Autonomic Ubicomp

    OpenAIRE

    Belecheanu, R A; Jawaheer, G; Hoskins, A.; McCann, J; Payne, T.

    2004-01-01

    The placement of autonomic systems’ management functionality into a ubiquitous computing environment is a difficult task due to the lack of systems’ resources and the need for ‘intelligence’ to ensure that the system is selfhealing/ organising or configuring. For such systems to adapt to changes to their current environment they need to be able to (re) configure the workflow of their services. In this paper, we propose the ANS, an autonomic middleware for ubicomp devices. We briefly describe ...

  19. PSYCHOPHYSIOLOGIC AND IMMUNOLOGIC CHARACTERISTICS IN PATIENTS WITH BRONCHIAL ASTHMA AND HEALTHY MEN WITH DIFFERENT FUNCTIONAL ASYMMETRY OF BRAIN HEMISPHERES

    Directory of Open Access Journals (Sweden)

    T. Ya. Abramova

    2014-07-01

    Full Text Available Abstract. Possible interactions between psychophysiological and immunological parameters are documented in healthy persons and bronchial asthma patients, as based on our own data and other sources. A role of functional asymmetry of brain is regarded as a basic phenomenon determining main features of psychical activity, as well as functions of autonomous nervous system and immunological activity.

  20. Hypothalamic-pituitary function of children with acute lymphocytic leukemia after three forms of central nervous system prophylaxis. A retrospective study.

    Science.gov (United States)

    Voorhess, M L; Brecher, M L; Glicksman, A S; Jones, B; Harris, M; Krischer, J; Boyett, J; Forman, E; Freeman, A I

    1986-04-01

    The hypothalamic-pituitary function of 93 children, who had received central nervous system (CNS) prophylaxis as part of their therapy for acute lymphocytic leukemia (ALL), and who remained in continuous complete remission, was evaluated retrospectively. Treatment regimens included--Group I: 31 subjects, intrathecal methotrexate (IT MTX); Group II: 31 subjects, IT MTX plus 2400 rad cranial irradiation; and Group III: 31 subjects, IT MTX and intravenous intermediate-dose methotrexate. Serum thyroid-stimulating hormone (TSH) and T4 levels were normal. All participants had normal adrenocorticotropic hormone (ACTH) secretion as assessed by plasma cortisol responses to insulin hypoglycemia. Urinary follicle-stimulating hormone (FSH) and luteinizing hormone (LH) excretion of pubertal and postpubertal patients (N = 37) was appropriate, except for one subject from Group I who had an abnormally high output of gonadotropins, and one from Group II who had abnormally low levels. Growth hormone (GH) responses were subnormal after sequential arginine-insulin stimulation as follows--Group 1: 3 of 31 patients; Group II: 6 of 25 patients; and Group III: 2 of 29 patients. Nevertheless, all children had normal linear growth. It was concluded that the three forms of CNS prophylaxis evaluated had no long-term adverse effect on TSH and ACTH secretion. FSH-LH production appears to be normal, but final judgment must await follow-up studies because 60% of the patients were prepuberteral or still receiving chemotherapy. Eleven patients had subnormal GH responses after pharmacologic stimulation of the pituitary, but long-term linear growth was unaffected. PMID:3753892

  1. The artificial somato-autonomic reflex arch does not improve bowel function in subjects with spinal cord injury

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Mylius; Krogh, Klaus; Clemmensen, Dorte;

    2015-01-01

    Study design: Prospective cohort study. Objective: Although introduced for neurogenic bladder dysfunction, it has been suggested that the artificial somato-autonomic reflex arch alleviates neurogenic bowel dysfunction (NBD). We aimed at evaluating the effects of the reflex arch on NBD. Setting......: Denmark. Methods: Ten subjects with supraconal spinal cord injury (SCI) (nine males, median age 46 years) had an anastomosis created between the ventral part of the fifth lumbar or first sacral nerve root and the ventral part of the second sacral nerve root. Standardized assessment of segmental colorectal...... transit times with radiopaque markers, evaluation of scintigraphic assessed colorectal emptying upon defecation, scintigraphic assessment of colorectal transport during stimulation of the reflex arch, standard anorectal physiology tests and colorectal symptoms were performed at baseline and 18 months...

  2. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  3. Rap信号在神经系统中的功能研究进展%The Progress of the Biological Function of Rap Signaling in Nervous System

    Institute of Scientific and Technical Information of China (English)

    张宗勇; 李斌; 刘剑峰; 苏莉

    2012-01-01

    Raps are members of the Ras family of small GTP-binding proteins, cycling between active GTP-bound form and inactive GDP-bound form. They act as molecular switches to regulate cell proliferation, differentiation, survival, adhesion or migration. Rap can be activated by a wide variety of external stimulation, which is mediated by specific RapGEFs. Accordingly, active Rap can be inactivated by their specific RapGAPs. Rap signaling has various biological functions through different downstream signaling pathways. Rap signaling is also involved in various neuronal physiological processes, like the establishment of neuronal polarity or axonal growth and neurite outgrowth. Accordingly, Rap signaling has been found to regulate structural and functional processes of synaptic plasticity. In addition, a correlation between Rap signaling and neuron migration had been reported. Here, we present the latest progress on the biological functions of Rap signaling in nervous system.%小分子G蛋白Rap属于Ras家族,其结构类似于Ras,结合GTP后处于活性状态(RapGTP),结合GDP后则处于非活性状态(RapGDP).在细胞内,Rap通过RapGTP与RapGDP之间的动态转换起到分子开关的作用,调控细胞增殖、分化、存活、粘附、迁移等生理过程.胞外信号通过特异性鸟嘌呤核苷酸交换因子(guanine nucleotide exchange factors,GEFs)调控Rap与GTP的结合,激活Rap;胞内特异性GTP酶激活蛋白(GTPase activating proteins,GAPs)促进GTP的水解,使Rap失活.活化的Rap信号通过其下游不同的信号分子调控不同的生物学功能.在神经系统中,Rap信号具有多样的生物学功能,Rap信号能促进神经元极性的建立和轴突生长,还能调节神经突生长.Rap信号能够调控神经突触结构和功能的可塑性变化.此外,也有研究报道Rap信号和神经元的迁移具有相关性.本文主要针对Rap信号在神经系统中的功能研究进展进行综述.

  4. Dealing with nervousness

    OpenAIRE

    Lofnes, Ingrid

    2010-01-01

    This thesis examines stage fright among musicians, and the reason that some musicians apparently never bother with this issue, while others suffer so much from nervousness that it is making them sick. I have tried to figure out how one can get control over the nerves and how to be able to live as a musician in spite of nervousness. Nervousness is often strongly connected with our personality and how we see ourselves, and the psychological aspects of stage fright is therefore devoted quite muc...

  5. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E;

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  6. The autonomic and rate pressure product responses of Tai Chi practitioners

    Directory of Open Access Journals (Sweden)

    Michael A Figueroa

    2012-01-01

    Full Text Available Background: Spectral analysis of autonomic nervous system activity can provide insight into cardiovascular function. Rate pressure product is the parameter often targeted pharmacologically to decrease the incidence of myocardial events. Aim: The purpose of this study was to investigate whether or not Tai Chi Chuan practitioners would demonstrate autonomic responses that would be more cardioprotective when compared to non-trained controls. Materials and Methods: This was a cross-sectional study that measured the autonomic responses and rate pressure product of 2 groups of subjects; a Tai Chi Chuan trained (n = 13 and non-trained sedentary controls (n = 13 at rest and during 2 stressor phases that simulated functional activities of daily living. Results: The Tai Chi group maintained a greater parasympathetic outflow at rest and during the isometric grip stressor phase (P<0.05. Sympathetic outflow, systolic blood pressure and rate pressure product were significantly lower in the Tai Chi group at rest, during the isometric grip and standing stressor phases (P<0.05. Conclusion: Although a cause-and-effect relationship cannot be concluded in this study, the Tai Chi group was able to demonstrate efficiency of the myocardium with suppressed rate pressure product values and autonomic responses that favored parasympathetic outflow. This type of training may complement non-pharmacological anti-hypertensive therapy.

  7. Autonomic nervous system activity assessment in recreational half marathon runners [Hodnocení aktivity autonomního nervového systému u rekreačních účastníků půlmaratonského běhu

    Directory of Open Access Journals (Sweden)

    David Smékal

    2011-03-01

    Full Text Available BACKGROUND: Spectral analysis (SA of heart rate variability (HRV is considered to be a non invasive method for the quantification of autonomic cardiac activity in relationship to the sinoatrial node. It is well known that autonomic regulation is affected by various stress factors such as anxiety and/or physical activity. OBJECTIVE: The aim of the present study was to evaluate the effect of pre-competitive anxiety on the autonomic nervous system (ANS activity and, further, to monitor the time course of ANS recovery as well as perceived fatigue during 24 hours of a post-half marathon period in amateur runners. METHODS: The SA HRV method was used for the evaluation of autonomic cardiac regulation. ANS activity was assessed one week before a competition and on the day of the competition. During the post-competition period ANS activity was measured at the 1st, the 12th, and the 24th hour. ANS activity was represented by the standard spectral parameters and complex indexes of SA HRV. Precompetition anxiety was evaluated by means of a modified Likert 10 point scale. The competitors' subjective feelings of fatigue were scored on a 6 point scale. RESULTS: Perception of anxiety was significantly higher on the day of the competition than one week before the competition. The significant decrease in the complex index of sympathovagal balance on day of the competition implies l for and testifies to an increase in sympathetic activity. No significant differences between any selected HRV variables at the 12th hour as well as at the 24th hour of recovery compared to both pre-competition levels were found. Perceived fatigue remained significantly elevated up to the 24th hour of recovery. CONCLUSIONS: Our study shows that elevated pre-competitive anxiety induced sympathetic predominance in autonomic regulation particularly during the period of orthostatic stimulation. ANS activity returned to its pre-competition level during the 12th hour after the finish of the

  8. Standardization of a computerized method for calculating autonomic function test responses in healthy subjects and patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    C. Neumann

    1997-02-01

    Full Text Available The objectives of the present study were 1 to compare results obtained by the traditional manual method of measuring heart rate (HR and heart rate response (HRR to the Valsalva maneuver, standing and deep breathing, with those obtained using a computerized data analysis system attached to a standard electrocardiograph machine; 2 to standardize the responses of healthy subjects to cardiovascular tests, and 3 to evaluate the response to these tests in a group of patients with diabetes mellitus (DM. In all subjects (97 healthy and 143 with DM we evaluated HRR to deep breathing, HRR to standing, HRR to the Valsalva maneuver, and blood pressure response (BPR to standing up and to a sustained handgrip. Since there was a strong positive correlation between the results obtained with the computerized method and the traditional method, we conclude that the new method can replace the traditional manual method for evaluating cardiovascular responses with the advantages of speed and objectivity. HRR and BPR of men and women did not differ. A correlation between age and HRR was observed for standing (r = -0.48, P<0.001 and deep breathing (r = -0.41, P<0.002. Abnormal BPR to standing was usually observed only in diabetic patients with definite and severe degrees of autonomic neuropathy.

  9. Auditory stimulation and cardiac autonomic regulation

    OpenAIRE

    Vitor E Valenti; Guida, Heraldo L.; Frizzo, Ana C F; Cardoso, Ana C. V.; Vanderlei, Luiz Carlos M; Luiz Carlos de Abreu

    2012-01-01

    Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation bet...

  10. Leg vasoconstriction during head-up tilt in patients with autonomic failure is not abolished

    NARCIS (Netherlands)

    Groothuis, J.T.; Thijssen, D.H.J.; Lenders, J.W.M.; Deinum, J.; Hopman, M.T.E.

    2011-01-01

    Maintaining blood pressure during orthostatic challenges is primarily achieved by baroreceptor-mediated activation of the sympathetic nervous system, which can be divided into preganglionic and postganglionic parts. Despite their preganglionic autonomic failure, spinal cord-injured individuals demon

  11. Theoretical foundations for nervous networks

    International Nuclear Information System (INIS)

    Following three years of study into experimental Nervous Net (Nv) control devices, various successes and several amusing failures have implied some general principles on the nature of capable control systems for autonomous machines and perhaps, we conjecture, even biological organisms. These systems are minimal, elegant, and, depending upon their implementation in a open-quotes creatureclose quotes structure, astonishingly robust. Their only problem seems to be that as they are collections of non-linear asynchronous elements, only complex analysis can adequately extract and explain the emergent competency of their operation. The implications are that so long as Nv non-linear topologies can retain some measure of sub-critically coupled planar stability, the Piexito theorem will guarantee a form of plastic mode-locking necessary for broad-behavior competency. Further experimental evidence also suggests that if Nv topologies are kept in sub-chaotically stable regimes, they can be implemented at any scale and still automatically fall into effective survival strategies in unstructured environments. An explanation for how this is be possible in such minimal structures is presented. copyright 1997 American Institute of Physics

  12. Personality Change at the Intersection of Autonomic Arousal and Stress

    OpenAIRE

    Hart, Daniel; Eisenberg, Nancy; Valiente, Carlos

    2007-01-01

    We hypothesized that personality change in children would be predicted by the interaction of family risk with susceptibility to autonomic arousal, with children characterized by both families at high risk and highly reactive autonomic nervous systems showing maladaptive change. This hypothesis was tested in a six-year longitudinal study in which personality prototype, problem behavior, and negative emotional intensity were measured at two-year intervals. The results indicated that children wi...

  13. Heart rate variability as important approach for assessment autonomic modulation

    OpenAIRE

    Maycon Jr Ferreira; Angelina Zanesco

    2016-01-01

    Abstract Alterations in the heart rate recovery and heart rate variability have been associated with greater risk of mortality and early prognosis of cardiac diseases. Thus, strategies for assessing autonomic nervous system and its modulation to the heart are crucial for preventing cardiovascular events in healthy subjects as well as in cardiac patients. In this review, an update of studies examining heart rate variability (HRV) and its use as indicator of cardiac autonomic modulation will be...

  14. Autonomous Home Automated Hexapod Robot

    Directory of Open Access Journals (Sweden)

    Addanki Purna Ramesh,

    2010-12-01

    Full Text Available This paper focuses on design and implementation of six legged robot that is capable of monitoring and performing house hold works independently. The Autonomous Home Automated Hexapod is developed with three AT89C52 microcontrollers which functions as brain of the robot to which all operating functions of each module are chronologically programmed in it. The legs of the robot were developed with 2 servo motors to provide two degree for each leg. Several additional sensors like TSOP1738 (IR, RF transmitter andreceiver, DS1307 (Real Time Clock have been embedded into robot in modular form to make it work autonomously.

  15. {sup 123}I-MIBG myocardial scintigraphy in diabetic patients. Relationship with {sup 201}Tl uptake and cardiac autonomic function

    Energy Technology Data Exchange (ETDEWEB)

    Nagamachi, Shigeki; Jinnouchi, Seishi; Kurose, Takeshi; Ohnishi, Takashi; Flores, L.G. II; Nakahara, Hiroshi; Futami, Shigemi; Tamura, Shozo; Matsukura, Shigeru [Miyazaki Medical Coll., Kiyotake (Japan)

    1998-12-01

    The purpose of this paper is to investigate the influence of diabetic myocardial damage (suspected myocardial damage; SMD) diagnosed by {sup 201}Tl-SPECT and diabetic cardiac autonomic neuropathy (AN) on myocardial MIBG uptake in patients with NIDDM. Eighty-seven diabetic patients divided into four subgroups: 23 with SMD (+) AN (+); 19 with SMD (+) AN (-); 27 with SMD (-) AN (+); 18 with SMD (-) AN (-), and 10 controls were studied. Both planar and SPECT images were taken at 30 minutes (early) and 3 hours (delayed) after {sup 123}I-MIBG injection. The heart to mediastinum uptake ratio (H/M) and washout ratio of {sup 123}I-MIBG (WR) were obtained from both planar images. Similarly, the difference between the {sup 201}Tl image and the {sup 123}I-MIBG image in the total uptake score (TUS) was taken as the difference in the total uptake score ({Delta}TUS) representing cardiac sympathetic denervation without SMD. On both early and delayed planar images, the mean H/M value in the subgroups of diabetic patients was significantly lower in the SMD (+) AN (+) group than in the control group, but among those subgroups, there was statistically significant difference between the SMD (+) AN (+) and SMD (-) AN (-) groups only on the delayed images. Regarding the WR value, there was no statistically significant difference among subjects. On SPECT image analysis, the diabetic subgroup with AN or SMD had statistically significant lower values for TUS than those of the control group. Among diabetics, there was a statistically significant differences between SMD [+] AN [+] and SMD [-] AN [-] on both early and delayed images. Similarly, the SMD [+] AN [-] group also had significantly lower values than those of SMD [-] AN [-] on early images. Regarding {Delta}TUS, there was a statistically significant differences between AN [+] subgroups and controls. Similarly, the mean value for {Delta}TUS was much higher in AN [+] subgroups than in AN [-] subgroups with or without SMD in diabetes

  16. [sup 123]I-MIBG myocardial scintigraphy in diabetic patients. Relationship with [sup 201]Tl uptake and cardiac autonomic function

    Energy Technology Data Exchange (ETDEWEB)

    Nagamachi, Shigeki; Jinnouchi, Seishi; Kurose, Takeshi; Ohnishi, Takashi; Flores, L.G. II; Nakahara, Hiroshi; Futami, Shigemi; Tamura, Shozo; Matsukura, Shigeru (Miyazaki Medical Coll., Kiyotake (Japan))

    1998-12-01

    The purpose of this paper is to investigate the influence of diabetic myocardial damage (suspected myocardial damage; SMD) diagnosed by [sup 201]Tl-SPECT and diabetic cardiac autonomic neuropathy (AN) on myocardial MIBG uptake in patients with NIDDM. Eighty-seven diabetic patients divided into four subgroups: 23 with SMD (+) AN (+); 19 with SMD (+) AN (-); 27 with SMD (-) AN (+); 18 with SMD (-) AN (-), and 10 controls were studied. Both planar and SPECT images were taken at 30 minutes (early) and 3 hours (delayed) after [sup 123]I-MIBG injection. The heart to mediastinum uptake ratio (H/M) and washout ratio of [sup 123]I-MIBG (WR) were obtained from both planar images. Similarly, the difference between the [sup 201]Tl image and the [sup 123]I-MIBG image in the total uptake score (TUS) was taken as the difference in the total uptake score ([Delta]TUS) representing cardiac sympathetic denervation without SMD. On both early and delayed planar images, the mean H/M value in the subgroups of diabetic patients was significantly lower in the SMD (+) AN (+) group than in the control group, but among those subgroups, there was statistically significant difference between the SMD (+) AN (+) and SMD (-) AN (-) groups only on the delayed images. Regarding the WR value, there was no statistically significant difference among subjects. On SPECT image analysis, the diabetic subgroup with AN or SMD had statistically significant lower values for TUS than those of the control group. Among diabetics, there was a statistically significant differences between SMD [+] AN [+] and SMD [-] AN [-] on both early and delayed images. Similarly, the SMD [+] AN [-] group also had significantly lower values than those of SMD [-] AN [-] on early images. Regarding [Delta]TUS, there was a statistically significant differences between AN [+] subgroups and controls. Similarly, the mean value for [Delta]TUS was much higher in AN [+] subgroups than in AN [-] subgroups with or without SMD in diabetes

  17. The Olig family affects central nervous system development and disease

    Institute of Scientific and Technical Information of China (English)

    Botao Tan; Jing Yu; Ying Yin; Gongwei Jia; Wei Jiang; Lehua Yu

    2014-01-01

    Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop-ment and related diseases.

  18. Upper extremity subclinical autonomic and peripheral neuropathy in systemic lupus erythematosus

    OpenAIRE

    Mahmoud M Fathalla; Mohja A El-Badawy

    2015-01-01

    Background Systemic lupus erythematosus (SLE) is an autoimmune, multiorgan disease that affects connective tissues of many organs or systems, including the nervous system, where it affects the autonomic, the peripheral, and the central nervous system. Objective The aim of this study was to investigate the association of subclinical autonomic and peripheral neuropathy with SLE and to correlate neurophysiological parameters with clinical and laboratory data. Patients and methods ...

  19. Information for Successful Interaction with Autonomous Systems

    Science.gov (United States)

    Malin, Jane T.; Johnson, Kathy A.

    2003-01-01

    Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.

  20. Autonomous Control of Space Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  1. Autonomous Control of Space Reactor Systems

    International Nuclear Information System (INIS)

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are available to perform intelligent control functions that are necessary for both normal and abnormal operational conditions

  2. Assessment and study of changes psychosomatic state of the vegetative nervous system of patients with rosacea

    Directory of Open Access Journals (Sweden)

    Davydova A.V.

    2012-06-01

    Full Text Available

    Aims. The study aimed an identifying of signs of the vegetative nervous system and detailed study of the psychological characteristics of patients with rosacea. Materials and methods. The study included 60 patients with different clinical forms of rosacea at the age from 26 to 56 years and a control group of 60 relatively healthy persons. The assessment of emotional status is carried out with the survey, Test of accentuations of temperament, Diagnostic Questionnaire Quality of Life Index (DILQ, The Zung Self-Rating Depression Scale, reduced multifactorial questionnaire for the study of personality. Vegetative nervous system was investigated using vegetative Kerdo index, Wayne and Solovyova tables and a special questionnaire for signs of vegetative disorders. Conclusions. Syndrome revealed the presence of vegetative-vascular dysfunction in patients with rosacea with a predominance of parasympathetic tone of the autonomic nervous system. Severity of psychoemotional disorders had no direct relationship to the severity of rosacea. But patients with advanced disease had a tighter self-control on the background of increased excitability and stronger internal emotional stress. Those patients were compared with a group of patients with earlier stage disease, which may provoke functional impairments and in case of long existence-the formation of psychosomatic disorders. This comprehensive assessment of vegetative and emotional status is included in the algorithm for evaluation of patients with rosacea and will successfully complement traditional therapy.

  3. Glucocorticoids and nervous system plasticity

    Institute of Scientific and Technical Information of China (English)

    Kathryn M Madalena; Jessica K Lerch

    2016-01-01

    Glucocorticoid and glucocorticoid receptor (GC/GR) interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inlfammatoryvs. pro-inlfammatory) can vary depending on the duration of GC exposure or central nervous system (CNS) injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new ifndings on gender speciifc immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing.

  4. Diphtheritic neuropathy, an analysis based on muscle and nerve biopsy and repeated neurophysiological and autonomic function tests.

    OpenAIRE

    Solders, G; Nennesmo, I; Persson, A.

    1989-01-01

    A patient with diphtheritic neuropathy was investigated with repeated tests of parasympathetic and sympathetic vasomotor and sudomotor functions for one year after the onset of symptoms. Somatic nerve function was tested with nerve conduction studies and an index based on ten variables was used to follow the course of the neuropathy. Sural nerve and anterior tibial muscle biopsies were performed. A severe but shortlasting impairment of the parasympathetic vagal reflex arc was found. The recov...

  5. Autoimmune Autonomic Ganglionopathy

    Science.gov (United States)

    ... Accessed 9/2/2015. Autoimmune Autonomic Ganglionopathy Summary. Dysautonomia International . http://www.dysautonomiainternational.org/page.php?ID= ... page Basic Information In Depth Information Basic Information Dysautonomia International offers an information page on Autoimmune autonomic ...

  6. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  7. Intelligent, autonomous systems in space

    Science.gov (United States)

    Lum, H.; Heer, E.

    1988-01-01

    The Space Station is expected to be equipped with intelligent, autonomous capabilities; to achieve and incorporate these capabilities, the required technologies need to be identitifed, developed and validated within realistic application scenarios. The critical technologies for the development of intelligent, autonomous systems are discussed in the context of a generalized functional architecture. The present state of this technology implies that it be introduced and applied in an evolutionary process which must start during the Space Station design phase. An approach is proposed to accomplish design information acquisition and management for knowledge-base development.

  8. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss.

    Science.gov (United States)

    Scekic-Zahirovic, Jelena; Sendscheid, Oliver; El Oussini, Hajer; Jambeau, Mélanie; Sun, Ying; Mersmann, Sina; Wagner, Marina; Dieterlé, Stéphane; Sinniger, Jérome; Dirrig-Grosch, Sylvie; Drenner, Kevin; Birling, Marie-Christine; Qiu, Jinsong; Zhou, Yu; Li, Hairi; Fu, Xiang-Dong; Rouaux, Caroline; Shelkovnikova, Tatyana; Witting, Anke; Ludolph, Albert C; Kiefer, Friedemann; Storkebaum, Erik; Lagier-Tourenne, Clotilde; Dupuis, Luc

    2016-05-17

    FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. PMID:26951610

  9. Immunosuppression after sepsis: systemic inflammation and sepsis induce a loss of naive T-cells but no enduring cell-autonomous defects in T-cell function.

    Directory of Open Access Journals (Sweden)

    Robby Markwart

    Full Text Available Sepsis describes the life-threatening systemic inflammatory response (SIRS of an organism to an infection and is the leading cause of mortality on intensive care units (ICU worldwide. An acute episode of sepsis is characterized by the extensive release of cytokines and other mediators resulting in a dysregulated immune response leading to organ damage and/or death. This initial pro-inflammatory burst often transits into a state of immune suppression characterised by loss of immune cells and T-cell dysfunction at later disease stages in sepsis survivors. However, despite these appreciations, the precise nature of the evoked defect in T-cell immunity in post-acute phases of SIRS remains unknown. Here we present an in-depth functional analysis of T-cell function in post-acute SIRS/sepsis. We document that T-cell function is not compromised on a per cell basis in experimental rodent models of infection-free SIRS (LPS or CpG or septic peritonitis. Transgenic antigen-specific T-cells feature an unaltered cytokine response if challenged in vivo and ex vivo with cognate antigens. Isolated CD4(+/CD8(+ T-cells from post-acute septic animals do not exhibit defects in T-cell receptor-mediated activation at the the level of receptor-proximal signalling, activation marker upregulation or expansion. However, SIRS/sepsis induced transient lymphopenia and gave rise to an environment of immune attenuation at post acute disease stages. Thus, systemic inflammation has an acute impact on T-cell numbers and adaptive immunity, but does not cause major cell-autonomous enduring functional defects in T-cells.

  10. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  11. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[18F]fluorodopamine, (-)-6-[18F]fluoronorepinephrine and (-)-[11C]epinephrine, and radiolabelled catecholamine analogues, such as [123I]meta-iodobenzylguanidine, [11C]meta-hydroxyephedrine, [18F]fluorometaraminol, [11C]phenylephrine and meta-[76Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[18F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  12. Cognitive function of 320 people over 65 years from longevous areas in Guangxi Zhuang Autonomous Region:Feasibility of the mini-mental state examination

    Institute of Scientific and Technical Information of China (English)

    Yeguang Wu; Bin Wei; Xiaoming Zhang; Guobing Zhang; Chunlin Zhang; Zhibin Li; Chenghan Wei; Jinchao Chen; Donglan Huang; Rong Zhao; Jinrui Huang

    2006-01-01

    BACKGROUND: Mini-mental state examination (MMSE) of Chinese version has been widely used to survey cognitive function of elder people; especially, it shows a good reliability and validity for elder people in city.However, whether it is beneficial to measure cognitive function of elder people in countries in Guangxi Zhuang Autonomous Region should be further studied.OBJECTIVE: To investigate the feasibility, reliability and validity of the cognitive function among the elderly people aged over 65 years from Jiazhuan in Bama County of Guangxi Zhuang Autonomous Region by using the MMSE of Chinese version.DESIGN: Prevalence survey.SETTING: Department of Psychology, Nanjing Municipal Social Welfare Hospital; Department of Psychology,Yizhou Municipal Jiulong Railroad Hospital; Long Life's Institute of Bama County.PARTICIPANTS: A total of 320 old persons over 65 years old were sampled on the basis of the unit of village of Jiazhuan in Bama County of Guangxi Zhuang Autonomous Region from the 12th to 28th, March 2004. All the subjects provided the confirmed consents.METHODS: ① Mental Health Questionnaire of long life's old man was adopted including demographic data and international standardized MMSE in Chinese. The survey of MMSE was divided into two phases: In the first phase, every case was examined by MMSE. The positive result was decided by the education level. Illiterate group, who was educated less than one year, then his MMSE scores must be less than 17; primary school group, who was educated from 1 to 6 years, then his MMSE must be less than 20; middle school group, who was educated more than 7 years, then his MMSE must be less than 24. In the second phase, these cases with positive MMSE score were given the neuro-psycho and mental health examination to confirm the dementia types after diagnosis. The content of the questionnaire was revised properly without changing the meaning of the questionnaire. The interclass correlation coefficient of MMSE was 0.89.

  13. Genetics Home Reference: hereditary sensory and autonomic neuropathy type IE

    Science.gov (United States)

    ... of the neurons that make up the nervous system. However, it is not known how the mutations cause the specific signs and symptoms of HSAN IE. Learn more about the gene associated with hereditary sensory and autonomic neuropathy type IE DNMT1 Related Information ...

  14. Service Oriented Approach for Autonomous Exception Management in Supply Chains

    OpenAIRE

    Guarnaschelli, Armando; Chiotti, Omar; Salomone, Enrique

    2010-01-01

    Risk and uncertainty are inherent to Supply Chains; at the execution level unexpected events can disrupt the normal flow of supply processes creating a gap between planned operations and what is actually executed. These disruptions increment rescheduling frequency, generating reconfiguration costs and system's nervousness. This work proposes a web service based Business Process to support Autonomous Exception Management in Supply chains.

  15. Sex Differences in Autonomic Correlates of Conduct Problems and Aggression

    Science.gov (United States)

    Beauchaine, Theodore P.; Hong, James; Marsh, Penny

    2008-01-01

    The study aims to evaluate group differences in autonomic nervous system (ANS) responding between males and females with conduct problems and determine whether aggression accounts for variance in ANS responding over the effects of conduct problems. The results indicated marked differences in psycho-physiological responses between males and females.

  16. Treatment of Posttraumatic Abdominal Autonomic Neuropathy Manifesting as Functional Dyspepsia and Chronic Constipation: An Integrative East-West Approach

    OpenAIRE

    Shubov, Andrew; Taw, Lawrence

    2015-01-01

    A 52-year-old male with a history of spinal cord injury and cauda equina syndrome resulting in neurogenic bladder presented with chronic constipation and functional dyspepsia that was refractory to medical management. He was treated with an integrative East-West approach including acupuncture, trigger point injections, and Tui Na massage. Both his pain and constipation improved after a series of treatments, and this improvement was largely sustained at 2-year follow-up. This patient's symptom...

  17. Nervous System Problems and Dementia

    Science.gov (United States)

    ... Language: Fact Sheet 505 Nervous System Problems and Dementia WHAT ARE NERVOUS SYSTEM PROBLEMS? WHAT ARE THE ... of AIDS these were all called “HIV-Associated Dementia.” However, a broader range of problems is showing ...

  18. As good as it gets? A meta-analysis and systematic review of methodological quality of heart rate variability studies in functional somatic disorders

    NARCIS (Netherlands)

    Tak, L.M.; Riese, H.; de Bock, G.H.; Manoharan, A.; Kok, I.C.; Rosmalen, J.G.M.

    2009-01-01

    Autonomic nervous system (ANS) dysfunction is a potential mechanism connecting psychosocial stress to functional somatic disorders (FSD), such as chronic fatigue syndrome, fibromyalgia and irritable bowel syndrome. We present the first meta-analysis and systematic review of methodological study qual

  19. Central nervous system diseases

    International Nuclear Information System (INIS)

    It is shown that roentgenological examination plays an important role in diagnosis of central nervous system diseases in children. The methods of roentgenological examinations are divided into 3 groups: roentgenography without contrast media (conventional roentgenography), roentgenography with artificial contrasting of liquor space (ventriculopneumoencelography, myelography) and contrasting of brain and spinal blood vessels (angiography). Conventional contrastless roentgenography of skull and vertebral column occupies leadership in diagnosis of brain neoplasms and some vascular diseases

  20. Relationship Between Cardiac Autonomic Function of Patients With Type 2 Diabetes and Glucose Metabolism%2型糖尿病患者心脏植物神经功能改变与血糖代谢的关系

    Institute of Scientific and Technical Information of China (English)

    刘成功

    2015-01-01

    目的:探究2型糖尿病患者心脏植物神经功能改变与血糖代谢之间的关系。方法选取我院60例2型糖尿病患者,分别检测患者心脏植物神经功能和糖化血红蛋白水平,研究分析患者心脏植物神经功能改变与血糖代谢的关系。结果60例患者中心脏植物神经功能正常者糖化血红蛋白浓度为(6.2±1.2)%,异常者糖化血红蛋白浓度为(8.4±2.3)%,心脏植物神经功能异常者糖化血红蛋白浓度高于正常者(P<0.05),数据比较存在统计学差异。心脏植物神经功能严重病变患者糖化血红蛋白浓度均高于早期病变者和典型病变者(P<0.05),数据比较差异均存在统计学意义。结论2型糖尿病患者的心脏植物神经功能改变与其糖化血红蛋白浓度之间关系密切,及时、有效控制患者血糖,降低患者糖化血红蛋白浓度,对改善2型糖尿病患者心脏植物神经功能,减轻其心脏植物神经病变程度具有重要作用。%ObjectiveTo explore the relationship between type 2 cardiac autonomic function changes and glucose metabolism in diabetic patients.Methods 60 cases in our hospital patients with type 2 diabetes were detected in patients with cardiac autonomic function and glycated hemoglobin levels, the researchers analyzed the relationship between cardiac autonomic function changes with glucose metabolism.Results60 patients with normal cardiac autonomic function glycated hemoglobin concentration(6.2 ± 1.2)%,abnormal glycated hemoglobin concentration(8.4 ± 2.3)%,cardiac autonomic dysfunction glycated hemoglobin concentration was significantly higher than normal(P<0.05),there was significant difference data comparison. Cardiac autonomic function in patients with severe disease glycated hemoglobin concentration were higher than early lesions and typical lesions(P<0.05),the data were statistically significant differences. Conclusion The close relationship between