WorldWideScience

Sample records for automotive fuel economy

  1. 77 FR 29751 - Agency Information Collection Activity Under OMB Review: Automotive Fuel Economy Reports

    Science.gov (United States)

    2012-05-18

    ...-0059] Agency Information Collection Activity Under OMB Review: Automotive Fuel Economy Reports AGENCY... Transportation on whether a manufacturer will comply with an applicable average fuel economy standard for the... R. Katz, Fuel Economy Division, Office of International Policy, Fuel Economy and Consumer Programs...

  2. Automotive Stirling engine development program. [fuel economy assessment

    Science.gov (United States)

    Kitzner, E. W.

    1978-01-01

    The Ford/DOE automotive Stirling engine development program is directed towards establishing the technological and developmental base that would enable a decision on whether an engineering program should be directed at Stirling engine production. The fuel economy assessment aims to achieve, with a high degree of confidence, the ERDA proposal estimate of 20.6 MPG (gasoline) for a 4500 lb 1WC Stirling engine passenger car. The current M-H fuel economy projection for the 170 HP Stirling engine is 15.7 MPG. The confidence level for this projection is 32%. A confidence level of 29% is projected for a 22.1 MPG estimate. If all of the planned analyses and test work is accomplished at the end of the one year effort, and the projected improvements are substantiated, the confidence levels would rise to 59% for the 20.6 MPG projection and 54% for the 22.1 MPG projection. Progress achieved thus far during the fuel economy assessment is discussed.

  3. Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends report is the authoritative reference for carbon dioxide (CO2) emissions,...

  4. 49 CFR 537.9 - Determination of fuel economy values and average fuel economy.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Determination of fuel economy values and average fuel economy. 537.9 Section 537.9 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AUTOMOTIVE FUEL ECONOMY REPORTS § 537.9 Determination of fuel...

  5. Survey evidence on the willingness of U.S. consumers to pay for automotive fuel economy

    International Nuclear Information System (INIS)

    Greene, David L.; Evans, David H.; Hiestand, John

    2013-01-01

    Prospect theory holds that human beings faced with a risky bet will tend to value potential losses about twice as much as potential gains. Previous research has demonstrated that prospect theory could be sufficient to explain an energy paradox in the market for automotive fuel economy. This paper analyzes data from questions added to four commercial, multi-client surveys of 1000 U.S. households each in 2004, 2011, 2012 and 2013. Households were asked about willingness to pay for future fuel savings as well as the annual fuel savings necessary to justify a given upfront payment. Payback periods inferred from household responses are generally consistent over time and across different formulations of questions. Mean calculated payback periods are about 3 years, but there is substantial dispersion among individual responses. The calculated payback periods do not appear to be correlated with the attributes of respondents. Respondents were able to quantitatively describe their uncertainty about both vehicle fuel economy and future fuel prices. Simulation of loss averse behavior based on respondents’ stated uncertainty illustrates how loss aversion could lead consumers to substantially undervalue future fuel savings relative to their expected value. - Highlights: • Payback periods were calculated from stated willingness to pay for fuel savings in 4 US surveys. • US car buyers expect payback in 3 years in order to pay more for increased fuel economy. • Respondents’ payback periods are uncorrelated with their socio-economic attributes. • Survey respondents consider fuel economy ratings and future fuel prices highly uncertain. • The survey results are consistent with the behavioral economic principle of loss aversion

  6. Engineering-economic analyses of automotive fuel economy potential in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  7. Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency

    OpenAIRE

    Kurani, Ken; Turrentine, Thomas

    2004-01-01

    Much prior research into consumer automotive and fuel purchase behaviors and fuel economy has been shaped by the normative assumptions of economics. Among these assumptions are that consumers should pay attention to costs of fuel and that they are aware of their options to save on fuel over long periods of time, i.e., the life of a vehicle or at least their period of ownership. For example, researchers have analyzed in some depth consumer choices for more fuel economical vehicles in the 1980s...

  8. Greenhouse gases - an up-date on the contribution of automotive fuels

    International Nuclear Information System (INIS)

    Williams, M.L.

    1992-01-01

    This paper examines the contribution to global emissions of greenhouse gases from automotive fuels. The Greenhouse Effect and Climate Change are explained briefly. Data is presented on the global warming potential of automobile emissions, actual measured emission rates and greenhouse gas emissions as CO 2 equivalents. It is concluded that insufficient data exists to assess accurately the contribution of automotive fuel use to all the important greenhouse gases. Over short timescales (say 20 years) low emission technologies do show significant reductions in CO 2 equivalent emissions compared with current technology vehicles. However, in the longer term, fuel economy rather than emissions of non-CO 2 gases, is likely to become the determining factor. (UK)

  9. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  10. Car buyers and fuel economy?

    International Nuclear Information System (INIS)

    Turrentine, Thomas S.; Kurani, Kenneth S.

    2007-01-01

    This research is designed to help researchers and policy makers ground their work in the reality of how US consumers are thinking and behaving with respect to automotive fuel economy. Our data are from semi-structured interviews with 57 households across nine lifestyle 'sectors.' We found no household that analyzed their fuel costs in a systematic way in their automobile or gasoline purchases. Almost none of these households track gasoline costs over time or consider them explicitly in household budgets. These households may know the cost of their last tank of gasoline and the unit price of gasoline on that day, but this accurate information is rapidly forgotten and replaced by typical information. One effect of this lack of knowledge and information is that when consumers buy a vehicle, they do not have the basic building blocks of knowledge assumed by the model of economically rational decision-making, and they make large errors estimating gasoline costs and savings over time. Moreover, we find that consumer value for fuel economy is not only about private cost savings. Fuel economy can be a symbolic value as well, for example among drivers who view resource conservation or thrift as important values to communicate. Consumers also assign non-monetary meaning to fuel prices, for example seeing rising prices as evidence of conspiracy. This research suggests that consumer responses to fuel economy technology and changes in fuel prices are more complex than economic assumptions suggest. The US Department of Energy and the Energy Foundation supported this research. The authors are solely responsible for the content and conclusions presented

  11. Automotive Fuel and Exhaust Systems.

    Science.gov (United States)

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  12. Assessment of effects of maturity of Japan`s economy and society and improvement in automotive fuel consumption on demand for automotive fuels; Nippon keizai shakai no seijukuka to nenpi kaizen ga jidoshayo nenryo juyo ni ataeru eikyo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, S. [The Institute of Energy Economics, Tokyo (Japan)

    1998-04-01

    This paper evaluates impacts of the maturity of Japan`s economy and society and the improvement in automotive fuel efficiency on the demand for automotive fuels by FY 2010. Standard case and lower order case were examined. When the traffic volume of passenger cars in FY 1995 is assumed to be 100, it become 121 and 119 in standard and lower order cases, respectively. The traffic volume of lorries become 106 and 102 in standard and lower order cases, respectively, which showed a rather small growth. Deterioration rate of the fuel consumption was estimated by considering the difference in fuel consumption of new cars and existing cars. Although the fuel consumption will be lowered by FY 2000 when the cassation rate of ordinary passenger cars will rapidly increase, the impact will be lowered after that. For lorries for commercial use, the running fuel consumption will be gradually lowered due to the increased carrying capacity and vehicle weight a lorry with improving the transportation efficiency. Decreased running speed by traffic jam is also a cause of the deterioration of fuel consumption. When a policy of improvement in the fuel consumption is promoted in a background of CO2 issues, the fuel consumption of each vehicle will be gradually improved. The peak of fuel demand will be in FY 2005 by considering the changes in economical and social structures and the improvement in fuel consumption for the environmental protection. 5 figs., 3 tabs.

  13. Automotive fuels from biomass via gasification

    International Nuclear Information System (INIS)

    Zhang, Wennan

    2010-01-01

    There exists already a market of bio-automotive fuels i.e. bioethanol and biodiesel produced from food crops in many countries. From the viewpoint of economics, environment, land use, water use and chemical fertilizer use, however, there is a strong preference for the use of woody biomass and various forest/agricultural residues as the feedstock. Thus, the production of 2nd generation of bio-automotive fuels i.e. synthetic fuels such as methanol, ethanol, DME, FT-diesel, SNG and hydrogen through biomass gasification seems promising. The technology of producing synthetic fuels is well established based on fossil fuels. For biomass, however, it is fairly new and the technology is under development. Starting from the present market of the 1st generation bio-automotive fuels, this paper is trying to review the technology development of the 2nd generation bio-automotive fuels from syngas platform. The production of syngas is emphasized which suggests appropriate gasifier design for a high quality syngas production. A number of bio-automotive fuel demonstration plant will be presented, which gives the state of the art in the development of BTS (biomass to synthetic fuels) technologies. It can be concluded that the 2nd generation bio-automotive fuels are on the way to a breakthrough in the transport markets of industrial countries especially for those countries with a strong forest industry. (author)

  14. Automotive fuels - environmental and health implications

    International Nuclear Information System (INIS)

    Lucas, A.G.

    1992-01-01

    This document covers papers presented to the Institute of Petroleum's conference ''Automotive Fuels: Environmental and Health Implications'' held on the 9th October 1991. This wide ranging title meant that topics covered included the biochemistry, pathology and epidemiology of automotive fuel use, combustion science, environmental chemistry and atmospheric modelling. Also discussed are the technology of fuel and engine manufacture, limiting and containing emissions and social and political aspects relating to the use of automotive fuels. (UK)

  15. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duleep, K. G. [ICF International, Fairfax, VA (United States); Upreti, Girish [Univ. of Tennessee, Knoxville, TN (United States)

    2011-05-15

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany,and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and nonautomotive applications.

  16. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  17. Automotive fuel efficiency

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1992-01-01

    For at least the remainder of this century, the United States faces a growing dependence on imported oil. Costs are substantial, and they will mount. In June 1992, net imports provided nearly 50% of supplies, and their cost was $4.3 billion. Cost of net imports of motor vehicles and parts amounted to $3.0 billion. The two items combined totaled more than the negative trade balance of $6.6 billion. The light-duty highway fleet alone accounted for 38.2% of U.S. oil consumption in 1988. Correspondingly, the fleet was a substantial emitter of air pollutants - NO x , CO, and nonmethane hydrocarbons. In addition, it was a major source of CO 2 . The twin problems of oil imports and pollution would be ameliorated if the fuel economy if cars and trucks could be improved and their emissions were also reduced. In principle, the mileage of US automobiles could be substantially improved. But on purchasing a car, U.S. buyers rank fuel efficiency eight when making their choice. They are attracted to options that lower mileage. Consumers also tend to prefer large cars over small ones for reasons of safety. Increasingly, buyers are purchasing light trucks and vans that have inferior fuel efficiency. As a result of the above trends, the average mileage of the US automotive fleet has been diminishing. As long as fuel is available at comparatively low prices and there is no federal requirement for better mileage, improvement is unlikely. Moreover, even if improvements were mandated, change would be slow

  18. European Automotive Congress

    CERN Document Server

    Clenci, Adrian

    2016-01-01

    The volume includes selected and reviewed papers from the European Automotive Congress held in Bucharest, Romania, in November 2015. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in fuel economy and environment, automotive safety and comfort, automotive reliability and maintenance, new materials and technologies, traffic and road transport systems, advanced engineering methods and tools, as well as advanced powertrains and hybrid and electric drives.

  19. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  20. Automotive fuels survey. Part 4. Innovations or illusions

    International Nuclear Information System (INIS)

    Troelstra, W.P.; Van Walwijk, M.; Bueckmann, M.

    1999-01-01

    Volumes 1 to 3 of the IEA/AFIS Automotive Fuels Survey, address the most well-known automotive fuels and fuel production routes. Less well-known fuels and energy sources that are not used in combustion engines, e.g. electricity, were excluded from these volumes. In this report fuel routes and fuels that have not been addressed in the first volumes will be analysed. In this report, each chapter starts with a short description of the fuel(route) and its status of development (e.g. if the idea has been abandoned or if the fuel is already sold at a fuel station). Then the different aspects of that fuel are described as far as the information is available. This is limited to information that can not be found in volumes one and two of the Automotive Fuels Survey. For example: for the diesel-water mixtures, the production of diesel is not be described. If comparisons are made, they are made either relative to an already described fuel(route) that is related (e.g. biogas will be compared with natural gas) or relative to diesel and gasoline as was done in volume 1 and 2 of the Automotive Fuels Survey. For some of the fuels, the relation with a fuel already covered in volume one and two is very strong. For these fuels more information can be found in the chapters on the related fuel in the other volumes of the Automotive Fuels Survey. The following fuels are covered in this report: biodiesel from used oil and fat, biodiesel and biogasoline from algae, diesel from hydrothermal upgrading, biogas, hythane, Fischer-Tropsch diesel, diesel-water blends, higher ethers, and electricity. 74 refs

  1. 77 FR 55898 - Request for Comments on a Renewal of a Previously Approved Information Collection: Automotive...

    Science.gov (United States)

    2012-09-11

    ...: Kenneth R. Katz, Fuel Economy Division, Office of International Policy, Fuel Economy and Consumer Programs... Fuel Economy Reports ACTION: Notice and request for comments. SUMMARY: In compliance with the Paperwork... Part 537, Automotive Fuel Economy Reports. OMB Control Number: 2127-0019. Type of Request: Renewal of a...

  2. Sustainable automotive energy system in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiliang (ed.) [Tsinghua Univ. Beijing (China). China Automotive Energy Research Center

    2013-06-01

    The latest research available on automotive energy system analysis in China. Thorough introduction on automotive energy system in China. Provides the broad perspective to aid in planning sustainable road transport in China. Sustainable Automotive Energy System in China aims at identifying and addressing the key issues of automotive energy in China in a systematic way, covering demography, economics, technology and policy, based on systematic and in-depth, multidisciplinary and comprehensive studies. Five scenarios of China's automotive energy development are created to analyze the possible contributions in the fields of automotive energy, vehicle fuel economy improvement, electric vehicles, fuel cell vehicles and the 2nd generation biofuel development. Thanks to this book, readers can gain a better understanding of the nature of China's automotive energy development and be informed about: (1) the current status of automotive energy consumption, vehicle technology development, automotive energy technology development and policy; (2) the future of automotive energy development, fuel consumption, propulsion technology penetration and automotive energy technology development, and (3) the pathways of sustainable automotive energy transformation in China, in particular, the technological and the policy-related options. This book is intended for researchers, engineers and graduates students in the low-carbon transportation and environmental protection field.

  3. www.FuelEconomy.gov

    Data.gov (United States)

    U.S. Environmental Protection Agency — FuelEconomy.gov provides comprehensive information about vehicles' fuel economy. The official U.S. government site for fuel economy information, it is operated by...

  4. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  5. Efficiency Standard in automotive industry

    International Nuclear Information System (INIS)

    Goldoni, G.

    2008-01-01

    A technological transition in the transport sector could be only be possible with a convergence of objectives of the automotive and the fuel industries, which is not very simple to obtain. Fuel economy standards could differently reduce the growing trend of CO 2 emissions in this sector but regulators should avoid capture from domestic industry. [it

  6. 76 FR 39477 - Revisions and Additions to Motor Vehicle Fuel Economy Label

    Science.gov (United States)

    2011-07-06

    ...The Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) are issuing a joint final rule establishing new requirements for the fuel economy and environment label that will be posted on the window sticker of all new automobiles sold in the U.S. The labeling requirements apply for model year 2013 and later vehicles with a voluntary manufacturer option for model year 2012. The labeling requirements apply to passenger cars, light-duty trucks, and medium duty passenger vehicles such as larger sport-utility vehicles and vans. The redesigned label provides expanded information to American consumers about new vehicle fuel economy and fuel consumption, greenhouse gas and smog-forming emissions, and projected fuel costs and savings, and also includes a smartphone interactive code that permits direct access to additional Web resources. Specific label designs are provided for gasoline, diesel, ethanol flexible fuel, compressed natural gas, electric, plug-in hybrid electric, and hydrogen fuel cell vehicles. This rulemaking is in response to provisions in the Energy Independence and Security Act of 2007 that imposed several new labeling requirements and new advanced-technology vehicles entering the market. NHTSA and EPA believe that these changes will help consumers to make more informed vehicle purchase decisions, particularly as the future automotive marketplace provides more diverse vehicle technologies from which consumers may choose. These new label requirements do not affect the methodologies that EPA uses to generate consumer fuel economy estimates, or the automaker compliance values for NHTSA's corporate average fuel economy and EPA's greenhouse gas emissions standards. This action also finalizes a number of technical corrections to EPA's light-duty greenhouse gas emission standards program.

  7. US Department of Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The advanced vehicle testing activity (AVTA), part of the US Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modelling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full-size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and internal combustion engine vehicles powered by hydrogen. Currently, the AVTA is conducting a significant evaluation of hybrid electric vehicles (HEVs) produced by major automotive manufacturers. The results are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the 'real world' performance of their hybrid energy systems, particularly the battery. The initial fuel economy of these vehicles has typically been less than that determined by the manufacturer and also varies significantly with environmental conditions. Nevertheless, the fuel economy and, therefore, battery performance, has remained stable over the life of a given vehicle (160 000 miles).

  8. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  9. Fuel System: Automotive Mechanics Instructional Program. Block 4.

    Science.gov (United States)

    O'Brien, Ralph D.

    The fourth of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive fuel systems at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  10. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities

  11. Model Year 2017 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  12. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  13. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  14. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  15. Model Year 2018 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-12-07

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  16. Development of a solid oxide fuel cell (SOFC) automotive auxiliary power unit (APU) fueled by gasoline

    International Nuclear Information System (INIS)

    DeMinco, C.; Mukerjee, S.; Grieve, J.; Faville, M.; Noetzel, J.; Perry, M.; Horvath, A.; Prediger, D.; Pastula, M.; Boersma, R.; Ghosh, D.

    2000-01-01

    This paper describes the design and the development progress of a 3 to 5 auxiliary power unit (APU) based on a gasoline fueled solid oxide fuel cell (SOFC). This fuel cell was supplied reformate gas (reactant) by a partial oxidation (POx) catalytic reformer utilizing liquid gasoline and designed by Delphi Automotive Systems. This reformate gas consists mainly of hydrogen, carbon monoxide and nitrogen and was fed directly in to the SOFC stack without any additional fuel reformer processing. The SOFC stack was developed by Global Thermoelectric and operates around 700 o C. This automotive APU produces power to support future 42 volt vehicle electrical architectures and loads. The balance of the APU, designed by Delphi Automotive Systems, employs a packaging and insulation design to facilitate installation and operation on-board automobiles. (author)

  17. Light-duty vehicle fuel economy improvements, 1979--1998: A consumer purchase model of corporate average fuel economy, fuel price, and income effects

    Science.gov (United States)

    Chien, David Michael

    2000-10-01

    The Energy Policy and Conservation Act of 1975, which created fuel economy standards for automobiles and light trucks, was passed by Congress in response to the rapid rise in world oil prices as a result of the 1973 oil crisis. The standards were first implemented in 1978 for automobiles and 1979 for light trucks, and began with initial standards of 18 MPG for automobiles and 17.2 MPG for light trucks. The current fuel economy standards for 1998 have been held constant at 27.5 MPG for automobiles and 20.5 MPG for light trucks since 1990--1991. While actual new automobile fuel economy has almost doubled from 14 MPG in 1974 to 27.2 MPG in 1994, it is reasonable to ask if the CAFE standards are still needed. Each year Congress attempts to pass another increase in the Corporate Average Fuel Economy (CAFE) standard and fails. Many have called for the abolition of CAFE standards citing the ineffectiveness of the standards in the past. In order to determine whether CAFE standards should be increased, held constant, or repealed, an evaluation of the effectiveness of the CAFE standards to date must be established. Because fuel prices were rising concurrently with the CAFE standards, many authors have attributed the rapid rise in new car fuel economy solely to fuel prices. The purpose of this dissertation is to re-examine the determinants of new car fuel economy via three effects: CAFE regulations, fuel price, and income effects. By measuring the marginal effects of the three fuel economy determinants upon consumers and manufacturers choices, for fuel economy, an estimate was made of the influence of each upon new fuel economy. The conclusions of this dissertation present some clear signals to policymakers: CAFE standards have been very effective in increasing fuel economy from 1979 to 1998. Furthermore, they have been the main cause of fuel economy improvement, with income being a much smaller component. Furthermore, this dissertation has suggested that fuel prices have

  18. Fuel Economy Label and CAFE Data

    Science.gov (United States)

    The Engine and Vehicle Compliance Certification and Fuel Economy Inventory contains measured emissions and fuel economy compliance information for light duty vehicles. Data is collected by EPA to certify compliance with the applicable fuel economy provisions of the Energy Policy and Conservation Act (EPCA) and The Energy Independent Security Act of 2007

  19. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  20. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  1. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  2. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  3. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  4. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  5. Fuel saver based on electromagnetic induction for automotive engine

    Science.gov (United States)

    Siregar, Houtman P.; Sibarani, Maradu

    2007-12-01

    In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.

  6. Design incentives to increase vehicle size created from the U.S. footprint-based fuel economy standards

    International Nuclear Information System (INIS)

    Whitefoot, Kate S.; Skerlos, Steven J.

    2012-01-01

    The recently amended U.S. Corporate Average Fuel Economy (CAFE) standards determine fuel-economy targets based on the footprint (wheelbase by track width) of vehicles such that larger vehicles have lower fuel-economy targets. This paper considers whether these standards create an incentive for firms to increase vehicle size by presenting an oligopolistic-equilibrium model in which automotive firms can modify vehicle dimensions, implement fuel-saving technology features, and trade off acceleration performance and fuel economy. Wide ranges of scenarios for consumer preferences are considered. Results suggest that the footprint-based CAFE standards create an incentive to increase vehicle size except when consumer preference for vehicle size is near its lower bound and preference for acceleration is near its upper bound. In all other simulations, the sales-weighted average vehicle size increases by 2–32%, undermining gains in fuel economy by 1–4 mpg (0.6–1.7 km/L). Carbon-dioxide emissions from these vehicles are 5–15% higher as a result (4.69×10 11 –5.17×10 11 kg for one year of produced vehicles compared to 4.47×10 11 kg with no size changes), which is equivalent to adding 3–10 coal-fired power plants to the electricity grid each year. Furthermore, results suggest that the incentive is larger for light trucks than for passenger cars, which could increase traffic safety risks. - Highlights: ► New U.S. fuel-economy standards may create an incentive to increase vehicle size. ► We model firms as choosing vehicle designs and prices in oligopolistic equilibrium. ► Vehicle size increases 2–32% for 20 out of 21 scenarios of consumer preferences. ► Increases in size reduce fuel economy gains from 5–13%, resulting in 5–15% higher CO 2 emissions. ► Incentive is larger for trucks than cars, which may increase traffic safety risks.

  7. Automotive fuels. Quality current and future perspectives

    International Nuclear Information System (INIS)

    Avella, F.

    1999-01-01

    In the present paper, a general view of the automotive fuel characteristics and of the influence of the most important fuel parameters on the engine performance and emissions are presented. At short term, the future scenario is conditioned by the application of the next European Directive on fuel specifications, that will came into effect on 1 January 2000. The composition of liquid fuels shall be subject to modifications nd restrictions to meet the new specifications Among alternative fuels, natural gas and Lpg (liquefied petroleum gases) are the most interesting in the view point of environmental protection. Biodiesel constitutes a potential and valid alternative to mineral gas oil in diesel engines [it

  8. The development of natural gas as an automotive fuel in China

    International Nuclear Information System (INIS)

    Ma, Linwei; Geng, Jia; Li, Weqi; Liu, Pei; Li, Zheng

    2013-01-01

    This manuscript aims to systematically review the development of natural gas as an automotive fuel in China and to draw policy implications for decision making. This manuscript presents a brief overview of natural gas development and the potential of natural gas as an automotive fuel in China, followed by an introduction to the development of various technology pathways for using natural gas as an automotive fuel, including CNG (compressed natural gas) vehicles, LNG (liquefied natural gas) vehicles, and others. This material suggests, a large potential to increase the use of natural gas as an automotive fuel, especially for CNG and LNG vehicles. The following activities will promote the development of natural gas vehicles: prioritizing vehicle use in the utilization of natural gas, supporting the construction of natural gas filling stations, developing a favorable pricing policy for natural gas used in vehicles, and enhancing the research and development to further improve the technology performance, especially for the technology of LNG vehicles. -- Highlights: •An overview of the natural gas development in China. •A systematic introduction of the development of natural gas vehicles in China. •A review of the technological performance of natural gas vehicles. •Policy suggestions to promote the development of natural gas vehicles in China

  9. Fuel Economy Testing and Data

    Science.gov (United States)

    EPA’s Fuel Economy pages provide information on current standards and how federal agencies work to enforce those laws, testing for national Corporate Average Fuel Economy or CAFE standards, and what you can do to reduce your own vehicle emissions.

  10. Fuel demand on UK roads and dieselisation of fuel economy

    International Nuclear Information System (INIS)

    Bonilla, David

    2009-01-01

    Because of high oil prices, and climate change policy, governments are now seeking ways to improve new car fuel economy thus contributing to air quality and energy security. One strategy is to increase dieselisation rates of the vehicle fleet. Recent trends in fuel economy show improvement since 1995, however, efforts need to go further if the EU Voluntary Agreement targets on CO 2 (a greenhouse gas emission standard) are to be achieved. Trends show diesel car sales have accelerated rapidly and that the advantage of new car fuel economy of diesel cars over gasoline ones is narrowing posing a new challenge. We estimate the demand for new car fuel economy in the UK. In the long-run consumers buy fuel economy, but not in the short-run. We found that long-term income and price changes were the main drivers to achieve improvements particularly for diesel cars and that there is no break in the trend of fuel economy induced by the agreement adopted in the 1990s. Policy should target more closely both consumer choice of, and use of, diesel cars.

  11. 40 CFR 600.113-78 - Fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy calculations. 600.113-78... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.113-78 Fuel economy calculations. The...

  12. 40 CFR 600.113-88 - Fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy calculations. 600.113-88... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.113-88 Fuel economy calculations. The...

  13. 40 CFR 600.113-93 - Fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy calculations. 600.113-93... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.113-93 Fuel economy calculations. The...

  14. Fuel Economy Label and CAFE Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Engine and Vehicle Compliance Certification and Fuel Economy Inventory contains measured emissions and fuel economy compliance information for light duty...

  15. 40 CFR 610.42 - Fuel economy measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy measurement. 610.42... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria General Vehicle Test Procedures § 610.42 Fuel economy measurement. (a) Fuel consumption will be measured by: (1) The carbon balance method, or...

  16. 49 CFR 531.5 - Fuel economy standards.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Fuel economy standards. 531.5 Section 531.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel economy standards. (a) Except as provided in paragraph (e) of this section, each manufacturer of passenger...

  17. Fuel Economy Label and CAFE Data Inventory

    Science.gov (United States)

    The Fuel Economy Label and CAFE Data asset contains measured summary fuel economy estimates and test data for light-duty vehicle manufacturers by model for certification as required under the Energy Policy and Conservation Act of 1975 (EPCA) and The Energy Independent Security Act of 2007 (EISA) to collect vehicle fuel economy estimates for the creation of Economy Labels and for the calculation of Corporate Average Fuel Economy (CAFE). Manufacturers submit data on an annual basis, or as needed to document vehicle model changes.The EPA performs targeted fuel economy confirmatory tests on approximately 15% of vehicles submitted for validation. Confirmatory data on vehicles is associated with its corresponding submission data to verify the accuracy of manufacturer submissions beyond standard business rules. Submitted data comes in XML format or as documents, with the majority of submissions being sent in XML, and includes descriptive information on the vehicle itself, fuel economy information, and the manufacturer's testing approach. This data may contain proprietary information (CBI) such as information on estimated sales or other data elements indicated by the submitter as confidential. CBI data is not publically available; however, within the EPA data can accessed under the restrictions of the Office of Transportation and Air Quality (OTAQ) CBI policy [RCS Link]. Datasets are segmented by vehicle model/manufacturer and/or year with corresponding fuel economy, te

  18. Japanese automotive transportation sector's impact upon global warming

    International Nuclear Information System (INIS)

    Imaseki, Takashi

    1998-01-01

    Automobiles are still increasing in number in Japan. If this continues, CO 2 emissions in this sector may increase through the first half of the 21st century. Consequently, a study of measures for reducing these CO 2 emissions is essential. In this paper, possible automotive technologies, improvements in fuel consumption and the introduction of electric vehicles are discussed. These measures are then evaluated for the Japanese case. Furthermore, market penetration of these technologies is evaluated, using life-cycle cost analysis based on initial cost and annual fuel cost. It is concluded that reducing CO 2 emissions to 1995 levels by 2010 is possible. This would require the simultaneous implementation of fuel-consumption improvements and the introduction of electric vehicles. However, automotive consumers would be reluctant to accept these technologies, particularly electric vehicles, because of their high purchase-price and low benefits in terms of operating economy. Acceptance will require financial and institutional support from the public sector in introducing these automotive technologies into the Japanese transportation sector. (author)

  19. Egyptian And International Automotive Diesel. Fuels: Specifications Meeting Challenges To Refining Industry

    International Nuclear Information System (INIS)

    Zayed, A.M.; EI Shamy, A.A.

    2004-01-01

    This paper presents a brief summary and comparison of Egyptian automotive diesel fuel to the international one. Recent legislation all over the world, requiring further reduction in sulfur, aromatics, T 90 and T 95 and increasing cetane value of the transportation diesel fuels, presents numerous technical and economic challenges to the refiners. While refiners grapple with these challenges, they will also face pressure from the increased demand of transportation diesel fuel and tighter capital restrictions. Overcome of these challenges makes a fair competition. A comparison of the Egyptian automotive diesel fuel and the international one will be a guide to locally and globally facing these challenges

  20. The System Dynamics of U.S. Automobile Fuel Economy

    Directory of Open Access Journals (Sweden)

    Todd K. BenDor

    2012-05-01

    Full Text Available This paper analyzes the dynamics of U.S. automobile gasoline consumption since 1975. Using background literature on the history of domestic fuel economy and energy policy, I establish a conceptual model that explains historical trends in adoption of increased fuel economy. I then create a system dynamics simulation model to understand the relationship between increased fuel economy standards and potential changes to gas tax policies. The model suggests that when increases in mandated fuel economy are not conducted in an environment with rising fuel costs, fuel economy improvements may be directly counteracted by shifting tastes of consumers towards larger automobiles with lower fuel economy.

  1. 10 CFR 474.3 - Petroleum-equivalent fuel economy calculation.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Petroleum-equivalent fuel economy calculation. 474.3..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION § 474.3 Petroleum-equivalent fuel economy calculation. (a) The petroleum-equivalent fuel economy for an electric vehicle is...

  2. Dynamic characteristics of an automotive fuel cell system for transitory load changes

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud

    2013-01-01

    A dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEMFC) system is developed to investigate the behavior and transient response of a fuel cell system for automotive applications. Fuel cell dynamics are subjected to reactant flows, heat management and water transportation inside the fuel...

  3. Comparing flexibility mechanisms for fuel economy standards

    International Nuclear Information System (INIS)

    Fischer, Carolyn

    2008-01-01

    Since 1975, the Corporate Average Fuel Economy (CAFE) program has been the main policy tool in the US for coping with the problems of increasing fuel consumption and dependence on imported oil. The program mandates average fuel economy requirements for the new vehicle sales of each manufacturer's fleet, with separate standards for cars and light trucks. The fact that each manufacturer must on its own meet the standards means that the incentives to improve fuel economy are different across manufacturers and vehicle types, although the problems associated with fuel consumption do not make such distinctions. This paper evaluates different mechanisms to offer automakers the flexibility of joint compliance with nationwide fuel economy goals: tradable CAFE credits, feebates, output-rebated fees, and tradable credits with banking. The policies are compared according to the short- and long-run economic incentives, as well as to issues of transparency, implementation, administrative and transaction costs, and uncertainty

  4. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  5. Technology Roadmap: Fuel Economy of Road Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This roadmap explores the potential improvement of existing technologies to enhance the average fuel economy of motorised vehicles; the roadmap’s vision is to achieve a 30% to 50% reduction in fuel use per kilometre from new road vehicles including 2-wheelers, LDV s and HDV s) around the world in 2030, and from the stock of all vehicles on the road by 2050. This achievement would contribute to significant reductions in GHG emissions and oil use, compared to a baseline projection. Different motorised modes are treated separately, with a focus on LDV s, HDV s and powered two-wheelers. A section on in-use fuel economy also addresses technical and nontechnical parameters that could allow fuel economy to drastically improve over the next decades. Technology cost analysis and payback time show that significant progress can be made with low or negative cost for fuel-efficient vehicles over their lifetime use. Even though the latest data analysed by the IEA for fuel economy between 2005 and 2008 showed that a gap exists in achieving the roadmap’s vision, cutting the average fuel economy of road motorised vehicles by 30% to 50% by 2030 is achievable, and the policies and technologies that could help meet this challenge are already deployed in many places around the world.

  6. Modern materials for automotive industry

    Directory of Open Access Journals (Sweden)

    Hovorun T. P.

    2017-12-01

    Full Text Available The car industry uses a tremendous number of materials to build cars, including iron, aluminum, steel, glass, rubber, petroleum products, copper, steel and others. These materials have evolved greatly over the decades, becoming more sophisticated, better built, and safer. They've changed as new automotive manufacturing technologies have emerged over the years, and they're used in increasingly innovative ways. This article is devoted to systematization information on the introduction and application of modern materials in the automotive industry. Given both domestic and foreign sources of information, it follows that car manufacturers are constantly pushing to create the lightest cars possible to increase speed and power. Research and development into lightweight materials is essential for lowering their cost, increasing their ability to be recycled, enabling their integration into vehicles, and maximizing their fuel economy benefits. Light weighting without loss of strength and speed properties is the present, and the future, of the automotive manufacturing industry. It brings innovative materials to the frontline of design.

  7. Prices, taxes and automotive fuel cross-border shopping

    International Nuclear Information System (INIS)

    Leal, Andres; Lopez-Laborda, Julio; Rodrigo, Fernando

    2009-01-01

    The aim of the present paper is to determine whether differences in automotive fuel prices among neighboring Autonomous Communities (i.e. Spanish political-administrative regions) affect the decisions taken by individuals regarding the region in which to purchase fuel. In particular, the intention is to discover if price increases in certain Autonomous Communities, as a result of the application of the regional tranche of the Hydrocarbon Retail Sales Tax (HRST) has affected fuel purchases in neighboring Communities. In order to achieve the above-mentioned objectives, the monthly purchases of automotive diesel in Aragon between January 2001 and March 2007 is estimated from the fuel price in Aragon, the relation between prices in each of the bordering Communities and Aragon, weighted by density of traffic, the number of vehicles registered in that Community, and three dummy variables representative of the implementation of the regional tranche of the HRST in Madrid, Catalonia, and Valencia. The paper finds empirical evidence to demonstrate a positive effect of the relative prices in the neighboring Communities and vehicle registrations, and also a negative effect of prices in Aragon, upon the acquisition of diesel in this region. In the case of Catalonia, some evidence suggests that the price effect may have been strengthened following the introduction of the regional tranche of the HRST in August 2004. (author)

  8. How "Green" Is Your Fuel? Creation and Comparison of Automotive Biofuels

    Science.gov (United States)

    Wagner, Eugene P.; Koehle, Maura A.; Moyle, Todd M.; Lambert, Patrick D.

    2010-01-01

    In recent years, biofuel development and use has risen significantly. This undergraduate laboratory experiment educates students on the various alternative fuels that are being developed for automotive applications and the advantages and disadvantages of each. Students replicate commercially available alternative fuels, E85 and biodiesel, as well…

  9. The future for fuel cells in the automotive industry

    International Nuclear Information System (INIS)

    Wells, P.E.

    2004-01-01

    'Full text:' This paper presents the view that the automotive industry, seen as a vital potential market for hydrogen fuel cell applications, is one that will be characterised in the future by an unprecedented combination of technological and economic diversity. This highly volatile and uncertain future has profound implications for those involved in government policy related to energy use and transportation, as well as those involved in the fuel cell industry. Most significantly, it is argued that the industry that applies hydrogen fuel cells twenty to thirty years from now will have a quite different structure and economic logic to that which currently prevails. Suppliers of hydrogen fuel cell solutions and systems need to have considerable flexibility in their business models. The themes of diversity and co-existence are developed from extensive research into the contemporary automotive industry, as well as an active involvement in the government policy arena at national, EU and international levels. The continued search for sustainability will not just entail the insertion of technology into otherwise familiar products by otherwise familiar manufacturing processes. It will enable and require the transformation of industry. This paper seeks to outline some of the ways in which the changes could unfold. (author)

  10. 76 FR 31467 - Guide Concerning Fuel Economy Advertising for New Automobiles

    Science.gov (United States)

    2011-06-01

    ... the Fuel Economy Guide \\1\\ in 1975 to prevent deceptive fuel economy advertising for new automobiles... Economy Guide. That rulemaking will increase the coverage of EPA's new fuel economy labels to include... issue to new vehicle advertisers in the FTC's Fuel Economy Guide. Therefore, the Commission has...

  11. 40 CFR 600.307-08 - Fuel economy label format requirements.

    Science.gov (United States)

    2010-07-01

    ... to battery electric vehicles, fuel cell vehicles, plug-in hybrid electric vehicles and vehicles... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy label format requirements...) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy...

  12. Haptic seat for fuel economy feedback

    Energy Technology Data Exchange (ETDEWEB)

    Bobbitt, III, John Thomas

    2016-08-30

    A process of providing driver fuel economy feedback is disclosed in which vehicle sensors provide for haptic feedback on fuel usage. Such sensors may include one or more of a speed sensors, global position satellite units, vehicle pitch/roll angle sensors, suspension displacement sensors, longitudinal accelerometer sensors, throttle position in sensors, steering angle sensors, break pressure sensors, and lateral accelerometer sensors. Sensors used singlely or collectively can provide enhanced feedback as to various environmental conditions and operating conditions such that a more accurate assessment of fuel economy information can be provided to the driver.

  13. Price transparency on the market for automotive fuels. Final report

    International Nuclear Information System (INIS)

    Meindert, L.; Van Schijndel, M.; Volkerink, B.

    2011-05-01

    The objective of this study is to answer the main question: which bottlenecks may obstruct the road to up-to-date, reliable and fully market covering price comparison services for the Dutch market for automotive fuels. [nl

  14. Optimization and optimal control in automotive systems

    CERN Document Server

    Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi

    2014-01-01

    This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier  approaches, based on some degree of heuristics, to the use of  more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...

  15. Talk of Thierry Breton, minister of economy, finances and industry. Talk to the association of economy and finance journalists about national and international energy questions on May 22, 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The French minister of economy, finances and industry explains the reasons of the rise of oil prices (tensions on the supply and demand balance, late recovery of investments in producing countries, geopolitical factors) and the measures that the government wishes to implement in order to bear up this situation: project of merger between Gaz de France and Suez energy groups, change of oil companies behaviour with consumers (automotive fuels price transparency), energy saving information on all energy suppliers advertisements, reinforcement of energy independence (development of renewable energy sources and of alternate automotive fuels). (J.S.)

  16. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle-specific 5-cycle fuel economy... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy... fuel economy calculations. This section applies to data used for fuel economy labeling under Subpart D...

  17. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  18. 40 CFR Appendix II to Part 600 - Sample Fuel Economy Calculations

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Calculations II... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. II Appendix II to Part 600—Sample Fuel Economy Calculations (a) This sample fuel economy calculation is applicable to...

  19. Instrumentation of cars for fuel economy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J E

    1982-04-01

    The development of an electronic system to control the air-fuel ratio (A/F) and ignition timing of an internal combustion engine to optimize fuel economy is described. Dynamometer and drive cycle testing of the system was performed. The results showed that a significant improvement in fuel economy can be achieved by a control system of the type developed. It is clear, however, that considerably more work needs to be done. One area mentioned is the need for more systematic fuel economy testing against speed and load as control parameters are varied for optimization, and a more economic air bypass system must be developed. (LCL)

  20. Downsizing assessment of automotive Stirling engines

    Science.gov (United States)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  1. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Science.gov (United States)

    2010-07-01

    ... EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures... equivalent petroleum-based fuel economy value exists for an electric vehicle configuration, all values for... values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual...

  2. Improving of diesel combustion-pollution-fuel economy and performance by gasoline fumigation

    International Nuclear Information System (INIS)

    Şahin, Zehra; Durgun, Orhan

    2013-01-01

    Highlights: • The effects of gasoline fumigation on the engine performance and NO x emission were investigated in Ford XLD 418 T automotive diesel engine. • Gasoline at approximately (2, 4, 6, 8 10, and 12)% (by vol.) ratios was injected into intake air by a carburetor. • GF enhances effective power and reduces brake specific fuel consumption, cost, and NO x emission. - Abstract: One of the most important objectives of the studies worldwide is to improve combustion of diesel engine to meet growing energy needs and to reduce increasing environmental pollution. To accomplish this goal, especially to reduce pollutant emissions, researchers have focused their interest on the field of alternative fuels and alternative solutions. Gasoline fumigation (GF) is one of these alternative solutions, by which diesel combustion, fuel economy, and engine performance are improved, and environmental pollution is decreased. In the fumigation method, gasoline is injected into intake air, either by a carburetor, which main nozzle section is adjustable or by a simple injection system. In the present experimental study, a simple carburetor was used, and the effects of gasoline fumigation at (2, 4, 6, 8, 10, 12)% (by vol.) gasoline ratios on the combustion, NO x emission, fuel economy, and engine performance sophisticatedly investigated for a fully instrumented, four-cylinder, water-cooled indirect injection (IDI), Ford XLD 418 T automotive diesel engine. Tests were conducted for each of the above gasoline fumigation ratios at three different speeds and for (1/1, 3/4, and 1/2) fuel delivery ratios (FDRs). GF test results showed that NO x emission is lower than that of neat diesel fuel (NDF). NO x emission decreases approximately 4.20%, 2.50%, and 9.65% for (1/1, 3/4, and 1/2) FDRs, respectively. Effective power increases approximately 2.38% for 1/1 FDR. At (2500 and 3000) rpms, effective power decreases at low gasoline ratios, but it increases at high gasoline ratios for 3/4 and 1

  3. 40 CFR 600.510-08 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy. 600.510-08 Section 600.510-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for Model Year 1978 Passenger Automobiles...

  4. 40 CFR 600.510-93 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy. 600.510-93 Section 600.510-93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for Model Year 1978 Passenger Automobiles...

  5. 40 CFR 600.510-86 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy. 600.510-86 Section 600.510-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for Model Year 1978 Passenger Automobiles...

  6. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  7. Sensitivities of Internal Combustion Automotive Engines to Variations in Fuel Properties

    Science.gov (United States)

    1982-02-01

    An assessment of the sensitivity of the automotive gasoline and diesel engines to variations in fuel properties has been made. The variables studied include H/C ratio, distillation range, aromatic content, ignition quality as determined by the octane...

  8. The hydrogen value chain: applying the automotive role model of the hydrogen economy in the aerospace sector to increase performance and reduce costs

    Science.gov (United States)

    Frischauf, Norbert; Acosta-Iborra, Beatriz; Harskamp, Frederik; Moretto, Pietro; Malkow, Thomas; Honselaar, Michel; Steen, Marc; Hovland, Scott; Hufenbach, Bernhard; Schautz, Max; Wittig, Manfred; Soucek, Alexander

    2013-07-01

    Hydrogen will assume a key role in Europe's effort to adopt its energy dependent society to satisfy its needs without releasing vast amounts of greenhouse gases. The paradigm shift is so paramount that one speaks of the "Hydrogen Economy", as the energy in this new and ecological type of economy is to be distributed by hydrogen. However, H2 is not a primary energy source but rather an energy carrier, a means of storing, transporting and distributing energy, which has to be generated by other means. Various H2 storage methods are possible; however industries' favourite is the storage of gaseous hydrogen in high pressure tanks. The biggest promoter of this storage methodology is the automotive industry, which is currently preparing for the generation change from the fossil fuel internal combustion engines to hydrogen based fuel cells. The current roadmaps foresee a market roll-out by 2015, when the hydrogen supply infrastructure is expected to have reached a critical mass. The hydrogen economy is about to take off as being demonstrated by various national mobility strategies, which foresee several millions of electric cars driving on the road in 2020. Fuel cell cars are only one type of "electric car", battery electric as well as hybrid cars - all featuring electric drive trains - are the others. Which type of technology is chosen for a specific application depends primarily on the involved energy storage and power requirements. These considerations are very similar to the ones in the aerospace sector, which had introduced the fuel cell already in the 1960s. The automotive sector followed only recently, but has succeeded in moving forward the technology to a level, where the aerospace sector is starting considering to spin-in terrestrial hydrogen technologies into its technology portfolio. Target areas are again high power/high energy applications like aviation, manned spaceflight and exploration missions, as well as future generation high power telecommunication

  9. 40 CFR 600.209-85 - Calculation of fuel economy values for labeling.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for Calculating Fuel Economy Values § 600.209... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of fuel economy values for...

  10. 40 CFR 600.209-95 - Calculation of fuel economy values for labeling.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for Calculating Fuel Economy Values § 600.209... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of fuel economy values for...

  11. Industrial thermoforming simulation of automotive fuel tanks

    International Nuclear Information System (INIS)

    Wiesche, Stefan aus der

    2004-01-01

    An industrial thermoforming simulation with regard to automotive plastic fuel tanks is presented including all relevant process stages. The radiative and conductive heat transfer during the reheat stage, the deformation and stress behaviour during the forming stage, and the final cooling stage are simulated. The modelling of the thermal and rheological behaviour of the involved material is investigated in greater detail. By means of experimental data it is found that modelling of the phase transition during the process is highly important for predicting correct wall thickness distributions

  12. Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement

    International Nuclear Information System (INIS)

    Kempf, Nicholas; Zhang, Yanliang

    2016-01-01

    Highlights: • A three-dimensional automotive thermoelectric generator (TEG) model is developed. • Heat exchanger design and TEG configuration are optimized for maximum fuel efficiency increase. • Heat exchanger conductivity has a strong influence on maximum fuel efficiency increase. • TEG aspect ratio and fin height increase with heat exchanger thermal conductivity. • A 2.5% fuel efficiency increase is attainable with nanostructured half-Heusler modules. - Abstract: Automotive fuel efficiency can be increased by thermoelectric power generation using exhaust waste heat. A high-temperature thermoelectric generator (TEG) that converts engine exhaust waste heat into electricity is simulated based on a light-duty passenger vehicle with a 4-cylinder gasoline engine. Strategies to optimize TEG configuration and heat exchanger design for maximum fuel efficiency improvement are provided. Through comparison of stainless steel and silicon carbide heat exchangers, it is found that both the optimal TEG design and the maximum fuel efficiency increase are highly dependent on the thermal conductivity of the heat exchanger material. Significantly higher fuel efficiency increase can be obtained using silicon carbide heat exchangers at taller fins and a longer TEG along the exhaust flow direction when compared to stainless steel heat exchangers. Accounting for major parasitic losses, a maximum fuel efficiency increase of 2.5% is achievable using newly developed nanostructured bulk half-Heusler thermoelectric modules.

  13. Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 1 – Tank-to-Wheel analysis

    International Nuclear Information System (INIS)

    Gupta, S.; Patil, V.; Himabindu, M.; Ravikrishna, R.V.

    2016-01-01

    As part of a two-part life cycle efficiency and greenhouse gas emission analysis for various automotive fuels in the Indian context, this paper presents the first part, i.e., Tank-to-Wheel analysis of various fuel/powertrain configurations for a subcompact passenger car. The Tank-to-Wheel analysis was applied to 28 fuel/powertrain configurations using fuels such as gasoline, diesel, compressed natural gas, liquefied petroleum gas and hydrogen with various conventional and hybrid electric powertrains. The gasoline-equivalent fuel economy and carbon dioxide emission results for individual fuel/powertrain configuration are evaluated and compared. It is found that the split hybrid configuration is best among hybrids as it leads to fuel economy improvement and carbon dioxide emissions reduction by 20–40% over the Indian drive cycle. Further, the engine efficiency, engine on-off time and regenerative braking energy assessment is done to evaluate the causes for higher energy efficiency of hybrid electric vehicles. The hybridization increases average engine efficiency by 10–60% which includes 19–23% of energy recovered at wheel through regenerative braking over the drive cycle. Overall, the Tank-to-Wheel energy use and efficiency results are evaluated for all fuel/powertrain configurations which show Battery Electric Vehicle, fuel cell vehicles and diesel hybrids are near and long term energy efficient vehicle configurations. - Highlights: • Tank-to-Wheel energy use & CO_2 emissions for subcompact car on Indian driving cycle. • Gasoline, diesel, CNG, LPG, hydrogen and electric vehicles are evaluated in this study. • First comprehensive Tank-to-Wheel analysis for India on small passenger car platform. • Parallel, series and split hybrid electric vehicles with various fuels are analysed.

  14. INVESTIGATION OF PEM FUEL CELL FOR AUTOMOTIVE USE

    Directory of Open Access Journals (Sweden)

    A. K. M. Mohiuddin

    2015-11-01

    Full Text Available This paper provides a brief investigation on suitability of Proton-exchange  membrane fuel cells (PEMFCs as the source of power for transportation purposes. Hydrogen is an attractive alternative transportation fuel. It is the least polluting fuel that can be used in an internal combustion engine (ICE and it is widely available. If hydrogen is used in a fuel cell which converts the chemical energy of hydrogen into electricity, (NOx emissions are eliminated. The investigation was carried out on a  fuel cell car model by implementing polymer electrolyte membrane (PEM types of fuel cell as the source of power to propel the prototype car. This PEMFC has capability to propel the electric motor by converting chemical energy stored in hydrogen gas into useful electrical energy. PEM fuel cell alone is used as the power source for the electric motor without the aid of any other power source such as battery associated with it. Experimental investigations were carried out to investigate the characteristics of fuel cell used and the performance of the fuel cell car. Investigated papameters are the power it develops, voltage, current and speed it produces under different load conditions. KEYWORDS: fuel cell; automotive; proton exchange membrane; polymer electrolyte membrane; internal combustion engine

  15. FUEL PRICES AND CAR SALES

    OpenAIRE

    Vlad Cârstea

    2008-01-01

    Automotive industry is a very important economic sector that is highly responsive to changes in the world economy. The fuel price is the biggest enemy of car manufacturers. This is a compared analysis between Europe and Romania regarding new car registrations.

  16. 40 CFR 85.1510 - Maintenance instructions, warranties, emission labeling and fuel economy requirements.

    Science.gov (United States)

    2010-07-01

    ..., emission labeling and fuel economy requirements. 85.1510 Section 85.1510 Protection of Environment..., warranties, emission labeling and fuel economy requirements. The provisions of this section are applicable to... for final admission. (d) Fuel economy labeling. (1) The certificate holder shall affix a fuel economy...

  17. 40 CFR 600.211-08 - Sample calculation of fuel economy values for labeling.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for Calculating Fuel Economy... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample calculation of fuel economy...

  18. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  19. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    International Nuclear Information System (INIS)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2016-01-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions. (letter)

  20. 40 CFR 600.210-08 - Calculation of fuel economy values for labeling.

    Science.gov (United States)

    2010-07-01

    ... including, but not limited to battery electric vehicles, fuel cell vehicles, plug-in hybrid electric... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of fuel economy values for... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy...

  1. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  2. Talk of Thierry Breton, minister of economy, finances and industry. Talk to the association of economy and finance journalists about national and international energy questions on May 22, 2006; Intervention de Thierry Breton ministre de l'Economie, des finances et de l'industrie. Intervention devant l'Ajef sur les questions energetiques nationales et internationales, le 22 mai 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The French minister of economy, finances and industry explains the reasons of the rise of oil prices (tensions on the supply and demand balance, late recovery of investments in producing countries, geopolitical factors) and the measures that the government wishes to implement in order to bear up this situation: project of merger between Gaz de France and Suez energy groups, change of oil companies behaviour with consumers (automotive fuels price transparency), energy saving information on all energy suppliers advertisements, reinforcement of energy independence (development of renewable energy sources and of alternate automotive fuels). (J.S.)

  3. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hopson, Dr Janet L [Univ. of Tennessee, Knoxville, TN (United States); Greene, David [Univ. of Tennessee, Knoxville, TN (United States); Gibson, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  4. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  5. Automotive Engines; Automotive Mechanics I: 9043.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  6. 40 CFR Appendix Viii to Part 600 - Fuel Economy Label Formats

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel Economy Label Formats VIII... POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. VIII Appendix VIII to Part 600—Fuel Economy Label Formats EC01MY92.117 EC01MY92.118 EC01MY92.119 EC01MY92.120...

  7. Free automotive and heating fuels for home and farm

    International Nuclear Information System (INIS)

    Murray, K.

    1991-01-01

    This book is for farmers or any landowners with access to free materials, such as agricultural wastes, that can be converted with minimum expense to heating fuel of to ethanol for automotive use. Farmers can learn how to make and use stoves, furnaces or stills for processing their own free materials for their own use or their neighbors. If one is a good mechanic one can learn how to adjust carburetors, to start a business converting engines to burn ethanol. The book is intended to provide the information you need to make practical use of waste materials and to save money. The book contains five chapters: Ethanol feedstocks; Crops for burning; Conversion to fuel; Fuel Utilization; and Business Opportunities. These chapters have been processed separately for inclusion on the data base

  8. Automotive fuel consumption in Brazil. Applying static and dynamic systems of demand equations

    Energy Technology Data Exchange (ETDEWEB)

    Iootty, Mariana [IE-UFRJ (Institute of Economics - Federal University of Rio de Janeiro), Energy Economics Group (Brazil); UFRRJ (Federal Rural University of Rio de Janeiro) (Brazil); Pinto, Helder Jr. [IE-UFRJ (Institute of Economics - Federal University of Rio de Janeiro), Energy Economics Group (Brazil); Ebeling, Francisco [Brazilian Petroleum Institute (Brazil)

    2009-12-15

    This paper aims to investigate and explain the performance of the Brazilian demand for automotive fuels in the period 1970-2005. It estimates the price and income elasticities for all the available fuels in the automotive sector in the country: gasoline, compressed natural gas (CNG), ethanol and diesel. The analysis of the expenditure allocation process among these fuels is carried out through the estimation of a linear approximation of an Almost Ideal Demand System (AIDS) model. Two estimation methods were implemented: the static (through a seemingly unrelated regression) and a dynamic (through a vector error correction model). Specification tests support the use of the latter. The empirical analysis suggests a high substitutability between gasoline and ethanol; being this relation higher than the one observed between gasoline and CNG. The study shows that gasoline, ethanol and diesel are normal goods, and with the exception of ethanol, they are expenditure elastic. CNG was estimated as an inferior good. (author)

  9. Automotive fuel consumption in Brazil. Applying static and dynamic systems of demand equations

    International Nuclear Information System (INIS)

    Iootty, Mariana; Pinto, Helder Jr.; Ebeling, Francisco

    2009-01-01

    This paper aims to investigate and explain the performance of the Brazilian demand for automotive fuels in the period 1970-2005. It estimates the price and income elasticities for all the available fuels in the automotive sector in the country: gasoline, compressed natural gas (CNG), ethanol and diesel. The analysis of the expenditure allocation process among these fuels is carried out through the estimation of a linear approximation of an Almost Ideal Demand System (AIDS) model. Two estimation methods were implemented: the static (through a seemingly unrelated regression) and a dynamic (through a vector error correction model). Specification tests support the use of the latter. The empirical analysis suggests a high substitutability between gasoline and ethanol; being this relation higher than the one observed between gasoline and CNG. The study shows that gasoline, ethanol and diesel are normal goods, and with the exception of ethanol, they are expenditure elastic. CNG was estimated as an inferior good. (author)

  10. 10 CFR Appendix to Part 474 - Sample Petroleum-Equivalent Fuel Economy Calculations

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Sample Petroleum-Equivalent Fuel Economy Calculations..., DEVELOPMENT, AND DEMONSTRATION PROGRAM; PETROLEUM-EQUIVALENT FUEL ECONOMY CALCULATION Pt. 474, App. Appendix to Part 474—Sample Petroleum-Equivalent Fuel Economy Calculations Example 1: An electric vehicle is...

  11. Materials Challenges for Automotive PEM Fuel Cells

    Science.gov (United States)

    Gasteiger, Hubert

    2004-03-01

    Over the past few years, significant R efforts aimed at meeting the challenging cost and performance targets required for the use of Polymer Electrolyte Membrane (PEM) fuel cells in automotive applications. Besides engineering advances in bipolar plate materials and design, the optimization of membrane-electrode assemblies (MEAs) was an important enabler in reducing the cost and performance gaps towards commercial viability for the automotive market. On the one hand, platinum loadings were reduced from several mgPt/cm2MEA [1] to values of 0.5-0.6 mgPt/cm2MEA in current applications and loadings as low as 0.25 mgPt/cm2MEA have been demonstrated on the research level [2]. On the other hand, implementation of thin membranes (20-30 micrometer) [3, 4] as well as improvements in diffusion medium materials, essentially doubled the achievable power density of MEAs to ca. 0.9 W/cm2MEA (at 0.65 V) [5], thereby not only reducing the size of a PEMFC fuel cell system, but also reducing its overall materials cost (controlled to a large extent by membrane and Pt-catalyst cost). While this demonstrated a clear path towards automotive applications, a renewed focus of R efforts is now required to develop materials and fundamental materials understanding to assure long-term durability of PEM fuel cells. This presentation therefore will discuss the state-of-the-art knowledge of catalyst, catalyst-support, and membrane degradation mechanisms. In the area of Pt-catalysts, experience with phosphoric acid fuel cells (PAFCs) has shown that platinum sintering leads to long-term performance losses [6]. While this is less critical at the lower PEMFC operating temperatures (200C), very little is known about the dependence of Pt-sintering on temperature, cell voltage, and catalyst type (i.e., Pt versus Pt-alloys) and will be discussed here. Similarly, carbon-support corrosion can contribute significantly to voltage degradation in PAFCs [7], and even in the PEMFC environment more corrosion

  12. 40 CFR 600.006-08 - Data and information requirements for fuel economy vehicles.

    Science.gov (United States)

    2010-07-01

    ... controller, battery configuration, or other components performed within 2,000 miles prior to fuel economy... fuel economy vehicles. 600.006-08 Section 600.006-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel...

  13. 40 CFR 600.307-95 - Fuel economy label format requirements.

    Science.gov (United States)

    2010-07-01

    ... requirements. (a)(1) Fuel economy labels must be: (i) Rectangular in shape with a minimum height of 4.5 inches... equivalent fuel economy. To convert these values into units of miles per 100 cubic feet of natural gas... per 100 cubic feet of natural gas, multiply by 0.823.” may be replaced by the statement “The fuel...

  14. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Label Calculation...) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. III Appendix III to Part 600—Sample Fuel Economy Label Calculation Suppose that a manufacturer called Mizer...

  15. 75 FR 59673 - Public Hearing Locations for the Proposed Fuel Economy Labels

    Science.gov (United States)

    2010-09-28

    ...] RIN 2060-AQ09; RIN 2127-AK73 Public Hearing Locations for the Proposed Fuel Economy Labels AGENCY... Vehicle Fuel Economy Label,'' published in the Federal Register on September 23, 2010. The goal of a... testimony or comment on the Agency's proposed revisions and additions to the motor vehicle fuel economy...

  16. Fuel economy handbook

    Energy Technology Data Exchange (ETDEWEB)

    Short, W [ed.

    1979-01-01

    An overview of the UK's energy situation from 1950 to 2020 is presented. Problems are discussed and recommendations are made. A strong argument is presented for energy conservation, greater use of nuclear energy, and restrained production of North Sea oil. Specific recommendations are made for financial and operational considerations of (1) new or replacement boiler plants; (2) space heating of factories, offices and similar buildings; and (3) possible use of various fuels including duel-fuel economics and use of wastes. Tariffs and charges are discussed as well as services (e.g. compressed air, cooling water, sources of waste, etc.). Standby considerations (peak load lopping, turbines-engines, parallel or sectioned operation, etc.) and heat distribution (steam, condensate return and uses) are discussed. Throughout, the emphasis is on fuel economy. Savings in process such as recovering waste heat and the storage of heat are considered. For small industrial furnaces, intermittent heating, heat recovery, and the importance of furnace loading are discussed. (MJJ)

  17. Determinants of consumer interest in fuel economy: Lessons for strengthening the conservation argument

    International Nuclear Information System (INIS)

    Popp, Michael; Vickery, Gina; Dixon, Bruce; Van de Velde, Liesbeth; Van Huylenbroeck, Guido; Verbeke, Wim

    2009-01-01

    With an outlook for higher global energy prices and concomitant increase of agricultural resources for the pursuit of fuel, consumers are expected to seek more fuel-economic transportation alternatives. This paper examines factors that influence the importance consumers place on fuel economy, with attention given to differences between American and European consumers. In a survey conducted simultaneously in the United States (U.S.) and Belgium in the fall of 2006, respondents in both countries ranked fuel economy high among characteristics considered when purchasing a new vehicle. Overall, respondents in the U.S. placed greater emphasis on fuel economy as a new-vehicle characteristic. Respondents' budgetary concerns carried a large weight when purchasing a new vehicle as reflected in their consideration of a fuel's relative price (e.g. gasoline vs. diesel vs. biofuel) and associated car repair and maintenance costs. On the other hand, high-income Americans displayed a lack of concern over fuel economy. Concern over the environment also played a role since consumers who felt empowered to affect the environment with their purchasing decisions (buying low and clean emission technology and fuels) placed greater importance on fuel economy. No statistically significant effects on fuel economy rankings were found related to vehicle performance, socio-demographic parameters of age, gender or education. Importantly, the tradeoff between using agricultural inputs for energy rather than for food, feed and fiber had no impact on concerns over fuel economy. Finally, contrary to expectations, U.S. respondents who valued domestically produced renewable fuels did not tend to value fuel economy. (author)

  18. On the efficiency of an advanced automotive fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Freunberger, S.A.; Reum, M.; Tsukada, A.; Dietrich, P. [Paul Scherrer Institut, Electrochemistry Laboratory, CH-5232 Villigen PSI (Switzerland); Paganelli, G.; Delfino, A. [Conception et Developpement Michelin, Route Andre-Piller 30, CH-1762 Givisiez (Switzerland)

    2007-04-15

    Efficiency is the key parameter for the application of fuel cells in automotive applications. The efficiency of a hydrogen/oxygen polymer electrolyte fuel cell system is analyzed and compared to hydrogen/air systems. The analysis is performed for the tank to electric power chain. Furthermore, the additional energy required for using pure oxygen as a second fuel is analyzed and included in the calculation. The results show that if hydrogen is produced from primary fossil energy carriers, such as natural gas and pure oxygen needs to be obtained by a conventional process; the fuel to electric current efficiency is comparable for hydrogen/oxygen and hydrogen/air systems. However, if hydrogen and oxygen are produced by the splitting of water, i.e., by electrolysis or by a thermochemical process, the fuel to electric current efficiency for the hydrogen/oxygen system is clearly superior. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  19. Consumer Views: Importance of Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on the importance of fuel economy amongst other vehicle attributes and views on which alternative fuel types would be the best and worst replacements for gasoline.

  20. Development & optimization of a rule-based energy management strategy for fuel economy improvement in hybrid electric vehicles

    Science.gov (United States)

    Asfoor, Mostafa

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall energy conversion efficiencies is the hybridization of conventional vehicle drive systems. This dissertation builds on prior hybrid powertrain development at the University of Idaho. Advanced vehicle models of a passenger car with a conventional powertrain and three different hybrid powertrain layouts were created using GT-Suite. These different powertrain models were validated against a variety of standard driving cycles. The overall fuel economy, energy consumption, and losses were monitored, and a comprehensive energy analysis was performed to compare energy sources and sinks. The GT-Suite model was then used to predict the formula hybrid SAE vehicle performance. Inputs to this model were a numerically predicted engine performance map, an electric motor torque curve, vehicle geometry, and road load parameters derived from a roll-down test. In this case study, the vehicle had a supervisory controller that followed a rule-based energy management strategy to insure a proper power split during hybrid mode operation. The supervisory controller parameters were optimized using discrete grid optimization method that minimized the total amount of fuel consumed during a specific urban driving cycle with an average speed of approximately 30 [mph]. More than a 15% increase in fuel economy was achieved by adding supervisory control and managing power split. The vehicle configuration without the supervisory controller displayed a fuel economy of 25 [mpg]. With the supervisory controller this rose to 29 [mpg]. Wider applications of this research include hybrid vehicle controller designs that can extend the range and survivability of military combat platforms. Furthermore, the

  1. New vehicle fuel economy in the UK: Impact of the recession and recent policies

    International Nuclear Information System (INIS)

    Wadud, Zia

    2014-01-01

    Interests in vehicle fuel economy have increased in the past few years with the implementations of more stringent CAFE standard in USA and mandatory carbon emission standard in the EU. We seek to understand the effects of recent policies such as restructuring of Vehicle Excise Duties and EU standard on new vehicle fuel economy in the UK. In the past few years there have been substantial fluctuations in income and fuel prices, offering an interesting testing ground to understand their impact on the demand for fuel economy in vehicles. We use a monthly dataset to find that the emission standard is the largest driver for fuel economy improvements in recent years. Also, contrary to some recent findings in Europe and in UK, we find that income has an effect and that the recession had some role in improving the fuel economy. The effects of fuel prices were relatively small. Restructuring of the VED also improved new vehicle fuel economy in the UK, but the scrappage scheme had no significant effect. Results indicate that both supply and demand side policies are effective in improving fuel economy, although quantitatively the emission standard appears more effective due to its stringency. It is also important to consider the effects of income while devising demand side policies. - Highlights: • Econometric modelling and simulation of new vehicle fuel economy in UK. • EU carbon standard is the largest reason behind improving fuel economy. • Recession and associated reduction in income also had a role. • Fuel price has some impact on new car fuel economy, but small. • VED restructuring had an impact, but scrappage scheme's impact was insignificant

  2. The cost of fuel economy in the Indian passenger vehicle market

    International Nuclear Information System (INIS)

    Chugh, Randy; Cropper, Maureen; Narain, Urvashi

    2011-01-01

    To investigate how fuel economy is valued in the Indian car market, we compute the cost to Indian consumers of purchasing a more fuel-efficient vehicle and compare it to the benefit of lower fuel costs over the life of the vehicle. We estimate hedonic price functions for four market segments (petrol hatchbacks, diesel hatchbacks, petrol sedans, and diesel sedans) to compute 95% confidence intervals for the marginal cost to the consumer for an increase in fuel economy. We find that the associated present value of fuel savings falls within the 95% confidence interval for most specifications, in all market segments, for the years 2002 through 2006. Thus, we fail to consistently reject the hypothesis that consumers appropriately value fuel economy. - Highlights: → We examine the tradeoffs faced by new vehicle consumers in India. → We use hedonic price functions and instrumental variables. → We find no support for the hypothesis that consumers undervalue fuel economy. → Some consumers are willing to forgo substantial potential savings to own their preferred vehicle.

  3. The Progressive Insurance Automotive X PRIZE Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Robyn Ready

    2011-12-31

    The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

  4. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Duleep, K. G. [ICF International; Upreti, Girish [ORNL

    2011-06-01

    Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

  5. 40 CFR 600.006-86 - Data and information requirements for fuel economy vehicles.

    Science.gov (United States)

    2010-07-01

    ... fuel economy vehicles. 600.006-86 Section 600.006-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-General Provisions § 600.006-86 Data and...

  6. 40 CFR 600.006-89 - Data and information requirements for fuel economy vehicles.

    Science.gov (United States)

    2010-07-01

    ... fuel economy vehicles. 600.006-89 Section 600.006-89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-General Provisions § 600.006-89 Data and...

  7. Hydrogen: Its Future Role in the Nation's Energy Economy.

    Science.gov (United States)

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by

  8. Increasing the Fuel Economy and Safety of New Light-DutyVehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom; Ross, Marc

    2006-09-18

    One impediment to increasing the fuel economy standards forlight-duty vehicles is the long-standing argument that reducing vehiclemass to improve fuel economy will inherently make vehicles less safe.This technical paper summarizes and examines the research that is citedin support of this argument, and presents more recent research thatchallenges it. We conclude that the research claiming that lightervehicles are inherently less safe than heavier vehicles is flawed, andthat other aspects of vehicle design are more important to the on-roadsafety record of vehicles. This paper was prepared for a workshop onexperts in vehicle safety and fuel economy, organized by the William andFlora Hewlett Foundation, to discuss technologies and designs that can betaken to simultaneously improve vehicle safety and fuel economy; theworkshop was held in Washington DC on October 3, 2006.

  9. In-use fuel economy of hybrid-electric school buses in Iowa.

    Science.gov (United States)

    Hallmark, Shauna; Sperry, Bob; Mudgal, Abhisek

    2011-05-01

    Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.

  10. Meeting U.S. passenger vehicle fuel economy standards in 2016 and beyond

    International Nuclear Information System (INIS)

    Cheah, Lynette; Heywood, John

    2011-01-01

    New fuel economy standards require new U.S. passenger vehicles to achieve at least 34.1 miles per gallon (MPG) on average by model year 2016, up from 28.8 MPG today. In this paper, the magnitude, combinations and timings of the changes required in U.S. vehicles that are necessary in order to meet the new standards, as well as a target of doubling the fuel economy within the next two decades are explored. Scenarios of future vehicle characteristics and sales mix indicate that the 2016 mandate is aggressive, requiring significant changes starting from today. New vehicles must forgo horsepower improvements, become lighter, and a greater number will use advanced, more fuel-efficient powertrains, such as smaller turbocharged engines, hybrid-electric drives. Achieving a factor-of-two increase in fuel economy by 2030 is also challenging, but more feasible since the auto industry will have more lead time to respond. A discussion on the feasibility of meeting the new fuel economy mandate is included, considering vehicle production planning realities and challenges in deploying new vehicle technologies into the market. - Research Highlights: → The new 2016 fuel economy standards for passenger vehicles in the U.S. can be met, but are aggressive. → Future vehicles must forgo horsepower improvements, become lighter, and a greater number will use advanced, more fuel efficient powertrains. → The challenge of meeting the fuel economy targets is defined by both the magnitude and the timing of these requirements. → Doubling the fuel economy by 2030 is also challenging, but more feasible since the auto industry will have more lead time to respond.

  11. Investigation of the influence of physical and chemical properties of biodiesel in the fuel economy, energy and environmental performance of motor diesel

    Directory of Open Access Journals (Sweden)

    Korpach А.

    2016-08-01

    Full Text Available Due to exhaustion of world energy reserves and significant environmental pollution by harmful substances, current research aimed at determining the effectiveness of alternative fuels. In the article compare two samples of biodiesel and studied their physical and chemical properties accordance with International Standard. Effect of different samples of biodiesel in fuel economy, energy and environmental performance automotive diesel determined by the bench tests of 4CH11,0/12.5 (D-241 diesel. The difference between physical and chemical properties of two biodiesel samples influenced to the fuel efficiency and environmental performance of the diesel. Operation on biodiesel with higher density and kinematic viscosity provide increases of maximum power and torque and increase fuel consumption. It also increases the concentration of nitrogen oxides in exhaust gases and it opacity. The results allow evaluate how the deviation of physical and chemical properties of biodiesel could affect the operational performance of the engine.

  12. Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy

    International Nuclear Information System (INIS)

    Greene, D.L.; Patterson, P.D.; Singh, Margaret; Li Jia

    2005-01-01

    US fuel economy standards have not been changed significantly in 20 years. Feebates are a market-based alternative in which vehicles with fuel consumption rates above a 'pivot point' are charged fees while vehicles below receive rebates. By choice of pivot points, feebate systems can be made revenue neutral. Feebates have been analyzed before. This study re-examines feebates using recent data, assesses how the undervaluing of fuel economy by consumers might affect their efficacy, tests sensitivity to the cost of fuel economy technology and price elasticities of vehicle demand, and adds assessments of gas-guzzler taxes or rebates alone. A feebate rate of $500 per 0.01 gallon per mile (GPM) produces a 16 percent increase in fuel economy, while a $1000 per 0.01 GPM results in a 29 percent increase, even if consumers count only the first 3 years of fuel savings. Unit sales decline by about 0.5 percent but sales revenues increase because the added value of fuel economy technologies outweighs the decrease in sales. In all cases, the vast majority of fuel economy increase is due to adoption of fuel economy technologies rather than shifts in sales

  13. Reforming fossil fuel prices in India: Dilemma of a developing economy

    International Nuclear Information System (INIS)

    Anand, Mukesh Kumar

    2016-01-01

    Over the period between 1990–1 and 2012–3, fossil fuel use on farms has risen and its indirect use in farming, particularly for non-energy purposes, is also growing. Consequently, both energy intensity and fossil fuel intensity are rising for Indian agriculture. But, these are declining for the aggregate Indian economy. Thus, revision of fossil fuel prices acquires greater significance for Indian agriculture than for rest of the economy. There are significant differences across crops. The crop-level analysis is supplemented by an alternative approach that utilizes a three-sector input–output (I–O) model for the Indian economy representing farming, fossil fuels, and rest of economy. Fossil fuels sector is assessed to portray, in general, strong forward linkages. The increase in total cost of farming, for a given change in fossil fuel prices, is estimated as a multiple of increase in direct input cost of fossil fuels in farming. From the three-sector aggregated economy this multiple was estimated at 3.99 for 1998–9. But it grew to 6.7 in 2007–8. The findings have stronger ramifications than commonly recognized, for inflation and cost of implementing the policy on food security. - Highlights: •Fossil fuels’ contribution in primary energy supply has risen from 55 to 75 per cent. •Energy intensity halved for aggregate GDP, but doubled for agricultural GDP. •Impact of fossil fuel price increase on farming costs mimics a widening spiral. •Total cost of farming may increase 6.7 times the increase in direct fuel input cost.

  14. The Sport-Utility Vehicle: Debating Fuel-Economy Standards in Thermodynamics

    Science.gov (United States)

    Mayer, Shannon

    2008-01-01

    This paper describes a debate about national fuel-economy standards for sport-utility vehicles (SUVs) used as a foundation for exploring a public policy issue in the physical science classroom. The subject of automobile fuel economy benefits from a familiarity with thermodynamics, specifically heat engines, and is therefore applicable to a broad…

  15. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Science.gov (United States)

    2010-07-01

    ... cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later...

  16. Standardized Curriculum for Automotive Mechanics.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive mechanics I and II. The six units in automotive mechanics I are as follows: orientation and safety; tools, equipment, and manuals; measurement; automotive engines; basic electrical systems; and fuel systems. Automotive…

  17. Experiment and Simulation of Medium-Duty Tactical Truck for Fuel Economy Improvement

    Directory of Open Access Journals (Sweden)

    Allen M. Quail

    2011-02-01

    Full Text Available Fuel economy improvement on medium-duty tactical truck has and continues to be a significant initiative for the U.S. Army. The focus of this study is the investigation of Automated Manual Transmissions (AMT and mild hybridization powertrain that have potential to improve the fuel economy of the 2.5-ton cargo trucks. The current platform uses a seven-speed automatic transmission. This study utilized a combination of on-road experimental vehicle data and analytical vehicle modeling and simulation. This paper presents the results of (1 establishment of a validated, high fidelity baseline analytical vehicle model, (2 modeling and simulation of two AMTs and their control strategy, (3 optimization of transmissions shift schedules, and (4 modeling and simulation of engine idle stop/start and Belt-Integrated-Starter-Generator (B-ISG systems to improve the fuel economy. The fuel economy discrepancy between experimental average and the baseline simulation result was 2.87%. The simulation results indicated a 14.5% and 12.2% fuel economy improvement for the 10-speed and 12-speed AMT respectively. A stop/start system followed by a B-ISG mild hybrid system incorporating regenerative braking was estimated to improve fuel economy 3.39% and 10.2% respectively.

  18. Reducing greenhouse gas emissions from the Ontario automotive sector

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    A variety of options to reduce greenhouse gas emissions from the automotive sector in Ontario over the next decade were discussed. Each option was assessed in terms of practicality and implications for implementation. I was concluded that improvements in fuel economy anticipated from advancing technology, with or without new mandated standards, will not be enough to offset the impact of growth in vehicle fleet size and kilometres driven. If the goal is to stabilize greenhouse gas emissions, other measures such as reducing the fleet size and vehicle kilometres travelled and accelerated vehicle retirement (scrappage) programs must be considered. Key constraints on expansion of the alternative fuel fleet were identified. These include: (1) limited availability of an adequate range of alternative fuel vehicles at competitive prices, (2) limited refuelling facility infrastructure in the case of natural gas, limited range and fuel storage capacity for natural gas; (3)current limited fuel ethanol production capacity, and (4) market perceptions of performance, reliability and safety. tabs

  19. 40 CFR 600.206-86 - Calculation and use of fuel economy values for gasoline-fueled, diesel, and electric vehicle...

    Science.gov (United States)

    2010-07-01

    ... values for gasoline-fueled, diesel, and electric vehicle configurations. 600.206-86 Section 600.206-86...-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year... values for gasoline-fueled, diesel, and electric vehicle configurations. (a) Fuel economy values...

  20. NASA/DOE automotive Stirling engine project: Overview 1986

    Science.gov (United States)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  1. Policy Pathways: Improving the Fuel Economy of Road Vehicles - A policy package

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The transportation sector accounts for approximately one-fifth of global final energy consumption and will account for nearly all future growth in oil use, particularly for road vehicles. The right policy mix can allow countries to improve the fuel economy of road vehicles, which in turn can enhance energy security and reduce CO2 emissions. Improving the Fuel Economy of Road Vehicles highlights lessons learned and examples of good practices from countries with experience in implementing fuel economy policies for vehicles. The report, part of the IEA’s Policy Pathway series, outlines key steps in planning, implementation, monitoring and evaluation. It complements the IEA Technology Roadmap: Fuel Economy for Road Vehicles, which outlines technical options, potentials, and costs towards improvement in the near, medium and long term.

  2. Engine Tune-Up Service. Unit 5: Fuel and Carburetion Systems. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Goodson, Ludy

    This student guide is for Unit 5, Fuel and Carburetion Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting and servicing the fuel and carburetion systems. A companion review exercise book and posttests are available separately as CE 031 218-219. An introduction tells how this unit fits…

  3. 40 CFR 600.006-87 - Data and information requirements for fuel economy vehicles.

    Science.gov (United States)

    2010-07-01

    ..., motor controller, battery configuration, or other components performed within 2,000 miles prior to fuel... fuel economy vehicles. 600.006-87 Section 600.006-87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel...

  4. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  5. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Science.gov (United States)

    2010-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year does...

  6. Current and Future Uses of Aluminum in the Automotive Industry

    Science.gov (United States)

    Long, R. S.; Boettcher, E.; Crawford, D.

    2017-12-01

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher-strength aluminum materials needed for strength-driven safety-critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225°C. A demonstration part has been developed that is representative of the forming challenges within a current hot-stamped door ring component. This part tooling has been built and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.

  7. Substantial Improvements of Fuel Economy

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Nielsen, Lars H.

    1996-01-01

    The paper evaluates the scope for improving the energy and environmental impacts of road transport by means of electrical and hybrid propulsion. These technologies promise considerable improvements of the fuel economy compared to equivalent vehicles mas well as beneficial effects for the energy...... and traffic systems. A case study concerning passenger cars is analysed by means of computer simulation....

  8. Are today's automotive technician students ready for the increased use of ethanol fuels: A study of students' perceptions of ethanol and the effects of E20

    Science.gov (United States)

    Mead, Gary R.

    As the price of petroleum rises, the use of alternative fuels such as ethanol will continue to increase. As ethanol use increases, consumers are asking automotive technicians questions about the fuel. But how much do automotive technicians know about ethanol? In order to answer this question, a study was conducted to describe automotive technician students' knowledge, attitudes, and perceptions of ethanol as a vehicle fuel. Automotive students were chosen because they will be tomorrow's generation of technicians who will be working on vehicles that have used ethanol fuels along with flex fuel vehicles. The students were selected from six two-year technical colleges located in southern Minnesota. The six schools were chosen because they are located in areas where ethanol use is prevalent. The study used a 33-question pencil-and-paper survey to measure 184 automotive students' perceptions of ethanol. The survey revealed that students' knowledge of ethanol is very superficial. They know well advertised terms and facts, but lack an in-depth knowledge of the fuel. Also, it was discovered that several myths about ethanol still exist. Because of the lack of knowledge on technical aspects of the fuel, it is recommended that instructors in automotive programs incorporate a one to two hour class covering ethanol fuels into their courses. The second part of this study was a review of several material compatibility studies conducted at Minnesota State University, Mankato on 20% ethanol blends. The studies were conducted on fuel system rubbers, plastics, and metals. Minnesota recently enacted a law that will require all gasoline sold in the state to contain 20% ethanol. These studies were reviewed to see if 20% ethanol, E20, will cause any vehicle fuel system problems that automotive technicians should know about. After reviewing the studies it was determined that the likelihood of fuel system problems from E20 would be very small and isolated. Even though the potential for

  9. Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate policy in the United States

    International Nuclear Information System (INIS)

    Karplus, Valerie J.; Paltsev, Sergey; Babiker, Mustafa; Reilly, John M.

    2013-01-01

    The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use and (more recently) greenhouse gas (GHG) emissions. Understanding the cost and effectiveness of fuel economy standards, alone and in combination with economy-wide policies that constrain GHG emissions, is essential to inform coordinated design of future climate and energy policy. We use a computable general equilibrium model, the MIT Emissions Prediction and Policy Analysis (EPPA) model, to investigate the effect of combining a fuel economy standard with an economy-wide GHG emissions constraint in the United States. First, a fuel economy standard is shown to be at least six to fourteen times less cost effective than a price instrument (fuel tax) when targeting an identical reduction in cumulative gasoline use. Second, when combined with a cap-and-trade (CAT) policy, a binding fuel economy standard increases the cost of meeting the GHG emissions constraint by forcing expensive reductions in passenger vehicle gasoline use, displacing more cost-effective abatement opportunities. Third, the impact of adding a fuel economy standard to the CAT policy depends on the availability and cost of abatement opportunities in transport—if advanced biofuels provide a cost-competitive, low carbon alternative to gasoline, the fuel economy standard does not bind and the use of low carbon fuels in passenger vehicles makes a significantly larger contribution to GHG emissions abatement relative to the case when biofuels are not available. This analysis underscores the potentially large costs of a fuel economy standard relative to alternative policies aimed at reducing petroleum use and GHG emissions. It further emphasizes the need to consider sensitivity to vehicle technology and alternative fuel availability and costs as well as economy-wide responses when forecasting the energy, environmental, and economic outcomes of

  10. Fuel cells - from the laboratory to the road

    Energy Technology Data Exchange (ETDEWEB)

    Fronk, M.H. [Delphi Energy and Engine Management Systems, Rochester, NY (United States)

    1996-12-31

    The polymer electrolyte membrane (PEM) Fuel Cell faces stiff competition from existing automotive powerplants and other Hybrid APUs. To be successful, the Fuel Cell will have to demonstrate real customer advantages such as fuel economy and emissions. The PEM technology has an inherent advantage over other powerplants in both thermal efficiency and emission performance, and as such fits in very well with the future regulations that strive to clean up the environment. In addition, it will need to be cost competitive and provide acceptable performance. The majority of development activity on PEM Fuel Cells to date has concentrated primarily in the area of Stack refinement and optimization with improvements coming in higher power densities and higher specific power. To make the Fuel Cell compatible with an automotive environment the entire system will need to be analyzed, understood, and then engineered to work together in an efficient manner.

  11. Motor vehicle fuel economy, the forgotten HC control stragegy?

    Energy Technology Data Exchange (ETDEWEB)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  12. Final report: U.S. competitive position in automotive technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  13. 76 FR 54932 - Revisions and Additions to Motor Vehicle Fuel Economy Label; Correction

    Science.gov (United States)

    2011-09-06

    ...-AK73 Revisions and Additions to Motor Vehicle Fuel Economy Label; Correction AGENCY: Environmental... regarding labeling of cars and trucks with fuel economy and environmental information in the Federal...

  14. Automobile fuel; Economy and CO2 emissions in industrialized countries : troubling trends through 2005/6

    Science.gov (United States)

    2005-01-01

    A review of recently available data on both on-road fuel economy and new car test fuel economy : shows that while US on-road fuel economy has been flat for almost 15 years, major European countries and Japan have shown modest improvements in response...

  15. Fuel economy of new passenger cars in Mexico: Trends from 1988 to 2008 and prospects

    International Nuclear Information System (INIS)

    Sheinbaum-Pardo, Claudia; Chávez-Baeza, Carlos

    2011-01-01

    This paper analyzes trends in fuel economy (kilometers per liter) of new passenger vehicles in Mexico over a period of 20 years from 1988 to 2008. Results show that in this period, fuel economy of the new passenger vehicle fleet, including multipurpose vehicles (a category similar to sport utility vehicles, SUVs), increased by only 6.3%. A simple Laspeyres index analysis was developed to evaluate both the impact of changes in vehicle sales structure by category and the changes in fuel economy. Results show that increased sales of heavier, multipurpose vehicles in place of subcompact and compact vehicles, impacted negatively on the fleet average fuel economy. If the structure of sales had continued in the same proportions across all categories as in 1988, fuel economy would have increased by 11.0%, instead of the actual 6.3%. This result coincides with trends in other countries. The paper also presents different scenarios of passenger car fuel economy for the year 2020, and its implications for gasoline consumption and CO 2 emissions. The results may influence the new passenger vehicle fuel economy standard that is currently under discussion in Mexico.

  16. Satisfaction of the Automotive Fleet Fuel Demand and Its Impact on the Oil Refining Industry

    Science.gov (United States)

    1980-12-01

    Because virtually all transportation fuels are based on petroleum, it is essential to include petroleum refining in any assessment of potential changes in the transportation system. A number of changes in the automotive fleet have been proposed to im...

  17. Technology development goals for automotive fuel cell power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1994-08-01

    This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

  18. Algal biodiesel economy and competition among bio-fuels.

    Science.gov (United States)

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Evaluation of the Benefits Attributable to Automotive Lighweight Materials Program Research and Development Projects

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    2002-01-11

    The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The program focuses on the development and validation of advanced lightweight materials technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The work supports the goals of the Partnership for a New Generation of Vehicles (PNGV). Up to thirty percent of the improvement required to meet the PNGV goal of tripling vehicle fuel economy and much of its cost, safety, and recyclability goal depend on the lightweight materials. Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers.

  20. Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles

    International Nuclear Information System (INIS)

    Huo Hong; He Kebin; Wang, Michael; Yao Zhiliang

    2012-01-01

    One of the principal ways to reduce transport-related energy use is to reduce fuel-consumption rates of motor vehicles (usually measured in liters of fuel per 100 km). Since 2004, China has implemented policies to improve vehicle technologies and lower the fuel-consumption rates of individual vehicles. Policy evaluation requires accurate and adequate information on vehicle fuel-consumption rates. However, such information, especially for Chinese vehicles under real-world operating conditions, is rarely available from official sources in China. For each vehicle type we first review the vehicle technologies and fuel-economy policies currently in place in China and their impacts. We then derive real-world (or on-road) fuel-consumption rates on the basis of information collected from various sources. We estimate that the real-world fuel-consumption rates of vehicles in China sold in 2009 are 9 L/100 km for light-duty passenger vehicles, 11.4 L/100 km for light-duty trucks, 22 L/100 km for inter-city transport buses, 40 L/100 km for urban transit buses, and 24.9 L/100 km for heavy-duty trucks. These results aid in understanding the levels of fuel consumption of existing Chinese vehicle fleets and the effectiveness of policies in reducing on-road fuel consumption, which can help in designing and evaluating future vehicle energy-efficiency policies. - Highlights: ► Vehicle fuel-consumption rate (VFCR) data are rarely available in China. ► We review the fuel-economy policies currently in place in China and their impacts. ► We derive real-world VFCRs on the basis of information collected from various sources. ► Results aid in understanding the fuel consumption levels of Chinese vehicle fleets. ► Results help in designing and evaluating future vehicle energy-efficiency policies.

  1. Fuels for homogeneous charge compression ignition (HCCI) engines. Automotive fuels survey. Part 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Walwijk, M.

    2001-01-01

    . - So far, HCCI operation is only possible at light engine loads. - Engine-out emissions of HC and CO are not low. A low-temperature exhaust catalyst is required. Because it is possible to operate HCCI engines using a wide range of fuels, the conventional fuel specifications are not appropriate for HCCI engines. A fuel characteristic like cetane number for example, which is important for fuels in conventional diesel engines, has lost its significance for HCCI engines. Fuels like gasoline and natural gas, for which no cetane number is defined, can be used in HCCI engines. Research to establish the fuel requirements for HCCI engines has commenced. The first results indicate that the auto-ignition temperature of the fuel is important, because it has to be below the temperature that is reached in the combustion chamber after compression. The auto-ignition temperature is not specified for conventional fuel applications. Also fuel characteristics that affect the formation of a homogeneous air/fuel mixture are important, because inhomogeneities in the mixture lead to increased emission of NOx and particulates from HCCI engines. Consequently, volatility of the fuel and also boiling point may be considered important. Volatility of diesel fuel is low for example. To obtain a homogeneous air/fuel mixture with diesel, the inlet charge must be heated. A low sulphur content of the fuel is important in order to obtain high exhaust gas aftertreatment conversion efficiency. HCCI operation of internal combustion engines if possible with the fuels that are currently considered for automotive use. There are minor operational differences between the fuels, but no fundamental barriers seem to exist. This means that the conventional fuels from crude oil can be used in HCCI engines. Because the infrastructure to produce and distribute these fuels already exists, this is a plus for market introduction of HCCI engines. Fuel specifications for conventional fuels are becoming more and more

  2. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian D. [Directed Technologies, Arlington, VA (United States); Kalinoski, Jeffrey A. [Directed Technologies, Arlington, VA (United States); Baum, Kevin N. [Directed Technologies, Arlington, VA (United States)

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  3. 75 FR 25323 - Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards...

    Science.gov (United States)

    2010-05-07

    ... Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards; Final Rule #0;#0;Federal... Fuel Economy Standards; Final Rule AGENCY: Environmental Protection Agency (EPA) and National Highway... reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the...

  4. 41 CFR 102-34.65 - How may we request an exemption from the fuel economy standards?

    Science.gov (United States)

    2010-07-01

    ... exemption from the fuel economy standards? 102-34.65 Section 102-34.65 Public Contracts and Property... an exemption from the fuel economy standards? You must submit a written request for an exemption from the fuel economy standards to: Administrator, General Services Administration, ATTN: Deputy Associate...

  5. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  6. The water intensity of the plugged-in automotive economy.

    Science.gov (United States)

    King, Carey W; Webber, Michael E

    2008-06-15

    Converting light-duty vehicles from full gasoline power to electric power, by using either hybrid electric vehicles or fully electric power vehicles, is likely to increase demand for water resources. In the United States in 2005, drivers of 234 million cars, lighttrucks, and SUVs drove approximately 2.7 trillion miles and consumed over 380 million gallons of gasoline per day. We compare figures from literature and government surveys to calculate the water usage, consumption, and withdrawal, in the United States during petroleum refining and electricity generation. In displacing gasoline miles with electric miles, approximately 2-3 [corrected] times more water is consumed (0.24 [corrected] versus 0.07--0.14 gallons/mile) and over 12 [corrected] times more water is withdrawn (7.8 [corrected] versus 0.6 gallons/mile) primarily due to increased water cooling of thermoelectric power plants to accommodate increased electricity generation. Overall, we conclude that the impact on water resources from a widespread shift to grid-based transportation would be substantial enough to warrant consideration for relevant public policy decision-making. That is not to say that the negative impacts on water resources make such a shift undesirable, but rather this increase in water usage presents a significant potential impact on regional water resources and should be considered when planning for a plugged-in automotive economy.

  7. IPI tax relief policy and its impact on automotive and related sectors

    Directory of Open Access Journals (Sweden)

    Luiz Antônio Abrantes

    2017-09-01

    Full Text Available The policy of IPI tax relief in the automotive industry came from the need of answers to the Global Financial Crisis of 2008, which affected Brazil. This way, Brazilian Government set the reduction of the percentages of rates applied to automotive products and related sectors, according to several factors such as engine power, fuel type and production site, in order to restore the sector demand and stimulate the economy. In this context, this work aims to evaluate the implications of IPI tax relief policy, since 2009, on the turnover of joint-stock companies of the automotive and related sectors. The methodology was a multiple regression analysis model with Dynamic Panel data, in order to explain the variations of companies' turnover in the sector, regarding IPI tax relief. The data used were of 84 companies of this sector, for the period from 1998 to 2015, based on the software Economática. The results showed a decrease of IPI tax collection in the periods of relief, both in general and specific scope. In addition, we verified that the adoption of the policy had a negative influence on the turnover of the evaluated companies. Thus, we concluded that the tax policy under analysis did not contribute to an increase of automotive sector companies' turnover.

  8. Real-world fuel economy and CO2 emissions of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ploetz, Patrick; Funke, Simon Arpad; Jochem, Patrick

    2015-01-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual PHEV that have been observed over more than a year in the U.S. and Germany. We find that real-world fuel economy of PHEV differ widely among users. The main factors explaining this variation are the annual mileage, the regularity of daily driving, and the likelihood of long-distance trips. Current test cycle fuel economy ratings neglect these factors. Despite the broad range of PHEV fuel economies, the test cycle fuel economy ratings can be close to empiric PHEV fleet averages if the average annual mile-age is about 17,000 km. For the largest group of PHEV in our data, the Chevrolet Volt, we find the average fuel economy to be 1.45 litres/100 km at an average electric driving share of 78%. The resulting real-world tank-to-wheel CO 2 emissions of these PHEV are 42 gCO 2 /km and the annual CO 2 savings in the U.S. amount to about 50 Mt. In conclusion, the variance of empirical PHEV fuel economy is considerably higher than of conventional vehicles. This should be taken into account by future test cycles and high electric driving shares should be incentivised.

  9. Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hwang, Ho-Ling [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huff, Shean [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-04-08

    The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

  10. Advanced high temperature materials for the energy efficient automotive Stirling engine

    International Nuclear Information System (INIS)

    Titran, R.H.; Stephens, J.R.

    1984-01-01

    The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72, and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper presents results of research that led to this conclusion

  11. Optimal Design of an Automotive Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fagehi, Hassan; Attar, Alaa; Lee, Hosung

    2018-07-01

    The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).

  12. Optimal Design of an Automotive Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fagehi, Hassan; Attar, Alaa; Lee, Hosung

    2018-04-01

    The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).

  13. China's growing methanol economy and its implications for energy and the environment

    International Nuclear Information System (INIS)

    Yang, Chi-Jen; Jackson, Robert B.

    2012-01-01

    For more than a decade, Nobel laureate George Olah and coworkers have advocated the Methanol Economy – replacing petroleum-based fuels and chemicals with methanol and methanol-derivatives – as a path to sustainable development. A first step to this vision appears to be occurring in China. In the past five years, China has quickly built an industry of coal-based methanol and dimethyl ether (DME) that is competitive in price with petroleum-based fuels. Methanol fuels offer many advantages, including a high octane rating and cleaner-burning properties than gasoline. Methanol also has some disadvantages. A coal-based Methanol Economy could enhance water shortages in China, increase net carbon dioxide emissions, and add volatility to regional and global coal prices. China's rapidly expanding Methanol Economy provides an interesting experiment for what could happen elsewhere if methanol is widely adopted, as proposed by Olah and researchers before him. - Highlights: ► China is quickly building a coal-based chemical industry. ► Methanol has become a significant automotive fuel and chemical feedstock in China. ► Coal-based methanol could provide a domestic alternative to imported oil. ► It, however, increases greenhouse gas emissions, and can cause other problems.

  14. Fixing Detroit: how far, how fast, how fuel-efficient

    OpenAIRE

    Kleinbaum, Rob; McManus, Walter

    2009-01-01

    The Automotive Industry Crisis of 2009 is the worst the industry has ever experienced. This paper helps resolve the debate on how much and fast it should change and how it should it respond to demands for increased fuel efficiency. Looking at the actions of successful corporate turnarounds, the lessons are very clear: implement broad, deep, fast change, replace the management team, and transform the culture. We modeled the impacts of different fuel economy standards on profitability and sales...

  15. Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process

    International Nuclear Information System (INIS)

    Kim, Young-Doo; Yang, Chang-Won; Kim, Beom-Jong; Moon, Ji-Hong; Jeong, Jae-Yong; Jeong, Soo-Hwa; Lee, See-Hoon; Kim, Jae-Ho; Seo, Myung-Won; Lee, Sang-Bong; Kim, Jae-Kon; Lee, Uen-Do

    2016-01-01

    Highlights: • A pilot scale biomass-to-liquid (BTL) process was investigated for Fischer-Tropsch diesel production. • 200 kW_t_h dual fluidized bed gasifier was integrated with 1 bbl/day F-T synthesis reactor. • Purified syngas satisfies minimum requirements of F-T synthesis. • F-T diesel produced successfully (1 L/h) and satisfies the automotive fuel standard. • Fully integrated BTL system was operated successfully more than 500 h. - Abstract: Fischer–Tropsch (F-T) diesel produced from biomass through gasification is a promising alternative fuel. In this study, a biomass-to-liquid (BTL) system involving a dual fluidized bed gasifier (DFBG), a methanol absorption tower, and an F-T synthesis process was investigated for producing clean biodiesel as an automotive fuel. A DFBG, which is an efficient indirect gasifier, can produce syngas with high caloric value while minimizing the amount of nitrogen in the product gas. In order to meet the strict requirements of syngas for F-T synthesis, any contaminants in the syngas must be minimized and its composition must be carefully controlled. In this work, the syngas mainly comprised 35 vol% of H_2 and 21.3 vol% of CO. The concentrations of H_2S and COS in the syngas were less than 1 ppmV owing to the use of chilled methanol cleaning process. Furthermore, long-term operation of a fully integrated BTL system was successfully conducted for over 500 h. The results showed that the BTL diesel can be used as an alternative automotive diesel fuel.

  16. Reduction of CO/sub 2/ emissions through fuel economy standards for diesel cars in pakistan

    International Nuclear Information System (INIS)

    Memon, L.A.; Mehlia, T.M.I.; Hassan, M.H.

    2007-01-01

    In Pakistan, like many developing countries, the increasing prosperity and population growth are resulting in accelerated growth in vehicle population and vehicle kilometers traveled. This causes air pollution due to huge CO/sub 2/ emissions. Automobile fuel economy standards have proven to be one of the most effective tools to control oil demand thereby reducing the GHG (Green House Gas) emissions like CO/sub 2/, This study presents the investigation to apply fuel economy standards in Pakistan, in order to predict the potential reduction in CO/sub 2/ emissions and saving in fuel demand. The study is focused on only diesel cars and the data of diesel car owners for previous fifteen years is obtained from the related sources in Pakistan. A growth trend of diesel car owners was analyzed and the number of diesel car owners in future was predicted by applying database computer software. Calculations were made to study the effect of fuel economy standards in terms of saving in fuel demand and the reduction in CO/sub 2/ emissions. The results reveal the potential application of fuel economy standards and it was found that a cumulative amount of fuel 39266775 liters can be saved and CO/sub 2/ emissions can be reduced by 106021 tons at the end of 2011-2012, if fuel economy standards are implemented in 2008-2009. (author)

  17. Design and development of a continuously variable ratio transmission for automotive vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-30

    Work accomplished between July 1974 and October 1978 in a program directed toward the design and development of a continuously variable ratio transmission (CVT) for an automotive vehicle is reported. The following major accomplishments were achieved: the laboratory and mathematical projections establishing the viability of the program and the predicted attainment of the primary goal of fuel economy were verified; the proposed Concept Demonstration prototype hydromechanical transmission (HMT) was completed from design to operation; the HMT was thoroughly tested in the laboratory and on the road and its in-vehicle performance was verified by independent testing laboratories; and design of a second generation Pre-Production HMT has proceeded to the point of confirming the practicality of the automotive HMT size and weight; most of the necessary information has been generated which could permit its production cost/competitiveness to be evaluated. (LCL)

  18. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    Energy Technology Data Exchange (ETDEWEB)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  19. INFLUENCE OF AUTOMOTIVE CLUSTERS IN REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Constantin BORDEI

    2014-11-01

    Full Text Available This paper proposes an overview of the evolution in the automotive sector in the process of regional development. The fundamental changes made by the component supplier sector improved the regional development and manufacturing process. Automotive industry is one of the modern sectors in many countries that benefits of a high technology impact and creates jobs that reduces unemployment across Europe. The auto industry changed cities, regions and countries into poles of development and it becomes more and more efficient. The high foreign direct investments from the automotive sector play an important role in regional development process. Continuous changes are being made in the economy, society, and company; in conclusion the automotive clusters will always be a subject of analysis.

  20. Real-world fuel economy and CO{sub 2} emissions of plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Funke, Simon Arpad; Jochem, Patrick [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energiepolitik und Energiesysteme

    2015-07-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual PHEV that have been observed over more than a year in the U.S. and Germany. We find that real-world fuel economy of PHEV differ widely among users. The main factors explaining this variation are the annual mileage, the regularity of daily driving, and the likelihood of long-distance trips. Current test cycle fuel economy ratings neglect these factors. Despite the broad range of PHEV fuel economies, the test cycle fuel economy ratings can be close to empiric PHEV fleet averages if the average annual mile-age is about 17,000 km. For the largest group of PHEV in our data, the Chevrolet Volt, we find the average fuel economy to be 1.45 litres/100 km at an average electric driving share of 78%. The resulting real-world tank-to-wheel CO{sub 2} emissions of these PHEV are 42 gCO{sub 2}/km and the annual CO{sub 2} savings in the U.S. amount to about 50 Mt. In conclusion, the variance of empirical PHEV fuel economy is considerably higher than of conventional vehicles. This should be taken into account by future test cycles and high electric driving shares should be incentivised.

  1. On-Road Validation of a Simplified Model for Estimating Real-World Fuel Economy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric; Gonder, Jeff; Jehlik, Forrest

    2017-01-01

    On-road fuel economy is known to vary significantly between individual trips in real-world driving conditions. This work introduces a methodology for rapidly simulating a specific vehicle's fuel economy over the wide range of real-world conditions experienced across the country. On-road test data collected using a highly instrumented vehicle is used to refine and validate this modeling approach. Model accuracy relative to on-road data collection is relevant to the estimation of 'off-cycle credits' that compensate for real-world fuel economy benefits that are not observed during certification testing on a chassis dynamometer.

  2. ORNL-GM: Development of Ionic Liquid-Additized, GF-5/6 Compatible Low-Viscosity Oils for Automotive Engine and Rear Axle Lubrication for 4% Improved Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Luo, Huimin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Toops, Todd J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brookshear, Daniel W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stump, Benjamin C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Viola, Michael B. [General Motors (GM) Technical Center, Pontiac, MI (United States); Zreik, Khaled [General Motors (GM) Technical Center, Pontiac, MI (United States); Ahmed, Tasfia [General Motors (GM) Technical Center, Pontiac, MI (United States)

    2017-01-01

    The overall objective of this project are as follows: Further develop ionic liquid (IL)-additized lowviscosity engine oils meeting the GF-5/6 specifications and possessing superior lubricating characteristics; Expand the IL additive technology to rear axle lubricants; and Seek a combined improvement in the vehicle fuel economy

  3. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  4. Benefits of recent improvements in vehicle fuel economy.

    Science.gov (United States)

    2014-10-01

    For the past several years, we have calculated (on a monthly basis) the average, sales-weighted fuel economy of all light-duty vehicles (cars, pickup trucks, vans, and SUVs) sold in : the U.S. The results indicate that, from October 2007 to September...

  5. Research report for fiscal 1998. Research into the trends of low-carbon automotive fuel manufacturing technologies; 1998 nendo jidoshayo teitanso nenryo no seizo gijutsu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Studies are made of optimum materials and methods for manufacturing low-carbon fuels for reduction in greenhouse gas emissions. When their thermal dynamic limits and the technological maturity are considered, it is inferred that no extensive improvement will be achieved by merely improving on the efficiency of the existing fuels. The use of various high-efficiency driving power sources utterly different in mechanism from the conventional ones, such as those for fuel cell-powered automobiles, and the promotion of the use of low-carbon fuels such as methanol and methane for all kinds of driving power sources including those for the said fuel cell-powered automobiles, will become necessary. The use will also be necessary of recyclable materials. The biomass resources, in particular, since they absorb CO2 gas in their growing process by virtue of photosynthesis, may be said to be free of CO2 gas emissions. They have their own problems, however, which involve the economy of energy consumed for their production, harvesting, transportation, and conversion into fuels. It is therefore required that their whole life cycle be studied before their greenhouse gas reduction effect may be correctly assessed. The quantities of resources available for the production of automotive low-carbon fuels, manufacturing technologies, etc., are first of all put in order for easy perusal. An effective way is assessed for the whole including the life cycle. (NEDO)

  6. The fuel cell: a coming technology for the cogeneration and the automotive; La pile a combustible: une technologie d'avenir pour la cogeneration et l'automobile

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In the framework of the Eco-Industries 2000 meeting, the ATEE organized a colloquium on the fuel cell use in the automotive and cogeneration industries. This book presents the six papers proposed at this colloquium bringing information on the fuel cell market, design and advantages. In the automotive domain, the fuel cell integration in the future car at Renault is presented. The PEM (Proton Exchange Membrane) concept is also detailed. (A.L.B.)

  7. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Science.gov (United States)

    2010-07-01

    ...-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later...-based and HFET-based fuel economy and carbon-related exhaust emission values for a model type. (a) Fuel...

  8. Nuclear fuel burn-up economy; Ekonomija izgaranja nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1984-07-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  9. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ...-cycle fuel economy values for a model type. 600.209-08 Section 600.209-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for...

  10. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    Science.gov (United States)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  11. Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine

    Science.gov (United States)

    Present the implementation of cEGR and CDA on an Atkinson engine and use steady state fuel consumption maps to estimate the technologies’ potential fuel economy improvements over the FTP and Highway tests. In addition to use fuel weighted modes to determine possible fuel economy...

  12. Automotive Stirling engine Market and Industrial Readiness Program (MIRP), phase 1

    Science.gov (United States)

    1982-05-01

    A program, begun in 1978, has the goal of transferring Stirling engine technology from United Stirling of Sweden to the US and, then, following design, fabrication, and prototype testing, to secure US manufacturers for the engine. The ultimate objective is the large-scale commercial use of the Automotive Stirling Engine (ASE) by the year 2000. The fist phase of the Market and Industrial Readiness Program for the ASE was concerned with defining the market, product, economic and technical factors necessary to be addressed to assure a reasonable chance of ultimate commercial acceptance. Program results for this first phase are reported and discussed. These results pertain to licensing strategy development, economic analysis, market factors, product planning, market growth, cost studies, and engine performance as measured by fuel economy using conventional fuels and by vehicle speed and acceleration characteristics.

  13. Are standards effective in improving automobile fuel economy? An international panel analysis

    International Nuclear Information System (INIS)

    Clerides, Sofronis; Zachariadis, Theodoros

    2007-01-01

    Although the adoption of fuel economy standards has induced fuel savings in new motor vehicles, there are arguments against standards and in favour of fuel tax increases because the latter may have lower welfare costs. We therefore attempted to analyze the impact of standards and fuel prices in the fuel consumption of new cars with the aid of cross-section time series analysis of data from 18 countries. To our knowledge, this study is the first one that attempts to explore econometrically this issue at an international level. We built an unbalanced panel comprising 384 observations from the US, Canada, Australia, Japan, Switzerland and 13 EU countries spanning a period between 1975 and 2003. We specified a dynamic panel model of fuel economy and estimated the model for the whole sample and also for North America and Europe separately. Based on these estimates, we derived three important policy conclusions. Firstly, it seems that if there were no FE standards or voluntary targets in force, transportation energy use would increase more rapidly. Secondly, if CO 2 targets are not to be tightened in Europe, retail fuel prices might have to double in order to attain the currently discussed target of 120 g CO 2 /km in the future. Thirdly, without higher fuel prices and/or tighter FE standards, one should not expect any marked improvements in fuel economy under 'business as usual' conditions. European policy makers might need to consider this issue carefully because some recent European studies tend to be optimistic in this respect

  14. Performance evaluation of an automotive thermoelectric generator

    Science.gov (United States)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  15. Fuel economy improvement based on a many-gear shifting strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mashadi, B. [School of Automotive Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Baghaei Lakeh, R. [Department of Mechanical Engineering, Southern Illinois University, Edwardsville (United States)

    2012-07-01

    Considering the engine operating condition in terms of engine load and engine speed, a fuzzy decision making system has been developed. The objective was to controlling the engine operating point in the engine torque-rpm map, in order to enhance fuel economy. The main idea stems from the approach of tracking the defined target curve in the engine map similar to the CVT control criteria. To provide resemblance between a traditional geared transmission and a CVT, a many-gear transmission concept was introduced. A Fuzzy control was utilized by defining proper membership functions for the inputs and output. The efficient fuel consumption curve in the engine map was taken as the target of controller. The effect of engine output power on fuel consumption has also been taken into consideration. Making use of ADVISOR software, vehicle simulations was performed for the many-gear base case and a very good consistency was found with the CVT case. As a result the fuel consumption was found to become considerably less than existing values. The developed strategy was then applied to other cases including conventional manual and automatic transmissions and improvements in the fuel economy was observed.

  16. Hydrogen Fuel Cell Vehicle Fuel Economy Testing at the U.S. EPA National Vehicle and Fuel Emissions Laboratory (SAE Paper 2004-01-2900)

    Science.gov (United States)

    The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...

  17. Degradation of automotive materials in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2012-01-01

    As compared to petroleum diesel, biodiesel is more corrosive for automotive materials. Studies on the characterization of corrosion products of fuel exposed automotive materials are scarce. Automotive fuel system and engine components are made from different ferrous and non-ferrous materials. The present study aims to investigate the corrosion products of different types of automotive materials such as copper, brass, aluminum and cast iron upon exposure to diesel and palm biodiesel. Changes in fuel properties due to exposure of different materials were also examined. Degradation of metal surface was characterized by digital camera, SEM/EDS and X-ray diffraction (XRD). Fuel properties were examined by measuring TAN (total acid number), density and viscosity. Among the metal investigated, copper is found to be least resistant in biodiesel and formed comparatively more corrosion products than other metals. Upon exposure of metals in biodiesel, TAN number crosses the limit given by standard while density and viscosity remain within the acceptable range of limit. -- Highlights: ► Order of incompatible metals in palm biodiesel: copper > brass > aluminum > cast iron. ► The possible reactions for the degradation of copper and cast iron have been discussed. ► For metal exposed biodiesel, only TAN number crosses the limit while density and viscosity remain within the limit. ► Copper and copper based alloy (brass) increase TAN number comparatively more than other metals.

  18. Demand for road-fuel in a small developing economy: The case of Sri Lanka

    International Nuclear Information System (INIS)

    Chandrasiri, Sunil

    2006-01-01

    This paper estimates the demand for road fuel (petrol and auto-diesel) in the context of a small developing economy-Sri Lanka. The data set covers a period of 39 years from 1964 to 2002 representing both close economy and open economy policy regimes. The estimation procedure is based on seemingly unrelated regression equation (SURE) methodology mainly to capture substitutability of petrol and diesel in road transportation. The effect of auto-fuel prices on vehicle demand is also analyzed as a part of the analysis. In addition to confirming existing evidence on road-fuel demand, the findings reveal some interesting evidence with respect to own-price elasticity, cross-price elasticity, lag effects, income and vehicle mix variables

  19. Modeling and experimental validation of a Hybridized Energy Storage System for automotive applications

    Science.gov (United States)

    Fiorenti, Simone; Guanetti, Jacopo; Guezennec, Yann; Onori, Simona

    2013-11-01

    This paper presents the development and experimental validation of a dynamic model of a Hybridized Energy Storage System (HESS) consisting of a parallel connection of a lead acid (PbA) battery and double layer capacitors (DLCs), for automotive applications. The dynamic modeling of both the PbA battery and the DLC has been tackled via the equivalent electric circuit based approach. Experimental tests are designed for identification purposes. Parameters of the PbA battery model are identified as a function of state of charge and current direction, whereas parameters of the DLC model are identified for different temperatures. A physical HESS has been assembled at the Center for Automotive Research The Ohio State University and used as a test-bench to validate the model against a typical current profile generated for Start&Stop applications. The HESS model is then integrated into a vehicle simulator to assess the effects of the battery hybridization on the vehicle fuel economy and mitigation of the battery stress.

  20. Several remarks on the fuel cycle economy

    International Nuclear Information System (INIS)

    Roman Kubin; Rudolf Vespalec

    2007-01-01

    Present paper deals with some aspects influencing significantly cost of nuclear fuel and possibilities of its usage in optimal fuel cycle technology. Our discussion is focused on the phase of fuel procurement that means financial parts of the contract as well as its technical Appendices. Typically the fuel fabrication price is taken as the main economy indicator; nevertheless also many other financial and technical features of the contract must be taken into account in order to reach the best price of electricity sold into public energy grid. Our experience from several international tenders shows that the consistent complex of commercial and technical parameters of the contract is necessary to achieve optimal economic results and prepare proper conditions for advanced fuel cycle technology. Among those essential characteristics are payment conditions and schedule and extent of vendor's services and assistance to the operator. Very important role play also technical parameters, as safety and operational limits, influencing loading pattern quality and operating flexibility. Obviously also a level of operator's fuel cycle technology is a crucial point that is necessary for usage of technical quality of the fuel at the power plant. The final electricity price, produced by the plant, and uranium consumption are the only objective criteria to evaluate economic level of the fuel contract and the fuel cycle at all (Authors)

  1. Light-Duty Vehicle CO2 and Fuel Economy Trends

    Science.gov (United States)

    This report provides data on the fuel economy, carbon dioxide (CO2) emissions, and technology trends of new light-duty vehicles (cars, minivans, sport utility vehicles, and pickup trucks) for model years 1975 to present in the United States.

  2. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying

    2016-08-01

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.

  3. Sliding mode observer for proton exchange membrane fuel cell: automotive application

    Science.gov (United States)

    Piffard, Maxime; Gerard, Mathias; Fonseca, Ramon Da; Massioni, Paolo; Bideaux, Eric

    2018-06-01

    This work proposes a state observer as a tool to manage cost and durability issues for PEMFC (Proton Exchange Membrane Fuel Cell) in automotive applications. Based on a dead-end anode architecture, the observer estimates the nitrogen build-up in the anode side, as well as relative humidities in the channels. These estimated parameters can then be used at fuel cell management level to enhance the durability of the stack. This observer is based on transport equations through the membrane and it reconstructs the behavior of the water and nitrogen inside the channels without the need of additional humidity sensors to correct the estimate. The convergence of the output variables is proved with Lyapunov theory for dynamic operating conditions. The validation is made with a high-fidelity model running a WLTC (Worldwide harmonized Light vehicles Test Cycle). This observer provides the average values of nitrogen and relative humidities with sufficient precision to be used in a global real-time control scheme.

  4. Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.; Lambert, Christine; Muntean, George G.; Peden, Charles HF; Parks, James E.; Howden, Ken

    2013-10-15

    With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the much lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.

  5. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F.A.; Abdelkareem, Mohamed A. A.

    2016-01-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al 2 O 3 and TiO 2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al 2 O 3 and TiO 2 nanoparticles had sizes of 8–12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35–51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al 2 O 3 and TiO 2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  6. State of the art: Multi-fuel reformers for automotive fuel cell applications. Problem identification and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Westerholm, R. [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Pettersson, L.J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1999-12-01

    On an assignment from the Transport and Communications Research Board (KFB) a literature study and a study trip to the USA and Great Britain have been performed. The literature study and the study trip was made during late spring and autumn 1999.The purpose of the project was to collect available information about the chemical composition of the product gas from a multi-fuel reformer for a fuel cell vehicle. It was furthermore to identify problems and research needs. The report recommends directions for future major research efforts. The results of the literature study and the study trip led to the following general conclusions: With the technology available today it does not seem feasible to develop a highly efficient and reliable multi-fuel reformer for automotive applications, i. e. for applications where all types of fuels ranging from natural gas to heavy diesel fuels can be used. The potential for developing a durable and reliable system is considerably higher if dedicated fuel reformers are used.The authors propose that petroleum-derived fuels should be designed for potential use in mobile fuel cell applications. In the present literature survey and the site visit discussions we found that there are relatively low emissions from fuel cell engines compared to internal combustion engines. However, the major research work on reformers/fuel cells have been performed during steady-state operation. Emissions during start-up, shutdown and transient operation are basically unknown and must be investigated in more detail. The conclusions and findings in this report are based on open/available information, such as discussions at site visits, reports, scientific publications and symposium proceedings.

  7. Development of fuel economy 5W-20 gasoline engine oil; Teinenpi 5W-20 gasoline engine yu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, K; Ueda, F; Kurono, K; Kawai, H; Sugiyama, S [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    A 5W-20 gasoline engine oil which improves vehicle fuel efficiency by more than 1.5% relative to a conventional 5W-30 gasoline engine oil was newly developed. Its high fuel economy performance lasts 10,000 km. The viscosity was optimized to satisfy both fuel economy and antiwear performances. Thiadiazole was used to retain the initial fuel economy performance provided by MoDTC. 5 refs., 7 figs., 2 tabs.

  8. The European automotive LPG market

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The European automotive LPG market could reach at least 4 % of the European fuel market in 2005 versus 1 % in 1990. This would represent a rise of about 35 % in automotive LPG sales (from 2,4 million tonnes in 1997 to 7 million tonnes estimated for 2005). This was underlined by Alain Deleuse, Primagaz group's Marketing Director, in the paper he delivered at the AEGPL Budapest Convention. We publish large excepts of this paper. (author)

  9. Future automotive fuels

    International Nuclear Information System (INIS)

    Lepik, M.

    1993-01-01

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  10. Supplier–customer relationships: Weaknesses in south african automotive supply chains

    Directory of Open Access Journals (Sweden)

    M. J. Naude

    2012-11-01

    Full Text Available The South African automotive industry, which is an important sector in the South African economy, needs to function efficiently if it is to compete internationally. However, South African automotive components manufacturers (ACMs are not internationally competitive and automotive assemblers, also known as original equipment manufacturers (OEMs, often import cheaper components from abroad. All parties in the South African automotive supply chains need each other to ensure optimal efficiency and competitiveness. Furthermore, it is vital that good relationships exist between customers and suppliers in the automotive supply chains in South Africa. ACMs are central to automotive supply chains. A survey was conducted among ACMs to determine the nature of relationships that exist between buyers and suppliers in South Africa’s automotive supply chains. The results showed that collaborative relationships do indeed exist between members of the supply chain but that communication, understanding of the parties’ situations and cooperation can improve this relationship and so create total alliance between OEMs and ACMs.

  11. Twenty-five years after introduction of automotive catalysts. What next?

    Energy Technology Data Exchange (ETDEWEB)

    Shelef, M.; McCabe, R.W. [Chemical and Physical Sciences Laboratory, Ford Research Laboratory, Ford Motor Company, MD-3179, SRL, PO Box 2053, 48121 Dearborn, MI (United States)

    2000-09-25

    The union of catalysts and the automobile has been one of the greatest successes of heterogeneous catalysis over the last 25 years. Here, the history of automotive catalysis is briefly reviewed, followed by an assessment of where automotive catalysis stands today and where it is headed in the future. A key distinction between past automotive catalysis experience and that projected for the future is an increased focus on catalysts in upstream of power plant applications, such as on-board fuel processing units for fuel cell vehicles. Driven by ever tighter regulations, there will be continued research and development activity focused also on downstream applications (i.e. exhaust emission aftertreatment), especially for fuel-efficient, lean-burn vehicles, both diesel and spark-ignited.

  12. Particle swarm optimization of driving torque demand decision based on fuel economy for plug-in hybrid electric vehicle

    International Nuclear Information System (INIS)

    Shen, Peihong; Zhao, Zhiguo; Zhan, Xiaowen; Li, Jingwei

    2017-01-01

    In this paper, an energy management strategy based on logic threshold is proposed for a plug-in hybrid electric vehicle. The plug-in hybrid electric vehicle powertrain model is established using MATLAB/Simulink based on experimental tests of the power components, which is validated by the comparison with the verified simulation model which is built in the AVL Cruise. The influence of the driving torque demand decision on the fuel economy of plug-in hybrid electric vehicle is studied using a simulation. The optimization method for the driving torque demand decision, which refers to the relationship between the accelerator pedal opening and driving torque demand, from the perspective of fuel economy is formulated. The dynamically changing inertia weight particle swarm optimization is used to optimize the decision parameters. The simulation results show that the optimized driving torque demand decision can improve the PHEV fuel economy by 15.8% and 14.5% in the fuel economy test driving cycle of new European driving cycle and worldwide harmonized light vehicles test respectively, using the same rule-based energy management strategy. The proposed optimization method provides a theoretical guide for calibrating the parameters of driving torque demand decision to improve the fuel economy of the real plug-in hybrid electric vehicle. - Highlights: • The influence of the driving torque demand decision on the fuel economy is studied. • The optimization method for the driving torque demand decision is formulated. • An improved particle swarm optimization is utilized to optimize the parameters. • Fuel economy is improved by using the optimized driving torque demand decision.

  13. Autonomous Driving – a Challenge for the Automotive Industry

    OpenAIRE

    Bardt, Hubertus

    2017-01-01

    The automotive industry is one of the most important industries in Europe. This industry is responsible for 14% of total production and capital investment in the European manufacturing sector, and in Germany the share amounts to 22%. Structural change within this crucial sector is of relevance for the whole economy. Along with alternative propulsion systems such as electromobility, (semi-)autonomous vehicles are one of the big trends in the automotive industry. For established providers, the ...

  14. Fuel Economy Impacts of Manual, Conventional Cruise Control, and Predictive Eco-Cruise Control Driving

    Directory of Open Access Journals (Sweden)

    Sangjun Park

    2013-09-01

    Full Text Available The paper presents the results of a field experiment that was designed to compare manual driving, conventional cruise control (CCC driving, and Eco-cruise control (ECC driving with regard to fuel economy. The field experiment was conducted on five test vehicles along a section of Interstate 81 that was comprised of ±4% uphill and downhill grade sections. Using an Onboard Diagnostic II reader, instantaneous fuel consumption rates and other driving parameters were collected with and without the CCC system enabled. The collected data were compared with regard to fuel economy, throttle control, and travel time. The results demonstrate that CCC enhances vehicle fuel economy by 3.3 percent on average relative to manual driving, however this difference was not found to be statistically significant at a 5 percent significance level. The results demonstrate that CCC driving is more efficient on downhill versus uphill sections. In addition, the study demonstrates that an ECC system can produce fuel savings ranging between 8 and 16 percent with increases in travel times ranging between 3 and 6 percent. These benefits appear to be largest for heavier vehicles (SUVs.

  15. Ceramic technologies for automotive industry: Current status and perspectives

    International Nuclear Information System (INIS)

    Okada, Akira

    2009-01-01

    The automotive industry has developed substantially through advances in mechanical technologies, and technologies such as electronics and advanced materials have also contributed to further advances in automobiles. The contribution of ceramic materials to automobile technologies ranges over driving performance, exhaust gas purification, and fuel efficiency improvements. Several ceramic components, such as knock sensors, oxygen sensors, exhaust gas catalysts, and silicon nitride parts for automotive engines, have been successfully applied to automobiles. This paper focuses on the contribution of ceramics to automotive technologies. It also mentions potential contributions in the future, including adiabatic turbo-compound diesels, ceramic gas turbines, fuel cells, and electric vehicles because ceramic technologies have been intensively involved in the challenge to achieve advanced power sources.

  16. Multiwalled carbon nanotubes and fluoroelastomer antistatic nanocomposite for automotive fuel system components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok; Park, Seong Hwan; Ha, Kiryong [Keimyung University, Daegu (Korea, Republic of); Lee, Jong Cheol [Jin-Yang Oil Seal Co., Ltd., Daegu (Korea, Republic of)

    2016-03-15

    Fluoroelastomer (FKM) composites, reinforced with multiwalled carbon nanotubes (MWNTs), were prepared by conventional method to determine the possibility of using MWNTs to develop an antistatic composite in automotive fuel systems. The results obtained from the composite containing 0-9 phr of MWNTs were compared. A 5 points increase in hardness was achieved with the addition of only 1 phr of MWNTs and 9 phr added FKM composite was increased 6.4MPa in tensile strength compared to the MWNTs unfilled FKM composite. In addition, electrical conductivity increased from 0 to 1.039 Scm{sup -1} with increase in the MWNTs concentration, and the dynamic damping property was increased in the rubbery state region accordingly. These phenomena can be explained by the MWNTs networks formed in FKM matrix. This research will therefore be useful in the development of an antistatic rubber composite for fuel system components, which are deformed or vibrated while in operation.

  17. Multiwalled carbon nanotubes and fluoroelastomer antistatic nanocomposite for automotive fuel system components

    International Nuclear Information System (INIS)

    Lee, Seok; Park, Seong Hwan; Ha, Kiryong; Lee, Jong Cheol

    2016-01-01

    Fluoroelastomer (FKM) composites, reinforced with multiwalled carbon nanotubes (MWNTs), were prepared by conventional method to determine the possibility of using MWNTs to develop an antistatic composite in automotive fuel systems. The results obtained from the composite containing 0-9 phr of MWNTs were compared. A 5 points increase in hardness was achieved with the addition of only 1 phr of MWNTs and 9 phr added FKM composite was increased 6.4MPa in tensile strength compared to the MWNTs unfilled FKM composite. In addition, electrical conductivity increased from 0 to 1.039 Scm -1 with increase in the MWNTs concentration, and the dynamic damping property was increased in the rubbery state region accordingly. These phenomena can be explained by the MWNTs networks formed in FKM matrix. This research will therefore be useful in the development of an antistatic rubber composite for fuel system components, which are deformed or vibrated while in operation.

  18. 75 FR 58077 - Revisions and Additions to Motor Vehicle Fuel Economy Label

    Science.gov (United States)

    2010-09-23

    ...The Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) are conducting a joint rulemaking to redesign and add information to the current fuel economy label that is posted on the window sticker of all new cars and light- duty trucks sold in the U.S. The redesigned label will provide new information to American consumers about the fuel economy and consumption, fuel costs, and environmental impacts associated with purchasing new vehicles beginning with model year 2012 cars and trucks. This action will also develop new labels for certain advanced technology vehicles, which are poised to enter the U.S. market, in particular plug-in hybrid electric vehicles and electric vehicles. NHTSA and EPA are proposing these changes because the Energy Independence and Security Act (EISA) of 2007 imposes several new labeling requirements, because the agencies believe that the current labels can be improved to help consumers make more informed vehicle purchase decisions, and because the time is right to develop new labels for advanced technology vehicles that are being commercialized. This proposal is also consistent with the recent joint rulemaking by EPA and NHTSA that established harmonized federal greenhouse gas (GHG) emissions and corporate average fuel economy (CAFE) standards for new cars, sport utility vehicles, minivans, and pickup trucks for model years 2012-2016.

  19. Conference on Future Automotive Technology Focus Electro Mobility

    CERN Document Server

    2013-01-01

    The increasing trend towards electric cars leads to several challenges for the automobile industry, research institutes and politics as well as for the society. Research and serial development move closer together to meet automotive standards with new components such as traction batteries integrated into hybrid and electrical drivetrains. Furthermore, the influence of e-mobility on the daily mobility behavior, the effects on the automotive supply chain and the impact on industrial production have to be taken into account. According to these complex aspects it is crucial to not only acquire specific knowledge in the particular fields but also to consider their functional interaction. Therefore, it seems essential to merge competence from science, economy and politics. This year, the annual „Conference on Future Automotive Technology“ as the follow-up of the „2. Automobiltechnisches Kolloquium München” focuses on the economical realization of widespread automotive electro mobility. Contents - Energy St...

  20. Techno-economic requirements for automotive composites

    Science.gov (United States)

    Arnold, Scot

    1993-01-01

    New technology generally serves two main goals of the automotive industry: one is to enable vehicles to comply with various governmental regulations and the other is to provide a competitive edge in the market. The latter goal can either be served through improved manufacturing and design capabilities, such as computer aided design and computer aided manufacturing, or through improved product performance, such as anti-lock braking (ABS). Although safety features are sometimes customer driven, such as the increasing use of airbags and ABS, most are determined by regulations as outlined by the Federal Motor Vehicle Safety Standards (FMVSS). Other standards, set by the Environmental Protection Agency, determine acceptable levels of emissions and fuel consumption. State governments, such as in California, are also setting precedent standards, such as requiring manufacturers to offer zero-emission vehicles as a certain fraction of their sales in the state. The drive to apply new materials in the automobile stems from the need to reduce weight and improve fuel efficiency. Topics discussed include: new lightweight materials; types of automotive materials; automotive composite applications; the role for composite materials in automotive applications; advantages and disadvantages of composite materials; material substitution economics; economic perspective; production economics; and composite materials production economics.

  1. Minimizing of the boundary friction coefficient in automotive engines using Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mohamed Kamal Ahmed, E-mail: eng.m.kamal@mu.edu.eg; Xianjun, Hou, E-mail: houxj@whut.edu.cn; Elagouz, Ahmed [Wuhan University of Technology, Hubei Key Laboratory of Advanced Technology for Automotive Components (China); Essa, F.A. [Kafrelsheikh University, Mechanical Engineering Department, Faculty of Engineering (Egypt); Abdelkareem, Mohamed A. A. [Wuhan University of Technology, Hubei Key Laboratory of Advanced Technology for Automotive Components (China)

    2016-12-15

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al{sub 2}O{sub 3} and TiO{sub 2} nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles had sizes of 8–12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35–51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al{sub 2}O{sub 3} and TiO{sub 2} nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  2. Is self-repayment of the nuclear fuel cycle plants profitable for national economy?

    International Nuclear Information System (INIS)

    Shevelev, Ya.V.

    1991-01-01

    The nuclear fuel cycle (NFC) plants should not be repaying in the optimal plan of nuclear economy development. Their losses are overlapped by superprofits of energy consumers. The loss in the national economy resulting from compulsory conversion of the NFC plants to self-repayment is estimated. 12 refs

  3. 1975 Automotive Characteristics Data Base

    Science.gov (United States)

    1976-10-01

    A study of automobile characteristics as a supportive tool for auto energy consumption, fuel economy monitoring, and fleet analysis studies is presented. This report emphasizes the utility of efficient data retrieval methods in fuel economy analysis,...

  4. Fuel economy and traffic fatalities: multivariate analysis of international data

    International Nuclear Information System (INIS)

    Noland, Robert B.

    2005-01-01

    In the US motor vehicle fuel economy standards were imposed in the late 1970s, in response to the oil crises of that decade. Since then, efforts to increase the standards have not occurred, one reason being the argument that smaller vehicles (which are generally more efficient) are considered less safe. Recent analyses (Energy J.( 2004)) suggests that variance in vehicle weights may be more important than the absolute weights of vehicles in making the highway network less safe. In Europe and other countries, which generally have smaller more efficient vehicle fleets, due to relatively high gasoline taxes, this debate has not occurred. In particular, countries such as Great Britain and Sweden have far safer road transport systems than the US but also have much more efficient vehicle fleets. This suggests that either vehicle weight and size are unimportant or if they have an effect it is small compared to other factors. This paper uses international data to build econometric models that examine whether average vehicle fuel economy has any association with road traffic fatalities, while controlling for other factors that are associated with fatalities. The effect on pedestrian fatalities is also analyzed. Cross-sectional time-series data on traffic fatalities from OECD countries is used and negative binomial regression models are developed using panel data to determine whether any associations are present. Results find that changes in vehicle efficiency are not associated with changes in traffic fatalities, suggesting either that size and weight changes over time have not had a strong effect or are not associated with fuel economy improvements

  5. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, Bruce G [ORNL

    2012-10-01

    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  6. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  7. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  8. 40 CFR 600.206-08 - Calculation and use of FTP-based and HFET-based fuel economy values for vehicle configurations.

    Science.gov (United States)

    2010-07-01

    ... EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures... economy value exists for an electric vehicle configuration, all values for that vehicle configuration are... HFET-based fuel economy values for vehicle configurations. 600.206-08 Section 600.206-08 Protection of...

  9. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    International Nuclear Information System (INIS)

    Rajagopal, D.; Plevin, R.; Hochman, G.; Zilberman, D.

    2015-01-01

    We compare two types of fuel market regulations — a renewable fuel mandate and a fuel emission standard — that could be employed to simultaneously achieve multiple outcomes such as reduction in fuel prices, fuel imports and greenhouse gas (GHG) emissions. We compare these two types of regulations in a global context taking into account heterogeneity in carbon content of both fossil fuels and renewable fuels. We find that although neither the ethanol mandate nor the emission standard is certain to reduce emissions relative to a business-as-usual baseline, at any given level of biofuel consumption in the policy region, a mandate, relative to an emission standard, results in higher GHG emissions, smaller expenditure on fuel imports, lower price of ethanol-blended gasoline and higher domestic fuel market surplus. This result holds over a wide range of values of model parameters. We also discuss the implications of this result to a regulation such as the US Renewable Fuel Standard given recent developments within the US such as increase in shale and tight oil production and large increase in average vehicle fuel economy of the automotive fleet. - Highlights: • Biofuel mandates and fuel GHG emission standards are analyzed from a multiple criteria perspective • An emission-standard always results in lower global emissions while requiring less biofuel relative to a biofuel mandate • An emission-standard results in higher fuel price in the home region relative to a biofuel mandate • Emission standards lead to more shuffling of both fossil fuels and biofuels between home and abroad • The relative impact of the policies on fuel imports depends on the relative cost-effectiveness of domestic & imported biofuel • Recent developments oil production and fuel economy increase the net benefits of an LCFS approach relative to RFS

  10. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  11. 40 CFR 600.307-86 - Fuel economy label format requirements.

    Science.gov (United States)

    2010-07-01

    ... metering system, including number of carburetor barrels, if applicable; (7) Transmission class; (8... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.307-86 Fuel economy label format... the city and highway estimates by 0.85, then rounding to the next lower integer value. (2) The upper...

  12. Development of the fuel and energy complex within the less demanding variant of Czechoslovak economy till 2000

    International Nuclear Information System (INIS)

    Kopac, P.; Blaha, J.; Maly, M.

    1989-01-01

    The character of the fuel and energy complex which has to serve national economy, requires that it be developed according to the needs and possibilities of national economy. A projection of social and economic development of Czechoslovakia till 2000 was set up by the Central Institute of National Economy Research and it was used as the basis of a scenario of the development of the fuel and energy complex. The results are given of modeling the development of the complex. (author). 6 tabs., 3 refs

  13. General Mechanical Repair. Minor Automotive Maintenance. Volume 1. Teacher's Guide.

    Science.gov (United States)

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Fourteen units on minor automotive maintenance are presented in this teacher's guide. The units are the following: introduction to minor automotive maintenance, shop safety, engine principles, fuel system operation and repair, electrical system, ignition system, lubrication system, engine cooling system, exhaust system, wheel bearings and tires,…

  14. 76 FR 40591 - Coordinating Policies on Automotive Communities and Workers

    Science.gov (United States)

    2011-07-11

    ... automakers in 2010 gained market share for the first time since 1995. The automotive supply chain, which... Department of Labor set aside funds for green jobs and job training for high- growth sectors of the economy...

  15. Operating Efficiency Evaluation of China Listed Automotive Firms: 2012–2016

    Directory of Open Access Journals (Sweden)

    Huichen Jiang

    2018-01-01

    Full Text Available As one of the important pillar industries in China, the automotive industry (i.e., the traditional vehicle and the new energy vehicle (NEV sub-industries plays a significant role in the national economy and social development. In this paper, by using the fixed assets, intangible assets, the operating expenses, and the number of employee as inputs and the operating income as output, we conduct efficiency evaluations based on data envelopment analysis (DEA and Malmquist models, and measure the efficiency of listed automotive firms with the panel data of 77 listed A-share firms spanning from 2012 to 2016, statically and dynamically. The results show that the five-year average Malmquist indices of all the listed firms slightly decreased due to the decline of the technical change and the improvement of the efficiency change. We subdivide the automotive industry into the traditional vehicle and NEV industries, and find that the NEV industry performed better than the traditional one. We combine the industry development and efficiency evaluation, and believe that the NEV will be a new driving force of the economy.

  16. NEW TRENDS AND CHELLENGES IN AUTOMOTIVE INDUSTRY LOGISTICS OPERATIONS

    Directory of Open Access Journals (Sweden)

    Dušan Sabadka

    2015-03-01

    Full Text Available This paper lays out the main features of the global automotive industry and identifies several important trends. Logistics operations (inbound and outbound in the automotive supply chain are complex and account for large expenses and therefore are segments in the value chainwhere improvements can be made. Better coordination between inbound and outbound logistics contributes to optimising the supply chains, to reducing inventories and to responding to consumer requests. As economies grow, the competition shifts towards brand image and customisation and here the speed and reliability of logistics operations becomes a critical elements.

  17. Permeability of EVOH Barrier Material Used in Automotive Applications: Metrology Development for Model Fuel Mixtures

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2015-02-01

    Full Text Available EVOH (Ethylene-Vinyl Alcohol materials are widely used in automotive applications in multi-layer fuel lines and tanks owing to their excellent barrier properties to aromatic and aliphatic hydrocarbons. These barrier materials are essential to limit environmental fuel emissions and comply with the challenging requirements of fast changing international regulations. Nevertheless, the measurement of EVOH permeability to model fuel mixtures or to their individual components is particularly difficult due to the complexity of these systems and their very low permeability, which can vary by several orders of magnitude depending on the permeating species and their relative concentrations. This paper describes the development of a new automated permeameter capable of taking up the challenge of measuring minute quantities as low as 1 mg/(m2.day for partial fluxes for model fuel mixtures containing ethanol, i-octane and toluene at 50°C. The permeability results are discussed as a function of the model fuel composition and the importance of EVOH preconditioning is emphasized for accurate permeability measurements. The last part focuses on the influence of EVOH conditioning on its mechanical properties and its microstructure, and further illustrates the specific behavior of EVOH in presence of ethanol oxygenated fuels. The new metrology developed in this work offers a new insight in the permeability properties of a leading barrier material and will help prevent the consequences of (bioethanol addition in fuels on environmental emissions through fuel lines and tanks.

  18. The AGT 101 advanced automotive gas turbine

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  19. Part II: Oxidative Thermal Aging of Pd/Al2O3 and Pd/CexOy-ZrO2 in Automotive Three Way Catalysts: The Effects of Fuel Shutoff and Attempted Fuel Rich Regeneration

    Directory of Open Access Journals (Sweden)

    Qinghe Zheng

    2015-10-01

    Full Text Available The Pd component in the automotive three way catalyst (TWC experiences deactivation during fuel shutoff, a process employed by automobile companies for enhancing fuel economy when the vehicle is coasting downhill. The process exposes the TWC to a severe oxidative aging environment with the flow of hot (800 °C–1050 °C air. Simulated fuel shutoff aging at 1050 °C leads to Pd metal sintering, the main cause of irreversible deactivation of 3% Pd/Al2O3 and 3% Pd/CexOy-ZrO2 (CZO as model catalysts. The effect on the Rh component was presented in our companion paper Part I. Moderate support sintering and Pd-CexOy interactions were also experienced upon aging, but had a minimal effect on the catalyst activity losses. Cooling in air, following aging, was not able to reverse the metallic Pd sintering by re-dispersing to PdO. Unlike the aged Rh-TWCs (Part I, reduction via in situ steam reforming (SR of exhaust HCs was not effective in reversing the deactivation of aged Pd/Al2O3, but did show a slight recovery of the Pd activity when CZO was the carrier. The Pd+/Pd0 and Ce3+/Ce4+ couples in Pd/CZO are reported to promote the catalytic SR by improving the redox efficiency during the regeneration, while no such promoting effect was observed for Pd/Al2O3. A suggestion is made for improving the catalyst performance.

  20. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    Energy Technology Data Exchange (ETDEWEB)

    LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  1. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards : final rule

    Science.gov (United States)

    2010-05-07

    Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...

  2. On the baseline evolution of automobile fuel economy in Europe

    International Nuclear Information System (INIS)

    Zachariadis, Theodoros

    2006-01-01

    'Business as usual' scenarios in long-term energy forecasts are crucial for scenario-based policy analyses. This article focuses on fuel economy of passenger cars and light trucks, a long-disputed issue with serious implications for worldwide energy use and CO 2 emissions. The current status in Europe is explained and future developments are analysed with the aid of historical data of the last three decades from the United States and Europe. As a result of this analysis, fuel economy values are proposed for use as assumptions in baseline energy/transport scenarios in the 15 'old' European Union Member States. Proposed values are given for new gasoline and diesel cars and for the years 2010, 2020 and 2030. The increasing discrepancy between vehicle fuel consumption measured under test conditions and that in the real world is also considered. One main conclusion is that the European Commission's voluntary agreement with the automobile industry should not be assumed to fully achieve its target under baseline conditions, nor should it be regarded as a major stimulus for autonomous vehicle efficiency improvements after 2010. A second conclusion is that three very recent studies enjoying authority across the EU tend to be overly optimistic as regards the technical progress for conventional and alternative vehicle propulsion technologies under 'business as usual' conditions

  3. Energy management for automotive power nets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.

    2007-01-01

    Reducing fuel consumption has always been a major challenge to the automotive industry. Whereas first marketing aspects gave rise to innovative research, today the environmental regulations have become the main driving force behind new technologies. Historically, the research concentrated on

  4. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    International Nuclear Information System (INIS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; Cooper, G.; West, M. M.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined

  5. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.; Cooper, G. [Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1 (Canada); West, M. M.; Berejnov, V. [Faculty of Health Sciences Electron Microscopy, McMaster University, Hamilton, ON L8N 3Z5 (Canada); Soboleva, T.; Susac, D.; Stumper, J. [Automotive Fuel Cell Cooperation Corp., Burnaby BC V5J 5J8 (Canada)

    2016-01-28

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  6. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL; Franzese, Oscar [ORNL

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  7. 40 CFR 600.207-08 - Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle...

    Science.gov (United States)

    2010-07-01

    ...-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year... for each vehicle under § 600.114-08 and as approved in § 600.008-08 (c), are used to determine vehicle... fuel economy value exists for an electric vehicle configuration, all values for that vehicle...

  8. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  9. Adverse effects of the automotive industry on carbon dioxide emissions

    Directory of Open Access Journals (Sweden)

    Mpho Bosupeng

    2016-05-01

    Full Text Available This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japan. In addition, significant relations were observed between output and carbon dioxide discharges in Spain, Canada, India and Japan. Changes in output had substantial impact on emissions in Germany, Canada and India. The results also show that the number of passenger cars influences the magnitude of emissions in multiple economies. In conclusion, the automotive industry has to be considered in policies that aim to reduce carbon dioxide emissions.

  10. Household cooking fuels and technologies in developing economies

    International Nuclear Information System (INIS)

    Foell, Wesley; Pachauri, Shonali; Spreng, Daniel; Zerriffi, Hisham

    2011-01-01

    A major energy challenge of the 21st century is the health and welfare of 2.7 billion people worldwide, who currently rely on burning biomass in traditional household cooking systems. This Special Issue on Clean Cooking Fuels and Technologies in Developing Economies builds upon an IAEE workshop on this subject, held in Istanbul in 2008. It includes several papers from that workshop plus papers commissioned afterwards. The major themes of that workshop and this Special Issue are: •Analytical and decision frameworks for analysis and policy development for clean cooking fuels. •Making energy provisioning a central component of development strategies. •Strategies/business models of suppliers of modern fuels and technologies. •Analysis of successes/failures of past policies and programs to improve access to clean cooking. This introductory paper serves as a preamble to the 11 papers in this Special Issue. It provides a brief background on household cooking fuels and technologies, including: (1) their implications for sustainable development, health and welfare, gender impacts, and environment/climate issues; (2) options and scenarios for improved household cooling systems; and (3) discussions of institutions, programs and markets. It closes with “Research and Action Agendas”, initially developed during the 2008 workshop.

  11. THE EFFECT OF VARIABLE COMPRESSION RATIO ON FUEL CONSUMPTION IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2002-02-01

    Full Text Available Due to lack of energy sources in the world, we are obliged to use our current energy sources in the most efficient way. Therefore, in the automotive industry, research works to manufacture more economic cars in terms of fuelconsumption and environmental friendly cars, at the same time satisfying the required performance have been intensively increasing. Some positive results have been obtained by the studies, aimed to change the compression ratio according to the operating conditions of engine. In spark ignition engines in order to improve the combustion efficiency, fuel economy and exhaust emission in the partial loads, the compression ratio must be increased; but, under the high load and low speed conditions to prevent probable knock and hard running compression ratio must be decreased slightly. In this paper, various research works on the variable compression ratio with spark ignition engines, the effects on fuel economy, power output and thermal efficiency have been investigated. According to the results of the experiments performed with engines having variable compression ratio under the partial and mid-load conditions, an increase in engine power, a decrease in fuel consumption, particularly in partial loads up to 30 percent of fuel economy, and also severe reductions of some exhaust emission values were determined.

  12. Analysis of Intra-Industry Trade in Turkish Automotive Sector

    Directory of Open Access Journals (Sweden)

    Füsun YENİLMEZ

    2018-01-01

    Full Text Available The automotive sector is one of the important sectors affecting the economy of a country. Considering the export and import size of the sector, any kind of work to be done for the sector is important. The analysis of Turkey's situation in the sector will contribute to R&D studies to develop the sector, strategic planning and determination of short, medium and long term targets. The aim of the paper is to determine the location of the Turkish automotive industry in world trade. For this purpose, firstly products in the automotive sector foreign trade were reduced to three sub-digit and included in the evaluation. Grubel-Lloyd index is used in the analysis. As a result of the analyzes, Turkey has been determined separately according to the product groups of the countries that have the most intensive trade in industry.

  13. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real

  14. Intelligent alternator control system - a path to efficient dynamics; Intelligente Generatorregelung - Ein Weg zur effizienten Dynamik

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, J.; Frickenstein, E.; Wier, M.; Hafkemeyer, M.; El-Dwaik, F.; Hockgeier, E. [BMW AG, Muenchen (Germany)

    2006-11-15

    In automotive engineering, it would seem - at first glance at least - difficult to simultaneously achieve both efficiency and dynamics in the sense of improved driving performance and fuel economy. The BMW Group has set itself the following goal: to drive innovation in automotive and powertrain engineering for the benefit of its customers. An example is the specific control of the alternator in such a way as to improve driving dynamics and fuel economy. (orig.)

  15. Fueling Wisconsin's economy with renewable energy

    International Nuclear Information System (INIS)

    Clemmer, S.

    1995-01-01

    A dynamic macroeconomic model of the Wisconsin economy is used to estimate the economic impacts of displacing a portion of future investment in fossil fuel power plants (coal and natural gas) with renewable energy resources (biomass, wind, solar and hydro). The results show that renewable energy investments produce over three times more jobs, income and economic activity than the same amount of electricity generated from coal and natural gas power plants. Between 1995 and 2020, a 75% increase in renewable energy use generates approximately 65,000 more job-years of employment, $1.6 billion in higher disposable income and a $3.1 billion increase in gross regional product than conventional power plant investments. This includes the effects of a 0.3% average annual increase in electricity prices from renewable energy investments

  16. China's fuel economy standards for passenger vehicles. Rationale, policy process, and impacts

    International Nuclear Information System (INIS)

    Oliver, Hongyan H.; Gallagher, Kelly Sims; Tian, Donglian; Zhang, Jinhua

    2009-01-01

    China issued its first Fuel Economy Standards (FES) for light-duty passenger vehicles (LDPV) in September 2004, and the first and second phases of the FES took effective in July 2005 and January 2008, respectively. The stringency of the Chinese FES ranks third globally, following the Japanese and European standards. In this paper, we first review the policy-making background, including the motivations, key players, and the process; and then explain the content and the features of the FES and why there was no compliance flexibility built into it. Next, we assess the various aspects of the standard's impact, including fuel economy improvement, technology changes, shift of market composition, and overall fuel savings. Lastly, we comment on the prospect of tightening the existing FES and summarize the complementary policies that have been adopted or may be considered by the Chinese government for further promoting efficient vehicles and reducing transport energy consumption. The Chinese experience is highly relevant for countries that are also experiencing or anticipating rapid growth in personal vehicles, those wishing to moderate an increase in oil demand, or those desirous of vehicle technology upgrades. (author)

  17. Environmental potential of the alternative automotive fuels biogas, ethanol, methanol, natural gas, rape oil methyl ester, and dimethyl ether

    International Nuclear Information System (INIS)

    Egebaeck, K.E.; Westerholm, R.

    1997-09-01

    The aim of the project was to estimate the future emission levels when using alternative fuels, as a contribution to the Committee for Evaluation of Alternative Automotive Fuels (organized by the Swedish Ministry of Environment). The method used for the project was to use the today's knowledge about the emission levels and the emission control technology as a base for the estimation of what additional potential there is to decrease the emissions by coming development of vehicles and the emission control technology. The results of the analysis and the estimations show that there exist a positive development for all types of vehicles and alternative fuels. However, there will be a difference between the different fuel alternatives depending on chemical and physical differences between the different fuels. There will also be a difference in the possibilities of the different fuels to capture a market which will have certain impact on the willingness and the economic possibilities for the car manufacturers to invest in the development needed to reach low emission levels. 124 refs

  18. Interaction of carbon reduction and green energy promotion in a small fossil-fuel importing economy

    International Nuclear Information System (INIS)

    Pethig, Ruediger; Wittlich, Christian

    2009-01-01

    We study the incidence of carbon-reduction and green-energy promotion policies in an open fossil-fuel importing general equilibrium economy. The focus is on mixed price-based or quantity-based policies. Instruments directed toward promoting green energy are shown to reduce also carbon emissions and vice versa. Their direct effects are stronger than their side effects, the more so, the greater is the elasticity of substitution in consumption between energy and the consumption good. We calculate the effects of variations in individual policy parameters, especially on energy prices and welfare costs, and determine the impact of exogenous fossil-fuel price shocks on the economy. (orig.)

  19. Checklist for transition to new highway fuel(s).

    Energy Technology Data Exchange (ETDEWEB)

    Risch, C.; Santini, D.J. (Energy Systems)

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  20. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  1. Impact of Friction Reduction Technologies on Fuel Economy for Ground Vehicles

    Science.gov (United States)

    2009-08-13

    UNCLAS: Dist A. Approved for public release IMPACT OF FRICTION REDUCTION TECHNOLOGIES ON FUEL ECONOMY FOR GROUND VEHICLES G. R. Fenske , R. A. Erck...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) G.R. Fenske ; R.A. Erck; O.O. Ajayi; A. Masoner’ A.S. Confort 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  2. The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC

    International Nuclear Information System (INIS)

    Li, Tie; Gao, Yi; Wang, Jiasheng; Chen, Ziqian

    2014-01-01

    Highlights: • At high load, LIVC is superior over EIVC in improving fuel economy. • The improvement with LIVC is due to advanced combustion phasing and increased pumping work. • At low load, EIVC is better than LIVC in improving fuel economy. • Pumping loss with EIVC is smaller than with LIVC at low load. • But heat release rate with EIVC is slower than with LIVC. - Abstract: A combination of downsizing, highly boosting and direct injection (DI) is an effective way to improve fuel economy of gasoline engines without the penalties of reduced torque or power output. At high loads, however, knock problem becomes severer when increasing the intake boosting. As a compromise, geometric compression ratio (CR) is usually reduced to mitigate knock, and the improvement of fuel economy is discounted. Application of Miller cycle, which can be realized by either early or late intake valve closing (EIVC or LIVC), has the potential to reduce the effective CR and suppress knock. In this paper, the effects of EIVC and LIVC on the fuel economy of a boosted DI gasoline production engine reformed with a geometric CR of 12.0 are experimentally compared at low and high loads. Compared to the original production engine with CR 9.3, at the high load operation, the brake specific fuel consumption (BSFC) is improved by 4.7% with CR12.0 and LIVC, while the effect of EIVC on improving BSFC is negligibly small. At the low load operation, combined with CR12.0, LIVC and EIVC improve the fuel economy by 6.8% and 7.4%, respectively, compared to the production engine. The mechanism behind the effects of LIVC and EIVC on improving the fuel economy is discussed. These results will be a valuable reference for engine designers and researchers

  3. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  4. Fueling our future: four steps to a new, reliable, cleaner, decentralized energy supply based on hydrogen and fuel cells

    International Nuclear Information System (INIS)

    Evers, A.A.

    2004-01-01

    'Full text:' This manuscript demonstrates the possible driving factors and necessary elements needed to move Hydrogen and Fuel Cells (H2/FC) to worldwide commercialisation. Focusing not only on the technology itself, we look at the 'bigger picture' explaining how certain trends have impacted the progress of new technologies developments in the past. In this process, the consumer has played and will continue to play the key and leading role. We also examine different Distributed Generation scenarios including distributed generation via fuel cells for automotive applications which may be the catalyst to the Hydrogen Economy. One possible step could be the use of Personal Power Cars equipped with Fuel Cells which not only drive on Hydrogen, but also supply (while standing) electricity /heat to residential and commercial buildings. With 1.3 billion potential customers, P.R. China is one country where such a scenario may fit. The up-and-coming Chinese H2/FC industry deals with applied fundamental research such as advances in Hydrogen production from Natural Gas, Methanol and Gasoline. The current activities in P.R. China certain to further accelerate the trend towards the coming Hydrogen Economy, together with the steps necessary to achieve a new reliable, cleaner and decentralized Energy Supply based on H2/FC are examined. (author)

  5. A Low Cost Ferritic Stainless Steel Microalloyed by Higher Nb for Automotive Exhaust System

    Science.gov (United States)

    Chen, Erhu; Wang, Xuelin; Shang, Chengjia

    Automotive engine exhaust gas after combustion of fuel, and the gas will be liquefied in the rear of automotive exhaust system. A lot of corrosive anions existing in the condensate make corrosion of the exhaust system materials. Therefore, once pitting perforation, automotive exhaust system will fail directly. In 1980s, automotive exhaust manifold was made of Si-Mo ductile iron, mufflers and the tail pipe were made of carbon steel or aluminized steel. But with higher emission standards carried out, the improvement of engine performance and the higher exhaust temperature as well as the needs of the automotive light-weighting, we need the higher corrosion resistance of the material for automotive exhaust systems to meet the requirements.

  6. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  7. Vehicle energy management for on/off controlled auxiliaries : fuel economy vs. switching frequency

    NARCIS (Netherlands)

    Chen, H.; Kessels, J.T.B.A.; Weiland, S.

    2015-01-01

    In this paper, an integrated approach for designing energy management strategies concerning vehicle auxiliaries with on/off control is proposed. This approach provides the possibility of making different trade-offs between fuel economy and switching frequency. In this paper, we demonstrate the

  8. Environmental Innovation Dynamics in the Automotive industry

    NARCIS (Netherlands)

    Kuik, O

    2006-01-01

    This paper addresses the innovation dynamics induced by environmental policy in the automotive industry. It examines car fuel efficiency programs in the EU, the US and Japan. It concludes that existing programs have not yet succeeded in promoting radical and breakthrough technologies, but that, at

  9. Determining Off-Cycle Fuel Economy Benefits of 2-Layer HVAC Technology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moniot, Matthew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jehlik, Forrest [Argonne National Laboratory; Chevers, Netsanet [Toyota Motor North America R& D; Hirabayshi, Hidekazu [Toyota Motor North America R& D; Song, Yuanpei [DENSO International America Inc.

    2018-04-03

    This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline). These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state. These vehicle models were integrated into a database of measured on road testing and coupled with U.S. typical meteorological data to simulate vehicle efficiency across seasonal thermal and operational conditions for hundreds of thousands of drive cycles. Fuel economy benefits utilizing the 2-Layer HVAC technology are presented in addition to goodness of fit statistics of the modeling approach relative to the experimental test data.

  10. Unemployment rate and price of gasoline predict the fuel economy of purchased new vehicles.

    Science.gov (United States)

    2011-03-01

    This study examined the relationship between two economic indicatorsthe : unemployment rate and the price of gasolineand the fuel economy of purchased new : vehicles. A regression analysis was performed on U.S. monthly data from October 2007 : ...

  11. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Science.gov (United States)

    2010-07-01

    ... POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for... vehicle under § 600.113(a) and (b) and as approved in § 600.008-08(c), are used to determine FTP-based... value exists for an electric vehicle configuration, that value, rounded to the nearest tenth of a mile...

  12. Fuel cell commercialization: The key to a hydrogen economy

    Science.gov (United States)

    Zegers, P.

    With the current level of global oil production, oil reserves will be sufficient for 40 years. However, due to the fact that the global GDP will have increased by a factor seven in 2050, oil reserves are likely to be exhausted in a much shorter time period. The EU and car industry aim at a reduction of the consumption of oil, at energy savings (with a key role for fuel cells) and an increased use of hydrogen from natural gas and, possibly, coal, in the medium term. The discovery of huge methane resources as methane hydrates (20 times those of oil, gas and coal together) in oceans at 1000-3000 m depth could be of major importance. In the long term, the EU aims at a renewable energy-based energy supply. The European Hydrogen and Fuel Cell Technology Platform is expected to play a major role in bringing about a hydrogen economy. The availability of commercial fuel cells is here a prerequisite. However, after many years of research, fuel cells have not yet been commercialized. If they will not succeed to enter the market within 5 years there is a real danger that activities aiming at a hydrogen society will peter out. In a hydrogen strategy, high priority should therefore be given to actions which will bring about fuel cell commercialization within 5 years. They should include the identification of fuel cell types and (niche) markets which are most favorable for a rapid market introduction. These actions should include focused short-term RTD aiming at cost reduction and increased reliability.

  13. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Student Manual.

    Science.gov (United States)

    Hamlin, Larry

    This document is a student manual for a general mechanical repair course. Following a list of common essential elements of trade and industrial education, the manual is divided into three sections. The first section, on minor automotive maintenance, contains 13 units: automotive shop safety; engine principles; fuel system operation and repair;…

  14. Towards Highly Performing and Stable PtNi Catalysts in Polymer Electrolyte Fuel Cells for Automotive Application

    Directory of Open Access Journals (Sweden)

    Sabrina C. Zignani

    2017-03-01

    Full Text Available In order to help the introduction on the automotive market of polymer electrolyte fuel cells (PEFCs, it is mandatory to develop highly performing and stable catalysts. The main objective of this work is to investigate PtNi/C catalysts in a PEFC under low relative humidity and pressure conditions, more representative of automotive applications. Carbon supported PtNi nanoparticles were prepared by reduction of metal precursors with formic acid and successive thermal and leaching treatments. The effect of the chemical composition, structure and surface characteristics of the synthesized samples on their electrochemical behavior was investigated. The catalyst characterized by a larger Pt content (Pt3Ni2/C presented the highest catalytic activity (lower potential losses in the activation region among the synthesized bimetallic PtNi catalysts and the commercial Pt/C, used as the reference material, after testing at high temperature (95 °C and low humidification (50% conditions for automotive applications, showing a cell potential (ohmic drop-free of 0.82 V at 500 mA·cm−2. In order to assess the electro-catalysts stability, accelerated degradation tests were carried out by cycling the cell potential between 0.6 V and 1.2 V. By comparing the electrochemical and physico-chemical parameters at the beginning of life (BoL and end of life (EoL, it was demonstrated that the Pt1Ni1/C catalyst was the most stable among the catalyst series, with only a 2% loss of voltage at 200 mA·cm−2 and 12.5% at 950 mA·cm−2. However, further improvements are needed to produce durable catalysts.

  15. Two-stage actuation system using DC motors and piezoelectric actuators for controllable industrial and automotive brakes and clutches

    Science.gov (United States)

    Neelakantan, Vijay A.; Washington, Gregory N.; Bucknor, Norman K.

    2005-05-01

    High bandwidth actuation systems that are capable of simultaneously producing relatively large forces and displacements are required for use in automobiles and other industrial applications. Conventional hydraulic actuation mechanisms used in automotive brakes and clutches are complex, inefficient and have poor control robustness. These lead to reduced fuel economy, controllability issues and other disadvantages. This paper involves the design, development, testing and control of a two-stage hybrid actuation mechanism by combining classical actuators like DC motors and advanced smart material actuators like piezoelectric actuators. The paper also discusses the development of a robust control methodology using the Internal Model Control (IMC) principle and emphasizes the robustness property of this control methodology by comparing and studying simulation and experimental results.

  16. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  17. Ionomer equivalent weight structuring in the cathode catalyst layer of automotive fuel cells: Effect on performance, current density distribution and electrochemical impedance spectra

    Science.gov (United States)

    Herden, Susanne; Hirschfeld, Julian A.; Lohri, Cyrill; Perchthaler, Markus; Haase, Stefan

    2017-10-01

    To improve the performance of proton exchange membrane fuel cells, membrane electrode assemblies (MEAs) with segmented cathode electrodes have been manufactured. Electrodes with a higher and lower ionomer equivalent weight (EW) were used and analyzed using current density and temperature distribution, polarization curve, temperature sweep and electrochemical impedance spectroscopy measurements. These were performed using automotive metallic bipolar plates and operating conditions. Measurement data were used to manufacture an optimized segmented cathode electrode. We were able to show that our results are transferable from a small scale hardware to automotive application and that an ionomer EW segmentation of the cathode leads to performance improvement in a broad spectrum of operating conditions. Furthermore, we confirmed our results by using in-situ electrochemical impedance spectroscopy.

  18. Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries

    International Nuclear Information System (INIS)

    Burke, Paul J.; Nishitateno, Shuhei

    2013-01-01

    Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995–2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between − 0.2 and − 0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of + 0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes. - Highlights: ► We estimate the determinants of gasoline demand and new-vehicle fuel economy. ► Estimates are for a large sample of countries for the period 1995–2008. ► We instrument for gasoline prices using oil reserves and the world crude oil price. ► Gasoline demand and fuel economy are inelastic with respect to the gasoline price. ► Large energy efficiency gains are possible via higher gasoline prices

  19. Rheo-processing of semi-solid metal alloys: a new technology for manufacturing automotive and aerospace components

    CSIR Research Space (South Africa)

    Ivanchev, L

    2008-01-01

    Full Text Available The latest trend in the automotive industry to produce fuel-efficient vehicles has resulted in the increased use of aluminium and magnesium alloys. Liquid metal high pressure die-casting (HPDC) currently satisfies the bulk of the automotive industry...

  20. The Role of Synthetic Fuels for a Carbon Neutral Economy

    Directory of Open Access Journals (Sweden)

    Rui Namorado Rosa

    2017-04-01

    Full Text Available Fossil fuels depletion and increasing environmental impacts arising from their use call for seeking growing supplies from renewable and nuclear primary energy sources. However, it is necessary to simultaneously attend to both the electrical power needs and the specificities of the transport and industrial sector requirements. A major question posed by the shift away from traditional fossil fuels towards renewable energy sources lies in matching the power demand with the daily and seasonal oscillation and the intermittency of these natural energy fluxes. Huge energy storage requirements become necessary or otherwise the decline of the power factor of both the renewable and conventional generation would mean loss of resources. On the other hand, liquid and gaseous fuels, for which there is vast storage and distribution capacity available, appear essential to supply the transport sector for a very long time ahead, besides their domestic and industrial roles. Within this context, the present assessment suggests that proven technologies and sound tested principles are available to develop an integrated energy system, relying on synthetic fuels. These would incorporate carbon capture and utilization in a closed carbon cycle, progressively relying mostly on solar and/or nuclear primary sources, providing both electric power and gaseous/liquid hydrocarbon fuels, having ample storage capacity, and able to timely satisfy all forms of energy demand. The principles and means are already available to develop a carbon-neutral synthetic fuel economy.

  1. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

  2. Eco-driving : strategic, tactical, and operational decisions of the driver that improve vehicle fuel economy.

    Science.gov (United States)

    2011-08-01

    "This report presents information about the effects of decisions that a driver can make to : influence on-road fuel economy of light-duty vehicles. These include strategic decisions : (vehicle selection and maintenance), tactical decisions (route sel...

  3. Sustainable electricity supply in the world by 2050 for economic growth and automotive fuel

    International Nuclear Information System (INIS)

    Kruger, P.

    2010-01-01

    Over the next 40 years, the combustion of fossil fuels for generation of electricity and vehicle transportation will be significantly reduced. In addition to the business-as-usual growth in electric energy demand for the growing world population, new electricity-intensive industries, such as battery electric vehicles and hydrogen fuel-cell vehicles will result in further growth in world consumption of electric energy. Planning for a sustainable supply of electric energy in the diverse economies of the world should be carried out with appropriate technology for selecting the appropriate large-scale energy resources based on their specific energy. Analysis of appropriate technology for the available large-scale energy resources with diminished use of fossil fuel combustion shows that sustainable electricity supply can be achieved with equal contributions of renewable energy resources for large numbers of small-scale distributed applications and nuclear energy resources for the smaller number of large-scale centralised applications. (author)

  4. An integrated approach to hydrogen economy in Sicilian islands

    Energy Technology Data Exchange (ETDEWEB)

    Matera, Fabio V.; Sapienza, C.; Andaloro, L.; Dispensa, G.; Ferraro, M.; Antonucci, V. [Italian National Research Council, Institute of Advanced Energy Technologies ' ' Nicola Giordano' ' , salita S. Lucia sopra Contesse, 5, Messina 98126 (Italy)

    2009-08-15

    CNR-ITAE is developing several hydrogen and fuel cell demonstration and research projects, each intended to be part of a larger strategy for hydrogen communities settling in small Sicilian islands. These projects involve vehicle design, hydrogen production from renewable energy sources and methane, as well as implementation strategies to develop a hydrogen and renewable energy economy. These zero emission lightweight vehicles feature regenerative braking and advanced power electronics to increase efficiency. Moreover, to achieve a very easy-to-use technology, a very simple interface between driver and the system is under development, including fault-recovery strategies and GPS positioning for car-rental fleets. Also marine applications have been included, with tests on PEFC applied on passenger ships and luxury yacht as power system for on-board loads. In marine application, it is under study also an electrolysis hydrogen generator system using seawater as hydrogen carrier. For stationary and automotive applications, the project includes a hydrogen refuelling station powered by renewable energy (wind or/and solar) and test on fuel processors fed with methane, in order to make the power generation self-sufficient, as well as to test the technology and increase public awareness toward clean energy sources. (author)

  5. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  6. Changing Dynamics of Foreign Direct Investment in China’s Automotive Industry

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    2013-09-01

    Full Text Available China’s automotive industry has developed dramatically in recent years as more and more major multinational corporations (MNCs in this industry began to invest in China.  Most of these investments have developed in the form of joint-ventures with Chinese state owned enterprises (SOEs. This paper contributes to the current literature by studying the effect of foreign direct investment (FDI on the productivity of the automotive industry in China using panel data during the 1999 –2008 period. Channels through which FDI may directly and indirectly affect the productivity are investigated using pooled ordinary least squares model (POLS and fixed effects model (FES to estimate the influence of FDI on productivity in the automotive industry. The results suggest that FDI plays a negative role in this industry and suggests that there is a need for Chinese government to modify its policies and practices in order to improve the productivity of such a key industry in the Chinese economy.

  7. Supply chain challenges in the South African automotive sector: do location, size and age matter?

    Directory of Open Access Journals (Sweden)

    Micheline Juliana Naude

    2013-11-01

    Full Text Available The South African automotive industry makes an important contribution to the South African economy. However, there are deficiencies within the local automotive component manufacturers’ (ACMs supplier base and therefore automotive assemblers, or original equipment manufacturers (OEMs, have to import many of their parts requirements. These deficiencies are caused by ACMs’ lack of technology, global supply capability, cost competitiveness and their geographic location (ACMs are scattered across the country. A study was conducted to explore the supply chain challenges South African ACMs face and whether the location, size and age of participating ACMs have a bearing on whether they face the same challenges. The results revealed that the most significant supply chain challenges in South Africa were in the customer relationship category. From the hypotheses testing, the conclusion could be drawn that, in general, participating ACMs face common supply chain challenges, irrespective of their location, age and size.This article contributes to the published research on the topic and the findings reveal that business opportunities in the automotive industry exist for entrepreneurs aspiring to enter into the automotive component industry.

  8. Recent Trends of Coated Sheet Steels for Automotive use

    International Nuclear Information System (INIS)

    Moon, Manbeen

    2012-01-01

    Recent issues in the automotive industries are, improvement of fuel efficiency according to the worldwide CO 2 regulation, passenger safety through enhanced crash worthiness, superior design and cost reduction due to price fluctuation of raw material. To meet these demands, steelmaking companies are developing advanced high strength steel and new process technologies such as hydroforming, TWB(Tailor Welded Blank), hot stamping and so on. In addition, eco-friendly and high corrosion resistant coating technologies are getting more attention to comply with the environmental regulations. In this paper, reviews and prospects of recent coating technologies for automotive use are presented

  9. Structure and impacts of fuel economy standards for passenger cars in China

    International Nuclear Information System (INIS)

    Wagner, David Vance; An Feng; Wang Cheng

    2009-01-01

    By the end of 2006, there were about 24 million total passenger cars on the roads in China, nearly three times as many as in 2001. To slow the increase in energy consumption by these cars, China began implementing passenger car fuel economy standards in two phases beginning in 2005. Phase 1 fuel consumption limits resulted in a sales-weighted new passenger car average fuel consumption decrease of about 11%, from just over 9 l/100 km to approximately 8 l/100 km, from 2002 to 2006. However, we project that upon completion of Phase 2 limits in 2009, the average fuel consumption of new passenger cars in China may drop only by an additional 1%, to approximately 7.9 l/100 km. This is due to the fact that a majority of cars sold in 2006 already meets the stricter second phase fuel consumption limits. Simultaneously, other trends in the Chinese vehicle market, including increases in average curb weight and increases in standards-exempt imported vehicles, threaten to offset the efficiency gains achieved from 2002 to 2006. It is clear that additional efforts and policies beyond Phase 2 fuel consumption limits are required to slow and, ultimately, reverse the trend of rapidly rising energy consumption and greenhouse gases from China's transportation sector.

  10. Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements

    Science.gov (United States)

    Koprubasi, Kerem

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall tank-to-wheel vehicle energy conversion efficiencies is the hybridization of electrical and conventional drive systems. Sophisticated hybrid powertrain configurations require careful coordination of the actuators and the onboard energy sources for optimum use of the energy saving benefits. The term optimality is often associated with fuel economy, although other measures such as drivability and exhaust emissions are also equally important. This dissertation focuses on the design of hybrid-electric vehicle (HEV) control strategies that aim to minimize fuel consumption while maintaining good vehicle drivability. In order to facilitate the design of controllers based on mathematical models of the HEV system, a dynamic model that is capable of predicting longitudinal vehicle responses in the low-to-mid frequency region (up to 10 Hz) is developed for a parallel HEV configuration. The model is validated using experimental data from various driving modes including electric only, engine only and hybrid. The high fidelity of the model makes it possible to accurately identify critical drivability issues such as time lags, shunt, shuffle, torque holes and hesitation. Using the information derived from the vehicle model, an energy management strategy is developed and implemented on a test vehicle. The resulting control strategy has a hybrid structure in the sense that the main mode of operation (the hybrid mode) is occasionally interrupted by event-based rules to enable the use of the engine start-stop function. The changes in the driveline dynamics during this transition further contribute to the hybrid nature of the system. To address the unique characteristics of the HEV

  11. Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Systems; Biddy, Mary [National; Jones, Susanne [Energy; Cai, Hao [Systems; Benavides, Pahola Thathiana [Systems; Markham, Jennifer [National; Tao, Ling [National; Tan, Eric [National; Kinchin, Christopher [National; Davis, Ryan [National; Dutta, Abhijit [National; Bearden, Mark [Energy; Clayton, Christopher [Energy; Phillips, Steven [Energy; Rappé, Kenneth [Energy; Lamers, Patrick [Bioenergy

    2017-10-30

    24 biomass-derived compounds and mixtures, identified based on their physical properties, that could be blended into fuels to improve spark ignition engine fuel economy were assessed for their economic, technology readiness, and environmental viability. These bio-blendstocks were modeled to be produced biochemically, thermochemically, or through hybrid processes. To carry out the assessment, 17 metrics were developed for which each bio-blendstock was determined to be favorable, neutral, or unfavorable. Cellulosic ethanol was included as a reference case. Overall, bio-blendstock yields in biochemical processes were lower than in thermochemical processes, in which all biomass, including lignin, is converted to a product. Bio-blendstock yields were a key determinant in overall viability. Key knowledge gaps included the degree of purity needed for use as a bio-blendstock as compared to a chemical. Less stringent purification requirements for fuels could cut processing costs and environmental impacts. Additionally, more information is needed on the blendability of many of these bio-blendstocks with gasoline to support the technology readiness evaluation. Overall, the technology to produce many of these blendstocks from biomass is emerging and as it matures, these assessments must be revisited. Importantly, considering economic, environmental, and technology readiness factors in addition to physical properties of blendstocks that could be used to boost fuel economy can help spotlight those most likely to be viable in the near term.

  12. 40 CFR 600.207-86 - Calculation of fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... calculation of the original base level fuel economy values), and (iii) All subconfigurations within the new... a new base level. The new base level is identical to the existing base level except that it shall be considered, for the purposes of this paragraph, as containing a new basic engine. The manufacturer will be...

  13. 40 CFR 600.207-93 - Calculation of fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... calculation of the original base level fuel economy values); and (iii) All subconfigurations within the new... a new base level. The new base level is identical to the existing base level except that it shall be considered, for the purposes of this paragraph, as containing a new basic engine. The manufacturer will be...

  14. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  15. Buses retrofitting with diesel particle filters: Real-world fuel economy and roadworthiness test considerations.

    Science.gov (United States)

    Fleischman, Rafael; Amiel, Ran; Czerwinski, Jan; Mayer, Andreas; Tartakovsky, Leonid

    2018-05-01

    Retrofitting older vehicles with diesel particulate filter (DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%-1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23-560nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency. Copyright © 2017. Published by Elsevier B.V.

  16. Study of emissions and fuel economy for parallel hybrid versus conventional vehicles on real world and standard driving cycles

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Samari

    2017-12-01

    Full Text Available Parallel hybrid electric vehicles (PHEVs increasing rapidly in the automobile markets. However, the benefits out of using this kind of vehicles are still concerned a lot of costumers. This work investigated the expected benefits (such as decreasing emissions and increasing fuel economy from using the parallel HEV in comparison to the conventional vehicle model of the real-world and standard driving cycles. The software Autonomie used in this study to simulate the parallel HEV and conventional models on these driving cycles.The results show that the fuel economy (FE can be improved significantly up to 68% on real-world driving cycle, which is represented mostly city activities. However, the FE improvement was limited (10% on the highway driving cycle, and this is expected since the using of brake system was infrequent. Moreover, the emissions from parallel HEV decreased about 40% on the real-world driving cycle, and decreased 11% on the highway driving cycle. Finally, the engine efficiency, improved about 12% on the real-world driving cycle, and about 7% on highway driving cycle. Keywords: Emissions, Hybrid electric vehicles, Fuel economy, Real-world driving cycle

  17. Why Cafe Worked

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    1997-08-01

    The frequently controversial Federal Automotive Fuel Economy Standards (a.k.a. Corporate Average Fuel Economy (CAFE) standards) have in fact been a notable success. This paper attempts to explain why the CAFE standards have been such a successful energy policy. It begins by demonstrating that economic theory does not relegate technology standards to permanent second best status. As a public policy aimed at correcting an externality, regulations can be the key part of a first best public policy response. To be sure, practical problems will arise in implementing either an effluent tax or a regulatory standard. Next, it is argued that in the oligopotistic automotive market a combination of satisfying behavior on the part of consumers and risk aversion on the part of producers makes it very likely that fuel economy standards will be more effective than even a motor fuel tax. This does not mean that gasoline or vehicle use taxes are not important or useful policy tools. Indeed, they are essential if policies are to be economically efficient. It means that taxes will be most effective and efficient if used in conjunction with fuel economy standards.

  18. Adverse effects of the automotive industry on carbon dioxide emissions

    OpenAIRE

    Mpho Bosupeng

    2016-01-01

    This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japa...

  19. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  20. The correlation between relationship value and business expansion in the South African automotive supply chains

    Directory of Open Access Journals (Sweden)

    Aletta S. Tolmay

    2017-02-01

    through a linear regression model. Results: It was found that relationship value directly correlates with business expansion and is therefore highly regarded as important by Tier 1 suppliers in terms of their Tier 2 suppliers in the South African automotive supply chains. Notwithstanding the different countries of origin, respondents are in agreement regarding the importance of relationship value. Conclusion: As the South African automotive industry plays an important role in the South African economy, all efforts should be made to retain and expand the industry. The industry is characterised by a difficult economy, and supply chain role players should constantly investigate new strategies to gain a competitive advantage. It was found that there was a high regard for relationship value which could result in business expansion. Automotive component suppliers are encouraged to invest in a relationship value governance strategy to actively pursue added benefits for all stakeholders.

  1. Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

    Science.gov (United States)

    Warren, E. L.

    1980-01-01

    The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.

  2. Fuel cells and hydrogen : implications for the future automobile

    Energy Technology Data Exchange (ETDEWEB)

    Frise, P.R. [Auto 21 Network of Centres of Excellence, Windsor, ON (Canada)

    2006-07-01

    This presentation outlined the organization of the auto industry, with reference to the tier levels of the supply chain. Automakers or original equipment manufacturers (OEMs) such as Daimler Chrysler, Ford Motor Company, General Motors, Honda, Toyota and Nissan are at the top of the structure, followed by tier 1 suppliers, tier 2 suppliers and tier 3 companies. In recent years, the auto industry has experienced an explosion of new products, building more vehicle types with fewer plants. It was shown that since 1990, auto parts supply companies have consolidated. Currently, Canada's automotive sector is the world's eighth largest producer of motor vehicles. The 6 OEMs operate 12 active assembly plants in Canada plus several engine and drivetrain part plants and support facilities. More than 500,000 Canadians work directly and indirectly in the auto industry, which generates 12 to 13 per cent of Canada's gross domestic product. It was noted that automotive design is driven, in large part, by energy prices. The industry strives to make vehicles safer; improve fuel economy and reduce environmental impacts; and, re-tool the business model by improving supplier relationship and making assembly more efficient and safer in order to control cost and improve profitability. The challenges for the new automobile include new powertrains that use alternate fuels or have electric drive and control systems; new structures and materials; and, new systems and capabilities. The future of fuel cell powertrains was also discussed with reference to prototypes or products already in the market. tabs., figs.

  3. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF... Transportation. (iv) [Reserved] (2) Average carbon-related exhaust emissions will be calculated to the nearest...

  4. The future of automotive technology

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.A.Jr.; Hamilton, D. [USDOE, Washington, DC (United States); Shah, R.; Belanger, M. [Computer Systems Management Inc., Alexandria, VA (United States)

    2000-07-01

    An overview of the technological advances that have been made in the automotive industry worldwide in recent years were presented with a brief insight into the potential ramifications in terms of fuel efficiency and pollution abatement. Developments in power trains, materials and alternative fuels were reviewed. Up to and including the 1980's most vehicles consisted of internal combustion engines. Today, advanced spark ignition and electric vehicles/hybrid electric vehicles are already in production in Japan, North America and Europe and all major automakers are working on vehicles powered by fuel cells. The use of alternative fuels such as natural gas, propane, alcohols, biodiesel and hydrogen will be encouraged for economic, environmental and energy security reasons. These alternative fuels, however, will not reduce emissions of carbon dioxide as long as they are made from fossil-carbon sources. Cars with all aluminum or fiber-reinforced polymetric-matrix composite bodies and aluminum chassis are emerging as a challenge to steel's domination. Also family sedans with fuel efficiencies of 80 miles per US gallon will be common place. It was emphasized that the extent to which these new technologies will be implemented will depend on consumer acceptance and on governmental regulations. 8 refs., 1 tab.

  5. Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C. Stuart; Gao, Zhiming; Smith, David E.; Laclair, Tim J.; Pihl, Josh A.; Edwards, K. Dean

    2013-04-08

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  6. Future Automotive Systems Technology Simulator (FASTSim)

    Energy Technology Data Exchange (ETDEWEB)

    2018-04-11

    An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.

  7. Hybrid-electric propulsion for automotive and aviation applications

    OpenAIRE

    Friedrich, C; Robertson, Paul Andrew

    2014-01-01

    In parallel with the automotive industry, hybrid-electric propulsion is becoming a viable alternative propulsion technology for the aviation sector and reveals potential advantages including fuel savings, lower pollution, and reduced noise emission. Hybrid-electric propulsion systems can take advantage of the synergy between two technologies by utilizing both internal combustion engines and electric motors together, each operating at their respective optimum conditions...

  8. Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends

    International Nuclear Information System (INIS)

    Du, Jiakun; Sun, Wanchen; Guo, Liang; Xiao, Senlin; Tan, Manzhi; Li, Guoliang; Fan, Luyan

    2015-01-01

    Highlights: • A compound combustion concept was proposed and investigated. • Premixed combustion near the top dead center was investigated using blended fuels. • Increasing gasoline blend ratio was found to enhance the mixture preparation. • Too much addition of gasoline decreases indicated thermal efficiency. • Gasoline/diesel blends may be a promising alternative for premixed combustion. - Abstract: The effects of gasoline/diesel blended fuel composed of diesel fuel with gasoline as additives in volume basis, on combustion, fuel economies and exhaust emissions were experimentally investigated. Tests were carried out based on a turbocharged Common-rail Direct Injection engine at a constant engine speed of 1800 r/min and different loads of 3.2 bar, 5.1 bar Indicated Mean Effective Pressure. Additionally, the effect of combustion phasing and Exhaust Gas Recirculation were evaluated experimentally for various fuels. The results indicated that with the fraction of gasoline increasing in blends, the ignition delay was prolonged and the combustion phasing was retarded with the common injection timing. This led to a significant increase of premixed burning phase, which was in favor of smoke reduction; although, too much gasoline might be adverse to fuel consumption. An optimum combustion phasing was identified, leading to a higher thermal efficiency and better premixed combustion with blended fuels. A combined application of Exhaust Gas Recirculation and blended fuel with a high gasoline fraction was confirmed effective in reducing the oxides of nitrogen and smoke emissions simultaneously at the optimum combustion phasing without giving significant penalty of fuel consumption. A compound combustion mode with its emission lower than the conventional Compression Ignition engines, and efficiency higher than the typical Spark Ignition engines, could be achieved with a cooperative control of Exhaust Gas Recirculation and combustion phasing of the gasoline

  9. 40 CFR 79.56 - Fuel and fuel additive grouping system.

    Science.gov (United States)

    2010-07-01

    ... industry-sponsored or other independent brokering arrangements. (3) Manufacturers who enroll a fuel or fuel... Specification for Automotive Spark-Ignition Engine Fuel”, used to define the general characteristics of gasoline... shall be chemical-grade quality, at a minimum, and shall not contain a significant amount of other...

  10. Recurrent-neural-network-based identification of a cascade hydraulic actuator for closed-loop automotive power transmission control

    International Nuclear Information System (INIS)

    You, Seung Han; Hahn, Jin Oh

    2012-01-01

    By virtue of its ease of operation compared with its conventional manual counterpart, automatic transmissions are commonly used as automotive power transmission control system in today's passenger cars. In accordance with this trend, research efforts on closed-loop automatic transmission controls have been extensively carried out to improve ride quality and fuel economy. State-of-the-art power transmission control algorithms may have limitations in performance because they rely on the steady-state characteristics of the hydraulic actuator rather than fully exploit its dynamic characteristics. Since the ultimate viability of closed-loop power transmission control is dominated by precise pressure control at the level of hydraulic actuator, closed-loop control can potentially attain superior efficacy in case the hydraulic actuator can be easily incorporated into model-based observer/controller design. In this paper, we propose to use a recurrent neural network (RNN) to establish a nonlinear empirical model of a cascade hydraulic actuator in a passenger car automatic transmission, which has potential to be easily incorporated in designing observers and controllers. Experimental analysis is performed to grasp key system characteristics, based on which a nonlinear system identification procedure is carried out. Extensive experimental validation of the established model suggests that it has superb one-step-ahead prediction capability over appropriate frequency range, making it an attractive approach for model-based observer/controller design applications in automotive systems

  11. Automotive Chassis; Automotive Mechanics-Basic: 9043.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive chassis course is designed to familiarize the beginning student of the history and development of the automobile with basic concepts common to the automobile industry, and general information that is required for successful advancement in the automotive mechanics field. It is one quinmester in a series of quinmester outlines…

  12. The development of fuel cell systems for mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Van den Oosterkamp, P.F.; Kraaij, G.J.; Van der Laag, P.C.; Stobbe, E.R.; Wouters, D.A.J.

    2006-09-15

    The ECN fuel cell related R and D program on fuel cells is linked to the stationary market and the automotive market. This paper will summarize our R and D activities for the automotive market. The role of fuels cells in two transport application area's will be described: the development of dedicated hydrogen based platforms in combination with advanced electricity storage for special logistic applications and the APU (auxiliary power unit) market for passenger cars and trucks, as well as for ships and airplanes. The associated aspects of hydrogen transport and storage, as well as the reforming of logistic fuels and bio-fuels to hydrogen will be described with some illustrative examples. These examples show that an integrated approach using applied catalysis, chemical reactor design and engineering, process simulation, control modelling and electrical engineering is required to address all aspects of the development of fuel cell technology for automotive applications. The paper concludes with a summary of the important environmental and economic drivers that influence the fuel cell market application.

  13. High load performance and combustion analysis of a four-valve direct injection gasoline engine running in the two-stroke cycle

    OpenAIRE

    Dalla Nora, M; Zhao, H

    2015-01-01

    With the introduction of CO2 emissions legislation or fuel economy standards in Europe and many countries, significant effort is being made to improve spark ignition gasoline engines because of their dominant market share in passenger cars and potential for better fuel economy. Amongst several approaches, the engine downsizing technology has been adopted by the automotive companies as one of the most effective methods to reduce fuel consumption of gasoline engines. However, aggressive engine ...

  14. 1998 Annual Study Report. Standardization of methods for measuring fuel economy of hybrid electric vehicles; 1998 nendo seika hokokusho. Hybrid denki jidosha no nenpi sokutei hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The hybrid electric vehicle (HEV) has been attracting attention as a clean energy vehicle, because it will potentially show higher fuel economy and release smaller quantities of exhaust emissions than the conventional internal combustion engine, and also will be potentially advantageous over the electric vehicle in that it needs no charging infrastructures and less cost. However, there are many types of hybrid vehicle systems, and, for them to be commercialized on a large scale, it is urgently necessary to establish the fuel economy measurement method. The 1998 R and D efforts were directed to analysis of the effects of the hybrid-characteristic factors (SOC of the propulsion battery and regenerative braking) on fuel economy and exhaust emissions. As a result, it is found that changed SOC before and after the tests must be corrected to determine fuel economy and that it is possible. The method for measuring the effects of regenerative braking should be further developed, because the data collected while the vehicle is running on road and on a two-wheel chassis dynamometer are not clearly distinguished from each other. The exhaust emissions are also sensitive to the changed SOC, correction for which, however, is not as easy as that for fuel economy. (NEDO)

  15. Automotive emission standards. (Latest citations from Pollution Abstracts). Published Search

    International Nuclear Information System (INIS)

    1993-07-01

    The bibliography contains citations concerning emission standards and air quality standards applied to automobile emissions. Included are federal and state regulations and policies regarding these emission standards. Techniques to meet emission standards are also addressed, involving fuel injection, catalysts, alternate engines, and automotive fuel refinery operations. Studies concerning implementation of automobile emission standards explore economic and environmental effects, testing and inspection procedures, and the automobile industry point of view. Most of the citations refer to gasoline engines, but a few pertain to diesel and other fuels. (Contains 250 citations and includes a subject term index and title list.)

  16. Lightweight Steel Solutions for Automotive Industry

    International Nuclear Information System (INIS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-01-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  17. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Doucette, Reed T.; McCulloch, Malcolm D. [Department of Engineering Science, University of Oxford, Thom Building, Parks Road, Oxford, OX1 3PJ (United Kingdom)

    2011-02-01

    Fuel cells aboard hybrid electric vehicles (HEVs) are often hybridized with an energy storage system (ESS). Batteries and ultracapacitors are the most common technologies used in ESSs aboard HEVs. High-speed flywheels are an emerging technology with traits that have the potential to make them competitive with more established battery and ultracapacitor technologies in certain vehicular applications. This study compares high-speed flywheels, ultracapacitors, and batteries functioning as the ESS in a fuel cell based HEV on the bases of cost and fuel economy. In this study, computer models were built to simulate the powertrain of a fuel cell based HEV where high-speed flywheels, batteries, and ultracapacitors of a range of sizes were used as the ESS. A simulated vehicle with a powertrain using each of these technologies was run over two different drive cycles in order to see how the different ESSs performed under different driving patterns. The results showed that when cost and fuel economy were both considered, high-speed flywheels were competitive with batteries and ultracapacitors. (author)

  18. Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development

    International Nuclear Information System (INIS)

    Hekkert, M.P.; Hendriks, F.H.J.F.; Faaij, A.P.C.; Neelis, M.L.

    2005-01-01

    Road transport produces significant amounts of CO 2 by using crude oil as primary energy source. A reduction of CO 2 emissions can be achieved by implementing alternative fuel chains. This article studies CO 2 emissions and energy efficiencies by means of a well to wheel analysis of alternative automotive fuel chains, using natural gas (NG) as an alternative primary energy source to replace crude oil. The results indicate that NG-based hydrogen applied in fuel cell vehicles (FCVs) lead to largest CO 2 emission reductions (up to 40% compared to current practice). However, large implementation barriers for this option are foreseen, both technically and in terms of network change. Two different transition strategies are discussed to gradually make the transition to these preferred fuel chains. Important transition technologies that are the backbone of these routes are traditional engine technology fuelled by compressed NG and a FCV fuelled by gasoline. The first is preferred in terms of carbon emissions. The results furthermore indicate that an innovation in the conventional chain, the diesel hybrid vehicle, is more efficient than many NG-based chains. This option scores well in terms of carbon emissions and implementation barriers and is a very strong option for the future

  19. METHODS TO MEASURE, PREDICT AND RELATE FRICTION, WEAR AND FUEL ECONOMY

    Energy Technology Data Exchange (ETDEWEB)

    Gravante, Steve [Ricardo, Inc.; Fenske, George [Argonne National Lab. (ANL), Argonne, IL (United States); Demas, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States); Erck, Robert [Argonne National Lab. (ANL), Argonne, IL (United States)

    2018-03-19

    High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAK and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110 °C. Ricardo's objective is to use this data along with advanced CAE methods to develop empirical characterizations of friction and wear mechanisms in internal combustion engines such that the impact of such mechanisms of engine fuel consumption and/or vehicle fuel economy can be estimated. The value of such predictive schemes is that if one knows how a particular friction reduction technology changes oil viscosity and/or the friction coefficient then the fuel consumption or fuel economy impacts can be estimated without the excessive cost of motored or fired engine tests by utilizing cost effective lab scale tests and in combination with advanced analytical methods. One accomplishment made during this work was the development and validation of a novel technique for quantifying wear using data from WLI through the use of

  20. The Impact of Drive Cycles and Auxiliary Power on Passenger Car Fuel Economy

    Directory of Open Access Journals (Sweden)

    Thomas Grube

    2018-04-01

    Full Text Available In view of the advancement of zero emission transportation and current discussions on the reliability of nominal passenger car fuel economy, this article considers the procedure for assessing the potential for reducing the fuel consumption of passenger cars by using electric power to operate them. The analysis compares internal combustion engines, hybrid and fully electric concepts utilizing batteries and fuel cells. The starting point for the newly developed, simulation-based fuel consumption analysis is a longitudinal vehicle model. Mechanical power requirements on the drive side incorporate a large variety of standardized drive cycles to simulate typical patterns of car usage. The power requirements of electric heating and air conditioning are also included in the simulation, as these are especially relevant to electric powertrains. Moreover, on-board grid-load profiles are considered in the assessment. Fuel consumption is optimized by applying concept-specific operating strategies. The results show that the combination of low average driving speed and elevated onboard power requirements have severe impacts on the fuel efficiency of all powertrain configurations analyzed. In particular, the operational range of battery-electric vehicles is strongly affected by this due to the limited storage capacity of today’s batteries. The analysis confirms the significance of considering different load patterns of vehicle usage related to driving profiles and onboard electrical and thermal loads.

  1. The National Center For Hydrogen And Fuel Cells. Jump-starting the hydrogen economy through research

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Varlam, Mihai; Carcadea, Elena

    2010-01-01

    Full text: The research, design and implementation of hydrogen-based economy must consider each of the segments of the hydrogen energy system - production, supply, storage, conversion. The National Center for Hydrogen and Fuel Cells has the experience, expertise, facilities and instrumentation necessary to have a key role in developing any aspect of hydrogen-based economy, aiming to integrate technologies for producing and using hydrogen as an 'energy vector'. This paper presents a simulation of the applied 'learning curve' concept, NCHFC being the key element of R and D in the field in comparing the costs involved. It also presents the short and medium term research program of NCHFC, the main research and development directions being specified. (authors)

  2. Multi-national knowledge strategies, policy and the upgrading process of regions: Revisiting the automotive industry in Ostrava and Shanghai

    NARCIS (Netherlands)

    Tuijl, E. van; Carvalho, L.; Winden, W. van; Jacobs, W.A.A.

    2012-01-01

    This paper revisits how and why new multinational knowledge-based strategies and multi-level governmental policies influence the upgrading process of regions in developing economies. Automotive multinationals traditionally exploited local asset conditions, but it is shown that they have also been

  3. Polymer matrix nanocomposites for automotive structural components

    Science.gov (United States)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  4. Analysis of the potential for new automotive uses of wrought magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.; Cuenca, R.; Wu, S. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., IL (United States)]|[Argonne National Lab., Washington, DC (United States)

    1996-02-01

    The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.

  5. Reduction in global warming due to fuel economy improvements and emissions control of criteria pollutants: New US light-duty vehicles (1968--1991)

    Energy Technology Data Exchange (ETDEWEB)

    Pitstick, M.E.; Santini, D.J. [Argonne National Lab., IL (United States); Chauhan, H. [Delaware Univ., Newark, DE (United States). Dept. of Civil Engineering

    1992-08-01

    This paper explores the impact of US emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO{sub 2}). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO{sub x}). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO{sub 2} equivalent emission rate. Both CO{sub 2} and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO{sub 2} was reduced by almost 50% in new vehicles by improving fuel economy. In that same time period, the GWP from criteria pollutants from new vehicles was reduced with emission controls by from 80% to 90% depending on the global warming time frame of interest. Consequently, total reductions in the GWP of new passenger cars and light-duty trucks have been on the order of 55 to 75 percent compared to precontrol (before 1968) new vehicles. However, the reduction in GWP caused by emission control of criteria pollutants has been larger than the reduction caused by improved fuel economy (i.e., reduced CO{sub 2}). The contribution of criteria pollutants to the GWP of precontrol new vehicles was substantial, but their contribution has been reduced significantly due to US emission controls. As a result, the contribution of criteria pollutants to global warming is now much less than the contribution of CO{sub 2} from fuel consumption.

  6. Reduction in global warming due to fuel economy improvements and emissions control of criteria pollutants: New US light-duty vehicles (1968--1991)

    Energy Technology Data Exchange (ETDEWEB)

    Pitstick, M.E.; Santini, D.J. (Argonne National Lab., IL (United States)); Chauhan, H. (Delaware Univ., Newark, DE (United States). Dept. of Civil Engineering)

    1992-01-01

    This paper explores the impact of US emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO{sub 2}). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO{sub x}). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO{sub 2} equivalent emission rate. Both CO{sub 2} and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO{sub 2} was reduced by almost 50% in new vehicles by improving fuel economy. In that same time period, the GWP from criteria pollutants from new vehicles was reduced with emission controls by from 80% to 90% depending on the global warming time frame of interest. Consequently, total reductions in the GWP of new passenger cars and light-duty trucks have been on the order of 55 to 75 percent compared to precontrol (before 1968) new vehicles. However, the reduction in GWP caused by emission control of criteria pollutants has been larger than the reduction caused by improved fuel economy (i.e., reduced CO{sub 2}). The contribution of criteria pollutants to the GWP of precontrol new vehicles was substantial, but their contribution has been reduced significantly due to US emission controls. As a result, the contribution of criteria pollutants to global warming is now much less than the contribution of CO{sub 2} from fuel consumption.

  7. Reduction in global warming due to fuel economy improvements and emissions control of criteria pollutants: New US light-duty vehicles (1968--1991)

    International Nuclear Information System (INIS)

    Pitstick, M.E.; Santini, D.J.; Chauhan, H.

    1992-01-01

    This paper explores the impact of US emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO 2 ). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO x ). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO 2 equivalent emission rate. Both CO 2 and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO 2 was reduced by almost 50% in new vehicles by improving fuel economy. In that same time period, the GWP from criteria pollutants from new vehicles was reduced with emission controls by from 80% to 90% depending on the global warming time frame of interest. Consequently, total reductions in the GWP of new passenger cars and light-duty trucks have been on the order of 55 to 75 percent compared to precontrol (before 1968) new vehicles. However, the reduction in GWP caused by emission control of criteria pollutants has been larger than the reduction caused by improved fuel economy (i.e., reduced CO 2 ). The contribution of criteria pollutants to the GWP of precontrol new vehicles was substantial, but their contribution has been reduced significantly due to US emission controls. As a result, the contribution of criteria pollutants to global warming is now much less than the contribution of CO 2 from fuel consumption

  8. Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"

    Science.gov (United States)

    Scott, John H.

    2007-01-01

    The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

  9. United States Automotive Materials Partnership LLC (USAMP)

    Energy Technology Data Exchange (ETDEWEB)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly

  10. Environmental sustainability: plastic's evolving role in the automotive life cycle

    International Nuclear Information System (INIS)

    Jekel, L.; Tam, E.K.L.

    2002-01-01

    One method of assessing the sustainability of manufactured products involves performing a life cycle analysis for a product and comparing it to alternative ones, or else examining if individual stages of the product can be modified. LCA applications are being used more extensively, especially in the automotive and related industries. Automotive plastics in particular are being scrutinized with much greater care. Plastic components have replaced metal ones in vehicle manufacturing to improve vehicle fuel efficiency and aesthetics. However, at the end of a vehicle's life, recycling rates for plastic are negligible when compared to those of steel. In order to gain the full environmental benefits of using plastic as a vehicle material, plastics must be recycled at the end of a vehicle's life, especially given their increasing use. While a variety of processes have been developed for the recycling of automotive plastics, the challenges of sorting, processing, and finally recycling a heterogeneous mixture of used plastics have yet to be effectively solved. A preliminary life cycle assessment of a plastic automotive fascia demonstrates the usefulness of this eco-balance technique in evaluating potential improvements to manufacturing and end-of-life processes. Improving the manufacturing process may reduce environmental burdens to a larger extent than just recycling the plastic. (author)

  11. Fuel Economy Improvement of a Heavy-Duty Powertrain by Using Hardware-in-Loop Simulation and Calibration

    Directory of Open Access Journals (Sweden)

    Bolan Liu

    2015-09-01

    Full Text Available Fuel economy efficiency is one of the most important parameters for vehicle powertrains, which is of particular interest for heavy-duty powertrain calibration. Conventionally, this work relies heavily on road tests, which cost more and may lead to long duration product development cycles. The paper proposes a novel hardware-in-loop modeling and calibration method to work it out. A dSPACE hardware-based test bench was successfully established and validated, which is valuable for a more efficient and easier shift schedule in calibration. Meanwhile, a real-time dynamic powertrain model, including a diesel engine, torque converter, gear box and driver model was built. Typical driving cycles that both velocity and slope information were constructed for different road conditions. A basic economic shift schedule was initially calculated and then optimal calibrated by the test bench. The results show that there is an optimal relationship between an economic shift schedule and speed regulation. By matching the best economic shift schedule regulation to different road conditions; the fuel economy of vehicles can be improved. In a smooth driving cycle; when the powertrain applies a larger speed regulation such as 12% and the corresponding shift schedule; the fuel consumption is smaller and is reduced by 13%. In a complex driving cycle, when the powertrain applies a smaller speed regulation such as 5% along with the corresponding shift schedule; the fuel consumption is smaller and is reduced by 5%. The method thus can provide guidance for economic calibration experiments of off-road heavy-duty vehicles.

  12. Understanding the evolution of eco-innovative activity in the automotive sector: a patent based analysis

    DEFF Research Database (Denmark)

    Faria, Lourenco; Andersen, Maj Munch

    The paper aims to analyze the evolution of eco-innovative activity and strategies in the automotive sector over time. We suggest to use a patent count methodology tracking the development of selected technologies considered as promising ?green technologies? in the automotive sector. The paper...... their patent portfolios in order to generate competitive advantages derived from the introduction of eco-innovations, activities emerging in the 1990s and accelerating in scope and radicality in the end zeroes. All the firms are engaging in developing new alternative green trajectories to the existing dominant...... demonstrates the current fluid emerging stage of the greening of the economy but also illustrates that eco-innovation is already an important competitive factor globally....

  13. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  14. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    Science.gov (United States)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the

  15. Substantial improvements of fuel economy. Potentials of electric and hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, K [Technical Univ. of Denmark (Denmark); Nielsen, L H [Forskningscenter Risoe (Denmark)

    1996-12-01

    This paper evaluates the scope for improvement of the energy and environmental impacts of road traffic by means of electrical and hybrid electric propulsion. These technologies promise considerable improvements of the fuel economy of vehicles compared to the present vehicle types as well as beneficial effects for the energy and traffic system. The paper - based on work carried out in the project `Transportation fuel based on renewable energy`, funded by the National Energy Agency of Denmark and carried out by Department of Buildings and Energy, Technical University of Denmark and System Analysis Department, Risoe National Laboratory - assesses the potentials for reduction of the primary energy consumption and emissions, and points to the necessary technical development to reap these benefits. A case study concerning passenger cars is analysed by means of computer simulations, comparing electric and hybrid electric passenger car to an equivalent reference vehicle (a conventional gasoline passenger car). (au) 10 refs.

  16. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  17. Economy and the fuel market

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear fuel manufacturing constitutes a considerable venture for the competitiveness of the nuclear power sector although it represents a relatively modest fraction (around 4%) of the nuclear kWh cost. The COGEMA group is participating through its branches in the control of the most part (32%) of the world manufacturing capacity of fuel for PWR. Amounting up to 242 operating installations this reactor type is the most widespread in the world. The paper discusses the costs, the fuel clients and the fuel suppliers. Data concerning the boiling water and fast neutron reactors, geographical localization of the PWR and VVER reactors all over the world, the PWR and fuel for PWR manufacturers are also presented

  18. The influence of surface topography on the forming friction of automotive aluminum sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Pamela Ann [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1998-05-01

    Interest in utilizing aluminum alloys in automobiles has increased in recent years as a result of the desire to lower automobile weight and, consequently, increase fuel economy. While aluminum alloy use in cast parts has increased, outer body panel applications are still being investigated. The industry is interested in improving the formability of these sheet alloys by a combination of alloy design and processing. A different avenue of improving the formability of these alloys may be through patterning of the sheet surface. Surface patterns hold the lubricant during the forming process, with a resulting decrease in the sheet-die surface contact. While it has been speculated that an optimum surface pattern would consist of discrete cavities, detailed investigation into the reduction of forming friction by utilizing discrete patterns is lacking. A series of discrete patterns were investigated to determine the dependence of the forming friction of automotive aluminum alloys on pattern lubricant carrying capacity and on material strength. Automotive aluminum alloys used in outer body panel applications were rolled on experimental rolls that had been prepared with a variety of discrete patterns. All patterns for each alloy were characterized before and after testing both optically and, to determine pattern lubricant capacity, using three dimensional laser profilometry. A draw bead simulation (DBS) friction tester was designed and fabricated to determine the forming friction of the patterned sheets. Tensile testing and frictionless DBS testing were performed to ascertain the material properties of each sheet. The most striking result of this work was the inversely linear dependence of forming friction on the lubricant carrying capacity of the discrete patterns.

  19. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration

    International Nuclear Information System (INIS)

    Cui, Xintao; Zhang, Hongwei; Wang, Shuxin; Zhang, Lianhong; Ko, Jeonghan

    2011-01-01

    Currently, automotive bodies are constructed usually using a single material, e.g. steel or aluminum. Compared to single-material automotive bodies, multi-material automotive bodies allow optimal material selection in each structural component for higher product performance and lower cost. This paper presents novel material performance indices and procedures developed to guide systematic material selection for multi-material automotive bodies. These new indices enable to characterize the crashworthiness performance of complex-shaped thin-walled beams in multi-material automotive bodies according to material types. This paper also illustrates the application of these performance indices and procedures by designing a lightweight multi-material automotive body. These procedures will help to design a lightweight and affordable body favored by the automotive industry, thus to reduce fuel consumption and greenhouse gas emissions.

  20. Cross Cultural Logistics and Supply Chain Management Towards Organizational Effectiveness within the Asean/Thai Automotive Industries: A Sem Analysis

    Directory of Open Access Journals (Sweden)

    Dansomboon Suwaj

    2016-09-01

    Full Text Available As a manufacturing, logistics and supply chain hub within ASEAN (Association of Southeast Asian Nations, Thailand holds the 12th spot in global vehicle production for an estimated 2,355 Thai and multinational automotive industry enterprises. Within the Association of Southeast Asian Nations, Thailand ranks number one in automotive production contributing $US11.4 billion to the Thai economy and 12 percent to Thailand’s GDP (Gross Domestic Product, with the automotive industry being Thailand’s leading export sector. However, the automotive companies envisage the difficulty of cultural diversity to manage and coordinate. Therefore, cultural values from the milieu are inducted into the workplace and have a strong impact on both individual behavior and organizational effectiveness and must be direction at all levels for cross-cultural, organizational effectiveness to be achieved. It also became evident that natural disasters are frequent and highly disruptive to the global automotive supply chain and paces must be taken to countervailing the notable and continuing loss to economic growth and organizational effectiveness to both sector units and the global industry. The implementation of strategically placed, environmentally ‘habituated’, automotive parts logistics cache might be one solution to the problem. Given the crucial importance of this sector to the economy of the region and the global supply chain, the researchers surveyed 220 managers using a 7-point Likert scale questionnaire within the multinational industrial clusters of Thailand’s ‘Detroit of Asia’ Eastern Seaboard region. Using Structural Equation Modelling to test the 11 variables on Logistics Management, Supply Chain Management and Organizational Effectiveness in a cross-cultural context, it was determined that collaboration within the supply chain and the exchange of information can reduce uncertainty, with trust being a key ingredient to a JV’s success

  1. Transition towards a hydrogen economy: infrastructures and technical change

    International Nuclear Information System (INIS)

    Bento, Nuno

    2010-01-01

    The double constraint of climate change and increasing scarcity of oil requires that we consider alternative energies for the medium term. This thesis focuses on the development of a hydrogen economy, which is conditional on the existence of an infrastructure for the distribution of the new fuel and the readiness of fuel cells. The main idea is that the state can play a central role in both infrastructure implementation and preparation of fuel cells technology. The thesis begins with a techno-economic analysis of the hydrogen-energy chain, which highlights the difficulty of setting up the infrastructure. The study of the development of electricity and gas networks in the past provides the empirical basis supporting the hypothesis that government can play an important role to consolidate the diffusion of socio-technical networks. In addition, private projects of stations may be justified by early-move benefits, although their financial viability depends on the demand for hydrogen which is in turn dependent on the performance of the fuel cell vehicle. The introduction of radical innovations, such as fuel cell, has been made more difficult by the domination of conventional technologies. This assertion is particularly true in the transport sector which was progressively locked into fossil fuels by a process of technological and institutional co-evolution driven by increasing returns of scale. Hence, fuel cells may primarily diffuse through the accumulation of niches where the innovation is closer to commercialization. These niches may be located in portable applications segment. Investments in research and demonstration are still necessary in order to reduce costs and increase performances of fuel cells. Using a simple model of multi-technological diffusion, we analyze the competition between the hydrogen fuel cell vehicle and the plug-in hybrid car for the automotive market. We show that an early entry of the latter may block the arrival of hydrogen in the market

  2. FY 2000 report on development of the infrastructure to promote use of fuel cells for automobiles. Standardization of FCEVs; 2000 nendo nenryo denchi fukyu kiban seibi jigyo jidoshayo nenryo denchi fukyu kiban seibi seika hokokusho. FCEV hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the results of the FY 2000 activities for standardization of fuel cell powered vehicles and development of the infrastructures related to participation in ISO. Fuel cell powdered vehicles are believed to be the most favored vehicles of the next generation for their low emissions and fuel efficiency. The world leading automakers, including Japanese makers, have announced plans to commercialize these vehicles in 2003 to 2004. Under these situations, the discussion has been initiated to move forward standardization of the fuel cell powdered vehicles at the international conferences, e.g., ISO (International Standardization Organization) and IEC (International Electrotechnical Commission). At ISO/TC22/SC21 (Electric Vehicles) for which the Japan Electric Vehicle Association (JEVA) is in charge as the domestic council, the proposal has been made and approved to begin working towards the standardization at the conference in November 1999. Consequently, FCEV special subcommittee consisting of public organizations (including academic organizations and Ministry of Economy, Trade and Industry), automakers, automotive parts manufacturers and other organizations related to the automotive industry has been established in February 2000 under the JEVA standardization section and started the activities. The Japanese proposals for safety and fuel cell vehicle terminology will be presented to the ISO meetings to be held in May 2001 in Tokyo. (NEDO)

  3. Numerical simulations of a full-scale polymer electrolyte fuel cell with analysing systematic performance in an automotive application

    International Nuclear Information System (INIS)

    Park, Heesung

    2015-01-01

    Highlights: • A 3-D full-scale fuel cell performance is numerically simulated. • Generated and consumed power in the system is affected by operating condition. • Systematic analysis predicts the net power of conceptual PEFC stack. - Abstract: In fuel cell powered electric vehicles, the net power efficiency is a critical factor in terms of fuel economy and commercialization. Although the fuel cell stack produces enough power to drive the vehicles, the transferred power to the power train could be significantly reduced due to the power consumption to operate the system components of air blower and cooling module. Thus the systematic analysis on the operating condition of the fuel cell stack is essential to predict the net power generation. In this paper numerical simulation is conducted to characterize the fuel cell performance under various operating conditions. Three dimensional and full-scale fuel cell of the active area of 355 cm 2 is numerically modelled with 47.3 million grids to capture the complexities of the fluid dynamics, heat transfer and electrochemical reactions. The proposed numerical model requires large computational time and cost, however, it can be powerful to reasonably predict the fuel cell system performance at the early stage of conceptual design without requiring prototypes. Based on the model, it has been shown that the net power is reduced down to 90% of the gross power due to the power consumption of air blower and cooling module

  4. The Impact of Analog and Bang-Bang Steering Gear Control on Ship's Fuel Economy

    DEFF Research Database (Denmark)

    Nørtoft Thomsen, J. C.; Blanke, Mogens; Reid, R. E.

    1982-01-01

    it is found to be at least equally important regarding steering performance and fuel economy. The paper presents a comprehensive survey of steering gear principles commonly used, including relevant details of three analog steering gear servo principles, which have outperformed conventional designs. Control......The latest years have shown considerable efforts towards improving steering generated propulsion losses of ships by the introduction of various sophisticated control algorithms in the autopilots. However, little previous attention has been given to the steering gear control loop, although...

  5. Automotive mechatronics operational and practical issues

    CERN Document Server

    Fijalkowski, B T

    2011-01-01

    This book presents operational and practical issues of automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modern vehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, Automotive Mechatronics aims at improving automotive mechatronics education and emphasises the training of students' experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME...

  6. Automotive electronics design fundamentals

    CERN Document Server

    Zaman, Najamuz

    2015-01-01

    This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs.  A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.

  7. Application of Hybrid IC's to the Automotive Electronics Market in Europe

    OpenAIRE

    Eckart von Roda

    1981-01-01

    In the last few years hybrids have been increasingly used in automotive electronics in Europe. With examples from the BOSCH and BLAUPUNKT production range their application in regulators, breakerless ignition modules, electronically-controlled fuel injection systems and car radios is illustrated. The elements and techniques used to assemble the hybrids, and the advantages which can be gained are discussed.

  8. The use of methanol as a fuel for transportation

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, K E [Luleaa Univ. of Technology (Sweden); Walsh, M P [Arlington, VA (United States); Westerholm, R [Stockholm Univ. (Sweden)

    1997-06-01

    The aim of the project was to collect and report international experiences concerning the use of methanol as an automotive fuel. The method has been to study the literature which covers the subject and most of the information has been collected that way. The project started with a participation in a conference and a visit to people who have been involved in activities concerning the use of automotive alcohols. Car manufacturers, environmental authorities and users of alcohol fuels i.e. representatives of bus companies, were interviewed. The different applications for the use of methanol as an automotive fuel has been described in the report as well as the production of methanol. Some results, mostly in form of emission data and other experiences derived from the use of alcohol fuels, have also been presented. The use of ethanol and methanol has been compared and based on information from engine manufacturers and users of alcohol fueled vehicles there seems to be a preference for the use of ethanol. However, the question `methanol or ethanol` has not been answered as the decision which of the two is to be used seems to depend more on economic factors, such as cost of the production of the fuel etc., than on other factors. 165 refs, 15 figs, 14 tabs

  9. Substitutability of Electricity and Renewable Materials for Fossil Fuels in a Post-Carbon Economy

    Directory of Open Access Journals (Sweden)

    Antonio García-Olivares

    2015-11-01

    Full Text Available A feasible way to avoid the risk of energy decline and combat climate change is to build a 100% renewable global energy mix. However, a globally electrified economy cannot grow much above 12 electric terawatts without putting pressure on the limits of finite mineral reserves. Here we analyze whether 12 TW of electricity and 1 TW of biomass (final power will be able to fuel a future post-carbon economy that can provide similar services to those of a contemporary economy. Contrarily to some pessimistic expectations, this analysis shows that the principle economic processes can be replaced with sustainable alternatives based on electricity, charcoal, biogas and hydrogen. Furthermore, those services that cannot be replaced are not as crucial so as to cause a return to a pre-industrial society. Even so, land transport and aviation are at the limit of what is sustainable, outdoor work should be reorganized, metal primary production should be based on hydrogen reduction when possible, mineral production should be increasingly based on recycling, the petrochemical industry should shrink to a size of 40%–43% of the 2012 petrochemical sector, i.e., a size similar to that the sector had in 1985–1986, and agriculture may require organic farming methods to be sustainable.

  10. Status of solid polymer electrolyte fuel cell technology and potential for transportation applications

    Science.gov (United States)

    McElroy, J. F.; Nuttall, L. J.

    The solid polymer electrolyte (SPE) fuel cell represents the first fuel cell technology known to be used operationally. Current activities are mainly related to the development of a space regenerative fuel cell system for energy storage on board space stations, or other large orbiting vehicles and platforms. During 1981, a study was performed to determine the feasibility of using SPE fuel cells for automotive or other vehicular applications, using methanol as the fuel. The results of this study were very encouraging. Details concerning a conceptual automotive fuel cell power plant study are discussed, taking into account also a layout of major components for compact passenger car installation.

  11. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  12. Numerical Investigation on the Performance of an Automotive Thermoelectric Generator with Exhaust-Module-Coolant Direct Contact

    Science.gov (United States)

    Wang, Yiping; Tang, Yulin; Deng, Yadong; Su, Chuqi

    2018-06-01

    Energy conservation and environmental protection have typically been a concern of research. Researchers have confirmed that in automotive engines, just 12-25% of the fuel energy converts into effective work and 30-40% gets wasted in the form of exhaust. Saidur et al. (Energy Policy 37:3650, 2009) and Hasanuzzaman et al. (Energy 36:233, 2011). It will be significant to enhance fuel availability and decrease environmental pollution if the waste heat in the exhaust could be recovered. Thermoelectric generators (TEGs), which can translate heat into electricity, have become a topic of interest for vehicle exhaust waste heat recovery. In conventional automotive TEGs, the thermoelectric modules (TEMs) are arranged between the exhaust tank and the coolant tank. The TEMs do not contact the hot exhaust and coolant, which leads to low heat transfer efficiency. Moreover, to provide enough packing force to keep good contact with the exhaust tank and the coolant tank, the framework required is so robust that the TEGs become too heavy. Therefore, in current study, an automotive TEG was designed which included one exhaust channel, one coolant channel and several TEMs. In the TEG, the TEMs which contacted the exhaust and coolant directly were inserted into the walls of each coolant channel. To evaluate the performance of the automotive TEG, the flow field and temperature field were computed by computational fluid dynamics (CFD). Based on the temperature distribution obtained by CFD and the performance parameters of the modules, the total power generation was obtained by some proved empirical formulas. Compared with conventional automotive TEGs, the power generation per unit volume exhaust was boosted.

  13. Numerical Investigation on the Performance of an Automotive Thermoelectric Generator with Exhaust-Module-Coolant Direct Contact

    Science.gov (United States)

    Wang, Yiping; Tang, Yulin; Deng, Yadong; Su, Chuqi

    2017-12-01

    Energy conservation and environmental protection have typically been a concern of research. Researchers have confirmed that in automotive engines, just 12-25% of the fuel energy converts into effective work and 30-40% gets wasted in the form of exhaust. Saidur et al. (Energy Policy 37:3650, 2009) and Hasanuzzaman et al. (Energy 36:233, 2011). It will be significant to enhance fuel availability and decrease environmental pollution if the waste heat in the exhaust could be recovered. Thermoelectric generators (TEGs), which can translate heat into electricity, have become a topic of interest for vehicle exhaust waste heat recovery. In conventional automotive TEGs, the thermoelectric modules (TEMs) are arranged between the exhaust tank and the coolant tank. The TEMs do not contact the hot exhaust and coolant, which leads to low heat transfer efficiency. Moreover, to provide enough packing force to keep good contact with the exhaust tank and the coolant tank, the framework required is so robust that the TEGs become too heavy. Therefore, in current study, an automotive TEG was designed which included one exhaust channel, one coolant channel and several TEMs. In the TEG, the TEMs which contacted the exhaust and coolant directly were inserted into the walls of each coolant channel. To evaluate the performance of the automotive TEG, the flow field and temperature field were computed by computational fluid dynamics (CFD). Based on the temperature distribution obtained by CFD and the performance parameters of the modules, the total power generation was obtained by some proved empirical formulas. Compared with conventional automotive TEGs, the power generation per unit volume exhaust was boosted.

  14. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  15. Motor fuel demand analysis - applied modelling in the European union

    International Nuclear Information System (INIS)

    Chorazewiez, S.

    1998-01-01

    Motor fuel demand in Europe amounts to almost half of petroleum products consumption and to thirty percent of total final energy consumption. This study considers, Firstly, the energy policies of different European countries and the ways in which the consumption of motor gasoline and automotive gas oil has developed. Secondly it provides an abstract of demand models in the energy sector, illustrating their specific characteristics. Then it proposes an economic model of automotive fuel consumption, showing motor gasoline and automotive gas oil separately over a period of thirty years (1960-1993) for five main countries in the European Union. Finally, forecasts of consumption of gasoline and diesel up to the year 2020 are given for different scenarios. (author)

  16. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-10-27

    Tom Wenzel of Lawrence Berkeley National Laboratory comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicle, specifically on the relationship between vehicle weight and vehicle safety.

  17. Lay the foundation stone of the Creteil NGV station; Pose de la premiere pierre de la station GNV de Creteil

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    This talk gives the advantages of the NGV (Natural Gas for Vehicles) and the policy in favour this automotive fuel. For the environment and the economy the NGV this fuel is the choice of the future. The author gives also the financial incentives for this channel development. (A.L.B.)

  18. A life-cycle perspective on automotive fuel cells

    International Nuclear Information System (INIS)

    Simons, Andrew; Bauer, Christian

    2015-01-01

    Highlights: • Individual inventories for each fuel cell system component, current and future. • Environmental and human health burdens from fuel cell production and end-of-life. • Comparison passenger transport in fuel cell and conventional vehicles. • Fuel cell can be more critical to overall burdens than hydrogen production. • Fuel cell developments require radical but possible changes to reduce burdens. - Abstract: The production and end-of-life (EoL) processes for current and future proton exchange membrane fuel cell (PEMFC) systems for road passenger vehicle applications were analysed and quantified in the form of life cycle inventories. The current PEMFC technology is characterised by highly sensitive operating conditions and a high system mass. For each core component of PEMFC there are a range of materials under development and the research aimed to identify those considered realistic for a 2020 future scenario and according to commercial goals of achieving higher performance, increased power density, greater stability and a marked reduction of costs. End-of-life scenarios were developed in consideration of the materials at the focus of recovery efforts. The life cycle impact assessment (LCIA) addressed the production and EoL of the fuel cell systems with inclusion of a sensitivity analysis to assess influences on the results from the key fuel cell parameters. The second part to the LCIA assessed the environmental and human health burdens from passenger transport in a fuel cell vehicle (FCV) with comparison between the 2012 and 2020 fuel cell scenarios and referenced to an internal combustion engine vehicle (ICEV) of Euro5 emission standard. It was seen that whilst the drivetrain (and therefore the fuel cell system) is a major contributor to the emissions in all the indicators shown, the hydrogen use (and therefore the efficiency of the fuel cell system and the method of hydrogen production) can have a far greater influence on the environmental

  19. The fuel cell; La pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Boursin, P.

    2005-07-01

    This document is an exhaustive review of the history of fuel cells from 1802 to 2004. It focusses mainly on the automotive applications and supplies many technical details about each prototype of fuel cell and/or vehicle. (J.S.)

  20. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators

    Directory of Open Access Journals (Sweden)

    C.Q. Su

    2014-11-01

    Full Text Available Thermoelectric technology has revealed the potential for automotive exhaust-based thermoelectric generator (TEG, which contributes to the improvement of the fuel economy of the engine-powered vehicle. As a major factor, thermal capacity and heat transfer of the heat exchanger affect the performance of TEG effectively. With the thermal energy of exhaust gas harvested by thermoelectric modules, a temperature gradient appears on the heat exchanger surface, so as the interior flow distribution of the heat exchanger. In order to achieve uniform temperature distribution and higher interface temperature, the thermal characteristics of heat exchangers with various heat transfer enhancement features are studied, such as internal structure, material and surface area. Combining the computational fluid dynamics simulations and infrared test on a high-performance engine with a dynamometer, the thermal performance of the heat exchanger is evaluated. Simulation and experiment results show that a plate-shaped heat exchanger made of brass with accordion-shaped internal structure achieves a relatively ideal performance, which can practically improve overall thermal performance of the TEG.

  1. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  2. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  3. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  4. FISITA 2012 World Automotive Congress

    CERN Document Server

    2013-01-01

    Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 8: Vehicle Design and Testing (II) focuses on: •Automotive Reliability Technology •Lightweight Design Technology •Design for Recycling •Dynamic Modeling •Simulation and Experimental Validation •Virtual Design, Testing and Validation •Testing of Components, Systems and Full Vehicle Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book.   SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design a...

  5. 40 CFR 600.208-08 - Calculation of FTP-based and HFET-based fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... the original base level fuel economy values); and (iii) All subconfigurations within the new base... separating subconfigurations from an existing base level and placing them into a new base level. The new base... this paragraph, as containing a new basic engine. The manufacturer will be permitted to designate such...

  6. Parametric Modal Study and Optimization of the Floor Pan of a B-Segment Automotive Using a Hybrid Method of Taguchi and a Newly Developed MCDM Model

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Shojaeefard

    Full Text Available Abstract The floor pan is an important component that connects the front and rear segments of the automotive underbody structure. Global stiffness and NVH characteristics of BIW are highly dependent to shape, thickness and mass of the body panels and could be evaluated by modal characteristics of these panels. The feeling of solidness and comfort of passengers in an automotive is also dependent to the modal behavior of the underbody components as well as the floor pan. On the other hand, it is desired to reduce the total mass of the floor pan, in order to have a lighter vehicle with better fuel economy and emission standards. In this paper, the effect of geometrical parameters on natural frequency and total mass of the floor pan of a conventional B-Segment automotive body is investigated using finite element simulation. The finite element model is verified using an experimental test on the floor pan. Taguchi L 16 orthogonal array is used to design the numerical experiments. Subsequently, S/N ratio analysis is performed to evaluate the effect of each design variable on the output functions. The panel's thickness is determined to have the most contribution in affecting the natural frequency and weight using Analysis of Variance (ANOVA. The best combination of geometrical variables which leads to the trade-off results is then figured out by a new multi-criteria decision making (MCDM method developed in this study. Accuracy of this method is verified by comparing the trade-off results with TOPSIS, as a conventional MCDM method.

  7. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    Science.gov (United States)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  8. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI... the Anderson, South Carolina location of Plastic Omnium Automotive Exteriors, LLC, working out of Troy... certification to include workers in support of the Anderson, South Carolina facility working out of Troy...

  9. Application of a Sweating Manikin Controlled by a Human Physiological Model and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J.; Lustbader, J.

    2006-11-01

    Discusses two applications of NREL's suite of thermal comfort tools: one to assess impact of an automotive ventilated seat on comfort and fuel economy, and another to evaluate liquid cooling garments for NASA spacesuits.

  10. Energy, economy, and environment analysis and optimization on manufacturing plant energy supply system

    International Nuclear Information System (INIS)

    Feng, Lujia; Mears, Laine; Beaufort, Cleveland; Schulte, Joerg

    2016-01-01

    Highlights: • Single objective and multicriteria optimization approaches are proposed. • Objectives of energy, economy, and environment are proved conflicting. • 3-input-5-output energy supply system of an automotive plant is studied. - Abstract: Increasing attention has recently been drawn to energy consumption in manufacturing plants. Facing the challenges from reducing emissions coupled with rising raw material prices and energy costs, manufacturers are trying to balance the energy usage strategy among the total energy consumption, economy, and environment, which can be self-conflicting at times. In this paper, energy systems in manufacturing environments are reviewed, and the current status of onsite energy system and renewable energy usage are discussed. Single objective and multicriteria optimization approaches are effectively formulated for making the best use of energy delivered to the production processes. Energy supply operation suggestions based on the optimization results are obtained. Finally, an example from an automotive assembly manufacturer is described to demonstrate the energy usage in the current manufacturing plants and how the optimization approaches can be applied to satisfy the energy management objectives. According to the optimization results, in an energy oriented operation, it takes 35% more in monetary cost; while in an economy oriented operation, it takes 17% more in megawatt hour energy supply and tends to rely more on the inexpensive renewable energy.

  11. State and Industrial Policy: Comparative Political Economic Analysis of Automotive Industrial Policies in Malaysia and Thailand

    OpenAIRE

    Tai, Wan-Ping; Ku, Samuel

    2013-01-01

    Numerous differences exist between the neoclassical and national development schools of economics on how an economy should develop. For example, should the state interfere in the market using state resources, and cultivate certain industries to achieve specific developmental goals? Although the automotive industries in both Thailand and Malaysia developed in the 1970s with considerable government involvement, they have evolved along very different lines. Can these differences be traced to dif...

  12. Factors affecting diesel fuel degradation using a bespoke high-pressure fuel system rig

    OpenAIRE

    Gopalan, Kesavan; Smith, Christopher; Pickering, Simon; Chuck, Christopher; Bannister, Christopher

    2018-01-01

    Recently, there has been automotive industry-wide impetus to reduce overall diesel vehicle emissions and fuel consumption by increasing fuel injection pressures within common rail systems. Many production fuel injection systems are now capable of delivering rail pressures of 1800-2000 bar with those able to achieve 3000 bar under development. In addition, there has been a gradual increase in the permitted FAME content in EN590 diesel from 5% to 7% with further increases to 10% proposed. With ...

  13. Federal Strategies for Inducing Technological Innovation in the Auto Industry

    Science.gov (United States)

    1978-03-01

    The present document is intended to provide background information on the innovation process and the spectrum of alternative Federal strate??ies for achieving National automotive goals in the areas of safety, fuel economy and emissions. A narrative...

  14. Automotive Electrical and Electronic System II; Automotive Mechanics-Intermediate: 9045.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive electrical and electronic system course is an intermediate course designed for the student who has completed automotive Electrical and Electronic System I. The theory and principles of operation of the components of the starting and charging systems and other electrical accessory systems in the automobile will be learned by the…

  15. Contribution of the automotive industry to the U.S. economy in 1998 : the nation and its fifty states

    Science.gov (United States)

    2001-12-01

    The automotive industry is the largest manufacturing industry in the United States. No other single industry is linked to as much of the U.S. manufacturing or generates as much retail business and employment. The study describes the economic and soci...

  16. Hydrogen Oxidation-Selective Electrocatalysis by Fine Tuning of Pt Ensemble Sites to Enhance the Durability of Automotive Fuel Cells.

    Science.gov (United States)

    Yun, Su-Won; Park, Shin-Ae; Kim, Tae-June; Kim, Jun-Hyuk; Pak, Gi-Woong; Kim, Yong-Tae

    2017-02-08

    A simple, inexpensive approach is proposed for enhancing the durability of automotive proton exchange membrane fuel cells by selective promotion of the hydrogen oxidation reaction (HOR) and suppression of the oxygen reduction reaction (ORR) at the anode in startup/shutdown events. Dodecanethiol forms a self-assembled monolayer (SAM) on the surface of Pt particles, thus decreasing the number of Pt ensemble sites. Interestingly, by controlling the dodecanethiol concentration during SAM formation, the number of ensemble sites can be precisely optimized such that it is sufficient for the HOR but insufficient for the ORR. Thus, a Pt surface with an SAM of dodecanethiol clearly effects HOR-selective electrocatalysis. Clear HOR selectivity is demonstrated in unit cell tests with the actual membrane electrode assembly, as well as in an electrochemical three-electrode setup with a thin-film rotating disk electrode configuration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fusion power economy of scale

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1993-01-01

    In the next 50 yr, the world will need to develop hundreds of gigawatts of non-fossil-fuel energy sources for production of electricity and fuels. Nuclear fusion can probably provide much of the required energy economically, if large single-unit power plants are acceptable. Large power plants are more common than most people realize: There are already many multiple-unit power plants producing 2 to 5 GW(electric) at a single site. The cost of electricity (COE) from fusion energy is predicted to scale as COE ∼ COE 0 (P/P 0 ) -n , where P is the electrical power, the subscript zero denotes reference values, and the exponent n ∼ 0.36 to 0.7 in various designs. The validity ranges of these scalings are limited and need to be extended by future work. The fusion power economy of scale derives from four interrelated effects: improved operations and maintenance costs; scaling of equipment unit costs; a geometric effect that increases the mass power density; and reduction of the recirculating power fraction. Increased plasma size also relaxes the required confinement parameters: For the same neutron wall loading, larger tokamaks can use lower magnetic fields. Fossil-fuel power plants have a weaker economy of scale than fusion because the fuel costs constitute much of their COE. Solar and wind power plants consist of many small units, so they have little economy of scale. Fission power plants have a strong economy of scale but are unable to exploit it because the maximum unit size is limited by safety concerns. Large, steady-state fusion reactors generating 3 to 6 GW(electric) may be able to produce electricity for 4 to 5 cents/kW·h, which would be competitive with other future energy sources. 38 refs., 6 figs., 6 tabs

  18. Automotive Electrical and Electronic Systems I; Automotive Mechanics 2: 9045.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The automotive electrical and electronic system I course is designed as one of a group of quinmester courses offered in the field of automotive mechanics. General information will be given along with technical knowledge, basic skills, attitudes and values that are required for job entry level. The nine week (135 clock hour) course overcomes some…

  19. Get Your Automotive Program Nationally Certified!

    Science.gov (United States)

    Lundquist, Patricia A.

    2000-01-01

    Automotive programs that nationally certified enhance student recruitment and give students better employment opportunities. Technicians who earn the Automotive Service Excellence credential have joined the ranks of professionals in the automotive service industry. (Author/JOW)

  20. Economy. The Japanese shock wave; Economie - L'onde de choc japonaise

    Energy Technology Data Exchange (ETDEWEB)

    Lecompte-Boinet, G.; Dupin, L.; Chandes, C.; Gateaud, P.; Guez, L.; Maillard, C.

    2011-03-15

    Several articles analyse and comment the consequences of the earthquake which occurred in Japan, not only for the Japanese industry and economy, but also for the French ones. In Japan, the most impacted sectors are the energy, the semiconductor and the automotive industries. Renewable energies and gas will at least temporarily replace nuclear energy. Other countries will be impacted, notably China and its automotive industry due to a lack of components. There will also be a lack of electronic components because Japan represents, directly or indirectly, about 40 per cent of world production in this field. In some regions of Japan, the whole production system is in danger because of the supply chain organisation. Other sectors are concerned for differing reasons: raw materials, aeronautic construction, luxury and cosmetics. An article evokes initiatives of French company chairmen, personnel and trade unions to help Japan and the Japanese. An article describes the development of robots and unmanned vehicles by French companies, which are able to intervene in radioactive environments. Another consequence is the inspection of the French and European nuclear plants in order to see whether they can withstand extreme risks. An article stresses that several French industrial sites are exposed to natural risks (earthquake, floods). Finally, Daniel Cohn-Bendit stresses that, after Fukushima, the unlikely is not impossible any longer

  1. The Fuel Economy of Hybrid Buses: The Role of Ancillaries in Real Urban Driving

    Directory of Open Access Journals (Sweden)

    Francesco Bottiglione

    2014-07-01

    Full Text Available In the present context of the global economic crisis and environmental emergency, transport science is asked to find innovative solutions to turn traditional vehicles into fuel-saving and eco-friendly devices. In the last few years, hybrid vehicles have been shown to have potential benefits in this sense. In this paper, the fuel economy of series hybrid-electric and hybrid-mechanical buses is simulated in two real driving situations: cold and hot weather driving in the city of Taranto, in Southern Italy. The numerical analysis is carried out by an inverse dynamic approach, where the bus speed is given as a velocity pattern measured in the field tests performed on one of the city bus routes. The city of Taranto drive schedule is simulated in a typical tempered climate condition and with a hot temperature, when the air conditioning system must be switched on for passenger comfort. The fuel consumptions of hybrid-electric and hybrid-mechanical buses are compared to each other and with a traditional bus powered by a diesel engine. It is shown that the series hybrid-electric vehicle outperforms both the traditional and the mechanical hybrid vehicles in the cold weather driving simulation, reducing the fuel consumption by about 35% with respect to the traditional diesel bus. However, it is also shown that the performance of the hybrid-electric bus gets dramatically worse when the air-cooling system is continuously turned on. In this situation, the fuel consumption of the three different technologies for city buses under investigation is comparable.

  2. Conventional engine technology. Volume 1: Status of OTTO cycle engine technology

    Science.gov (United States)

    Dowdy, M. W.

    1981-01-01

    Federally-mandated emissions standards have led to major changes in automotive technology during the last decade. Efforts to satisfy the new standards were directed more toward the use of add-on devices, such as catalytic converters, turbochargers, and improved fuel metering, than toward complete engine redesign. The resulting changes are described and the improvement brought about by them in fuel economy and emissions levels are fully documented. Four specific categories of gasoline-powered internal combustion engines are covered, including subsystem and total engine development. Also included are the results of fuel economy and exhaust emissions tests performed on representative vehicles from each category.

  3. Friction and bending in thermoplastic composites forming processes

    NARCIS (Netherlands)

    Sachs, Ulrich

    2014-01-01

    With the demand for better fuel economy in the aerospace and automotive industries, lightweight polymer matrix composites became an attractive alternative for metal structures. Despite the inherently higher toughness and impact damage resistance of thermoplastics, thermoset matrix composites are

  4. Evaluation of the environmental impact of modern passenger cars on petrol, diesel, automotive LPG and CNG

    NARCIS (Netherlands)

    Hendriksen, P.; Vermeulen, R.J.; Rijkeboer, R.C.; Bremmers, D.A.C.M.; Smokers, R.T.M.; Winkel, R.G.

    2003-01-01

    The project reported here concerns an investigation into the environmental performance of modern passenger cars on four different fuels: petrol, diesel, automotive LPG and CNG. The objectives of the project were twofold: - To make a valid and useful comparison between modern vehicles fuelled by

  5. Innovation in the energy sector – The role of fossil fuels and developing economies

    International Nuclear Information System (INIS)

    Brutschin, Elina; Fleig, Andreas

    2016-01-01

    This paper analyzes the effects of fossil fuel rents on R&D expenditures and patent grants in the field of energy-related technology. We argue that an increasing share of fossil fuel rents lessens the innovation of new energy technologies. We consider a sample of countries beyond the common selection of OECD members and investigate innovation efforts in the energy sector of 116 countries from 1980 to 2012. We observe the gradually growing influence of resource-abundant countries on global R&D expenditures and find that increasing fossil fuel rents have a negative effect on patent grants. This study contributes to the ongoing debate concerning the potential effects of resource abundance. More importantly, it increases our understanding of innovation activities within the energy sector and further underscores the need to extend future research to countries that have not been taken into account thus far. - Highlights: • We investigate a sample of 116 countries, a pool beyond the commonly considered OECD members. • We find that high oil prices induce increased R&D expenditures in developed countries. • Fossil rents are associated with decreasing patent grants when developing economies are included. • We use multiple imputation to handle the problem of missing data.

  6. Challenges around automotive shredder residue production and disposal.

    Science.gov (United States)

    Khodier, Ala; Williams, Karl; Dallison, Neil

    2018-03-01

    The challenge for the automotive industry is how to ensure they adopt the circular economy when it comes to the disposal of end-of-life vehicles (ELV). According to the European Commission the UK achieved a total reuse and recovery rate of 88%. This is short of the revised ELV directive target of 95% materials recovery, which requires a minimum of 85% of materials to be recycled or reused. A significant component of the recycling process is the production of automotive shredder residue (ASR). This is currently landfilled across Europe. The additional 10% could be met by processing ASR through either waste-to-energy facilities or Post shredder technology (PST) to recover materials. The UK auto and recycling sectors claimed there would need to be a massive investment by their members in both new capacity and new technology for PST to recover additional recycle materials. It has been shown that 50% of the ASR contains valuable recoverable materials which could be used to meet the Directive target. It is expected in the next 5years that technological innovation in car design will change the composition from easily recoverable metal to difficult polymers. This change in composition will impact on the current drive to integrate the European Circular Economy Package. A positive factor is that main driver for using ASR is coming from the metals recycling industry itself. They are looking to develop the infrastructure for energy generation from ASR and subsequent material recovery. This is driven by the economics of the process rather than meeting the Directive targets. The study undertaken has identified potential pathways and barriers for commercial thermal treatment of ASR. The results of ASR characterisation were used to assess commercial plants from around the world. Whilst there were many claiming that processing of ASR was possible none have so far shown both the technological capability and economic justification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Automotive History and Development of the Automobile; Automotive Mechanics I: 9043.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The automotive history and development of the automobile course is designed to familiarize the beginning student with basic concepts common to the automobile history and general information that is required for successful advancement in the automotive mechanics field. A course outline is provided and seven pages of post-tests are included in the…

  8. Is diversification as a Strategic Advantage? The Example of Automotive Components in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Lukáš Mohelský

    2012-09-01

    Full Text Available The automotive industry is the key sector of the Czech national economy. Its share on GDP represents more than 8 % and the Czech Republic is the 14th biggest producer of cars in the world. The goal of this article is to analyze the development of the customers´ portfolio of the automotive suppliers in the Czech Republic from the perspective of their international location. The diversification of portfolio can be measured in many ways. The approach in this article relies both on usual statistical tools (concentration ratio, Lorenz curve, Gini coefficient, Herfindahl-Hirschman index and on specific approaches such as number of partners, geographical diversification and average distance travelled by exported component. Even though the export volume has been dynamically growing, it has remained focused on a limited number of crucial countries, which are mostly located in the close neighborhood of the Czech Republic.

  9. Advanced high strength steels for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Galan, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbert, Y.

    2012-11-01

    The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the car body has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties. (Author) 48 refs.

  10. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  11. Modeling and analysis of flow and heat transfer in a large PEM fuel cell suitable for automotive applications

    OpenAIRE

    Yiğinsu, Berk; Yiginsu, Berk

    2016-01-01

    Based on the Zero Emission Vehicle (ZEV) targets, automotive manufacturers realize the necessities to develop new technologies that replace the Internal Combustion Engine (ICE). Nowadays there are two major trends in the automotive industry; First, hybrid vehicles which combine hydrogen energy with combustion energy, and second there is a down-sizing trend. By using hybrid technologies auto makers can obtain a significant drop in emission levels and the efficiencies increase up to 80%. Reachi...

  12. A COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF AIR FLOW THROUGH A TELECOM BACK-UP UNIT POWERED BY AN AIR-COOLED PROTON EXCHANGE MEMBRANE FUEL CELL

    DEFF Research Database (Denmark)

    Gao, Xin; Berning, Torsten; Kær, Søren Knudsen

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and heat....... This product heat has to be effectively removed from the fuel cell, and while automotive fuel cells are usually liquid-cooled using a secondary coolant loop similar to the internal combustion engines, stationary fuel cell systems as they are used for telecom back-up applications often rely on excessive air fed...... to the fuel cell cathode to remove the heat. Thereby, the fuel cell system is much simpler and cheaper while the fuel cell performance is substantially lower compared to automotive fuel cells. This work presents a computational fluid dynamics analysis on the heat management of an air-cooled fuel cell powered...

  13. Fuel cell power plants for automotive applications

    Science.gov (United States)

    McElroy, J. F.

    1983-02-01

    While the Solid Polymer Electrolyte (SPE) fuel cell has until recently not been considered competitive with such commercial and industrial energy systems as gas turbine generators and internal combustion engines, electrical current density improvements have markedly improved the capital cost/kW output rating performance of SPE systems. Recent studies of SPE fuel cell applicability to vehicular propulsion have indicated that with adequate development, a powerplant may be produced which will satisfy the performance, size and weight objectives required for viable electric vehicles, and that the cost for such a system would be competitive with alternative advanced power systems.

  14. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Paul

    2012-05-31

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis's existing GATE centers have become the campus's research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  15. Secondary-Postsecondary Curriculum Development in Automotive Mechanics. Automotive Electrical Competencies. Final Report.

    Science.gov (United States)

    Hoepner, Ronald

    Developed as part of a competency-based curriculum in automotive mechanics which is usable by students at both the secondary and postsecondary levels, this learning package focuses on automotive electrical systems. It is the first unit to be published in a series of eight which will cover the eight subject areas on the national certification…

  16. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications.

    Science.gov (United States)

    Meng, Fanran; McKechnie, Jon; Turner, Thomas; Wong, Kok H; Pickering, Stephen J

    2017-11-07

    The high cost and energy intensity of virgin carbon fiber manufacture provides an opportunity to recover substantial value from carbon fiber reinforced plastic wastes. In this study, we assess the life cycle environmental implications of recovering carbon fiber and producing composite materials as substitutes for conventional and proposed lightweight materials in automotive applications (e.g., steel, aluminum, virgin carbon fiber). Key parameters for the recycled carbon fiber materials, including fiber volume fraction and fiber alignment, are investigated to identify beneficial uses of recycled carbon fiber in the automotive sector. Recycled carbon fiber components can achieve the lowest life cycle environmental impacts of all materials considered, although the actual impact is highly dependent on the design criteria (λ value) of the specific component. Low production impacts associated with recycled carbon fiber components are observed relative to lightweight competitor materials (e.g., aluminum, virgin carbon fiber reinforced plastic). In addition, recycled carbon fiber components have low in-use energy use due to mass reductions and associated reduction in mass-induced fuel consumption. The results demonstrate environmental feasibility of the CFRP recycling materials, supporting the emerging commercialization of CF recycling technologies and identifying significant potential market opportunities in the automotive sector.

  17. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  18. Design, Operation, Control, and Economics of a Photovoltaic/Fuel Cell/Battery Hybrid Renewable Energy System for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Zachary S. Whiteman

    2015-06-01

    Full Text Available Meeting rapidly growing global energy demand—without producing greenhouse gases or further diminishing the availability of non-renewable resources—requires the development of affordable low-emission renewable energy systems. Here, we develop a hybrid renewable energy system (HRES for automotive applications—specifically, a roof-installed photovoltaic (PV array combined with a PEM fuel cell/NiCd battery bus currently operating shuttle routes on the University of Delaware campus. The system’s overall operating objectives—meeting the total power demand of the bus and maintaining the desired state of charge (SOC of the NiCd battery—are achieved with appropriately designed controllers: a logic-based “algebraic controller” and a standard PI controller. The design, implementation, and performance of the hybrid system are demonstrated via simulation of real shuttle runs under various operating conditions. The results show that both control strategies perform equally well in enabling the HRES to meet its objectives under typical operating conditions, and under sudden cloud cover conditions; however, at consistently high bus speeds, battery SOC maintenance is better, and the system consumes less hydrogen, with PI control. An economic analysis of the PV investment necessary to realize the HRES design objectives indicates a return on investment of approximately 30% (a slight, but nonetheless positive, ~$550 profit over the bus lifetime in Newark, DE, establishing the economic viability of the proposed addition of a PV array to the existing University of Delaware fuel cell/battery bus.

  19. Action Handbook for Automotive Service Instruction.

    Science.gov (United States)

    Motor Vehicle Manufacturers Association of the U.S., Inc., Detroit, MI.

    The document is a handbook for a vocational automotive service education program which was formulated as a result of a four-day series of intensive workshops called the National Automotive Service Vocational Education Conference. The handbook discusses the major components of an automotive service vocational education program and aspects of their…

  20. Automotive websites

    CERN Document Server

    Jensen, Todd A

    2006-01-01

    For anyone buying a new car, restoring an old favorite, collecting license plates or looking for motorsports information, the internet is the place to go and this is the book to help you get there. Now with over 650 internet addresses, this expanded and updated guide provides detailed descriptions and reviews of the biggest, best and most interesting automotive websites on the net. Beginning with a brief internet history and helpful hints, it aids the novice (or not so novice) user in picking through the countless automotive sites on the internet. Websites are arranged by topics such as afterm

  1. Transition(s) towards an ecologic economy. The prospective program

    International Nuclear Information System (INIS)

    Riviere, Antoine; Hervieu, Halvard; Monnoyer-Smith, Laurence; Cecutti-Etahiri, Nathalie

    2015-07-01

    This publication aims at presenting works performed between 2010 and 2014 within the frame of the prospective program 'Transition(s) towards an ecologic economy' of the prospective mission of the CGDD (Commissariat General au Developpement Durable, the French General Committee for Sustainable Development). It also presents lessons which can be learned. The first part examines what could be the shape of an ecologic economy. For this purpose, scenarios have been developed which allow the role which various actors (citizen, territories, State) can play, and the possible evolutions of the present social-economic system to be explored. The second part addresses more specific issues in order to highlight some levers of action for a successful transition. These issues can be transverse (for example, the role of ITs in ecologic economy, or the human factor in terms of challenge of social change and employment) as well as sector-based (focus on transports and on ecologic mobility in the perspective of automotive industries and enterprises, and of public policies)

  2. Online Reputation in Automotive

    Directory of Open Access Journals (Sweden)

    Vodák Josef

    2017-01-01

    Full Text Available This paper deals with the issue of online reputation, namely the social networking profile of businesses. Selected companies in the automotive industry through social profiles communicate with their customers, the public and they trying to improve their name and the name of their products in the public eye. Online reputation analysis was carried out to determine the current situation on the territory of Slovakia. On the basis of the data found, measures were proposed to improve the current state and reputation of automotive companies. Recommendations suggested by the findings can be used on any market to improve the current state and increase the competitiveness of automotive companies.

  3. 11. Fuel cell drive and infrastructure; 11. Brennstoffzelle Antriebsstrang und Infrastruktur

    Energy Technology Data Exchange (ETDEWEB)

    Noreikat, Karl E.

    2013-04-15

    Approximately in the year 1990, the automotive industry started to spend time on fuel cell based vehicle drive motors. Beside the large and heavy fuel cell stacks, the 300-bar hydrogen tanks, the air supply, the electric drive as well as the monitoring electronics do not meet the requirements in regard to a mobile drive. Specification sheets, instructions, qualification descriptions, technical regulations, standards and norms were forwarded in parallel with the technical developments. Universities, research institutes and technology companies increasingly spend time on fuel cells for the mobile sector. In the business cooperation, activities were bundled, and cooperation projects support the automotive industry. Here the California Fuel Cell Partnership and the Clean Energy Partnership are to be mentioned. The standardization was driven by organizations such as SAE and ISO.

  4. Recommended composition/property relationships for the characterization of commercial biodiesels before their application in production of automotive diesel fuels in a refinery

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, I.; Stratiev, D.; Shishkova, I.; Dinkov, R. [LUKOIL Neftohim Burgas (Bulgaria); Georgiev, K. [Cristal Chemical Trading, Velingrad (Bulgaria)

    2013-10-15

    The article summarizes the results of experimental studies on the physicochemical properties of twenty commercial biodiesel samples obtained from different manufacturers, and studied properties include density, viscosity and cetane number. An extensive literature review was carried out on available mathematical relationships between fatty acid composition of the biodiesel and the above properties. The predictive potential of the published relationships was evaluated with respect to the properties of the investigated biodiesel samples. Based on existing standard methods for analysis those relationships were selected that fit within the reproducibility of the corresponding method or closely match it. The selected dependencies were summarized in a single mathematical apparatus, with which it is possible to expertly assess the quality of biodiesel before being used for production of automotive diesel fuel in a refinery. (orig.)

  5. The impact of global warming on the automotive industry

    Science.gov (United States)

    Hannappel, Ralf

    2017-08-01

    One cause of global warming of the earth's atmosphere is the emission of human made gases (methane, CO2, nitrous oxygen, etc.) into the environment. Of the total global CO2 emissions the transportation sector contributes to about 14%. In order to control the emissions of the automotive sector, in all major countries (USA, Europe, China, Japan) of the world, tough emissions targets were being set to reduce the vehicle traffic's contribution of CO2. These are derived from the global climate conference' target to limit the maximum temperature increase of the earth of 2 degrees Celsius until 2100. In order to achieve these stringent targets the automotive industry will face a major change in its drivetrain. It will move from combustion to electrical engines. The technical realization of these engines will most likely be battery and fuel cell driven propulsion systems. In order to achieve that transition a major effort is required in 4 industrial areas, i.e. growing electrical charging infrastructure, lowering battery cost, increasing the battery-electric vehicle ranges and developing new environmental friendly hydrogen production methods.

  6. Economic and environmental considerations of biomass fuels

    International Nuclear Information System (INIS)

    Booth, Roger

    1992-01-01

    The economic and environmental aspects of biomass fuels are considered. Close to source, the cost of useful energy in the form of lignocellulose is often competitive with fossil fuels, say $1-3 per GJ. There are three main options to divert this biomass into commercial energy channels: solid fuels for underboiler use; liquid fuels for automotive use and electric power generation, each of which is discussed. The social, economic and environmental advantages of an afforestation programme are highlighted. (Author)

  7. An Evaluation of 3D Woven Orthogonal Composites' Potential in the Automotive Supply Chain

    Science.gov (United States)

    Taylor, Dalia

    The automotive supply chain and its management can be a very complex process and comprises a long dynamic and complex network that consists of four primary segments: original equipment manufacturers (OEMs), first tier suppliers, sub tiers suppliers, and infrastructure suppliers. During the analysis of the current automotive industry it was identified that textile industry importance is considerable increasing as a part of the global automotive supply chain, because textile products are used for interior, exterior and even suspension parts and components. Automotive industry has an increasing demand for higher quality exterior panels with better functional properties and reduced weight. One of the main potentials for this demand is based on the three-dimensional woven composites technology innovations which can replace an existing technology. The new role of the textile industry could make important changes in the automotive supply chain industry, such as: changes in the size of the supply chain, the time to the market and the position of textile industry in the automotive supply chain structure. 3D composite materials from high performance fibers, such as glass and carbon, have been used for automotive applications in a limited way due to the low production rate and the lack of research and development. This research will contribute to the understanding of textile composites in transportation and the textile parameters that affect the performance characteristics of these materials. The research examines the performance characteristics of lighter and stronger 3D woven fabric composites made from fiberglass with the aim to improve fuel efficiency by reducing the total vehicle weight while maintaining safety standards. The performance characteristics of the 3D woven fabric composite can be designed by changing different construction parameters, such as picks density, pick roving linear density, arrangements of warp and z-yarns, and the number of warp and picks layers

  8. Diesel engine performance as influenced by fuel temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, H.R.; Best, W.D.; Monroe, G.E.

    1986-11-01

    The effects of diesel fuel temperature on the efficiency of a 4.4-L diesel engine were studied. Fuel temperatures of 41, 67, and 81 C were used with engine loads of 0 to 100% of full load at three engine frequencies. Regression equations were developed that predicted fuel economy as a function of PTO power at three engine frequencies. An increase in engine fuel temperature did not improve fuel economy, but did result in reduced fuel mass flow through the injector pump and reduced maximum PTO power. Reducing engine frequency improved fuel economy and supported the 'throttle back shift up' technique for saving fuel. 4 figs., 1 tab., 11 refs.

  9. NRC committee on assessment of technologies for improving fuel economy of light-duty vehicles: Meeting with DOT Volpe Center staff - February 27, 2013

    Science.gov (United States)

    2013-02-27

    On February 27, 2013 National Research Council's Committee on Fuel Economy of Light-Duty Vehicles, Phase 2 held a meeting at the John A. Volpe National Transportation Systems Center on the Volpe Model and Other CAFE Issues. The meeting objectives wer...

  10. Automotive Technology Skill Standards

    Science.gov (United States)

    Garrett, Tom; Asay, Don; Evans, Richard; Barbie, Bill; Herdener, John; Teague, Todd; Allen, Scott; Benshoof, James

    2009-01-01

    The standards in this document are for Automotive Technology programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school automotive program. Minimally, the student will complete a three-year program to achieve all standards. Although these exit-level standards are designed…

  11. The effect of oxygen storage capacity on the dynamic characteristics of an automotive catalytic converter

    International Nuclear Information System (INIS)

    Shamim, Tariq

    2008-01-01

    Automotive catalytic converters, which are employed to reduce engine exhaust emissions, are subjected to highly transient conditions during a typical driving cycle. These transient conditions arise from changes in driving mode, the hysteresis and flow lags of the feedback control system, and result in fluctuations of air-fuel ratio, exhaust gas flow rates and temperatures. The catalyst performance is also strongly influenced by the oxygen storage capacity. This paper presents a computational investigation of the effect of oxygen storage capacity on the dynamic behavior of an automotive catalytic converter subjected to modulations in exhaust gases. The modulations are generated by forcing the temporal variations in exhaust gases air-fuel ratio, gas flow rates and temperatures. The study employs a single-channel based, one-dimensional, non-adiabatic model. The results show that the imposed modulations cause a significant departure in the catalyst behavior from its steady behavior, and the oxygen storage capacity plays an important role in determining the catalyst's response to the imposed modulations. Modulations and oxygen storage capacity are found to have relatively greater influence on the catalyst's performance near stoichiometric conditions

  12. New technology and fuel cycles

    International Nuclear Information System (INIS)

    Mooradian, A.J.

    1979-06-01

    The means of improving uranium utilization in nuclear power reactors are reviewed with respect to economic considerations, assurance of adequate fuel supplies and risk of weapons proliferation. Reference is made to what can be done to improve fuel economy in existing reactor systems operating on a once-through fuel cycle and the potential for improvement offered by fuel recycle in those systems. The state of development of new reactor systems that offer significant savings in uranium utilization is also reviewed and conclusions are made respecting the policy implications of the search for fuel economy. (author)

  13. Automotive Stirling Engine Development Program

    Science.gov (United States)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)

    1983-01-01

    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.

  14. Assessment of Concentration in the Economy of Ukraine

    Directory of Open Access Journals (Sweden)

    Khaustova Viktoriia Ye.

    2017-09-01

    Full Text Available The article is dedicated to the generalization of theoretical aspects of economic concentration and assessment of concentration in Ukraine’s economy. It is proved that in the world there is a stable trend towards the spread of concentration processes both at the level of economies in general and individual industries and business entities, and it occurs predominantly within TNCs. The main stages of the development of TNCs are considered, and it is shown that modern TNCs are large corporations that are the main players in the market. The genesis of the theory of concentration in economy is considered. The views of scientists on the interpretation of the concept “concentration” are studied. It is proved that it is used in different meanings and with respect to different levels of economy and objects of consideration, and there is a wide diversity of basic criteria that determine the essential signs of this concept. The interpretation of the concept “concentration of the country’s economy” is proposed. The existing approaches to assessment of concentration in economy are analyzed. The trends in the development of concentration processes in Ukraine’s economy and the factors that are determined by them are analyzed. There investigated the distribution of industries of Ukraine’s economy in terms of net income of the largest corporations, dynamics of net income of the largest corporations, dynamics of distribution of industries of Ukraine’s economy in terms of profits of large companies, dynamics of net profit of the largest corporations of the top 10 industries of Ukraine’s economy, dynamics of the GDP of Ukraine and main indicators of the largest national corporations. The concentration of Ukraine’s economy is assessed, and it is determined that the most highly concentrated spheres are production of electronics and computers, the automotive industry, media, production of personal goods and software, provision of business

  15. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Debanshu Bhattacharya

    2014-12-01

    Full Text Available Two major drivers for the use of newer steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the U.S. automakers to use both Highly Formable and Advanced High Strength Steels (AHSS to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake hardenability. Another class of AHSS is the complex-phase or multi-phase steel which has a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio. Transformation Induced Plasticity (TRIP steels is another class of AHSS steels finding interest among the U.S. automakers. These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. A relatively new class of AHSS is the Quenching and Partitioning (Q&P steels. These steels seem to offer higher ductility than the dual-phase steels of similar strengths or similar ductility as the TRIP steels at higher strengths. Finally, martensitic steels with very high strengths are also in use for certain parts. The most recent initiative in the area of AHSS

  16. Analysis of economy characteristics and improvement ways for China nuclear power

    International Nuclear Information System (INIS)

    Li Yong

    2010-01-01

    For the nuclear power industry, due to characteristics of its own, its economy is quite different from that of the traditional fossil-fuel power. This paper studied the basic characteristics of the nuclear power economy and the status of economy of domestic nuclear power, and analyzed the main ways to improve the nuclear power economy. (authors)

  17. Proceedings of the international symposium on alcohol fuel technology: methanol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The papers presented dealt with the following topics: international situation and economic and political aspects, use of alcohol fuels as automotive fuels, production of methanol and methyl fuels, production of ethanol, methanol application and modeling, alcohol fuel optimization, and environmental considerations. Each paper was prepared for introduction into the EDB data base. (JSR)

  18. Documentation to the workshop 'Cluster in the environmental protection economy'; Dokumentation zum Workshop ''Cluster in der Umweltschutzwirtschaft''

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-11

    Within the workshop 'Cluster in the environmental protection economy' at the Umweltbundesamt (Dessau-Rosslau, Federal Republic of Germany) at 27th November, 2008, the following lectures were held: (a) Which contribution can cluster and cluster politics contribute to the promotion of the environmental protection economy? (Harald Legler); (b) Cluster in the environmental protection economy: Targets and expectations (Dieter Rehfeld); (c) Demands at the management of clusters (Karin Hoerhan); (d) Demands at the cluster politics in the environmental protection economy (Bernhard Hausberg); (e) Photovoltaics in Eastern Germany (Johann Wackenbauer); (f) Automotive industry in Bergisches Land (Thomas Lemken); (g) Competence centre environment Augsburg-Schwaben (Egon Beckord).

  19. Gaining Control of Iraq's Shadow Economy

    National Research Council Canada - National Science Library

    Ramirez, David S

    2007-01-01

    .... These conditions fuel a sprawling, decades-old shadow economy manipulated by elements of organized crime, militias, and insurgents to fund attacks on Coalition forces, infrastructure and innocent Iraqi civilians...

  20. Domestic and foreign knowledge sources for innovation in internationalized Production Networks: the automotive and the iron and steel cases

    Directory of Open Access Journals (Sweden)

    Hernan Alejandro Morero

    2015-02-01

    Full Text Available This paper studies the relative relevance of domestic knowledge sources for innovation in internationalized production activities in an emerging economy. Two Production Networks from Argentina with a different kind of internationalization were considered: organized around subsidiaries of multinational companies (the automotive case and organized around local headquarters (the iron and steel case. A multiple factor analysis was carried out and cluster techniques were applied using a specific innovation survey done to 163 automotive and iron and steel firms from Argentina from the period of 2001 to2005, to evaluate the relative importance of domestic and foreign knowledge sources. The main finding is that in a production network organized around domestic headquarters the best innovative performance underrates the importance of international linkages, in comparison with networks organized around foreign subsidiaries.

  1. About economy of fuel and energy resources in the hot water supply system

    Science.gov (United States)

    Rotov, P. V.; Sivukhin, A. A.; Zhukov, D. A.; Zhukova, A. V.

    2017-11-01

    The assessment of the power efficiency realized in the current of heat supply system of technology of regulation of loading of the hot water supply system, considering unevenness consumption of hot water is executed. For the purpose of definition the applicability boundary of realized technology comparative analysis of indicators of the effectiveness of its work within the possible range of the parameters of regulations. Developed a software application “The calculation of the total economy of fuel and energy resources in the hot water supply system when you change of the parameters of regulations”, which allows on the basis of multivariate calculations analyses of their results, to choose the optimum mode of operation heat supply system and to assess the effectiveness of load regulation in the hot water supply system.

  2. Japan's plutonium economy

    International Nuclear Information System (INIS)

    Hecht, M.M.

    1994-01-01

    Japan's plutonium economy is based on the most efficient use of nuclear energy, as envisioned under the Atoms for Peace program of the 1950s and 1960s. The nuclear pioneers assumed that all nations would want to take full advantage of atomic energy, recycling waste into new fuel to derive as much energy as possible from this resource

  3. Measuring of Traction and Speed Characteristics as Well as of Fuel Economy of a Car in Road Conditions

    OpenAIRE

    Krivtsov, Sergey; Syrbakov, Andrey Pavlovich; Korchuganova, Mariya Anatolievna

    2016-01-01

    This article is devoted to the identification of traction and speed characteristics as well as of fuel economy of motor vehicles in road conditions. Among common variants of measuring of the above stated values, the preference was given to the immediate gaining of factors by means of a computer-aided measuring system. There is a theoretical justification given to the suggested approach as well as methods and results allowing to provide a practically sufficient solution accuracy of the problem.

  4. Measuring of Traction and Speed Characteristics as Well as of Fuel Economy of a Car in Road Conditions

    Science.gov (United States)

    Krivtsov, Sergey N.; Syrbakov, Andrey P.; Korchuganova, Marina A.

    2016-08-01

    This article is devoted to the identification of traction and speed characteristics as well as of fuel economy of motor vehicles in road conditions. Among common variants of measuring of the above stated values, the preference was given to the immediate gaining of factors by means of a computer-aided measuring system. There is a theoretical justification given to the suggested approach as well as methods and results allowing to provide a practically sufficient solution accuracy of the problem.

  5. Economy. The Japanese shock wave

    International Nuclear Information System (INIS)

    Lecompte-Boinet, G.; Dupin, L.; Chandes, C.; Gateaud, P.; Guez, L.; Maillard, C.

    2011-01-01

    Several articles analyse and comment the consequences of the earthquake which occurred in Japan, not only for the Japanese industry and economy, but also for the French ones. In Japan, the most impacted sectors are the energy, the semiconductor and the automotive industries. Renewable energies and gas will at least temporarily replace nuclear energy. Other countries will be impacted, notably China and its automotive industry due to a lack of components. There will also be a lack of electronic components because Japan represents, directly or indirectly, about 40 per cent of world production in this field. In some regions of Japan, the whole production system is in danger because of the supply chain organisation. Other sectors are concerned for differing reasons: raw materials, aeronautic construction, luxury and cosmetics. An article evokes initiatives of French company chairmen, personnel and trade unions to help Japan and the Japanese. An article describes the development of robots and unmanned vehicles by French companies, which are able to intervene in radioactive environments. Another consequence is the inspection of the French and European nuclear plants in order to see whether they can withstand extreme risks. An article stresses that several French industrial sites are exposed to natural risks (earthquake, floods). Finally, Daniel Cohn-Bendit stresses that, after Fukushima, the unlikely is not impossible any longer

  6. Conversion of hydrocarbons and alcohols for fuel cells

    Science.gov (United States)

    Joensen, Finn; Rostrup-Nielsen, Jens R.

    The growing demand for clean and efficient energy systems is the driving force in the development of fuel processing technology for providing hydrogen or hydrogen-containing gaseous fuels for power generation in fuel cells. Successful development of low cost, efficient fuel processing systems will be critical to the commercialisation of this technology. This article reviews various reforming technologies available for the generation of such fuels from hydrocarbons and alcohols. It also briefly addresses the issue of carbon monoxide clean-up and the question of selecting the appropriate fuel(s) for small/medium scale fuel processors for stationary and automotive applications.

  7. Fiscal Drag as an Automatic Stability Tool, in the Case of New Regulation with Price Criteria in Automotive Sectors Special Consumption Tax (SCT

    Directory of Open Access Journals (Sweden)

    Abdurrahman TARAKTAŞ

    2017-12-01

    Full Text Available Fiscal drag is a result of real or nominal expanding economy and progressive taxation. In general, individuals are forced to enter the upper tax bracket depending on their increased income or expenditure. More tax burden can result in less consumption. Fiscal drag, lack of spending or excessive taxation can cause the economy to slow down. Traditional view suggests that fiscal drag may serve as a natural automatic stabilizer to cool the economy. However, this view ignores the supply side and in particular the potential effects of the high tax burden on economy. This study examines the extent to which the expected automatic stabilization function can be performed and the possible side effects on economic balances and income distribution of fiscal drag in our country in the case of new regulation with price criteria in automotive sectors Special Consumption Tax (SCT.

  8. Comparative Environmental Benefits of Lightweight Design in the Automotive Sector: The Case Study of Recycled Magnesium Against CFRP and Steel

    Science.gov (United States)

    D'Errico, Fabrizio; Ranza, Luigi

    A LCA feasibility study was undertaken to determine the environmental impact of an Eco-magnesium process route by recycled chips to manufacture panel for the automotive sector to be compared with comparative scenarios, a non-recycled carbon fiber reinforced polymer (CFRP) and a baseline steel-made component scenario. The objective of this LCA study was to assess the actual benefits of a lightweight solution considering the whole life cycle, including the dirty-phase (i.e. the "cradle-to-exit gate" stage) that impacts differently for the different materials. For this reason the analysis has regarded the net "cradle-to-grave" scenario. Different automotive floor pans were then compared considering the rate of fuel consumption during vehicle operation — i.e. the fuel-mass correlation factor — and the different material substitution factors allowed by the different materials selected.

  9. The Transportation Leapfrog: Using Smart Phones to Collect Driving Data and Model Fuel Economy in India

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Anand [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Schewel, Laura [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Saxena, Samveg [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Phadke, Amol [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-05-01

    Car ownership in India is expected to skyrocket in the coming decades, strongly driven by rising incomes. This phenomenon provides unprecedented opportunities for automakers and equally unprecedented social and environmental challenges. Policymakers, urban planners and civil society see this car boom leading to an explosion in problems related to congestion, infrastructure, air pollution, safety, higher oil imports and climate change. For all these stakeholders to take effective action, good data on how people use their cars, their demand for mobility and their behavior in mobility is essential. Unfortunately, there is very little data on the Indian transport sector as a whole and virtually none on real-world vehicle performance and use. The rapid development of high quality mobile telecommunications infrastructure provides India with the opportunity to leapfrog the West in cheaply collecting vast amounts of useful data from transportation. In this paper, we describe a pilot project in which we use commercial smart phone apps to collect per second car driving data from the city of Pune, instantly upload it through 3G and prepare it for analysis using advanced noise filtering algorithms for less than $1 per day per car. We then use our data in an Autonomie simulation to show that India’s currently planned fuel economy test procedures will result in over-estimates of fuel economy of approximately 35% for a typical Indian car when it is operated in real world conditions. Supporting better driving cycle development is just one of many applications for smart phone derived data in Indian transportation.

  10. Natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, A I; Vasiliev, Y N; Jankiewicz, A [VPO ' Soyuzgastekhnologiya' All-Union Scientific Research Inst. of Natural gases (VNIIGAS) (SU)

    1990-02-01

    The review presented covers mass production of gas-petrol and gas-diesel automobiles in the USSR, second generation auto gas filling compressor stations, principal exhaust toxicants, and tests indicating natural gas fired autos emit >5 times less NO{sub x} and 10 times less hydrocarbons excluding methane. The switch over to gas as auto fuel and ensuing release of petrol and diesel for other uses are discussed. (UK).

  11. Hydrogen economy: a little bit more effort

    International Nuclear Information System (INIS)

    Pauron, M.

    2008-01-01

    In few years, the use of hydrogen in economy has become a credible possibility. Today, billions of euros are invested in the hydrogen industry which is strengthened by technological advances in fuel cells development and by an increasing optimism. However, additional research efforts and more financing will be necessary to make the dream of an hydrogen-based economy a reality

  12. Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts

    Directory of Open Access Journals (Sweden)

    Qinghe Zheng

    2015-10-01

    Full Text Available The rhodium (Rh component in automotive three way catalysts (TWC experiences severe thermal deactivation during fuel shutoff, an engine mode (e.g., at downhill coasting used for enhancing fuel economy. In a subsequent switch to a slightly fuel rich condition, in situ catalyst regeneration is accomplished by reduction with H2 generated through steam reforming catalyzed by Rh0 sites. The present work reports the effects of the two processes on the activity and properties of 0.5% Rh/Al2O3 and 0.5% Rh/CexOy-ZrO2 (CZO as model catalysts for Rh-TWC. A very brief introduction of three way catalysts and system considerations is also given. During simulated fuel shutoff, catalyst deactivation is accelerated with increasing aging temperature from 800 °C to 1050 °C. Rh on a CZO support experiences less deactivation and faster regeneration than Rh on Al2O3. Catalyst characterization techniques including BET surface area, CO chemisorption, TPR, and XPS measurements were applied to examine the roles of metal-support interactions in each catalyst system. For Rh/Al2O3, strong metal-support interactions with the formation of stable rhodium aluminate (Rh(AlO2y complex dominates in fuel shutoff, leading to more difficult catalyst regeneration. For Rh/CZO, Rh sites were partially oxidized to Rh2O3 and were relatively easy to be reduced to active Rh0 during regeneration.

  13. The biomass valorization / the electric power in processes: innovation and challenges; valorisation de la biomasse / l'electricite dans les procedes: innovation et defis

    Energy Technology Data Exchange (ETDEWEB)

    Dahy, M [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Leclercq, M [Ministere de l' Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75 - Paris (France). Direction Generale de L' Energie et des Matieres Premieres; Gosse, G [Institut National de Recherches Agronomiques (INRA), 75 - Paris (France); Lacour, P A [AFOCEL, 34 - St Clement de Riviere (France); Ballerini, D; Duplan, J L; Monot, F [Institut Francais du Petrole (IFP), 69 - Lyon (France); Seiler, J M [CEA Grenoble, 38 (France); Ancelme, A [Syndicat National des Producteurs d' Alcools Agricoles (SNPAA), 92 - Neuilly (France); Vermeersch, G [Sofiproteol, 75 - Paris (France); Hervouet, V [Total, La Defense, 92 - Courbevoie (France); Rouveirolles, P [Renault, 92 6 Boulogne Billancourt (France); Bellot, M [Electricite de France (EDF), 75 - Paris (France); Pascual, C [ELYO Cylergie, 69 - Ecully (France); Girard, M [PRONOVIAL, 51 - Reims (France); Bernard, D [ARKEMA, 69 - Lyon (France); Dussaud, J; Vrevin, L [Ahlstrom Research and Services, Edinburgh, Midlothian (United Kingdom); Mentink, L [Roquette Freres (Italy)

    2005-07-01

    In a context of an insufficient offer on processes/technology, this day is devoted to the processes adapted to the biomass conversion in energy, fuels and other products. It provides presentations on the biomass economy and regulations, the different channels, the thermochemical processes to produce synthetic fuels and hydrogen, the ethanol production, refiners, automotive industry, an electric power, producer point of view, the byproducts. (A.L.B.)

  14. The biomass valorization / the electric power in processes: innovation and challenges; valorisation de la biomasse / l'electricite dans les procedes: innovation et defis

    Energy Technology Data Exchange (ETDEWEB)

    Dahy, M. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Leclercq, M. [Ministere de l' Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75 - Paris (France). Direction Generale de L' Energie et des Matieres Premieres; Gosse, G. [Institut National de Recherches Agronomiques (INRA), 75 - Paris (France); Lacour, P.A. [AFOCEL, 34 - St Clement de Riviere (France); Ballerini, D.; Duplan, J.L.; Monot, F. [Institut Francais du Petrole (IFP), 69 - Lyon (France); Seiler, J.M. [CEA Grenoble, 38 (France); Ancelme, A. [Syndicat National des Producteurs d' Alcools Agricoles (SNPAA), 92 - Neuilly (France); Vermeersch, G. [Sofiproteol, 75 - Paris (France); Hervouet, V. [Total, La Defense, 92 - Courbevoie (France); Rouveirolles, P. [Renault, 92 6 Boulogne Billancourt (France); Bellot, M. [Electricite de France (EDF), 75 - Paris (France); Pascual, C. [ELYO Cylergie, 69 - Ecully (France); Girard, M. [PRONOVIAL, 51 - Reims (France); Bernard, D. [ARKEMA, 69 - Lyon (France); Dussaud, J.; Vrevin, L. [Ahlstrom Research and Services, Edinburgh, Midlothian (United Kingdom); Mentink, L. [Roquette Freres (Italy)

    2005-07-01

    In a context of an insufficient offer on processes/technology, this day is devoted to the processes adapted to the biomass conversion in energy, fuels and other products. It provides presentations on the biomass economy and regulations, the different channels, the thermochemical processes to produce synthetic fuels and hydrogen, the ethanol production, refiners, automotive industry, an electric power, producer point of view, the byproducts. (A.L.B.)

  15. Fundamentals of automotive and engine technology standard drives, hybrid drives, brakes, safety systems

    CERN Document Server

    2014-01-01

    Hybrid drives and the operation of hybrid vehicles are characteristic of contemporary automotive technology. Together with the electronic driver assistant systems, hybrid technology is of the greatest importance and both cannot be ignored by today’s car drivers. This technical reference book provides the reader with a firsthand comprehensive description of significant components of automotive technology. All texts are complemented by numerous detailed illustrations. Contents History of the automobile.- History of the Diesel engine.- Areas of use for Diesel engines.- Basic principles of the Diesel engine.- Basic principles of Diesel fuel-injection.- Basic principles of the gasoline engine.- Inductive ignition system.- Transmissions for motor vehicles.- Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Vehicle electrical systems.- Overview of electrical and electronic systems in the vehicle.- Control of gasoline engines.- Control of Diesel engines.- Lighting technology.- Elec...

  16. On the hazard accumulation of actinide waste in a Pu-fueled LMFBR power economy with and without by-product actinide recycling

    International Nuclear Information System (INIS)

    Anselmi, L.; Caruso, K.; Hage, W.; Schmidt, E.

    1979-01-01

    The actinide waste arisings in terms of hazard potential for ingestion and inhalation are given for a Pu-fueled LMFBR Power Economy as function of decay time. The data were assessed for two simplified fuel cycles, one considering the recycling of by-product actinides and the other their complete discharge to the high-level waste. Two durations of nuclear power and several loss fractions of actinides to the waste were considered. The major contributors in form of chemical elements or isotopes to the actinide waste hazard built up during the nuclear power duration were identified for various decay intervals

  17. Update of development on the new Audi NSU rotary engine generation. [for application to aircraft engines

    Science.gov (United States)

    Vanbasshuysen, R.

    1978-01-01

    Rotary engines with a chamber volume of 750 cc as a two rotor automotive powerplant, called KKM 871 are described. This engine is compared to a 3 liter or 183 cubic inch, six-cylinder reciprocating engine. Emphasis is placed on exhaust emission control and fuel economy.

  18. Reliability in automotive ethernet networks

    DEFF Research Database (Denmark)

    Soares, Fabio L.; Campelo, Divanilson R.; Yan, Ying

    2015-01-01

    This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular.......This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular....

  19. Determining Role of Temperature Chart while Evaluating Specific Expenses of Organic Fuel

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchouk

    2009-01-01

    Full Text Available The paper considers designing principles of operational space continuous heating and heat-treating furnaces at mechanical engineering, automotive and tractor enterprises in theRepublicofBelarus. A role of temperature chart on heating metallic charge while evaluating specific expenses of organic fuel in heating and heat-treating furnaces of mechanical engineering, automotive and tractor industries. 

  20. Modularity analysis of automotive control software

    OpenAIRE

    Dajsuren, Y.; Brand, van den, M.G.J.; Serebrenik, A.

    2013-01-01

    A design language and tool like MATLAB/Simulink is used for the graphical modelling and simulation of automotive control software. As the functionality based on electronics and software systems increases in motor vehicles, it is becoming increasingly important for system/software architects and control engineers in the automotive industry to ensure the quality of the highly complex MATLAB/Simulink control software. For automotive software, modularity is recognized as being a crucial quality a...

  1. Storing electricity, the technological challenge of the automotive sector

    International Nuclear Information System (INIS)

    Moulet, C.

    2010-01-01

    The search for alternatives to the internal combustion engine for motor vehicles may be nothing new, but the present focus on environmental issues (dwindling fossil fuel reserves, growing awareness of the environmental impact of the internal combustion engine, etc.) makes it more topical than ever. It is no coincidence that most manufacturers and OEMs on the automotive market, and many research centers, are studying the use of batteries and fuel cells as a means of developing greener, sustainable transport solutions for the future. The European Union is considering ways of compelling manufacturers to market vehicles that are more fuel-efficient at a time when the members of the European Automobile Manufacturers Association, unlike their counterparts in Japan, are failing to meet the targets defined in voluntary agreements. Through their sales of hybrid vehicles, Japanese manufacturers have lent credibility to the notion of a market for electrified vehicles. In this way, market constraints (environmental impact of the internal combustion engine, the cost of fossil fuel, consumers, and national or European lawmakers) will push the automotive industry into marketing 'low-carbon' vehicles in the very short term. Manufacturers' product plans reveal that a wave of electrified products can be expected on the market in 2015. That implies a significant R and D effort between now and 2012, with demonstrator vehicles up and running by 2013-2014 at the latest. So now is a crucial time for research organisations to position themselves in preparation for this emerging market. Industry is hoping for technological progress in areas that cut across these varying degrees of hybridisation and electrification, namely the storage and management of electrical energy and power electronics. It is these areas that will be at the heart of research programs. In these highly competitive times, efforts should focus on: - Lowering costs (by a factor of 5 to 10 for fuel cells and 2 to 4 for

  2. The economy of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, W [Alpha Chemie und Metallurgie G.m.b.H. (ALKEM), Hanau (Germany, F.R.)

    1989-07-01

    Heat extracted from nuclear fuel costs by a factor of 3 to 7 less than heat from conventional fossile fuel. So, nuclear fuel per se has an economical advantage, decreased however partly by higher nuclear plant investment costs. The standard LWR design does not allow all the fission energy stored in the fuel during on cycle to be used. It is therefore the most natural approach to separate fissionable species from fission products and consume them by fissioning. Whether this is economically justified as opposed by storing them indefinitely with spent fuel has widely been debated. The paper outlines the different approaches taken by nuclear communities worldwide and their perceived or proven rational arguments. It will balance economic and other factors for the near and distant future including advanced reactor concepts. The specific solution within the German nuclear programme will be explained, including foreseeable future trends. (orig.).

  3. International Congress of Automotive and Transport Engineering

    CERN Document Server

    Ispas, Nicolae

    2017-01-01

    The volume will include selected and reviewed papers from CONAT - International Congress of Automotive and Transport Engineering to be held in Brasov, Romania, in October 2016. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in automotive vehicles and environment, advanced transport systems and road traffic, heavy and special vehicles, new materials, manufacturing technologies and logistics, accident research and analysis and innovative solutions for automotive vehicles. The conference will be organized by SIAR (Society of Automotive Engineers from Romania) in cooperation with FISITA. .

  4. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  5. Infrared reflecting glazing for automotive application. New developments to improve fuel efficiency and thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, R.; Wahl, A.; Kleinhempel, R. [Southwall Europe GmbH, Grossroehrsdorf (Germany); Coda, M.; Boman, L. [Southwall Technologies Inc., Palo Alto, CA (United States)

    2011-04-15

    Solar control coatings in automotive glazing improve the thermal comfort for passengers, degrease solar irradiation into the cabin and reduce fading of materials. In IRR glazing solar radiation reduction is performed by silver based low-e-stacks with high visual transmittance and high near infrared reflectance. The proposed ARB regulation for Califormia published 2009 demanded for reduced total solartransmittance Tts of <50% of automotive glazing in new cars from 2012 on and of <40% starting 2016. Unfortunately, the regulation was ceased last minute and of March 2010 due to some technical concerns related to proper operation of electronic communication devices. Nevertheless, the technical goals regarding the total solar energy transmittance became a widely accepted performance target for solar heat protection glazing in upcoming new car models for the next years. In order to achieve the challenging new Tts target <40% major steps forward in coating design and optimization of layer properties are required. (orig.)

  6. Developing compressed natural gas as an automotive fuel in Nigeria: Lessons from international markets

    International Nuclear Information System (INIS)

    Ogunlowo, Olufemi O.; Bristow, Abigail L.; Sohail, M.

    2015-01-01

    The Nigerian government proposed the use of compressed natural gas (CNG) as an automotive fuel in 1997 as part of the initiatives to harness natural gas (NG) resources but progress has been slow. This paper examines the natural gas vehicle (NGV) implementation approaches and outcomes in seven countries with diverse experiences in order to gain an understanding of the barriers to the NGV market development in Nigeria. The analysis employs hermeneutic principles to secondary data derived from academic literature, published reports from a variety of international agencies, grey literature, and text from online sources and identifies eight success factors for NGV market development namely: strategic intent, legal backing, learning and adaptation, assignment of responsibilities, financial incentives, NG pricing, consumer confidence, and NG infrastructure. The paper concludes that the principal impediment to NGV market development in Nigeria is the uncoordinated implementation approach and that greater government involvement is required in setting strategic goals, developing the legal and regulatory frameworks, setting of clear standards for vehicles and refuelling stations as well as assigning responsibilities to specific agencies. Short-term low cost policy interventions identified include widening the existing NG and gasoline price gap and offering limited support for refuelling and retrofitting facilities. - Highlights: • We examined the NGV policies and implementation strategies in selected countries. • The use of legislative mandates help deepen NGV penetration. • Aligning stakeholder interest is critical to NGV adoption. • Making national interest a priority ahead of regional infrastructure is a critical success factor. • Government support drives participation

  7. Bacterial contamination of automotive fuels in a tropical region: the case of Costa Rica

    Directory of Open Access Journals (Sweden)

    Carlos E Rodríguez-Rodríguez

    2009-09-01

    Full Text Available Microbial contamination of fuel has been the cause of several problems in transportation and storage of these products. Due to the lack of previous studies related to these problems in Costa Rica, bacterial quality was evaluated biannually in automotive fuels stored in the four oil distribution facilities of the Costa Rican Petroleum Refinery (RECOPE. In 12 oil storage tanks, for a total of 96 samples, mesophilic, heterotrophic aerobic/facultative counts (ASTM D6974-04 and identification of bacteria presented in regular gas, premium gas and diesel from the bottom and superior part of the tanks were done; in the samples containing an aqueous phase, sulfate reducing bacteria (SRB were also quantified by the most probable number technique (MPN, according to the ASTM D4412-84 standard. The higher contamination was shown at the bottom of the tanks (populations up to 10(4 UFC/l, especially if there was accumulated water, in which case populations reached 10(8 UFC/l. The most contaminated fuel was diesel (counts up to 10(4 UFC/l, whereas the less contaminated was premium gas. The less contaminated fuels were from the facilities of La Garita and Barranca, whereas the most contaminated were from Ochomogo. Nevertheless, the quantified populations did not cause significant alteration in quality physicochemical parameters in the samples analyzed. A total of 149 bacterial strains were isolated, 136 (91.3% Gram positive and 13 (8.7% Gram negative. The most frequent genera were Staphylococcus (24.0%, Micrococcus (21.9%, Bacillus (18.8% and Kocuria (11.5% among Gram positive bacteria and Pseudomonas (7.3% among Gram negative bacteria. The majority of these genera have been found as fuel contaminants or even as degraders of this kind of products; nevertheless, some species for which their appearance or growth in hydrocarbons have not been described were found with low frequencies. SRB were present in counts up to 10(5 MPN/l in 42.9% of water containing samples

  8. My 2030s. Citizens about the Biobased Economy; My 2030s. Burgers over de Biobased Economy

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, N.; Hulshof, M.; Van der Veen, M.

    2013-02-15

    My 2030s is the first qualitative study of the needs and concerns of citizens about the Biobased Economy, an economy in which fossil fuels are largely substituted by vegetable alternatives. This final report describes the reason and purpose of My 2030s, the course of the public debates and the results of research into ideas of citizens on the Biobased Economy The report concludes with recommendations on how the stakeholders can actively involve citizens in one of the major transitions of the next century [Dutch] My 2030s is het eerste kwalitatieve onderzoek naar de wensen en zorgen van burgers over de Biobased Economy, een economie waarin fossiele grondstoffen grotendeels zijn vervangen door plantaardige alternatieven. Dit eindrapport beschrijft de aanleiding en opzet van My 2030s, het verloop van de publieksdebatten en de resultaten van het onderzoek naar denkbeelden van burgers over de Biobased Economy. Het rapport eindigt met aanbevelingen over hoe de stakeholders burgers actief kunnen betrekken bij een van de belangrijkste transities van de komende eeuw.

  9. Global environmental impacts of the hydrogen economy

    International Nuclear Information System (INIS)

    Derwent, R.; Simmonds, P.; O'Doherty, S.; Manning, A.; Collins, W.; Stevenson, D.

    2006-01-01

    Hydrogen-based energy systems appear to be an attractive proposition in providing a future replacement for the current fossil-fuel based energy systems. Hydrogen is an important, though little studied, trace component of the atmosphere. It is present at the mixing ratio of about 510 ppb currently and has important man-made and natural sources. Because hydrogen reacts with tropospheric hydroxyl radicals, emissions of hydrogen to the atmosphere perturb the distributions of methane and ozone, the second and third most important greenhouse gases after carbon dioxide. Hydrogen is therefore an indirect greenhouse gas with a global warming potential GWP of 5.8 over a 100-year time horizon. A future hydrogen economy would therefore have greenhouse consequences and would not be free from climate perturbations. If a global hydrogen economy replaced the current fossil fuel-based energy system and exhibited a leakage rate of 1%, then it would produce a climate impact of 0.6% of the current fossil fuel based system. Careful attention must be given to reduce to a minimum the leakage of hydrogen from the synthesis, storage and use of hydrogen in a future global hydrogen economy if the full climate benefits are to be realised. (author)

  10. Alcohol fuels for developing countries

    International Nuclear Information System (INIS)

    Bhattacharya, Partha

    1993-01-01

    The importance of alcohol as an alternative fuel has been slowly established. In countries such as Brazil, they are already used in transport and other sectors of economy. Other developing countries are also trying out experiments with alcohol fuels. Chances of improving the economy of many developing nations depends to a large extent on the application of this fuel. The potential for alcohol fuels in developing countries should be considered as part of a general biomass-use strategy. The final strategies for the development of alcohol fuel will necessarily reflect the needs, values, and conditions of the individual nations, regions, and societies that develop them. (author). 5 refs

  11. The Role of Public and Private Protection in Disruptive Innovation: The Automotive Industry and the Emergence of Low-Emission Vehicles

    NARCIS (Netherlands)

    Pinkse, J.; Bohnsack, R.; Kolk, A.

    2014-01-01

    In the automotive industry, the need to move toward more sustainable trajectories of innovation has received much attention. Car manufacturers have started to develop lower emission alternatives for the internal combustion engine, particularly electric, hybrid, and fuel-cell vehicles. They face the

  12. The start-up analysis of a PEM fuel cell system in vehicles

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud; Hosseinzadeh, Elham

    2014-01-01

    Addressing large load fluctuation in automotive applications, dynamic analysis of a polymer electrolyte membrane fuel cell system is conducted here. Operations of a comprehensive system-level control-oriented fuel cell model with all necessary auxiliary components are demonstrated and simulation ...

  13. The effect of oxygen storage capacity on the dynamic characteristics of an automotive catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Tariq [Department of Mechanical Engineering, The University of Michigan-Dearborn, Dearborn, MI 48128-2406 (United States)

    2008-11-15

    Automotive catalytic converters, which are employed to reduce engine exhaust emissions, are subjected to highly transient conditions during a typical driving cycle. These transient conditions arise from changes in driving mode, the hysteresis and flow lags of the feedback control system, and result in fluctuations of air-fuel ratio, exhaust gas flow rates and temperatures. The catalyst performance is also strongly influenced by the oxygen storage capacity. This paper presents a computational investigation of the effect of oxygen storage capacity on the dynamic behavior of an automotive catalytic converter subjected to modulations in exhaust gases. The modulations are generated by forcing the temporal variations in exhaust gases air-fuel ratio, gas flow rates and temperatures. The study employs a single-channel based, one-dimensional, non-adiabatic model. The results show that the imposed modulations cause a significant departure in the catalyst behavior from its steady behavior, and the oxygen storage capacity plays an important role in determining the catalyst's response to the imposed modulations. Modulations and oxygen storage capacity are found to have relatively greater influence on the catalyst's performance near stoichiometric conditions. (author)

  14. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    Science.gov (United States)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  15. Recovery of platinum-group metals (PGMS from spent automotive catalysts: Part II: Automotive catalysts: Structures and principle of operation

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.

    2015-01-01

    Full Text Available Catalytic converters are incorporated into motor vehicle emission systems (passenger cars, trucks and other motor vehicles, as well as civil and agricultural machines, as of lately to reduce air pollution as well as to meet the emission standards. Their purpose is to convert toxic emissions generated by combustion of liquid fossil fuels into less harmful products. In catalytic converters, rhodium is used for the reduction of gasses, whereas platinum and palladium are used for the oxidation of gasses. This paper presents the structure and operating principle of automotive catalysts in view of the fact that cars are the most prevalent motor vehicles worldwide and due to the fact that the production of cars with gasoline and diesel engines will dominate until at least 2020.

  16. Automotive NVH technology

    CERN Document Server

    Nijman, Eugenius; Priebsch, Hans-Herwig

    2016-01-01

    This book presents seven chapters examining selected noise, vibration and harshness (NVH) topics that are highly relevant for automotive vehicle development. These include applications following the major trends toward increased passenger comfort, vehicle electrification and lightweight design. The authors of the seven chapters, all of which are experts from the automotive industry and academia, present the foremost challenges and potential solutions in this demanding field. Among others, applications for sound optimization in downsized engines, noise optimization in electric powertrains, weight reduction options for exhaust systems, porous materials description, and the vibro-acoustic analysis of geared systems are discussed.

  17. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  18. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Directory of Open Access Journals (Sweden)

    Alexander Maier

    2014-01-01

    Full Text Available Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  19. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  20. Fuel cell hardware-in-loop

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M.; Randolf, G.; Virji, M. [University of Hawaii, Hawaii Natural Energy Institute (United States); Hauer, K.H. [Xcellvision (Germany)

    2006-11-08

    Hardware-in-loop (HiL) methodology is well established in the automotive industry. One typical application is the development and validation of control algorithms for drive systems by simulating the vehicle plus the vehicle environment in combination with specific control hardware as the HiL component. This paper introduces the use of a fuel cell HiL methodology for fuel cell and fuel cell system design and evaluation-where the fuel cell (or stack) is the unique HiL component that requires evaluation and development within the context of a fuel cell system designed for a specific application (e.g., a fuel cell vehicle) in a typical use pattern (e.g., a standard drive cycle). Initial experimental results are presented for the example of a fuel cell within a fuel cell vehicle simulation under a dynamic drive cycle. (author)

  1. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    Science.gov (United States)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  2. Full Load Performance of a Spark Ignition Engine Fueled with Gasoline-Isobutanol Blends

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2009-10-01

    Full Text Available With fossil fuels reserves coming ever closer to depletion and the issue of air pollution caused by automotive transport becoming more and more important, mankind has looked for various solutions in the field of internal combustion engines. One of these solutions is using biofuels, and while the internal combustion engine will most likely disappear along with the last fossil fuel source, studying biofuels and their impact on automotive power-trains is a necessity even if only on a the short term basis. While engines built to run on alcohol-gasoline blends offer good performance levels even at high concentrations of alcohol, unmodified engines fueled with blends of biofuels and fossil fuels can exhibit a drop in power. The object of this study is evaluating such phenomena when a spark ignition engine is operated at full load.

  3. Automotive dual-mode hydrogen generation system

    Science.gov (United States)

    Kelly, D. A.

    The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.

  4. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    Science.gov (United States)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  5. A review on idling reduction strategies to improve fuel economy and reduce exhaust emissions of transport vehicles

    International Nuclear Information System (INIS)

    Shancita, I.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Rashed, M.M.; Rashedul, H.K.

    2014-01-01

    Highlights: • Introduce various idling reduction technologies for transport vehicles. • Exhibit their energy use, advantages, disadvantages to understand their capability. • Conduct critical review to improve fuel economy and exhaust emissions. • Suggest better technology according to their performance ability. - Abstract: To achieve reductions in vehicle idling, strategies and actions must be taken to minimize the time spent by drivers idling their engines. A number of benefits can be obtained in limiting the idling time. These benefits include savings in fuel use and maintenance costs, vehicle life extension, and reduction in exhaust emissions. The main objective of idling reduction (IR) devices is to reduce the amount of energy wasted by idling trucks, rail locomotives, and automobiles. During idling, gasoline vehicles emit a minimum amount of nitrogen oxides (NO x ) and negligible particulate matter (PM). However, generally a large amount of carbon monoxide (CO) and hydrocarbons (HC) are produced from these vehicles. Gasoline vehicles consume far more fuel at an hourly rate than their diesel counterparts during idling. Higher NOx and comparatively larger PM are produced by diesel vehicles than gasoline vehicles on the average during idling. Auxiliary power unit (APU), direct-fired heaters, fuel cells, thermal storage system, truck stop electrification, battery-based systems, engine idle management (shutdown) systems, electrical (shore power) solutions, cab comfort system, and hybridization are some of the available IR technologies whose performances for reducing fuel consumption and exhaust emissions have been compared. This paper analyzes the availability and capability of most efficient technologies to reduce fuel consumption and exhaust emissions from diesel and gasoline vehicles by comparing the findings of previous studies. The analysis reveals that among all the options direct fired heaters, APUs and electrified parking spaces exhibit better

  6. Integration of Forest Fuel Handling in the Ordinary Forestry. Studies on Forestry, Technology and Economy of Forest Fuel Production in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars [Regional Forestry Board of Vaermland-Oerebro, Karlstad (Sweden); Budrys, Renatas [Lithuanian Forest Research Inst. (Lithuania)

    2002-07-01

    During the year 2000, The Swedish Forest Administration and Forest Department, Ministry of Environment in Lithuania, started a bilateral co-operation project, named: 'Swedish Lithuanian Wood Fuel Development Project', financed by the Swedish Energy Agency. The project was divided into 2 phases. The first phase objectives were to make a feasibility study in the eastern part of Lithuania and to identify the present conditions for the utilization of wood fuel within seven state forest enterprises and to define a demonstration and experimental area for the phase 2. The purpose of this work was to find solutions for creating horizontal and vertical integration in the handling of forest fuels in ordinary forestry and supply systems. The aim would be to give specific recommendations on which methods are the most suitable and profitable and on what type of equipment to use for various conditions and by the means of demonstrations to show how to integrate the positive results into the ordinary forestry activities. Different kinds of activities have been carried out to ensure capacity building and development on other levels within the system. 3 activity groups were established and have been working side by side with the appointed team leaders for each activity group from the institutions leading in the specific area within the forest sector in Lithuania. Swedish specialists from the Swedish Forest Administration were involved into the project and the activity groups as well. Lithuanian Forest Research Institute was involved into the project with research support. Additional to the project a mobile drum wood chipper was purchased from Sweden. 3 separate investigations have been conducted, one by Kaunas Univ. of Tech. on the analysis and estimation of material balance in Lithuania saw milling industry, another by Forest Economy Centre on wood fuel produced in industry in Lithuania and the third one by Lithuanian Energy Institute and AF international on Bio fuel

  7. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  8. Ways of reducing radiation exposure in a future nuclear power economy

    International Nuclear Information System (INIS)

    Morgan, K.Z.

    1976-01-01

    The reasons for attempting to reduce radiation exposure in a future nuclear power economy are first discussed. This is followed by a detailed examination of ways for reducing exposures. The entire fuel cycle from uranium mining through fuel reprocessing is covered but special attention is devoted to reactors, fuel and waste shipping and fuel reprocessing

  9. Fuel economy and torque tracking in camless engines through optimization of neural networks

    International Nuclear Information System (INIS)

    Ashhab, Moh'd Sami S.

    2008-01-01

    The feed forward controller of a camless internal combustion engine is modeled by inverting a multi-input multi-output feed forward artificial neural network (ANN) model of the engine. The engine outputs, pumping loss and cylinder air charge, are related to the inputs, intake valve lift and closing timing, by the artificial neural network model, which is trained with historical input-output data. The controller selects the intake valve lift and closing timing that will mimimize the pumping loss and achieve engine torque tracking. Lower pumping loss means better fuel economy, whereas engine torque tracking gurantees the driver's torque demand. The inversion of the ANN is performed with the complex method constrained optimization. How the camless engine inverse controller can be augmented with adaptive techniques to maintain accuracy even when the engine parts degrade is discussed. The simulation results demonstrate the effectiveness of the developed camless engine controller

  10. Plutonium economy

    International Nuclear Information System (INIS)

    Traube, K.

    1984-01-01

    The author expresses his opinion on the situation, describes the energy-economic setting, indicates the alternatives: fuel reprocessing or immediate long-term storage, and investigates the prospects for economic utilization of the breeder reactors. All the facts suggest that the breeder reactor will never be able to stand economic competition with light-water reactors. However, there is no way to prove the future. It is naive to think that every doubt could and must be removed before stopping the development of breeder reactors - and thus also the reprocessing of the fuel of light-water reactors. On the basis of the current state of knowledge an unbiased cost-benefit-analysis can only lead to the recommendation to stop construction immediately. But can 'experts', who for years or even decades have called for and supported the development of breeder reactors be expected to make an unbiased analysis. Klaus Traube strikes the balance of the state Germany's nuclear economy is in: although there is no chance of definitively abandoning that energy-political cul-de-sac, no new adventures must be embarked upon. Responsible handling of currently used nuclear technology means to give up breeder technology and waive plutonium economy. It is no supreme technology with the aid of which structural unemployment or any other economic problem could be solved. (orig.) [de

  11. Fueling the Gig Economy: A Case Study Evaluation of Upwork.com

    Directory of Open Access Journals (Sweden)

    Daryl D. Green

    2018-02-01

    Full Text Available With recent downsizing of talented professionals and the power of globalization to provide opportunities for more underdeveloped countries, the gig economy is a source of influence in today’s generation of professionals. Online outsourcing media have shown to be valuable resources for companies who need a specific set of skills for a limited period. This case study evaluates Upwork.com, one of the leading freelance websites in the gig economy; this article provides insights on how others should evaluate the power of this new economy in terms of opportunities for small businesses, entrepreneurs, and freelancers. Upwork has led the pack by providing a flexible platform for freelancers worldwide, including coders, writers, and web developers, putting businesses in touch with reasonably priced workers. The study begins by exploring the attributes of the gig economy. Data collection is achieved through qualitative analysis. The application of these conclusions could increase the survival rate of new freelancers on Upwork.com and in the gig economy. The study is significant because this research widens contemporary assumptions about strategic thinking for individuals engaged in e-commerce.

  12. Advanced compressed hydrogen fuel storage systems

    International Nuclear Information System (INIS)

    Jeary, B.

    2000-01-01

    Dynetek was established in 1991 by a group of private investors, and since that time efforts have been focused on designing, improving, manufacturing and marketing advanced compressed fuel storage systems. The primary market for Dynetek fuel systems has been Natural Gas, however as the automotive industry investigates the possibility of using hydrogen as the fuel source solution in Alternative Energy Vehicles, there is a growing demand for hydrogen storage on -board. Dynetek is striving to meet the needs of the industry, by working towards developing a fuel storage system that will be efficient, economical, lightweight and eventually capable of storing enough hydrogen to match the driving range of the current gasoline fueled vehicles

  13. Methodical Approach to Estimation of Energy Efficiency Parameters of the Economy Under the Structural Changes in the Fuel And Energy Balance (on the Example of Baikal Region

    Directory of Open Access Journals (Sweden)

    Boris Grigorievich Saneev

    2013-12-01

    Full Text Available The authors consider a methodical approach which allows estimating energy efficiency parameters of the region’s economy using a fuel and energy balance (FEB. This approach was tested on the specific case of Baikal region. During the testing process the authors have developed ex ante and ex post FEBs and estimated energy efficiency parameters such as energy-, electro- and heat capacity of GRP, coefficients of useful utilization of fuel and energy resources and a monetary version of FEB. Forecast estimations are based on assumptions and limitations of technologically-intensive development scenario of the region. Authors show that the main factor of structural changes in the fuel and energy balance will be the large-scale development of hydrocarbon resources in Baikal region. It will cause structural changes in the composition of both the debit and credit of FEB (namely the structure of export and final consumption of fuel and energy resources. Authors assume that the forecast structural changes of the region’s FEB will significantly improve energy efficiency parameters of the economy: energy capacity of GRP will decrease by 1,5 times in 2010– 2030, electro and heat capacity – 1,9 times; coefficients of useful utilization of fuel and energy resources will increase by 3–5 p.p. This will save about 20 million tons of fuel equivalent (about 210 billion rubles in 2011 the prices until 2030

  14. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  15. Environmental economics of lignin derived transport fuels

    OpenAIRE

    Obydenkova, SV; Kouris, P Panagiotis; Hensen, EJM Emiel; Heeres, Hero J; Boot, MD Michael

    2017-01-01

    This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative energy carries to replace lignin, transport modalities, and allocation methodology. The results highlight two critical factors that ultimately determine the economic and/or environmental fuel viability....

  16. AIMS AND OBJECTS OF STATE AUTOMOTIVE INDUSTRY CONTROL AND WAYS OF IMPROVEMENT OF ITS EFFECTIVENESS: RELEVANCE OF CREATION AND INTRODUCTION OF NEW ANTI-CRISIS PROGRAMS DURING THE CRISIS

    Directory of Open Access Journals (Sweden)

    Artem N. Bulavin

    2013-01-01

    Full Text Available Instability of the market economy, strengthened competition and the global economic crisis which began in 2008 caused aggravation of the situation in the domestic automotive industry. The measures which are being realized by government should be reconsidered and actualized taking into account changed conditions. Also its effectiveness should be improved.

  17. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  18. Review on the effects of dual-fuel operation, using diesel and gaseous fuels, on emissions and performance

    NARCIS (Netherlands)

    Wagemakers, A.M.L.M.; Leermakers, C.A.J.

    2012-01-01

    In recent years the automotive industry has been forced to reduce the harmful and pollutant emissions emitted by direct injected diesel engines. To accomplish this difficult task various solutions have been proposed. One of these proposed solutions is the usage of gaseous fuels in addition to the

  19. Environmental economics of lignin derived transport fuels

    NARCIS (Netherlands)

    Obydenkova, Svetlana V.; Kouris, Panos D.; Hensen, Emiel J. M.; Heeres, Hero J.; Boot, Michael D.

    2017-01-01

    This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative

  20. Flywheel Energy Storage for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2015-09-01

    Full Text Available A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%, 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS applications. The industry estimates the mass-production cost of a specific consumer-car flywheel system to be 2000 USD. For regular cars, this system has been shown to save 35% fuel in the U.S. Federal Test Procedure (FTP drive cycle.

  1. Economic evaluation of fast reactor fuel cycling

    International Nuclear Information System (INIS)

    Hu Ping; Zhao Fuyu; Yan Zhou; Li Chong

    2012-01-01

    Economic calculation and analysis of two kinds of nuclear fuel cycle are conducted by check off method, based on the nuclear fuel cycling process and model for fast reactor power plant, and comparison is carried out for the economy of fast reactor fuel cycle and PWR once-through fuel cycle. Calculated based on the current price level, the economy of PWR one-through fuel cycle is better than that of the fast reactor fuel cycle. However, in the long term considering the rising of the natural uranium's price and the development of the post treatment technology for nuclear fuels, the cost of the fast reactor fuel cycle is expected to match or lower than that of the PWR once-through fuel cycle. (authors)

  2. Bosch automotive electrics and automotive electronics. Systems and components, networking and hybrid drive. 5. ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Complete reference guide to automotive electrics and electronics. The significance of electrical and electronic systems has increased considerably in the last few years and this trend is set to continue. The characteristics feature of innovative systems is the fact that they can work together in a network. This requires powerful bus systems that the electronic control units can use to exchange information. Networking and the various bus systems used in motor vehicles are the prominent new topic in the 5th edition of the ''Automotive Electric, Automotive Electronics'' technical manual. The existing chapters have also been updated, so that this new edition brings the reader up to date on the subjects of electrical and electronic systems in the motor vehicle.

  3. Liquefied Petroleum Gas as Automotive Fuel in Environmental Protection

    Directory of Open Access Journals (Sweden)

    Nada Štrumberger

    2012-10-01

    Full Text Available This paper considers the possibilities of using liquefied petroleumgas (LPG as alternative fuel for propelling Olio enginesin passenger cars. The advantages of using LPG comparedto petrol are reflected in the reduced emission of harmfulgases, lower price. The disadvantages include the costs of installingthe gas equipment, occupying part of the boot, as well asfew gas filling stations. In spite of the disadvantages, liquefiedpetroleum gas is claimed to be the fuel of the future.

  4. Weight reduction of vehicles and light metals; Jidosya no keryoka to keikinzoku zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, Akira. [Toyota Motor Corp., Aichi (Japan). Component and System Development Center

    1999-08-15

    Weight reduction of vehicles (WRV) is a continuous challenge from the beginning of the vehicle history, however the purpose of WRV has been changing by social requirements. Recently automotive industry is facing is facing with the global warmin and the other environmental issues, so we are vast amount of R and D resources to improve the fuel economy. In this paper, the changes of the purpose of WRV and, the relation between fuel economy and WRV, are summarized. And also the current status of light metals usage and the future work for the related material issues, in particuar the corrosion resistance, are brifly mentioned. (author)

  5. An Investigation on the Effect of Driver Style and Driving Events on Energy Demand of a PHEV

    OpenAIRE

    Rajan, Brahmadevan; McGordon, Andrew; Jennings, Paul

    2012-01-01

    Environmental concerns, security of fuel supply and CO2 regulations are driving innovation in the automotive industry towards electric and hybrid electric vehicles. The fuel economy and emission performance of hybrid electric vehicles (HEVs) strongly depends on the energy management system (EMS). Prior knowledge of driving information could be used to enhance the performance of a HEV. However, how the necessary information can be obtained to use in EMS optimisation still remains a challenge. ...

  6. An investigation on the effect of driver style and driving\\ud events on energy demand of a PHEV

    OpenAIRE

    Padmarajan, Brahmadevan V.; McGordon, Andrew; Jennings, P. A. (Paul A.)

    2012-01-01

    Environmental concerns, security of fuel supply and CO2 regulations are driving innovation in the automotive industry towards electric and hybrid electric vehicles. The fuel economy and emission performance of hybrid electric vehicles (HEVs) strongly depends on the energy management system (EMS). Prior knowledge of driving information could be used to enhance the performance of a HEV. However, how the necessary information can be obtained to use in EMS optimisation still remains a challenge. ...

  7. Renewable energy and macroeconomic efficiency of OECD and non-OECD economies

    International Nuclear Information System (INIS)

    Chien, Taichen; Hu, Jin-Li

    2007-01-01

    This article analyzes the effects of renewable energy on the technical efficiency of 45 economies during the 2001-2002 period through data envelopment analysis (DEA). In our DEA model, labor, capital stock, and energy consumption are the three inputs and real GDP is the single output. Increasing the use of renewable energy improves an economy's technical efficiency. Conversely, increasing the input of traditional energy decreases technical efficiency. Compared to non-OECD economies, OECD economies have higher technical efficiency and a higher share of geothermal, solar, tide, and wind fuels in renewable energy. However, non-OECD economies have a higher share of renewable energy in their total energy supply than OECD economies

  8. A hydrogen economy: opportunities and challenges

    International Nuclear Information System (INIS)

    Tseng, P.; Lee, J.; Friley, P.

    2005-01-01

    A hydrogen economy, the long-term goal of many nations, can potentially confer energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel-cell technologies, problems in hydrogen production and its distribution infrastructure, and the response of petroleum markets. This study uses the US MARKAL model to simulate the impacts of hydrogen technologies on the US energy system and to identify potential impediments to a successful transition. Preliminary findings highlight possible market barriers facing the hydrogen economy, as well as opportunities in new R and D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. (author)

  9. Methanol as fuel: evaluation of atmosphere contamination

    International Nuclear Information System (INIS)

    Alonso, C.D.; Romano, J.; Guardani, M.L.G.

    1991-01-01

    With the beginning of methanol use as automotive fuel in Sao Paulo city, 1990, were realized special measurements of methanol, formaldehyde, ethanol and acetaldehyde in atmosphere. Other indicators of air quality as carbon and ozone monoxide were also observed in this study. (C.M.)

  10. Fuel distribution logistics in Brazil: technical and economic aspects; Aspectos tecnico-economicos da logistica da distribuicao de combustiveis no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Heloisa Borges B; Bicalho, Lucia N [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    In Brazil, there are around 250 companies operating in the automotive fuel distribution segment, responsible for the automotive fuels wholesale commercialization activity. Those companies supply not only gas stations, but also final consumers and TRR's. Their clients are distributed regionally, which requires flexibility and the ability to supply clients efficiently at the smaller possible cost, transforming variables such as the transportation alternatives adopted, the location of the storage facilities and its correct dimension on key decisions. This paper analyses the general scenario of the fuels distribution logistics in Brazil from a economic perspective, and its impacts on the companies competitive strategies. (author)

  11. The California greenhouse gas initiative and its implications to the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to

  12. The Czechoslovak automotive industry and the launch of a new model. The Škoda factory in Mladá Boleslav, in the 1970s and 1980s

    Czech Academy of Sciences Publication Activity Database

    Vilímek, Tomáš; Fava, Valentina

    2017-01-01

    Roč. 38, č. 1 (2017), s. 53-69 ISSN 0022-5266 R&D Projects: GA ČR(CZ) GA15-14271S Institutional support: RVO:68378114 Keywords : Czechoslovak automotive industry * socialist management * planned economy Subject RIV: AB - History OBOR OECD: History ( history of science and technology to be 6.3, history of specific sciences to be under the respective headings)

  13. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Edward [General Motors LLC, Pontiac, MI (United States); Gough, Charles [General Motors LLC, Pontiac, MI (United States)

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  14. Automotive Mechanics.

    Science.gov (United States)

    Linder, Ralph C.; And Others

    This curriculum guide, which was validated by vocational teachers and mechanics in the field, describes the competencies needed by entry-level automotive mechanics. This guide lists 15 competencies; for each competency, various tasks with their performance objective, student learning experiences, suggested instructional techniques, instructional…

  15. A study of the Armstrong Whitworth swing beam engine for automotive application

    Science.gov (United States)

    1983-01-01

    The introduction of ceramics to those parts suffering high thermal loading was successfully demonstrated, and there is no question that the 100 kw (134 hp) naturally aspirated engine of the future will be developed to produce up to 300 kw (402 hp) by the application of turbocharging or its equivalent. However, at the 60 - 80 kw (80 - 107 hp) size needed for the economic automotive engine, scaling down the 300 kw (402 hp) is beset by the laws of scale. The conventional four stroke diesel was not shown to be successful at the small high speed engine size. The opposed piston two stroke engine does not suffer the same laws of scale and engines in the low power range have already been marketed successfully. The half liter/cylinder Armstrong Whitworth Swing Beam Engine is the latest to be designed with the automotive market in mind. Its low noise structure and balanced linkage system coupled with advantages for easy start and potential use of low grade fuels, derived from its variable compression ratio and slow piston motion, qualifies it for the application.

  16. New road map to hydrogen economy in Japan

    International Nuclear Information System (INIS)

    Fukuda, K.

    2004-01-01

    Reducing carbon dioxide emission and enhancing energy security are the most critical energy issues for construction of future energy systems. The hydrogen energy system is widely accepted as one of the most promising system options for solving such problems. Ministry of Economy, Trade and Industry(METI) of Japanese Government made public its revised introduction scenario of fuel cell vehicles(FCVs) and stationary fuel cells with a time frame of 2005 to 2030 in March, 2004. The original scenario was published in August, 2001 with the time frame of 2005 to 2020. The revised scenario could substantially be considered as New Road Map to Hydrogen Economy in Japan. In this paper the revised scenario will be introduced together with supporting data provided by the author. (author)

  17. Fuel-management simulations for once-through thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Boczar, P.G.; Ellis, R.J.; Ardeshiri, F.

    1999-01-01

    High neutron economy, on-power refuelling and a simple fuel bundle design result in unsurpassed fuel cycle flexibility for CANDU reactors. These features facilitate the introduction and exploitation of thorium fuel cycles in existing CANDU reactors in an evolutionary fashion. Detailed full-core fuel-management simulations concluded that a once-through thorium fuel cycle can be successfully implemented in an existing CANDU reactor without requiring major modifications. (author)

  18. The Methanol Economy Project

    Energy Technology Data Exchange (ETDEWEB)

    Olah, George [Univ. of Southern California, Los Angeles, CA (United States); Prakash, G. K. [Univ. of Southern California, Los Angeles, CA (United States)

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  19. Sustainable and safe energy supply with seawater uranium fueled HTGR and its economy

    International Nuclear Information System (INIS)

    Fukaya, Y.; Goto, M.

    2017-01-01

    Highlights: • We discussed uranium resources with an energy security perspective. • We concluded seawater uranium is preferable for sustainability and energy security. • We evaluated electricity generation cost of seawater uranium fueled HTGR. • We concluded electricity generation with seawater uranium is reasonable. - Abstract: Sustainable and safe energy supply with High Temperature Gas-cooled Reactor (HTGR) fueled by uranium from seawater have been investigated and discussed. From the view point of safety feature of self-regulation with thermal reactor of HTGR, the uranium resources should be inexhaustible. The seawater uranium is expected to be alternative resources to conventional resources because it exists so much in seawater as a solute. It is said that 4.5 billion tons of uranium is dissolved in the seawater, which corresponds to a consumption of approximately 72 thousand years. Moreover, a thousand times of the amount of 4.5 trillion tU of uranium, which corresponds to the consumption of 72 million years, also is included in the rock on the surface of the sea floor, and that is also recoverable as seawater uranium because uranium in seawater is in an equilibrium state with that. In other words, the uranium from seawater is almost inexhaustible natural resource. However, the recovery cost with current technology is still expensive compared with that of conventional uranium. Then, we assessed the effect of increase in uranium purchase cost on the entire electricity generation cost. In this study, the economy of electricity generation of cost of a commercial HTGR was evaluated with conventional uranium and seawater uranium. Compared with ordinary LWR using conventional uranium, HTGR can generate electricity cheaply because of small volume of simple direct gas turbine system compared with water and steam systems of LWR, rationalization by modularizing, and high thermal efficiency, even if fueled by seawater uranium. It is concluded that the HTGR

  20. Automotive systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Markus [Technische Univ. Braunschweig (Germany). Inst. fuer Regelungstechnik; Winner, Hermann (eds.) [Technische Univ. Darmstadt (Germany). Fachgebiet Fahrzeugtechnik

    2013-06-01

    Innovative state-of-the-art book. Presents brand new results of a joint workshop in the field of automotive systems engineering. Recommendable to students for further reading even though not a primary text book. This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as ''automotive systems engineering''. These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.